### "The Future of UHECR Physics"

- Energy spectrum: confirmation of GZK effect?
- Identification of UHECR sources?
  - primaries: proton vs. nuclei
  - magnetic fields
  - small-scale clustering
  - correlations
- More than astrophysics?
  - top-down models
  - Z burst model
  - strongly interacting neutrinos
  - tests of Lorentz invariance, QCD, ...

#### • Summary

<回> < 回> < 回> < 回>

### Energy spectrum and composition



### Energy spectrum and composition



(日)((日))

### Energy losses, the dip and the GZK cutoff



<回> < 回> < 回> < 回> -

# The (first) dip



# The (first) dip



Michael Kachelrieß

The Future of UHECR Physics

# The (first) dip



#### The second dip



Michael Kachelrieß The Future of UHECR Physics

### The second dip

₹ Ξ > < Ξ >



- at  $E_{\rm eq2}$  where  $dE/dt|_{\rm pion}=dE/dt|_{\rm e^+e^-}$   $\Rightarrow$  calibration
- 2.nd dip shows up in  $\kappa = J_{obs}/J_{CEL}$
- clean signature for CMB interactions of protons

÷.



### How universal is the spectrum?





<回> < 回> < 回> < 回>

### Universality and cosmic variance



÷.

### Possible anisotropies of extragalactic CRs:

- Dipole anisotropy cosmolog. Compton-Getting effect
  - induced by motion of Sun relative to cosmological rest frame
  - requires  $\lambda_{CR}(E) \gtrsim \lambda_{LSS}$
- Anisotropies on medium scales
  - $\ell \sim 20\text{--}40 \text{ degrees}$
  - reflects LSS of matter, modified by B
  - requires  $\lambda_{CR}(E) \lesssim \text{few} \times \lambda_{LSS}$
  - favoured by large n<sub>s</sub>

#### Small-scale clustering

- $\bullet\,$  Small-scale  $\sim\,$  angular resolution of experiments
- $\Rightarrow$  CR from the same point sources
  - requires small qB/E and small  $n_s$

(1日) (日) (日)

### Extragalactic magnetic field – simulation by SME:



### Extragalactic magnetic field – simulation DGST:



DGST: astronomy with UHE protons possible in large part of sky!

Michael Kachelrieß The Future of UHECR Physics

### which simulation/conclusion is closer to reality?

- many technical differences between the two simulations; two major conceptional ones:
  - Sigl, Miniato, Ensslin use an unconstrained simulation, putting observer \* close to a cluster
  - Dolag, Grasso, Springel, Tkachev use a constrained simulation
  - Dolag, Grasso, Springel, Tkachev inject protons uniformly on a sphere
  - Sigl, Miniato, Ensslin inject protons following matter distribution
  - presentation of results maximizes differences

Seed fields and amplification mechanism of EGMF could be completely different!

### Cosmological Compton-Getting effect:

[MK, Serpico '06]

• Solar System is moving with  $v \approx 368$  km/s relative to CMB



### Cosmological Compton-Getting effect:

- Solar System is moving with  $v \approx 368$  km/s relative to CMB
- UHECR sources are on average at rest
- $\Rightarrow$  dipole anisotropy also visible in UHECR flux  $I(E) = E^2 f(p)$ ,

$$A_{\rm CCG} \equiv \frac{I_{\rm max} - I_{\rm min}}{I_{\rm max} + I_{\rm min}} = \left(2 - \frac{d\ln I}{d\ln E}\right) v \approx 0.6\% \,.$$

- amplitude independent of primary charge and energy
- GMF shifts dipole vector by  $\delta \sim 20^\circ \times 10^{19} {\rm eV}(Q/E)$
- comparison of  $\delta$  at 2 energies gives (average) primary charge
- upper energ range depends on loss horizon  $\lambda_{CR}$
- lower on transition energy  $E_{\rm tr}$  to galactic CRs

- ( 同 ) ( 目 ) ( 目 ) 三国

### Medium-scale anisotropies in UHECRs:

• increasing E/qB or decreasing  $n_s$ , LSS of sources becomes visible



- ${\cal O}(100)$  events needed to detect effect, energy range around  $\gtrsim\!4\times10^{19}~{\rm eV}$  [A. Cuoco et al. '05, '06 ]
- increasing *E* even further, single sources become visible

### Medium-scale anisotropies in UHECRs:



### True effect?

• independent of energy, if artefact due to incorrect combination of experiments

<ロ> <部> <部> <き> <き> <

### True effect?



◆□ → ◆□ → ◆ □ → ◆ □ → ○

### True effect?

- independent of energy, if artefact due to incorrect combination of experiments
- $\Rightarrow\,$  signal disappears due to  $\lambda_{CR}(E)\nearrow$  and  $\delta_B\nearrow$ 
  - penalty factor for scan over angles:  $\sim 6-30$

### Small-scale clustering and point sources:



- no contradiction between AGASA and HiRes
- significant cross-correlation between HiRes and AGASA, if energies are rescaled
- depends strongly on triplet
- PAO: only search for local excess; different GMF

#### Small-scale clusters and density of sources:

₹ Ξ > < Ξ >

**∂** ►



# Unified AGN picture



### Correlations with astrophysical sources:

- $+\,$  Farrar & Biermann '98: radio-loud QSO's,  $p_{\rm ch}\sim 0.5\%$
- Sigl et al. '01:  $p_{\rm ch}\sim 27\%$
- + Tinyakov & Tkachev: AY radio-loud BL Lacs with z>0.1 and mag  $<18,~p_{\rm ch}\sim 2\times 10^{-5}$
- Torres et al.: HV no significant correlation
- $+\,$  Gorbunov et al.: HiRes all BL Lacs with mag < 18,  $p_{\rm ch} \sim 4 \times 10^{-4}$

- How serious  $p_{ch}$  should be taken?
- PAO should see correlations with AGNs with 1-2 years

御 と く ヨ と く ヨ と

### **Top-Down Models**

UHECR primaries are produced by decays of supermassive particle X with  $M_X \gtrsim 10^{12}$  GeV.

• topological defects: monopoles, strings, ...

[Hill '83; Ostriker, Thompson, Witten '86]

・ロッ ・雪ッ ・ヨッ

superheavy metastable particles

[Berezinsky, MK, Vilenkin '97; Kuzmin, Rubakov '97]

#### Advantages:

- no acceleration problem
- no visible sources
- if  $X \in CDM$ , no GZK-cutoff
- theoretically motivated; testable predictions

• flat spectra  $dE/E^{1.9}$  up to  $m_X/2$ 



 $\Rightarrow$  SHDM dominates UHECR flux only above  $\sim$  8  $\times$  10<sup>19</sup> eV

### Signatures of SHDM decays

- flat spectra  $dE/E^{1.9}$  up to  $m_X/2$
- composition: photon dominance



## Signatures of SHDM decays

- flat spectra  $dE/E^{1.9}$  up to  $m_X/2$
- composition: photon dominance
- galactic anisotropy

[Dubovsky, Tinyakov '98]

・ロト ・ ア・ ・ ヨト ・ ヨト

### Status of topological defect models – necklaces:



 $\Rightarrow$  shape of spectrum allows only sub-dominant contribution

Restricting QCD: Color Glass Condensates, ...



## Summary

Current main uncertainties:

- chemical composition: proton vs. nuclei
- extragalactic magnetic fields: deflections
- type of sources: density

Autocorrelation on medium scales

- physically well motivated
- to be falsified within 1-2 (?) years by PAO

Correlations with sources, favoured:

- EGMF in voids  $\sim 0$  plus protons
- correlation with (subclass) of AGNs
- various claims to be falsified within 1-2 (?) years

Particle physics:

- no need for new physics (?)
- top-down models attractive
- test for QCD, new physics, ...

・ロン ・回と ・ヨン ・ヨン