Exercise sheet 6

1. Scalar electrodynamics.

a.) Write down the Lagrangian of scalar QED, i.e. a complex scalar field coupled to the photon via $D_{\mu} = \partial_{\mu} + iqA_{\mu}$. Derive the Noether current(s) and the current to which the photon couples (defined by $\partial_{\mu}F^{\mu\nu} = j^{\nu}$).

b.) Show that $\mathscr{L} = -F^2/4$ corresponds to a canonically normalised field, i.e. that

$$\mathscr{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} = \frac{1}{2} A^{\mu} D_{\mu\nu} A^{\nu},$$

where $D_{\mu\nu}$ is a differential operator.

2. Dimension of a scalar field ϕ .

We set $\hbar = c = 1$ and choose as the unique dimension the mass unit m.

a.) Find the dimension (i.e. the power m^{α}) of a scalar field ϕ in d spacetime dimensions.

b.) For which d has $\mathscr{L}_I = \lambda \phi^3$ a dimensionless coupling constant?

c.) For which d has $\mathscr{L}_I = \lambda \phi^4$ a dimensionless coupling constant?

3. Stress tensor for the electromagnetic field.

a.) Determine the stress tensor $T^{\mu\nu}$ of the electromagnetic field using either i) $f^{\mu} = -\frac{\partial T^{\mu\nu}}{\partial x^{\nu}}$, where $T^{\mu\nu}$ is the stress tensor of the field acting with the force density f_{μ} on external currents, or ii) converting $T^{00} = (\mathbf{E}^2 + \mathbf{B}^2)/2$ into an valid tensor expression.

b.) Confirm that T^{00} corresponds to the energy-density ρ . Find the trace of $T^{\mu\nu}$ and the Equation of State (EoS) defined by $w = P/\rho$.