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1. Classi
al me
hani
s

As a starter we review in this 
hapter those 
on
epts of 
lassi
al me
hani
s whi
h are es-

sential for progressing towards quantum theory. We re
all �rst brie
y the Lagrangian and

Hamiltonian formulation of 
lassi
al me
hani
s and their derivation from an a
tion prin
iple.

We illustrate also the Green fun
tion method using as example the driven harmoni
 os
illator

and re
all the a
tion of a relativisti
 point parti
le.

1.1. A
tion prin
iple

Variational prin
iples Fundamental laws of Nature as Newton's axioms or Maxwell's equa-

tions were dis
overed in the form of di�erential equations. Starting from Leibniz and Euler,

it was realised that one 
an re-express di�erential equations in the form of variational prin-


iples: In this approa
h, the evolution of a physi
al system is des
ribed by the extremum of

an appropriately 
hosen fun
tional. Various versions of su
h variational prin
iples exist, but

they have in 
ommon that the fun
tionals used have the dimension of \energy � time", i.e.

the fun
tionals have the same dimension as Plan
k's 
onstant ~. A quantity with this dimen-

sion is 
alled a
tion S. An advantage of using the a
tion as main tool to des
ribe dynami
al

systems is that this allows us to implement easily both spa
e-time and internal symmetries.

For instan
e, 
hoosing as ingredients of the a
tion lo
al fun
tions that transform as s
alars

under Lorentz transformations leads automati
ally to relativisti
ally invariant �eld equations.

Moreover, the a
tion S summarises e
onomi
ally the information 
ontained typi
ally in a set

of various 
oupled di�erential equations.

If the variational prin
iple is formulated as an integral prin
iple, then the fun
tional S will

depend on the whole path q(t) des
ribed by the system between the 
onsidered initial and �nal

time. In the formulation of quantum theory we will pursue, we will look for a dire
t 
onne
tion

from the 
lassi
al a
tion S[q℄ of the path [q(t): q

0

(t

0

)℄ to the transition amplitude hq

0

; t

0

jq; ti.

Thus the use of the a
tion prin
iple will not only simplify the dis
ussion of symmetries of a

physi
al system, but lies also at the heart of the approa
h to quantum theory we will follow.

1.1.1. Hamilton's prin
iple and Lagrange's equations

A fun
tional F [f(x)℄ is a map from a 
ertain spa
e of fun
tions f(x) into the real or 
omplex

numbers. We will 
onsider mainly fun
tionals from the spa
e of (at least) twi
e di�eren-

tiable fun
tions between �xed points a and b. More spe
i�
ally, Hamilton's prin
iple uses as

fun
tional the a
tion S de�ned by

S[q

i

℄ =

Z

b

a

dt L(q

i

; _q

i

; t) ; (1.1)

where L is a fun
tion of the 2n independent fun
tions q

i

and _q

i

= dq

i

=dt as well as of the

parameter t. In 
lassi
al me
hani
s, we 
all L the Lagrange fun
tion of the system, q

i

are its

1



1. Classi
al me
hani
s

n generalised 
oordinates, _q

i

the 
orresponding velo
ities and t is the time. The extrema of

this a
tion give those paths q(t) from a to b whi
h are solutions of the equations of motion

for the system des
ribed by L.

How do we �nd those paths that extremize the a
tion S? First of all, we have to pres
ribe

whi
h variables are kept 
onstant, whi
h are varied and whi
h 
onstraints the variations have

to obey. Depending on the variation prin
iple we 
hoose, these 
onditions and the fun
tional

form of the a
tion will di�er. Hamilton's prin
iple 
orresponds to a smooth variation of the

path,

q

i

(t; ") = q

i

(t; 0) + "�

i

(t) ;

that keeps the endpoints �xed, �

i

(a) = �

i

(b) = 0, but is otherwise arbitrary. The s
ale fa
tor

" determines the magnitude of the variation for the one-parameter family of paths "�

i

(t). The

notation S[q

i

℄ stresses that we 
onsider the a
tion as a fun
tional only of the 
oordinates q

i

:

The velo
ities _q

i

are not varied independently be
ause " is time-independent. Sin
e the time

t is not varied in Hamilton's prin
iple, varying the path q

i

(t; ") requires only to 
al
ulate the

resulting 
hange of the Lagrangian L. Following this pres
ription, the a
tion has an extremum

if

0 =

�S[q

i

(t; ")℄

�"

�

�

�

�

"=0

=

Z

b

a

dt

�

�L

�q

i

�q

i

�"

+

�L

� _q

i

� _q

i

�"

�

=

Z

b

a

dt

�

�L

�q

i

�

i

+

�L

� _q

i

_�

i

�

: (1.2)

Here we applied|as always in the following|Einstein's 
onvention to sum over a repeated

index pair. Thus e.g. the �rst term in the bra
ket equals

�L

�q

i

�

i

�

n

X

i=1

�L

�q

i

�

i

for a system des
ribed by n generalised 
oordinates. We 
an eliminate _�

i

in favour of �

i

,

integrating the se
ond term by parts, arriving at

�S[q

i

(t; ")℄

�"

�

�

�

�

"=0

=

Z

b

a

dt

�

�L

�q

i

�

d

dt

�

�L

� _q

i

��

�

i

+

�

�L

� _q

i

�

i

�

b

a

: (1.3)

The boundary term [: : :℄

b

a

vanishes, be
ause we required that the fun
tions �

i

are zero at the

endpoints a and b. Sin
e these fun
tions are otherwise arbitrary, ea
h individual term in the

�rst bra
ket has to vanish for an extremal 
urve. The n equations resulting from the 
ondition

�S[q

i

(t; ")℄=�" = 0 are 
alled the (Euler-) Lagrange equations of the a
tion S,

�L

�q

i

�

d

dt

�L

� _q

i

= 0 ; (1.4)

and give the equations of motion for the system spe
i�ed by L. In the future, we will use a

more 
on
ise notation, 
alling

Æq

i

� lim

"!0

q

i

(t; ") � q

i

(t; 0)

"

=

�q

i

(t; ")

�"

�

�

�

�

"=0

(1.5)

the variation of q

i

, and similarly for fun
tions and fun
tionals of q

i

. Thus we 
an re-write e.g.

Eq. (1.2) in a more evident form as

0 = ÆS[q

i

℄ =

Z

b

a

dt ÆL(q

i

; _q

i

; t) =

Z

b

a

dt

�

�L

�q

i

Æq

i

+

�L

� _q

i

Æ _q

i

�

: (1.6)
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1.1. A
tion prin
iple

We 
lose this paragraph with three remarks. First, we note that Hamilton's prin
iple is often


alled the prin
iple of least a
tion. This name is somewhat misleading, sin
e the extremum

of the a
tion 
an be also a maximum or a saddle point. Se
ond, observe that the Lagrangian

L is not uniquely �xed: Adding a total time-derivative, L ! L

0

= L + df(q; t)=dt, does not


hange the resulting Lagrange equations,

S

0

= S +

Z

b

a

dt

df

dt

= S + f(q(b); t

b

)� f(q(a); t

a

) ; (1.7)

sin
e the last two terms vanish varying the a
tion with the restri
tion of �xed endpoints a and

b. Finally, note that we used a Lagrangian that depends only on the 
oordinates and their

�rst derivatives. Su
h a Lagrangian leads to se
ond-order equations of motion and thus to

a me
hani
al system spe
i�ed by the 2n pie
es of information fq

i

; _q

i

g. Ostrogradsky showed

1850 that a stable ground-state is impossible, if the Lagrangian 
ontains higher derivatives

�q; q

(3)

; : : :, 
f. problem 1.??. Therefore su
h theories 
ontradi
t our experien
e that the va
-

uum is stable. Constru
ting Lagrangians for the fundamental theories des
ribing Nature, we

should restri
t ourselves thus to Lagrangians that lead to se
ond-order equations of motion.

Lagrange fun
tion We illustrate now how one 
an use symmetries to 
onstrain the possible

form of a Lagrangian L. As example, we 
onsider the 
ase of a free non-relativisti
 parti
le

with mass m subje
t to the Galilean prin
iple of relativity. More pre
isely, we use that the

homogeneity of spa
e and time forbids that L depends on x and t, while the isotropy of spa
e

implies that L depends only on the norm of the velo
ity ve
tor v, but not on its dire
tion.

Thus the Lagrange fun
tion of a free parti
le 
an be only a fun
tion of v

2

, L = L(v

2

).

Let us 
onsider two inertial frames moving with the in�nitesimal velo
ity " relative to ea
h

other. (Re
all that an inertial frame is de�ned as a 
oordinate system where a for
e-free

parti
le moves along a straight line.) Then a Galilean transformation 
onne
ts the velo
ities

measured in the two frames as v

0

= v+". The Galilean prin
iple of relativity requires that the

laws of motion have the same form in both frames, and thus the Lagrangians 
an di�er only

by a total time-derivative. Expanding the di�eren
e ÆL in " gives with Æv

2

= 2v � "+O("

2

)

ÆL =

�L

�v

2

Æv

2

= 2v � "

�L

�v

2

: (1.8)

Sin
e v

i

= dx

i

=dt, the term �L=�v

2

has to be independent of v su
h that the di�eren
e ÆL

is a total time-derivative. Hen
e, the Lagrangian of a free parti
le has the form L = av

2

+ b.

The 
onstant b drops out of the equations of motion, and we 
an set it therefore to zero. To

be 
onsistent with usual notation, we 
all the proportionality 
onstant m=2, and the total

expression kineti
 energy T ,

L = T =

1

2

mv

2

: (1.9)

For a system of non-intera
ting parti
les, the Lagrange fun
tion L is additive, L =

P

a

1

2

m

a

v

2

a

.

If there are intera
tions (assumed for simpli
ity to depend only on the 
oordinates), then we

subtra
t a fun
tion V (x

1

;x

2

; : : :) 
alled potential energy. One 
on�rms readily that this


hoi
e for L reprodu
es Newton's law of motion.

3



1. Classi
al me
hani
s

Energy The Lagrangian of a 
losed system does not depend on time be
ause of the homo-

geneity of time. Its total time derivative is

dL

dt

=

�L

�q

i

_q

i

+

�L

� _q

i

�q

i

: (1.10)

Using the equations of motion and repla
ing �L=�q

i

by (d=dt)�L=� _q

i

, it follows

dL

dt

= _q

i

d

dt

�L

� _q

i

+

�L

� _q

i

�q

i

=

d

dt

�

_q

i

�L

� _q

i

�

: (1.11)

Hen
e the quantity

E � _q

i

�L

� _q

i

� L (1.12)

remains 
onstant during the evolution of a 
losed system. This holds also more generally, e.g.

in the presen
e of stati
 external �elds, as long as the Lagrangian is not time-dependent.

We have still to show that E 
oin
ides indeed with the usual de�nition of energy. Using

as Lagrange fun
tion L = T (q; _q) � V (q), where the kineti
 energy T is quadrati
 in the

velo
ities, we have

_q

i

�L

� _q

i

= _q

i

�T

� _q

i

= 2T (1.13)

and thus E = 2T � L = T + V .

Conservation laws In a general way, we 
an derive the 
onne
tion between a symmetry of

the Lagrangian and a 
orresponding 
onservation law as follows: Let us assume that under a


hange of 
oordinates q

i

! q

i

+Æq

i

, the Lagrangian 
hanges at most by a total time derivative,

L! L+ ÆL = L+

dÆF

dt

: (1.14)

In this 
ase, the equation of motions are un
hanged and the 
oordinate 
hange q

i

! q

i

+ Æq

i

is a symmetry of the Lagrangian. But the 
hange dÆF=dt has to equal ÆL indu
ed by the

variation Æq

i

,

�L

�q

i

Æq

i

+

�L

� _q

i

Æ _q

i

�

dÆF

dt

= 0 : (1.15)

Repla
ing again �L=�q

i

by (d=dt)�L=� _q

i

and applying the produ
t rule gives as 
onserved

quantity

Q =

�L

� _q

i

Æq

i

� ÆF : (1.16)

Thus any 
ontinuous symmetry of a Lagrangian system results in a 
onserved quantity. In

parti
ular, energy 
onservation follows for a system invariant under time-translations with

Æq

i

= _q

i

Æt. Other 
onservation laws are dis
ussed in problem 1.??.

1.1.2. Palatini's prin
iple and Hamilton's equations

Legendre transformation and the Hamilton fun
tion In the Lagrange formalism, we de-

s
ribe a system spe
ifying its generalised 
oordinates and velo
ities using the Lagrangian,

4
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tion prin
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L = L(q

i

; _q

i

; t). An alternative is to use generalised 
oordinates and their 
anoni
ally 
onju-

gated momenta p

i

de�ned as

p

i

=

�L

� _q

i

: (1.17)

The passage from fq

i

; _q

i

g to fq

i

; p

i

g is a spe
ial 
ase of a Legendre transformation

1

: Starting

from the Lagrangian L we de�ne a new fun
tion H(q

i

; p

i

; t) 
alled Hamiltonian or Hamilton

fun
tion via

H(q

i

; p

i

; t) =

�L

� _q

i

_q

i

� L(q

i

; _q

i

; t) = p

i

_q

i

� L(q

i

; _q

i

; t) : (1.18)

Here we assume that we 
an invert the de�nition (1.17) and are thus able to substitute

velo
ities _q

i

by momenta p

i

in the Lagrangian L.

The physi
al meaning of the Hamiltonian H follows immediately 
omparing its de�ning

equation with the one for the energy E. Thus the numeri
al value of the Hamiltonian equals

the energy of a dynami
al system; we insist however that H is expressed as fun
tion of


oordinates and their 
onjugated momenta. A 
oordinate q

i

that does not appear expli
itly

in L is 
alled 
y
li
. The Lagrange equations imply then �L=� _q

i

= 
onst:, so that the


orresponding 
anoni
ally 
onjugated momentum p

i

= �L=� _q

i

is 
onserved.

Palatini's formalism and Hamilton's equations Previously, we 
onsidered the a
tion S as a

fun
tional only of q

i

. Then the variation of the velo
ities _q

i

is not independent and we arrive

at n se
ond order di�erential equations for the 
oordinates q

i

. An alternative approa
h is to

allow independent variations of the 
oordinates q

i

and of the velo
ities _q

i

. We trade the latter

against the momenta p

i

= �L=� _q

i

and rewrite the a
tion as

S[q

i

; p

i

℄ =

Z

b

a

dt

�

p

i

_q

i

�H(q

i

; p

i

; t)

�

: (1.19)

The independent variation of 
oordinates q

i

and momenta p

i

gives

ÆS[q

i

; p

i

℄ =

Z

b

a

dt

�

p

i

Æ _q

i

+ _q

i

Æp

i

�

�H

�q

i

Æq

i

�

�H

�p

i

Æp

i

�

: (1.20)

The �rst term 
an be integrated by parts, and the resulting boundary terms vanishes by

assumption. Colle
ting then the Æq

i

and Æp

i

terms and requiring that the variation is zero,

we obtain

0 = ÆS[q

i

; p

i

℄ =

Z

b

a

dt

�

�

�

_p

i

+

�H

�q

i

�

Æq

i

+

�

_q

i

�

�H

�p

i

�

Æp

i

�

: (1.21)

As the variations Æq

i

and Æp

i

are independent, their 
oeÆ
ients in the round bra
kets have to

vanish separately. Thus we obtain in this formalism dire
tly Hamilton's equations,

_q

i

=

�H

�p

i

; and _p

i

= �

�H

�q

i

: (1.22)

Consider now an observable O = O(q

i

; p

i

; t). Its time-dependen
e is given by

dO

dt

=

�O

�q

i

_q

i

+

�O

�p

i

_p

i

+

�O

�t

=

�O

�q

i

�H

�p

i

�

�O

�p

i

�H

�q

i

+

�O

�t

; (1.23)

1

The 
on
ept of a Legendre transformation may be familiar from thermodynami
s, where it is used to 
hange

between extensive variables (e.g. the entropy S) and their 
onjugate intensive variables (e.g. the temperature

T ).
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where we used Hamilton's equations. If we de�ne the Poisson bra
kets fA;Bg between two

observables A and B as

fA;Bg =

�A

�q

i

�B

�p

i

�

�A

�p

i

�B

�q

i

; (1.24)

then we 
an rewrite Eq. (1.23) as

dO

dt

= fO;Hg+

�O

�t

: (1.25)

This equations gives us a formal 
orresponden
e between 
lassi
al and quantum me
hani
s:

The time-evolution of an operator O in the Heisenberg pi
ture is given by the same equation

as in 
lassi
al me
hani
s, if the Poisson bra
ket is 
hanged to a 
ommutator. Sin
e the Poisson

bra
ket is antisymmetri
, we �nd

dH

dt

=

�H

�t

: (1.26)

Hen
e the Hamiltonian H is a 
onserved quantity, if and only if H is time-independent.

1.2. Green fun
tions and the response method

We 
an test the internal properties of a physi
al system, if we impose an external for
e J(t)

on it and 
ompare its measured to its 
al
ulated response. If the system is des
ribed by

linear di�erential equations, then the superposition prin
iple is valid: We 
an re
onstru
t

the solution x(t) for an arbitrary applied external for
e J(t), if we know the response to

a normalised delta fun
tion-like ki
k J(t) = Æ(t � t

0

). Mathemati
ally, this 
orresponds to

the knowledge of the Green fun
tion G(t � t

0

) for the di�erential equation D(t)x(t) = J(t)

des
ribing the system. Even if the system is des
ribed by a non-linear di�erential equation,

we 
an often use a linear approximation in 
ase of a suÆ
iently small external for
e J(t).

Therefore the Green fun
tion method is extremely useful and we will apply it extensively

dis
ussing quantum �eld theories.

We illustrate this method with the example of the harmoni
 os
illator whi
h is the prototype

for a quadrati
, and thus exa
tly solvable, a
tion. In 
lassi
al physi
s, 
ausality implies that

the knowledge of the external for
e J(t

0

) at times t

0

< t is suÆ
ient to determine the solution

x(t) at time t. We de�ne therefore two Green fun
tions

e

G and G

R

by

x(t) =

Z

t

�1

dt

0

e

G(t� t

0

)J(t

0

) =

Z

1

�1

dt

0

G

R

(t� t

0

)J(t

0

) ; (1.27)

where the retarded Green fun
tion G

R

satis�es G

R

(t� t

0

) =

e

G(t� t

0

)#(t� t

0

). The de�nition

(1.27) is motivated by the trivial relation J(t) =

R

dt

0

Æ(t � t

0

)J(t

0

): An arbitrary for
e J(t)


an be seen as a superposition of delta fun
tions Æ(t � t

0

) with weight J(t

0

). If the Green

fun
tion G

R

(t� t

0

) determines the response of the system to a delta fun
tion-like for
e, then

we should obtain the solution x(t) integrating G

R

(t� t

0

) with the weight J(t

0

).

We 
onvert the equation of motion m�x +m!

2

x = J of a for
ed harmoni
 os
illator into

the form D(t)x(t) = J(t) by writing

D(t)x(t) � m

�

d

2

dt

2

+ !

2

�

x(t) = J(t) : (1.28)
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Im(
)

Re(
)

C

�

�! � i"

�

! � i"

�

Figure 1.1.: Poles and 
ontour in the 
omplex 
 plane used for the integration of the retarded

Green fun
tion.

Inserting (1.27) into (1.28) gives

Z

1

�1

dt

0

D(t)G

R

(t� t

0

)J(t

0

) = J(t) : (1.29)

For an arbitrary external for
e J(t), this relation 
an be only valid if

D(t)G

R

(t� t

0

) = Æ(t� t

0

) : (1.30)

Thus a Green fun
tion G(t � t

0

) is the inverse of its de�ning di�erential operator D(t). As

we will see, Eq. (1.30) does not spe
ify uniquely the Green fun
tion, and thus we will omit

the index \R" for the moment. Performing a Fourier transformation,

G(t� t

0

) =

Z

d


2�

G(
)e

�i
(t�t

0

)

and Æ(t� t

0

) =

Z

d


2�

e

�i
(t�t

0

)

; (1.31)

we obtain

Z

d


2�

G(
)D(t)e

�i
(t�t

0

)

=

Z

d


2�

e

�i
(t�t

0

)

: (1.32)

The a
tion of D(t) on the plane-waves e

�i
(t�t

0

)


an be evaluated easily, sin
e the di�erentia-

tion has be
ome equivalent with multipli
ation, d=dt! �i
. Comparing then the 
oeÆ
ients

of the plane-waves on both sides of this equation, we have to invert only an algebrai
 equation,

arriving at

G(
) =

1

m

1

!

2

� 


2

: (1.33)

For the ba
k-transformation with � = t� t

0

,

G(�) =

Z

d


2�m

e

�i
�

!

2

�


2

; (1.34)

we have to spe
ify how the poles at 


2

= !

2

are avoided. It is this 
hoi
e by whi
h we sele
t

the appropriate Green fun
tion. In 
lassi
al physi
s, we implement 
ausality (\
ause always

pre
edes its e�e
t") sele
ting the retarded Green fun
tion.

We will use Cau
hy's residue theorem,

H

dz f(z) = 2�i

P

res

z

0

f(z), to 
al
ulate the inte-

gral. Its appli
ation requires to 
lose the integration 
ontour adding a path whi
h gives a

7
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vanishing 
ontribution to the integral. This is a
hieved, when the integrand G(
)e

�i
�

van-

ishes fast enough along the added path. Thus we have to 
hoose for positive � the 
ontour C

�

in the lower plane, e

�i
�

= e

�j=(
)j�

! 0 for =(
)! �1, while we have to 
lose the 
ontour

in the upper plane for negative � . If we want to obtain the retarded Green fun
tion G

R

(�)

whi
h vanishes for � < 0, we have to shift therefore the poles 


1=2

= �! into the lower plane

as shown in Fig. 1.1 by adding a small negative imaginary part, 


1=2

! 


1=2

= �! � i", or

G

R

(�) = �

1

2�m

Z

d


e

�i
�

(
� ! + i")(
 + ! + i")

: (1.35)

The residue res

z

0

f(z) of a fun
tion f with a single pole at z

0

is given by

res

z

0

f(z) = lim

z!z

0

(z � z

0

)f(z) : (1.36)

Thus we pi
k up at 


1

= �! � i" the 
ontribution 2�i e

+i!�

=(�2!), while we obtain

2�i e

�i!�

=(2!) from 


2

= ! � i". Combining both 
ontributions and adding a minus sign

be
ause the 
ontour is 
lo
kwise, we arrive at

G

R

(�) =

i

2m!

�

e

�i!�

� e

i!�

�

#(�) =

1

m

sin(!�)

!

#(�) (1.37)

as result for the retarded Green fun
tion of the for
ed harmoni
 os
illator.

We 
an now obtain a parti
ular solution solving (1.27). For instan
e, 
hoosing J(t

0

) =

Æ(t� t

0

), results in

x(t) =

1

m

sin(!t)

!

#(t) : (1.38)

Thus the os
illator was at rest for t < 0, got a ki
k at t = 0, and os
illates a

ording x(t)

afterwards. Note the following two points: First, the fa
t that the ki
k pro
eeds the movement

is the result of our 
hoi
e of the retarded (or 
ausal) Green fun
tion. Se
ond, the parti
ular

solution (1.38) for an os
illator initially at rest 
an be generalised by adding the solution to

the homogeneous equation �x+ !

2

x = 0.

1.3. Relativisti
 parti
le

In spe
ial relativity, we repla
e the Galilean transformations as symmetry group of spa
e

and time by Lorentz transformations. The latter are all those 
oordinate transformations

x

�

! ~x

�

= �

�

�

x

�

that keep the squared distan
e

s

2

12

� (t

1

� t

2

)

2

� (x

1

� x

2

)

2

� (y

1

� y

2

)

2

� (z

1

� z

2

)

2

(1.39)

between two spa
e-time events x

�

1

and x

�

2

invariant. The distan
e of two in�nitesimally 
lose

spa
e-time events is 
alled the line-element ds of the spa
e-time. In Minkowski spa
e, it is

given by

ds

2

= dt

2

� dx

2

� dy

2

� dz

2

(1.40)

using a Cartesian inertial frame. We 
an interpret the line-element ds

2

as a s
alar produ
t,

if we introdu
e the metri
 tensor �

��

with elements

�

��

=

0

B

B

�

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

A

(1.41)
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t

x

y

b

(x� y)

2

> 0 time-like

(x� y)

2

= 0 light-like

(x� y)

2

< 0 spa
e-like

Figure 1.2.: Light-
one at the point P (y

�

) generated by light-like ve
tors. Contained in the

light-
one are the time-like ve
tors, outside the spa
e-like ones.

and a s
alar produ
t of two ve
tors as

a � b � �

��

a

�

b

�

= a

�

b

�

= a

�

b

�

: (1.42)

In Minkowski spa
e, we 
all a four-ve
tor any four-tuple V

�

that transforms as

~

V

�

= �

�

�

V

�

.

By 
onvention, we asso
iate three-ve
tors with the spatial part of four-ve
tors with upper

indi
es, e.g. we set x

�

= ft; x; y; zg or A

�

= f�;Ag. Lowering then the index by 
ontra
tion

with the metri
 tensor result in a minus sign of the spatial 
omponents of a four-ve
tor,

x

�

= �

��

x

�

= ft;�x;�y;�zg or A

�

= f�;�Ag. Summing over an index pair, typi
ally

one index o

urs in an upper and one in a lower position. Note that in the denominator,

an upper index 
ounts as a lower index and vi
e versa, 
f. e.g. with Eqs. (1.18) and (1.17).

Additionally to four-ve
tors, we will meet tensors T

�

1

����

n

of rank n whi
h transform as

~

T

�

1

����

n

= �

�

1

�

1

� � ��

�

n

�

n

T

�

1

����

n

.

Sin
e the metri
 �

��

is inde�nite, the norm of a ve
tor a

�


an be

a

�

a

�

> 0; time-like, (1.43a)

a

�

a

�

= 0; light-like or null-ve
tor, (1.43b)

a

�

a

�

< 0; spa
e-like. (1.43
)

The 
one of all light-like ve
tors starting from a point P is 
alled light-
one, 
f. Fig. 1.2. The

time-like region inside the light-
one 
onsists of two parts, past and future. Only events inside

the past light-
one 
an in
uen
e the physi
s at point P , while P 
an in
uen
e only the interior

of its future light-
one. The proper-time � is the time displayed by a 
lo
k moving with the

observer. With our 
onventions|negative signature of the metri
 and 
 = 1|the proper-time

elapsed between two spa
e-time events equals the integrated line-element between them,

�

12

=

Z

2

1

ds =

Z

2

1

[�

��

dx

�

dx

�

℄

1=2

=

Z

2

1

dt[1� v

2

℄

1=2

< t

2

� t

1

: (1.44)

The last part of this equation, where we introdu
ed the three-velo
ity v

i

= dx

i

=dt of the


lo
k, shows expli
itly the relativisti
 e�e
t of time dilation, as well as the 
onne
tion between

9
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al me
hani
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oordinate time t and the proper-time � of a moving 
lo
k, d� = (1 � v

2

)

1=2

dt � dt=
. The

line des
ribing the position of an observer is 
alled world-line. Parametrising the worldline

by the parameter �, x = x(�), the proper-time is given by

� =

Z

d�

�

�

��

dx

�

d�

dx

�

d�

�

1=2

: (1.45)

Note that � is invariant under a reparameterisation ~� = f(�).

The only invariant di�erential we have at our disposal to form an a
tion for a free point-like

parti
le is the line-element, or equivalently the proper-time,

S

0

= �

Z

b

a

ds = �

Z

b

a

d�

ds

d�

(1.46)

with L = �ds=d� = �d�=d�. We 
he
k now if this 
hoi
e whi
h implies the Lagrangian

L = �

d�

d�

= �

�

�

��

dx

�

d�

dx

�

d�

�

1=2

(1.47)

for a free parti
le is sensible: The a
tion has the 
orre
t non-relativisti
 limit,

S

0

= �

Z

b

a

ds = �

Z

b

a

dt

p

1� v

2

=

Z

b

a

dt

�

�m+

1

2

mv

2

+O(v

4

)

�

; (1.48)

if we set � = �m. The mass m 
orresponds to a potential energy in the non-relativisti
 limit

and has therefore a negative sign in the Lagrangian. Moreover, a 
onstant drops out of the

equations of motion, and thus the term �m 
an be omitted in the non-relativisti
 limit. The

time t enters the relativisti
 Lagrangian in a Lorentz invariant way as one of the dynami
al

variables, x

�

= (t;x), while � assumes now t's purpose to parametrise the traje
tory, x

�

(�).

Sin
e a moving 
lo
k goes slower than a 
lo
k at rest, solutions of this Lagrangian maximise

the a
tion.

Example 1.1: Relativisti
 dispersion relation: We extend the non-relativisti
 de�nition of the

momentum, p

i

= �L=� _x

i

, to four dimensions setting p

�

= ��L=� _x

�

. Note the minus sign that

re
e
ts the minus in the spatial 
omponents of a 
ovariant ve
tor, p

�

= (E;�p). Then

p

�

= �

�L

� _x

�

= m

dx

�

=d�

d�=d�

= m

dx

�

d�

� mu

�

: (1.49)

In the last step, we de�ned the four-velo
ity u

�

= dx

�

=d� . Using dt = 
d� , it follows u

�

u

�

= 1 and

p

�

p

�

= m

2

. The last relation expresses the relativisti
 dispersion relation E

2

= m

2

+ p

2

.

The Lagrange equations are

d

d�

�L

�(dx

�

=d�)

=

�L

�x

�

: (1.50)

Consider e.g. the x

1


omponent, then

d

d�

�L

�(dx

1

=d�)

=

d

d�

�

1

L

dx

1

d�

�

= 0 : (1.51)
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Sin
e L = �md�=d�, Newton's law follows for the x

1


oordinate after multipli
ation with

d�=d� ,

d

2

x

1

d�

2

= 0 ; (1.52)

and similar for the other 
oordinates.

An equivalent, but often more 
onvenient form for the Lagrangian of a free parti
le is

L = �m�

��

_x

�

_x

�

; (1.53)

where we set _x

�

= dx

�

=d� . If there are no intera
tions (ex
ept gravity), we 
an negle
t the

mass m of the parti
le and one often sets m! �1.

Next we want to add an intera
tion term S

em

between a parti
le with 
harge q and an

ele
tromagneti
 �eld. The simplest possible a
tion is to integrate the potential A

�

along the

world-line x

�

(�) of the parti
le,

S

em

= �q

Z

dx

�

A

�

(x) = �q

Z

d�

dx

�

d�

A

�

(x) : (1.54)

Using the 
hoi
e � = � , we 
an view q _x

�

as the 
urrent j

�

indu
ed by the parti
le and thus

the intera
tion has the form L

em

= �j

�

A

�

. Any 
andidate for S

em

should be invariant under

a gauge transformation of the potential,

A

�

(x)! A

�

(x)� �

�

�(x) : (1.55)

This is the 
ase, sin
e the indu
ed 
hange in the a
tion,

Æ

�

S

em

= q

Z

2

1

d�

dx

�

d�

��(x)

�x

�

= q

Z

2

1

d� = q[�(2)� �(1)℄ ; (1.56)

depends only on the endpoints. Thus Æ

�

S

em

vanishes keeping the endpoints �xed. Assuming

that the Lagrangian is additive,

L = L

0

+ L

em

= �m

�

�

��

dx

�

d�

dx

�

d�

�

1=2

� q

dx

�

d�

A

�

(x) (1.57)

the Lagrange equations give now

d

d�

�

mdx

�

=d�

[�

��

dx

�

=d� dx

�

=d�℄

1=2

+ qA

�

�

= q

dx

�

d�

�A

�

(x)

�x

�

: (1.58)

Performing then the di�erentiation of A(x(�)) with respe
t to � and moving it to the RHS,

we �nd

m

d

d�

�

dx

�

=d�

d�=d�

�

= q

�

dx

�

d�

�A

�

�x

�

�

dx

�

d�

�A

�

�x

�

�

= q

dx

�

d�

F

��

; (1.59)

where we introdu
ed the ele
tromagneti
 �eld-strength tensor F

��

= �

�

A

�

��

�

A

�

. Choosing

� = � we obtain the 
ovariant version of the Lorentz equation,

m

d

2

x

�

d�

2

= q F

�

�

u

�

: (1.60)
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You should work through problem 1.??, if this equation and the 
ovariant formulation of the

Maxwell equations are not familiar to you.

Summary

The Lagrange and Hamilton fun
tion are 
onne
ted by a Legendre transformation,

L(q

i

; _q

i

; t) = p

i

_q

i

�H(q

i

; p

i

; t). Lagrange's and Hamilton's equations follow extremizing the

a
tion S[q

i

℄ =

R

b

a

dt L(q

i

; _q

i

; t) and S[q

i

; p

i

℄ =

R

b

a

dt

�

p

i

_q

i

�H(q

i

; p

i

; t)

�

, respe
tively, keeping

the endpoints a and b in 
oordinate spa
e �xed. Knowing the Green fun
tion G(t � t

0

) of a

linear system, we 
an �nd the solution x(t) for an arbitrary external for
e J(t) by integrating

G(t� t

0

) with the weight J(t).

Further reading

The series of Landau and Lifshitz on theoreti
al physi
s is a timeless resour
e for everybody

studying and working in this �eld; its volume 1 [LL76℄ presents a su

in
t treatment of


lassi
al me
hani
s.

12



2. Quantum me
hani
s

The main purpose of this 
hapter is to introdu
e Feynman's path integral as an alternative to

the standard operator approa
h to quantum me
hani
s. Most of our dis
ussion of quantum

�elds will be based on this approa
h, and thus be
oming familiar with this te
hnique using the

simpler 
ase of quantum me
hani
s is of 
entral importan
e. Instead of employing the path

integral dire
tly, we will use as basi
 tool the va
uum persisten
e amplitude h0;1j0;�1i

J

:

This quantity is the probability amplitude that a system under the in
uen
e of an external

for
e J stays in its ground-state. Sin
e we 
an apply an arbitrary for
e J , the amplitude

h0;1j0;�1i

J


ontains all information about the system. Moreover, it serves as a 
onvenient

tool to 
al
ulate Green fun
tions whi
h will be
ome our main target studying quantum �eld

theories.

2.1. Reminder of the operator approa
h

A 
lassi
al system des
ribed by a HamiltonianH(q

i

; p

i

; t) 
an be quantised promoting q

i

and p

i

to operators

1

q̂

i

and p̂

i

whi
h satisfy the 
anoni
al 
ommutation relations

�

q̂

i

; p̂

j

�

= iÆ

i

j

. The

latter are the formal expression of Heisenberg's un
ertainty relation. Apart from ordering

ambiguities, the Hamilton operator H(q̂

i

; p̂

i

; t) 
an be dire
tly read from the Hamiltonian

H(q

i

; p

i

; t). The basi
 features of any quantum theory 
an be synthesised into a few prin
iples.

General prin
iples A physi
al system in a pure state is fully des
ribed by a probability

amplitude

 (a; t) = haj (t)i 2 C ; (2.1)

where fag is a set of quantum numbers spe
ifying the system and the states j (t)i form a


omplex Hilbert spa
e. The probability p to �nd the spe
i�
 values a

�

in a measurement is

given by p(a

�

) = j (a

�

; t)j

2

. The possible values a

�

are the eigenvalues of Hermitian operators

^

A whose eigenve
tors jai form an orthogonal, 
omplete basis. In Dira
's bra-ket notation, we


an express these statements by

^

Ajai = ajai ; haja

0

i = Æ (a� a

0

) ;

Z

da jaihaj = 1 ; (2.2)

In general, operators do not 
ommute. Their 
ommutation relations 
an be obtained by the

repla
ement fA;Bg ! i[

^

A;

^

B℄ in the de�nition (1.24) of the Poisson bra
kets.

The state of a parti
le moving in one dimension in a potential V (q) 
an be des
ribed either

by the eigenstates of the position operator q̂ or of the momentum operator p̂. Both form a


omplete, orthonormal basis, and they are 
onne
ted by a Fourier transformation whi
h we

1

When there is the danger of an ambiguity, operators will be written with a \hat"; otherwise we drop it.

13
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hoose to be asymmetri
,

 (q) = hqj i =

Z

dp

2�

e

ipx

 (p) =

Z

dp

2�

hqj pi hpj i (2.3a)

 (p) = hpj i =

Z

dq e

�ikx

 (x) =

Z

dq hpj qi hqj i : (2.3b)

Choosing this normalisation has the advantage that the fa
tor 1=(2�) in the Fourier transfor-

mation is the same as in the density of free states, dpL=(2�), whi
h will enter quantities like

de
at rates or 
ross se
tions. From Eq. (2.3), it follows that the asymmetry in the Fourier

transformation is re
e
ted in the 
ompleteness relation of the states,

Z

dq jqi hqj = 1 and

Z

dp

2�

jpi hpj = 1 : (2.4)

Time-evolution Sin
e the states j (t)i form a 
omplex Hilbert spa
e, the superposition

prin
iple is valid: If  

1

and  

2

are possible states of the system, then also

 (t) = 


1

 

1

(t) + 


2

 

2

(t) ; 


i

2 C : (2.5)

In quantum me
hani
s, a stronger version of this prin
iple holds whi
h states that if  

1

(t) and

 

2

(t) des
ribe the possible time-evolution of the system, then so does also the superposed state

 (t). This implies that the time-evolution is des
ribed by a linear, homogeneous di�erential

equation. Choosing it as �rst-order in time, we 
an write the evolution equation as

i�

t

j (t)i = Dj (t)i ; (2.6)

where the di�erential operator D on the RHS has to be still determined.

We 
all the operator des
ribing the evolution of a state from  (t) to  (t

0

) the time-evolution

operator U(t

0

; t). This operator is unitary, U

�1

= U

y

, in order to 
onserve probability and

forms a group, U(t

3

; t

1

) = U(t

3

; t

2

)U(t

2

; t

1

) with U(t; t) = 1. For an in�nitesimal time step

Æt,

j (t+ Æt)i = U(t+ Æt; t) j (t)i ; (2.7)

we 
an set with U(t; t) = 1

U(t+ Æt; t) = 1� iHÆt : (2.8)

Here we introdu
ed the generator of in�nitesimal time-translationsH. The analogy to 
lassi
al

me
hani
s suggests that H is the operator version of the 
lassi
al Hamilton fun
tion H(q; p).

Inserting Eq. (2.8) into (2.7) results in

j (t+ Æt)i � j (t)i

Æt

= �iH j (t)i : (2.9)

Comparing then Eqs. (2.6) and (2.9) reveals that the operator D on the RHS of Eq. (2.6)


oin
ides with the HamiltonianH. We 
all a time-evolution equation of this type for arbitrary

H S
hr�odinger equation.

Next we want to determine the 
onne
tion between H and U . Plugging  (t) = U(t; 0) (0)

in the S
hr�odinger equation gives

�

i

�U(t; 0)

�t

�HU(t; 0)

�

 (0) = 0 : (2.10)
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h

Sin
e this equation is valid for an arbitrary state  (0), we 
an rewrite it as an operator

equation,

i�

t

0

U(t

0

; t) = HU(t

0

; t) : (2.11)

Integrating it, we �nd as formal solution

U(t

0

; t) = 1� i

Z

t

0

t

dt

00

H(t

00

)U(t

00

; t) (2.12)

or, if H is time-independent,

U(t; t

0

) = exp(�iH(t� t

0

)) : (2.13)

Up-to now, we have 
onsidered the S
hr�odinger pi
ture where operators are 
onstant and

the time-evolution is given by the 
hange in the state ve
tors j (t)i. In the Heisenberg pi
ture,

the time evolution is driven 
ompletely by the one of the operators. States and operators in

the two pi
tures are 
onne
ted by

O

S

(t) = U(t; t

0

)O

H

(t)U

y

(t; t

0

) ; (2.14a)

j 

S

(t)i = U(t; t

0

) j 

H

(t)i ; (2.14b)

if they agree at the time t

0

.

Propagator We insert the solution of U for a time-independentH into j (t

0

)i = U(t

0

; t)j (t)i

and multiply from the left with hq

0

j,

 (q

0

; t

0

) = hq

0

j (t

0

)i = hq

0

j exp[�iH(t

0

� t)℄j (t)i : (2.15)

Then we insert 1 =

R

d

3

qjqihqj,

 (q

0

; t

0

) =

Z

d

3

q hq

0

j exp[�iH(t

0

� t)℄jqihqj (t)i =

Z

d

3

q K(q

0

; t

0

; q; t) (q; t) : (2.16)

In the last step we introdu
ed the propagator or Green fun
tion K in its 
oordinate repre-

sentation,

K(q

0

; t

0

; q; t) = hq

0

j exp[�iH(t

0

� t)℄jqi : (2.17)

The Green fun
tion K equals the probability amplitude for the propagation between two

spa
e-time points; K(q

0

; t

0

; q; t) is therefore also 
alled more spe
i�
ally two-point Green

fun
tion. We 
an express the propagator K by the solutions of the S
hr�odinger equation,

 

n

(q; t) = hqjn(t)i = hqjni exp(�iE

n

t) as

K(q

0

; t

0

; q; t) =

X

n;n

0

hq

0

jni hnj exp(�iH(t

0

� t))jn

0

i

| {z }

Æ

n;n

0

exp(�iE

n

(t

0

�t))

hn

0

jqi

=

X

n

 

n

(q

0

) 

�

n

(q) exp(�iE

n

(t

0

� t)) ;

(2.18)

where n represents the 
omplete set of quantum numbers spe
ifying the energy eigenvalues

of the system. Note that this result is very general and holds for any time-independent

Hamiltonian.
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Let us 
ompute the propagator of a free parti
le in one dimension, des
ribed by the Hamil-

tonian H = p

2

=2m. We write with � = t

0

� t

K(q

0

; t

0

; q; t) =




q

0

�

�

e

�iH�

jqi =




q

0

�

�

e

�i� p̂

2

=2m

Z

dp

2�

jpi hpj qi

=

Z

dp

2�

e

�i�p

2

=2m




q

0

�

�

pi hpj qi =

Z

dp

2�

e

�i�p

2

=2m+i(q

0

�q)p

;

(2.19)

where we used hq

0

j pi = exp(iq

0

p) in the last step. The integral is Gaussian, if we add an

in�nitesimal fa
tor exp(�"p

2

) to the integrand in order to ensure the 
onvergen
e of the

integral. Thus the physi
al value of the energy E = p

2

=(2m) seen as a 
omplex variable is

approa
hed from the negative imaginary plane, E ! E � i". Taking afterwards the limit

"! 0, we obtain

K(q

0

; t

0

; q; t) =

�

m

2�i�

�

1=2

e

im(q

0

�q)

2

=2�

: (2.20)

Knowing the propagator, we 
an 
al
ulate the solution  (t

0

) at any time t

0

for a given initial

state  (t) via Eq. (2.16).

Example 2.1: Cal
ulate the integrals A =

R

dx exp(�x

2

=2), B =

R

dx exp(�ax

2

=2 + bx), and

C =

R

dx � � � dx

n

exp(�x

T

Ax=2 + J

T

x) for a symmetri
 n� n matrix A.

a.) We square the integral and 
al
ulate then A

2

introdu
ing polar 
oordinates, r

2

= x

2

+ y

2

,

A

2

=

Z

1

�1

dx

Z

1

�1

dy exp(�(x

2

+ y

2

)=2) = 2�

Z

1

0

dr re

�r

2

=2

= 2�

Z

1

0

dt e

�t

= 2� ;

where we substituted t = r

2

=2. Thus the result for the basi
 Gaussian integral is A =

p

2�. All other

solvable variants of Gaussian integrals 
an be redu
ed to this result.

b.) We 
omplete the square in the exponent,

�

a

2

�

x

2

�

2b

a

x

�

= �

a

2

�

x�

b

a

�

2

+

b

2

2a

;

and shift then the integration variable to x

0

= x� b=a. The result is

B =

Z

1

�1

dx exp(�ax

2

=2 + bx) = e

b

2

=2a

Z

1

�1

dx

0

exp(�ax

02

=2) =

r

2�

a

e

b

2

=2a

: (2.21)


.) We should 
omplete again the square and try X

0

= X �A

�1

J . With

(X �A

�1

J)

T

A(X �A

�1

J) = X

T

AX �X

T

AA

�1

J � J

T

A

�1

AX + J

T

A

�1

AA

�1

J

= X

T

AX � 2J

T

X + J

T

A

�1

J ;

we obtain after shifting the integration ve
tor,

C =

Z

dx

1

� � � dx

n

exp(�X

T

AX=2 + J

T

X) = exp(J

T

A

�1

J=2)

Z

dx

0

1

� � � dx

0

n

exp(�X

0T

AX

0

=2) :

Sin
e the matrix A is symmetri
, we 
an diagonalise A via an orthogonal transformation D = OAO

T

.

This 
orresponds to a rotation of the integration variables, Y = OX

0

. The Ja
obian of this transfor-

mation is one, and thus the result is

C = exp(J

T

A

�1

J=2)

n

Y

i=1

Z

dy

i

exp(�a

i

y

2

i

=2) =

r

(2�)

n

detA

exp

�

1

2

J

T

A

�1

J

�

: (2.22)

In the last step we expressed the produ
t of eigenvalues a

i

as the determinant of A.
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2.2. Path integrals in quantum me
hani
s

q

1

q

2

q

t

q

0

0

q

1

�

q

2

2�

q

3

3�

q

3

3�

q

N�1

N�

q

N

Figure 2.1.: Left: The double slit experiment. Right: The propagator K(q

N

; � ; q

0

; 0) ex-

pressed as a sum over all N -legged 
ontinuous paths.

2.2. Path integrals in quantum me
hani
s

In problem 2.?? you are asked to 
al
ulate the 
lassi
al a
tion of a free parti
le and of a

harmoni
 os
illator and to 
ompare them to the 
orresponding propagators found in quantum

me
hani
s. Surprisingly, you will �nd that in both 
ases the propagator 
an be written as

K(q

0

; t

0

; q; t) = N exp(iS) where S is the 
lassi
al a
tion along the path [q(t) : q

0

(t

0

)℄ and N a

normalisation 
onstant. This suggests that we 
an reformulate quantum me
hani
s, repla
ing

the standard operator formalism used to evaluate the propagator (2.17) \somehow" by the


lassi
al a
tion.

To get an idea how to pro
eed, we look at the famous double-slit experiment sket
hed in

Fig. 2.1: A

ording to the superposition prin
iple, the amplitude A for a parti
le to move

from the sour
e at q

1

to the dete
tor at q

2

is the sum of the amplitudes A

i

for the two possible

paths,

A = K(q

2

; t

2

; q

1

; t

1

) =

X

paths

A

i

: (2.23)

Clearly, we 
ould add in a Gedankenexperiment more and more s
reens between q

1

and q

2

,

in
reasing at the same time the number of holes. Although we repla
e in this way 
ontinuous

spa
e-time by a dis
rete latti
e, the di�eren
es between these two des
riptions should vanish

for suÆ
iently small spa
ing � . Moreover, for � ! 0, we 
an expand U(�) = exp(�iH�) '

1� iH� . Applying then H = p̂

2

=(2m) + V (q̂) to eigenfun
tions jqi of V (q̂) and jpi of p̂

2

, we


an repla
e the operator H by its eigenvalues. In this way, we hope to express the propagator

as a sum over paths, where the individual amplitudes A

i


ontain only 
lassi
al quantities.

We apply now this idea to a parti
le moving in one dimension in a potential V (q). The

transition amplitude A for the evolution from the state jq; 0i to the state jq

0

; t

0

i is

A � K(q

0

; t

0

; q; 0) =




q

0

�

�

e

�iHt

0

jqi : (2.24)

This amplitude equals the matrix-element of the propagator K for the evolution from the

initial point q(0) to the �nal point q

0

(t

0

). Let us split the time evolution into two smaller
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2. Quantum me
hani
s

steps, writing e

�iHt

0

= e

�iH(t

0

�t

1

)

e

�iHt

1

. Inserting also

R

dq

1

jq

1

i hq

1

j = 1, the amplitude

be
omes

A =

Z

dq

1




q

0

�

�

e

�iH(t

0

�t

1

)

jq

1

i hq

1

j e

�iHt

1

jqi =

Z

dq

1

K(q

0

; t

0

; q

1

; t

1

)K(q

1

; t

1

; q; 0): (2.25)

This formula expresses simply the group property, U(t

0

; 0) = U(t

0

; t

1

)U(t

1

; 0), of the time-

evolution operator U evaluated in the basis of the 
ontinuous variable q. More physi
ally, we


an view this equation as an expression of the quantum me
hani
al rule for 
ombining ampli-

tudes: If the same initial and �nal states 
an be 
onne
ted by various ways, the amplitudes

for ea
h of these pro
esses should be added. A parti
le propagating from q to q

0

must be

somewhere at the intermediate time t

1

. Labelling this intermediate position as q

1

, we 
om-

pute the amplitude for propagation via the point q

1

as the produ
t of the two propagators in

Eq. (2.25) and integrate over all possible intermediate positions q

1

.

We 
ontinue to divide the time interval t

0

into a large numberN of time intervals of duration

� = t

0

=N . Then the propagator be
omes

A =




q

0

�

�

e

�iH�

e

�iH�

� � � e

�iH�

| {z }

N times

jqi : (2.26)

We insert again a 
omplete set of states jq

i

i between ea
h exponential, obtaining

A =

Z

dq

1

� � � dq

N�1




q

0

�

�

e

�iH�

jq

N�1

i hq

N�1

j e

�iH�

jq

N�2

i � � � hq

1

j e

�iH�

jqi

�

Z

dq

1

� � � dq

N�1

K

q

N

;q

N�1

K

q

N�1

;q

N�2

� � �K

q

2

;q

1

K

q

1

;q

0

; (2.27)

where we have de�ned q

0

= q and q

N

= q

0

. Note that these initial and �nal positions are �xed

and therefore are not integrated over. Figure 2.1 illustrates that we 
an view the amplitude A

as the integral over the partial amplitudes A

path

of the individualN -legged 
ontinuous paths.

We ignore the problem of de�ning properly the limit N ! 1, keeping N large but �nite.

We rewrite the amplitude as sum over the amplitudes for all possible paths, A =

P

paths

A

path

;

with

X

paths

=

Z

dq

1

� � � dq

N�1

; A

path

= K

q

N

;q

N�1

K

q

N�1

;q

N�2

� � �K

q

2

;q

1

K

q

1

;q

0

:

Let us look at the last expression in detail. We 
an expand the exponential in ea
h propagator

K

q

j+1

;q

j

= hq

j+1

j e

�iH�

jq

j

i for a single sub-interval, be
ause � is small,

K

q

j+1

;q

j

= hq

j+1

j

�

1� iH� �

1

2

H

2

�

2

+ � � �

�

jq

j

i

= hq

j+1

j q

j

i � i� hq

j+1

jH jq

j

i+O(�

2

) :

(2.28)

In the se
ond term of (2.28), we insert a 
omplete set of momentum eigenstates between H

and jq

j

i. This gives

� i� hq

j+1

j

�

p̂

2

2m

+ V (q̂)

�

Z

dp

j

2�

jp

j

i hp

j

j q

j

i

= �i�

Z

dp

j

2�

 

p

2

j

2m

+ V (q

j+1

)

!

hq

j+1

j p

j

i hp

j

j q

j

i (2.29)

= �i�

Z

dp

j

2�

 

p

2

j

2m

+ V (q

j+1

)

!

e

ip

j

(q

j+1

�q

j

)

:
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2.2. Path integrals in quantum me
hani
s

The expression (2.29) is not symmetri
 in q

j

and q

j+1

. The reason for this asymmetry is

that we 
ould have inserted the fa
tor 1 either to the right or to the left of the Hamiltonian

H. In the latter 
ase, we would have obtained p

j+1

and V (q

j

) in (2.29). Sin
e the di�eren
e

[V (q

j+1

) � V (q

j

)℄� ' V

0

(q

j

)(q

j+1

� q

j

)� ' V

0

(q

j

) _q

j

�

2

is of order �

2

, the ordering problem

should not matter in the 
ontinuum limit whi
h we will take eventually; we set therefore

V (q

j+1

) ' V (q

j

).

The �rst term of (2.28) gives a delta fun
tion, whi
h we 
an express as

hq

j+1

j q

j

i = Æ(q

j+1

� q

j

) =

Z

dp

j

2�

e

ip

j

(q

j+1

�q

j

)

: (2.30)

Now we 
an 
ombine the two terms, obtaining as propagator for the step q

j

! q

j+1

K

q

j+1

;q

j

=

Z

dp

j

2�

e

ip

j

(q

j+1

�q

j

)

�

1� i�

�

p

j

2

2m

+ V (q

j

)

�

+O(�

2

)

�

: (2.31)

Sin
e we work at O(�), we 
an exponentiate the fa
tor in the square bra
ket,

1� i� H(p

j

; q

j

) +O(�

2

) = e

�i�H(p

j

;q

j

)

: (2.32)

Next we rewrite the exponent in the �rst fa
tor of Eq. (2.31) using _q

j

= (q

j+1

� q

j

)=� , su
h

that we 
an fa
tor out the time-interval � . The amplitude A

path


onsists of N su
h fa
tors.

Combining them, we obtain

A

path

=

N�1

Y

j=0

Z

dp

j

2�

exp i�

N�1

X

j=0

[p

j

_q

j

�H(p

j

; q

j

)℄ : (2.33)

We re
ognise the argument of the exponential as the dis
rete approximation of the a
tion

S[q; p℄ in the Palatini form of a path passing through the points q

0

= q; q

1

; � � � ; q

N�1

; q

N

= q

0

.

The propagator K =

R

dq

1

� � � dq

N�1

A

path

be
omes then

K =

N�1

Y

j=1

Z

dq

j

N�1

Y

j=0

Z

dp

j

2�

exp i�

N�1

X

j=0

[p

j

_q

j

�H(p

j

; q

j

)℄ : (2.34)

For N !1, this expression approximates an integral over all fun
tions p(t), q(t) 
onsistent

with the boundary 
onditions q(0) = q, q(t

0

) = q

0

. We adopt the notation DpDq for the

fun
tional or path integral over all fun
tions p(t) and q(t),

K �

Z

Dp(t)Dq(t)e

iS[q;p℄

=

Z

Dp(t)Dq(t) exp

 

i

Z

t

0

0

dt (p _q �H(p; q))

!

: (2.35)

This result expresses the propagator as a path integral in phase-spa
e. It allows us to obtain

for any 
lassi
al system whi
h 
an be des
ribed by a Hamiltonian the 
orresponding quantum

dynami
s.

If the Hamiltonian is of the form H = p

2

=2m+ V , as we have assumed

2

in our derivation,

we 
an 
arry out the quadrati
 momentum integrals in (2.34). We 
an rewrite this expression

as

K =

N�1

Y

j=1

Z

dq

j

exp�i�

N�1

X

j=0

V (q

j

)

N�1

Y

j=0

Z

dp

j

2�

exp i�

N�1

X

j=0

�

p

j

_q

j

� p

2

j

=2m

�

:

2

Sin
e we evaluated exp(�iH� ) for in�nitesimal � , the result (2.35) holds also for a time-dependent potential

V (q; t).
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2. Quantum me
hani
s

The p integrals are all un
oupled Gaussians. One su
h integral gives

Z

dp

2�

e

i�(p _q�p

2

=2m)

=

r

m

2�i�

e

i�m _q

2

=2

; (2.36)

where we added again an in�nitesimal fa
tor exp(�"p

2

) to the integrand. Then
e the propa-

gator be
omes

K =

N�1

Y

j=1

Z

dq

j

exp�i�

N�1

X

j=0

V (q

j

)

N�1

Y

j=0

 

r

m

2�i�

exp i�

m _q

2

j

2

!

=

�

m

2�i�

�

N=2

N�1

Y

j=1

Z

dq

j

exp i�

N�1

X

j=0

 

m _q

2

j

2

� V (q

j

)

!

: (2.37)

The argument of the exponential is again a dis
rete approximation of the a
tion S[q℄ of a

path passing through the points q

0

= q; q

1

; � � � ; q

N�1

; q

N

= q

0

, but now seen as fun
tional of

only the 
oordinate q. As above, we 
an write this in a more 
ompa
t form as

K = hq

f

; t

f

jq

i

; t

i

i =

Z

Dq(t)e

iS[q℄

=

Z

Dq(t) exp

�

i

Z

t

f

t

i

dt L(q; _q)

�

; (2.38)

where the integration in
ludes all paths satisfying the boundary 
ondition q(t

i

) = q

i

and

q(t

f

) = q

f

. This is the main result of this se
tion, and is known as the path integral in


on�guration spa
e. It will serve us as starting point dis
ussing quantum �eld theories of

bosoni
 �elds.

Knowing the path integral and thus the propagator is suÆ
ient to solve s
attering problems

in quantum me
hani
s. In a relativisti
 theory, the parti
le number during the 
ourse of a

s
attering pro
ess is however not �xed, sin
e energy 
an be 
onverted into matter. In order

to prepare us for su
h more 
omplex problems, we will generalise in the next se
tion the

path integral to a generating fun
tional for n-point Green fun
tions: In this formalism, the

usual propagator giving the probability amplitude that a single parti
le moves from q

i

(t

i

)

to q

f

(t

f

) be
omes the spe
ial 
ase of a 2-point Green fun
tion, while Green fun
tions with

n > 2 des
ribe pro
esses involve more points. For instan
e, the 4-point Green fun
tion will

be the essential ingredient to 
al
ulate 2 ! 2 s
attering pro
esses in a quantum �eld theory

(QFT). The 
orresponding generating fun
tional is the quantity whi
h n.th derivative returns

the n-point Green fun
tions.

2.3. Generating fun
tional for Green fun
tions

Having re-expressed the transition amplitude hq

f

; t

f

jq

i

; t

i

i of a quantum me
hani
al system as

a path integral, we want to generalise �rst this result to the matrix elements of an arbitrary

potential V (q) between the states jq

i

; t

i

i and jq

f

; t

f

i. For all pra
ti
al purposes, we 
an

assume that we 
an expand V (q) as a power-series in q; thus it is suÆ
ient to 
onsider the

matrix elements hq

f

; t

f

jq

m

jq

i

; t

i

i. In a QFT, the initial and �nal states are generally free

parti
les whi
h are des
ribed mathemati
ally as harmoni
 os
illators. In this 
ase, we are

able to re
onstru
t all ex
ited states jni from the ground-state,

jni =

1

p

n!

(a

y

)

n

j0i :
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2.3. Generating fun
tional for Green fun
tions

Therefore it will be suÆ
ient to study matrix elements between the ground-state j0i. With

this 
hoi
e, we are able to extend the integration limit in the path integral (2.38) to t = �1.

This will not only simplify its evaluation, but also avoid the need to 
hoose a spe
i�
 inertial

frame. As a result, the generating fun
tional will have an obviously Lorentz invariant form

in a relativisti
 theory.

Time-ordered produ
ts of operators and the path integral In a �rst step, we try to in
lude

the operator q

m

into the transition amplitude hq

f

; t

f

jq

i

; t

i

i. We 
an reinterpret our result for

the path integral as follows,

hq

f

; t

f

j1jq

i

; t

i

i =

Z

Dq(t) 1 e

iS[q℄

: (2.39)

Thus we 
an see the LHS as matrix element of the unit operator 1, while the RHS 
orresponds

to the path integral average of the 
lassi
al fun
tion f(q; _q) = 1. Now we want to generalise

this rather trivial statement to two operators

^

A(t

a

) and

^

B(t

b

) given in the Heisenberg pi
ture.

In evaluating the unknown fun
tion f on the RHS of

Z

Dq(t) A(t

a

)B(t

b

) e

iS[q(t)℄

= hq

f

; t

f

j ffA(t

a

)B(t

b

)g jq

i

; t

i

i ; (2.40)

we go ba
k to Eq. (2.27) and insert

^

A(t

a

) and

^

B(t

b

) at the 
orre
t intermediate times,

=

�

R

dq

1

� � � dq

N�1

: : : hq

a+1

; t

a+1

j

^

A jq

a

; t

a

i � � � hq

b+1

; t

b+1

j

^

B jq

b

; t

b

i : : : for t

a

> t

b

;

R

dq

1

� � � dq

N�1

: : : hq

b+1

; t

b+1

j

^

B jq

b

; t

b

i � � � hq

a+1

; t

a+1

j

^

A jq

a

; t

a

i : : : for t

a

< t

b

:

(2.41)

Sin
e the time along a 
lassi
al path in
reases, the matrix elements of the operators

^

A(t

a

)

and

^

B(t

b

) are also ordered with time in
reasing from the left to the right. If we de�ne the

time-ordered produ
t of two operators as

Tf

^

A(t

a

)

^

B(t

b

)g =

^

A(t

a

)

^

B(t

b

)#(t

a

� t

b

) +

^

B(t

b

)

^

A(t

a

)#(t

b

� t

a

) ; (2.42)

then the path integral average of the 
lassi
al quantities A(t

a

) and B(t

b

) 
orresponds to the

matrix-element of the time-ordered produ
t of these two operators,

hq

f

; t

f

jTf

^

A(t

a

)

^

B(t

b

)gjq

i

; t

i

i =

Z

Dq(t)A(t

a

)B(t

b

) e

iS[q(t)℄

; (2.43)

and similar for more than two operators.

External sour
es We want to in
lude next in our formalism the possibility that we 
an


hange the state of our system by applying an external driving for
e or sour
e term J(t).

In quantum me
hani
s, we 
ould imagine e.g. a harmoni
 os
illator in the ground-state j0i,

making a transition under the in
uen
e of an external for
e J to the state jni at the time

t and ba
k to the ground-state j0i at the time t

0

> t. In
luding su
h transitions, we 
an

mimi
 the relativisti
 pro
ess of parti
le 
reation and annihilation as follows: We identify the

va
uum (i.e. the state 
ontaining zero real parti
les) with the ground-state of the quantum

me
hani
al system, and the 
reation and annihilation of n parti
le with the (de-) ex
itation

of the n.th energy level by an external sour
e J . S
hwinger realised that adding a linear


oupling to an external sour
e,

L! L+ J(t)q(t) ; (2.44)
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leads also to an eÆ
ient way to 
al
ulate the matrix elements of an arbitrary polynomial

of operators q(t

n

) � � � q(t

1

): If the sour
e J(t) would be a simple number instead of a time-

dependent fun
tion in the augmented path-integral

hq

f

; t

f

jq

i

; t

i

i

J

�

Z

Dq(t)e

i

R

t

f

t

i

dt(L+Jq)

; (2.45)

then we 
ould obtain hq

f

; t

f

jq

m

jq

i

; t

i

i

J

simply by di�erentiating hq

f

; t

f

jq

i

; t

i

i

J

m-times with

respe
t to J . However, the LHS is a fun
tional of J(t) and thus we need to perform instead

fun
tional derivatives with respe
t to J(t). By analogy with the rules for the di�erentiation

of fun
tions, e.g. �x

l

=�x

k

= Æ

l

k

, we de�ne

3

a fun
tional derivative as

Æ

ÆJ(x)

1 = 0 and

ÆJ(x)

ÆJ(x

0

)

= Æ(x� x

0

) : (2.46)

Thus we repla
e for a 
ontinuous index the Krone
ker delta by a delta fun
tion. Moreover,

we assume that the Leibniz and the 
hain rule holds for suÆ
iently ni
e fun
tions J(x).

Now we are able to di�erentiate hq

f

; t

f

jq

i

; t

i

i

J

with respe
t to the sour
e J . Starting from

Æ

ÆJ(t

1

)

Z

Dq(t) e

i

R

1

�1

dtJ(t)q(t)

= i

Z

Dq(t) q(t

1

)e

i

R

1

�1

dtJ(t)q(t)

; (2.47)

we obtain

hq

f

; t

f

jTfq̂(t

1

) � � � q̂(t

n

)gjq

i

; t

i

i = (�i)

n

Æ

n

ÆJ(t

1

) � � � ÆJ(t

n

)

hq

f

; t

f

jq

i

; t

i

i

J

�

�

�

�

J=0

: (2.48)

Thus the sour
e J(t) is a 
onvenient tool to obtain the fun
tions q(t

1

) � � � q(t

n

) in front of

exp(iS). Having performed the fun
tional derivatives, we set the sour
e J(t) to zero, 
oming

ba
k to the usual path integral. Physi
ally, the expression (2.48) 
orresponds to the probabil-

ity amplitude that a parti
les moves from q

i

(t

i

) to q

f

(t

f

), having the intermediate positions

q(t

1

); : : : ; q(t

n

).

Va
uum persisten
e amplitude As last step, we want to eliminate the initial and �nal states

jq

i

; t

i

i

J

and jq

f

; t

f

i in favour of the ground state or va
uum, j0i. In this way, we 
onvert the

transition amplitude hq

f

; t

f

jq

i

; t

i

i

J

into the probability amplitude that a system whi
h was

in the ground-state j0i at t

i

! �1 remains in this state at t

f

! 1 despite the a
tion

of the sour
e J(t). Inserting a 
omplete set of energy eigenstates, 1 =

P

n

jnihnj, into the

propagator, we obtain

hq

0

; t

0

jq; ti =

X

n

 

n

(q

0

) 

�

n

(q) exp(�iE

n

(t

0

� t)) : (2.49)

We 
an isolate the ground-state n = 0 by adding either to the energies E

n

or to the time

di�eren
e � = (t

0

�t) a small negative imaginary part. In this 
ase, all terms are exponentially

damped in the limit � !1, and the ground-state as state with the smallest energy dominates

more and more the sum. Alternatively, we 
an add a term +i"q

2

to the Lagrangian.

3

As the notation suggest, the variation of a fun
tional de�ned in Eq. (1.5) is the spe
ial 
ase of a dire
tional

fun
tional derivative, 
f. problem 1.??.
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Remark 2.1: Wi
k rotation and Eu
lidean a
tion:

Instead of adding the in�nitesimal small term i"q

2

to the Lagrangian, we 
an do a more drasti
 
hange,

rotating in the a
tion the time axis 
lo
kwise by 90 degrees in the 
omplex plane. Inserting t

E

= it into

x

�

x

�

, we see that this pro
edure 
alled Wi
k rotation 
orresponds to the transition from Minkowski

to Eu
lidean spa
e,

x

2

= t

2

� x

2

= (�it

E

)

2

� x

2

= �[t

2

E

+ x

2

℄ = �x

2

E

:

Performing the 
hanges t = �it

E

and dt = �idt

E

in the a
tion of a parti
le moving in an one-

dimensional potential gives

S = �i

Z

dt

E

�

�

1

2

m _q

2

E

� V (q)

�

� iS

E

: (2.50)

Note that the Eu
lidean a
tion S

E

= T + V is bounded from below. The phase fa
tor in the path-

integral transforms as e

iS

= e

�S

E

, and thus 
ontributions with large S

E

are exponentially damped in

the Eu
lidean path-integral.

Finally, we have only to 
onne
t the results we obtained so far. Adding a 
oupling to an

external sour
e J(t) and a damping fa
tor +i"q

2

to the Lagrangian gives us the ground-state

or va
uum persisten
e amplitude

Z[J ℄ � h0;1j0;�1i

J

=

Z

Dq(t) e

i

R

1

�1

dt(L+Jq+i"q

2

)

(2.51)

in the presen
e of a 
lassi
al sour
e J . This amplitude is a fun
tional of J whi
h we denote by

Z[J ℄. Taking derivatives w.r.t. the external sour
es J , and setting them afterwards to zero,

we obtain

Æ

n

Z[J ℄

ÆJ(t

1

) � � � ÆJ(t

n

)

�

�

�

�

J=0

= i

n

Z

Dq(t) q(t

1

) � � � q(t

n

)e

i

R

1

�1

dt(L+i"q

2

)

: (2.52)

The RHS 
orresponds to the path integral in Eqs. (2.43), augmented by the fa
tor i"q

2

. But

this fa
tor damps in the limit of large t everything ex
ept the ground state. Thus we found

that Z[J ℄ is the generating fun
tional for the va
uum expe
tation value of the time-ordered

produ
t of operators q̂(t

i

),

(�i)

n

Æ

n

Z[J ℄

ÆJ(t

1

) � � � ÆJ(t

n

)

�

�

�

�

J=0

= h0;1jTfq̂(t

1

) � � � q̂(t

n

)gj0;�1i = G

F

(t

1

; : : : ; t

n

) : (2.53)

In the last step, we de�ned also the n-point Green fun
tion G

F

(t

1

; : : : ; t

n

). The subs
ript

F indi
ates that the i"q

2

pres
ription sele
ts from the set of possible Green fun
tions (re-

tarded, advan
ed, . . . ) the ones suggested by Feynman. These fun
tions will be the main

building blo
k we will use to perform 
al
ulations in quantum �eld theory, and the formula


orresponding to Eq. (2.53) will be our master formula in �eld theory.

2.4. Os
illator as a one-dimensional �eld theory

Canoni
al quantisation A one-dimensional harmoni
 os
illator 
an be viewed as a free quan-

tum �eld theory in one time and zero spa
e dimensions. In order to exhibit this equivalen
e


learer, we res
ale the usual Lagrangian

L(x; _x) =

1

2

m _x

2

�

1

2

m!

2

x

2

; (2.54)

23



2. Quantum me
hani
s

where m is the mass of the os
illator and ! its frequen
y as

�(t) �

p

mx(t) : (2.55)

We 
all the variable �(t) a \s
alar �eld," and the Lagrangian now reads

L(�;

_

�) =

1

2

_

�

2

�

1

2

!

2

�

2

: (2.56)

After the res
aling, the kineti
 term

_

�

2

has the dimensionless 
oeÆ
ient 1=2. This 
hoi
e is

standard in �eld theory and therefore su
h a �eld is 
alled \
anoni
ally normalised."

We derive the 
orresponding Hamiltonian, determining �rst the 
onjugate momentum � as

�(t) = �L=�

_

� =

_

�(t). Thus the 
lassi
al Hamiltonian follows as

H(�; �) =

1

2

�

2

+

1

2

!

2

�

2

: (2.57)

The transition to quantum me
hani
s is performed by promoting � and � to operators whi
h

satisfy the 
anoni
al 
ommutation relations [�; �℄ = i. The harmoni
 os
illator is solved most

eÆ
iently introdu
ing 
reation and annihilation operators, a

y

and a. They are de�ned by

� =

1

p

2!

�

a

y

+ a

�

and � = i

r

!

2

�

a

y

� a

�

; (2.58)

and satisfy

�

a; a

y

�

= 1. The Hamiltonian follows as

H =

!

2

�

aa

y

+ a

y

a

�

=

�

a

y

a+

1

2

�

! : (2.59)

We interpret N � a

y

a as the number operator, 
ounting the number n of quanta with energy

! in the state jni.

We now work in the Heisenberg pi
ture where operators are time dependent. The time

evolution of the operator a(t) 
an be found from the Heisenberg equation,

i

da

dt

= [a;H℄ = !a ; (2.60)

from whi
h we dedu
e that

a(t) = a(0)e

�i!t

= a

0

e

�i!t

: (2.61)

As a 
onsequen
e, the �eld operator �(t) 
an be expressed in terms of the 
reation and

annihilation operators as

�(t) =

1

p

2!

�

a

0

e

�i!t

+ a

y

0

e

i!t

�

: (2.62)

If we look at �(t) as a 
lassi
al variable, then a

0

and a

y

0

have to satisfy a

0

= a

y

0

� a

�

0

in order

to make � real: Thus they are simply the Fourier 
oeÆ
ients of the single eigenmode sin(!t).

This suggests that we 
an short-
ut the quantisation pro
edure as follows: We write down

the �eld as sum over its eigenmodes i = 1; : : : ; k. Then we re-interpret the Fourier 
oeÆ
ients

as 
reation and annihilation operators, requiring [a

i

; a

y

j

℄ = Æ

ij

.
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Path integral approa
h We solve now the same problem, the res
aled Lagrangian (2.56),

in the path integral approa
h. Using this method, we have argued that it is 
onvenient to

in
lude a 
oupling to an external for
e J . Let us de�ne therefore the e�e
tive a
tion S

eff

as

the sum of the 
lassi
al a
tion S, the 
oupling to the external for
e J and a small imaginary

part i"�

2

to make the path integral well-de�ned,

S

eff

= S +

Z

1

�1

dt

�

J�+ i"�

2

�

=

Z

1

�1

dt

�

1

2

_

�

2

�

1

2

!

2

�

2

+ J�+ i"�

2

�

: (2.63)

The fun
tion e

iS

eff

is the integrand of the path integral. We start our work by massaging

S

eff

into a form su
h that the path integral 
an be easily performed. The �rst two terms in

S

eff


an be viewed as the a
tion of a di�erential operator D(t) on �(t), writing

1

2

�

_

�

2

� !

2

�

2

�

= �

1

2

�(t)

�

d

2

dt

2

+ !

2

�

�(t) = �

1

2

�(t)D(t)�(t) : (2.64)

Here we performed a partial integration and dropped the boundary term: This is admissible,

be
ause the boundary term vanishes varying the a
tion.

We 
an evaluate this operator going to Fourier spa
e,

�(t) =

Z

dE

2�

e

�iEt

�(E) and J(t) =

Z

dE

2�

e

�iEt

J(E) : (2.65)

To keep the a
tion real, we have to write all bilinear quantities as �(E)�(�E

0

), et
. Sin
e

only the phases depend on time, the time integration gives a fa
tor 2�Æ(E �E

0

), expressing

energy 
onservation,

S

eff

=

1

2

Z

dE

2�

�

�(E)(E

2

� !

2

+ i")�(�E) + J(E)�(�E) + J(�E)�(E)

�

: (2.66)

In the path integral, this expression 
orresponds to a Gaussian integral of the type (2.21),

where we should \
omplete the square." Shifting the integration variable to

~

�(E) = �(E) +

J(E)

E

2

� !

2

+ i"

;

we obtain

S

eff

=

1

2

Z

dE

2�

�

~

�(E)(E

2

� !

2

+ i")

~

�(�E)� J(E)

1

E

2

� !

2

+ i"

J(�E)

�

: (2.67)

Here we see that the \damping rule" for the path integral makes also the integral over the

energy denominator well-de�ned. The physi
al interpretation of this way of shifting the

poles|whi
h di�ers from our treatment of the retarded Green fun
tion in the 
lassi
al 
ase|

will be postponed to the next 
hapter, where we will dis
uss this issue in detail.

We are now in the position to evaluate the generating fun
tional Z[J ℄. The path integral

measure is invariant under a simple shift of the integration variable, D

~

� = D�, and we omit

the tilde from now on. Furthermore, the se
ond term in S

eff

does not depend on � and 
an

be fa
tored out,

Z[J ℄ = exp

�

�

i

2

Z

dE

2�

J(E)

1

E

2

� !

2

+ i"

J(�E)

�

�

Z

D� exp

i

2

Z

dE

2�

�

�(E)(E

2

� !

2

+ i")�(�E)

�

:

(2.68)
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Setting the external for
e to zero, J = 0, the �rst fa
tor be
omes one and the generating

fun
tional Z[0℄ be
omes equal to the path integral in the se
ond line. But for J = 0, the

os
illator remains in the ground-state and thus Z[0℄ = h0;1j0;�1i = 1. Therefore

Z[J ℄ = exp

�

�

i

2

Z

dE

2�

J(E)

1

E

2

� !

2

+ i"

J(�E)

�

: (2.69)

Inserting the Fourier transformed quantities, we arrive at

Z[J ℄ = exp

�

�

i

2

Z

dt

0

dt J(t

0

)G

F

(t

0

� t)J(t)

�

; (2.70)

where the Feynman propagator

G

F

(t� t

0

) =

Z

dE

2�

e

�iE(t�t

0

)

1

E

2

� !

2

+ i"

(2.71)

di�ers from the retarded propagator G

R

de�ned in Eq. (1.35) by the position of its poles.

The generating fun
tional Z[J ℄ given by (2.70) is in the form most suitable for deriving

arbitrary n-point Green fun
tions using our master formula (2.53). Note that �nding Z[J ℄

required only to determine the inverse of the di�erential operator D(t), a

ounting for the

right boundary 
onditions indu
ed by the i"�

2

term. This inverse is the Feynman propagator

or two-point fun
tion G

F

(t

0

� t) whi
h we 
an determine dire
tly solving

�D(t)G

F

(t

0

� t) = Æ(t

0

� t) : (2.72)

Going to Fourier spa
e, we �nd immediately

G

F

(E) =

1

E

2

� !

2

+ i"

: (2.73)

This suggests that we 
an short-
ut the 
al
ulation of Z[J ℄ by determining the Feynman

propagator and using then dire
tly (2.69) or (2.70).

These results allow us also to 
al
ulate arbitrary matrix elements between os
illator states.

For instan
e, we obtain the expe
tation value h0j�

2

j0i from

h0j jTf�(t

0

)�(t)g j0i = (�i)

2

Æ

2

Z[J ℄

ÆJ(t

0

)ÆJ(t)

�

�

�

�

J=0

= iG

F

(t

0

� t) =

1

2!

e

i!jt�t

0

j

: (2.74)

Here, we used in the last step the expli
it expression for G

F

whi
h you should 
he
k in

problem 2.??. Taking the limit t

0

& t and repla
ing �

2

! mx

2

, we reprodu
e the standard

result h0j x

2

j0i = 1=(2m!). Matrix elements between ex
ited states jni = (n!)

�1=2

(a

y

)

n

j0i

are obtained by expressing the 
reation operator a

y

using �(t) =

_

�(t) as

a

y

=

r

!

2

�

1�

i

!

d

dt

�

�(t) : (2.75)

2.5. The need for quantum �elds

We have already argued that any relativisti
 quantum theory has to be a many-parti
le

theory. Su
h a theory has to in
lude in�nitely many degrees of freedom|as �eld theories like
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ele
trodynami
s do. Before we move on to introdu
e the simplest quantum �eld theory in

the next 
hapter, we present an argument that relativity and the single parti
le pi
ture are

in
ompatible.

In 
lassi
al me
hani
s, the prin
iple of relativity implies that all traje
tories of massive

parti
les are time-like, while massless parti
les move along light-like traje
tories. This imple-

ments 
ausality, i.e. the requirement that no signal 
an be transmitted faster than light. How

should we translate this prin
iple into a quantum theory? Causality would be 
learly sat-

is�ed, if the relativisti
 propagator K(x

0

; t

0

;x; t) vanishes for spa
e-like distan
es. Another,

less restri
tive translation of the prin
iple of relativity would be to ask that measurements

performed at spa
e-like separated points do not in
uen
e ea
h other. This is a
hieved, if all

observables O(x) 
ommute for spa
e-like distan
es,

[

^

O(x; t);

^

O(x

0

; t

0

)℄ = 0 for (t� t

0

)

2

< (x� x

0

)

2

: (2.76)

In quantum me
hani
s, the Heisenberg operators
^
x(t) and

^
p(t) depend, however, only on

time. Therefore we 
an not implement the 
ondition (2.76) in su
h a framework.

The only res
ue for 
ausality in relativisti
 quantum me
hani
s is therefore the vanishing

of the propagator K(t

0

;x

0

; t;x) outside the light-
one. We evaluate the propagator as in the

non-relativisti
 
ase,

K(x

0

; t

0

;x; t) =




x

0

�

�

e

�iH(t

0

�t)

jxi =

Z

d

3

p

(2�)

3




x

0

�

�

e

�iE

p

(t

0

�t)

jpi hpjxi (2.77)

inserting however the relativisti
 dispersion relation, E

p

=

p

m

2

+ p

2

. Next we use that the

momentum operator
^
p generates spa
e translations, exp(�i

^
px)j0i = jxi, to obtain

K(x

0

; t

0

;x; t) = K(x

0

� x) =

Z

d

3

p

(2�)

3

jh0jpij

2

e

�ip(x

0

�x)

: (2.78)

Here we introdu
ed also the four-ve
tor p

�

= (E

p

;p), rewriting the plan-wave thereby in a

Lorentz-invariant way. In order that the 
omplete propagator is invariant, we have to 
hoose

as integration measure / d

3

p=E

p

, 
f. problem 2.??, and we set therefore jh0jpij

2

= 1=(2E

p

).

Knowing its expli
it expression, it is a straight-forward exer
ise to show that the propagator

does not vanish outside the light-
one, but goes only exponentially to zero, K(x

0

; 0;x; 0) /

exp(�mjx

0

� xj). Thus we failed to implement both versions of 
ausality into relativisti


quantum me
hani
s. Instead, we will develop quantum �eld theory with the aim to implement


ausality via the 
ondition (2.76).

Before starting this endeavour, we 
an draw still some important 
on
lusion from Eq. (2.78).

For spa
e-like distan
es, (x�x

0

)

2

< 0, a Lorentz boost 
an 
hange the time order of two spa
e-

time events, 
f. problem 1.??. Consisten
y requires thus to in
lude both time-orderings: If

a parti
le is 
reated at t and absorbed at t

0

> t, then it 
an be 
reated ne
essarily also at t

0

and absorbed at t > t

0

. We extend therefore the propagator as

K(x

0

� x) =

Z

d

3

p

(2�)

3

2E

p

h

#(t

0

� t)e

�ip(x

0

�x)

+ #(t� t

0

)e

ip(x

0

�x)

i

; (2.79)

where we 
hose the opposite sign for the plan-wave in the se
ond fa
tor: In this way, the

phase of the plane-waves observed in both frames agree, �E

p

�#(�) < 0 and +E

p

�#(��) <

0, and similarly for the momenta. If we imagine that the propagating parti
le 
arries a
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onserved 
harge, then we 
an asso
iate the positive frequen
ies to the propagation of a

parti
le (with 
harge q) and the negative frequen
ies to the propagation of an antiparti
le

(with 
harge �q). Then the resulting 
urrent is frame-independent, if the antiparti
le has the

same mass but the opposite additive 
harges. This predi
tion of relativisti
 quantum �eld

theory is experimentally 
on�rmed with extreme a

ura
y: For instan
e, the limits on the

mass and 
harge di�eren
e of ele
trons and positrons are smaller than 8� 10

�9

and 4� 10

�8

,

respe
tively [O

+

14℄.

Finally, we should mention an alternative way to implement 
ausality: Instead of de�n-

ing quantum �elds

^

�(x

�

) on 
lassi
al spa
e-time, we 
ould promote time t to an operator,

parametrising the world-line x̂

�

(�) of a parti
le e.g. by its proper-time � . Considering then

the surfa
e x̂

�

(�; �) generated by a set of world-lines is the starting point of string theory.

Summary

Using Feynman's path integral approa
h, we 
an express a transition amplitude as a sum

over all paths weighted by a phase whi
h is determined by the 
lassi
al a
tion, hq

f

; t

f

jq

i

; t

i

i =

R

Dq(t) exp(iS[q℄). Adding a linear 
oupling to an external sour
e J and a damping term

to the Lagrangian, we obtain the ground-state persisten
e amplitude h0;1j0;�1i

J

. This

quantity serves as the generating fun
tional Z[J ℄ for n-point Green fun
tions G(t

1

; : : : ; t

n

)

whi
h are the time-ordered va
uum expe
tation values of the operators q̂(t

1

); : : : ; q̂(t

n

).

Further reading

For additional examples for the use of the path integral and Green fun
tions in quantum

me
hani
s see e.g. [Ma
00℄ or [Das06℄. [S
h05℄ sket
hes the histori
al development that lead

to S
hwinger's Green fun
tions, in
luding his quantum a
tion prin
iple.
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3. Free s
alar �eld

We extend in this 
hapter the path integral approa
h from quantum me
hani
s to the simplest

�eld theory, 
ontaining a single real s
alar �eld �(x). Su
h a �eld may either represent

an elementary parti
le like the Higgs s
alar, a bound-state like a s
alar meson, or a s
alar

parameter des
ribing a spe
i�
 property of a more 
omplex theory. Pro
eeding similar to our

approa
h in quantum me
hani
s, we will introdu
e the generating fun
tional Z[J ℄ = h0+j0�i

J

of n-point Green fun
tions as our main tool to 
al
ulate the time-ordered va
uum expe
tation

value of a produ
t of �elds �(x

1

) � � � �(x

n

). Cal
ulating the va
uum energy of the s
alar �eld,

we will en
ounter for the �rst time that many 
al
ulations in quantum �eld theories return a

formally in�nite result. In order to extra
t sensible predi
tions, we have to introdu
e therefore

the 
on
epts of regularisation and renormalisation.

3.1. Lagrange formalism and path integrals for �elds

A �eld is a map whi
h asso
iates to ea
h spa
e-time point x a k-tupel of values �

a

(x), a =

1; : : : ; k. The spa
e of �eld values �

a

(x) 
an be 
hara
terised by its transformation properties

under Poin
ar�e transformations, i.e. the group of translations and Lorentz transformations,

and internal symmetry groups. The latter are in pra
ti
ally all physi
al appli
ations Lie

groups like U(1), SU(n) or SO(n). Ex
ept for a real s
alar �eld �, these �elds have several


omponents. Thus we have to generalise Hamilton's prin
iple to a 
olle
tion of �elds �

a

(x),

where the index a in
ludes all internal as well as spa
e-time indi
es. Moreover, the Lagrangian

for a �eld �

a

(x) will 
ontain not only time but also spa
e derivatives.

To ensure Lorentz invarian
e, we 
onsider a s
alar Lagrange density L (x) that depend as a

lo
al fun
tion on the �elds and their derivatives. By analogy to L(q; _q), we restri
t ourselves

to �elds �

a

(x) and their �rst derivatives �

�

�

a

(x). We in
lude no expli
it time-dependen
e,

sin
e \everything" should be explained by the �elds and their intera
tions. The Lagrangian

L(�

a

; �

�

�

a

) is obtained by integrating the densityL over a given spa
e volume V . The a
tion

S is thus the four-dimensional integral

S[�

a

℄ =

Z

t

b

t

a

dt L(�

a

; �

�

�

a

) =

Z




d

4

xL (�

a

; �

�

�

a

) (3.1)

with 
 = V � [t

a

: t

b

℄. A variation Æ�

a

(x) of the �elds leads to a variation of the a
tion,

ÆS =

Z




d

4

x

�

�L

��

a

Æ�

a

+

�L

�(�

�

�

a

)

Æ(�

�

�

a

)

�

; (3.2)

where we have to sum over �eld 
omponents (a = 1; : : : ; k) and the Lorentz index � = 0; : : : ; 3.

The 
orresponden
e q(t)! �(x

�

) implies that the s
ale fa
tor " parametrising the variations

�

a

(x

�

; ") depends not on x

�

. We 
an therefore eliminate again the variation of the �eld

gradients �

�

�

a

by a partial integration using Gauss' theorem,

ÆS =

Z




d

4

x

�

�L

��

a

� �

�

�

�L

�(�

�

�

a

)

��

Æ�

a

= 0 : (3.3)
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The surfa
e term vanishes, sin
e we require that the variation is zero on the boundary �
.

Thus the Lagrange equations for the �elds �

a

are

�L

��

a

� �

�

�

�L

�(�

�

�

a

)

�

= 0 : (3.4)

If the Lagrange density L is 
hanged by a four-dimensional divergen
e, ÆL = �

�

K

�

, and

surfa
e terms 
an be dropped, the same equations of motion result. Note also that it is

often more eÆ
ient to perform dire
tly the variation Æ�

a

in the a
tion S[�

a

℄ than to use the

Lagrange equations.

The path integral be
omes now a fun
tional integral over the k �elds �

a

,

K =

Z

D�

1

� � � D�

k

e

iS[�

a

℄

=

Z

D�

1

� � � D�

k

e

i

R




d

4

xL (�

a

;�

�

�

a

)

: (3.5)

A major problem we have to address later is that the k �elds �

a

are often not independent:

For instan
e, in ele
trodynami
s all potentials A

�


onne
ted by a gauge transformation de-

s
ribe the same physi
s. This redundan
y makes the path integral (3.5) ill-de�ned. We start

therefore with the simplest 
ase of a single, real s
alar �eld � where su
h problems are absent.

Moreover, we restri
t ourselves in this 
hapter to a free �eld without intera
tions.

3.2. Generating fun
tional for a s
alar �eld

Lagrangian The (free) S
hr�odinger equation i�

t

 = H

0

 
an be obtained substituting ! !

i�

t

and k ! �ir

x

into the non-relativisti
 energy-momentum relation ! = k

2

=(2m). With

the same repla
ements, the relativisti
 !

2

= m

2

+ k

2

be
omes the Klein-Gordon equation

(�+m

2

)� = 0 with � = �

��

�

�

�

�

= �

�

�

�

: (3.6)

The relativisti
 energy-momentum relation implies that the solutions to the free Klein-Gordon

equation 
onsist of plane-waves with positive and negative energies �

p

k

2

+m

2

. For the

stability of a quantum system it is however essential that its energy eigenvalues are bounded

from below. Otherwise, we 
ould generate e.g. in a s
attering pro
ess �+�! n� an arbitrarily

high number of � parti
les with suÆ
iently low energy, and no stable form of matter 
ould

exist. Interpreting the Klein-Gordon equation as a relativisti
 wave equation for a single

parti
le 
an be therefore not fully satisfa
tory, sin
e the energy of its solutions is not bounded

from below.

How do we guess the 
orre
t Lagrange density L ? Plane waves 
an be seen as a 
olle
tion

of 
oupled harmoni
 os
illators at ea
h spa
e-time point. The 
orresponden
e _q ! �

�

�

means that the kineti
 �eld energy is quadrati
 in the �eld derivatives. Relativisti
 invarian
e

implies that the Lagrange density is a s
alar, leaving as the only two possible terms 
ontaining

derivatives

�

��

(�

�

�)(�

�

�) and ��� :

Using the a
tion prin
iple to derive the equation of motions, we 
an however drop boundary

terms performing partial integrations. Thus these two terms are equivalent, up to a minus

sign. The Klein-Gordon equation �� = �m

2

� suggests that the mass term is also quadrati


in the �eld �. Therefore we try as Lagrange density

L =

1

2

�

��

(�

�

�) (�

�

�)�

1

2

m

2

�

2

�

1

2

�

��

�

�

��

�

��

1

2

m

2

�

2

: (3.7)
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tional for a s
alar �eld

From now, we will drop the parenthesis around �

�

� and it should be understood from the


ontext that the derivative �

�

a
ts only on the �rst �eld �. Even shorter alternative notations

are (�

�

�)

2

and the 
on
ise (��)

2

. Swapping the indi
es in the the Lagrangian (3.7), we obtain

for the se
ond part of the Lagrange equation

�

�(�

�

�)

(�

��

�

�

��

�

�) = �

��

�

Æ

�

�

�

�

�+ Æ

�

�

�

�

�

�

= �

��

�

�

�+ �

��

�

�

� = 2�

�

� : (3.8)

Hen
e the Lagrange equation be
omes

�L

��

� �

�

�

�L

�(�

�

�)

�

= �m

2

�� �

�

�

�

� = 0 ; (3.9)

and the Lagrange density (3.7) leads indeed to the Klein-Gordon equation. We 
an understand

the relative sign in the Lagrangian splitting the relativisti
 kineti
 energy into the \proper"

kineti
 energy (�

t

�)

2

=2 and the gradient energy density (r�)

2

=2,

L =

1

2

_

�

2

�

1

2

(r�)

2

�

1

2

m

2

�

2

: (3.10)

The last two terms 
orrespond to a potential energy and 
arry therefore the opposite sign of

the �rst one.

Instead of guessing, we 
an derive the 
orre
t Lagrangian L as follows: We multiply the

free �eld equation for � by a variation Æ� that vanishes on �
. Then we integrate over 
,

perform a partial integration of the kineti
 term, use �

�

Æ = Æ�

�

, the Leibniz rule and ask

that the variation vanishes,

A

Z




d

4

x Æ� (�+m

2

)� = A

Z




d

4

x

�

�Æ(�

�

�)�

�

�+ Æ��m

2

�

= (3.11a)

= A

Z




d

4

x Æ

�

�

1

2

(�

�

�)

2

+

1

2

�

2

m

2

�

= 0 : (3.11b)

The term in the square bra
kets agrees with our guess (3.7), taking into a

ount that the

sour
e-free �eld equation �xes the Lagrangian only up to the overall fa
tor A. In analogy

with a quantum me
hani
al os
illator, we want that the 
oeÆ
ients of the two terms are �1=2

and thus we set jAj = 1.

We 
an determine the 
orre
t overall sign of L by 
al
ulating the energy density � of the

s
alar �eld and requiring that it is bounded from below and stable against small perturbations.

We identify the energy density � of the s
alar �eld with its Hamiltonian density H , and use

the 
onne
tion between the Lagrangian and the Hamiltonian known from 
lassi
al me
hani
s.

The transition from a system with a �nite number of degrees of freedom to one with an in�nite

number of degrees of freedom pro
eeds as follows,

p

i

=

�L

� _q

i

) �

a

=

�L

�

_

�

a

; (3.12a)

H = p

i

_q

i

� L ) H =

X

a

�

a

_

�

a

�L : (3.12b)

The 
anoni
ally 
onjugated momentum � of a real s
alar �eld is

� =

�L

�

_

�

=

_

� : (3.13)

31



3. Free s
alar �eld

Thus the Hamilton density is

H = �

_

��L = �

2

�L =

1

2

_

�

2

+

1

2

(r�)

2

+

1

2

m

2

�

2

� 0 (3.14)

and thus obviously positive de�nite. Moreover, generating 
u
tuations Æ� 
osts energy and

thus the system is stable against small perturbations. Hen
e the transition from a single

parti
le interpretation of the Klein-Gordon equation to a �eld theory has been suÆ
ient to


ure the problem of the negative energy solutions.

Note that we 
ould subtra
t a 
onstant �

0

from the Lagrangian whi
h would drop out

of the equation of motion. From Eq. (3.14) we see that su
h a 
onstant 
orresponds to a

uniform energy density of empty spa
e. Su
h a term would a
t as an additional sour
e of the

gravitational �eld, but would be otherwise unobservable. Next we generalise the Lagrangian

by subtra
ting a polynomial in the �elds, V (�), subje
t to the stability 
onstraint dis
ussed

above. Hen
e the potential V should be bounded from below, and we 
an expand it around

its minimum at � � v,

dV

d�

�

�

�

�

�=v

= 0 ;

d

2

V

d�

2

�

�

�

�

�=v

� m

2

> 0 : (3.15)

The term V

00

(v) a
ts as mass term the �eld �. We will see soon that terms �

n

with n � 3

generate intera
tions between n parti
les, as expe
ted from the analogy of a quantum �eld to


oupled quantum me
hani
al os
illators. The �eld � has the non-zero value � = v everywhere,

if the minimum v of V (�) is not at zero, v 6= 0. If the value of V (�) at the minimum v is

not zero, V (v) 6= 0, then the non-zero potential implies a non-zero uniform energy density

� = V (v).

Generating fun
tional Now we move on to the quantum theory of a s
alar �eld, whi
h we

de�ne by the path-integral over exp iS[�℄. The Green fun
tions whi
h en
ode all information

about this theory 
an be obtained from the generating fun
tional

Z[J ℄ = h0 + j0�i

J

= N

Z

D� exp i

Z

d

4

x

�

1

2

�

�

��

�

��

1

2

m

2

�

2

+ J�

�

; (3.16)

where we appended to the a
tion a linear 
oupling between the �eld and an external sour
e.

To ensure the 
onvergen
e of the integral, we add an in�nitesimal small imaginary part to

the squared mass of the parti
le, m

2

! m

2

� i". Next we perform an integration by part of

the �rst term, exploiting the fa
t that the boundary term vanishes,

Z[J ℄ = N

Z

D� exp i

Z

d

4

x

�

�

1

2

�(�+m

2

)�+ J�

�

: (3.17)

The �rst two terms, A = �(�+m

2

), are quadrati
 and symmetri
 in the �eld �,

�

1

2

Z

d

4

x �(x)(�

x

+m

2

)�(x) =

1

2

Z

d

4

xd

4

x

0

�(x)A(x; x

0

)Æ(x � x

0

)�(x

0

) : (3.18)

Note that the operator A is lo
al, A(x) / A(x; x

0

)Æ(x � x

0

): Sin
e spe
ial relativity forbids

a
tion at a distan
e, non-lo
al terms like �(x

0

)A(x; x

0

)�(x) should not appear in a relativisti


Lagrangian.
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If we dis
retise 
ontinuous spa
e-time x

�

into a latti
e, we 
an use Eq. (2.22) to perform

the path integral,

Z[J ℄ = N

�

(2�i)

N

det[A℄

�

1=2

exp

�

�

1

2

iJA

�1

J

�

� NZ[0℄ exp(iW [J ℄) : (3.19)

The prefa
tor of the exponential fun
tion does not depend on J and is thus given by NZ[0℄ =

h0 + j0�i. The va
uum should be stable and normalised to one in the absen
e of sour
es,

h0+ j0�i = 1. Therefore the proper normalisation of Z[J ℄ implies that N

�1

= Z[0℄. Thus we


an omit the normalisation fa
tor, if we normalise the path integral measure D� su
h that

the Gaussian integral over a free �eld is one. In the last step of Eq. (3.19), we de�ned a

new fun
tional W [J ℄ that depends only quadrati
ally on the sour
e J ; therefore it should be

easier to handle than Z[J ℄. Going for N ! 1 ba
k to 
ontinuous spa
e-time, the matrix

multipli
ations be
ome integrations,

Z[J ℄ = exp(iW [J ℄) = exp

�

�

i

2

Z

d

4

xd

4

x

0

J(x)A

�1

(x; x

0

)J(x

0

)

�

(3.20)

and

W [J ℄ = �

1

2

Z

d

4

xd

4

x

0

J(x)A

�1

(x; x

0

)J(x

0

) : (3.21)

Propagator In order to evaluate the fun
tional W [J ℄ we have to �nd the inverse �(x; x

0

) �

A

�1

(x; x

0

) of the di�erential operator A, de�ned by

� (�+m

2

)�(x; x

0

) = Æ(x� x

0

) : (3.22)

Be
ause of translation invarian
e, the Green fun
tion �(x; x

0

) 
an depend only on the di�er-

en
e x � x

0

. Therefore it is advantageous to perform a Fourier transformation and to go to

momentum spa
e,

�

Z

d

4

k

(2�)

4

(�+m

2

)�(k)e

�ik(x�x

0

)

=

Z

d

4

k

(2�)

4

e

�ik(x�x

0

)

; (3.23)

or

�

F

(k) =

1

k

2

�m

2

+ i"

; (3.24)

where the pole at k

2

= m

2

is avoided by the i". Thus them

2

! m

2

�i" pres
ription introdu
ed

to ensure the 
onvergen
e of the path integral tells us also how to handle the poles of the

Green fun
tion. The index F spe
i�es that the propagator �

F

is the Green fun
tion obtained

with the m

2

� i" pres
ription proposed by Feynman. (Some authors use instead D

F

for the

propagator of massive bosons and �

F

for the propagator of massless bosons.)

Note that the four momentum 
omponents k

�

are independent. Therefore �

F

(k) des
ribes

the propagation of a virtual parti
le that has|in 
ontrast to a real or external parti
le|not

to be on \mass-shell:" in general

k

0

6= �!

k

� �

p

k

2

+m

2

:
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Im(k

0

)

Re(k

0

)

C

+

C

�

�! + i"

�

! � i"

�

Figure 3.1.: Poles and 
ontours in the 
omplex k

0

plane used for the integration of the Feyn-

man propagator.

We 
an evaluate the k

0

integral in the 
oordinate representation of �

F

(x� x

0

) expli
itly,

�

F

(x� x

0

) =

Z

d

4

k

(2�)

4

e

�ik(x�x

0

)

k

2

0

� k

2

�m

2

+ i"

(3.25a)

=

Z

d

3

k

(2�)

3

Z

dk

0

2�

e

�ik

0

(t�t

0

)

e

ik(x�x

0

)

(k

0

� !

k

+ i")(k

0

+ !

k

� i")

; (3.25b)

using Cau
hy's theorem

1

. The integrand has two simple poles at +!

k

� i" and �!

k

+ i",


f. Fig. 3.1. For negative � = t � t

0

, we 
an 
lose the integration 
ontour C

+

on the upper

half-plane, in
luding the pole at �!

k

,

Z

dk

0

e

�ik

0

�

(k

0

� !

k

+ i")(k

0

+ !

k

� i")

= 2�i res

�!

k

= 2�i

e

i!

k

�

�2!

k

for � < 0 : (3.26)

For positive � , we have to 
hoose the 
ontour C

�

in the lower plane, pi
king up

2�i e

�i!

k

�

=(2!

k

) and an additional minus sign sin
e the 
ontour is 
lo
kwise. Combining

both results, we obtain

i�

F

(x) =

Z

d

3

k

(2�)

3

2!

k

�

e

�i!

k

t

#(x

0

) + e

i!

k

t

#(�x

0

)

�

e

ikx

; (3.27)

or after shifting the integration variable k! �k in the se
ond term

i�

F

(x) =

Z

d

3

k

(2�)

3

2!

k

h

e

�i(!

k

t�kx)

#(x

0

) + e

i(!

k

t�kx)

#(�x

0

)

i

: (3.28)

Comparing this expression to our guess (2.79) at the end of the last 
hapter, we see that our

intuitive arguments about the stru
ture of a Lorentz invariant propagator in a quantum theory

1

Sin
e " is in�nitesimal and !

k

> 0, we 
an set 2i!

k

"+ "

2

! i".
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were 
orre
t. We stress on
e again the salient features of the Feynman propagator: First,

the propagator 
ontains positive and negative frequen
ies, as expe
ted from the existen
e of

solutions to the Klein-Gordon equation with positive and negative energies. Se
ond, positive

frequen
ies propagate forward in time, while negative frequen
ies propagate ba
kward. This

implies the existen
e of antiparti
les. Third, the relativisti
 normalisation of (on-shell) plane

waves in
ludes a fa
tor 1=

p

2!

k

, or

hkjk

0

i = 2!

k

(2�)

3

Æ(k � k

0

) ; (3.29)

while the non-relativisti
 normalisation uses hkjk

0

i = Æ(k � k

0

).

Remark 3.1: Other Green fun
tions are obtained, if we 
hoose di�erent pres
riptions for the

handling of the poles. For positive � = t � t

0

, we have to 
lose the 
ir
le on the lower half-plane.

Shifting both poles to the lower half-plane, �!

k

� i", gives thus the retarded propagator �

ret

(x)

vanishing for all � < 0. In the opposite 
ase, we shift both poles to the upper half-plane, �!

k

+ i",

and obtain the advan
ed propagator �

adv

(x). Both propagators are real-valued, propagating a real

solution of the wave equation into another real one at a di�erent time, as required in 
lassi
al physi
s.

Moreover, both Green fun
tions have support inside the light-
one, the retarded in the forward and

the advan
ed in the ba
kward part of the light 
one. This behaviour should be 
ontrasted with the

Feynman propagator �

F

whi
h is 
omplex-valued and non-zero in R(1; 3).

Another way to handle the singularities is to use Cau
hy's Prin
ipal value pres
ription, obtaining

�(x) =

1

2

[�

adv

(x) + �

ret

(x)℄. This 
hoi
e 
orresponds to an a
tion-at-distan
e whi
h seems to have

no relevan
e in physi
s. Finally, we 
an shift one pole up and the other one down. The 
hoi
e

�(!

k

� i") used in the Feynman propagator allows us to rotate the integration 
ontour anti-
lo
kwise

to �i1 : +i1 avoiding both poles in the 
omplex k

0

plane. Sin
e k

0

= i�

t

, this transformation

is 
onsistent with the 
lo
kwise rotation in 
oordinate spa
e required to obtain an Eu
lidean a
tion

bounded from below. Thus the Feynman pres
ription is the only one in whi
h the physi
s in Minkowski

and Eu
lidean spa
e are analyti
ally 
onne
ted, 
f. with the remark 2.1.

We are now in the position to evaluate the generating fun
tional

W [J ℄ = �

1

2

Z

d

4

xd

4

x

0

J(x)�

F

(x� x

0

)J(x

0

) : (3.30)

in Fourier spa
e. Inserting the Fourier transformations for the propagator as well as for the

sour
es J gives

W [J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

d

4

k

0

(2�)

4

d

4

~

k

(2�)

4

J(k)

�

e

ikx

e

�i

~

k(x�x

0

)

~

k

2

�m

2

+ i"

J(k

0

)e

�ik

0

x

0

: (3.31)

Ex
hanging the integration order and performing the spa
e-time integrations leads to the


onservation of the four-momenta entering and leaving the two intera
tion points, (2�)

8

Æ(k�

~

k)Æ(

~

k� k

0

): The sour
e J(k)

�

produ
e a s
alar parti
le with momentum k, and thus only the

Fourier 
omponent k of the s
alar propagator 
ontributes. This is a very general behaviour,

based solely on the translation invarian
e of the free parti
le states we are using. In the

�nal step, we 
an
el two of the three momentum integrations with the two momentum delta

fun
tions and are left with

W [J ℄ = �

1

2

Z

d

4

k

(2�)

4

J(k)

�

1

k

2

�m

2

+ i"

J(k) : (3.32)
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The fun
tional W [J ℄ has the same stru
ture as the one for the harmoni
 os
illator found in

the last 
hapter. We will see that it 
ontains, as in the one-dimensional 
ase, all information

about a free s
alar �eld, not only about its ground state. Note that the 
ontribution of Fourier

modes to W [J ℄ in
reases, the 
loser they are on-shell, k

2

! m

2

. For k

2

= m

2

, the propagator

diverges �nally. In order to interpret this unphysi
al result, we 
an 
ompare it to a 
lassi
al

harmoni
 os
illator: If an external sour
e is applied in resonan
e with the eigen-frequen
y ! of

the os
illator, the os
illation amplitude will in
rease until fri
tion 
annot be longer negle
ted.

In our 
ase at hand, the non-zero life-time of unstable parti
les plays the rôle of fri
tion:

In
luding in our formalism that the ex
hanged parti
le is unstable, the in�nitesimal " would

be repla
ed by half its de
ay-width, "! i�=2.

Attra
tive Yukawa potential by s
alar ex
hange From our ma
ros
opi
 experien
e, we

know the two 
ases of ele
tromagnetism, where equal ele
tri
 
harges repel ea
h other, and of

gravity where two masses attra
t ea
h other. The �rst physi
s question we want to answer with

our newly developed formalism is if the s
alar �eld falls into the 
ategory of a fundamentally

attra
tive or repulsive intera
tion.

In order to address this question, we 
onsider two stati
 point 
harges as external sour
es,

J = J

1

(x

1

) + J

2

(x

2

) with J

i

= Æ(x�x

i

), in W [J ℄. Multiplying out the terms in J(x)�

F

(x�

x

0

)J(x

0

) gives four 
ontributions, W

ij

/ J

i

J

j

: The terms W

11

[J ℄ and W

22

[J ℄ 
orrespond to

the emission and re-absorption of the parti
le by the same sour
e J

i

. They are examples

for self-intera
tions that we negle
t for the moment. The intera
tion between two di�erent


harges is given by

W

12

[J ℄ =W

21

[J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

J

1

(x)

e

�ik(x�x

0

)

k

2

�m

2

+ i"

J

2

(x

0

) (3.33)

= �

1

2

Z

dtdt

0

Z

d

4

k

(2�)

4

e

�ik

0

(t�t

0

)

e

ik(x

1

�x

2

)

k

2

�m

2

+ i"

: (3.34)

Performing one of the two time integrals, e.g. the one over t

0

, gives 2�Æ(k

0

). Hen
e our

assumption of stati
 sour
es implies that the virtual parti
le 
arries zero energy and is spa
e-

like, k

2

= �k

2

< 0. Eliminating then the k

0

integral with the help of the delta fun
tion, we

obtain next

W

12

[J ℄ =

1

2

Z

dt

Z

d

3

k

(2�)

3

e

ikr

k

2

+m

2

(3.35)

with r = x

1

� x

2

. The denominator is always positive, and we 
an therefore omit the i".

Before we 
an go on, we have to make sense out of the in�nite time integral: Looking at

Z[J ℄ = h0j exp(�iH[J ℄�)j0i = exp(iW [J ℄) ; (3.36)

we see that W [J ℄ = �E� with � = t� t

0

as the 
onsidered time interval. Hen
e the potential

energy V of two stati
 point 
harges separated by the distan
e r is

V = �(W

12

+W

21

)=� = �

Z

d

3

k

(2�)

3

e

ikr

k

2

+m

2

= �

e

�mr

4�r

< 0 : (3.37)

Thus the potential energy of two equal 
harges is redu
ed by the ex
hange of a s
alar parti
le,

whi
h means that the s
alar for
e between them is attra
tive. If the ex
hanged parti
le is

massive, the range of the for
e is of order 1=m. These two observations were the basi
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motivation for Yukawa to suggest in 1935 the ex
hange of s
alar parti
les as model for the

nu
lear for
e. Note also that we obtain in the limitm! 0 a 1=r potential as in Newton's and

Coulomb's law. Thus we learnt the important fa
t that the only two known for
es of in�nite

range, the ele
tromagneti
 and the gravitational for
e, are transmitted by massless parti
les,

the photon and the graviton, respe
tively. The result V / 1=r form = 0 and n = 4 spa
e-time

dimensions, or more generally V / 1=r

n�3

for n � 4, follows from simple dimensional analysis:

For m = 0, the only remaining dimensionfull parameter after the integration over k is the

distan
e r. From Eq. (3.37), we read o� that the potential energy V has the dimension [V ℄ =

k

n�3

. Thus the potential energy due to the ex
hange of a massless parti
le s
ales as r

�n+3

.

Finally, note that the amplitude W

12

+W

21

or J(x)�

F

(x� x

0

)J(x

0

) = J(x

0

)�

F

(x

0

� x)J(x)

is symmetri
 against the ex
hange 1$ 2 or x

1

$ x

2

, re
e
ting that the s
alar propagator is

an even fun
tion. Thus s
alar parti
les are bosons and follow Bose-Einstein statisti
s.

3.3. Green fun
tions for a free s
alar �eld

In the last se
tion, we obtained the s
alar Feynman propagator or two-point Green fun
tion

as the inverse of the Klein-Gordon operator. As next step, we want to derive n-point Green

fun
tions from the their generating fun
tional. Moreover, we will introdu
e two types of

Green fun
tions, namely dis
onne
ted n-point fun
tions G(x

1

; : : : ; x

n

) and 
onne
ted n-point

fun
tions G(x

1

; : : : ; x

n

). Consider the expansion of the exponential in Eq. (3.19),

Z[J ℄ = e

iW [J℄

=

1

X

n=0

i

n

n!

W

n

=

1

X

n=0

i

n

n!

Z

d

4

x

1

� � � d

4

x

n

G

n

(x

1

; � � � ; x

n

)J(x

1

) � � � J(x

n

) ; (3.38)

where we assume that Z[J ℄ is normalised so that Z[0℄ = 1. The RHS serves as de�nition

of the dis
onne
ted n-point Greens fun
tion G(x

1

; � � � ; x

n

). They 
an be 
al
ulated as the

fun
tional derivatives of Z[J ℄,

G(x

1

; : : : ; x

n

) =

1

i

n

Æ

n

ÆJ(x

1

) � � � ÆJ(x

n

)

Z[J ℄

�

�

�

�

J=0

: (3.39)

For n = 2 we should re-derive the Feynman propagator. Starting from

1

i

ÆZ[J ℄

ÆJ(x)

=

1

i

Æ

ÆJ(x)

exp

�

�

i

2

Z

d

4

x

1

d

4

x

2

J(x

1

)�

F

(x

1

� x

2

)J(x

2

)

�

= �

Z

d

4

x

1

�

F

(x� x

1

)J(x

1

) exp(iW [J ℄) ; (3.40)

we obtain

1

i

Æ

ÆJ(y)

1

i

Æ

ÆJ(x)

Z[J ℄ = i�

F

(x� y) exp(iW [J ℄)

+

�

Z

d

4

x

1

�

F

(x� x

1

)J(x

1

)

��

Z

d

4

x

1

�

F

(y � x

1

)J(x

1

)

�

exp(iW [J ℄) : (3.41)

Setting J = 0 gives the desired result for the 2-point fun
tion,

G(x; y) = i�

F

(x� y) : (3.42)
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It is straightforward to 
ontinue: Another fun
tional derivative gives the 3-point fun
tion,

Æ

iÆJ(x

1

)

Æ

iÆJ(x

2

)

Æ

iÆJ(x

3

)

Z[J ℄ = �

�

Z

d

4

x�

F

(x

1

� x)J(x)

�

�

�

Z

d

4

x�

F

(x

2

� x)J(x)

��

Z

d

4

x�

F

(x

3

� x)J(x)

�

exp(iW [J ℄)

�i�

F

(x

2

� x

3

)

Z

d

4

x�

F

(x

1

� x)J(x) exp(iW [J ℄)

�i�

F

(x

2

� x

1

)

Z

d

4

x�

F

(x

3

� x)J(x) exp(iW [J ℄)

�i�

F

(x

3

� x

1

)

Z

d

4

x�

F

(x

2

� x)J(x) exp(iW [J ℄) : (3.43)

For n odd, we obtain always a sour
e J in the prefa
tor be
ause W [J ℄ is an even polynomial

in J . Hen
e all odd n-point fun
tions are zero. We 
ontinue with the 4-point fun
tion: Taking

another derivative and setting J = 0, only terms linear in J in Eq. (3.43) 
ontribute and thus

we obtain

G(x

1

; x

2

; x

3

; x

4

) =� [�

F

(x

1

� x

2

)�

F

(x

3

� x

4

)

+ �

F

(x

1

� x

3

)�

F

(x

2

� x

4

)

+ �

F

(x

1

� x

4

)�

F

(x

2

� x

3

)℄ : (3.44)

We see that the 4-point fun
tion is the sum of all permutations of produ
ts of two 2-point

fun
tions. For instan
e, the �rst term �

F

(x

1

�x

2

)�

F

(x

3

�x

4

) in the 4-point fun
tion des
ribes

the independent propagation of a s
alar parti
le from x

1

to x

2

and of another one from x

3

to x

4

. Thus our approa
h leads indeed to a many-parti
le theory. Sin
e we did not in
lude

intera
tions, parti
les are propagating independently and the n-point fun
tion fa
torises into

produ
ts of two-point fun
tions. Thus the fun
tional Z[J ℄ generates dis
onne
ted Green

fun
tions. The statement that the n-point fun
tion is the sum of all permutations of the

produ
t of the n=2 two-point fun
tions holds for all n and is 
alled \Wi
k's theorem".

We introdu
e next the 
onne
ted n-point fun
tions G(x

1

; : : : ; x

n

). Their generating fun
-

tional is W [J ℄,

G(x

1

; : : : ; x

n

) =

1

i

n

Æ

n

ÆJ(x

1

) � � � ÆJ(x

n

)

iW [J ℄

�

�

�

�

J=0

: (3.45)

For a free theory, W is quadrati
 in the sour
es J . Hen
e, all 
onne
ted n-point fun
tions

G(x

1

; : : : ; x

n

) with n > 2 vanish and the only non-zero one is the two-point fun
tion with

G(x; y) = i�

F

(x� y) = G(x; y) : (3.46)

To summarise: There exists only one non-zero 
onne
ted n-point fun
tion in a free the-

ory whi
h is determined by the Feynman propagator, G(x; y) = i�

F

(x � y). All non-zero

dis
onne
ted n-point fun
tions 
an be obtained by permuting the produ
t of n=2 two-point

fun
tions (\Wi
k's theorem"). Hen
e any higher-order Green fun
tion 
an be 
onstru
ted out

of a single building blo
k, the Feynman propagator. In perturbation theory, we will re
ast the

intera
ting theory|loosely speaking|in \intera
tion verti
es times free propagators". This

enables us to derive simple Feynman rules that tell us how one 
onstru
ts an arbitrary Green

fun
tion out of verti
es and propagators.
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Causality and the Feynman propagator We already dis
ussed in se
tion 2.5 that any valid

relativisti
 theory should implement the requirement of 
ausality: No signal using � parti
les

as 
arrier should travel with a speed larger than the one of light. We also saw that the Feyn-

man pres
ription leads to a relativisti
 
onsistent interpretation of the propagator, although

the propagator does not vanish outside the light-
one but goes only exponentially to zero,


f. problem 1.??. One may therefore wonder, if this means that the un
ertainty prin
iple

makes the light-
one "fuzzy" and thus the axiom of spe
ial relativity that no signal 
an be

transmitted with v > 
 is violated on s
ales smaller

<

�

1=m.

We 
an address this question 
onsidering the �eld �(x) as operator

^

�(x) and asking then

when a measurement of

^

�(x) in
uen
es

^

�(x

0

). Re
all �rst that the Feynman propagator equals

the 2-point Green fun
tion whi
h in turn 
orresponds to the va
uum expe
tation value of the

time-ordered produ
t of �eld operators,

G(x

1

; x

2

) = h0jTf

^

�(x

1

)

^

�(x

2

)gj0i = i�

F

(x

1

� x

2

) : (3.47)

The property �

F

(x

1

� x

2

) = �

F

(x

2

� x

1

) implies that the �eld operators

^

�(x

1

) and

^

�(x

2

)


ommute,

h0jTf

^

�(x

1

)

^

�(x

2

)gj0i = h0j

^

�(x

1

)

^

�(x

2

)j0i#(t

1

� t

2

)

+ h0j

^

�(x

2

)

^

�(x

1

)j0i#(t

2

� t

1

) :

(3.48)

Using the analogy of a free quantum �eld to an in�nite set of os
illators, we try to express the

�eld operator

^

�(x) through annihilation and 
reation operators. Comparing to the expansion

(2.62) of an os
illator in d = 1, e.g. to �(t) = (2!)

�1=2

(ae

�i!t

+ a

y

e

i!t

), suggests the ansatz

^

�(x) =

Z

d

3

k

p

(2�)

3

2!

k

h

a(k)e

�ikx

+ a

y

(k)e

+ikx

i

; (3.49)

with k

0

= !

k

, a(k) and a

y

(k) as annihilation and 
reation operators that satisfy

a(k) j0i = 0 ; a

y

(k) j0i = jki and [a(k); a

y

(k

0

)℄ = Æ(k � k

0

) : (3.50)

Hen
e the va
uum state j0i is de�ned by a(k) j0i = 0 for all k.

If this ansatz is 
orre
t, then we should be able to reprodu
e the known form of the Feynman

propagator: Inserting our ansatz for the �eld into h0j

^

�(x; t)

^

�(0)j0i for t > 0, we obtain four

terms 
ontaining the produ
ts aa, aa

y

, a

y

a, a

y

a

y

. Only aa

y

survives, resulting into

h0j

Z

d

3

k d

3

k

0

(2�)

3

p

2!

k

2!

k

0

a(k)e

�ikx

a

y

(k

0

)#(t)j0i =

Z

d

3

k

(2�)

3

2!

k

e

�ikx

#(t) : (3.51)

In the se
ond step, we used the 
ommutation rule [a(k); a

y

(k

0

)℄ = Æ(k � k

0

). Performing the

same exer
ise for t < 0, we see that we reprodu
e also in this 
ase the 
orresponding term of

the Feynman propagator. Thus we 
on
lude that our ansatz for the �eld and 
ommutation

rules for the annihilation and 
reation operators are 
onsistent. Note that we 
ould 
reate in

Eq. (3.51) alternatively one-parti
le states, h0ja(k)a

y

(k

0

)j0i = hkjk

0

i ; and 
onsisten
y requires

thus that the states jki are non-relativisti
ally normalised, hkjk

0

i = Æ(k � k

0

). This should


ome as no surprise, sin
e we started from the analogy to the non-relativisti
 os
illator. If

one prefers states satisfying the relativisti
 normalisation, one 
an res
ale the 
reation and
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annihilation operators su
h that [~a(k); ~a

y

(k

0

)℄ = (2�)

3

2!

k

Æ(k � k

0

) and the �eld-operator

be
omes

^

�(x) =

Z

d

3

k

(2�)

3

2!

k

h

~a(k)e

�ikx

+ ~a

y

(k)e

+ikx

i

: (3.52)

Both normalisations lead to 
anoni
al 
ommutation relations between the �eld

^

� and its


anoni
ally 
onjugated momentum density �̂ =

_

� at equal times,

[

^

�(x; t); �̂(x

0

; t)℄ = iÆ(x� x

0

) : (3.53a)

[

^

�(x; t);

^

�(x

0

; t)℄ = [�̂(x; t); �̂(x

0

; t)℄ = 0 : (3.53b)

We 
ome ba
k to the question if the 
ommutator of two �elds vanishes for spa
e-like sepa-

ration. We evaluate �rst

[

^

�(x);

^

�(x

0

)℄ =

Z

d

3

k d

3

k

0

(2�)

3

p

2!

k

2!

k

0

h

a(k)e

�ikx

+ a

y

(k)e

+ikx

; a(k

0

)e

�ik

0

x

0

+ a

y

(k

0

)e

+ik

0

x

0

i

=

Z

d

3

k

(2�)

3

2!

k

�

e

�ik(x�x

0

)

� e

+ik(x�x

0

)

�

� D(x� x

0

) : (3.54)

For equal times, t = t

0

, ex
hanging the dummy variable k! �k in the se
ond term shows that

the 
ontribution from positive and negative energies 
an
el. Thus the equal-time 
ommutator

of two �elds is zero, as 
laimed in (3.53b). For spa
e-like distan
es, (x � x

0

)

2

< 0, we 
an

�nd a Lorentz boost whi
h 
hanges the ordering of the spa
e-time events, x�x

0

! �(x�x

0

):

Sin
e the fun
tion D(x� x

0

) is the sum of two Lorentz invariant expressions, its value has to

be the same in all inertial frames. But for spa
e-like distan
es, we 
an transform D(x) into

�D(x), and therefore D(x) has to vanish, if x is outside the light-
one of x

0

and vi
e versa.

Thus we have shown that also the 
ommutator of two spa
e-like separated �elds vanishes,

[

^

�(x);

^

�(x

0

)℄ = 0 for (x� x

0

)

2

< 0 ; (3.55)

whi
h is the 
ondition for 
ausality: The transmission of a signal 
orresponds not only to

the propagation of a virtual parti
le, but in
ludes its measurement. Thus the fa
t that the

Feynman propagator does not vanish outside the light-
one does not 
ontradi
t 
ausality by

itself.

There are two main di�eren
es between the Feynman propagator and the 
ommutator of two

�elds: First, [

^

�(x);

^

�(x

0

)℄ is an operator, while i�(x

1

�x

2

) is a va
uum expe
tation value. The

quantum va
uum 
u
tuates, and these 
u
tuations are 
orrelated also on spa
e-like distan
es,

similar to the ERP 
orrelations in quantum me
hani
s. The Feynman propagator i�

F

(x

1

�x

2

)

is designed to des
ribe not only the propagation of time-like parti
les, but in
ludes also the

spa
e-like propagation of virtual parti
les: The most \extreme" 
ase is the instantaneous

ex
hange of parti
les transmitting the Coulomb or Yukawa for
e between stati
 sour
es, 
f.

Eq. (3.35). Se
ond, in [

^

�(x);

^

�(x

0

)℄ we subtra
t the 
ontribution of positive and negative

frequen
ies, while we add them in the Feynman propagator. As a result, the 
ontributions

from a parti
le travelling the distan
e x and from an antiparti
le travelling the distan
e �x


an
el in the 
ommutator, while they add up in the Feynman propagator. Sin
e 
ausality

relies on the 
an
ellation between positive and negative energy modes in [

^

�(x);

^

�(x

0

)℄, we


on
lude that a relativisti
 quantum theory has to in
orporate antiparti
les.
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3.4. Va
uum energy and the Casimir e�e
t

Va
uum energy We now aim at 
al
ulating the energy of the va
uum state of a free s
alar

quantum �eld. The energy density � of the �eld � is given by the va
uum expe
tation value

of its Hamiltonian density H ,

� = h0jH j0i = �

0

+

1

2

h0j�

2

+ (r�)

2

+m

2

�

2

j0i = �

0

+ �

1

: (3.56)

Here we added the 
onstant energy density �

0

to (3.14) and used that the va
uum is nor-

malised, h0j0i = 1. For the 
al
ulation of �

1

, we 
an re
y
le our result for the propagator of

a s
alar �eld by 
onsidering �

2

(x) as the limit of two �elds at nearby points,

h0j�(x

0

)�(x)j0i

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

e

�ik(x

0

�x)

�

�

�

�

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

: (3.57)

We perform �rst the di�erentiation in h�

2

i = h

_

�

2

i and h(r�)

2

i and send then x

0

& x. Thus

�

2

and (r�)

2

add a !

2

k

and k

2

term, respe
tively,

� = h0jH j0i = �

0

+

Z

d

3

k

(2�)

3

2!

k

�

1

2

(!

2

k

+ k

2

+m

2

)

�

= �

0

+

Z

d

3

k

(2�)

3

1

2

!

k

: (3.58)

If we insert ~ and 
 into this expression, we see that �

0

as a 
lassi
al 
ontribution to the energy

density of the va
uum is / ~

0

, while the se
ond term �

1

/ ~!

k

=V as a quantum 
orre
tion

is linear in ~. The total energy density � of the va
uum state of a free s
alar �eld has a

very intuitive interpretation: Additionally to the 
lassi
al energy density �

0

, it sums up the

zero-point energies of all individual modes k of a free �eld. Despite its simpli
ity, we 
annot

make sense out of this result: Sin
e both the density of modes and their energy in
reases with

jkj, the integral diverges. This is the �rst example that momentum integrals in quantum �eld

theories are often ill-de�ned and require some 
are and 
ure. One 
alls momentum integrals

whi
h are divergent for k ! 0 infrared (IR) divergent, while one 
alls integrals whi
h diverge

for k !1 ultraviolet (UV) divergent.

Let us now 
onsider the 
ase that the Hamiltonian (3.14) des
ribes physi
s 
orre
tly only

up to the energy s
ale �, while the modes with jkj

>

�

� do not 
ontribute to �

1

. Su
h a

possibility exists e.g. in supersymmetri
 theories where the 
ontributions of di�erent parti
le

types 
an
el ea
h other above the s
ale �

SUSY

where supersymmetry is broken. Integrating

the 
ontribution to the va
uum energy density by �eld modes up to the 
uto� s
ale �, we

�nd

�

1

=

Z

�

0

dk k

2

2�

2

1

2

!

k

� �

4

(3.59)

in the limit �� m. Sin
e only the total energy density � is observable, the unknown �

0


an be

always 
hosen su
h that �

0

+�

1

agrees with observations, even if j�

0

j; j�

1

j � j�j. Nevertheless,

the strong sensitivity of �

1

on the value of the 
uto� s
ale � is puzzling for two reasons: First,


osmologi
al observations determine the total va
uum energy density �

�

to whi
h all types

of �elds 
ontribute as �

�

� (meV )

4

. On the other hand, a

elerator experiments give no

indi
ations that a 
an
ellation me
hanism as supersymmetry works at energy below few TeV.

Thus we expe
t naively at least �

�

� (�

SUSY

)

4

>

�

(fewTeV )

4

, whi
h is 60 orders of magnitude

larger than observed, if no strong 
an
ellation of the various 
ontributions to �

�

takes pla
e.

Se
ond, the behaviour �

1

� �

4

implies that all s
alar parti
les with mass m

<

�

� 
ontribute
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equally to �. This poses the question, if we have to know the physi
s at energy s
ales mu
h

larger than those we probe experimentally in order to make predi
tions using QFT. Su
h a

behaviour would be in 
ontradi
tion of developing su

essfully 
hemistry, atomi
 or nu
lear

physi
s using only the experimental data and models of the 
orresponding relevant energy

s
ale E. Something similar should happen in QFT too and we will study later the 
onditions

that heavy parti
les with mas m \de
ouple" at energies E � m: In this 
ase, their e�e
ts

are either suppressed by fa
tors E=m, or are hidden in unobservable quantities like �

1

.

Casimir e�e
t Although we 
annot 
al
ulate unambiguously the va
uum energy, we 
an

determine the energy di�eren
e of di�erent va
ua. As a 
on
rete example, we 
onsider the

suggestion by Casimir that the va
uum between two 
ondu
ting plates is disturbed. As a

result, the va
uum energy density between the plates be
omes a fun
tion of their distan
e d.

The di�eren
e of the va
uum energy density inside and outside the plates is �nite and leads

to a measurable for
e between them.

Let us 
onsider two parallel, un
harged, perfe
tly 
ondu
ting plates at distan
e d. Standing

waves between them have the form sin(n�x=d) with dis
rete energies !

n

= n�=d. The va
uum


u
tuations of a photon have the same form as the one of massless s
alar �eld, ex
ept that

there is an additional fa
tor two due to its two spin degrees of freedom. Thus the va
uum

energy inside the box of volume dL

y

L

z

per single polarisation mode is given by

E = L

y

L

z

1

X

n=1

Z

dk

y

dk

z

(2�)

2

1

2

r

�

n�

d

�

2

+ k

2

y

+ k

2

z

: (3.60)

To simplify the 
al
ulations, we 
onsider a 1+1 dimensional system of two plates separated

by the distan
e d. Then the energy density � = E=d of a massless �eld per polarisation mode

inside the plates is

�(d) =

�

2d

2

1

X

n=1

n : (3.61)

Next we introdu
e a 
uto� fun
tion f(a) = exp(�an�=d) whi
h suppresses the high-energy

modes,

�(d)! �(a; d) =

�

2d

2

1

X

n=1

ne

�an�=d

: (3.62)

This pro
edure is 
alled regularisation: For a > 0, we obtain a well-de�ned mathemati
al sum

whi
h we 
an manipulate following the usual rules of analysis, while we re
over for a! 0 the

original divergent sum. We have 
hosen as argument of the exponential an�=d, be
ause the

physi
ally relevant quantities are the energy levels !

n

= n�=d of the system. Now we 
an

evaluate the regularised sum, rewriting it as a geometri
al sum,

�(a; d) =

�

2d

2

1

X

n=1

ne

�an�=d

= �

1

2d

�

�a

1

X

n=0

e

�an�=d

(3.63a)

= �

1

2d

�

�a

1

1� e

�a�=d

=

�

2d

2

e

�a�=d

(1� e

�a�=d

)

2

: (3.63b)

Then we use e

x

(1� e

�x

)

2

= 4 sinh

2

(x=2) and expand �(a; d) for small a in a Laurent series,

�(a; d) =

�

8d

2

1

sinh

2

(a�=2d)

=

1

2�a

2

�

�

24d

2

+O(a

2

d

�4

) : (3.64)
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Note that we isolated thereby the divergen
e into a term whi
h does not depend on the

distan
e d of the plates. Thus the divergen
e 
an
els in the di�eren
e of the va
uum energy

with and without plates,

�

Cas

(d) � lim

a!0

�

�(a; d) � �(a; d!1)

�

= �

�

24d

2

: (3.65)

This �nal step in order to obtain a �nite result is 
alled renormalisation. One 
an verify

that the result is not only independent of the 
uto� parameter a, but also of the shape of

a reasonable

2


uto� fun
tion f(a). In 
ontrast, the a dependent terms in Eq. (3.64) may

depend on the form of f(a).

The quantity measured in a
tual experiments is the for
e F with whi
h the plates attra
t

(or repel) ea
h other. This for
e is given by

� F =

�E

�d

=

�(d�

Cas

)

�d

=

�

24d

2

: (3.66)

Thus two parallel plates attra
t ea
h other. The experimentally relevant 
ase of ele
tromag-

neti
 waves between two parallel plates in 3+1 dimensions 
an be 
al
ulated analogously. The

experimental 
on�rmation of the Casimir e�e
t has been a
hieved only in the 1990s, with a

pre
ision on the 1% level.

How 
an we understand that the Casimir for
e is independent on the details of the regu-

larisation pro
edure? Let us 
ompare the impa
t of the two plates on modes with di�erent

wave-number k = 2�=�: In a typi
al experimental set-up, the plates are separated by a dis-

tan
e of the order d � 1mm and thus k

0

� 2�=d �meV. The plates eliminate all low-energy

modes with k < k

0

between them, while the modes with k > k

0

attain a dis
rete spe
trum.

However, for k

n

� k

0

, the spa
ing between the modes be
omes negligible and experimentally

one 
annot distinguish the dis
rete spe
trum from a 
ontinuous one. In parti
ular, we 
an

approximate the sum over the dis
rete energies by an integral and the 
ontributions of modes

with k � k

0

with and without plates 
an
el 
al
ulating the energy di�eren
e. Sin
e the main


ontribution to the Casimir energy 
omes from 
utting o� modes with k

<

�

2�=d �meV, we


on
lude that the Casimir energy is an IR e�e
t. Therefore the details of the UV regular-

isation should not in
uen
e the result and any reasonable 
uto� fun
tion that makes the

mathemati
al manipulations (3.63a-3.64) well-de�ned should lead to the same result.

Summary

The ex
hange of time-like quanta with zero energy between two stati
 sour
es leads to the

Yukawa potential. The 
orresponding for
e mediated by a s
alar �eld is attra
tive. The Feyn-

man propagator obtained by the m

2

� i" pres
ription is the unique Green fun
tion whi
h 
an

be analyti
ally 
ontinued to an Eu
lidean Green fun
tion. It propagates parti
les (with pos-

itive frequen
ies) forward in time, while anti-parti
les (with negative frequen
ies) propagate

ba
kward in time. While these two 
ontributions add up in the s
alar Feynman propaga-

tor, they 
an
el in the 
ommutator of �eld-operators at spa
e-like distan
es, as required by


ausality. Dis
onne
ted n-point Green fun
tions are generated by the fun
tional Z[J ℄, while

2

Reasonable means that f(a) is normalised, f(0) = 1, and that all its derivatives vanish for large a,

lim

a!1

f

(n)

(a) = 0.
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iW [J ℄ = lnZ[J ℄ generates 
onne
ted Green fun
tions. Wi
k's theorem says that a n-point

fun
tion 
an be obtained as the permutation of produ
ts of 2-point fun
tions. The Casimir

e�e
t shows that the zero-point energies of quantum �elds have real, measurable 
onsequen
es.

Further reading

The quantisation of free �elds using both 
anoni
al quantisation and the path integral ap-

proa
h is dis
ussed extensively by [GR08℄.
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alar �eld with ��

4

intera
tion

We know from quantum me
hani
s that adding an anharmoni
 term to an os
illator for
es

us to use either perturbative or numeri
al methods. The same happens in �eld theory: No

analyti
 solution for a realisti
 intera
ting theory is at present known in n = 4 spa
e-time

dimensions. Therefore we develop in this 
hapter a perturbative method to evaluate the

generating fun
tionals Z[J ℄ and W [J ℄. We 
ontinue to work with the simplest 
ase of a

single real s
alar �eld and 
hoose as intera
tion a ��

4

term. Then the 
oupling 
onstant � is

dimensionless in the for us interesting 
ase n = 4. If � is small enough, we may hope that a

perturbative series expansion in � provides a useful approximation s
heme. As motivation, we

note that a s
alar �eld with ��

4

intera
tion 
an not only model a wide range of phenomena

in statisti
al physi
s but des
ribes also the Higgs �eld of the SM and its self-intera
tions.

4.1. Perturbation theory for intera
ting �elds

General formalism The Lagrange density L in the fun
tional Z[J ℄ for the s
alar �eld 
on-

sidered up to now was at most quadrati
 in the �elds and its derivatives. On one hand, this

allowed us to evaluate the path integral, while on the other hand this means that the �eld

has no intera
tions: Two wave pa
kets des
ribed by the free propagator just pass ea
h other

without intera
tion, as the superposition prin
iple pres
ribes. As next step we add therefore

an intera
tion term L

I

to the free Lagrangian L

0

, i.e. we set L = L

0

+ L

I

. Then the

generating fun
tional Z[J ℄ for an intera
ting real s
alar �eld � be
omes

Z[J ℄ =

Z

D� exp i

Z

d

4

x (L

0

+L

I

+ J�) ; (4.1)

while we denote the free fun
tionals we 
onsidered so far from now on as Z

0

[J ℄ and W

0

[J ℄.

Starting from the full generating fun
tional Z[J ℄ we 
an de�ne exa
t Green fun
tions whi
h

we denote by boldfa
e letters: For instan
e, the exa
t 2-point fun
tion or propagator is given

analogous to Eq. (3.45) by

G(x

1

; x

2

) =

1

i

2

Æ

2

Z[J ℄

ÆJ(x

1

)ÆJ(x

2

)

�

�

�

�

J=0

=

Z

D� �(x

1

)�(x

2

)e

i

R

d

4

x [L

0

+L

I

℄

: (4.2)

In general, we are not able to 
al
ulate these exa
t Green fun
tions, and we will apply therefore

perturbation theory. We assume that the intera
tion term L

I

is a polynomial P(�) of degree

� 3 in the �eld � and 
ontains an expansion parameter � whi
h is small in the 
onsidered

kinemati
 regime, L

I

= �P(�) with �� 1. This suggests to expand the intera
tion term,

exp i

Z

d

4

xL

I

(�) = 1 + i�

Z

d

4

xP(�(x)) +

(i�)

2

2!

Z

d

4

x

1

d

4

x

2

P(�(x

1

))P(�(x

2

)) + : : : (4.3)

Sin
e

i�(x)e

i

R

d

4

x

0

(L

0

+J�)

=

Æ

ÆJ(x)

e

i

R

d

4

x

0

(L

0

+J�)

; (4.4)
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4

intera
tion

we 
an perform the repla
ement

L

I

(�(x))! L

I

�

1

i

Æ

ÆJ(x)

�

: (4.5)

Then the intera
tion L

I

does not depend longer on � and 
an be pulled out of the fun
tional

integral,

Z[J ℄ = exp i

Z

d

4

xL

I

�

1

i

Æ

ÆJ(x)

�

Z

D� exp i

Z

d

4

x (L

0

+ J�) (4.6a)

= exp i

Z

d

4

xL

I

�

1

i

Æ

ÆJ(x)

�

Z

0

[J ℄ = exp i

Z

d

4

xL

I

�

1

i

Æ

ÆJ(x)

�

e

iW

0

[J℄

: (4.6b)

The solution of the free fun
tionals Z

0

and W

0

was given in Eq. (3.19) as

Z

0

[J ℄ = Z

0

[0℄ exp

�

�

i

2

Z

d

4

xd

4

x

0

J(x)�

F

(x� x

0

)J(x

0

)

�

= Z

0

[0℄

1

X

n=0

i

n

n!

W

n

0

: (4.7)

Perturbation theory 
onsists in a double expansion of the two exponentials in Z[J ℄: One in

the 
oupling 
onstant � and one in the number of external sour
es J . The latter is �xed by

the number of external parti
les in a s
attering pro
ess, while the former is 
hosen a

ording

to the desired pre
ision of the 
al
ulation.

Choosing the intera
tion term Let us re
all from our dis
ussion of the free Lagrangian the

physi
al requirements we should impose on the Lagrangian: Ea
h term should be a Lorentz

s
alar whi
h is lo
al in the �elds. The 
orresponding Hamiltonian has to be bounded from

below, stable against small perturbations and real. These 
onditions assure that the va
uum

in the absen
e of external sour
es is stable.

Additional restri
tions follow from a surprisingly simple argument employing dimensional

analysis: Using natural units, ~ = 
 = 1, the dimension of all physi
al quantities 
an be

expressed as powers of one basi
 unit whi
h we 
hoose as mass m. Then we use that the

a
tion has dimension zero, [S℄ = m

0

, and thus the Lagrangian [L ℄ = m

4

in four spa
e-time

dimensions. We 
onsider next the free Lagrangian: From the kineti
 term, we 
on
lude that

the dimension of a s
alar �eld is [�℄ = m

1

. Thus simple dimensional analysis shows that the

term m

2

in front of �

2

has the interpretation of a mass squared. Furthermore, we 
an order

possible self-
ouplings of a s
alar �eld a

ording to their dimension as

L

I

= g

3

M�

3

+ g

4

�

4

+

g

5

M

�

5

+ : : : ; (4.8)

where the 
oupling 
onstants g

i

are dimensionless and we introdu
ed the mass s
ale M to

ensure [L ℄ = m

4

. We 
all �

d

an operator of dimension d. Similar as in the 
ase of the Fermi


onstant, G

F

=

p

2g

2

=(8m

2

W

), the s
ale M 
ould be 
onne
ted to the ex
hange of a heavy

parti
le.

Let us now estimate by dimensional analysis whi
h energy s
aling of the intera
tion prob-

ability we expe
t for the di�erent 
oupling terms in L

I

. At lowest order perturbation the-

ory, the intera
tion probability is dW / jL

I

j

2

. Hen
e the intera
tion probability s
ales as

/ (g

d

=M

d�4

)

2

. Now we 
onsider the ultra-relativisti
 limit, so that we 
an negle
t the mass

m of the s
alar parti
le 
ompared to the 
enter-of-mass (
ms) energy

p

s. A probability has
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to be dimensionless, and for s� m

2

the only remaining dimensionfull variable that 
an enter

the total intera
tion probability W is s. Thus W has to s
ale as g

2

d

(s=M

2

)

d�4

in the limit

s � m

2

. Let us now distinguish the two ranges m

2

� s � M

2

and s � M

2

. In the latter


ase, the intera
tion terms with d > 4 
ontain the large fa
tors (

p

s=M))

d�4

� 1 and pertur-

bation theory be
omes thus unreliable. In 
ontrast, these terms are smaller than one below

the s
ale M and thus suppressed relative to the operators with dimension d � 4. Therefore

we negle
t in a �rst approa
h all operators with dimension d � 5. Simplifying further L

I

, we

want to in
lude only one intera
tion term. In this 
ase, a �

3

term would lead to an unstable

va
uum. Therefore our 
hoi
e for the s
alar self-intera
tion is L

I

= ���

4

=4!, where the

fa
tor 1=4! was added for later 
onvenien
e. If this 
hoi
e of intera
tion is realised in Nature

for a spe
i�
 parti
le has to be de
ided by experiment.

4.2. Green fun
tions for the ��

4

theory

We start now with the perturbative evaluation of Eq. (4.6a) for a ��

4

=4! intera
tion. From

Z[J ℄ =

�

1�

i�

4!

Z

d

4

x

Æ

4

i

4

ÆJ(x)

4

+ : : :

�

Z

0

[J ℄ = Z

0

[J ℄�

i�

4!

Z

d

4

x

Æ

4

Z

0

[J ℄

ÆJ(x)

4

+ : : :

= Z

0

[J ℄

�

1 + �z

1

[J ℄ + �

2

z

2

[J ℄ + : : :

�

(4.9)

we see that we will generate a series of the type free Green fun
tions plus higher order


orre
tions in �. The 
al
ulation of the �rst-order 
orre
tion is very similar to the 
al
ulation

of the free four-point fun
tion, with the di�eren
e that now the four sour
es sit at the same

point. You should �nd in problem ?? as result

�

Æ

iÆJ(x)

�

4

exp(iW

0

[J ℄) =

"

3(i�

F

(0))

2

+ 6i�

F

(0)

�

Z

d

4

y�

F

(x� y)J(y)

�

2

+

�

Z

d

4

y�

F

(x� y)J(y)

�

4

#

exp(iW

0

[J ℄) : (4.10)

Next we introdu
e a graphi
al representation for the various terms in Eq. (4.10). Ea
h

Feynman propagator �

F

(x� y) is represented by

i�

F

(x� y) =

�

x

y

(4.11)

a sour
e term J(x) by

i

Z

d

4

x J(x) =

�

(4.12)

and an intera
tion vertex by

� i�

Z

d

4

x = � (4.13)

Ea
h sour
e and vertex has its own 
oordinates and an integration over all 
oordinates is

implied. In the 
ase of the �

4

intera
tion, a vertex 
onne
ts four lines. Using this notation

1

,

1

This graphi
al notation �rst introdu
ed by St�u
kelberg was made popular by Feynman. The graphs are

therefore often 
alled Feynman diagrams or Feynman graphs.
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we 
an express Z

1

as

Z

1

[J ℄ =

1

4!

0

�

3

�

+ 6

�

+

�

1

A

exp

�

1

2

�

�

: (4.14)

A graph 
onsists of lines and dots, where the latter may be verti
es or sour
es. We distinguish

internal and external lines: A line whi
h ends on both sides at a dot with at least two lines

atta
hed is 
alled internal; otherwise it is an external line. The three graphs 
ontained in

Z

1

[J ℄ di�er by the number of loops, i.e. by the number L of 
losed lines. A graph with

loop number L = 0 (as the third one in Z

1

[J ℄) is 
alled a tree graph, otherwise it is a loop

graph. An inspe
tion of the three graphs shows their loop number L is 
onne
ted to the

number n of lines and d of dots as L = n � d + 1. Expressing L via the number of verti
es

and sour
es, d = V + S, and the number of internal and external lines, n = I + E, we have

L = I+E�V �S+1. Sin
e ea
h external line 
omes with one sour
e, we 
an express therefore

the loop number also as L = I � V + 1, a formula whi
h is valid for all types of intera
tions.

Note also that the �rst and the se
ond graph 
ontained in Z

1

[J ℄ 
an be obtained from the

third one by joining two and one lines, respe
tively. There are six ways to join one line, and

three ways to join two lines. Thus the prefa
tors of the various graphs 
an be derived by

simple symmetry arguments.

Knowing Z

1

[J ℄, we 
an derive dis
onne
ted Green fun
tions valid at O(�) by performing

fun
tional derivatives,

G

(n)

(x

1

; : : : ; x

n

) =

1

i

n

Æ

n

ÆJ(x

1

) � � � ÆJ(x

n

)

Z

0

[J ℄ (1 + �z

1

[J ℄)

�

�

�

�

J=0

: (4.15)

In the graphi
al notation, di�erentiating with respe
t to J(x) amounts to repla
e the open

dot denoting the sour
e i

R

d

4

yJ(y) by its position x,

1

i

Æ

ÆJ(x)

�

= x

�

x

(4.16)

Va
uum diagrams We 
all terms in the perturbative evaluation of Z[J ℄ whi
h 
ontain no

sour
e va
uum diagrams. Sin
e setting J = 0 eliminates all graphs 
ontaining at least one

sour
e, the va
uum diagrams 
orrespond to loops without external lines. The 
orresponding

Green fun
tions are the \zero-point" Green fun
tions G

(0)

.

Let us assume that the path integral measure D� is 
hosen su
h that the free va
uum

is normalised, Z

0

[0℄ = 1. Swit
hing on intera
tions will 
hange the free va
uum into the

true va
uum of the intera
ting theory. Therefore the true va
uum and thus Z[J ℄ are not

normalised. As example, we obtain setting J = 0 in our result (4.14) for Z[J ℄ at lowest order

perturbation theory,

G

(0)

� Z[0℄ = 1�

i�

8

Z

d

4

x(i�

F

(0))

2

6= 1 : (4.17)

Be
ause of N = exp ln(N ), a normalisation di�erent from one is equivalent to adding a


onstant term to the Lagrangian,

L ! L + ln(N )=(V T ) = L � � ; (4.18)
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where V T is the four-dimensional integration volume in the a
tion.

Sin
e va
uum diagrams only 
hange the va
uum energy density � but do not 
ontribute to

s
attering pro
esses, one often prefers to eliminate these diagrams multiplying Z[J ℄ with the

normalisation 
onstant

N

�1

= Z[0℄ =

Z

D� e

iS

: (4.19)

Thus one uses the normalised generating fun
tional

e

Z[J ℄ � NZ[J ℄ = Z[J ℄=Z[0℄ whi
h 
or-

responds to a va
uum with zero energy density �. We now show that this normalisation

eliminates all va
uum graphs. Expanding the numerator and denominator of

e

Z[J ℄ up to

O(�), we have at lowest order perturbation theory

e

Z[J ℄ =

Z[J ℄

Z[0℄

=

1 + �z

1

[J ℄ +O(�

2

)

1 + �z

1

[0℄ +O(�

2

)

Z

0

[J ℄ = f1 + �(z

1

[J ℄� z

1

[0℄)g Z

0

[J ℄ +O(�

2

) : (4.20)

Thus dividing Z[J ℄ by the sour
e-free fun
tional subtra
ts indeed the va
uum graph O(�).

It be
omes obvious that this pro
edure works at any order perturbation theory, if we look at

the generating fun
tional for 
onne
ted graphs, W [J ℄. As dividing Z[J ℄ by the sour
e-free

fun
tional Z[0℄ 
orresponds to

i

f

W [J ℄ = ln

e

Z[J ℄ = lnZ[J ℄� lnZ[0℄ ; (4.21)

it is 
lear that this pro
edure eliminates indeed all va
uum graphs.

2-point fun
tions We start by taking one derivative of the normalised generating fun
tional,

1

i

Æ

ÆJ(x

1

)

�

1 +

1

4!

�

6

�

+

�

��

exp

�

1

2

�

�

= (4.22a)

=

�

1

4!

�

6 � 2

�

+ 4

�

�

+

�

1 +

1

4!

�

6

�

+

�

��

�

�

� exp

�

1

2

	

�

= (4.22b)

=

"




+

1

4!

 

12

�

+ 4

�

+ 6




Æ

+

�

�

!#

exp

�

1

2

�

�

: (4.22
)

Every term in this expression 
ontains at least one sour
e J , and the one-point fun
tion

G

(1)

(x) vanishes therefore. If we pro
eed to the two-point fun
tion G

(2)

(x

1

; x

2

), we have to

49



4. S
alar �eld with ��

4

intera
tion

di�erentiate only those terms with one sour
e,

1

i

2

Æ

2

ÆJ(x

1

)ÆJ(x

2

)

e

Z[J ℄ =

=

1

i

Æ

ÆJ(x

2

)

"

�

+

1

4!

 

12

�

+

vanishing

terms for

J = 0

!#

exp

�

1

2

�

�

=

�

�

+

1

2

�

�

exp

�

1

2

�

�

: (4.23)

Setting then the sour
es J to zero, the exponential fa
tor be
omes one. Converting the

graphi
al formula ba
k into standard notation, we �nd the 2-point fun
tion G

(2)

(x

1

; x

2

) at

order O(�) as the sum of the free 2-point fun
tion G

(2)

0

(x

1

; x

2

) and a 
orre
tion term,

G

(2)

(x

1

; x

2

) = G

(2)

0

(x

1

; x

2

)�

i�

2

Z

d

4

x i�

F

(x

1

� x)i�

F

(x� x)i�

F

(x� x

2

) : (4.24)

This 
orre
tion is 
alled the self-energy �(x

1

; x

2

) of the s
alar parti
le. Note that the prefa
-

tors 
ombine to 6 � 2=4! = 1=2, so that there appears an extra fa
tor 1/2. Su
h fa
tors are


alled symmetry fa
tors. They appear be
ause we in
luded a fa
tor 1=4! in L

I

to 
ompensate

for the 4! permutations of four sour
es. This 
an
ellation works in most diagrams however

only partially, and a non-zero prefa
tor is left over.

Example 4.1: Let us illustrate how one 
an determine the symmetry fa
tor of more 
ompli
ated

diagrams. As �rst step, we express the Green fun
tion that 
orresponds to a given Feynman diagram

as the time-ordered produ
t of �elds. Consider e.g. the so-
alled \sunrise diagram", whi
h is a se
ond

order diagram, 
orresponding to the term

�

x

1

x

2

y

1

y

2

=

1

2!

�

�i�

4!

�

2

Z

d

4

y

1

d

4

y

2

h0jT [�(x

1

)�(x

2

)�

4

(y

1

)�

4

(y

2

)℄j0i+ (y

1

$ y

2

)

in the perturbative expansion. The ex
hange graph y

1

$ y

2

is identi
al to the original one, 
an
elling

the fa
tor 1=2! from the Taylor expansion. This 
an
ellation takes pla
e in general: The 1=n! fa
tor

from the Taylor expansion of a n.th order 
ontains n intera
tion points whi
h leads to n! permutations.

Next 
onsider how the �elds � are 
ombined in T [� � � ℄: The internal points y

1

and y

2

denote intera
tion

points, whi
h have four �elds atta
hed. In 
ontrast, the external points x

1

and x

2


arry ea
h only one

�eld. We have to 
ount the number of possible ways to 
ombine the �elds in the time-ordered produ
t

into the �ve propagators of the graph. As shorthand notation, we mark a possible 
ombination as

�(x

1

)�(y

1

). We have four possibilities to 
ombine �(x

1

) with �(y

1

), �(x

1

)�(y

1

). Similarly, there are

four possibilities for �(x

2

)�(y

2

). The remaining six �elds 
an be 
ombined in 3! ways into pairs, as

e.g. in �(y

1

)�(y

1

)�(y

1

)�(y

2

)�(y

2

)�(y

2

). Thus the symmetry fa
tor of this diagram is given by

S =

�

1

2!

� 2!

��

1

4!

�

2

(4� 4� 3!) =

1

3!

:
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Figure 4.1.: Graphs 
ontributing to the dis
onne
ted four-point fun
tion G(x

1

; x

2

; x

3

; x

4

).

4-point fun
tions The dis
onne
ted 4-point fun
tion G(x

1

; x

2

; x

3

; x

4

) is shown graphi
ally

in Fig. 4.1. The �rst three graphs 
orrespond to the free 4-point fun
tion from (3.44), the

next six graphs are the 
orresponding O(�) 
orre
tions. Finally, the last diagram 
orresponds

to the 
onne
ted 4-point fun
tion G(x

1

; x

2

; x

3

; x

4

). Next we want to derive G(x

1

; x

2

; x

3

; x

4

)

from its generating fun
tional

f

W [J ℄. We insert

e

Z[J ℄ = exp(i

f

W [J ℄) into

i

f

W [J ℄ = ln exp

�

1

2

�

�

+ ln

�

1 +

1

4!

�

6

�

+

�

��

+O(�

2

)

=

1

2

�

+

1

4!

�

6

�

+

�

�

+O(�

2

) ; (4.25)

where we expanded the logarithm, ln(1 + x) ' x. Taking four derivatives with respe
t to J ,

only the last term survives and we obtain as 
onne
ted Green fun
tion

G(x

1

; x

2

; x

3

; x

4

) = �i�

Z

d

4

x i�

F

(x

1

� x)i�

F

(x

2

� x)i�

F

(x

3

� x)i�

F

(x

4

� x) : (4.26)

Feynman rules for the ��

4

theory We 
an summarise our results in a few simple rules

whi
h allow us to write down Green fun
tions dire
tly, without the need to derive them from

their generating fun
tional. The Feynman rules for 
onne
ted Green fun
tions G(x

1

; : : : ; x

n

)

in 
oordinate spa
e are as follows:

1. Draw all topologi
ally di�erent diagrams for the 
hosen order O(�

n

) and number of

external 
oordinates or parti
les.

2. To ea
h line 
onne
ting the points x and x

0

we asso
iate a propagator i�

F

(x� x

0

).

3. Ea
h vertex has a fa
tor �i� and 
onne
ts n lines for a ��

n

intera
tion.
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4. Integrate over all intermediate points.

5. Determine and add the symmetry fa
tor.

Translation invarian
e of Minkowski spa
e implies that the propagators depend like

exp(�ikx) on the position of the intera
tion point. Therefore the spa
e-time integrations

result in four-momentum 
onservation at ea
h vertex,

R

d

4

x e

�i

P

j

k

j

x

= (2�)

4

Æ(

P

j

k

j

). In

the 
ase of tree-level diagrams, all the four-momentum integrals of the I = V � 1 propaga-

tors will be eliminated by delta fun
tions, leaving over one delta fun
tion expressing overall

momentum 
onservation. In 
ontrast, L integrations over loop momenta

R

d

4

k=(2�)

4

remain

in the 
ase of loop diagrams. A

ounting for the result of the spa
e-time integrations, we


an give the Feynman rules dire
tly in momentum spa
e. De�ning the Fourier transformed

n-point fun
tion as

G(k

1

; : : : ; k

n

) =

Z

n

Y

i=1

d

4

x

i

exp

�

i

X

i

k

i

x

i

�

G(x

1

; : : : ; x

n

) ; (4.27)

the Feynman rules for these Green fun
tions have the following 
hanges:

2. To ea
h line asso
iate a propagator i�

F

(k) = i=(k

2

�m

2

+ i").

3. Fix the external momenta and impose 4-momentum 
onservation at ea
h vertex.

4. Integrate over all un
onstrained momenta k with

R

d

4

k=(2�)

4

. The number of indepen-

dent momenta we have to integrate over equals the loop number L of the graph.

We will see in the next se
tion for G

(2)

(p) as example how these rules work out.

4.3. Loop diagrams

In the Fourier transformed Green fun
tions G(k

1

; : : : ; k

n

) of tree-level graphs all integrals

about the propagator momenta have been 
an
elled by delta fun
tions, and G(k

1

; : : : ; k

n

)

is a mathemati
ally well-de�ned distribution. In 
ontrast, the integration over momenta in

loop graphs are often divergent, requiring to regularise and to renormalise these expressions.

Aim of this se
tion is to illustrate this pro
edure. We 
on
entrate �rst on the te
hni
alities

involved in the evaluation of these loop diagrams, before we interpret the results. We will have

time to digest these examples, before we will 
ome ba
k to the problem of renormalisation in


hapter 11. The basi
 steps in the evaluation of simple Feynman integrals are summarised in

the appendix 4.A.

4.3.1. Self-energy

We 
onsider �rst the only one-loop diagram 
ontained in Z

1

[J ℄, the 2-point fun
tion of a

s
alar parti
le at O(�),

G

(2)

(x

1

; x

2

) = i�

F

(x

1

� x

2

)�

�

2

�

F

(0)

Z

d

4

x�

F

(x

1

� x)�

F

(x� x

2

) : (4.28)

The 
al
ulation of G

(2)

(x

1

; x

2

) 
onsists of three steps: First, we have to 
ombine its two

pie
es into a single, modi�ed propagator: As it stands, the expression seems to des
ribes
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the propagation of two modes, a free one plus one 
onsisting of the O(�) 
orre
tion, while

G

(2)

(x

1

; x

2

) should des
ribe the propagation of a single parti
le with properties modi�ed by

the self-intera
tions. Se
ond, we have to 
al
ulate the loop diagram i�

F

(0) whi
h will turn

out to be in�nite. Thus the �nal task is the question how we should interpret this result.

We start 
on
entrating on the 
orre
tion term, whi
h we 
all the self-energy �(x

1

; x

2

) of the

s
alar parti
le, and insert the Fourier representation of the two propagators into the integral,

�(x

1

; x

2

) = �

�

2

�

F

(0)

Z

d

4

x

d

4

p

(2�)

4

d

4

p

0

(2�)

4

e

�ip(x

1

�x)

p

2

�m

2

+ i"

e

�ip

0

(x�x

2

)

p

02

�m

2

+ i"

: (4.29)

The d

4

x integration results in (2�)

4

Æ(p� p

0

), then one of the momentum integrations 
an be

performed. Together this gives

�(x

1

� x

2

) = �

�

2

�

F

(0)

Z

d

4

p

(2�)

4

e

�ip(x

1

�x

2

)

(p

2

�m

2

+ i")

2

: (4.30)

Inserting also for the free Green fun
tion its Fourier representation, we arrive at

G

(2)

(x

1

� x

2

) =

Z

d

4

p

(2�)

4

e

�ip(x

1

�x

2

)

"

i

p

2

�m

2

+ i"

�

�

2

�

F

(0)

(p

2

�m

2

+ i")

2

#

: (4.31)

The Green fun
tion G

(2)

(p) in momentum spa
e is thus given by the expression in the square

bra
ket, whi
h we 
ould have written down immediately using the Feynman rules in momen-

tum spa
e. Next we fa
tor out one propagator,

G

(2)

(p) =

i

p

2

�m

2

+ i"

"

1 +

i�

2

�

F

(0)

p

2

�m

2

+ i"

#

: (4.32)

Assuming that perturbation theory is justi�ed, the se
ond term in the parenthesis should be

small. Thus [1 + �a℄ = [1� �a℄

�1

+O(�

2

), and we obtain

G

(2)

(p) =

i

p

2

�m

2

�

i�

2

�

F

(0) + i"

: (4.33)

The residue of the free propagator i=(p

2

�m

2

+i") de�nes the \bare" parti
le mass m at zero

order in �. Swit
hing on intera
tions, we 
ontinue to de�ne the physi
al (or renormalised)

mass m

phys

of the s
alar parti
le by the residue of G

(2)

(p). Thus at order �,

m

2

phys

= m

2

+ Æm

2

= m

2

+

i�

2

�

F

(0) : (4.34)

Hen
e intera
tions shift or \renormalise" the \bare" mass m used initially in the 
lassi
al

Lagrangian L . It is important to realise that su
h a renormalisation does not appertain to

QFTs but happens in any intera
ting theory. A familiar example in a 
lassi
al 
ontext is the

Debye s
reening of the ele
tri
 
harge in a plasma. As next step, we have to 
al
ulate (and

to interpret properly)

i�

F

(0) =

Z

d

4

k

(2�)

4

i

k

2

�m

2

+ i"

: (4.35)

Sin
e the mass 
orre
tion is Æm

2

= i��

F

(0)=2, the Feynman propagator at 
oin
ident points

�

F

(0) has to be purely imaginary. Otherwise the ��

4

theory would 
ontain no stable parti
les.
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Wi
k rotation The integrals appearing in loop graphs 
an be easier integrated, if one per-

forms a Wi
k rotation from Minkowski to Eu
lidean spa
e: Rotating the integration 
ontour

anti-
lo
kwise to �i1 : +i1 avoids both poles in the 
omplex k

0

plane and is thus admissible.

Introdu
ing as new integration variable ik

4

= k

0

, it follows

Z

1

�1

dk

0

1

k

2

�m

2

+ i"

=

Z

i1

�i1

dk

0

1

k

2

�m

2

+ i"

= i

Z

1

�1

dk

4

1

k

2

�m

2

+ i"

: (4.36)

We next 
ombine k and k

4

into a new four-ve
tor k

E

= (k; k

4

). Sin
e

k

2

= �(jkj

2

+ k

2

4

) = �k

2

E

(4.37)

we work now (apart from the overall sign) in an Eu
lidean spa
e. In parti
ular, the denom-

inator never vanishes and we 
an omit the i". Moreover, the integrand is now spheri
ally

symmetri
. Thus we have

i�

F

(0) =

Z

d

4

k

E

(2�)

4

1

k

2

E

+m

2

: (4.38)

As required by our interpretation Æm

2

= i�

F

(0), the propagator �

F

(0) is imaginary. Be
ause

the relative sign of the momenta and the mass term indi
ates if we work in the Eu
lidean

or Minkowski spa
e, we will omit the index E in the following. Introdu
ing furthermore

spheri
al 
oordinates, we see that �

F

(0) diverges quadrati
ally for large k,

�i�

F

(0) /

Z

�

0

dk k

3

1

k

2

+m

2

/ �

2

: (4.39)

Dimensional regularisation Using the integral representation

1

k

2

+m

2

=

Z

1

0

ds e

�s(k

2

+m

2

)

(4.40)

and inter
hanging the integrals, we 
an redu
e the momentum integral to a Gaussian integral.

Manipulations like inter
hanging the order of integrations or a 
hange of integration variables

in divergent expressions as Eq. (4.39) are however ambiguous. Before we 
an pro
eed, we

have to \regularise" therefore the integral, similar as we did introdu
ing a 
uto� fun
tion into

the expression of the zero-point energy.

We will use dimensional regularisation (DR), i.e. we will 
al
ulate integrals in d = 4 � 2"

dimensions where they are �nite. Then we �nd

i�

F

(0) =

Z

1

0

ds

Z

d

d

k

(2�)

d

e

�s(k

2

+m

2

)

=

1

(4�)

d=2

Z

1

0

ds s

�d=2

e

�sm

2

: (4.41)

The substitution x = sm

2

transforms the integral into one of the standard representations of

the Gamma fun
tion (see the appendix 4.A for some useful formula),

i�

F

(0) =

(m

2

)

d

2

�1

(4�)

d=2

�

�

1�

d

2

�

: (4.42)

This expression diverges for d = 2; 4; 6; : : :, but is as announ
ed �nite for d = 4�2" and small

". In the next step, we would like to expand the expression in a Laurent series, separating

pole terms in " and a �nite remainder.
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Appearan
e of a dimensionfull s
ale As the expression stands, we 
an not expand the

prefa
tor of the Gamma fun
tion, be
ause it is dimensionfull. In order to make the fa
tor

m

d�2

dimensionless, we should supply a new mass s
ale. More physi
ally, we 
an understand

the need for an additional dimensionfull s
ale by the requirement that the a
tion S =

R

d

d

xL

remains dimensionless if we deviate from d = 4 dimensions. From the kineti
 term, we dedu
e

that the s
alar �eld has the mass dimension [�℄ = d=2� 1. The intera
tion term implies then

that � a
quires the dimension [�℄ = 4�d. In order to retain a dimensionless 
oupling 
onstant,

we introdu
e therefore a mass � 
alled the renormalisation s
ale as follows,

S

I

=

Z

d

4

xL

I

= �

Z

d

4

x

�

4!

�

4

! ��

4�d

Z

d

d

x

�

4!

�

4

: (4.43)

Adding the fa
tor �

4�d

to our previous result, we obtain

��

4�d

i�

F

(0) = �

m

2

(4�)

2

�

4��

2

m

2

�

2�d=2

�(1� d=2) : (4.44)

Now we expand the dimensionless last two fa
tors in this expression around d = 4 using

Eq. (A.42) for the Gamma fun
tion,

�(1� d=2) = �(�1 + ") = �

1

"

� 1 + 
 +O(") (4.45)

and

a

"

= e

" ln a

= 1 + " ln a+O("

2

) : (4.46)

Note that we require the expansion of the prefa
tor of the Gamma fun
tion up to O("

2

)

be
ause of the pole term in (4.45). Thus the mass 
orre
tion is given by

��

4�d

i�

F

(0) / m

2

�

�

1

"

� 1 + 
 +O(")

� �

1 + " ln

�

4��

2

m

2

�

+O("

2

)

�

: (4.47)

or

Æm

2

=

i�

2

�

4�d

�

F

(0) =

�

2

m

2

(4�)

2

�

�

1

"

� 1 + 
 + ln

�

m

2

4��

2

�

+O(")

�

: (4.48)

This expansion has allowed us to separate the 
orre
tion into a divergent term / 1=" and a

�nite remainder. The latter 
ontains an analyti
 part, �1+
, and an non-analyti
 pie
e that

depends on the renormalisation s
ale, ln(m

2

=4��

2

). This result is typi
al for DR: First, all

divergen
es appear in the limit d ! 4 as poles of the Gamma fun
tion. Se
ond, the renor-

malisation s
ale � enters always via Eq. (4.46) in a logarithm. Thus the only dimensionfull

parameter whi
h 
an set the s
ale of the mass 
orre
tion Æm

2

is the mass of the parti
le in

the loop. In the 
ase of a theory with a single parti
le, the 
orre
tion must have therefore

the form Æm

2

/ m

2

using DR. You should 
ontrast this behaviour with the one using as

regularisation s
heme an Eu
lidean 
uto� �: Integrating up to momenta �� m, the parti
le

mass m 
an be negle
ted, and the 
orre
tion diverges as a power-law Æm

2

/ �

2

.

Let us now dis
uss in turn the three di�erent kind of terms present in Eq. (4.48). First, the

form of the divergent terms depends on the regularisation s
heme applied. However, in any

s
heme we 
an eliminate them using Eq. (4.34), requiring that the unobservable bare massm

2


ontains the same divergent terms with the opposite sign. Se
ond, the �nite analyti
 terms

depend also on the s
heme, sin
e we 
an always shift a �nite part from m

2

to Æm

2

. In order
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to spe
ify pre
isely Æm

2

we have to �x therefore a renormalisation s
heme , i.e. a set of rules

resolving these ambiguities. Finally, the �nite, non-analyti
 terms are important predi
tions,

whi
h are independent of the regularisation s
heme (apart from a res
aling of the arbitrary

parameter �). As we will see in 
hapter 9 su
h non-analyti
 terms are ne
essary that the

S-matrix is unitary, or in other words that the theory preserves probability.

4.3.2. Va
uum energy density

We 
an generate out of the self-energy diagram new one-loop graphs by adding or subtra
ting

two external lines. Subtra
ting two lines generates an one-loop graph without external lines

2

,

the \zero-point" Green fun
tion G

(0)

at order �

0

. One way to 
al
ulate this quantity is to

evaluate dire
tly Z

0

[0℄ using

DetA = exp lnDetA = expTr lnA (4.49)

what gives

Z

0

[0℄ = exp

�

�

1

2

Tr ln(��m

2

)

�

: (4.50)

We postpone the question how su
h an expression 
an be evaluated and use instead another

approa
h, re
y
ling our result for the self-energy. Va
uum diagrams are generated by the

fun
tional Z[J ℄ setting J = 0,

h0 + j0�i = Z

0

[0℄ =

Z

D� exp i

Z

d

4

x

�

1

2

�

�

��

�

��

1

2

m

2

�

2

�

: (4.51)

We saw in Eq. (3.57) that the zero-point energy is related to the propagator at 
oin
ident

points. Sin
e we suspe
t a 
onne
tion between va
uum diagrams and the zero-point energy,

we try to relate Z[0℄ and �

F

(0). Taking a derivative with respe
t to m

2

gives

�

�m

2

h0 + j0�i = �

i

2

Z

d

4

x h0 + j�(x)

2

j0�i = �

i

2

Z

d

4

x i�

F

(0)h0 + j0�i : (4.52)

The additional fa
tor h0 + j0�i = N

�1

on the RHS takes into a

ount that we de�ned the

Feynman propagator with respe
t to a normalised va
uum. Translation invarian
e implies

that h0 + j0�i does not depend on x. Thus we obtain

�

�m

2

lnh0 + j0�i = �

i

2

Z

d

4

x i�

F

(0) = �

i

2

V T i�

F

(0) (4.53)

with V T as the four-dimensional integration volume. Integrating and exponentiating the

resulting formal solution, we obtain

h0 + j0�i = exp

�

�

i

2

V T

Z

dm

2

i�

F

(0)

�

: (4.54)

Comparing this result to

h0 + j0�i = h0 + j exp (�iHT ) j0�i = exp (�i� V T ) ; (4.55)

2

Although G

(0)

is often represented as a 
losed loop, it has also no internal line; this is in agreement with

our general formula l = n� V + 1.
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we see that we should asso
iate

� =

1

2

Z

dm

2

i�

F

(0) (4.56)

with the energy density of the va
uum. On the other hand, we 
an 
onne
t � to the sour
e-free

generating fun
tionals as

� =

i lnZ[0℄

V T

=

�W [0℄

V T

; (4.57)

Thus the 
ontribution of quantum 
u
tuations to the energy density of the va
uum is given

by the sum of 
onne
ted va
uum graphs, in a

ordan
e with (4.21).

Next we evaluate (4.56) whi
h gives the 
ontribution of a free s
alar �eld to the va
uum

energy density. Using our result (4.42) for the propagator, i�

F

(0) = C(m

2

)

d=2�1

, we 
an

perform the integration over m

2

,

� = C

m

d

d

� �

0

=

m

d

(4�)

d=2

d

�

�

1�

d

2

�

� �

0

; (4.58)

where we introdu
ed the integration 
onstant �

0

.

The energy density given by Eq. (4.58) diverges for d = 2; 4; 6 : : : as 1=". We 
an make �

�nite and equal to the observed value �

�

, if we 
hoose �

0

as

�

0

= �

d�4

�

1

4

m

4

(4�)

2

1

"

� �

�

�

: (4.59)

The prefa
tor �

d�4

ensures again that the a
tion remains dimensionless also for d 6= 4.

Note that this implies that we should start o� with L � �

0

instead of L . Even if we

dismiss a non-zero va
uum energy in the 
lassi
al Lagrangian, it will appear automati
ally by

quantum 
orre
tions. More generally, every possible term that is not forbidden by a symmetry

in L will show up 
al
ulating loop 
orre
tions. We have seen that we 
an absorb the va
uum

energy density � into the normalisation of the path integral,

Z

D� e

�

R

d

4

x�

= N

Z

D� :

Therefore, one may wonder if � has a real physi
al meaning or 
ould be eliminated by a

simple rede�nition of the integration measure. The answer is no: First, we used our freedom

to de�ne the path integral measure setting Z

0

[0℄ = 1. Se
ond, � depends on the parameters

(masses, 
oupling 
onstants) of the 
onsidered theory, but the path integral measure should

be independent of the details of the Lagrangian we integrate.

Remark 4.1: Equivalen
e to the zero-point energy:

Performing the k

0

integral in Eq. (4.35) or using (3.28)

i�

F

(0) =

Z

d

3

k

(2�)

3

2!

k

=

Z

d

3

k

(2�)

3

2

p

m

2

+ k

2

(4.60)

and integrating then with respe
t to m

2

,

� =

1

2

Z

dm

2

i�

F

(0) =

1

2

Z

d

3

k

(2�)

3

p

m

2

+ k

2

; (4.61)
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shows that the present expression for the va
uum energy agrees with the sum over zero-point energy

evaluated in Eq. (3.58). However, the results for the unrenormalised � di�er: While Eq. (3.59) shows

that � / �

4

using a 
uto�, we have obtained � / m

4

in the 
ase of dimensional regularisation. Thus

in this s
heme a massless parti
le as the photon would give a zero 
ontribution to the 
osmologi
al


onstant. We will 
ome ba
k to this di�eren
e in 
hapter 25.

4.3.3. Vertex 
orre
tion

Feynman amplitude For our last example we add two external lines to the self-energy dia-

gram. The 
orresponding Green fun
tion 
an be used to des
ribe 2! 2 s
attering at O(�

2

).

A s
attering pro
ess 
orresponds however to a transition between an initial state at t = �1

and a �nal state at t = 1 whi
h 
ontain both real, on-shell parti
les. In order to obtain

s
attering amplitudes, we should therefore repla
e the propagators of external lines|whi
h

des
ribe virtual parti
les|by on-shell wave fun
tions. This rule will be derived later in 
hap-

ter 9.2. For the moment, we simply anti
ipate that we obtain the Feynman amplitude iA

des
ribing a s
attering pro
ess using the Feynman rules for momentum spa
e, but writing for

s
alar external parti
les simply the prefa
tor of a plane-wave without normalisation fa
tor, i.e.

simply \1". Moreover, we omit the delta fun
tion expressing the 
onservation of the external

momenta. Thus we add to the Feynman rules in momentum spa
e:

6. The Feynman amplitude iA des
ribing s
attering pro
esses is obtained omitting the

fa
tor (2�)

4

Æ(

P

k

k

i

�

P

f

k

f

) expressing the 
onservation of the external momenta, and

the propagators on external lines.

Determining the Feynman amplitude Instead of 
al
ulating the order �

2

term in the per-

turbative expansion of the generating fun
tional Z[J ℄ we use dire
tly the Feynman rules to

obtain the Feynman amplitude for this pro
ess. A

ording to these rules, the �rst steps in

the 
al
ulation of the Feynman amplitude are to draw all Feynman diagrams, to �nd the

symmetry fa
tor and to asso
iate then the 
orresponding mathemati
al expressions to the

graphi
al symbols.

We determine �rst the symmetry fa
tor, following the same pro
edure as in example 4.1.

In 
oordinate spa
e, we have to 
onne
t four external points (say x

1

; : : : ; x

4

) with the help of

two verti
es (say at x and y) whi
h 
ombine ea
h four lines. An example is shown here

x1 x3

x2 x4

x

y

Two additional diagrams are obtained 
onne
ting x

1

with x

2

or x

4

. In order to determine

the symmetry fa
tor, we 
onsider the expression for the four-point fun
tion 
orresponding to

the graph shown above,

1

2!

�

�i

�

4!

�

2

Z

d

4

xd

4

yh0jTf�(x

1

)�(x

2

)�(x

3

)�(x

4

)�

4

(x)�

4

(y)gj0i + (x$ y) ; (4.62)

58



4.3. Loop diagrams

k2 k3

k1 k4 k1 k3

k2 k4

k1 k4

k2 k3

iAs iAt iAu

Figure 4.2.: Three graphs 
ontributing to �(k

1

)�(k

2

)! �(k

3

)�(k

4

) at order �

2

.

and 
ount the number of possible 
ontra
tions: We 
an 
onne
t �(x

1

) with ea
h one of the

four �(x), and then �(x

3

) with one of the three remaining �(x). This gives 4� 3 possibilities.

Another 4�3 possibilities 
ome by the same reasoning from the upper part of the graph. The

remaining pairs �

2

(x) and �

2

(y) 
an be 
ombined in two possibilities. Finally, the fa
tor 1=2!

from the Taylor expansion is 
an
elled by the ex
hange graph. Thus the symmetry fa
tor is

S =

1

2!

2!

�

4� 3

4!

�

2

2 =

1

2

: (4.63)

Next we asso
iate mathemati
al expressions to the symbols of the graphs in momentum

spa
e: We repla
e internal propagators by i�(k), external lines by 1 and verti
es by �i�.

Imposing four-momentum 
onservation at the two verti
es leaves one free loop momentum,

whi
h we 
all p. The momentum of the other propagator is then �xed to p � q, where

q

2

= s = (p

1

+ p

2

)

2

, q

2

= t = (p

1

� p

3

)

2

, and q

2

= u = (p

1

� p

4

)

2

for the three graphs shown

in Fig. 4.2. Thus the Feynman amplitudes in n = 4 are at order O(�

2

)

iA

(2)

q

=

1

2

�

2

Z

d

4

p

(2�)

4

1

[p

2

�m

2

+ i"℄

1

[(p� q)

2

�m

2

+ i"℄

: (4.64)

The squared 
ms energy s and the two variables des
ribing the momentum transfer t and u

are 
alled Mandelstam variables. For 2 ! 2 s
attering, they are 
onne
ted by s + t + u =

m

2

1

+m

2

2

+m

2

3

+m

2

4

, see problem 4.??. A

ording to the value of q

2

one 
alls the diagrams

the s, t and u 
hannel.

Performing again a simple 
ounting of the powers of loop momenta, we �nd that the

amplitude is logarithmi
ally divergent,

A

(2)

q

/

Z

d

4

p

p

4

/ ln(�) : (4.65)

If we 
onsider the in�nite number of one-loop graphs 
hara
terised by n = V � 0, then we

see that adding two external lines in
reases the number of propagators in the loop by one.

As a result, the 
onvergen
e of the loop integral improves from a quarti
 divergen
e (va
uum

energy), over a quadrati
 divergen
e (self-energy energy) to a logarithmi
 divergen
e for the

vertex 
orre
tion. Adding two or more external lines to the vertex 
orre
tion would therefore

produ
e a �nite diagram. At one-loop, the ��

4

theory 
ontains thus only three divergent

Feynman graphs.
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Cal
ulating the loop integral The path to be followed in the evaluation of simple loop

integrals as (4.64) 
an be sket
hed s
hemati
ally as follows: Regularise the integral (and

add a mass s
ale if you use DR). Combine then the denominators, and shift the integration

variable to eliminate linear terms in the denominator by 
ompleting the square. Performing

the same shift of variables in the numerator, linear terms 
an be dropped as they vanish after

integration. Finally, Wi
k rotate the integrand, and redu
e the integral to a known one by a

suitable variable substitution. We do the last steps on
e in the appendix 4.A where we derive

a list of useful Feynman integrals whi
h we simply look up in the future.

We start by rewriting the integral for d = 4� 2" dimensions as

iA

(2)

q

=

1

2

�

2

(�

2

)

4�d

Z

d

d

p

(2�)

d

1

D

; (4.66)

where we introdu
ed also the short-
ut D for the denominator in the integrand. Next we use

1

ab

=

Z

1

0

dz

[az + b(1� z)℄

2

(4.67)

to 
ombine the two denominators, setting a = p

2

�m

2

and b = (p� q)

2

�m

2

,

D � az + b(1� z) = p

2

�m

2

� 2pq(1� z) + q

2

(1� z) : (4.68)

Then we eliminate the term linear in p substituting p

02

= [p� q(1� z)℄

2

,

D = p

02

�m

2

+ q

2

z(1� z) : (4.69)

Sin
e d

d

p = d

d

p

0

, we 
an drop the primes and �nd

iA

(2)

q

=

1

2

�

2

(�

2

)

4�d

Z

1

0

dz

Z

d

d

p

(2�)

d

1

[p

2

�m

2

+ q

2

z(1� z)℄

2

: (4.70)

Performing a Wi
k rotation requires that q

2

z(1 � z) < m

2

for all z 2 [0 : 1℄, or q

2

< 4m

2

.

The integral is of the type I(!; 2) 
al
ulated in the appendix and equals

I(!; 2) = i

1

(4�)

!

�(2� !)

�(2)

1

[m

2

� q

2

z(1 � z)℄

2�!

: (4.71)

Inserting the result into the Feynman amplitude gives

A

(2)

q

=

1

2

�

2

(�

2

)

4�d

�(2� d=2)

(4�)

d=2

Z

1

0

dz [m

2

� q

2

z(1� z)℄

d=2�2

(4.72a)

=

�

2

32�

2

(�

2

)

2�d=2

�(2� d=2)

Z

1

0

dz

�

m

2

� q

2

z(1 � z)

4��

2

| {z }

f

�

d

2

�2

: (4.72b)

In the last step, we made the fun
tion f dimensionless. Now we take the limit " = 2�d=2! 0,

expanding both the Gamma fun
tion, �(2� d=2) = �(") = 1=" � 
 +O("), and f

�"

. From

�

2

32�

2

�

2"

�

1

"

� 
 +O(")

��

1� "

Z

1

0

dz ln f +O("

2

)

�

(4.73)
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4.3. Loop diagrams

we see that all diagrams give the same divergent part, while we have to repla
e q

2

by the

value fs; t; ug appropriate for the three diagrams,

A = A

(1)

+A

(2)

s

+A

(2)

t

+A

(2)

u

+O(�

3

) (4.74a)

= ���

"

+

3�

2

�

2"

32�

2

"

�

�

2

�

2"

32�

2

�

3
 + F (s;m; �) + F (t;m; �) + F (u;m; �)

�

; (4.74b)

with

F (q

2

;m; �) =

Z

1

0

dz ln

�

m

2

� q

2

z(1� z)

4��

2

�

: (4.75)

Note that t and u are in the physi
al region negative and thus the 
ondition q

2

< 4m

2

is

always satis�ed for these two diagrams, 
f. with problem 4.??. By 
ontrast, for the s 
hannel

diagram the relation q

2

= s > 4m

2

holds: In this 
ase, we have to 
ontinue analyti
ally the

result (4.75) into the physi
al region. We will postpone this task to 
hapter 9 and note for the

moment only that thereby the argument of the logarithm in (4.75) 
hanges sign. Additionally,

an imaginary part of the s
attering amplitude is generated.

4.3.4. Basi
 idea of renormalisation

The regularisation of loop integrals has introdu
ed as a new parameter the renormalisation

s
ale �. As we perform perturbation theory at order �

n

, we have to 
onne
t the parameters

fm

n

; �

n

; �

n

g of the trun
ated theory with the physi
al ones of the full theory. This pro-


ess is 
alled renormalisation and will repla
e the undetermined parameter � by a physi
al

momentum s
ale relevant for the 
onsidered pro
ess.

Renormalisation of the 
oupling Let us try to 
onne
t the amplitude iA to a physi
al

measurement. We assume that experimentalists measured ��! �� s
attering. It is suÆ
ient

that they provide us with a single value, e.g. with the value of the di�erential 
ross se
tion

d�=d
 at zero-momentum transfer 
lose to threshold s = 4m

2

. Then the fun
tion F (s;m; �)

is given by

F (4m

2

;m; �) = C�

2

ln

�

4m

2

�

2

�

+ 
onst ; (4.76)

while it be
omes for s� m

2

F (s;m; �) = C�

2

ln

�

s

�

2

�

+ 
onst : (4.77)

Subtra
ting the in�nite parts (and the 
onstant term) from A, we obtain for s; t; u� m

2

,

A = ��� C�

2

�

ln(s=�

2

) + ln(t=�

2

) + ln(u=�

2

)

�

+O(�

3

) � ��� C�

2

L(s=�

2

) ; (4.78)

where we introdu
ed also the sloppy notation L for the three log terms in the square bra
ket.

This expression for A is �nite but still arbitrary sin
e it 
ontains �.

We use now the experimental measurement at the s
ale s = 4m

2

to 
onne
t via

A = ��� C�

2

L(4m

2

=�

2

) (4.79)

the measured value �

phys

of the 
oupling to our 
al
ulation,

� �

phys

= ��� C�

2

L(4m

2

=�

2

) +O(�

3

) : (4.80)
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Here we indi
ated also that our perturbative 
al
ulation is only valid up to O(�

3

) terms. Now

we solve for �,

�� = ��

phys

+ C�

2

L(4m

2

=�

2

) +O(�

3

) (4.81a)

= ��

phys

+ C�

2

phys

L(4m

2

=�

2

) +O(�

3

phys

) : (4.81b)

In the se
ond line, we 
ould repla
e �

2

by �

2

phys

, be
ause their di�eren
e is of O(�

3

). Next

we insert � ba
k into the matrix element A for general s and repla
e then again �

2

by �

2

phys

,

A = ��� C�

2

L(s=�

2

) +O(�

3

) (4.82a)

= ��

phys

+ C�

2

phys

L(4m

2

=�

2

)� C�

2

phys

L(s=�

2

) +O(�

3

phys

) (4.82b)

= ��

phys

� C�

2

phys

L(s=4m

2

) +O(�

3

phys

) : (4.82
)

Combining the log's, the s
ale � has 
an
elled and we �nd

A = ��

phys

�

�

2

phys

32�

2

�

ln(s=4m

2

) + ln(t=4m

2

) + ln(u=4m

2

)

�

+O(�

3

phys

) : (4.83)

Thus the amplitude is �nite and depends only on the measured value �

phys

of the 
oupling


onstant and the kinemati
al variables s, t and u.

Running 
oupling We look now from a somewhat di�erent point of view at the problem of

the apparent � dependen
e of physi
al observables. Assume again that we have subtra
ted

the in�nite parts (and the 
onstant term) of the amplitude A, obtaining Eq. (4.78). We

now demand that the s
attering amplitude A as a physi
al observable is independent of the

arbitrary s
ale �, dA=d� = 0. If we did a perturbative 
al
ulation up to O(�

n

), the 
ondition

dA=d� = 0 
an hold only up to terms O(�

n+1

). The expli
it � dependen
e of the amplitude,

�A=�� 6= 0, 
an be only 
an
elled by a 
orresponding 
hange of the parameters m and �


ontained in the 
lassi
al Lagrangian, 
onverting them into \running" parameters m(�) and

�(�). Then the 
ondition

3

dA=d� = 0 be
omes

�

�

��

+

�m

2

��

�

�m

2

+

��

��

�

��

�

A(s; t;m(�); �(�); �) = 0 : (4.84)

The only expli
it � dependen
e of A is 
ontained in the F (q

2

;m; �) fun
tions, giving in the

limit "! 0

�

��

A(s; t;m(�); �(�); �) = �3

�

2

32�

2

�

��

F (q

2

;m; �) =

3�

2

16�

2

�

: (4.85)

Sin
e the 
hange of m(�) and �(�) is given by loop diagrams, it in
ludes at least an additional

fa
tor �. Therefore the a
tion of the derivatives �

m

2
and �

�

on the 1-loop 
ontribution A

(2)

leads to a term of O(�

3

) whi
h 
an be negle
ted. Thus the only remaining term will be given

by �

�

a
ting on the tree-level term A

(1)

. Note that this holds also at higher orders and ensures

that �

�

� at O(�

n+1

) is determined by the parameters 
al
ulated at O(�

n

). Combining the

two 
ontributions we �nd

�

��

��

=

3�

2

16�

2

+O(�

3

) : (4.86)

3

Equations of the type (4.84) that des
ribe the 
hange of observables as fun
tion of the s
ale � are 
alled

renormalisation group equations (RGE).
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Thus the s
attering amplitude A is independent of the s
ale �, if we transform the 
ou-

pling 
onstant � into a s
ale dependent \running" 
oupling �(�) whose evolution is given by

Eq. (4.86). Sin
e we trun
ate the perturbation series at a �nite order, the 
an
ellation of the

s
ale dependen
e is in
omplete and a residual dependen
e of physi
al quantities on � remains.

Separating variables in Eq. (4.86), we �nd

�(�) =

�

0

1� 3�

0

=16�

2

ln(�=�

0

)

(4.87)

with �

0

� �(�

0

) as initial 
ondition. Thus the running 
oupling �(�) in
reases logarithmi
ally

for in
reasing � in the ��

4

theory.

Comparing (4.87) to our result for the s
attering amplitude (4.83),

A = ��

0

�

1 +

�

0

32�

2

�

ln(s=4m

2

) + ln(t=4m

2

) + ln(u=4m

2

)

�

�

+O(�

3

0

) ; (4.88)

we see that we 
an rewrite the amplitude using a symmetri
 point q

2

= s = t = u and

�

2

0

= 4m

2

as

A = ��

0

�

1 +

3�

0

32�

2

ln(q

2

=�

2

0

)

�

= ��(q

2

) : (4.89)

This shows that the q

2

dependen
e of the amplitude A in the limit q

2

� m

2

is determined


ompletely by the s
ale dependen
e of the running 
oupling �(�). Therefore, we should set the

renormalisation s
ale � in general equal to the physi
al momentum s
ale q that 
hara
terises

the 
onsidered pro
ess. We will 
ome ba
k to this topi
 in 
hapter 12, giving a formal

de�nition of the running 
oupling.

4.A. Appendix: Evaluation of Feynman integrals

Combination of propagators The standard strategy in the evolution of loop integrals is the 
om-

bination of the n propagator denominators into a single propagator-like denominator of higher power.

One uses either S
hwinger's proper-time representation

i

p

2

�m

2

+ i"

=

Z

1

0

ds e

is(p

2

�m

2

+i")

(4.90)

or the Feynman parameter integral

1

x

1

� � �x

n

= �(n)

Z

1

0

d�

1

� � �

Z

1

0

d�

n

Æ(1�

X

i

�

i

) [�

1

x

1

� � ��

n

x

n

℄

�n

= �(n)

Z

1

0

d�

1

� � �

Z

�

n�2

0

d�

n

[�

1

(1� x

1

) + �

2

(x

1

� x

2

) � � ��

n

x

n�1

℄

�n

: (4.91)

In order to derive this formula for n = 2, 
onsider

1

b� a

Z

b

a

dx

x

2

=

1

b� a

�

1

a

�

1

b

�

=

1

ab

(4.92)

for a; b 2 C. Setting x = az + b(1� z) and 
hanging the integration variable, we obtain

1

ab

=

Z

1

0

dz

[az + b(1� z)℄

2

: (4.93)
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The 
ases n > 2 
an be derived by indu
tion, rewriting e.g. 1=(ab
) as 1=(aB) with B = b
, and using

the result for n� 1. In parti
ular, for n = 3 it follows

1

ab


= 2

Z

1

0

dx

Z

1�x

0

dy

[ax+ by + 
(1� x� y)℄

3

: (4.94)

Finally, we 
an generalise these formulae to expressions like 1=(a

n

b

m

) by taking derivatives with respe
t

to a and b.

Evaluation of Feynman integrals We want to 
al
ulate integrals of the type

I

0

(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

�m

2

+ i"℄

�

(4.95)

de�ned in Minkowski spa
e. Performing a Wi
k rotation to Eu
lidean spa
e and introdu
ing spheri
al


oordinates results in

I

0

(!; �) = i(�1)

�

Z

d

2!

k

(2�)

2!

1

[k

2

+m

2

℄

�

= i

(�1)

�

(2�)

2!




2!

Z

1

0

dk

k

2!�1

[k

2

+m

2

℄

�

; (4.96)

where we denoted the volume vol(S

2!�1

) of a unit sphere in 2! dimensions

4

by 


2!

. You are asked

in problem 4.?? to show that 


2!

= 2�

!

=�(!) and thus 


4

= 2�

2

. Substituting k = m

p

x and using

the integral representation (A.28) for Euler's Beta fun
tion allows us to express the k integral as a

produ
t of Gamma fun
tions,

Z

1

0

dk

k

2!�1

[k

2

+m

2

℄

�

=

1

2

m

2!�2�

Z

1

0

dx

x

!�1

[1 + x℄

�

= (4.97a)

1

2

m

2!�2�

B(!; �� !) =

1

2

m

2!�2�

�(!)�(�� !)

�(�)

: (4.97b)

Combining this result with 


2!

= 2�

!

=�(!) we obtain

I

0

(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

�m

2

+ i"℄

�

= i

(�1)

�

(4�)

!

�(�� !)

�(�)

[m

2

� i"℄

!��

: (4.98)

Note that m

2


an denote any fun
tion of the external momenta and masses, sin
e we required only

that it is independent of the loop momentum. We 
an generate additional formulae by adding �rst a

dependen
e on a external momentum p

�

, shifting then the integration variable k ! k + p,

I(!; �) =

Z

d

2!

k

(2�)

2!

1

[k

2

+ 2pk �m

2

+ i"℄

�

= i

(�1)

�

(4�)

!

�(�� !)

�(�)

[m

2

+ p

2

� i"℄

!��

: (4.99)

Taking then derivatives with respe
t to the external momentum p

�

results in

I

�

(!; �) =

Z

d

2!

k

(2�)

2!

k

�

[k

2

+ 2pk �m

2

+ i"℄

�

= �p

�

I(!; �) (4.100)

and

I

��

(!; �) =

Z

d

2!

k

(2�)

2!

k

�

k

�

[k

2

+ 2pk �m

2

+ i"℄

�

= (4.101)

= i

(��)

!

(2�)

2!

�(�� ! � 1)

�(�)

p

�

p

�

(�� ! � 1)�

1

2

�

��

(m

2

+ p

2

)

[m

2

+ p

2

� i"℄

��!

: (4.102)

4

A n�1-dimensional sphere S

n�1

(R) en
loses the n-dimensional volume x

2

1

+: : :+x

2

n

� R

2

, while its own n�1-

dimensional volume is given by x

2

1

+ : : :+x

2

n

= R

2

. The volume of a unit 1-sphere is a length, vol(S

1

) = 2�,

of a unit 2-sphere an area, vol(S

2

) = 4�, and of a unit 3-sphere a volume, vol(S

3

) = 2�

2

. If we say that

the volume of a sphere is 4�R

3

=3, we mean in fa
t the volume of the 3-ball B

3

(R), x

2

1

+ x

2

2

+ x

2

3

� R

2

whi
h is en
losed by the 2-sphere S

2

(R).
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Contra
ting both sides with k

�

k

�

and using �

��

�

��

= 2! gives

I

2

(!; �) =

Z

d

2!

k

(2�)

2!

k

2

[k

2

+ 2pk �m

2

+ i"℄

�

= i

(��)

!

(2�)

2!

�(�� ! � 1)

�(�)

(�� 2! � 1)p

2

� !m

2

[m

2

+ p

2

� i"℄

��!

: (4.103)

Spe
ial 
ases often needed are

I(!; 2) =

i

(4�)

!

�(2� !) (m

2

+ p

2

� i")

!�2

; (4.104)

I

2

(!; 2) = �

i

(4�)

!

!�(1� !) (m

2

+ p

2

� i")

!�1

; (4.105)

and

I(2; 3) = �

i

32�

2

1

m

2

+ p

2

� i"

: (4.106)

Summary

Dis
onne
ted n-point Green fun
tions are generated by the fun
tional Z[J ℄, while iW [J ℄ =

lnZ[J ℄ generates 
onne
ted Green fun
tions. The three loop diagrams we 
al
ulated in the

��

4

theory were in�nite and had to be regularised. Renormalising the three parameters 
on-

tained in the 
lassi
al Lagrangian of the ��

4

theory, �

0

, m

2

, and �, eliminated the divergen
es

and 
onverted them into \running" quantities.

Further reading

The derivation of the Feynman rules using the graphi
al approa
h is dis
ussed extensively in

[GR08℄. [Sre07℄ treats the ��

3

theory whi
h resembles more QED than the ��

4

theory we

dis
ussed.
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5. Global symmetries and Noether's theorem

Emmy Noether showed 1917 that any global 
ontinuous symmetry of a 
lassi
al system de-

s
ribed by a Lagrangian leads to a lo
ally 
onserved 
urrent. We 
an divide su
h symmetries

into two 
lasses: Symmetries of spa
e-time and internal symmetries of a group of �elds. Promi-

nent examples for the latter are the global symmetries that lead to the 
onservation laws of

ele
tri
 
harge or baryon number, respe
tively. For a quantum system, we have to study the

impa
t of symmetries on its generating fun
tional. If this fun
tional remains invariant, the

symmetry holds also at the quantum level. Then 
onserved 
harges exists whi
h 
ommute

with the Hamiltonian. Analysing spa
e-time symmetries, we restri
t ourselves in this 
hapter

to the 
ase when we 
an negle
t gravity. Then spa
e-time is the familiar Minkowski spa
e


hara
terised by the Poin
ar�e symmetry group, i.e. the produ
t of the translation and the

Lorentz group, with its 
orresponding 
onservation laws.

5.1. Internal symmetries

We have used up-to now mainly spa
e-time symmetry of Minkowski spa
e, namely the re-

quirement of Lorentz invarian
e, to dedu
e possible terms in the a
tion. If we allow for more

than one �eld, e.g. several s
alar �elds, the new possibility of internal symmetries arise. For

instan
e, we 
an look at a theory of two massive s
alar �elds with quarti
 intera
tions,

L =

1

2

(�

�

�

1

)

2

�

1

2

m

2

1

�

2

1

�

1

4

�

1

�

4

1

+

1

2

(�

�

�

2

)

2

�

1

2

m

2

2

�

2

2

�

1

4

�

2

�

4

2

�

1

2

�

3

�

2

1

�

2

2

: (5.1)

In order to maintain the dis
rete Z

2

symmetry �

i

! ��

i

of the individual Lagrangians for

the �elds �

1

and �

2

, we have omitted odd terms like �

1

�

3

2

. Then the theory 
ontains �ve

arbitrary parameters, two masses m

i

and three 
oupling 
onstants �

i

. For arbitrary values

of these parameters, no new additional symmetry results. In nature, we �nd however often

a set of parti
les with nearly the same mass and (partly) similar 
ouplings. One of the �rst

examples was suggested by Heisenberg after the dis
overy of the neutron, whi
h has a mass

very 
lose to the one of the proton, m

n

' m

p

: With respe
t to strong intera
tions, it is useful

to view the proton and neutron as two di�erent \isospin" states of the nu
leon, similar as

an ele
tron has two spin states. An example of an exa
t symmetry are parti
les and their

antiparti
les, as e.g. the 
harged pions �

�

whi
h 
an be 
ombined into one 
omplex s
alar

�eld.

If we set in our 
ase m

1

= m

2

and �

2

= �

1

, the Lagrangian be
omes invariant under the

ex
hange �

1

$ �

2

. Adding the further 
ondition that �

3

= �

1

= �

2

, we arrive at

L =

1

2

�

(�

�

�

1

)

2

+ (�

�

�

2

)

2

�

�

1

2

m

2

(�

2

1

+ �

2

2

)�

�

4

(�

2

1

+ �

2

2

)

2

: (5.2)

Now any orthogonal transformation O 2 O(2) in the two-dimensional �eld spa
e f�

1

; �

2

g

leads to the same Lagrangian L . In parti
ular, the Lagrangian is invariant under a rotation
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5.2. Noether's theorem

R(�) 2 SO(2) whi
h mixes f�

1

; �

2

g as

�

�

0

1

�

0

2

�

=

�


os� sin�

� sin� 
os�

��

�

1

�

2

�

: (5.3)

The �elds transform as a ve
tor � = f�

1

; �

2

g, and a rotation leaves the length of this ve
tor

invariant. Generalising this to n s
alar �elds, � = f�

1

; : : : ; �

n

g, we 
an write down immedi-

ately a theory that is invariant under transformations �

a

! R

ab

�

b

where R is an element of

O(n),

L =

1

2

(�

�

�)

2

�

1

2

m

2

�

2

�

�

4

(�

2

)

2

: (5.4)

Note that the Lagrangian is only invariant under global, i.e. spa
e-time independent rotations,

sin
e the term �

�

[R(x)�℄ would breaking the invarian
e for R = R(x).

The free LagrangianL

0

, i.e. the part quadrati
 in the �elds, is diagonal,L

0

= L

0

(�

1

)+: : :+

L

0

(�

n

). Thus the propagator D

ab

(x� x

0

) is diagonal too, D

ab

(x� x

0

) / Æ

ab

. An intera
tion

vertex at x 
onne
ts four propagators D

ab

(x� x

i

). As a result of the Z

2

symmetry, an even

number of �

1

and �

2

parti
les are 
onne
ted at ea
h vertex whi
h has therefore the form

�i�(Æ

ab

Æ


d

+ Æ

a


Æ

bd

+ Æ

ad

Æ

b


).

5.2. Noether's theorem

From our experien
e in 
lassi
al and quantum me
hani
s, we expe
t that global 
ontinuous

symmetries lead also in �eld theory to 
onservation laws for the generators of the symmetry.

In order to derive su
h a 
onservation law, we 
onsider an in�nitesimal 
hange Æ�

a

of the

�elds that keeps by assumption L (�

a

; �

�

�

a

) invariant,

0 = ÆL =

ÆL

Æ�

a

Æ�

a

+

ÆL

Æ�

�

�

a

Æ�

�

�

a

: (5.5)

Now we ex
hange Æ�

�

= �

�

Æ in the se
ond term and use then the Lagrange equations,

ÆL =Æ�

a

= �

�

(ÆL =Æ�

�

�

a

), in the �rst one. Then we 
an 
ombine the two terms using

the produ
t rule,

0 = ÆL = �

�

�

ÆL

Æ�

�

�

a

�

Æ�

a

+

ÆL

Æ�

�

�

a

�

�

Æ�

a

= �

�

�

ÆL

Æ�

�

�

a

Æ�

a

�

: (5.6)

Hen
e the invarian
e of L under the 
hange Æ�

a

implies the existen
e of a 
onserved 
urrent,

�

�

j

�

= 0, with

j

�

=

ÆL

Æ�

�

�

a

Æ�

a

: (5.7)

If the transformation Æ�

a

leads to 
hange in L that is a total four-divergen
e, ÆL = �

�

K

�

,

and boundary terms 
an be dropped, then the equations of motion remain invariant too. The


onserved 
urrent j

�

, also 
alled Noether 
urrent, is then 
hanged to

j

�

=

ÆL

Æ�

�

�

a

Æ�

a

�K

�

: (5.8)

In Minkowski spa
e, we 
an 
onvert this di�erential form of a 
onservation law into a global

one using Gauss' theorem: Re
all that this theorem allows us to 
onvert a n dimensional
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5. Global symmetries and Noether's theorem

volume integral over the divergen
e of a tensor �eld into a n� 1 dimensional surfa
e integral

of the tensor �eld,

Z




d

4

x �

�

X

�����

=

Z

�


dS

�

X

�����

: (5.9)

Applied to the Noether 
urrent j

�

, we obtain assuming jjj ! 0 for jxj ! 1

Z




d

4

x �

�

j

�

=

Z

V (t

2

)

d

3

x j

0

�

Z

V (t

1

)

d

3

x j

0

= 0 : (5.10)

Thus the volume integral Q =

R

V

d

3

x j

0

over the 
harge density j

0

remains 
onstant. Often

(but not always) this 
harge has a profound physi
al meaning. Finally, we note that the


onserved 
urrent j

�

is not unique, sin
e we 
an add the four-divergen
e �

�

K

�

= ÆL .

Internal symmetries As an example, we 
an use the n s
alar �elds invariant under the

group

1

SO(n). We need the in�nitesimal generators T

i

of rotations,

�

0

a

= R

ab

�

b

= (1 + �

i

T

i

+O(�

2

i

))

ab

�

b

: (5.11)

SO(n) has an antisymmetri
 Lie algebra with n(n� 1)=2 generators. Thus a theory invariant

under SO(n) has n(n � 1)=2 
onserved 
urrents. The spe
ial 
ase n = 2 has as important

appli
ation e.g. the 
harged pions �

�

. We 
ombine the two real �elds �

1

and �

2

into the


omplex �eld � = (�

1

+ i�

2

)=

p

2, then the Lagrangian be
omes

L = �

�

�

y

�

�

��m

2

�

y

�� �(�

y

�)

2

: (5.12)

Now the Lagrangian L is invariant under the 
ombined phase transformations � ! e

�i#

�

and �

y

! e

i#

�

y

: Using 
omplex �elds, the SO(2) symmetry has be
ome an U(1) symmetry.

With Æ� = �i�, Æ�

y

= i�

y

, the 
onserved 
urrent follows as

j

�

= i

h

�

y

�

�

�� (�

�

�

y

)�

i

: (5.13)

The 
onserved 
harge Q =

R

d

3

x j

0


an be also negative and thus we 
annot interpret j

0

as the probability density to observe a � parti
le. Instead, we should asso
iate Q with a


onserved additive quantum number as e.g. the ele
tri
 
harge.

Note that Noethers theorem requires only the existen
e of a global symmetry. In the 
ases

of the 
onservation of ele
tri
 and 
olour 
harge, the global symmetry is a 
onsequen
e of an

underlying lo
al gauge symmetry whi
h we will study later in 
hapter 10 in detail. In most

other 
ases however, as e.g. the 
onservation of baryon or lepton number, the global symmetry


an not be generalised to a lo
al one, and one speaks therefore of a

idental symmetries. Su
h

symmetries are not prote
ted against quantum 
orre
tions and there is no reason to expe
t

them to hold exa
tly. We will see later that baryon and lepton number are indeed broken.

1

Although the Lagrangian is invariant under the larger group O(n), we 
onsider only the subgroup SO(n)

whi
h is 
ontinuously 
onne
ted to the identity. The additional dis
rete transformations 
ontained in O(n)


an be used to 
lassify solutions of the Lagrangian, but do not lead to additional 
onservation laws.
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5.2. Noether's theorem

Spa
e-time symmetries of Minkowski spa
e The Poin
ar�e group as symmetry group of

Minkowski spa
e has ten generators

2

. If the Lagrangian does not depend expli
itly on spa
e-

time 
oordinates, i.e. L = L (�

a

; �

�

�

a

), ten 
onservation laws for the �elds �

a

follow.

We 
onsider �rst the behaviour of the �elds �

a

and the Lagrangian under an in�nitesimal

translation x

�

! x

�

+ "�

�

. As in the 
ase of internal symmetries, we 
onsider only global

transformations and thus " does not depend on x. From

�

a

(x

�

)! �

a

(x

�

+ "�

�

) � �

a

(x

�

) + "�

�

�

�

�

a

(x

�

) (5.14)

we �nd the 
hange

Æ�

a

(x) = �

�

�

�

�

a

(x) = �

�

[�

�

�

a

(x)℄ :

Sin
e the Lagrange density L 
ontains by assumption no expli
it spa
e-time dependen
e, it

will 
hange simply as L (x

�

)! L (x

�

+ "�

�

) or

ÆL (x) = �

�

�

�

L (x) = �

�

[�

�

L (x)℄ : (5.15)

Thus K

�

= �

�

L (x) and inserting both in the Noether 
urrent gives

j

�

=

�L

�(�

�

�

a

)

[�

�

�

�

�

a

℄� �

�

L = �

�

�

�L

�(�

�

�

a

)

��

a

�x

�

� �

��

L

�

� �

�

T

��

; (5.16)

where the square bra
ket de�nes the (energy-momentum) stress tensor T

��

of the �elds �

a

.

The 
orresponding four 
onserved Noether 
harges are the 
omponents of the four-momentum

p

�

=

Z

d

3

x T

0�

: (5.17)

The 
onserved tensor de�ned by Eq. (5.16) is 
alled the 
anoni
al stress tensor. The de�nition

(5.16) does not guarantee that T

��

is symmetri
. A symmetri
 stress tensor, T

��

= T

��

, is

however the 
ondition for the 
onservation of the total angular momentum, as we will show

in the next paragraph. Another reason to require a symmetri
 stress tensor T

��

is that it

serves as sour
e term for the symmetri
 gravitational �eld. Sin
e the Lagrange density is only

determined up to a four-divergen
e, we 
an symmetrize always T

��

adding an appropriate

divergen
e of an antisymmetri
 tensor. Thus in general, the 
anoni
al stress tensor has to be

symmetrised by hand.

Example 5.1: The general expression (5.16) for the 
anoni
al stress tensor be
omes for a free


omplex s
alar �eld

T

��

= 2�

�

�

y

�

�

�� �

��

L : (5.18)

Thus the 
anoni
al stress tensor of a s
alar �eld is already symmetri
. Its 00 
omponent,

T

00

= � =H = 2j

_

�j

2

�L = j

_

�j

2

+ jr�j

2

+m

2

j�j

2

; (5.19)

agrees with twi
e the result (3.14) for the energy-density � of a single real s
alar �eld. We 
onsider

now plane-wave solutions to the Klein-Gordon equation, � = N exp(ikx). If we insert �

�

� = ik

�

� into

L , we �nd L = 0 and thus

T

00

= 2N

2

k

0

k

0

: (5.20)

Changing from the 
ontinuum normalisation to a box of size V = L

3

amounts to repla
e (2�)

3

by L

3

.

Thus the normalisation 
onstant N

�2

= (2�)

3

2! be
omes for a �nite volume N

�2

= 2!V . Then
e

2

If this sound unfamiliar, read �rst the appendi
es B.3 and B.4 before 
ontinuing
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5. Global symmetries and Noether's theorem

the energy-density T

00

= !=V agrees with the expe
tation for one parti
le with energy ! per volume

V . The remaining 
omponents of T

��

are �xed by its tensor stru
ture,

T

��

= 2N

2

k

�

k

�

=

k

�

k

�

!V

: (5.21)

Sin
e the stress tensor T

��

is symmetri
, we 
an �nd a frame in whi
h T

��

is diagonal with T /

diag(!; v

x

k

x

; v

y

k

y

; v

z

k

z

)=V . The spatial part of the stress tensor agrees with the pressure tensor of an

ideal 
uid, 
f. problem 5.??. Thus a s
alar �eld 
an be viewed as an ideal 
uid with energy density �

and pressure P , or T

��

= diag(�; P

x

; P

y

; P

z

).

Angular momentum If the tensor T

��

is symmetri
, we 
an 
onstru
t six more 
onserved

quantities. If we de�ne

M

���

= x

�

T

��

� x

�

T

��

; (5.22)

then M

���

is 
onserved with respe
t to the index �,

�

�

M

���

= Æ

�

�

T

��

� Æ

�

�

T

��

= T

��

� T

��

= 0 ; (5.23)

provided that T

��

= T

��

. In this 
ase,

J

��

=

Z

d

3

xM

0��

=

Z

d

3

x

�

x

�

T

0�

� x

�

T

0�

�

; (5.24)

is a globally 
onserved tensor. The antisymmetry of J

��

implies that there exist six 
onserved


harges. The three 
harges

J

ij

=

Z

d

3

x

�

x

i

T

0j

� x

j

T

0i

�

(5.25)


orrespond to the 
onservation of total angular momentum, sin
e T

0j

is the momentum

density. The remaining three 
harges J

0i

express the fa
t that the 
enter-of-mass moves with


onstant velo
ity.

While J

��

transforms as expe
ted for a tensor under Lorentz transformations, it is not

invariant under translations x

�

! x

�

+ �

�

. Instead, the angular momentum 
hanges as

J

��

! J

��

+ �

�

p

�

� �

�

p

�

: (5.26)

Clearly, this is a 
onsequen
e of the de�nition of the orbital angular momentum with respe
t

to the 
enter of rotation. We want therefore to split the total angular momentum J

��

into

the orbital angular momentum L

��

and an intrinsi
 part 
onne
ted to a non-zero spin of the

�eld. The latter we require to be invariant under translations. We set

S

�

=

1

2

"

��
Æ

J

�


u

Æ

; (5.27)

where u

�

is the four-velo
ity of the 
enter-of-mass system (
ms). Be
ause of the antisymmetry

in �
 of "

��
Æ

, the 
hange in (5.26) indu
ed by a translation drops out in S

�

. In the 
ms,

u

�

= (1; 0; 0; 0) and thus S

0

= 0 and S

�

u

�

= 0. The other 
omponents are S

1

= J

23

, S

2

= J

31

,

and S

3

= J

12

. Thus the ve
tor S

�

des
ribes as desired the intrinsi
 angular momentum of a

�eld. It is 
alled the Pauli-Lubanski spin ve
tor.
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5.3. Quantum symmetries

Remark 5.1: To see that the 
ontra
tion of a symmetri
 tensor S

��

with an antisymmetri
 tensor

A

��

gives zero, 
onsider

S

��

A

��

= �S

��

A

��

= �S

��

A

��

= �S

��

A

��

: (5.28)

Here we used �rst the antisymmetry of A

��

, then the symmetry of S

��

, and �nally ex
hanged the

dummy summation indi
es. Clearly, this remains true if the tensor expression 
ontains additional

indi
es. Applied to the Pauli-Lubanski spin ve
tor and re
alling p




= mu




, its 
hange 
ontains terms

as "

��
Æ

�

�

u




u

Æ

whi
h are zero.

5.3. Quantum symmetries

Conserved 
urrents We have seen that Noether's theorem guaranties on the 
lassi
al level

the 
onservation of 
urrents generated by global 
ontinuous symmetries. In the 
orresponding

quantum theory, we have to study the impa
t of this symmetry on the generating fun
tional Z.

Sin
e we used the equations of motion to derive Noether's theorem, 
urrent 
onservation holds

only for 
lassi
ally allowed paths in �eld spa
e, or in other words for on-shell �elds. Thus the

a
tion evaluated for o�-shell �elds is not invariant under global symmetry transformations. In

the path integral, the �elds are however only integration variables. The generating fun
tional

is therefore invariant, if we 
an �nd a �eld transformation �

i

!

~

�

i

whi
h eliminates the 
hange

of the a
tion for o�-shell �elds and keeps the integration measure invariant, D�

i

= D

~

�

i

.

Let us assume that our theory has a global symmetry under whi
h the 
lassi
al solutions

transform as �

a

! �

0

a

= �

a

+ "�

a

. Here, " takes the same value at all spa
e-time points and

�

a

is a fun
tion of the original �elds, �

a

= �

a

(�

a

(x)). The 
lassi
ally forbidden solutions will

be transformed into

~

�

a

6= �

0

a

. We 
an express

~

�

a

always as

�

a

!

~

�

a

= �

a

+ "(x)�

a

; (5.29)

promoting thereby "(x) to a spa
e-time dependent fun
tion. To be 
on
rete, we 
onsider

again a global U(1) symmetry for a 
omplex s
alar �eld. Sin
e the transformation (5.29) is

lo
al , kineti
 terms breaks the symmetry: Dire
t 
al
ulation shows that the Lagrangian (5.12)


hanges as

ÆL = i [�

�

�

�

�� �

�

�

�

�℄ �

�

" = j

�

�

�

" ; (5.30)

where j

�

is the 
lassi
al Noether 
urrent, 
f. problem 5.??. The �nal result ÆL = j

�

�

�

"

holds in general.

Next we have to generalise the generating fun
tional for a single, real s
alar �eld given

in Eq. (4.1) to a 
omplex s
alar �eld. We treat � and �

�

as the two independent degrees

of freedom, and add therefore also two independent sour
es J and J

�

. Coupling them as

L

s

� J�

�

+ J

�

� to the �elds keeps the Lagrangian real. We denote the total Lagrangian as

L

eff

= L


l

+ L

s

, with L


l

= L

0

+ L

int

as the Lagrangian used to derive to the 
lassi
al

equation of motions. Thus the generating fun
tional is

Z[J; J

�

℄ =

Z

D�D�

�

exp i

Z

d

4

x (L


l

+ J�

�

+ J

�

�) : (5.31)

We want to 
al
ulate matrix elements of the operator representing the 
lassi
al Noether


urrent (5.8). Using the path integral formalism, we 
an derive the time-ordered va
uum
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5. Global symmetries and Noether's theorem

expe
tation value of a produ
t of �elds � and the 
urrent operator j

�

by adding a 
lassi
al

external sour
e v

�


oupled to j

�

,

Z[J; J

�

; v

�

℄ =

Z

D�D�

�

exp i

Z

d

4

x (L


l

+ J�

�

+ J

�

�+ v

�

j

�

) : (5.32)

Then we obtain the va
uum expe
tation value of the 
urrent as

hj

�

(x)i � h0jj

�

(x)j0i =

1

i

Æ

Æv

�

(x)

iW [J; J

�

; v

�

℄

�

�

�

�

v

�

=J=0

: (5.33)

Inverting this relation we �nd

ÆW [J; J

�

; v

�

℄ =

Z

d

4

x hj

�

(x)iÆv

�

(x) : (5.34)

We are interested how W and Z 
hange under a transformation of the external sour
e v

�

.

To dedu
e their transformation properties, it is suÆ
ient to 
onsider them for zero external

sour
es J and J

�

. Setting Z[0; 0; v

�

℄ � Z[v

�

℄ and 
hoosing Æv

�

(x) = ��

�

"(x), it follows

ÆW [v

�

℄ =W [v

�

� �

�

"(x)℄ �W [v

�

℄ = �

Z

d

4

x hj

�

(x)i�

�

"(x) =

Z

d

4

x�

�

hj

�

(x)i"(x) : (5.35)

Thus ÆW [v

�

℄ = 0 guarantees 
urrent 
onservation in the quantum theory, �

�

hj

�

i = 0. The


orresponding 
hange of Z[v

�

℄ under the same transformation is

Z[v

�

� �

�

"(x)℄ =

Z

D�D�

�

exp i

Z

d

4

x fL + [v

�

� �

�

"(x)℄j

�

g : (5.36)

We now assume that the substitution �

a

!

~

�

a

= �

a

+ "(x)�

a

keeps the integration measure

invariant, D�D�

�

= D

~

�D

~

�

�

. Re
alling then that ÆL = j

�

�

�

", we �nd that the generating

fun
tional is invariant,

Z[v

�

� �

�

"(x)℄ =

Z

D

~

�D

~

�

�

exp i

Z

d

4

x

�

L (

~

�; �

�

~

�) + v

�

j

�

�

= Z[v

�

℄ : (5.37)

In the 
ase of the U(1) transformation, the two phases 
an
el in the integration measure

D

~

�D

~

�

�

=

Y

x

d

~

�(x)d

~

�

�

(x) =

Y

x

d�(x)d�

�

(x) : (5.38)

As a result, the va
uum expe
tation value of the ele
tromagneti
 
urrent is 
onserved,

�

�

hj

�

i = 0.

Anomalies The substitution �

a

!

~

�

a

= �

a

+ "(x)�

a

shifts the 
enter of the integration at

ea
h spa
e-time point by the value "(x)�

a

. Su
h a linear shift seems harmless. Therefore

it was taken for granted that the path integral remains invariant under this 
hange and,


onsequently, that this approa
h predi
ts that all 
lassi
al global symmetries hold also on

the quantum level. It was only realised by Fujikawa in 1979 that the integration measure in

the path integral may transform non-trivially under a symmetry transformation: Sin
e the

path integral is divergent, we have to regularise it and this pro
edure may break the 
lassi
al

symmetry.
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5.3. Quantum symmetries

If the 
lassi
al symmetry is broken, one speaks of an \anomaly". The three most important

examples are the tra
e anomaly, the 
hiral anomaly, and the breaking of 
onformal invarian
e

in string theory. We will dis
uss the �rst two 
ases later in some detail. The anomalous term

breaking 
onformal invarian
e in string theory vanishes for a de�nite number of spa
e-time

dimensions, D = 10 or 26, what is the reason for the predi
tions of extra-dimensions in string

theory.

Summary

Noether's theorem shows that 
ontinuous global symmetries lead 
lassi
ally to 
onservation

laws. Su
h symmetries 
an be divided into spa
e-time and internal symmetries. Minkowski

spa
e-time is invariant under global Poin
ar�e transformations. The 
orresponding ten Noether


harges are the four-momentum p

�

and the total angular momentum J

��

. Examples for


onserved 
harges due to internal symmetries are ele
tri
 and 
olour 
harge, as well as baryon

or lepton number. In a quantum theory, the va
uum expe
tation value of a Noether 
urrent

is 
onserved, if the symmetry transformation keeps the path integral measure invariant.

Further reading

A more 
omplete dis
ussion of Noether's theorem 
an be found in [GR08℄ and [Hil51℄.
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6. Spa
e-time symmetries

In the previous 
hapter, we dis
ussed the symmetries of Minkowski spa
e. In this 
ase, we


ould view the Poin
ar�e group as the group generating global symmetry transformations

on Minkowski spa
e and �nd the resulting 
onservation laws. Aim of the present 
hapter

is to extend this dis
ussion to the 
ase of a Riemannian manifold, i.e. to a 
urved spa
e

whi
h looks only lo
ally Eu
lidean. We will show how one 
an �nd the symmetries of su
h

manifolds and how they determine 
onservation laws. Riemannian manifolds arise naturally

in 
lassi
al me
hani
s using generalised 
oordinates q

i

, sin
e the kineti
 energy T = a

ik

_q

i

_q

k

de�nes a quadrati
 form a

ik

whi
h we 
an view as metri
 tensor on the 
on�guration spa
e

fq

i

g. However, the for us more important appearan
e of a (pseudo-) Riemannian manifold is

in Einstein's theory of general relativity whi
h repla
es Minkowski spa
e by a 
urved spa
e-

time. Most of the mathemati
al stru
tures we will introdu
e have also a 
lose analogue in

gauge theories whi
h we will use later on to des
ribe the ele
troweak and strong intera
tions.

Equivalen
e prin
iple As a start, we motivate why one 
an repla
e the gravitational for
e

by the 
urvature of spa
e-time dis
ussing the equivalen
e prin
iple. The idea underlying this

prin
iple emerged in the 16th 
entury, when among others Galileo Galilei found experimen-

tally that the a

eleration g of a test mass in a gravitational �eld is universal. Be
ause of

this universality, the gravitating mass m

g

and the inertial mass m

i

are identi
al in 
lassi
al

me
hani
s. While m

i

= m

g


an be a
hieved for one material always by a 
onvenient 
hoi
e

of units, there should be in general deviations for test bodies with di�ering 
ompositions.

Current limits for departures from universal gravitational attra
tion for di�erent materials

are however very tight, j�g=gj < 10

�12

.

As a result, gravity has 
ompared to the three other known fundamental intera
tions the

unique property that it 
an be swit
hed-o� lo
ally: Inside a freely falling elevator, one does

not feel any gravitational e�e
ts ex
ept tidal for
es. The latter arise if the gravitational �eld is

non-uniform and tries to deform the elevator. Inside a suÆ
iently small freely falling system,

also tidal e�e
ts plays no role. Einstein promoted the equivalen
e of inertial and gravitating

mass to the postulate of the \strong equivalen
e prin
iple": In a small enough region around

the 
enter of a freely falling 
oordinate system all physi
s is des
ribed by the laws of spe
ial

relativity.

In general relativity, the gravitational for
e of Newton's theory that a

elerates parti
les

in an Eu
lidean spa
e is repla
ed by a 
urved spa
e-time in whi
h parti
les move for
e-free

along geodesi
 lines. In parti
ular, photons move still as in spe
ial relativity along 
urves

satisfying ds

2

= 0, while all e�e
ts of gravity are now en
oded in the non-Eu
lidean geometry

of spa
e-time whi
h is determined by the line-element ds or the metri
 tensor g

��

,

ds

2

= g

��

dx

�

dx

�

: (6.1)

Swit
hing on a gravitational �eld, the metri
 tensor g

��


an be transformed only lo
ally by a


oordinate 
hange into the form �

��

= diag(1;�1;�1;�1). Thus we should develop the tools
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6.1. Manifolds and tensor �elds

ne
essary to do analysis on a 
urved manifoldM whi
h geometry is des
ribed by the metri


tensor g

��

.

6.1. Manifolds and tensor �elds

Manifolds A manifoldM is any set that 
an be 
ontinuously parametrised. The number of

independent parameters needed to spe
ify uniquely any point of M is its dimension n, the

parameters x = fx

1

; : : : ; x

n

g are 
alled 
oordinates. Lo
ally, a manifold with dimension n


an be approximated by R

n

. Examples for manifolds are Lie groups, the 
on�guration spa
e

q

i

or the phase spa
e (q

i

; p

i

) of 
lassi
al me
hani
s, and spa
e-time in general relativity. We

require the manifold to be smooth: The transitions from one set of 
oordinates to another

one, x

i

= f(~x

i

; : : : ; ~x

n

), should be C

1

. In general, it is impossible to 
over all M with one


oordinate system that is well-de�ned on allM . An example are spheri
al 
oordinate (#; �)

on a sphere S

2

, where � is ill-de�ned at the poles. Instead one has to 
over the manifold with

pat
hes of di�erent 
oordinates that partially overlap.

Ve
tor �elds A ve
tor �eld V (x

a

) on (a subset S of) M is a set of ve
tors asso
iating

to ea
h spa
e-time point x

a

2 S exa
tly one ve
tor. The paradigm for su
h a ve
tor �eld

is the four-velo
ity u(�) = dx=d� whi
h is the tangent ve
tor to the world-line x(�) of a

parti
le. Sin
e the di�erential equation dx=d� =X(�) has lo
ally always a solution, we 
an

�nd for any given X a 
urve x(�) whi
h has X as tangent ve
tor. Although the de�nition

u(�) = dx=d� 
oin
ides with the one familiar from Minkowski spa
e, there an important

di�eren
e: In a general manifold, we 
an not imagine a ve
tor V as an \arrow"

��!

PP

0

pointing

from a 
ertain point P to another point P

0

of the manifold. Instead, the ve
tors V generated

by all smooth 
urves through P span a n-dimensional ve
tor spa
e at the point P 
alled

tangent spa
e T

P

. We 
an visualise the tangent spa
e for the 
ase of a two-dimensional

manifold embedded in R

3

: At any point P , the tangent ve
tors lie in a plane R

2

whi
h we


an asso
iate with T

P

. In general, T

P

6= T

P

0

and we 
annot simply move a ve
tor V (x

�

)

to another point ~x

�

. This implies in parti
ular that we 
annot add the ve
tors V (x

�

) and

V (~x

�

), if the points x

�

and ~x

�

di�er. Therefore we 
annot di�erentiate a ve
tor �eld without

introdu
ing an additional mathemati
al stru
ture whi
h allows us to transport a ve
tor from

one tangent spa
e to another.

If we want to de
ompose the ve
tor V (x

�

) into 
omponents V

�

(x

�

), we have to introdu
e

a basis e

�

in the tangent spa
e. There are two natural 
hoi
es for su
h a basis: First, we


ould use Cartesian basis ve
tors as in a Cartesian inertial system in Minkowski spa
e. We

will follow this approa
h later, when we dis
uss gravity as a gauge theory in 
hapter 18. Now,

we will use the more 
onventional approa
h and use as basis ve
tors the tangential ve
tors

along the 
oordinate lines x

�

inM ,

e

�

=

�

�x

�

� �

�

: (6.2)

Here the index � with value i in e

�

denotes the i.th basis ve
tor e

�

= (0; : : : ; 1; : : : 0), with

an one at the i.th position, not a 
omponent. Using this basis, a ve
tor 
an be de
omposed

as

V = V

�

e

�

= V

�

�

�

: (6.3)
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A 
oordinate 
hange

x

�

= f(~x

1

; : : : ; ~x

n

) ; (6.4)

or more brie
y x

�

= x

�

(~x

�

), 
hanges the basis ve
tors as

e

�

=

�

�x

�

=

�~x

�

�x

�

�

�~x

�

=

�~x

�

�x

�

~e

�

: (6.5)

Therefore the ve
tor V will be invariant under general 
oordinate transformations,

V = V

�

�

�

=

~

V

�

~

�

�

=

~

V ; (6.6)

if its 
omponents transform opposite to the basis ve
tors e

�

= �

�

, or

V

�

=

�x

�

�~x

�

~

V

�

: (6.7)

If x

�

and ~x

�

are two inertial frames in Minkowski spa
e, we 
ame ba
k to Lorentz transfor-

mations �x

�

=�~x

�

= �

�

�

as a spe
ial 
ase of general 
oordinate transformations.

Cove
tors or one-forms In quantum me
hani
s, we use Dira
's bra
ket notation to asso
iate

to ea
h ve
tor jai a dual ve
tor haj and to introdu
e a s
alar produ
t haj bi. If the ve
tors jni

form a basis, then the dual basis hnj is de�ned by hnjn

0

i = Æ

nn

0

. Similarly, we de�ne a basis

e

�

dual to the basis e

�

in T

P

by

e

�

(e

�

) = Æ

�

�

: (6.8)

This basis 
an be used to form a new ve
tor spa
e T

�

P


alled the 
otangent spa
e whi
h is

dual to T

P

. Its elements ! are 
alled 
ove
tors or one-forms,

! = !

�

e

�

: (6.9)

Combining a ve
tor and an one-form, we obtain a map into the real numbers,

!(V ) = !

�

V

�

e

�

(e

�

) = !

�

V

�

: (6.10)

The last equality shows that we 
an 
al
ulate !(V ) in 
omponent form without referen
e to

the basis ve
tors. In order to simplify notation, we will use therefore in the future simply

!

�

V

�

; we also write e

�

e

�

instead of e

�

(e

�

).

Using a 
oordinate basis, the duality 
ondition (6.8) is obviously satis�ed, if we 
hoose

e

�

= dx

�

. Then the one-form be
omes

! = !

�

dx

�

: (6.11)

Thus the familiar \in�nitesimals" dx

�

are a
tually the �nite basis ve
tors of the 
otangent

spa
e T

�

P

. We require again that the transformation of the 
omponents !

�

of a 
ove
tor


an
els the transformation of the basis ve
tors,

!

�

=

�~x

�

�x

�

~!

�

: (6.12)

This 
ondition guarantees that the 
ove
tor itself is an invariant obje
t, sin
e

! = !

�

dx

�

=

�~x

�

�x

�

~!

�

�x

�

�~x

�

d~x

�

= ~!

�

d~x

�

= ~! : (6.13)
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Covariant and 
ontravariant tensors Next we generalise the 
on
ept of ve
tors and 
ove
-

tors. We 
all a ve
tor X also a 
ontravariant tensor of rank one, while we 
all a 
ove
tor

also a 
ovariant ve
tor or 
ovariant tensor of rank one. A general tensor of rank (n;m) is a

multilinear map

T = T

�;:::;�

�;:::;�

�

�


 : : :
 �

�

| {z }

n


dx

�


 : : :
 dx

�

| {z }

m

(6.14)

whi
h 
omponents transforms as

~

T

�;:::;�

�;:::;�

(~x) =

�~x

�

�x

�

: : :

�~x

�

�x

�

| {z }

n

�x




�~x

�

: : :

�x

Æ

�~x

�

| {z }

m

T

�;:::;�


;:::;Æ

(x) (6.15)

under a 
oordinate 
hange.

Metri
 tensor A (pseudo-) Riemannian manifold is a di�erentiable manifold 
ontaining as

additional stru
ture a symmetri
 tensor �eld g

��

whi
h allows us to measure distan
es and

angles. We de�ne the s
alar produ
t of two ve
tors a(x) and b(x) whi
h have the 
oordinates

a

�

and b

�

in a 
ertain basis e

�

as

a � b = (a

�

e

�

) � (b

�

e

�

) = (e

�

� e

�

)a

�

b

�

= g

��

a

�

b

�

: (6.16)

Thus we 
an evaluate the s
alar produ
t between any two ve
tors, if we know the symmetri


matrix g

��


omposed out of the N

2

produ
ts of the basis ve
tors,

g

��

(x) = e

�

(x) � e

�

(x) ; (6.17)

at any point x of the manifold. This symmetri
 matrix g

��

is 
alled metri
 tensor. The

manifold is 
alled Riemannian, if all eigenvalues of g

��

are positive, and thus the s
alar

produ
t de�ned by g

��

is positive-de�nite. If the s
alar produ
t is inde�nite, as in the 
ase

of general relativity, one 
alls the manifold pseudo-Riemannian.

In the same way, we de�ne for the dual basis e

�

the metri
 g

��

via

g

��

= e

�

� e

�

: (6.18)

A 
omparison with Eq. (6.10) shows that the metri
 g

��

maps 
ovariant ve
tors X

�

into


ontravariant ve
tors X

�

, while g

��

provides a map into the opposite dire
tion. Similarly, we


an use the metri
 tensor to raise and lower indi
es of any tensor.

Next we want to determine the relation of g

��

with g

��

. We multiply e

�

with e

�

= g

��

e

�

,

obtaining

Æ

�

�

= e

�

� e

�

= e

�

� g

��

e

�

= g

��

g

��

(6.19)

or

Æ

�

�

= g

��

g

��

: (6.20)

Thus the 
omponents of the 
ovariant and the 
ontravariant metri
 tensors, g

��

and g

��

, are

inverse matri
es of ea
h other. Moreover, the mixed metri
 tensor of rank (1,1) is given by

the Krone
ker delta, g

�

�

= Æ

�

�

. Note that the tra
e of the metri
 tensor is therefore not �2,

but

tr(g

��

) = g

��

g

��

= Æ

�

�

= 4 ; (6.21)

be
ause we have to 
ontra
t an upper and a lower index.
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e-time symmetries

6.2. Covariant derivative and the geodesi
 equation

Covariant derivative In an inertial system in Minkowski spa
e, taking the partial derivative

�

�

maps a tensor of rank (n;m) into a tensor of rank (n+1;m). Additionally, this map obeys

linearity and the Leibniz produ
t rule. We will see that in general the partial derivative in

a 
urved spa
e does not satisfy these rules. We therefore introdu
e a new derivative 
alled


ovariant derivative modi�ed su
h that it ful�ls these rules.

We start by 
onsidering the gradient �

�

� of a s
alar �. By de�nition, a s
alar quantity

does not depend on the 
oordinate system, �(x) =

~

�(~x). Therefore its gradient transforms as

�

�

�!

~

�

�

~

� =

�x

�

�~x

�

�

�

� : (6.22)

Thus the gradient is a 
ovariant ve
tor. Similarly, the derivative of a ve
tor V transforms as

a tensor,

�

�

V !

~

�

�

~

V =

�x

�

�~x

�

�

�

V ; (6.23)

be
ause V is an invariant quantity. If we 
onsider however its 
omponents V

�

= e

�

�V , then

the moving 
oordinate basis in 
urved spa
e-time, �

�

e

�

6= 0, leads to an additional term in

the derivative,

�

�

V

�

= e

�

� (�

�

V ) + V � (�

�

e

�

) : (6.24)

The term e

�

� (�

�

V ) transforms as a tensor, sin
e both e

�

and �

�

V are tensors. This implies

that the 
ombination of the two remaining terms has to transform as tensor too, whi
h we

de�ne as 
ovariant derivative

r

�

V

�

� e

�

� (�

�

V ) = �

�

V

�

� V � (�

�

e

�

) : (6.25)

The �rst equality tells us that we 
an view the 
ovariant derivative r

�

V

�

as the proje
tion

of �

�

V onto the dire
tion e

�

.

We expand now the partial derivatives of the basis ve
tors as a linear 
ombination of the

basis ve
tors,

�

�

e

�

= ��

�

��

e

�

: (6.26)

The n

3

numbers �

�

��

are 
alled (aÆne) 
onne
tion 
oeÆ
ients or symbols, in order to stress

that they are not the 
omponents of a tensor. You are asked to derive their transformation

properties in problem 6.??. Introdu
ing this expansion into (6.25) we 
an rewrite the 
ovariant

derivative of a ve
tor �eld as

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (6.27)

Using r

�

� = �

�

� and requiring that the usual Leibniz rule is valid for � = X

�

X

�

leads to

r

�

X

�

= �

�

X

�

� �

�

��

X

�

(6.28)

and to

�

�

e

�

= �

�

��

e

�

: (6.29)

For a general tensor, the 
ovariant derivative is de�ned by the same reasoning as

r

�

T

�:::

�:::

= �

�

T

�:::

�:::

+ �

�

��

T

�:::

�:::

+ : : :� �

�

��

T

�:::

�:::

� : : : (6.30)

Note that it is the last index of the 
onne
tion 
oeÆ
ients that is the same as the index of

the 
ovariant derivative. The plus sign goes together with upper (supers
ripts), the minus

with lower indi
es.
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Parallel transport We say a tensor T is parallel transported along the 
urve x(�), if its


omponents T

�:::

�:::

stay 
onstant. In 
at spa
e, this means simply

d

d�

T

�:::

�:::

=

dx

�

d�

�

�

T

�:::

�:::

= 0 : (6.31)

In 
urved spa
e, we have to repla
e the normal derivative by a 
ovariant one. We de�ne the

dire
tional 
ovariant derivative along x(�) as

D

d�

=

dx

�

d�

r

�

: (6.32)

Then a tensor is parallel transported along the 
urve x(�), if

D

d�

T

�:::

�:::

=

dx

�

d�

r

�

T

�:::

�:::

= 0 : (6.33)

Metri
 
ompatibility Relations like ds

2

= g

��

dx

�

dx

�

or g

��

p

�

p

�

= m

2

be
ome invariant

under parallel transport only, if the metri
 tensor is 
ovariantly 
onstant,

r

�

g

��

= r

�

g

��

= 0 : (6.34)

A 
onne
tion satisfying Eq. (6.34) is 
alled metri
 
ompatible and leaves lengths and angles

invariant under parallel transport. This requirement guarantees that we 
an introdu
e lo-


ally in the whole spa
e-time Cartesian inertial 
oordinate systems where the laws of spe
ial

relativity are valid. Moreover, these lo
al inertial systems 
an be 
onsistently 
onne
ted by

parallel transport using an aÆne 
onne
tion satisfying the 
onstraint (6.34).

Note that we have already built in this 
onstraint into our de�nition of the 
ovariant

derivative: If the length of a ve
tor would not be 
onserved under parallel transport, then we

should di�erentiate in (6.24) also the s
alar produ
t in V

�

= e

�

�V , leading to an additional

term in Eq. (6.25).

Geodesi
 equation The requirement that the aÆne 
onne
tion is metri
 
ompatible �xes

the 
onne
tion not uniquely, and thus the question arises whi
h 
onne
tion des
ribes physi
s

on a general spa
e-time? Ultimately, the 
ombined a
tion for gravity and matter should sele
t

the 
orre
t 
onne
tion|an approa
h we resume in Chapter 18. For the moment, we use a

simple workaround whi
h does not require the knowledge of the a
tion of gravity: In 
at

spa
e, we know that the solution to the equation of motions of a free parti
le is a straight

line. Su
h a path is 
hara
terised by two properties: It is the shortest 
urve between the


onsidered initial and �nal point, and it is the 
urve whose tangent ve
tors remains 
onstant

if they are parallel transported along it. Both 
onditions 
an be generalised to 
urved spa
e

and the 
urves satisfying either one of them are 
alled geodesi
s. Using the de�nition of a

geodesi
s as the \straightest" line on a manifold requires as mathemati
al stru
ture only the

possibility to parallel transport a tensor and thus the existen
e of an aÆne 
onne
tion. In


ontrast, the 
on
ept of an \extremal" (shortest or longest) line between two points on a

manifold relies on the existen
e of a metri
. Requiring that these two de�nitions agree �xes

uniquely the 
onne
tion to be used in the 
ovariant derivative.

We start by de�ning geodesi
s as the \straightest" line or an autoparallel 
urve on a

manifold|the 
ase whi
h is almost trivial: The tangent ve
tor along the path x(�) is
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u

�

= dx

�

=d� . Then the requirement (6.33) of parallel transport for u

�

be
omes

D

d�

dx

�

d�

=

d

2

x

�

d�

2

+�

�

��

dx

�

d�

dx

�

d�

= 0 : (6.35)

Introdu
ing _x

�

= dx

�

=d� , we obtain the geodesi
 equation in its standard form,

�x

�

+ �

�

��

_x

�

_x

�

= 0 : (6.36)

Note that a possible antisymmetri
 part of the 
onne
tion �

�

��

drops out of the geodesi


equation, be
ause _x

�

_x

�

is symmetri
.

Next we derive the de�ning equation for a geodesi
s as the extremal 
urve between two

points on a manifold. The Lagrangian of a free parti
le in Minkowski spa
e, Eq. (1.53), is

generalised to a 
urved spa
e-time manifold with the metri
 tensor g

��

by repla
ing �

��

with

g

��

(we set also m = �1),

L = g

��

_x

�

_x

�

: (6.37)

The Lagrange equations are

d

d�

�L

�( _x

�

)

�

�L

�x

�

= 0 : (6.38)

Only the metri
 tensor g

��

depends on x

�

and thus �L=�x

�

= g

��;�

_x

�

_x

�

. Here we introdu
ed

also the short-hand notation g

��;�

= �

�

g

��

for partial derivatives. Now we use � _x

�

=� _x

�

= Æ

�

�

and apply the 
hain rule for g

��

(x(�)), obtaining �rst

g

��;�

_x

�

_x

�

= 2

d

d�

(g

��

_x

�

) = 2(g

��;�

_x

�

_x

�

+ g

��

�x

�

) (6.39)

and then

g

��

�x

�

+

1

2

(2g

��;�

� g

��;�

) _x

�

_x

�

= 0 : (6.40)

Next we rewrite the se
ond term as

2g

��;�

_x

�

_x

�

= (g

��;�

+ g

��;�

) _x

�

_x

�

; (6.41)

multiply everything by g

��

and arrive at our desired result,

�x

�

+

1

2

g

��

(g

��;�

+ g

��;�

� g

��;�

) _x

�

_x

�

= �x

�

+ f

�

��

g _x

�

_x

�

= 0 : (6.42)

Here we de�ned in the last step the Christo�el symbols

�

�

��

	

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) : (6.43)

They are also 
alled Levi-Civita or Riemannian 
onne
tion. A 
omparison with Eq. (6.36)

shows that our two geodesi
 equations agree, if we 
hoose as 
onne
tion the Christo�el sym-

bols. Moreover, the Christo�el symbols are symmetri
 in their two lower indi
es and, as we

will show next, 
ompatible to the metri
 tensor. Following standard pra
tise, we will denote

them also with �

�

��

. In the remainder of this se
tion, we will use always as aÆne 
onne
tion

the Christo�el symbols.
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We de�ne

1

�

���

= g

��

�

�

��

: (6.44)

Thus �

���

is symmetri
 in the last two indi
es. Then it follows

�

���

=

1

2

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) : (6.45)

Adding 2�

���

and 2�

���

gives

2(�

���

+ �

���

) = �

b

g

��

+ �

�

g

��

� �

�

g

��

+ �

�

g

��

+ �

�

g

��

� �

�

g

��

= 2�

�

g

��

(6.46)

or

�

�

g

��

= �

���

+ �

���

: (6.47)

Applying the general rule for 
ovariant derivatives, Eq. (6.30), to the metri
,

r

�

g

��

= �

�

g

��

� �

�

�


g

��

� �

�

��

g

��

= �

�

g

��

� �

���

� �

���

; (6.48)

and inserting Eq. (6.47) shows that

r

�

g

��

= r

�

g

��

= 0 : (6.49)

Hen
e r

�


ommutes with 
ontra
ting indi
es,

r

�

(X

�

X

�

) = r

�

(g

��

X

�

X

�

) = g

��

r

�

(X

�

X

�

) (6.50)

and 
onserves the norm of ve
tors as announ
ed. Thus the Christo�el symbols are symmetri


and 
ompatible with the metri
. These two properties spe
ify uniquely the 
onne
tion.

Example 6.1: Cal
ulate the Christo�el symbols of the two-dimensional unit sphere S

2

.

The line-element of the two-dimensional unit sphere S

2

is given by ds

2

= d#

2

+ sin

2

#d�

2

. A faster

alternative to the de�nition (6.43) of the Christo�el 
oeÆ
ients is the use of the geodesi
 equation:

From the Lagrange fun
tion L = g

ab

_x

a

_x

b

=

_

#

2

+ sin

2

#

_

�

2

we �nd

�L

��

= 0 ;

d

dt

�L

�

_

�

=

d

dt

(2 sin

2

#

_

�) = 2 sin

2

#

�

�+ 4 
os# sin#

_

#

_

�

�L

�#

= 2 
os# sin#

_

�

2

;

d

dt

�L

�

_

#

=

d

dt

(2

_

#) = 2

�

#

and thus the Lagrange equations are

�

�+ 2 
ot#

_

#

_

� = 0 and

�

#� 
os# sin#

_

�

2

= 0 :

Comparing with the geodesi
 equation �x

�

+�

�

��

_x

�

_x

�

= 0, we 
an read o� the non-vanishing Christo�el

symbols as �

�

#�

= �

�

�#

= 
ot# and �

#

��

= � 
os# sin#. (Note that 2 
ot# = �

�

#�

+ �

�

�#

.)

We 
an use also the Hamiltonian formulation for a relativisti
 parti
le. From the Lagrangian

L =

1

2

g

��

_x

�

_x

�

we determine �rst the 
onjugated momenta p

�

= �L=� _x

�

= _x

�

and perform

then a Legendre transformation,

H(x

�

; p

�

; �) = p

�

_x

�

� L(x

�

; _x

�

; �) =

1

2

g

��

p

�

p

�

: (6.51)

1

We showed that the metri
 tensor 
an be used to raise or to lower tensor indi
es, but the 
onne
tion � is

not a tensor.
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Sin
e the Lagrangian of a free parti
le does not depend expli
itly on the evolution parameter

�, there exists at least one 
onserved quantity. This 
onservation law, H = 1=2, expresses

the fa
t that the tangent ve
tor _x

�

has a 
onstant norm. Hamilton equations give then

_x

�

=

�H

�p

�

= g

��

p

�

(6.52)

and

_p

�

= �

�H

�x

�

= �

1

2

�g

��

�x

�

p

�

p

�

: (6.53)

This is a useful alternative to the standard geodesi
 equation: First, it makes 
lear that the

momentum 
omponent p

�

is 
onserved, if the metri
 tensor is independent of the 
oordi-

nate x

�

. Se
ond, we 
an 
al
ulate _p

�

dire
tly from the metri
 tensor, without knowing the

Christo�el symbols. Combining the Eqs. (6.52) and (6.53) one 
an re-derive the standard

form of the geodesi
 equation, 
f. problem 6.??.

6.3. Integration and Gauss' theorem

Having de�ned the 
ovariant derivative of an arbitrary tensor �eld, it is natural to ask how

the inverse, the integral over a tensor �eld, 
an be de�ned. The short answer is that this is

in general impossible: Integrating a tensor �eld requires to sum tensors at di�erent points

in an invariant way, whi
h is only possible for s
alars. Restri
ting ourselves to s
alar �elds,

we should generalise an integral like I =

R

d

4

x�(x) valid in an Cartesian inertial frame x

�

in Minkowski spa
e to a general spa
e-time with 
oordinates ~x. For a general 
oordinate

transformation x

�

! ~x

�

, we have to take into a

ount that the Ja
obi determinant J =

det(�~x

�

=�x

�

) of the transformation 
an deviate from one. We 
an express this Ja
obian by

the determinant g � det(g

��

) of the metri
 tensor as follows: Applying the transformation

law of the metri
 tensor,

~g

��

(~x) =

�~x

�

�x

�

�~x

�

�x

�

g

��

(x) (6.54)

to the 
ase where the x

�

are inertial 
oordinates, we obtain with g = det(�

��

) = �1 that

det(~g) = J

2

det(g) = �J

2

(6.55)

or J =

p

j~gj. Thus I =

R

d

4

x

p

jgj � is an invariant de�nition of an integral over a s
alar

�eld whi
h agrees for inertial 
oordinates with the one known from spe
ial relativity. Now we


hoose as s
alar � the divergen
e of a ve
tor �eld, � = r

�

X

�

, or

I =

Z

d

4

x

p

jgj r

�

X

�

=

Z

d

4

x

p

jgj

�

�

�

X

�

+ �

�

��

X

�

�

: (6.56)

Our aim is to generalise Gauss' theorem (5.9). The only way how this theorem may be re
on-


iled with (6.56) is to hope that we 
an express the 
ovariant divergen
e as 1=

p

jgj�

�

(

p

jgjX

�

).

In order to 
he
k this possibility, we determine �rst the partial derivative of the metri
 de-

terminant g. As preparation, we 
onsider the variation of a general matrix M with elements

m

ij

(x) under an in�nitesimal 
hange of the 
oordinates, Æx

�

= "x

�

. It is 
onvenient to look

at the 
hange of ln detM ,

Æ ln detM � ln det(M + ÆM) � ln det(M) (6.57a)

= lndet[M

�1

(M + ÆM)℄ = lndet[1 +M

�1

ÆM ℄ = (6.57b)

= ln[1 + tr(M

�1

ÆM)℄ +O("

2

) = tr(M

�1

ÆM) +O("

2

) : (6.57
)
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In the last step, we used ln(1 + ") = "+O("

2

). Expressing now both the LHS and the RHS

as ÆM = �

�

MÆx

�

and 
omparing then the 
oeÆ
ients of Æx

�

gives

�

�

ln detM = tr(M

�1

�

�

M) : (6.58)

Applied to derivatives of

p

jgj, we obtain

1

2

g

��

�

�

g

��

=

1

2

�

�

ln g =

1

p

jgj

�

�

(

p

jgj) : (6.59)

This expression 
oin
ides with 
ontra
ted Christo�el symbols,

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) =

1

2

g

��

�

�

g

��

=

1

2

�

�

ln g =

1

p

jgj

�

�

(

p

jgj) : (6.60)

Now we 
an express the divergen
e of a ve
tor �eld as

r

�

X

�

= �

�

X

�

+ �

�

��

X

�

= �

�

X

�

+

1

p

jgj

(�

�

p

jgj)X

�

=

1

p

jgj

�

�

(

p

jgjX

�

) : (6.61)

Gauss' theorem for the divergen
e of a ve
tor �eld follows dire
tly,

Z




d

4

x

p

jgj r

�

X

�

=

Z




d

4

x �

�

(

p

jgjX

�

) =

Z

�


dS

�

p

jgjX

�

: (6.62)

This implies in parti
ular that we 
an drop terms like r

�

X

�

in the a
tion, if the ve
tor

�eld X

�

vanishes on the boundary. Similarly, Gauss' theorem allows us to derive global


onservation laws from r

�

X

�

= 0 in the same way as in Minkowski spa
e.

Next we 
onsider the divergen
e of an antisymmetri
 tensor of rank 2,

r

�

A

��

= �

�

A

��

+�

�

��

A

��

+ �

�

��

A

��

=

1

p

jgj

�

�

(

p

jgjA

��

) : (6.63)

Be
ause of the antisymmetry of A

��

the term �

�

��

A

��

vanishes, and we 
an 
ombine the �rst

two terms as in the ve
tor 
ase. This generalises to 
ompletely antisymmetri
 tensors of all

orders. In 
ontrast, we �nd for a symmetri
 tensor of rank 2,

r

�

S

��

= �

�

S

��

+ �

�

��

S

��

+ �

�

��

S

��

=

1

p

jgj

�

�

(

p

jgjS

��

) + �

�

��

S

��

: (6.64)

Hen
e the divergen
e of a symmetri
 tensor of rank two 
ontains an additional term

(�

�

g

��

)S

��

whi
h prohibits the use of Gauss' theorem.

6.4. Symmetries of a general spa
e-time

In the 
ase of a Riemannian spa
e-time manifold (M ;g), we say the spa
e-time possess a

symmetry if it looks the same as one moves from a point P along a ve
tor �eld �

�

to a

di�erent point

~

P . More pre
isely, we mean with \looking the same" that the metri
 tensor

transported along �

�

remains the same.

Su
h symmetries may be obvious, if one uses 
oordinates adapted to these symmetries: For

instan
e, the metri
 may be independent from one or several 
oordinates. Let us assume that
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the metri
 is e.g. independent from the time 
oordinate x

0

. Then x

0

is a 
y
li
 
oordinate,

�L=�x

0

= 0, of the Lagrangian L = d�=d� of a free test parti
le moving in M . With

L = d�=d�, the resulting 
onserved quantity �L=� _x

0

= 
onst: 
an be written as

�L

� _x

0

= g

0�

dx

�

Ld�

= g

0�

dx

�

d�

= � � u (6.65)

with � = e

0

and u as the four-velo
ity. Hen
e the quantity � � u = p

0

=m is 
onserved along

the solutions x

�

(�) of the Lagrange equation of a free parti
le onM , i.e. along geodesi
s: In

other words, the motion of all test parti
les in the 
orresponding spa
e-time 
onserve energy.

The ve
tor �eld � that points in the dire
tion in whi
h the metri
 does not 
hange is 
alled

Killing ve
tor �eld.

Sin
e we allow arbitrary 
oordinate systems, spa
e-time symmetries are however in general

not evident by a simple inspe
tion of the metri
 tensor. We say the metri
 is invariant

moving along the Killing ve
tor �eld �

�

, when the resulting 
hange Æg

��

of the metri
 is zero.

In order to use this 
ondition, we have to be able to 
al
ulate how the tensor g

��


hanges

as we transport it along a ve
tor �eld �

�

. Clearly, it is suÆ
ient to 
onsider an in�nitesimal

distan
e. Then we 
an work in the approximation

~x

�

= x

�

+ "�

�

(x

�

) +O("

2

) ; "� 1 ; (6.66)

and negle
t all terms quadrati
 in ".

We re
all �rst the transformation law for a rank two tensor as the metri
 under an arbitrary


oordinate transformation,

~g

��

(~x) =

�~x

�

�x

�

�~x

�

�x

�

g

��

(x) : (6.67)

Applied to the transport along � de�ned in (6.66), we obtain

~g

��

(~x) =

�~x

�

�x

�

�~x

�

�x

�

g

��

(x) = (Æ

�

�

+ "�

�

;�

)(Æ

�

�

+ "�

�

;�

)g

��

(x) (6.68a)

= g

��

(x) + "(�

�;�

+ �

�;�

) +O("

2

) : (6.68b)

In order to be able to 
ompare the new ~g

��

(~x) with g

��

(x), we have to express ~g

��

(~x) as

fun
tion of x. A Taylor expansion gives

~g

��

(~x) = ~g

��

(x+ "�) = ~g

��

(x) + "�

�

�

�

~g

��

(x) +O("

2

) : (6.69)

Setting equal Eqs. (6.68b) and (6.69), we obtain

g

��

(x) + "(�

�;�

+ �

�;�

) = ~g

��

(x) + "�

�

�

�

~g

��

(x) : (6.70)

Thus the metri
 is kept invariant, ~g

��

(x) = g

��

(x), if the 
ondition

�

�;�

+ �

�;�

� �

�

�

�

g

��

= 0 (6.71)

or

g

��

�

�

�

�

+ g

��

�

�

�

�

� �

�

�

�

g

��

= 0 (6.72)
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is satis�ed. Expressing partial derivatives as 
ovariant ones

2

, the terms 
ontaining 
onne
tion


oeÆ
ients 
an
el and we obtain the Killing equation

r

�

�

�

+r

�

�

�

= 0 : (6.73)

Its solutions � are the Killing ve
tors of the metri
.

We now 
he
k that Eq. (6.73) leads indeed to a 
onservation law, as required by our initial

de�nition of a Killing ve
tor �eld. We multiply the equation for geodesi
 motion,

Du

�

d�

= 0; (6.74)

by the Killing ve
tor �

�

and use Leibniz's produ
t rule together with the de�nition of the

absolute derivative (6.32),

�

�

Du

�

d�

=

d

d�

(�

�

u

�

)�r

�

�

�

u

�

u

�

= 0: (6.75)

The se
ond term vanishes for a Killing ve
tor �eld �

�

, be
ause the Killing equation implies

the antisymmetry of r

�

�

�

. Hen
e the quantity �

�

u

�

is indeed 
onserved along any geodesi
s.

Example 6.2: Find all ten Killing ve
tor �elds of Minkowski spa
e and spe
ify the 
orresponding

symmetries and 
onserved quantities.

The Killing equation r

�

�

�

+r

�

�

�

= 0 simpli�es in Minkowski spa
e to

�

�

�

�

+ �

�

�

�

= 0 : (6.76)

Taking one more derivative and using the symmetry of partial derivatives, we arrive at

�

�

�

�

�

�

+ �

�

�

�

�

�

= 2�

�

�

�

�

�

= 0 : (6.77)

Integrating this equation twi
e, we �nd

�

�

= !

�

�

x

�

+ a

�

: (6.78)

The matrix !

��

has to be antisymmetri
 in order to satisfy Eq. (6.76). Thus the Killing ve
tor �elds

are determined by ten integration 
onstants. They agree with the in�nitesimal generators of Lorentz

transformations, 
f. appendix B.3.

The four parameters a

�

generate translations, x

�

! x

�

+ a

�

, des
ribed by four Killing ve
tor �elds

whi
h 
an be 
hosen as the Cartesian basis ve
tors of Minkowski spa
e,

T

0

= �

t

; T

1

= �

x

; T

2

= �

y

; T

3

= �

z

:

For a parti
le with momentum p

�

= mu

�

moving along x

�

(�), the existen
e of a Killing ve
tor T

�

implies

d

d�

(T

�

� u) =

d

md�

(T

�

� p) = 0 ;

i.e. the 
onservation of the four-momentum 
omponent p

�

.

Consider next the ij (=spatial) 
omponents of the Killing equation. Three additional Killing ve
tors

are

J

1

= y�

z

� z�

y

; and 
y
li
 permutations. (6.79)

2

Sin
e Eq. (6.73) is tensor equation, the previous Eq. (6.72) is also invariant under arbitrary 
oordinate

transformations, although it 
ontains only partial derivatives. This suggests that one 
an introdu
e the

derivative of an arbitrary tensor along a ve
tor �eld, 
alled Lie derivative, without the need for a 
onne
tion.
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The existen
e of Killing ve
tors J

i

implies that J

i

� p is 
onserved along a geodesi
s of parti
le. But

J

1

� p = yp

z

� zp

y

= J

x

and thus the angular momentum around the origin of the 
oordinate system is 
onserved.

The other three 
omponents satisfy the 0� 
omponent of the Killing equations (!

0

1

= !

1

0

),

K

1

= t�

z

+ z�

t

; and 
y
li
 permutations. (6.80)

The 
onserved quantity tp

z

� zE = 
onst: now depends on time and is therefore not as popular as

the previous ones. Its 
onservation implies that the 
enter of mass of a system of parti
les moves with


onstant velo
ity v

�

= p

�

=E.

Global 
onservation laws An immediate 
onsequen
e of Eq. (6.61) is a 
ovariant form of

Gauss' theorem for ve
tor �elds. In parti
ular, we 
an 
on
lude from lo
al 
urrent 
onser-

vation, r

�

j

�

= 0, the existen
e of a globally 
onserved 
harge. If the 
onserved 
urrent j

�

vanishes at in�nity, then we obtain also in a general spa
e-time

Z




d

4

x

p

jgj r

�

j

�

=

Z




d

4

x�

�

(

p

jgjj

�

) =

Z

�


dS

�

p

jgj j

�

= 0 : (6.81)

Thus the 
onservation of Noether 
harges of internal symmetries as the ele
tri
 
harge, baryon

number, et
., 
ontinues to hold in a 
urved spa
e-time.

Next we 
onsider the energy-momentum stress tensor as an example for a lo
ally 
onserved

symmetri
 tensors of rank two. Now, the se
ond term in Eq. (6.64) prevents us to 
onvert

the lo
al 
onservation law into a global one. If the spa
e-time admits however a Killing �eld

�

�

, then we 
an form the ve
tor �eld P

�

= T

��

�

�

with

r

�

P

�

= r

�

(T

��

�

�

) = �

�

r

�

T

��

+ T

��

r

�

�

�

= 0 : (6.82)

Here, the �rst term vanishes sin
e T

��

is 
onserved and the se
ond be
ause T

��

is symmet-

ri
, while r

�

�

�

is antisymmetri
. Therefore the ve
tor �eld P

�

= T

��

�

�

is also 
onserved,

r

�

P

�

= 0, and we obtain thus the 
onservation of the 
omponent of the energy-momentum

ve
tor in dire
tion �.

Global energy 
onservation requires thus the existen
e of a time-like Killing ve
tor �eld. If

the metri
 is time-dependent, as e.g. in the 
ase of the expanding Universe, a time-like Killing

ve
tor �eld does not exist and the energy 
ontained in a \
omoving" volume 
hanges with

time.

Summary

In a 
urved spa
e-time M we require a 
onne
tion to 
ompare ve
tors at di�erent points.

The unique 
onne
tion whi
h is symmetri
 and 
ompatible with the metri
 are the Christo�el

symbols. The symmetries of a spa
e-time M are determined by its Killing ve
tor �elds �

�

.

The momentum 
omponent parallel to �

�

of test parti
les moving inM is 
onserved. Lo
ally


onserved 
urrents lead in general only for ve
tor 
urrents to globally 
onserved 
harges. In the
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ase of lo
ally 
onserved tensors (as r

�

T

��

= 0), the global 
onservation of the 
orresponding


harges requires the existen
e of Killing ve
tor �elds.

Further reading

[LL80℄ introdu
es 
lassi
al �eld theory in
luding general relativity. [Car03℄ presents a 
lear

introdu
tion to di�erential geometry on a level a

essible for physi
ists.
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7. Spin-1 and spin-2 �elds

We introdu
ed �elds transforming as tensors under 
oordinate general transformations. Su
h

�elds have integer spin and obey Bose-Einstein statisti
s. Therefore they 
an exist as ma
ro-

s
opi
 �elds and are thus 
andidates to des
ribe the ele
tri
 and the gravitational for
e. Sin
e

both the ele
tri
 and the gravitational potential V (r) follow a 1=r law, we expe
t from our

dis
ussion of the Yukawa potential that the two for
es are mediated by massless parti
les.

We will �nd later that no intera
ting theory of massless parti
les with spin s > 2 exists.

Therefore it is suÆ
ient to 
onsider the two 
ases s = 1 and s = 2.

7.1. Tensor �elds

The momentum modes / e

�ikx

of massive �elds 
an be boosted to their rest-frame, where

k

�

= (m;0). In this frame, the total angular momentum redu
es to spin, and nonrelativisti


quantum me
hani
s is valid. Thus a �eld with spin s has 2s+ 1 spin or polarisation states.

On the other hand, we 
an determine the spin

1

s of a �eld 
al
ulating the angle s� it is

turned by a rotation R

ij

(�). If we 
onsider the transformation law of a tensor �eld of rank

n,

~

T

�

1

����

n

= �

�

1

�

1

� � ��

�

n

�

n

T

�

1

����

n

, for the spe
ial 
ase of rotations, we see that the n fa
tors

�(�) rotate some 
omponents of T

�

1

����

n

by the angle n�. Therefore a tensor �eld of rank n

has spin s = n. This implies that �elds with spin s � 1 
ontain unphysi
al degrees of freedom:

For instan
e, a massive spin-1 �eld has three and a massive spin-2 �eld has �ve polarisation

states. On the other hand, a ve
tor �eld A

�

has four 
omponents, and a symmetri
 tensor

�eld h

��

of rank two has ten 
omponents in d = 4 spa
e-time dimensions. The purpose of a

relativisti
 wave equation is thus to impose the 
orre
t relativisti
 dispersion relation and to

sele
t the 
orre
t physi
al polarisation states in the 
hosen frame.

The �rst requirement is ful�lled if ea
h 
omponent of a free �eld �

a

satis�es the Klein-

Gordon equation. Additionally, we have to impose 
onstraints f

i

whi
h eliminate the redun-

dant 
omponents,

�

�+m

2

�

�

a

(x) = 0 ; and f

i

(�

a

(x)) = 0 : (7.1)

The reason for this mismat
h in the number of degrees of freedom is that in general a tensor

of rank n is redu
ible, i.e. it 
ontains 
omponents of rank < n. For instan
e, the tra
e h

�

�

of a

se
ond rank tensor transforms 
learly as a s
alar. Therefore we should 
hoose the 
onstraints

for massive �elds with spin s su
h that all 
omponents with spin < s are eliminated.

Example 7.1: An obje
t whi
h 
ontains invariant subgroups with respe
t to a symmetry operation

is 
alled redu
ible. As example, 
onsider the redu
ible subgroups of a symmetri
 tensor h

��

of rank

two with respe
t to spatial rotations. Sin
e one 
an boost a massive parti
le into its rest frame, this

the relevant de
omposition to �nd its spin states. We split h

��

into a s
alar h

00

, a ve
tor h

0i

and a

redu
ible tensor h

ij

,

h

��

=

�

h

00

h

0i

h

i0

h

ij

�

:

1

See the appendi
es B.3 and B.4 for a brief dis
ussion.
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Then we de
ompose h

ij

again into its tra
e h

ii

and its tra
eless part h

i

j

� hÆ

i

j

=(d� 1). The latter has

6� 1 = 5 degrees of freedom in d = 4, as required for a massive spin-2 �eld.

This problem is more severe for massless �elds: We know from 
lassi
al ele
trodynami
s

that the photon has only two polarisation states, and in appendix B.4 it is shown that this

holds for massless �elds with any spin s > 0. The redundant degrees of freedom of massless

�elds 
an be 
onsistently eliminated only, if some redundan
y of the �eld variables exists whi
h

in turn leads to a lo
al symmetry of the �eld. In this 
hapter, we dis
uss the 
onsequen
es of

this redundan
y 
alled gauge symmetry on the level of the wave equations and their solutions

for the photon and the graviton.

Tensor stru
ture of the propagator We 
an gain some insight into the general tensor stru
-

ture of the Feynman propagator for �elds with spin s > 0 using the de�nition of the 2-point

Green fun
tion as the time-ordered va
uum expe
tation values of �elds. In general, we 
an

express an arbitrary solutions of a free spin s = 0; 1 and 2 �eld by its Fourier 
omponents as

�(x) =

Z

d

3

k

p

(2�)

3

2!

k

h

a(k)e

�i(!

k

t�kx)

+ h:
:

i

; (7.2)

A

�

(x) =

X

r

Z

d

3

k

p

(2�)

3

2!

k

h

a

r

(k)"

�

r

(k)e

�i(!

k

t�kx)

+ h:
:

i

; (7.3)

h

��

(x) =

X

r

Z

d

3

k

p

(2�)

3

2!

k

h

a

r

(k)"

��

r

(k)e

�i(!

k

t�kx)

+ h:
:

i

; (7.4)

where the momentum is on-shell, k

�

= (!

k

;k) and r labels the spin or polarisation states.

The 
onstraints f

i

= 0 are now 
onditions on the polarisation ve
tor and tensor, respe
tively,

whi
h depend on k. Pro
eeding as in the s
alar 
ase, we expe
t that e.g. the propagator for

a ve
tor �eld is given by

iD

��

F

(x) = h0jTfA

�

(x)A

��

(0)gj0i = (7.5)

=

X

r

Z

d

3

k

(2�)

3

2!

k

h

"

�

r

(k)"

��

r

(k)e

�ikx

#(x

0

) + "

�

r

(k)"

��

r

(k)e

ikx

#(�x

0

)

i

(7.6)

=

Z

d

4

k

(2�)

4

P

��

(k) e

�ikx

k

2

�m

2

+ i"

: (7.7)

The expression (7.6) is in line with the interpretation of the propagator as the probability

for the 
reation of a parti
le at x with any momentum k and polarisation r, its propagation

to x

0

followed by its annihilation. In the last step, we introdu
ed the tensor P

��

(k) whi
h


orresponds to the sum over the polarisation states "

�

r

(k)"

��

r

(k). We will show that the

polarisation tensors are polynomials in the momentum k, and thus Eq. (7.6) shows that

P

��

(k) is even in the momentum. As a result, our dis
ussion of 
ausality in the s
alar


ase applies for all tensor �eld, implying that these �elds seen as quantum �elds 
ommute.

Therefore the parti
les des
ribed by these �elds satisfy Bose-Einstein statisti
s.

7.2. Ve
tor �elds
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Pro
a and Maxwell equations A massive ve
tor �eld A

�

has four 
omponents in d = 4

spa
e-time dimensions, while it has only 2s + 1 = 3 independent spin 
omponents. Corre-

spondingly, a four-ve
tor A

�

transforms under a rotation as (A

0

;A), i.e. it 
ontains a s
alar

and a three-ve
tor. Therefore we have to add to the four Klein-Gordon equations for A

�

one


onstraint whi
h eliminates A

0

: The only linear, Lorentz invariant possibility is

�

�+m

2

�

A

�

(x) = 0 and �

�

A

�

= 0 : (7.8)

In momentum spa
e, this translates into (k

2

� m

2

)A

�

(k) = 0 and k

�

A

�

(k) = 0. In the

rest frame of the parti
le, k

�

= (m;0), and the 
onstraint be
omes A

0

= 0. Hen
e a �eld

satisfying (7.8) has only three spa
e-like 
omponents as required for a massive s = 1 �eld.

We 
an 
hoose the three polarisation ve
tors whi
h label the three degrees of freedom in the

rest frame e.g. as the Cartesian unit ve
tors, "

i

/ e

i

.

The two equations 
an be 
ombined into one equation 
alled Pro
a equation,

(�

��

�� �

�

�

�

)A

�

+m

2

A

�

= 0 : (7.9)

To show the equivalen
e of this equation with (7.8), we a
t with �

�

on it,

(�

�

����

�

)A

�

+m

2

�

�

A

�

= m

2

�

�

A

�

= 0 : (7.10)

Hen
e, a solution of the Pro
a equation ful�ls automati
ally the 
onstraint �

�

A

�

= 0 for

m

2

> 0. On the other hand, we 
an negle
t the se
ond term in (7.9) for �

�

A

�

= 0 and obtain

the Klein-Gordon equation.

We now go over to the 
ase of a massless spin-1 �eld whi
h is des
ribed by the Maxwell

equations. In 
lassi
al ele
trodynami
s, the �eld-strength tensor F

��

is an observable quantity,

while the potential A

�

is merely a 
onvenient auxiliary quantity. From the de�nition

F

��

= �

�

A

�

� �

�

A

�

(7.11)

it is 
lear that F

��

is invariant under the transformations

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) : (7.12)

Thus A

0

�

(x) is for any �(x) physi
ally equivalent to A

�

(x), leading to the same �eld-strength

tensor and thus e.g. to the same Lorentz for
e on a parti
le. The transformations (7.12) are


alled gauge transformations. Note that the mass term m

2

A

�

in the Pro
a equation breaks

gauge invarian
e.

If we insert into the Maxwell equation the de�nition of the potential,

�

�

F

��

= �

�

(�

�

A

�

� �

�

A

�

) = �A

�

� �

�

�

�

A

�

= j

�

; (7.13)

we see that this expression equals the m = 0 limit of the Pro
a equation. Gauge invarian
e

allows us to 
hoose a potential A

�

su
h that �

�

A

�

= 0. Su
h a 
hoi
e is 
alled �xing the

gauge, and the parti
ular 
ase �

�

A

�

= 0 is denoted as Lorenz gauge. In the Lorenz gauge,

the wave equation simpli�es to

�A

�

= j

�

: (7.14)

Additionally, we 
an add to the potential A

�

any fun
tion �

�

� satisfying �� = 0. We 
an

use this freedom to set A

0

= 0. Inserting then a plane-wave A

�

/ "

�

e

ikx

into the free wave
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equation, �A

�

= 0, we �nd that k is a null-ve
tor and that "

�

k

�

= �" � k = 0. Thus the

photon propagates with the speed of light, is transversely polarised and has two polarisation

states as expe
ted for a massless parti
le.

Closely 
onne
ted to the gauge invarian
e of ele
trodynami
s is the fa
t that its sour
e, the

ele
tromagneti
 
urrent, is 
onserved. The antisymmetry of F

��

, whi
h is the basis for the

symmetry (7.12), leads also to �

�

�

�

F

��

= 0. Thus the Maxwell equation �

�

F

��

= j

�

implies

the 
onservation of the ele
tromagneti
 
urrent j

�

,

�

�

�

�

F

��

= �

�

j

�

= 0 : (7.15)

Propagator for massive spin-1 �elds The propagator D

��

for a massive spin-1 �eld is

determined by

�

�

��

(�+m

2

)� �

�

�

�

�

D

��

(x) = Æ

�

�

Æ(x) : (7.16)

Inserting the Fourier transformation of the propagator and of the delta fun
tion gives

��

�k

2

+m

2

�

�

��

+ k

�

k

�

�

D

��

(k) = Æ

�

�

: (7.17)

We will apply the tensor method to solve this equation: In this approa
h, we use �rst all

tensors available in the problem to 
onstru
t the required tensor of rank 2. In the 
ase at

hand, we have at our disposal only the momentum k

�

of the parti
le|whi
h we 
an 
ombine

to k

�

k

�

|and the metri
 tensor �

��

. Thus the tensor stru
ture of D

��

(k) has to be of the

form

D

��

(k) = A�

��

+Bk

�

k

�

(7.18)

with two unknown s
alar fun
tions A(k

2

) and B(k

2

). Inserting this ansatz into (7.17) and

multiplying out, we obtain

�

(�k

2

+m

2

)�

��

+ k

�

k

�

�

[A�

��

+Bk

�

k

�

℄ = Æ

�

�

; (7.19a)

�Ak

2

Æ

�

�

+Am

2

Æ

�

�

+Ak

�

k

�

+Bm

2

k

�

k

�

= Æ

�

�

; (7.19b)

�A(k

2

�m

2

)Æ

�

�

+ (A+Bm

2

)k

�

k

�

= Æ

�

�

: (7.19
)

In the last step, we regrouped the LHS into the two tensor stru
tures Æ

�

�

and k

�

k

�

. A


omparison of their 
oeÆ
ients gives then A = �1=(k

2

�m

2

) and

B = �

A

m

2

=

1

m

2

(k

2

�m

2

)

:

Thus the massive spin-1 propagator follows as

D

��

F

(k) =

��

��

+ k

�

k

�

=m

2

k

2

�m

2

+ i"

: (7.20)

Note that there is a sign ambiguity, sin
e we 
ould have added a minus sign to the Pro
a

equation.

Next we 
he
k this sign and our 
laim that the propagator D

ab

F

(k) of spin s > 0 �elds 
an

be obtained as sum over their polarisation states "

(r)

a

times the s
alar propagator �(k). As

the theory is Lorentz invariant, we 
an 
hoose the frame most 
onvenient for this 
omparison
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whi
h is the rest-frame of the massive parti
le. Then k

�

= (m;0) and the three polarisation

ve
tors 
an be 
hosen as the Cartesian basis ve
tors. Comparing then

� �

��

+ k

�

k

�

=m

2

=

0

B

B

�

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

A

=

X

r

"

�(r)

"

�(r)

; (7.21)

shows that both methods agree and 
an be used to derive the Feynman propagator. In the

latter approa
h, working from the RHS to the LHS of Eq. (7.21), we derive �rst the expression

valid for the Feynman propagator in a spe
i�
 frame. Then we have to rewrite the expression

in an invariant way using the relevant tensors, here �

��

and k

�

k

�

. Moreover, Eq. 7.21 shows

that we have 
hosen the right sign for the propagator (7.20).

Propagator for massless spin-1 �elds As we have seen, we 
an set m = 0 in the Pro
a

equation and obtain the Maxwell equation. The 
orresponding limit of the propagator (7.20)

leads however to an ill-de�ned result. As we know that the number of degrees of freedom

di�ers between the massive and the massless 
ase, this is not too surprising. If we try next

the limit m! 0 in Eq. (7.19
), then we �nd

�Ak

2

Æ

�

�

+Ak

�

k

�

= Æ

�

�

: (7.22)

This equation has for arbitrary k with A = �1=k

2

and A = 0 no solution. Moreover, the

fun
tion B is undetermined. We 
an understand this physi
ally, sin
e for a massless �eld


urrent 
onservation holds. But �

�

J

�

(x) = 0 implies k

�

J

�

(k) = 0 and thus the k

�

k

�

term

does not in
uen
e physi
al quantities: In physi
al measurable quantities, as e.g. W [J ℄, the

propagator is always mat
hed between 
onserved 
urrents, and the longitudinal part k

�

k

�

drops out.

We now try to 
onstru
t the photon propagator from its sum over polarisation states.

First we 
onsider a linearly polarised photon with polarisation ve
tors "

(r)

�

lying in the plane

perpendi
ular to its momentum ve
tor k. If we perform a Lorentz boost on "

(1)

�

, we will �nd

~"

(1)

�

= �

�

�

"

(1)

�

= a

1

"

(1)

�

+ a

2

"

(2)

�

+ a

3

k

�

; (7.23)

where the 
oeÆ
ients a

i

depend on the dire
tion � of the boost. Thus, in general the po-

larisation ve
tor will not be anymore perpendi
ular to k. Similarly, if we perform a gauge

transformation

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) (7.24)

with

�(x) = �i� exp(�ikx) + h:
: ; (7.25)

then

A

0

�

(x) = ("

�

+ �k

�

) exp(�ikx) + h:
: = "

0

�

exp(�ikx) + h:
: (7.26)

Choosing e.g. a photon propagating in z dire
tion, k

�

= (!; 0; 0; !), we see that the gauge

transformation does not a�e
t the transverse 
omponents k

x

and k

y

. Thus only the 
ompo-

nents of "

�

transverse to k 
an have physi
al signi�
an
e. On the other hand, the time-like

and longitudinal 
omponents depend on the arbitrary parameter � and are therefore unphys-

i
al. In parti
ular, they 
an be set to zero by a gauge transformation: First, "

0

�

k

0�

= 0 implies
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(again for a photon propagating in z dire
tion) "

0

0

= �"

0

3

. From "

0

3

= "

3

+ �!, we see that

� = "

3

=! sets "

0

3

= �"

0

0

= 0. Thus the transformation law (7.23) for the polarisation ve
tor

of a massless spin-1 parti
les requires the existen
e of the gauge symmetry (7.24). The gauge

symmetry in turn implies that the massless spin-1 parti
le 
ouples only to 
onserved 
urrents.

We 
an exploit the transformation law "

0

�

= "

�

+�k

�

as follows: Sin
e the dependen
e on k

�

is nonphysi
al, any Feynman amplitudeA = "

�

A

�

has to vanish, if we repla
e the polarisation

ve
tor "

�

of an external photon by its four-momentum, k

�

A

�

= 0. This quantum analogue of


lassi
al 
urrent 
onservation k

�

J

�

(k) = 0 is 
alled \Ward identity." As an example for its

appli
ation, we derive a 
onvenient expression for the propagator of a massless ve
tor parti
le.

The two polarisation ve
tors of a photon should satisfy the normalisation "

(a)�

�

"

�(b)

= Æ

ab

.

For a linearly polarised photon propagating in z dire
tion, k

�

= (!; 0; 0; !), the polarisation

ve
tors are "

(1)

�

= Æ

1

�

and "

(2)

�

= Æ

2

�

. If we perform the sum over the two polarisation states,

we �nd

X

r

"

(r)�

�

"

(r)

�

= diagf0; 1; 1; 0g : (7.27)

If we try to rewrite this expression in an invariant way using �

��

and k

�

k

�

=k

2

, we fail: We


annot 
an
el at the same time �

00

= +1 and �

33

= �1 by k

�

k

�

=k

2

. We introdu
e therefore

additionally the momentum ve
tor

~

k

�

= (!; 0; 0;�!) obtained by a spatial re
e
tion from

k

�

. This allows us to write the polarisation sum as an invariant tensor expression,

X

r

"

(r)�

�

"

(r)

�

= ��

��

+

k

�

~

k

�

+

~

k

�

k

�

k

~

k

� ��

��

: (7.28)

Current 
onservation, k

�

J

�

(k) = 0, implies that the se
ond term in the polarisation sum does

not 
ontribute to physi
al observables. For the same reason, we 
an add an arbitrary term

�k

�

k

�

. We use this freedom to eliminate the

~

k dependen
e and to set

J

��

 

X

r

"

(r)�

�

"

(r)

�

!

J

�

= J

��

�

��

��

+ (1� �)

k

�

k

�

k

2

�

J

�

: (7.29)

Now we 
an read o� the photon propagator as

D

��

F

(k) =

��

��

+ (1� �)k

�

k

�

=k

2

k

2

+ i"

: (7.30)

A spe
i�
 
hoi
e of the parameter � 
alled gauge �xing parameter 
orresponds to the 
hoi
e

of a gauge in Eq. (7.13). In parti
ular, the Feynman gauge � = 1, whi
h leads to a form

of the propagator often most 
onvenient in 
al
ulations, 
orrespond to the Lorenz gauge

in Eq. (7.13). In this gauge,

P

3

r=0

"

(r)�

�

"

(r)

�

= diagf�1; 1; 1; 1g: the propagator 
ontains

nonphysi
al degrees of freedom, time-like and longitudinal photons, whi
h 
ontributions 
an
el

however in physi
al observables. Similarly, for all other values � the propagator is expli
itly

Lorentz invariant but 
ontains unphysi
al degrees of freedom. We will see later that it is

a general feature of gauge theories as ele
trodynami
s that we have to 
hoose between a


ovariant gauge whi
h introdu
es unphysi
al degrees of freedom and a gauge whi
h 
ontains

only the transverse degree of freedom but sele
ts a spe
i�
 frame.
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Repulsive Coulomb potential by ve
tor ex
hange We 
onsider as in the s
alar 
ase two

stati
 point 
harges as external sour
es, but use now a ve
tor 
urrent J

�

= J

�

1

(x

1

) + J

�

2

(x

2

).

Sin
e J

�

= (�; j), only the zero 
omponent, J

�

i

= Æ

�

0

Æ(x�x

i

), 
ontributes for a stati
 sour
e

to W [J ℄. Moreover, we 
an negle
t the longitudinal part k

�

k

�

=m

2

of the propagator. This

is justi�ed, sin
e the 
on
ept of a potential energy makes only sense in the non-relativisti


limit, i.e. for V � m or equivalently r � 1=m. Hen
e

W

12

[J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

J

�

1

(x)

��

��

e

�ik(x�x

0

)

k

2

�m

2

+ i"

J

�

2

(x

0

) (7.31)

=

1

2

Z

dtdt

0

Z

d

4

k

(2�)

4

e

�ik(x�x

0

)

k

2

�m

2

+ i"

: (7.32)

Comparing with our earlier result for s
alar ex
hange in Eq. (3.37), it be
omes 
lear without

further 
al
ulation that spin-1 ex
hange between equal 
harges is repulsive. In the limit m!

0, we obtain the Coulomb potential with the 
orre
t sign for ele
tromagneti
 intera
tions.

7.3. Gravity

Wave equation From Newton's law we know that gravity is fundamentally attra
tive and

of long range. Thus the gravitational for
e has to be mediated by a massless parti
le whi
h


an not be a spin s = 1 parti
le. Analog to the ele
tri
 �eld E = �r� we 
an introdu
e a


lassi
al gravitational �eld g as the gradient of the gravitational potential, g = �r�. We

obtain then r � g(x) = �4�G�(x) and as Poisson equation

��(x) = 4�G�(x) ; (7.33)

where � is the mass density, � = dm=d

3

x.

Spe
ial relativity gives us two hints how we should transfer this equation into a relativis-

ti
 framework: First, the Lapla
e operator � on the LHS is the 
 ! 1 limit of minus the

d'Alembert operator �. Se
ond, the RHS should be the v=
 ! 0 limit of something in
or-

porating not only the mass density but all types of energy densities. To pro
eed, 
onsider

�rst how the mass density � transforms under a Lorentz transformation: An observer moving

with the speed � relative to the rest frame of the matter distribution � measures the energy

density �

0

= 
dm=(


�1

dV ) = 


2

�, with 
 = 1=

p

1� �

2

. This is the transformation law of

the 00 
omponent of a tensor of rank two and � as 00 
omponent, alas the energy-momentum

stress tensor T

��

.

Thus the �eld equation for a purely s
alar theory of gravity would be

�� = �4�GT

�

�

: (7.34)

Su
h a theory predi
ts no 
oupling between photons and gravitation, be
ause the tra
e of the

stress tensor of the ele
tromagneti
 �eld vanishes, T

�

�

= 0, and is therefore in 
ontradi
tion

to the observed gravitational lensing of light. A purely ve
tor theory for gravity fails too,

sin
e it predi
ts not attra
tion but repulsion of two masses. Hen
e we are for
ed to 
onsider

a symmetri
 spin-2 �eld

�

h

��

as mediator of the gravitational for
e; its sour
e is the energy-

momentum stress tensor

�

�

h

��

= �2�T

��

: (7.35)
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7.3. Gravity

The normalisation 
onstant � / G

N

has to be determined su
h that in the non-relativisti


limit the Poisson equation (7.33) holds.

Let us 
onsider as a warm-up �rst the 
ase of a massive parti
le: A symmetri
, massive

spin-2 �eld has ten independent 
omponents, but only 2s + 1 = 5 physi
al spin degrees of

freedom. Thus we have to impose �ve 
onstraints additional to the sour
e-free equation

(�+m

2

)

�

h

��

= 0 : (7.36)

Pro
eeding as in the s = 1 
ase, (7.8), we use as 
onstraint �

�

�

h

��

= 0 whi
h provides now

four 
onditions. We 
an use them to set

�

h

0�

= 0. We obtain the missing �fth 
onstraint

subtra
ting the tra
e

�

h

ii

whi
h transforms as a s
alar from

�

h

ij

.

We move now to the massless 
ase 
onsidering a plane wave

�

h

��

= "

��

exp(�ikx). In

analogy to the photon 
ase, we expe
t that also the graviton has only two, transverse degrees

of freedom. If we 
hoose the plane wave propagating in the z dire
tion, k = ke

z

, then we

expe
t that the polarisation tensor 
an be expressed as

"

��

=

0

B

B

�

0 0 0 0

0 "

11

"

12

0

0 "

12

�"

11

0

0 0 0 0

1

C

C

A

: (7.37)

Here we used that the polarisation tensor has to be symmetri
 and tra
eless. The 
hoi
e

(7.37) is 
alled the transverse tra
eless (TT) gauge.

Metri
 perturbations as a tensor �eld In the 
ase of the photon, we 
ould redu
e the de-

grees of freedom from four to two, be
ause of the redundan
y implied by the gauge symmetry

of ele
tromagnetism. Moreover, the gauge symmetry lead to the 
onservation of the ele
tro-

magneti
 
urrent. The two obvious questions to address next are whi
h symmetry and whi
h


onservation law are 
onne
ted to gravitation.

The se
ond question is the simpler one, sin
e we know already that in 
at spa
e �

�

T

��

= 0

holds. Thus for gravity energy-momentum 
onservation will play the role of 
urrent 
onserva-

tion, implying that a gravitational wave is transverse, k

�

T

��

(k) = 0. In order to answer the

�rst question, we have to 
onsider the properties of h

��

. The equivalen
e prin
iple implies

that all test-parti
les move along the same world-line, if they are released at the same initial

point and move only under the in
uen
e of the gravitational for
e. This universality moti-

vated Einstein to des
ribe the e�e
t of gravity by the 
urvature of spa
e-time. We asso
iate

therefore the symmetri
 tensor �eld

2

h

��

with small perturbations around the Minkowski

metri
 �

��

,

g

��

= �

��

+ "h

��

; "� 1 : (7.38)

We 
hoose a Cartesian 
oordinate system x

�

and ask ourselves whi
h transformations are 
om-

patible with the splitting (7.38) of the metri
. If we 
onsider global Lorentz transformations

�

�

�

, then x

0�

= �

�

�

x

�

, and the metri
 tensor transforms as

g

0

��

= �

�

�

�

�

�

g

��

= �

�

�

�

�

�

(�

��

+ h

��

) = �

��

+�

�

�

�

�

�

h

��

= �

0

��

+�

�

�

�

�

�

h

��

: (7.39)

2

We drop the bar, anti
ipating that

�

h

��

may di�er from h

��

in Eq. (7.35). We will derive their relation,

�

h

��

� h

��

�

1

2

�

��

h

�

�

, in se
tion 18.3.
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Sin
e h

0

��

= �

�

�

�

�

�

h

��

, we see that global Lorentz transformations respe
t the splitting

(7.38). Thus h

��

transforms as a rank-2 tensor under global Lorentz transformations. We 
an

view therefore the perturbation h

��

as a symmetri
 rank-2 tensor �eld de�ned on Minkowski

spa
e that satis�es the wave equation (7.35), similar as the photon �eld is a rank-1 tensor

�eld ful�lling Maxwell's equations.

The splitting (7.38) is however 
learly not invariant under general 
oordinate transforma-

tions, as they allow e.g. the �nite res
aling g

��

! 
g

��

. We restri
t therefore ourselves to

in�nitesimal 
oordinate transformations,

�x

�

= x

�

+ "�

�

(x

�

) (7.40)

with "� 1. Then the Killing equation (6.72) simpli�es to

h

0

��

= h

��

+ �

�

�

�

+ �

�

�

�

; (7.41)

be
ause the term �

�

�

�

h

��

is quadrati
 in the small quantities "h

��

and "�

�

and 
an be

negle
ted. Re
all that the �

�

�

�

h

��

term appeared, be
ause we 
ompared the metri
 tensor at

di�erent points. In its absen
e, it is more fruitful to view Eq. (7.41) not as a 
oordinate but as

a gauge transformation analogous to (7.12): In this interpretation, we stay in Minkowski spa
e

and the �elds h

0

��

and h

��

des
ribe the same physi
s, sin
e the gravitational �eld equations

do not �x uniquely h

��

for a given sour
e. In momentum spa
e, Eq. (7.41) spe
i�es how the

polarisation tensor transforms under gauge transformations,

"

0

��

= "

��

+ �

�

k

�

+ �

�

k

�

: (7.42)

We 
an use this gauge freedom to eliminate four 
omponents of "

��

. After that, we 
an

perform another gauge transformation (7.42) using any four fun
tions �

�

satisfying the wave

equation ��

�

= 0, eliminating thereby four additional 
omponents. This justi�es the use of

the TT gauge.

Graviton propagator We follow the same approa
h as in the derivation of the photon prop-

agator. For a graviton propagating in z dire
tion, k

�

= (!; 0; 0; !), we 
hoose as the two po-

larisation states "

(1)

��

setting "

11

= 1=

p

2 and "

12

= 0 and "

(2)

��

setting "

11

= 0 and "

12

= 1=

p

2,

respe
tively. They satisfy the normalisation "

(a)

��

"

��(b)

= Æ

ab

. Now we should perform the sum

over the two polarisation states,

P

r

"

(r)

��

"

(r)

��

, and express the result as a linear 
ombination of

�

��

and k

�

~

k

�

+

~

k

�

k

�

. A straightforward way to do this is to 
ombine �rst the ten independent

quantities of the symmetri
 tensors in ten-dimensional ve
tors, "

��

! E

a

, �

��

! N

a

, and

k

�

~

k

�

+

~

k

�

k

�

! K

a

, to 
al
ulate the tensor produ
ts of these ve
tors and to 
ompare then

the resulting 10 
 10 matri
es. An alternative, shorter way is to use the requirement that

the propagator is transverse in all indi
es, k

�

P

r

"

(r)

��

"

(r)

��

= : : : = k

�

P

r

"

(r)

��

"

(r)

��

= 0, be
ause

of energy-momentum 
onservation, �

�

T

��

(x) = 0. This implies that the graviton propagator

should be 
omposed of the proje
tion operators �

��

used for the photon (
f. Eq. (7.28)) as

follows

X

r

"

(r)

��

"

(r)

��

= A�

��

�

��

+B [�

��

�

��

+ �

��

�

��

℄ : (7.43)

The last two terms have a 
ommon 
oeÆ
ient, sin
e the LHS is invariant under ex
hanges

of � $ � or � $ �. We �x A and B by evaluating this expression for two sets of indi
es.
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Sin
e the only non-zero elements of �

��

are �

11

= �

22

= �1, we obtain 
hoosing e.g. f1212g

as indi
es

X

r

"

(r)

12

"

(r)

12

=

1

2

= B�

11

�

22

and thus B = 1=2. Similarly, it follows A = �1=2 
hoosing e.g. as indi
es f1111g. Thus we

found|with surprising ease|the polarisation sum required for the graviton propagator,

X

r

"

(r)

��

"

(r)

��

= �

1

2

�

��

�

��

+

1

2

�

��

�

��

+

1

2

�

��

�

��

: (7.44)

We 
ontinue to pro
eed in the same way as for the photon. Energy-momentum 
onservation,

k

�

T

��

(k) = 0, implies that the k

�

~

k

�

+

~

k

�

k

�

term in �

��

does not 
ontribute to physi
al

observables. We drop therefore again all terms proportional to the graviton momentum k

�

,

T

���

 

X

r

"

(r)�

��

"

(r)

��

!

T

��

= T

���

�

�

1

2

�

��

�

��

+

1

2

�

��

�

��

+

1

2

�

��

�

��

�

T

��

: (7.45)

Thus the graviton propagator in the Feynman gauge is given by

D

��;��

F

(k) =

1

2

(��

��

�

��

+ �

��

�

��

+ �

��

�

��

)

k

2

+ i"

: (7.46)

Other gauges are obtained by the repla
ement �

��

! �

��

� (1 � �)k

�

k

�

=k

2

. In the 
ase of

gravity, the Feynman gauge � = 1 is most often 
alled harmoni
 gauge, but also the names

Hilbert, Loren(t)z, de Donder and 
onfusingly many others are in use.

Attra
tive potential by spin-2 ex
hange We 
onsider now the potential energy 
reated by

two point masses as external sour
es intera
ting via a tensor 
urrent T

��

= T

��

1

(x

1

)+T

��

2

(x

2

).

Spe
ialising to stati
 sour
es, only the zero-zero 
omponent, T

��

i

= Æ

�

0

Æ

�

0

Æ(x�x

i

), 
ontributes

to W [J ℄. Hen
e

W

12

[J ℄ = �

1

2

Z

d

4

xd

4

x

0

Z

d

4

k

(2�)

4

T

00

1

(x)D

F 00;00

(k) e

�ik(x�x

0

)

T

00

2

(x

0

) : (7.47)

Looking at the numerator of the graviton propagator, we �nd �1 + 1 + 1 = 1 > 0. Thus

spin-2 ex
hange is attra
tive, as required for the for
e mediating gravity. Comparing

Eq. (7.47) to Newton's gravitational potential, we see that the graviton 
ouples with the

strength (8�G)

1=2

� �

1=2

to the stress tensor T

��

of matter, 
f. problem 7.??.

Heli
ity We determine now how a metri
 perturbation h

��

transforms under a rotation with

the angle �. We 
hoose the wave propagating in z dire
tion, k = ke

z

, the TT gauge, and the

rotation in the xy plane. Then the general Lorentz transformation �

�

�

be
omes

�

�

�

=

0

B

B

�

1 0 0 0

0 
os� sin� 0

0 � sin� 
os� 0

0 0 0 1

1

C

C

A

: (7.48)
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Sin
e k = ke

z

and thus �

�

�

k

�

= k

�

, the rotation a�e
ts only the polarisation tensor. We

rewrite "

0

��

= �

�

�

�

�

�

"

��

in matrix notation, "

0

= �"�

T

. It is suÆ
ient to perform the


al
ulation for the xy sub-matri
es. The result after introdu
ing 
ir
ular polarisation states

"

�

= "

11

� i"

12

is

"

0��

�

= exp(�2i�)"

��

�

: (7.49)

The same 
al
ulation for a 
ir
ularly polarised photon gives "

0�

�

= exp(�i�)"

�

�

. Any plane

wave  whi
h is transformed into  

0

= e

�ih�

 by a rotation of an angle � around its prop-

agation axis is said to have heli
ity h. Thus if we say that a photon has spin 1 and a

graviton has spin 2, we mean more pre
isely that ele
tromagneti
 and gravitational plan

waves have heli
ity one and two, respe
tively. Doing the same 
al
ulation in an arbitrary

gauge, one �nds that the remaining, unphysi
al degrees of freedom transform as heli
ity one

and zero (problem 7.??). In general, a tensor �eld of rank (n;m) 
ontains states with heli
ity

h = 0; : : : ; n+m. Thus we 
an rephrase the statement that tensor �elds follow Bose-Einstein

statisti
s as �elds with integer heli
ity (or spin) are bosons.

7.4. Sour
e of gravity

The dynami
al energy-momentum tensor If we 
ompare the wave equation for a photon

and a graviton, then there is an important di�eren
e: The former is in the 
lassi
al limit exa
t.

The photon 
arries no 
harge and does not 
ontribute to its sour
e term. As a result, the

wave equation is linear. In 
ontrast, a gravitational wave 
arries energy-momentum and a
ts

thus as its own sour
e. The LHS of (7.35) should be therefore the limit of a more 
ompli
ated

equation, whi
h we write symboli
ally as G

��

= ��T

��

. The tensor G

��

should be given as

the variation of an appropriate a
tion of gravity, 
alled the Einstein-Hilbert a
tion S

EH

, with

respe
t to the metri
 tensor g

��

. Even without knowing the a
tion S

EH

, we 
an derive an

important 
on
lusion: If the total a
tion is the sum of S

EH

and the a
tion S

m

in
luding all

relevant matter �elds,

S =

1

2�

S

EH

+ S

m

;

then the variation of the matter a
tion S

m

should give the stress tensor as the sour
e of the

gravitational �eld,

2

p

jgj

ÆS

m

Æg

��

= �T

��

: (7.50)

Here we in
luded a fa
tor

p

jgj be
ause T

��

is a density, while the fa
tor 2 is required to

obtain agreement with the usual de�nition of T

��

. Sin
e the presen
e of gravity implies a


urved spa
e-time, the repla
ements f�

�

; �

��

;d

4

xg ! fr

�

; g

��

;d

4

x

p

jgjg have to performed

in S

m

before the variation is performed. The tensor T

��

de�ned by this equation is 
alled

dynami
al energy-momentum stress tensor. In order to show that this de�nition makes sense,

we have to prove that the tensor is lo
ally 
onserved, r

�

T

��

= 0, and we have to 
onvin
e

ourselves that this de�nition reprodu
es the standard results we know already.

Conservation of the stress tensor We start by proving that the dynami
al energy-

momentum tensor de�ned by Eq. (7.50) is lo
ally 
onserved. We 
onsider the 
hange of
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7.A. Appendix: Large extra dimensions and massive gravity

the matter a
tion under a variation of the metri


3

,

ÆS

m

= �

1

2

Z




d

4

x

p

jgj T

��

Æg

��

=

1

2

Z




d

4

x

p

jgj T

��

Æg

��

: (7.51)

We allow in�nitesimal but otherwise arbitrary 
oordinate transformations,

�x

�

= x

�

+ �

�

(x) : (7.52)

For the resulting 
hange in the metri
 Æg

��

we 
an use Eqs. (6.68b) and (6.69),

Æg

��

= r

�

�

�

+r

�

�

�

: (7.53)

We use that T

��

is symmetri
 and that general 
ovarian
e guarantees that ÆS

m

= 0 for a


oordinate transformation,

ÆS

m

= �

Z




d

4

x

p

jgj T

��

r

�

�

�

= 0 : (7.54)

Next we apply the produ
t rule,

ÆS

m

= �

Z




d

4

x

p

jgj (r

�

T

��

)�

�

+

Z




d

4

x

p

jgj r

�

(T

��

�

�

) = 0 : (7.55)

The se
ond term is a four-divergen
e and thus a boundary term that we 
an negle
t. The

remaining �rst term vanishes for arbitrary �

�

only, if the energy-momentum tensor is 
on-

served,

r

�

T

��

= 0 : (7.56)

Hen
e the lo
al 
onservation of energy-momentum is a 
onsequen
e of the general 
ovarian
e of

the gravitational �eld equations, in the same way as 
urrent 
onservation follows from gauge

invarian
e in ele
tromagnetism. You should 
onvin
e yourself that the dynami
al energy-

momentum stress tensor evaluated for the examples of the Klein-Gordon and the Maxwell

�eld agrees with the symmetrised 
anoni
al stress tensor, 
f. problem 7.??.

7.A. Appendix: Large extra dimensions and massive gravity

Large extra dimensions As mentioned in 
hapter 5, quantum 
orre
tions break the 
onformal

invarian
e of string theory ex
ept we live in a world with d = 10 or 26 spa
e-time dimensions. There

are two obvious answers to this result: First, one may 
on
lude that string theory is disproven by

nature or, se
ond, one may adjust reality. Consisten
y of the se
ond approa
h with experimental data


ould be a
hieved, if the d � 4 dimensions are 
ompa
ti�ed with a suÆ
iently small radius R, su
h

that they are not visible in experiments sensible to wave-lengths �� R.

Let us 
he
k what happens to a s
alar parti
le with mass m, if we add a �fth 
ompa
t dimension

y. The Klein-Gordon equation for a s
alar �eld �(x

�

; y) be
omes

(�

5

+m

2

)�(x

�

; y) = 0 (7.57)

3

We should view g

��

(and not g

��

) as \the" gravitational �eld: In the Lagrangian of a point parti
le or the

line-element, the 
oordinates x

�

are 
ontra
ted with g

��

. Having understood this point, we use simply the

se
ond relation in (7.51) in the future.
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7. Spin-1 and spin-2 �elds

with the �ve-dimensional d'Alembert operator�

5

= ���

2

y

. The equation 
an be separated, �(x

�

; y) =

�(x

�

)f(y), and sin
e the �fth dimension is 
ompa
t, the spe
trum of f is dis
rete. Assuming periodi


boundary 
onditions, f(x) = f(x+R), gives

�(x

�

; y) = �(x

�

) 
os(n�y=R) : (7.58)

The energy eigenvalues of these solutions are !

2

k;n

= k

2

+m

2

+(n�=R)

2

. From a four-dimensional point

of view, the term (n�=R)

2

appears as a mass term, m

2

n

= m

2

+ (n�=R)

2

. Sin
e we usually 
onsider

states with di�erent masses as di�erent parti
les, we see the �ve-dimensional parti
le as a tower of

parti
les with mass m

n

but otherwise identi
al quantum numbers. Su
h theories are 
alled Kaluza-

Klein theories, and the tower of parti
les Kaluza-Klein parti
les. If R� �, where � is the length-s
ale

experimentally probed, only the n = 0 parti
le is visible and physi
s appears to be four-dimensional.

Sin
e string theory in
ludes gravity, one often assumes that the radius R of the extra-dimensions is

determined by the Plan
k length, R = 1=M

Pl

= (8�G

N

)

1=2

� 10

�34


m. In this 
ase it is diÆ
ult to

imagine any observational 
onsequen
es of the additional dimensions. More interesting is the possibility

that some of the extra dimensions are large,

R

1;:::;Æ

� R

Æ+1;:::;6

= 1=M

Pl

:

Sin
e the 1=r

2

behaviour of the gravitational for
e is not tested below d

�

�mm s
ales, one 
an

imagine that large extra dimensions exists that are only visible to gravity: Relating the d = 4 and

d > 4 Newton's law F �

m

1

m

2

r

2+Æ

at the intermediate s
ale r = R, we 
an derive the \true" value of the

Plan
k s
ale in this model: Mat
hing of Newton's law in 4 and 4 + Æ dimensions at r = R gives

F (r = R) = G

N

m

1

m

2

R

2

=

1

M

2+Æ

D

m

1

m

2

R

2+Æ

: (7.59)

This equation relates the size R of the large extra dimensions to the true fundamental s
ale M

D

of

gravity in this model,

G

�1

N

= 8�M

2

Pl

= R

Æ

M

Æ+2

D

; (7.60)

while Newton's 
onstant G

N

be
omes just an auxiliary quantity useful to des
ribe physi
s at r

>

�

R.

(You may 
ompare this to the 
ase of weak intera
tions where Fermi's 
onstant G

F

/ g

2

=m

2

W

is

determined by the weak 
oupling 
onstant g and the mass m

W

of the W -boson).

Next we ask, if M

D

� TeV is possible, i.e. if one may test su
h theories at a

elerators as LHC?

Inserting the measured value of G

N

and M

D

= 1TeV in Eq. (7.60) we �nd the required value for the

size R of the large extra dimension as 10

13


m and 0:1 
m for Æ = 1 and 2, respe
tively, Thus the 
ase

Æ = 1 is ex
luded by the agreement of the dynami
s of the solar system with 4-dimensional Newtonian

physi
s. The 
ases Æ � 2 are possible, be
ause Newton's law is experimentally tested only for s
ales

r

>

�

1mm.

Massive gravity Theories with extra dimensions 
ontain often from our 4-dimensional point of view

a Kaluza-Klein tower of massive gravitons. Su
h modi�ed theories of gravity have found large interest

sin
e one may hope to �nd an alternative explanation for the a

elerated expansion of the Universe.

A striking di�eren
e between the spin-2 and the spin-0 and 1 
ases is that the limit m ! 0 of the

massive spin-2 propagator and thus of the potential energy V

12

is not smooth: In problem 7.??, you

are asked to derive the massive spin-2 propagator. As result, you should �nd

D

��;��

F

(k) =

1

2

�

2

3

G

��

G

��

+G

��

G

��

+G

��

G

��

k

2

�m

2

+ i"

; (7.61)

where

G

��

(k) = ��

��

+ k

�

k

�

=m

2

(7.62)

is the polarisation tensor for a massive spin-1 parti
le. Thus the nominator in the massive spin-

2 propagator is as in the massless 
ase a linear 
ombination of the tensor produ
ts of two spin-1
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7.A. Appendix: Large extra dimensions and massive gravity

polarisation tensors. However, the 
oeÆ
ients of the �rst term di�er and thus the m ! 0 limit of

the massive propagator does not agree with the massless 
ase. In parti
ular, the di�eren
e 
annot be


ompensated by a res
aling of the 
oupling 
onstant

~

G

N

, be
ause it is not an overall fa
tor: Imagine for

instan
e that we determine the value of

~

G

N

by 
al
ulating the potential energy of two non-relativisti


sour
es like the Sun and the Earth. This requires in massive gravity|for an arbitrarily small graviton

mass|a gravitational 
oupling 
onstant

~

G

N

a fa
tor 3=4 smaller than in the massless 
ase. Having

�xed

~

G

N

, we 
an predi
t the de
e
tion of light by the Sun. Sin
e the �rst term in the propagator


ouples the tra
es T

�

�

of two sour
es, it does not 
ontribute to the de
e
tion of light. As a result of

the redu
ed 
oupling strength, the de
e
tion angle of light by the Sun de
reases by the same fa
tor

and any non-zero graviton mass would be in 
on
i
t with observations.

When this result was �rst derived in 1970, its authors explained this dis
ontinuity by the di�erent

number of degrees of freedom in the two theories: Even if the Compton wave-length of a massive

graviton is larger than the observable size of the Universe, and thus the Yukawa fa
tor exp(�mr)

indistinguishable from one, the additional spin states of a massive graviton may 
hange physi
s. Two

years later, Vainshtein realised that perturbation theory may break down in massive gravity and thus

a 
al
ulation using one-graviton ex
hange is not reliable. More pre
isely, a theory of massive gravity


ontains an additional length s
ale R

V

= (GM=m

4

)

1=5

and for distan
es r � R

V

the theory has to

be solved exa
tly.

Summary

Tensor �elds satisfy se
ond-order di�erential equations; their propagators are quadrati
 in p

and thus even fun
tions of x. As a result, tensor �elds des
ribe bosons, i.e. their �eld operators

are 
ommuting operators. Massless �elds have only two, transverse degrees of freedom. A

Lorentz invariant des
ription for su
h �elds is only possible, if the remaining number of non-

physi
al degrees of freedom is redundant. This redundan
y implies that �elds 
onne
ted by

a gauge transformation are equivalent and des
ribe the same physi
al system. In the 
ase of

photons, the gauge symmetry implies that they 
ouple to a 
onserved 
urrent, in the 
ase of

gravitons that they 
ouple to the 
onserved energy-momentum 
onservation tensor.

Further reading

[Mag07℄ dis
usses in detail (massive) gravity as a spin-2 �eld in Minkowski spa
e. The history

of the gauge prin
iple is reviewed by [JO01℄.
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8. Fermions and the Dira
 equation

Up to now we have dis
ussed �elds whi
h transform as tensors under Lorentz transformations.

Su
h parti
les have integer spin or heli
ity. Sin
e we 
an boost massive parti
les into their

rest-frame, we 
an use our knowledge of non-relativisti
 quantum me
hani
s to anti
ipate

that additional representations of the rotation group SO(3) and thus also of the Lorentz

group SO(1; 3) exist whi
h 
orrespond to parti
les with half-integer spin. Su
h parti
les are

des
ribed by anti-
ommuting variables what is the fundamental reason for the Pauli prin
iple

and thus the stability of matter.

8.1. Spinor representation of the Lorentz group

In order to introdu
e spinors we have to �nd the 
orresponding representation of the Lorentz

group. As always it is simpler to work at linear order, whi
h is in this 
ase the Lie algebra.

The Lie algebra of the Poin
ar�e group

1


ontains ten generators, the three generators J of

rotations, the three generatorsK of Lorentz boosts and the four generators T of translations.

The Killing ve
tor �elds V of Minkowski spa
e generate these symmetries, and therefore the

generators are given by the Killing ve
tor �elds. Thus we 
an use Eqs. (6.79) and (6.80) to


al
ulate their 
ommutation relations as (problem 8.??)

[J

i

; J

j

℄ = i"

ijk

J

k

; (8.1a)

[J

i

;K

j

℄ = i"

ijk

K

k

; (8.1b)

[K

i

;K

j

℄ = �i"

ijk

J

k

: (8.1
)

Here we followed physi
ist's 
onvention and identi�ed iV as the generators, so that they are

Hermitian. Moreover, we restri
t our attention to the Lorentz group whi
h is suÆ
ient to

derive the 
on
ept of a Weyl spinor. Note that the algebra of the boost generators K is not


losed. Thus in 
ontrast to rotations, boosts do not form a subgroup of the Lorentz group.

The stru
ture 
onstants in all these 
ommutation relations are �"

ijk

, suggesting that we


an rewrite the Lorentz group as a produ
t of two SU(2) fa
tors. We try to de
ouple the two

sets of generators J and K by introdu
ing two non-Hermitian ladder operators

J

�

=

1

2

(J � iK) : (8.2)

Their 
ommutations relations are

[J

+

i

; J

+

j

℄ = i"

ijk

J

+

k

; (8.3a)

[J

�

i

; J

�

j

℄ = i"

ijk

J

�

k

; (8.3b)

[J

+

i

; J

�

j

℄ = 0 i; j = 1; 2; 3 : (8.3
)

1

See the Appendi
es B.3 and B.4 for a brief review of the Poin
ar�e group.
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8.1. Spinor representation of the Lorentz group

Thus J

�

and J

+


ommute with ea
h other and generate ea
h a SU(2) group. The Lorentz

group is

2

therefore � SU(2) 
 SU(2), and states transforming in a well-de�ned way are la-

belled by a pair of angular momenta, (j

�

; j

+

), 
orresponding to the eigenvalues of J

�

z

and

J

+

z

, respe
tively. From our knowledge of the angular momentum algebra in nonrelativis-

ti
 quantum me
hani
s, we 
on
lude that the dimension of the representation (j

�

; j

+

) is

(2j

�

+ 1)(2j

+

+ 1). Be
ause of J = J

�

+ J

+

, the representation (j

�

; j

+

) 
ontains all possi-

ble spins j in integer steps from jj

�

� j

+

j to j

�

+ j

+

.

The representation (0; 0) has dimension one, transforms trivially, J = K = 0, and 
orre-

sponds therefore to the s
alar representation. The two smallest non-trivial representations are

J

+

= 0, i.e. (j

�

; 0) with J

(1=2)

= �iK

(1=2)

, and J

�

= 0, i.e. (0; j

+

) with J

(1=2)

= iK

(1=2)

.

Both representations have spin 1/2 and dimension two. We de�ne therefore two types of

two-
omponent spinors,

�

L

: (1=2; 0); J

(1=2)

= �=2; K

(1=2)

= +i�=2 ; (8.4a)

�

R

: (0; 1=2); J

(1=2)

= �=2; K

(1=2)

= �i�=2 ; (8.4b)

whi
h we 
all left-
hiral and right-
hiral Weyl spinors. These Weyl spinors form the fun-

damental representation of the Lorentz group: All higher spin states 
an be obtained as

tensor produ
ts involving them. Their transformation properties under an (a
tive) �nite

Lorentz transformation with parameters � and � follow by exponentiating their generators

as exp(�iJ�+ iK�) (
ompare to appendix B.3 for our 
hoi
e of signs),

�

L

! �

0

L

= exp

�

�

i��

2

�

��

2

�

�

L

� S

L

�

L

; (8.5a)

�

R

! �

0

R

= exp

�

�

i��

2

+

��

2

�

�

R

� S

R

�

R

: (8.5b)

While the transformation matri
es S

L

and S

R

agree for rotations, the terms des
ribing Lorentz

boosts have opposite signs. Note also that only rotations are des
ribed by a unitary trans-

formation, while Lorentz boosts lead to a non-unitary transformation of the Weyl spinors.

We ask now if we 
an 
onvert a left- into a right-
hiral spinor and vi
e versa. Thus we

should �nd a spinor

~

�

L


onstru
ted out of �

L

whi
h transforms as S

R

~

�

L

. Changing S

L

into

S

R

requires reversing the relative sign between the rotation and the boost term, whi
h we

a
hieve by 
omplex 
onjugating �

L

,

�

�0

L

=

�

1 +

i�

�

�

2

�

�

�

�

2

+ : : :

�

�

�

L

: (8.6)

Be
ause of �

�

1

= �

1

, �

�

2

= ��

2

, �

�

3

= �

3

, and �

1

�

2

= ��

2

�

1

, �

2

�

3

= ��

3

�

2

, we obtain the

desired transformation property multiplying �

�0

L

with �

2

,

�

2

�

�0

L

= �

2

�

1 +

i(�

1

;��

2

; �

3

)�

2

�

(�

1

;��

2

; �

3

)�

2

+ : : :

�

�

�

L

(8.7a)

=

�

1�

i��

2

+

��

2

+ : : :

�

�

2

�

�

L

= S

R

�

2

�

�

L

: (8.7b)

2

More pre
isely, they have the same Lie algebra and are thus lo
ally isomorphi
 but di�er globally.
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Thus �

L

and �

R

are 
onne
ted by a non-unitary transformation, and therefore �

L

and �

R

des
ribe di�erent physi
s. Obviously, we 
an add to �

2

�

�

L

an arbitrary phase e

iÆ

without


hanging the transformation properties. We de�ne

�




R

� �i�

2

�

�

L

and �




L

� i�

2

�

�

R

; ; (8.8)

whi
h ensures (�




L

)




= �

L

and (�




R

)




= �

R

. When we dis
uss later the 
oupling of a fermion

to an external �eld, we will see that �




L

is the 
harge 
onjugated spinor of �

L

.

For the 
onstru
tion of a Lagrangian we need for the mass term s
alars and for the kineti


energy ve
tors built out of the Weyl �elds. Both the kineti
 and the mass terms should be

real to provide a real Lagrangian. In 
ontrast to the real Lorentz transformation �

�

�

a
ting

on tensor �elds, the matri
es S

L=R

are however 
omplex and thus the Weyl �elds are 
omplex

too. This suggests together with the fa
t that a measurement devi
e should be the same after

a rotation by 2� that observables are bilinear quantities in the fermion �elds, su
h that they

transform tensorial and their eigenvalues are real.

Out of the two Weyl spinors, we 
an form four di�erent produ
ts �

y

L=R

�

L=R

leading to the


ombinations S

y

L

S

L

, S

y

R

S

R

, S

y

L

S

R

, and S

y

R

S

L

. The rotation i��=2 
an
els in all four produ
ts,

sin
e it enters with the same sign in S

L

and S

R

, and the Pauli matri
es are Hermitian, �

y

= �.

By 
ontrast, the 
an
ellation of the boost ��=2 requires a 
ombination of a left- and right-


hiral �eld,

�

0y

L

�

0

R

= �

y

L

h

1 + i

��

2

�

��

2

+ : : :

i h

1� i

��

2

+

��

2

+ : : :

i

�

R

= �

y

L

�

R

; (8.9)

and similarly for �

y

R

�

L

. Thus �

y

L

�

R

and �

y

R

�

L

transform as Lorentz s
alars, but not �

y

L

�

L

and �

y

R

�

R

. So what are the transformation properties of the latter two produ
ts? Performing

an in�nitesimal boost along the z axis, we �nd

�

0y

R

�

0

R

= �

y

R

h

1 +

�

3

�

2

+ : : :

i h

1 +

�

3

�

2

+ : : :

i

�

R

= �

y

R

�

R

+ ��

y

R

�

3

�

R

: (8.10)

This looks like an in�nitesimal Lorentz transformation of the time-like 
omponent j

0

= �

y

R

�

R

of a four-ve
tor j

�

. If this interpretation is 
orre
t, we should be able to asso
iate the spatial

part j with �

y

R

��

R

. Che
king thus how j transforms, we �nd using �

i

�

j

= Æ

ij

+ i"

ijk

�

k

that

j

1

and j

2

are invariant, while j

3

transforms as

�

0y

R

�

3

�

0

R

= �

y

R

h

1 +

�

3

�

2

+ : : :

i

�

3

h

1 +

�

3

�

2

+ : : :

i

�

R

= ��

y

R

�

R

+ �

y

R

�

3

�

R

: (8.11)

Thus �

y

R

�

�

�

R

with �

�

� (1;�) transforms as a four-ve
tor, j

0

! j

0

+ �j

3

and j

3

! �j

0

+ j

3

.

Performing the same 
al
ulation for the left-
hiral �elds reprodu
es the same result ex
ept

for an opposite sign of �. We a

ount for this sign 
hange setting now ��

�

� (1;��), so that

a four-ve
tor bilinear in �

L

is given by �

y

L

��

�

�

L

.

The transformations S

L

and S

R

that belong to the restri
ted Lorentz group do not mix the

left- and right-
hiral Weyl spinors. Consider however the e�e
t of a parity transformation,

Px = �x, on the generators K and J . The velo
ity 
hanges sign, v ! �v, i.e. transforms as

a polar ve
tor, while the angular momentum J as axial ve
tor remains invariant. Thus parity

inter
hanges (1=2; 0) and (0; 1=2) and hen
e �

L

and �

R

, as one would expe
t from a left- and

right-
hiral obje
t. If parity is a symmetry of the theory examined, one 
an therefore not
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onsider separately the two spinors �

L

and �

R

. Instead, it proves useful to 
ombine them

into a four-spinor 
alled Dira
 (or bi-spinor)

 =

�

�

L

�

R

�

: (8.12)

Another reason to 
onsider Dira
 spinors is that the s
alar terms �

y

L

�

R

and �

y

R

�

L

that qualify

as mass terms 
ombine a left- and a right-
hiral �eld: Thus the des
ription of a parti
le with

su
h a mass term seems to require the use of both left- and right-
hiral Weyl spinors. Next

we will derive a �eld equation for this type of spinor and dis
uss its properties.

8.2. Dira
 equation

From Weyl spinors to the Dira
 equation We 
an obtain the spinor des
ribing a parti
le

with momentum p by boosting the one des
ribing a parti
le at rest,

�

R

(p) = exp

h

��

2

i

�

R

(0) = exp

h

��n

2

i

�

R

(0) = [
osh(�=2) + �n sinh(�=2)℄ �

R

(0) : (8.13)

If we repla
e the boost parameter � by the Lorentz fa
tor

3


 = 
osh � and use the identities


osh(�=2) =

p

(
osh � + 1)=2 and sinh(�=2) =

p

(
osh � � 1)=2, we 
an express the spinor as

�

R

(p) =

"

�


 + 1

2

�

1=2

+ �p̂

�


 � 1

2

�

1=2

#

�

R

(0) : (8.14)

Here p̂ = p=jpj is the unit ve
tor in dire
tion of p. Inserting 
 = E=m and 
ombining the

two terms in the angular bra
ket, we arrive at

�

R

(p) =

E +m+ �p

p

2m(E +m)

�

R

(0) : (8.15)

Similarly, we �nd

�

L

(p) =

E +m� �p

p

2m(E +m)

�

L

(0) : (8.16)

Thus �

L

and �

R

di�er only by the sign of the operator �p whi
h measures the proje
tion of

the spin � on the momentum p of the parti
le. For a parti
le at rest, this di�eren
e disappears

and we set therefore �

L

(0) = �

R

(0). This allows us to eliminate the zero momentum spinors,

giving

�

R

L

(p) =

E � �p

m

�

L

R

(p) : (8.17)

In matrix form, these two equations 
orrespond to

�

�m E � �p

E + �p �m

��

�

L

(p)

�

R

(p)

�

=

�

�m �

�

p

�

��

�

p

�

�m

��

�

L

(p)

�

R

(p)

�

= 0 : (8.18)

We introdu
e the 4� 4 matri
es




�

=

�

0 �

�

��

�

0

�

: (8.19)

3

Re
all the relations E = m 
osh � and p = m sinh � 
onne
ting E, p, and the rapidity �.
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Then we arrive with 


�

p

�

= 


0

E � 
p at the 
ompa
t expression

(


�

p

�

�m) (p) = 0 : (8.20)

Setting p

�

= i�

�

we obtain the Dira
 equation (i�

�




�

�m) (x) = 0 in 
oordinate spa
e.

The representation used for the Dira
 spinor and the gamma matri
es is 
alled 
hiral or Weyl

representation. Other representations 
an be obtained performing a unitary transformation,

U~


�

U

y

= 


�

and U

~

 =  .

We 
an apply the tensor method to derive a de�nition of the gamma matri
es and their

properties whi
h is independent of the 
onsidered representation. The only invariant tensor at

our disposal is the metri
 tensor �

��

and thus the gamma matri
es have to satisfy f


�

; 


�

g =

A�

��

. Considering f


0

; 


0

g shows that A = 2, or

f


�

; 


�

g = 2�

��

: (8.21)

These anti-
ommutation relations de�ne a Cli�ord algebra, implying

�




0

�

2

= 1 ;

�




i

�

2

= �1 and 


�




�

= �


�




�

(8.22)

for � 6= �. The last 
ondition shows that the Cli�ord algebra 
annot be satis�ed by normal

numbers.

The de�nition (8.21) implies that we 
an apply in the usual way the metri
 tensor to raise

or to lower the indi
es of the gamma matri
es, 


�

= �

��




�

. Thus we 
an write 


�

�

�

= 


�

�

�

.

Sin
e the 
ontra
tion of the gamma matri
es 


�

with a four-ve
tor A

�

will appear frequently,

we introdu
e the so-
alled Feynman slash,

A= � A

�




�

; (8.23)

as useful short
ut. This notation also stresses that the gamma matri
es 


�

allow us to map

a four-ve
tor A

�

onto an element A= of the Cli�ord algebra whi
h then 
an be applied on a

spinor  . Although we suppress the spinor indi
es, you should keep in mind that the matri
es

(


ab

)

�


arry both tensor and spinor indi
es.

Dira
's way towards the Dira
 equation The Klein-Gordon equation was histori
ally the

�rst wave equation derived in relativisti
 quantum me
hani
s. Applied to the hydrogen atom,

it failed to reprodu
e the 
orre
t energy spe
trum. Dira
 tried to derive as an alternative

an equation linear in the derivatives �

�

. Sin
e Lorentz invarian
e requires that �

�

has to be


ontra
ted with another obje
t 
arrying the Lorentz index �, a �rst order equation has the

form

(i


�

�

�

�m) (x) = 0 : (8.24)

Main task for Dira
 was to un
over the nature of the quantities 


�

in this equation. They


annot be normal numbers, sin
e then they would form a four-ve
tor, spe
ify one dire
tion in

spa
e-time and thus break Lorentz invarian
e. Multiplying the Dira
 equation with �(i


�

�

�

+

m) and 
omparing the result to the Klein-Gordon equation, we �nd

� (i


�

�

�

+m)(i


�

�

�

�m) = (


�




�

�

�

�

�

+m

2

) = (�+m

2

) = 0 : (8.25)

Using the symmetry of partial derivatives, we 
an rewrite




�




�

�

�

�

�

=

1

2

f


�

; 


�

g�

�

�

�

: (8.26)

Remembering next the de�nition of the d'Alembert operator, � = �

��

�

�

�

�

, we re-derive that

the 


�

form a Cli�ord algebra.
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Lagrange density For a 
omplex s
alar �eld, we 
ould rewrite after a partial integration the

Lagrange density as L = ��

y

(�+m

2

)�. This expression 
orresponds to the Klein-Gordon

operator �(� +m

2

) sandwi
hed between the quadrati
 form �

y

�, as the 
orresponden
e of

the propagator and a two-point Green fun
tion requires. This suggests to try for the Dira


�eld as Lagrangian

L =  

y

A(i


�

�

�

�m) =

�

 (i


�

�

�

�m) ; (8.27)

where we have used as quadrati
 from  

y

A with a matrix A yet to be determined. In the

se
ond step, we de�ned the adjoint spinor

�

 �  

y

A. Varying then the a
tion S[ ;

�

 ℄, we

obtain

ÆS =

Z

d

4

n

Æ

�

 (i


�

�

�

�m) �

�

 (i


�

 �

�

�

+m)Æ 

o

: (8.28)

Here we made a partial integration of the �

�

Æ term, and thus the derivative

 �

�

�

a
ts to

the left. Sin
e we treat  and

�

 as two independent variables, we obtain from ÆS = 0 two

equations of motion,

�

 (i


�

 �

�

�

+m) = 0 and (i


�

�

�

�m) = 0 : (8.29)

Next we determine the unknown matrix A: Taking the Hermitian 
onjugate of the RHS of

(8.29) results in

 

y

(�i


�y

 �

�

�

�m) = 0 : (8.30)

This agrees with the LHS of (8.29), if A satis�es

A

�1




�y

A = 


�

: (8.31)

One 
an readily 
he
k that the 


�

matri
es in the Weyl representation ful�l this relation, if

we set A = 


0

. With (


0

)

2

= 1 and (


0

)

�1

= (


0

)

y

= 


0

, we 
an express this 
ondition as




�y

= 


0




�




0

=

�

(


0

)

2




0

= 


0

;

�


i

(


0

)

2

= �


i

:

(8.32)

Thus the a
tion prin
iple implies that 


0

is Hermitian, while the 


i

are anti-Hermitian ma-

tri
es.

Using the gamma matri
es and the Dira
 spinor in the 
hiral representation it is straight-

forward to express the Dira
 Lagrangian (8.27) by Weyl �elds,

L = i�

y

R

�

�

�

�

�

R

+ i�

y

L

��

�

�

�

�

L

�m(�

y

L

�

R

+ �

y

R

�

L

) : (8.33)

This implies that the Dira
 Lagrangian and the Dira
 equation are invariant under Lorentz

transformations, be
ause we have already 
he
ked that all ingredients of (8.33) are invariant.

Note also that out of the two possible 
ombinations of the two Lorentz s
alars we found, only

the one invariant under parity entered the mass term. Moreover, P (�

�

�

�

) = ��

�

�

�

, and thus

the 
ombination of the kineti
 energies of �

L

and �

R

is also invariant under parity.

Hamiltonian form The Dira
 equation 
an be transformed into Hamiltonian form by mul-

tiplying with 


0

,

i�

t

 = H

D

 = (�i


0




i

�

i

+ 


0

m) : (8.34)
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Looking ba
k at the (anti-) Hermiti
ity properties (8.32) of the 


�

matri
es, we see that they


orrespond to the one required to make the Dira
 Hamiltonian Hermitian. By tradition, one

re-writes H

D

often with � = 


0

and �

i

= 


0




i

as

i�

t

 = H

D

 = (� � p+ �m) : (8.35)

Considering the semi-
lassi
al limit, one sees that the matrix � has the meaning of a velo
ity

operator, see problem 8.??.

Cli�ord algebra and bilinear quantities We now determine the minimal matrix represen-

tation for the Cli�ord algebra de�ned by Eq. (8.21). We �nd �rst the maximal number of

independent produ
ts that we 
an form out of the four gamma matri
es. Five obvious ele-

ments are the unit matrix 1 = (


0

)

2

and the four gamma matri
es 


�

themselves. Be
ause of

(


�

)

2

= �1, the remaining produ
ts should 
onsist of 


�

matri
es with di�erent indi
es. Thus

the only produ
t of four 


�

matri
es that we have to 
onsider is 


0




1




2




3

. This 
ombination

will appear very often and deserves therefore a spe
ial name. In
luding the imaginary unit

to make it Hermitian, we de�ne




5

� 


5

� i


0




1




2




3

: (8.36)

Be
ause the four gamma matri
es in 


5

anti-
ommute, we 
an rewrite its de�nition introdu
ing

the 
ompletely anti-symmetri
 tensor "

��
Æ

in four dimensions as




5

=

i

24

"

��
Æ




�




�










Æ

: (8.37)

This suggests that bilinear quantities 
ontaining one 


5

matrix transform as pseudo-tensors,

i.e. 
hange sign under a parity transformation x! �x. Two important properties of the 


5

matrix are (


5

)

2

= 1 and f


�

; 


5

g = 0.

Next we 
onsider produ
ts of three 


�

matri
es. For instan
e,




1




2




3

= 


0




0

|{z}

1




1




2




3

= �i


0




5

: (8.38)

Hen
e these produ
ts are equivalent to 


�




5

, giving us four more basis elements.

Finally, we are left with produ
ts of two di�erent 


�

matri
es. We 
an asso
iate these six

produ
ts with the 
ommutator [


�

; 


�

℄. Adding again for later 
onvenien
e a fa
tor i=2, we

de�ne the anti-symmetri
 tensor �

��

as

�

��

�

i

2

[


�

; 


�

℄ : (8.39)

The six matri
es �

��

are the remaining independent elements we 
hoose as basis for our

matrix representation of the Cli�ord algebra. All together, the basis has dimension 16,

� = f1; 


5

; 


�

; 


5




�

; �

��

g ; (8.40)

as the 4 � 4 matri
es. Hen
e an arbitrary 4 � 4 matrix 
an be de
omposed into a linear


ombination of these basis elements. Moreover, the smallest matrix representation of the

Cli�ord algebra is given by 4 � 4 matri
es. Some useful properties of gamma matri
es are


olle
ted in the Appendix A.2.
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Knowing the dimension of the 
 matri
es, we 
an 
ount the number of degrees of freedom

represented by a Dira
 spinor  . As the 
 matri
es and the Lorentz transformation a
ting

on spinors are 
omplex, the �eld  is 
omplex too and has thus four 
omplex degrees of

freedom. We know already that the Dira
 equation des
ribes spin 1/2 parti
les, whi
h 
ome

with 2s + 1 = 2 spin degrees of freedom for a parti
le plus 2 for its anti-parti
le. Thus in

this 
ase the number of physi
al states mat
hes the four 
omponents of the �elds  . Note

also the di�eren
e to the 
ase of a 
omplex s
alar or ve
tor �eld: There we introdu
ed two


omplex �elds �

�

= (�

1

� i�

2

)=

p

2, whi
h are 
onne
ted by (�

�

)

�

= �

�

. The real �elds �

1

and �

2

are not mixed by Lorentz transformations and thus we 
ount them as two real degrees

of freedom.

We 
ome now to the 
onstru
tion of bilinear quantities out of the Dira
 spinors. Sin
e the

Lagrangian is a s
alar, we know already that

�

  transforms as a s
alar while j

�

=

�

 


�

 is

ve
tor. In general, bilinear quantities are 
onstru
ted as

 

y




0

� �

�

 � ; (8.41)

where

�

 =  

y




0

is the adjoint spinor and � is any of the 16 basis elements given in Eq. (8.40).

In this way, the 
omplex 
onjugated of a bilinear be
omes

(

�

 � 

0

)

�

= (

�

 � 

0

)

y

=  

0y

�

y




0

 =  

0y




0




0

�

y




0

 �

�

 

0

� (8.42)

with

� � 


0

�

y




0

: (8.43)

For  =  

0

, these bilinears are real as desired. The analogue  

y

 to the probabil-

ity density  

�

 of the S
hr�odinger equation is thus the zero-
omponent of a four-
urrent,

 

y

 =  

y




0




0

 =

�

 


0

 = j

0

, as one should expe
t in a relativisti
 theory.

Finally, we note that 


0

and 


5

are involutory matri
es, i.e. they satisfy the relation A

2

= 1.

Be
ause of (1 � A)

2

= 2(1 � A), we 
an 
onstru
t the proje
tion operators P

�

= (1 � A)=2,

satisfying

P

2

�

= P

�

; P

�

P

�

= 0; and P

+

+ P

�

= 1 :

Thus we should be able to 
lassify the four independent solutions of the Dira
 equation with

the help of (1� 


0

)=2 and (1� 


5

)=2, or their suitable 
ovariant generalisations.

Lorentz transformations Our derivation of the Weyl spinors as the fundamental represen-

tation of the Lorentz group provided automati
ally their transformation properties under a

�nite Lorentz transformation. Using the Weyl representation, the transformation law for a

Dira
 spinor follows as

 (x)!  (x

0

) = S(�) (x) =

�

�

L

(x

0

)

�

R

(x

0

)

�

=

�

S

L

0

0 S

R

��

�

L

(x)

�

R

(x)

�

: (8.44)

We want to express the transformation matrix S(�) by gamma matri
es, su
h that it is

representation independent and manifestly Lorentz invariant. We set

S(�) = exp (�i!

��

J

��

=2) ; (8.45)

where the antisymmetri
 matrix !

��

parametrises the Lorentz transformation and the six

generators (J

ab

)

��

have to be determined. Sin
e the generators are the 
ovariant generalisation

109



8. Fermions and the Dira
 equation

of �, we suspe
t that they are 
onne
ted to �

��

. Using Eq. (8.19), we obtain as expli
it

expression for the �

��

matri
es in the Weyl representation

�

0i

= i

�

��

i

0

0 �

i

�

; and �

ij

= "

ijk

�

�

k

0

0 �

k

�

: (8.46)

We split J

��

into boosts and rotations,

1

2

!

��

J

��

= !

i0

J

i0

+ !

12

J

12

+ !

13

J

13

+ !

23

J

23

: (8.47)

Identifying �

i

= !

i0

and �

i

= (1=2)"

ijk

!

jk

, we obtain J

��

= �

��

=2. In 
ontrast to (8.44), the

expression S(�) = exp (�i�

��

!

��

=4) is valid for any representation of the gamma matri
es.

Solutions We sear
h for plane wave solutions ue

�ipx

and ve

+ipx

of the Dira
 equation with

m > 0 and E = p

0

= jpj > 0. The algebra is simpli�ed, if we 
onstru
t the solutions �rst in

the rest frame of the parti
le. Then p= = m


0

, and thus the use of the Dira
 representation,




0

= 1
 �

3

=

�

1 0

0 �1

�

; and 


i

= �

i


 i�

2

=

�

0 �

i

��

i

0

�

; (8.48)

where 


0

is diagonal is most 
onvenient. Here �

i

and �

i

are the Pauli matri
es, 
 denotes

the tensor produ
t, 0 and 1 are 2� 2 matri
es. In the Dira
 representation, the 


5

matrix is

o�-diagonal,




5

= 1
 �

1

=

�

0 1

1 0

�

: (8.49)

The Dira
 equation be
omes

(p= �m)u = m(


0

� 1)u = 0 (8.50a)

(p=+m)v = m(


0

+ 1)v = 0 : (8.50b)

The RHS shows that (1� 


0

)=2 proje
t a general spinor at rest on the subspa
es of solutions

with positive or negative energy. Inserting the expli
it form of 


0

into (8.50), the four solutions

in the rest frame of the parti
le follow as

u(m;+) /

0

B

B

�

1

0

0

0

1

C

C

A

; u(m;�) /

0

B

B

�

0

1

0

0

1

C

C

A

; v(m;�) /

0

B

B

�

0

0

1

0

1

C

C

A

; v(m;+) /

0

B

B

�

0

0

0

1

1

C

C

A

:

(8.51)

The additional � label should be the quantum number of a suitable operator labelling the

two spin states of a Dira
 parti
le. Note the opposite order of the spin label in the v spinor


ompared to u. We will see later that this 
hoi
e is required by the stru
ture of the relativisti


spin operator s

�

. As an intuitive argument, we add that this labelling 
orresponds to our

interpretation of antiparti
les as parti
les moving ba
kwards in time: The spinor v des
ribes

two states with negative energy, negative 3-momentum p and negative spin s relative to u.

The solutions are orthogonal,

�u(p; s)u(p; s

0

) = N

2

Æ

s;s

0

and �v(p; s)v(p; s

0

) = �N

2

Æ

s;s

0

; (8.52)
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but not normalised to one. Note also the minus sign introdu
ed in �vv by the 
orresponding

minus in the (3,4) 
orner of 


0

. Sin
e we know that  

y

 is the zero 
omponent of a four-ve
tor,

the normalisation of the 
orresponding spinor produ
ts is

u

y

(p; s)u(p; s

0

) = N

2

E

p

m

Æ

s;s

0

and v

y

(p; s)v(p; s

0

) = �N

2

E

p

m

Æ

s;s

0

: (8.53)

Summing over spins, we obtain in the rest frame

X

s

u

a

(m; s)�u

b

(m; s) =

�

1 0

0 0

�

ab

N

2

=

1

2

(


0

+ 1)

ab

N

2

; (8.54)

X

s

v

a

(m; s)�v

b

(m; s) =

�

0 0

0 �1

�

ab

N

2

=

1

2

(


0

� 1)

ab

N

2

: (8.55)

We saw that 


0

� 1 
orresponds in an arbitrary frame to (p= �m)=m. Thus in general these

relations be
ome

�

+

�

X

s

u

a

(p; s)�u

b

(p; s) = N

2

�

p=+m

2m

�

ab

; (8.56)

�

�

� �

X

s

v

a

(p; s)�v

b

(p; s) = N

2

�

�p=+m

2m

�

ab

; (8.57)

where we de�ned �

�

as the proje
tion operator on states with positive and negative energy,

respe
tively.

The two most 
ommon normalisation 
onventions for the Dira
 spinors are N =

p

2m and

N = 1. We will use the former, N =

p

2m, whi
h has three advantages: First, the expressions

for �

�

whi
h appear frequently be
ome more 
ompa
t. Se
ond, spurious singularities in the

limit m! 0 disappear. Finally, the normalisation of fermion states and thus also the phase

spa
e volume be
omes identi
al to the one of bosons.

The solutions of the Dira
 equation for an arbitrary frame 
an be simplest obtained re-

membering (p=�m)(p= +m) = p

2

�m

2

= 0, i.e.

u(p;�) =

p=+m

p

m+E

u(0;�) and v(p;�) =

�p=+m

p

m+E

v(0;�) : (8.58)

Here, the normalisation was �xed using (8.52).

Spin We have seen that the Dira
 equation des
ribes a parti
le with heli
ity one-half. Thus

the � degenera
y of the u and v spinors should 
orrespond to the di�erent heli
ity or spin

states of a Dira
 parti
le. We introdu
e the spin operator

� =

�

� 0

0 �

�

; (8.59)

as an obvious generalisation of the non-relativisti
 spin matri
es. This operator has the

eigenvalues �

z

u(m;�) = �u(m;�) and �

z

v(m;�) = �v(m;�) and 
an therefore be used to


lassify the spin states of a Dira
 parti
le in the rest frame, where [H

D

;�

z

℄ / [


0

;�

z

℄ = 0.

Note however that [H

D

;�

z

℄ 6= 0 for p

2

6= m

2

, and thus the eigenvalue of �

z

is not 
onserved
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for a moving parti
le. This 
omes not as a surprise, be
ause the total angular momentum

L+ s and not only the spin s should be 
onserved.

We are looking now for the relativisti
 generalisation of the three-dimensional spin operator

�. It should be a produ
t of gamma matri
es whi
h 
ontains in the rest frame of the parti
le

� in the diagonal. We note �rst that 


5


 =

�

0 1

1 0

��

0 �

�� 0

�

has the required stru
ture. Then

we de�ne the spin ve
tor s

�

with the properties s

2

= �1, s

�

= (0; s)j

p=m

and thus s � p = 0.

Sin
e




5

s=j

p=m

= �


5

s
 =

�

�s 0

0 ��s

�

; (8.60)

we see that 


5

s= measures in the rest frame the proje
tion of the spin along the 
hosen axis

s. Moreover, 


5

s= 
ommutes with the Dira
 Hamiltonian, [


5

s=; p=℄ = 0, and has be
ause of

(


5

s=)

2

= 1 as eigenvalues �1. If we apply 


5

s= on the spinor v(p; s)|what is easiest done in

the rest frame|




5

s= v(m; s) =

�

�s 0

0 ��s

��

0

�

�

=

�

0

��s�

�

= s

j

�

0

�

�

; (8.61)

we see that �

1

has the eigenvalue s

1

= �1, while �

2

has the eigenvalue s

2

= +1. This

explains the \wrong" order of the two spin states of v(p; s) in (8.51). Finally, we 
an de�ne

a proje
tion operator on a de�nite spin state by

�

s

=

1

2

(1 + 


5

s=) : (8.62)

Thus we 
an obtain from an arbitrary Dira
 spinor  a state with de�nite sign of the energy

and spin by applying the two proje
tion operators �

�

and �

s

.

Heli
ity An important spe
ial 
ase of the spin operator 


5

s= is the heli
ity operator h �

sp=jpj whi
h measures the proje
tion of the spin s = �=2 on the momentum p of a parti
le,

� � p

2jpj

 = h : (8.63)

The heli
ity operator and the Dira
 Hamiltonian 
ommute, [H

D

;�p℄ = 0, be
ause there is

no orbital angular momentum in the dire
tion of p. Therefore 
ommon eigenfun
tions of H

D

and h 
alled heli
ity states 
an be 
onstru
ted, 
f. problem 8.??. Positive heli
ity parti
les are


alled right-handed, negative heli
ity parti
les left-handed. For a massive parti
le, heli
ity is

a frame-dependent quantity: If we 
hoose e.g. a frame with �kp and � > p, then the parti
les

moves in the opposite dire
tion and h 
hanges sign. Sin
e we 
annot \overtake" a massless

parti
le, heli
ity be
omes in this 
ase a Lorentz invariant quantity.

Axial and ve
tor U(1) symmetries Out of the 16 bilinear forms, two transform as ve
tors

under proper Lorentz transformations, j

�

=

�

 


�

 and j

�

5

=

�

 


5




�

 . We now want to 
he
k

if these two 
urrents are 
onserved. Inspe
tion of the Lagrange density shows immediately

that global U(1) transformations,

 (x)!  

0

(x) = e

i�

 (x) and

�

 (x)!

�

 

0

(x) = e

�i�

�

 (x) ; (8.64)
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keep the Lagrangian invariant, ÆL = 0. Noether's theorem leads then to the 
onserved ve
tor


urrent j

�

=

�

 


�

 . In the se
ond 
ase, the underlying symmetry is using f


5

; 


�

g = 0,

 

0

(x)! e

i�


5

 (x) and

�

 (x)!

�

 

0

(x) = (e

i�


5

 (x))

y




0

=

�

 (x)e

i�


5

: (8.65)

The resulting (in�nitesimal) 
hange is

ÆL = 2mi

�

 


5

 : (8.66)

Thus the axial or 
hiral symmetry U

A

(1) is broken by the mass term, leading to the non-


onservation of the axial 
urrent j

�

5

for a massive fermion.

Chirality To understand this better we re-express the Dira
 Lagrangian using eigenfun
tions

of 


5

. We 
an split any solution  of the Dira
 equation into

 

L

=

1

2

(1� 


5

) � P

L

 and  

R

=

1

2

(1 + 


5

) � P

R

 : (8.67)

Sin
e 


5

 

L

= � 

L

and 


5

 

R

=  

R

,  

L;R

are eigenfun
tions of 


5

with eigenvalue �1.

Expressing the mass term through these �elds as

�

  =

�

 

�

P

2

L

+ P

2

R

�

 =  

y

�

P

R




0

P

L

+ P

L




0

P

R

�

 =

�

 

R

 

L

+

�

 

L

 

R

(8.68)

and similarly for the kineti
 term,

�

 �= =

�

 

�

P

2

L

+ P

2

R

�

�= =  

y

�

P

R




0




�

P

R

+ P

L




0




�

P

L

�

�

�

 =

�

 

L

�= 

L

+

�

 

R

�= 

R

; (8.69)

the Dira
 Lagrange density be
omes

L = i

�

 

L

�= 

L

+ i

�

 

R

�= 

R

�m(

�

 

L

 

R

+

�

 

R

 

L

) : (8.70)

Comparing this expression to (8.33), we see that we 
an identify the Dira
 �elds  

L=R

in the


hiral representation with the Weyl �elds �

L=R

as follows,

 

L

=

�

�

L

0

�

and  

R

=

�

0

�

R

�

: (8.71)

Thus the proje
tion operators (8.67) allows us to de�ne the left- and right-
hiral 
omponents

of a Dira
 �eld in an arbitrary representation. If the mass or intera
tion terms treat  

L

and

 

R

not symmetri
ally, one 
alls them 
hiral fermions.

The two kineti
 terms whi
h are invariant under 
hiral transformations 
onne
t left- to left-


hiral and right- to right-
hiral �elds, while the mass term mixes left- and right-
hiral �elds.

Su
h a mass term is 
alled Dira
 mass. The distin
tion between left- and right-
hiral �elds is

Lorentz invariant: In terms of Weyl spinors, we saw that the Lorentz transformations S

L

and

S

R

do not mix �

L

and �

R

|whi
h quali�ed them to form the irredu
ible representation of the

Lorentz group. In terms of Dira
 spinors, the relation [


5

; �

��

℄ = 0 guarantees that left and

right 
hiral �elds transform separately under a Lorentz transformation,  

0

L=R

= S(�) 

L=R

.

However, the mass term of a massive Dira
 parti
le will mix left- and right-
hiral �elds as

they evolve in time.

Heli
ity and 
hirality eigenstates 
an be seen as 
omplimentary states. The former one is

a 
onserved, frame-dependent quantum number, while the latter is frame-independent, but

not 
onserved. Thus heli
ity states are e.g. useful to des
ribe s
attering pro
esses where

the dete
tor measures spin in a de�nite frame. If on the other hand the intera
tions of a

fermion are spin-dependent, then one should 
hoose 
hiral �elds, sin
e the Lagrangian should

be Lorentz invariant.
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Charge 
onjugation From L =

�

 (i


�

�

�

�m) and [L ℄ = m

4

in four dimensions, we see

that the dimension of a fermion �eld in four dimension is [ ℄ = m

3=2

. Thus we 
an order

possible 
ouplings of a fermion to spin-1 parti
les a

ording to their dimension as

L

I

= 


1

A

�

�

 


�

 + 


2

A

�

�

 


5




�

 +




3

M

F

��

�

 �

��

 + : : : ; (8.72)

where the 
oupling 
onstants 


i

are dimensionless and we introdu
ed the mass s
ale M . The

only 
oupling to the photon �eld with a dimensionless 
oupling that also respe
ts parity is

L

I

= �qj

�

A

�

= �q

�

 


�

 A

�

. Solving the Lagrange equations for L

0

+L

I

gives the Dira


equation in
luding a 
oupling to the ele
tromagneti
 �eld as

[i


�

(�

�

+ iqA

�

)�m℄ (x) = 0 : (8.73)

This 
orresponds to the \minimal 
oupling" pres
ription known from quantum me
hani
s.

Having de�ned the 
oupling to an external ele
tromagneti
 �eld, we 
an ask ourselves how

the Dira
 equation for a 
harged 
onjugated �eld  




should look like. In the 
ase of a s
alar

parti
le, 
omplex 
onjugation transformed a positively 
harged parti
le into a negative one

and vi
e versa. We try the same for the Dira
 equation,

[�i


��

(�

�

� iqA

�

)�m℄ 

�

(x) = 0 : (8.74)

The matrix 


��

satis�es also the Cli�ord algebra. Hen
e we should �nd the unitary transfor-

mation U

�1




�

U = �


��

or setting U � C


0

(C


0

)

�1




�

C


0

= �


��

: (8.75)

If it exists, then the 
harge-
onjugated �eld  




� C


0

 

�

satis�es the Dira
 equation with �q,

[i


�

(�

�

� iqA

�

)�m℄C


0

 

�

(x) = 0 : (8.76)

Expli
it 
al
ulation shows that we may 
hoose C = i


2




0

, see problem 8.??. In the 
hiral

representation,  




= C


0

 

�

= i


2

 

�

be
omes

 




=

�

0 i�

2

�i�

2

0

��

�

�

L

�

�

R

�

=

�

i�

2

�

�

R

�i�

2

�

�

L

�

; (8.77)

whi
h is in agreement with �




L

= i�

2

�

�

R

and �




R

= �i�

2

�

�

L

found earlier.

Example 8.1: Sin
e the 


2

matrix has the same form in the Dira
 and the 
hiral representation,

we �nd applying C on the spinors u(p;�) and v(p;�) immediately that

u




(p; s) = C


0

u

�

(p; s) = v(p; s) and v




(p; s) = C


0

v

�

(p; s) = u(p; s) :

Inserted into Eq. (8.85) this implies that S

T

F

(x) = CS

F

(�x)C

�1

.
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Feynman propagator The Green fun
tions of the free Dira
 equation are de�ned by

(i�= �m)S(x; x

0

) = Æ(x � x

0

) ; (8.78)

where we omit on the RHS a unit matrix in spinor spa
e. Translation invarian
e implies

S(x; x

0

) = S(x� x

0

) and, performing a Fourier transformation, the Fourier 
omponents S(p)

have to obey

(p=�m)S(p) = 1 : (8.79)

After multipli
ation with p= +m and use of a=

2

=

1

2

f


�

; 


�

ga

�

a

�

= a

2

, we 
an solve for the

propagator in momentum spa
e,

iS

F

(p) = i

p=+m

p

2

�m

2

+ i"

=

i

p=�m+ i"

; (8.80)

where the last step is only meant as a symboli
al short-
ut. Here, we 
hose again with the

�i" pres
ription the 
ausal or St�u
kelberg-Feynman propagator for the ele
tron and, more

generally, for spin 1/2 parti
les. Note also the 
onne
tion to the s
alar propagator �

F

,

iS

F

(x) = �(i�= +m)i�

F

(x) : (8.81)

Example 8.2: Express the Feynman propagator as sum over the solutions u(p; s) and v(p; s): We

follow the steps from (3.25a) to (3.28) in the s
alar 
ase, �nding now

S

F

(x) =

Z

d

3

p

(2�)

3

Z

dp

0

2�

(p=+m)e

�ip

0

t

e

ipx

(p

0

�E

p

+ i")(p

0

+ E

p

� i")

(8.82)

=

Z

d

3

p

(2�)

3

�

�i

p=+m

2E

p

e

�iE

p

t

#(x

0

) + i

�E

p




0

� p
 +m

�2E

p

e

iE

p

t

#(�x

0

)

�

e

ipx

: (8.83)

Next we 
hange as in the bosoni
 
ase the integration variable as p! �p in the se
ond term,

iS

F

(x) =

Z

d

3

p

2E

p

(2�)

3

h

(p=+m)e

�i(E

p

t�px)

#(t) + (�p=+m)e

i(E

p

t�px)

#(�t)

i

: (8.84)

Using �nally (8.56), we arrive at

iS

F

(x) =

Z

d

3

p

2E

p

(2�)

3

X

s

h

u(p; s)�u(p; s)e

�i(E

p

t�px)

#(x

0

)� v(p; s)�v(p; s)e

i(E

p

t�px)

#(�x

0

)

i

: (8.85)

Thus the phase spa
e volume of fermioni
 states is the same as the one of bosons for the normalisation

of the Dira
 spinors 
hosen by us. The minus sign between the positive energy solution propagating

forward in time and the negative energy solution propagating ba
kward in time is a dire
t 
onsequen
e

of our �i" pres
ription. It implies that fermioni
 �elds anti-
ommute,

iS

F;ab

(x) = h0jTf 

a

(x)

�

 

b

(0)gj0i = h0j 

a

(x)

�

 

b

(0)j0i#(t)� h0j

�

 

b

(0) 

a

(x)j0i#(�t) ; (8.86)

(we have added for 
larity the spinor indi
es) and explains thereby the Pauli ex
lusion prin
iple and

thus the stability of matter.

Let us have a look ba
k to understand why the sign appears. To simplify the dis
ussion, we negle
t

the inessential mass term. In the positive frequen
y term (p

0




0

� p
)e

ipx

, we pi
k up an additional

minus relative to the bosoni
 
ase from the variable 
hange p! �p, resulting in p=! �p= and

S

F

(x) / p= e

�ipx

#(t)� p= e

ipx

#(�t) :

Thus the relative minus sign has its origin in the fa
t that the fermion propagator S

F

(p) is odd in

the momentum, while a bosoni
 propagator is even. In turn, the fermion propagator is linear in the

momentum, be
ause the fermion wave equation is a �rst-order equation.
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8.3. Quantizing Dira
 fermions

Spin-statisti
 
onne
tion We have noted that fermioni
 �elds should anti-
ommute exam-

ining the Feynman propagator in example 8.2. In a relativisti
 quantum �eld theory the spin

and the statisti
s of a �eld is 
onne
ted:

� The wave equations of bosons are se
ond-order di�erential equations. Therefore the

propagators of bosoni
 �elds are even in the momentum p. As a result, bosoni
 �elds


ommute and satisfy Bose-Einstein statisti
s.

� In 
ontrast, fermions satisfy �rst-order di�erential equations and therefore the fermion

propagator S

F

(p) is odd in p. This implies that fermions are des
ribed by anti
ommuting


lassi
al spinors or operators, and satisfy Fermi-Dira
 statisti
s.

This leads to a pra
ti
al and a prin
ipal question: First, the pra
ti
al one: How do we

implement that 
lassi
al fun
tions whi
h enter the path integral do anti-
ommute? And

se
ond, does the anti
ommutation of fermioni
 variables lead to a 
onsistent pi
ture? In

parti
ular is the Hamiltonian of su
h a theory bounded from below?

We will start to address the latter question 
al
ulating the energy density � = H of the

Dira
 �eld assuming that the 
lassi
al spinors u and v do 
ommute. We determine �rst the


anoni
ally 
onjugated momenta as

� =

�L

�

_

 

= i

�

 


0

= i 

y

(8.87)

and �� = 0. Thus the Hamilton density is

H = �

_

 �L = i 

y

�

t

 �

�

 (i


�

�

�

�m) = i 

y

�

t

 ; (8.88)

where we used the Dira
 equation in the last step. To make this expression more expli
it, we

express now  by plane wave solutions,

 (x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

b

s

(p)u

s

(p)e

�ipx

+ d

y

s

(p)v

s

(p)e

+ipx

i

; (8.89a)

 

y

(x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

b

y

s

(p)u

y

s

(p)e

+ipx

+ d

s

(p)v

y

s

(p)e

�ipx

i

: (8.89b)

Inserting these expressions into (8.88) gives s
hemati
ally (b

y

+ d)(b� d

y

), where the relative

minus sign 
omes from �

t

a
ting on  . Sin
e the spinors u and v are orthonormal, 
f. (8.53),

only the diagonal terms survive, (b

y

+ d)(b � d

y

) ! b

y

b � dd

y

. Hen
e the energy of a Dira


�eld is given by

H =

Z

d

3

xH =

X

s

Z

d

3

pE

p

h

b

y

s

(p)b

s

(p)� d

s

(p)d

y

s

(p)

i

: (8.90)

If d and d

y

would be normal Fourier 
oeÆ
ients of an expansion into plan waves, the se
ond

term would be negative and the energy density of a fermion �eld 
ould be made arbitrarily

negative.
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This 
on
lusion is avoided if the fermion �elds anti
ommute: In 
anoni
al quantisation, one

promotes the Fourier 
oeÆ
ients to operators. Requiring then anti-
ommutation relations

between the 
reation and annihilation operators for parti
les and anti-parti
les,

fb

s

(p); b

y

s

0

(p

0

)g = Æ

s;s

0

Æ(p� p

0

) and fd

s

(p); d

y

s

0

(p

0

)g = Æ

s;s

0

Æ(p� p

0

) ; (8.91)


ompensates the sign in the se
ond term. Repeating the dis
ussion in se
tion 3.3 one 
an show

that these anti-
ommutation relations implement also 
orre
tly 
ausality for fermioni
 �elds.

If we restore units, then we have to add a fa
tor ~ on the RHS of the anti-
ommutation rela-

tions (8.91). Sin
e the RHS vanishes in the 
lassi
al limit ~! 0, 
lassi
al spinors should anti-


ommute. Thus we should perform the path integral of fermioni
 �elds over anti-
ommuting

numbers whi
h are 
alled Gra�mann numbers.

Gra�mann variables We now pro
eed to the question how we 
an implement the analogue

of the anti
ommutation relations for operators into the path integral formalism. We de�ne a

Gra�mann algebra G requiring that for a; b 2 G the anti
ommutation rules

fa; ag = fa; bg = fb; bg = 0 (8.92)

and thus a

2

= b

2

= 0 are valid. Then any smooth fun
tion f of a and b 
an be expanded into

a power-series as

f(a; b) = f

0

+ f

1

a+

~

f

1

b+ f

2

ab

= f

0

+ f

1

a+

~

f

1

b� f

2

ba :

(8.93)

De�ning the derivative as a
ting to the right, � �

!

�

, we �nd

�f

�a

= f

1

+ f

2

b ;

�f

�b

=

~

f

1

� f

2

a ; (8.94)

and

�

2

f

�a�b

= �

�

2

f

�b�a

= �f

2

: (8.95)

As integration rules for Gra�mann variables, we require linearity and that the in�nitesimals

da, db are also Gra�mann variables,

fa;dag = fb;dbg = fa;dbg = fda; bg = fda;dbg = 0 : (8.96)

Multiple integrals are iterated,

Z

dadbf(a; b) =

Z

da

�

Z

dbf(a; b)

�

: (8.97)

We have to determine the value of

R

da and

R

daa. For the �rst, we write

�

Z

da

�

2

=

�

Z

da

��

Z

db

�

=

Z

dadb = �

Z

dbda = �

�

Z

da

�

2

(8.98)

and �nd thus

R

da = 0. We are left with

R

daa: Sin
e there is no intrinsi
 s
ale|states are

empty or o

upied|we are free to set

Z

daa = 1 : (8.99)
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This implies also that there is no di�eren
e between de�nite and inde�nite integrals for

Gra�mann variables. Moreover, di�erentiation and integration are equivalent for Gra�mann

variables.

Assume now that �

1

and �

2

are real Gra�mann variables and A 2 R. Then

Z

d�

1

d�

2

e

�

2

A�

1

=

Z

d�

1

d�

2

(1 + �

2

A�

1

) =

Z

d�

1

d�

2

�

2

A�

1

=

Z

d�

1

A�

1

= A : (8.100)

Next we 
onsider a two-dimensional integral with an anti-symmetri
 matrixA and � = (�

1

; �

2

).

Then

A =

�

0 a

�a 0

�

(8.101)

and �

T

A� = 2a�

1

�

2

. Using an arbitrary matrix would lead to the same result, sin
e its

symmetri
 part 
an
els. Expanding again the exponential gives

Z

d

2

� exp

�

1

2

�

T

A�

�

= a = (det(A))

1=2

: (8.102)

An arbitrary antisymmetri
 matrix 
an be transformed into blo
k diagonal form, where the

diagonal is 
omposed of matri
es of the type (8.101). Thus the last formula holds for arbitrary

n.

Finally, we introdu
e 
omplex Gra�mann variables � = (�

1

; : : : ; �

n

) and their 
omplex


onjugates �

�

= (�

�

1

; : : : ; �

�

n

). For any 
omplex matrix A,

Z

d

n

�d

n

�

�

exp

�

�

y

A�

�

=

n

Y

i=1

a

i

= det(A) : (8.103)

We 
an 
ompare this to the result over 
ommuting 
omplex variables, z

i

= (x

i

+ iy

i

)=

p

2 and

�z

i

= (x

i

� iy

i

)=

p

2, with dxdy = dzdz

�

and

Z

d

n

zd

n

z

�

exp

�

�z

y

Az

�

=

(2�)

n

det(A)

: (8.104)

Thus for Gra�mann variables the determinant appearing in the evaluation of a Gaussian

integral is in the numerator, while it is in the denominator for real or 
omplex valued fun
tions.

Path integral for fermions In the bosoni
 
ase, the a
tion S[�; �℄ is quadrati
 in the 
anon-

i
ally 
onjugated momenta �. The path integral over the momenta 
an thus be performed

and we started dire
tly with the path integral in 
on�guration spa
e. For a fermion, � = i 

y

,

and thus the path integral in phase spa
e is

Z[0℄ =

Z

D D

�

 e

iS[ ;

�

 ℄

=

Z

D D

�

 e

i

R

d

4

x

�

 (i�=�m) 

; (8.105)

where we 
hanged to

�

 as integration variable. For its evaluation, we use (8.103) in the limit

n!1. Sin
e the a
tion is quadrati
 in the �elds, we 
an perform the path integral formally,

Z[0℄ = Det(i�= �m) = expTr ln(i�= �m) : (8.106)
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Using the 
y
li
 property of the tra
e, we write

Tr ln(i�= �m) = Tr ln


5

(i�= �m)


5

= Tr ln(�i�= �m) = (8.107a)

=

1

2

[Tr ln(i�= �m) + Tr ln(�i�= �m)℄ =

1

2

[Tr ln(�+m

2

)℄ : (8.107b)

Thus Z[0℄ = exp[+Tr ln(� + m

2

)=2℄: We have found the remarkable result that the zero-

point energy of fermions has the opposite sign 
ompared to the one of bosons. We arrive at

the same 
on
lusion, using anti-
ommutation relations fd

s

(p); d

y

s

0

(p

0

)g = Æ

s;s

0

Æ(p� p

0

) in the

Hamiltonian (8.90),

H =

X

s

Z

d

3

pE

p

h

b

y

b+ d

y

d� Æ

(3)

(0)

i

: (8.108)

With Æ

(3)

(0) =

R

d

3

x=(2�)

3

we see that the last term 
orresponds to the negative zero-point

energies of a fermion.

Note that this opens the possibility that the zero-point energies of (groups of) bosons and

fermions 
an
el exa
tly, provided that the degrees of freedom of fermions and bosons agree.

For instan
e, the tra
e in Eq. (8.107b) in
ludes the tra
e over the 4�4 matrix in spinor spa
e,

leading to a fa
tor four larger results than for a single s
alar. Moreover, their masses have

to be the same, m

f

= m

b

. And �nally their intera
tions have to mat
h, so that also higher-

order 
orre
tions are identi
al for fermions and bosons. The 
orresponding symmetry that

guarantees automati
ally that the 
onditions i)-iii) are satis�ed is 
alled \supersymmetry".

As result, the va
uum energy would be zero in an unbroken supersymmetri
 theory, Clearly,

the se
ond 
ondition is most problemati
, sin
e e.g. no bosoni
 partner of the ele
tron has

been found (yet). Hen
e supersymmetry must be a broken symmetry, but as long as the mass

spitting m

2

f

�m

2

b

between fermions and bosons is not too large, it might be still \useful".

Feynman rules Next we add Gra�mannian sour
es � and �� to the a
tion, S[ ;

�

 ℄+ �� +

�

 �.

Then we 
omplete the square,

�

 A + �� +

�

 � = (

�

 + ��A

�1

)A( +A

�1

�)� ��A

�1

� ; (8.109)

obtaining

Z[�; ��℄ =

Z

D D

�

 e

i

R

d

4

x

�

 A +�� +

�

 �

= Z[0℄ e

�i��A

�1

�

(8.110a)

= Z[0℄ exp

�

�i

Z

d

4

x d

4

x

0

��(x)S

F

(x� x

0

)�(x

0

)

�

: (8.110b)

Here, A

�1

(x; x

0

) = S

F

(x� x

0

) = �S

T

F

(x

0

� x) whi
h 
orresponds to the fa
t that the matrix

A is antisymmetri
.

The propagator of a Dira
 fermion is a line with an arrow representing the 
ow of the


onserved 
harge whi
h distinguishes parti
les and antiparti
les. Thus a fermion line 
annot

split, and the arrow 
annot 
hange dire
tion,

�

p

= iS

F

(p) =

i

p=�m+ i"

:
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Next we look at possible intera
tion terms of a Dira
 fermion with s
alars and photons,

restri
ting ourselves to dimensionless 
oupling 
onstants,

L

I

= �g

s

S

�

  � g

a

P

�

 


5

 � e

�

 


�

 A

�

: (8.111)

Both intera
tion terms of the fermion with the s
alars respe
t parity, if the �eld S is a

true s
alar and the �eld P a pseudo-s
alar. Analogous to the �i� 
oupling in the 
ase of a

s
alar self-intera
tions, we read o� from the Lagrangian the following intera
tion verti
es in

momentum spa
e,

S
−igs

P
−igaγ

5

ǫµ
−iqγµ

2

Fermion loops A 
losed fermion loop with n propagators 
orresponds to

 (x

1

) (x

1

) (x

2

) (x

2

) � � �  (x

n

) (x

n

) :

In order to 
ombine

�

 (x

1

) and  (x

n

) into Tf (x

n

)

�

 (x

1

)g, we have to anti
ommute

�

 (x

1

)

with the 2n�1 �elds  (x

1

) � � � (x

n

), generating a minus sign. Thus we have to add to our set

of Feynman rules that ea
h fermion loop generates a minus sign. Another way to understand

the minus sign of fermion loops is to look at the generating fun
tional for 
onne
ted graphs

setting the sour
es to zero, iW [0℄ = lnZ[0℄ = lndetA. The generated graphs are single-
losed

loops with n Feynman propagators. The 
hange from 1=detA in Z for bosoni
 �elds to detA

in Z for fermioni
 �elds implies an additional minus sign for 
losed fermion loops. Similarly,

diagrams 
ontributing to the same pro
ess whi
h di�er only by the ex
hange of two identi
al

external fermion lines 
arry a relative minus sign. This applies also the ex
hange of a parti
le

and anti-parti
le in the initial and �nal state (
f. also the dis
ussion of 
rossing symmetry in

se
tion 9.3.1).

Furry's theorem What is the relation between diagrams 
ontaining fermion loops with op-

posite orientation in QED? A fermion loop with n external photons atta
hed 
orresponds to

a tra
e over n fermion propagators separated by gamma matri
es,

G

1

= tr[


�

1

S

F

(y

1

; y

n

)


�

n

S

F

(y

n

; y

n�1

) � � � 


�

2

S

F

(y

2

; y

1

)℄ : (8.112)

If we insert CC

�1

= 1 between all fa
tors in the tra
e, use C


�

C

�1

= �


�T

and

CS

F

(�x)C

�1

= S

T

F

(x), then we �nd

G

1

= (�1)

n

tr[


T

�

1

S

T

F

(y

n

; y

1

)


T

�

n

S

T

F

(y

n�1

; y

n

) � � � 


T

�

2

S

T

F

(y

1

; y

2

)℄ (8.113)

= (�1)

n

tr[


�

1

S

F

(y

1

; y

2

) � � � 


�

n

S

F

(y

n

; y

1

)℄ = (�1)

n

G

2

: (8.114)

Here we used B

T

A

T

= (AB)

T

in the last step. Ex
ept for the fa
tor (�1)

n

, the last ex-

pression 
orresponds to the loop G

2

with opposite orientation. Hen
e for an odd number

of propagators, the two 
ontributions 
an
el, while they are equal for an even number of

propagators.
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Figure 8.1.: The six topologi
ally distin
t diagrams 
ontributing to the photon four-point

fun
tion.

Symmetry fa
tors in QED The last issue we want to address in this se
tion is the question

if the intera
tions in (8.111) lead to symmetry fa
tors. We re
all that drawing Feynman

diagrams we should in
lude only diagrams whi
h are topologi
ally distin
t after the integration

over internal 
oordinates. For instan
e, the two diagrams

x1 x2 x1 x2

are not topologi
ally distin
t, be
ause a rotation around the x

1

{x

2

axis inter
hanges them.

Therefore, the 
orresponding two-point fun
tion G(x

1

; x

2

) has to be invariant under a 
hange

of the orientation of the fermion loop { as it is guarantied by the Furry theorem. The two-point

fun
tion G(x

1

; x

2

) 
onsists of two identi
al diagrams obtained by ex
hanging the integration

variables y

1

and y

2

. Thus the fa
tor 2! 
ompensates the 1=2! from the Taylor expansion of

exp(iL

int

), if we draw only one diagram, and its symmetry fa
tor is one.

Next we 
onsider the four-point fun
tion G(x

1

; x

2

; x

3

; x

4

) whi
h des
ribes photon-photon

s
attering. The four-point fun
tion G(x

1

; x

2

; x

3

; x

4

) 
ontains 4! � 3! diagrams, obtained by

permutating y

1

; y

2

; y

3

; y

4

and x

2

; x

3

; x

4

. After integration over the free y

i

variables, the fa
tor

4! 
ompensates the 1=4! from the Taylor expansion of exp(iL

int

). In 
on�guration spa
e, the

3! = 6 topologi
ally distin
t diagrams shown in Fig. 8.1 remain whi
h 
arry no additional

symmetry fa
tor. Thus the resulting rule for QED is very simple: We do not need symmetry

fa
tors, if we draw all diagrams whi
h are topologi
ally distin
t after the integration over

internal 
oordinates. Fermion loops with an odd number of fermions are zero and 
an be

omitted. Independent of the type of intera
tion, any fermion loop leads to an additional

minus sign.
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8.4. Weyl and Majorana fermions

Up to now we have dis
ussed the Dira
 equation, having in mind a massive parti
le 
arrying a


onserved U(1) 
harge that allows us to distinguish parti
les and anti-parti
les. We 
all su
h

parti
les Dira
 fermions. In the SM, all parti
les ex
ept neutrinos 
arry a non-zero ele
tri



harge, are massive and are therefore Dira
 fermions. In this se
tion, we 
onsider the 
ase

where one of these two 
onditions is not ful�lled.

Weyl fermions, q 6= 0 and m = 0: The Dira
 equation (8.18) in the 
hiral representation

de
ouples for m = 0 into two equations 
alled Weyl equations,

(E + �p)�

L

(p) = 0 and (E � �p)�

R

(p) = 0 : (8.115)

A fermion des
ribed by the Weyl equations is 
alled a Weyl fermion. The 
orre
t dispersion

relation, E = jpj, requires that �

L

is an eigenstate of the heli
ity operator h = �p=(2jpj)

with eigenvalue h = �1=2, while �

R

has the eigenvalue h = +1=2. Re
all also that heli
ity

is frame independent for a massless parti
le; in this 
ase positive heli
ity agrees with right


hirality

4

. Until the 1990's, the experimental data on neutrino masses were 
onsistent with

zero and neutrinos were in
orporated into the SM as Weyl fermions. Sin
e only left-
hiral

parti
les and right-
hiral antiparti
les parti
ipate in weak intera
tions, one set � =

�

�

L

0

�

,

while antineutrinos were des
ribed by the CP transformed state. The lepton number L

�

of

the three 
avours � = fe; �; �g of leptons played the role of the 
onserved U(1) 
harge that

distinguishes neutrinos and antineutrinos. As result, the di�eren
e in the number of leptons

and antileptons of ea
h individual 
avour was 
onserved. Neutrino os
illations that o

ur

if neutrinos are massive 
onserve the total lepton number L =

P

�

L

�

but inter
hange the

individual neutrino 
avours L

�

. Thus the observation of neutrino os
illations showed that

neutrinos are not Weyl fermions.

Majorana fermions, m > 0 and q = 0: The Dira
 �eld  

D

has to be 
omplex, be
ause

it transforms under the 
omplex representation S(�) of the Lorentz group. In the 
ase of

a neutral fermion, where we 
annot distinguish parti
les and antiparti
les, we should have

only half of the degrees of freedom of a 
harged Dira
 �eld. By analogy with the s
alar


ase, we expe
t that we 
an halve the number of degrees of the 
omplex Dira
 �eld by

imposing a reality 
ondition,  

M

=  

�

M

. But this 
ondition 
an be Lorentz invariant only in

a spe
ial representation of the gamma matri
es where �

�

��

= ��

��

and thus S(�) is real. This


ondition de�nes the Majorana representation of the 
 matri
es in whi
h all 


�

and thus �

��

are imaginary, and the 
harge 
onjugation matrix C is the unity matrix, C = 1. Then also the

Dira
 equation be
omes real and thus the time-evolution preserves the reality 
ondition. Sin
e

the spinors are real in this representation, no phase invarian
e  (x) !  

0

(x) = exp(i�) (x)

as in (8.64) 
an be implemented for a Majorana fermion

5

and thus they 
annot 
arry any


onserved U(1) 
harge.

4

Most authors 
all  

L=R

and �

L=R

not left and right-
hiral but left and right-handed, although this identi�-


ation holds only for massless parti
les.

5

This argument does not forbid that a Majorana fermion 
arries 
onserved 
harges whi
h transform under a

real representation of a symmetry group: An example are gluinos, the suggested supersymmetri
 partners

of the gluons, whi
h are Majorana fermions and transform under the adjoint representation of SU(3).
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8.4. Weyl and Majorana fermions

We 
an halve the number of degrees of freedom of a Dira
 fermion in a representation

independent way by using a self-
onjugated �eld  




=  . A fermion des
ribed by a self-


onjugated �eld  

M

is 
alled a Majorana fermion and the 
orresponding spinor a Majorana

spinor. The �eld operator of a Majorana �eld 
ontains only one type of annihilation and


reation operators,

 

M

(x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

a

s

(p)u

s

(p)e

�ipx

+ a

y

s

(p)v

s

(p)e

+ipx

i

: (8.116)

Using then

 




M

(x) = C


0

 

�

M

(x) =

X

s

Z

d

3

p

p

(2�)

3

2E

p

h

a

y

s

(p)C


0

u

�

s

(p)e

ipx

+ a

s

(p)C


0

v

�

s

(p)e

�ipx

i

;

(8.117)

we 
on�rm immediately the Majorana property  




M

(x) =  

M

(x). Expressed by Weyl spinors,

a Majorana spinor be
omes

 




=  =

�

�

L

�i�

2

�

�

L

�

=

�

i�

2

�

�

R

�

R

�

: (8.118)

Thus a Majorana fermion (m > 0, q = 0) 
ontains two degrees of freedom, whi
h we may


hoose either as a left-
hiral or or a right-
hiral two-spinor with both heli
ities.

We 
an repla
e any Dira
 �eld  

D

by a pair of self-
onjugated �elds,

 

M;1

=

1

p

2

( 

D

+  




D

) ; (8.119a)

 

M;2

=

1

p

2

( 

D

�  




D

) : (8.119b)

and vi
e versa inverting these relations. Thus it is only a question of taste, if one des
ribes

fermions by Dira
, Weyl or Majorana spinors.

Dira
 versus Majorana mass terms Charge 
onjugated Dira
 spinors were de�ned by

 




= C


0

 

�

= C

�

 

t

;

�

 




=  

t

C :

We de�ne also

 




L

� ( 

L

)




=

1

2

(1 + 


5

) 




= ( 




)

R

; (8.120)

whi
h is 
onsistent with our previous de�nition for Weyl spinors. As we saw, a Dira
 mass

term 
onne
ts the left- and right-
hiral 
omponents of the same �eld and  =  

L

+  

R

is a

mass eigenstate. We now use the observation that ( 

L

)




= ( 




)

R

allows us to obtain new

mass terms

6


alled Majorana mass terms,

�L

L

=m

L

(

�

 




L

 

L

+

�

 

L

 




L

) (8.121)

�L

R

=m

R

(

�

 




R

 

R

+

�

 

R

 




R

) (8.122)

6

Note that terms like

�

 




L

 

L

=  

t

L

C 

L

vanish be
ause of C

T

= �C, if one does not already assumes on the


lassi
al level that �elds are anti
ommuting Gra�mann variables.
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8. Fermions and the Dira
 equation

whi
h 
onne
t the left- and right-
hiral 
omponents of 
harge-
onjugated �elds. The 
orre-

sponding mass eigenstates are the self-
onjugated �elds

� =  

L

+  




L

= �




and ! =  

R

+  




R

= !




(8.123)

with L

L

= �m

L

��� and L

R

= �m

R

�!!. In the general 
ase, both Dira
 and Majorana mass

terms may be present,

�L

DM

= m

D

�

 

L

 

R

+m

L

�

 




L

 

L

+m

R

�

 




R

 

R

+ h:
: (8.124a)

=

1

2

m

D

(��! + �!�) +m

L

���+m

R

�!! ; (8.124b)

or in matrix form

�L

DM

= (��; �!)

�

m

L

m

D

=2

m

D

=2 m

R

��

�

!

�

: (8.125)

Physi
al states have a de�nite mass and thus we have to diagonalise the mass matrix. Its

eigenvalues are

m

1;2

=

1

2

�

(m

L

+m

R

)�

q

(m

L

�m

R

)

2

+m

2

D

�

(8.126)

and its eigenve
tors

�

1

= 
os#�� sin#! (8.127a)

�

2

= sin#�+ 
os#! (8.127b)

with tan 2# = m

D

=(m

L

�m

R

). Thus the most general mass term L

DM

for a four-
omponent

fermion spinor 
orresponds to two Majorana parti
les with di�erent masses. Therefore we


an view a Dira
 parti
le as a spe
ial 
ase of two Majorana parti
les with identi
al masses

and intera
tions.

The seesaw model tries to explain why neutrinos have mu
h smaller masses than all other

parti
les in the standard model. Let us assume that there exist both left- and right-
hiral

neutrinos and that they obtain Dira
 masses as the other fermions, say of order m

D

�

100GeV. The right-
hiral �

R

does not parti
ipate in any SM intera
tion and su�ers the same

fate as a s
alar parti
le: Its mass will be driven by quantum 
orre
tions to a value 
lose to

the 
uto� s
ale used, and so we expe
t m

R

� m

D

. Moreover, in many models it is m

L

= 0.

Expanding then

m

1;2

�

1

2

�

m

R

�m

R

q

1 +m

2

D

=m

2

R

�

; (8.128)

the two eigenvalues are m

1

� m

2

D

=(4m

R

) and m

2

� m

R

. For m

R

� 10

14

GeV, the light

neutrino mass is in the eV or sub-eV range as required by experimental data.

Summary

The fundamental representation of the proper Lorentz group for massive parti
les is given

by left and right-
hiral Weyl spinors. These two-spinors are mixed by parity and thus one


ombines them into a Dira
 four-spinor for parity 
onserving theories like ele
tromagneti


and strong intera
tions.
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8.4. Weyl and Majorana fermions

Fermions satisfy �rst-order di�erential equations and have mass dimension 3=2. Therefore

the fermion propagator S

F

(p) is linear in p and thus S

F

(x) is an antisymmetri
 fun
tion in x.

As a result, fermions satisfy Fermion-Dira
 statisti
s and are des
ribed either by Gra�mann

variables or by anti
ommuting operators.

A Weyl fermion has m = 0 and q 6= 0 and satis�es the Weyl equation; its solution has

two degrees of freedom, a left-
hiral �eld with negative heli
ity and a right-
hiral �eld with

positive heli
ity. A Majorana fermion is a self-
onjugated �eld with m 6= 0 and q = 0 whi
h

has therefore also only two degrees of freedom. It is des
ribed either by a left-
hiral or a

right-
hiral 2-spinor with both heli
ities. In the Majorana representation, this spinor 
an be


hosen to be real.

Further reading

The symmetries of the Dira
 equation as well as of other relativisti
 wave equations are

extensively dis
ussed by [Gre00℄. More details on two-
omponent Weyl and Majorana spinor


an be found e.g. in [Sre07℄.
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9. S
attering pro
esses

Most information about the properties of fundamental intera
tions and parti
les is obtained

from s
attering experiments. In a s
attering pro
ess, the initial and �nal state 
ontain widely

separated parti
les whi
h 
an be approximated as free, real parti
les whi
h are on mass-

shell. By 
ontrast, n-point Green fun
tions des
ribe the propagation of virtual parti
les. In

order to make 
onta
t with experiments, we have to �nd therefore the link between Green

fun
tions and experimental results from s
attering experiments. The latter 
an be predi
ted

knowing the s
attering matrix S whi
h is an unitary operator mapping an initial state at

t = �1 on a �nal state at t = +1. We introdu
e �rst the S-matrix and show then that

its unitarity restri
ts the analyti
 stru
ture of Feynman amplitudes; in parti
ular it implies

the opti
al theorem. Then we derive the 
onne
tion between n-point Green fun
tions and

s
attering amplitudes, before we perform some expli
it 
al
ulations of few tree-level pro
esses.

Finally, we 
onsider the spe
ial 
ase when in a s
attering event additional soft parti
les are

emitted. The relation between Feynman amplitudes and 
ross se
tions or de
ay widths whi
h

is essentially the same as in non-relativisti
 quantum me
hani
s is reviewed in the appendix

of this 
hapter.

9.1. Unitarity of the S-matrix and its 
onsequen
es

A s
attering pro
ess is fully des
ribed in the S
hr�odinger pi
ture by the knowledge how initial

states ji; ti at t ! �1 are transformed into �nal states jf; ti at t ! 1. This knowledge is

en
oded in the S-matrix elements

jf; t =1i = S

fi

ji; t = �1i : (9.1)

An intuitive, but mathemati
ally deli
ate de�nition of the s
attering operator S is the t!1

limit of the time-evolution operator U(t;�t),

S = lim

t!1

U(t;�t) : (9.2)

Thus the s
attering operator S evolves an eigenstate jn; ti of the Hamiltonian from t = �1

to t = +1,

S jn;�1i = jn;1i : (9.3)

The unitarity of the s
attering operator, S

y

S = SS

y

= 1, expresses the fa
t that we (should)

use a 
omplete set of states for the initial and �nal states in a s
attering pro
ess,

1 =

X

n

jn;+1i hn;+1j =

X

n

S jn;�1i hn;�1jS

y

= SS

y

: (9.4)
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9.1. Unitarity of the S-matrix and its 
onsequen
es

Opti
al theorem We split the s
attering operator S into a diagonal part and the transition

operator T , S = 1 + iT , and thus

1 = (1 + iT )(1� iT

y

) = 1 + i(T � T

y

) + TT

y

(9.5)

or

iTT

y

= T � T

y

: (9.6)

Note that in perturbation theory the LHS is O(g

2n

), while the RHS is O(g

n

). Hen
e this

equation implies a non-linear relation between the transition operator evaluated at di�erent

orders. At lowest order perturbation theory, the LHS vanishes and T is real, T = T

y

.

We 
onsider now matrix elements between the initial and �nal state,

hf jT � T

y

jii = T

fi

� T

�

if

= i hf jTT

y

jii = i

X

n

T

fn

T

�

in

: (9.7)

If we set jii = jfi, we obtain a 
onne
tion between the forward s
attering amplitude T

ii

and

the total 
ross se
tion �

tot


alled the opti
al theorem,

2=T

ii

=

X

n

jT

in

j

2

: (9.8)

The opti
al theorem relates the attenuation of a beam of parti
les in the state i, dN

i

/

�j=T

ii

j

2

N

i

, to the probability that they s
atter into all possible states n. Its RHS is given

by the total 
ross se
tion �

tot

up to a fa
tor depending on the 
ux of initial parti
les and

possible symmetry fa
tors. For the 
ase of two parti
les in the initial state, 
omparison with

Eqs. (9.149) and (9.153) from the appendix shows that

=A

ii

= 2p


ms

p

s �

tot

: (9.9)

Note also that the forward s
attering amplitude T

ii

means s
attering without 
hange in any


onserved quantum number, sin
e we extra
ted already the identity part, T

ii

= (S

ii

� 1)=i.

Imaginary part of the amplitude Let us 
onsider the Feynman amplitude A as a 
omplex

fun
tion of the squared 
enter-of-mass (
.m.) energy s. The threshold energy

p

s

0

in the 
.m.

system equals the minimal energy for whi
h the rea
tion is kinemati
ally allowed. The opti
al

theorem implies that A is real for s < s

0

and s 2 R. Then
e s = s

�

and A(s) = [A(s)℄

�

and

therefore

A(s) = [A(s

�

)℄

�

for s < s

0

: (9.10)

If A(s) is an analyti
 fun
tion, then also [A(s

�

)℄

�

is analyti
 and we 
an 
ontinue this relation

into the 
omplex s plane. In parti
ular, along the real axis we have for s > s

0

<A(s+ i") = <A(s� i") and =A(s+ i") = �=A(s� i") : (9.11)

Thus starting from s

0

, the amplitude A has a dis
ontinuity along the real s axis. Sin
e the

amplitude A should be single-valued, it has to 
ontain a bran
h 
ut along the real s axis

starting at s

0

. Feynman's m

2

� i" pres
ription tells us then whi
h side of the 
ut we should

pi
k out as the \physi
al" one.
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9. S
attering pro
esses

The se
ond relation in (9.11) allows us to obtain the imaginary part of a Feynman amplitude

from its dis
ontinuity,

dis
(A) � A(s+ i")�A(s� i") = 2i=A(s+ i") : (9.12)

The prototype of a fun
tion having a dis
ontinuity and a bran
h 
ut (along R

�

) is the loga-

rithm,

Ln(z) = Ln(re

i#

) = ln(re

i#

) + 2k�i = ln(r) + (#+ 2k�)i (9.13)

with = ln(x+ i") = �. How does an imaginary part in a Feynman diagram arise? Comparing

the relation

1

x� i"

= P

�

1

x

�

� i�Æ(x) (9.14)

with the propagator of a virtual parti
le, we see that virtual parti
les whi
h propagate on-shell

lead to poles and to imaginary terms in the amplitude.

Example 9.1: Verify the opti
al theorem for ��! �� s
attering in the ��

4

theory at O(�

2

):

The logarithmi
 terms in the s
attering amplitude (4.74b) for �� ! �� s
attering at one-loop have

the form

F (q

2

;m) =

Z

1

0

dz ln

�

m

2

� q

2

z(1� z)

�

(9.15)

with q

2

= fs; t; ug. In the physi
al region, the relation q

2

> 4m

2

holds only for the s 
hannel diagram.

The argument of the logarithm be
omes negative for

z

1=2

=

1

2

h

1�

p

1� 4m

2

=s

2

i

=

1

2

�

1

2

� (9.16)

with � =

p

1� 4m

2

=s

2

as the velo
ity of the � parti
les in the 
enter of mass system. Using now

=[ln(�q

2

� i")℄ = ��, the imaginary part follows as

=(A) = �

�

2

32�

2

Z

1

2

+

1

2

�

1

2

�

1

2

�

dz =

�

2

32�

� : (9.17)

The opti
al theorem implies thus that the total 
ross se
tion �

tot

(�� ! all) at O(�

2

) equals

�

tot

=

=A

ii

2p


ms

p

s

=

�

2

32�s

; (9.18)

where we used 2p


ms

=

p

s�. On the other hand, the Feynman amplitude at tree level is simply

A = �� and thus the elasti
 
ross se
tion for �� ! �� s
attering follows as �

el

= �

2

=(32�s). At

O(�

2

), the only rea
tion 
ontributing to the total 
ross se
tion is elasti
 s
attering, and thus the

two 
ross se
tions agree. Note also the treatment of the symmetry fa
tors: In the loop diagram, the

symmetry fa
tor S = 1=2! is already in
luded, while the 
orresponding fa
tor for the two identi
al

parti
les in the �nal state is added only integrating the 
ross se
tion.

9.2. LSZ redu
tion formula

We de�ned the generating fun
tional Z[J ℄ = h0;1j0;�1i

J

as the va
uum-va
uum transition

amplitude in the presen
e of a 
lassi
al sour
e J . Thus the generating fun
tional 
ontains the

boundary 
ondition �(x) ! 0 for t ! �1. We have two options to �nd a bridge between
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9.2. LSZ redu
tion formula

S-matrix elements and the formalism we have derived up to now: One possibility is to �nd the


onne
tion between the Green fun
tions derived from Z[J ℄ and S-matrix elements. Another

one is to de�ne �rst a new fun
tional Z

0

[J ℄ with the 
orre
t boundary 
onditions, and to

establish then the 
onne
tion between Z[J ℄ and Z

0

[J ℄. We 
hoose the �rst way, restri
ting

ourselves for simpli
ity to the 
ase of a real s
alar �eld.

Let us start with the 
ase of a 2! 2 s
attering pro
ess. We 
an generate a free two-parti
le

1

state 
omposed of plane-waves by applying two 
reation operators on the va
uum,

jk

1

;k

2

i = a

y

(k

1

)a

y

(k

2

) j0i : (9.19)

We obtain lo
alised wave pa
kets de�ning new 
reation operators

a

y

i

=

Z

d

3

k f

i

(k)a

y

(k) ; (9.20)

where f

i

(k) is e.g. a Gaussian 
entered around k

i

,

f

i

(k) / exp[�(k � k

i

)

2

=(2�

2

)℄ : (9.21)

We assume that the initial state of the s
attering pro
ess at t = �1 
an be des
ribed by

freely propagating wave pa
kets,

jii = lim

t!�1

a

y

1

(t)a

y

2

(t) j0i = jk

1

;k

2

;�1i ; (9.22)

and similarly the �nal state as

jfi = lim

t!1

a

y

1

0

(t)a

y

2

0

(t) j0i = jk

1

0

;k

2

0

; +1i : (9.23)

Here we 
hanged to the Heisenberg pi
ture, sin
e our Green fun
tions are time-dependent.

Our task is to 
onne
t this transition amplitude hf jii to the 
orresponding four-point Green

fun
tion. The latter is the time-ordered va
uum expe
tation value of �eld operators. The �rst

property, time-ordering, is automati
ally satis�ed for the transition amplitude hf jii, sin
e we


an write

hf jii = lim

t!1

h0j a

1

0

(t)a

2

0

(t)a

y

1

(�t)a

y

2

(�t) j0i (9.24a)

= lim

t!1

h0jTfa

1

0

(t)a

2

0

(t)a

y

1

(�t)a

y

2

(�t)g j0i : (9.24b)

Thus we only have to re-express the 
reation and annihilation operators as (proje
ted) �eld

operators. We de�ne a s
alar produ
t for solutions of the Klein-Gordon equation as follows,

(�; �) = i

Z

d

3

x �

�

(x)

 !

�

0

�(x) � i

Z

d

3

x

�

�

�

(x)

��(x)

�t

�

��

�

(x)

�t

�(x)

�

: (9.25)

Comparing this de�nition to Eq. (5.13), we see that the s
alar produ
t is the zero 
omponent

of the 
onserved 
urrent j

�

. Thus the value of the s
alar produ
t (�; �) is time-independent

and 
orresponds to the number of parti
les minus the number of anti-parti
les.

1

To redu
e 
lutter, we assume k

1

6= k

2

.
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9. S
attering pro
esses

For plane-wave 
omponents with de�nite momentum,

�

k

(x) =

1

p

(2�)

3

2!

k

e

�ikx

= N

k

e

�ikx

; (9.26)

the s
alar produ
t is given by

(�

k

; �

k

0

) = iN

k

N

k

0

Z

d

3

x

h

e

ik

0

x

(�i!

k

)e

�ikx

� i!

k

0

e

ik

0

x

e

�ikx

i

(9.27a)

= N

2

k

(2�)

3

Æ(k � k

0

)2!

k

e

i(!

k

�!

k

)t

= Æ(k � k

0

) : (9.27b)

Similarly it follows (�

�

k

; �

�

k

0

) = �Æ(k � k

0

), while the two terms in the s
alar produ
t 
an
el

otherwise,

(�

k

; �

�

k

0

) = (�

�

k

; �

k

0

) = 0:

Thus we 
an invert the free �eld operator

�(x) =

Z

d

3

k

h

a(k)�

k

(x) + a

y

(k)�

�

k

(x)

i

=

Z

d

3

k

p

(2�)

3

2!

k

h

a(k)e

�ikx

+ a

y

(k)e

+ikx

i

(9.28)

to obtain

a

y

(k) = �(�

�

k

; �) = �iN

k

Z

d

3

x e

�ikx

 !

�

t

�(x) : (9.29)

Next we want to rewrite this expression in a way that shows expli
itly its Lorentz invarian
e.

Using the identity

a

y

(k;1)� a

y

(k;�1) =

Z

1

�1

dt

�

�t

a

y

(k; t) (9.30)

we insert �rst (9.29) assuming a wave-pa
kage lo
alised around k

1

and perform then the time

di�erentiation,

a

y

(k

1

;1)� a

y

(k

1

;�1) = �i

Z

d

3

kf

1

(k)

Z

d

4

x �

t

�

e

�ikx

 !

�

t

�(x)

�

(9.31)

= �i

Z

d

3

kf

1

(k)

Z

d

4

x

�

e

�ikx

�

2

t

�(x)� �(x)�

2

t

e

�ikx

�

;

where the two terms linear in �

t


an
elled. Then we use that the �eld is on-shell, k

2

= m

2

,

for the repla
ement

�

2

t

e

�ikx

= (r

2

�m

2

)e

�ikx

:

Sin
e the �eld is lo
alised in spa
e, we 
an perform two partial integrations moving thereby

r

2

to the left, obtaining

a

y

(k

1

;1)� a

y

(k

1

;�1) = �i

Z

d

3

kf

1

(k)

Z

d

4

x e

�ikx

�

�+m

2

�

�(x) : (9.32)

In a free theory, �(x) satis�es the Klein-Gordon equation and the RHS would vanish.

In an intera
ting theory with e.g. L

I

= ���

4

=4!, the RHS is however proportional to

�

�+m

2

�

�(x) = ��

3

=3! 6= 0.

Having performed the partial integrations, we 
an forget the wave-pa
kets, � ! 0, and

write simply

a

y

(k;�1) = a

y

(k;1) + iN

k

Z

d

4

x e

�ikx

�

�+m

2

�

�(x) : (9.33)
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Taking the Hermitian 
onjugate, we obtain for the annihilation operator

a(k;1) = a(k;�1) + iN

k

Z

d

4

x e

ikx

�

�+m

2

�

�(x) : (9.34)

When we insert these expressions into hf jii, we obtain a four-point fun
tion 
ombining the

se
ond terms from the RHS of (9.33) and (9.34). In
luding the terms a

y

(k;1) and a(k;�1)

generates parti
les propagating from t = �1 to t = +1 with momenta un
hanged, i.e.

to terms 
orresponding to dis
onne
ted graphs. Hen
e we do not need to 
onsider these


ontributions, restri
ting ourselves to 
onne
ted Green fun
tions. For n parti
les in the initial

and m parti
les in the �nal state, we obtain

hk

0

1

; : : : ;k

0

m

; +1jk

1

; : : : ;k

n

;�1i = i

n+m

n

Y

i=1

Z

d

4

x

i

N

k

i

e

�ik

i

x

i

�

�

x

i

+m

2

�

�

m

Y

j=1

Z

d

4

y

j

N

k

j

e

ik

0

j

y

j

�

�

y

j

+m

2

�

h0jTf�(x

1

) � � � �(y

m

) j0i :

(9.35)

This is the redu
tion formula of Lehmann, Symanzik and Zimmermann (LSZ): For ea
h

external parti
le we obtained the 
orresponding plan wave 
omponent and a Klein-Gordon

operator. Sin
e the latter is the inverse of the free 2-point fun
tion, we 
an rephrase the


ontent of the LZS formula simply as follows: Repla
e the 2-point fun
tions of external lines

by appropriate wave fun
tions, e.g. �

k

(x) for s
alar parti
les in the initial state and �

�

k

(x) for

s
alar parti
les in the �nal state.

Sin
e we started from �eld operators in the Heisenberg pi
ture, the matrix element is in

the Heisenberg pi
ture, too. In the S
hr�odinger pi
ture, it is

hk

0

1

; : : : ;k

0

m

jiT jk

1

; : : : ;k

n

i � iT

fi

;

where we used also S = 1+ iT and the fa
t that we negle
ted dis
onne
ted parts. Finally, we

de�ne the Fourier transformed n-point fun
tion as

G(x

1

; : : : ; x

n

) =

Z

n

Y

i=1

d

4

k

i

(2�)

4

exp

 

�i

X

i

k

i

x

i

!

G(k

1

; : : : ; k

n

) : (9.36)

Then we obtain the LSZ redu
tion formula in momentum spa
e,

iT

fi

= i

n+m

N

k

1

� � �N

k

n

N

k

0

1

� � �N

k

0

m

(k

2

1

�m

2

) � � � (k

2

n

�m

2

)(k

02

1

�m

2

) � � � (k

02

m

�m

2

)

�G(k

1

; � � � ; k

n

;�k

0

1

; : : : ;�k

0

m

) : (9.37)

The Green fun
tion G(k

1

; � � � ; k

n

;�k

0

1

; : : : ;�k

0

m

) is multiplied by zeros, sin
e the exter-

nal parti
les satisfy k

2

= m

2

. Thus T

fi

vanishes, ex
ept when poles 1=(k

2

� m

2

) of

G(k

1

; � � � ; k

n

;�k

0

1

; : : : ;�k

0

m

) 
an
el these zeros. In the 
ase of external s
alar parti
les, only

their normalisation fa
tors are left. As they are not essential for the 
al
ulation of the tran-

sition amplitudes, one in
lude these normalisation fa
tors into the phase spa
e of �nal state

parti
le and in the 
ux fa
tor of initial parti
les. This explains our Feynman rule to repla
e

the s
alar propagator by one for amplitudes in momentum spa
e.

The derivation of the LSZ formula for parti
les with spin s > 0 pro
eeds in the same

way. Their wave-fun
tions 
ontain additionally polarisation ve
tors "

�

(k), tensors "

��

(k), or
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spinors u(p) and �u(p) and their 
harge 
onjugated states. In the 
ase of a photon (graviton),

we have to add "

�

(k) ("

��

(k)) in the initial state and the 
omplex 
onjugated "

��

(k) ("

���

(k))

in the �nal state. In the 
ase of Dira
 fermions, we have to assign four di�erent spinors to the

four possible 
ombinations of parti
le and anti-parti
les in the initial and �nal state. Having


hosen u(p) as parti
le state with an arrow along the dire
tion of time, the simple rule that a

fermion line 
orresponds to a 
omplex number

�

 � � � �xes the designation of the other spinors

as shown in Fig. 9.1: Conne
ting the upper fermion lines, �u(p

0

) � � � u(p), 
orresponds to the

s
attering e

�

(p) + X ! e

�

(p

0

) + X

0

, while �v(q) � � � u(p) des
ribes the annihilation pro
ess

e

+

(q)+e

�

(p)! X+X

0

. Conne
ting the lower fermion lines, �v(q) � � � v(q), 
orresponds to the

s
attering e

+

(q) + X ! e

+

(q

0

) + X

0

, while �u(p

0

) � � � v(q) des
ribes the pair 
reation pro
ess

X + X

0

! e

+

(q

0

) + e

�

(p

0

). Re
all that the Feynman amplitude A is de�ned omitting the

normalisation fa
tor N

p

= [2!

p

(2�)

3

℄

�1=2

from all wave-fun
tions|the splitting of S-matrix

elements into Feynman amplitudes and phase spa
e is dis
ussed in appendix 9.A.

v̄(q)

εµ(k)

u(p)

v(q)

ε∗µ(k′)

ū(p′)

Figure 9.1.: Feynman rules for external parti
les in momentum spa
e; initial state on the left,

�nal state on the right.

Wave fun
tion renormalisation Up to now we have pretended that we 
an des
ribe the �elds

in the initial and �nal state as free parti
les. Although e.g. Yukawa intera
tions between two,

by assumption, widely separated parti
les at t = �1 are negligibly small, self-intera
tions

persist. These intera
tions lead to a renormalisation of the external wave-fun
tions.

We 
an rephrase the problem as follows: If the 
reation operator 
orresponds to the one

of a free theory, a

y

0

(k;�1), then it 
an only 
onne
t one-parti
le states with the va
uum.

In 
ontrast, the intera
ting �eld 
an also 
onne
t many-parti
le states to the va
uum and

therefore its overlap with single-parti
le states is redu
ed,

a

y

(k;�1) j0i =

p

Z jki+

p

1� Z

�

�

�

k

0

;k

00

;k

000

�

+ : : :

	

(9.38a)

=

p

Za

y

0

(k

1

) j0i+

p

1� Z

�

�

�

k

0

;k

00

;k

000

�

+ : : :

	

: : (9.38b)

Therefore the free and the intera
ting �elds are 
onne
ted by

�(x)!

p

Z�

0

(x) (9.39)

for t ! �1, where we 
all the fa
tor Z the wave-fun
tion (or the �eld-strength) renormal-

isation 
onstant. We will show in se
tion 11.4.2 that this fa
tor 
an be extra
ted from the
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self-energy diagrams of the 
orresponding �eld. More pre
isely, in
luding a fa
tor

p

Z

k

for

ea
h external line of type k takes into a

ount self-energy 
orre
tions in the external lines.

Therefore it is enough to 
al
ulate the self-energy and to extra
t

p

Z

k

on
e; after that we 
an

omit self-energy 
orre
tions in the external lines adding simply fa
tors

p

Z

k

. Finally, note

that we 
an set Z = 1 in tree-level pro
esses, sin
e in perturbation theory Z = 1+O(g) holds.

9.3. Spe
i�
 pro
esses

We 
onsider now in detail a few spe
i�
 pro
esses. First, we derive the Klein-Nishina for-

mula for the Compton s
attering 
ross se
tion using the standard \tra
e method". Then we


al
ulate polarised e

+

e

�

! �

+

�

�

and e

+

e

�

! 

 s
attering applying heli
ity methods.

9.3.1. Tra
e method and Compton s
attering

Matrix element The Feynman amplitude A of Compton s
attering e

�

(p)+
(k)! e

�

(p

0

)+


(k

0

) at O(e

2

) 
onsists of the two diagrams shown in Fig. 9.2 and is given by

iA = �ie

2

�u(p

0

)

�

"=

�0

p=+ k= +m

(p+ k)

2

�m

2

"=+ "=

p=� k=

0

+m

(p� k

0

)

2

�m

2

"=

�0

�

u(p) : (9.40)

Sin
e the denominator is a non-zero light-like ve
tor, we have omitted the i". Note that

the two amplitudes 
an be transformed into ea
h other repla
ing " $ "

�0

and k $ �k

0

.

This symmetry 
alled 
rossing symmetry relates pro
esses where a parti
le is repla
ed by an

anti-parti
le with negative momentum on the other side of the rea
tion.

p+ k

p

k

p′

k′

p− k′

p

k

k′

p′

Figure 9.2.: The two Feynman diagrams 
ontributing to Compton s
attering at O(e

2

).

We evaluate the pro
ess in the rest-frame of the initial ele
tron. Then p

�

= (m;0) and


hoosing "

�

= (0; ") as well as "

0�

= (0; "

0

), it follows

p � " = p � "

0

= 0 : (9.41)

Moreover, the photons are transversely polarised,

k � " = k

0

� "

0

= 0 ; (9.42)

and we 
hoose real polarisation ve
tors. We anti-
ommute p= in the numerator to the right,

p="=

0

= 2p � "

0

� "=

0

p= = �"=

0

p= and use the Dira
 equation, p=u(p) = mu(p). Then we simplify also
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the denominator using p

2

= m

2

and obtain

A = �e

2

�u(p

0

)

�

"=

0

k="=

2p � k

+

"=k=

0

"=

0

2p � k

0

�

u(p) : (9.43)

Typi
ally the ele
tron target is not polarised, and the spin of the �nal ele
tron is not

measured. Thus we sum the squared matrix element over the �nal and average over the

initial ele
tron spin,

�

�

A

�

�

2

=

1

2

X

s;s

0

jAj

2

=

e

4

2

X

s;s

0

�

�

�

�

�u(p

0

)

�

"=

0

k="=

2p � k

+

"=k=

0

"=

0

2p � k

0

�

u(p)

�

�

�

�

2

: (9.44)

Cal
ulating jAj

2

= AA

�

requires the knowledge of A

�

= A

y

. Re
all that we de�ned

�

 =  

y




0

su
h that a general amplitude A 
omposed of spinors,

A =

�

 (p

0

)� (p) =  

y

(p

0

)


0

� (p) (9.45)

with � denoting a produ
t of the basis elements given in Eq. (8.40), be
omes

A

�

=

�

 (p)


0

�

y




0

 (p

0

) �

�

 (p)� (p

0

) : (9.46)

Important spe
ial 
ases worth to memorise are 


�

= 


�

, 


5

= �


5

, and a=b= � � � z= = z= � � � b=a=.

We now write out the spinor indi
es,

�

�

A

�

�

2

=

e

4

2

X

s;s

0

�u

a

(p

0

)

�

"=

0

k="=

2p � k

+

"=k=

0

"=

0

2p � k

0

�

ab

u

b

(p)�u




(p)

�

"=k="=

0

2p � k

+

"=

0

k=

0

"=

2p � k

0

�


d

u

d

(p

0

) : (9.47)

Using the property (8.56) of the Dira
 spinors,

P

s

u

a

(p; s)�u

b

(p; s

0

) = (p=+m)

ab

, we obtain

�

�

A

�

�

2

=

e

4

2

�

p=

0

+m

�

da

�

"=

0

k="=

2p � k

+

"=k=

0

"=

0

2p � k

0

�

ab

[p=+m℄

b


�

"=k="=

0

2p � k

+

"=

0

k=

0

"=

2p � k

0

�


d

: (9.48)

Sin
e p=+m 
ombines one spinor inA and one inA

�

, the result is a tra
e over gamma matri
es,

�

�

A

�

�

2

=

e

4

8

tr

�

(p=

0

+m)

�

"=

0

k="=

p � k

+

"=k=

0

"=

0

p � k

0

�

(p= +m)

�

"=k="=

0

p � k

+

"=

0

k=

0

"=

p � k

0

��

: (9.49)

Working out some more examples of this type (e.g. in problem 9.??), you should 
onvin
e

yourself that ea
h fermion line in A is 
onverted into a tra
e in jAj

2

. Useful identities for the

evaluation of su
h tra
es are given in the appendix A.2.

We simplify this tra
e by anti-
ommuting identi
al variables, su
h that they be
ome neigh-

bours. Then we 
an use a=a= = a

2

and redu
e thereby the number of gamma matri
es in ea
h

step by two. Multiplying out the terms in the tra
e, we obtain three 
ontributions that we

denote by

tr f g =

S

1

(p � k)

2

+

S

2

(p � k

0

)

2

+

2S

3

(p � k) (p � k

0

)

: (9.50)

We 
onsider only the �rst term S

1

in detail. Starting from

S

1

= tr

��

p=

0

+m

�

"=

0

"=k= (p=+m) k="="=

0

	

= tr

�

p=

0

"=

0

"= k=p=

|{z}

2kp�p=k=

k="="=

0

	

+m

2

tr

�

"=

0

"= k=k=

|{z}

k

2

=0

"="

0

	

=

= 2 (k � p) tr

�

p=

0

"=

0

"=k="="=

0

	

� tr

�

p=

0

"=

0

"=p=k=k="="=

0

	

(9.51)
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we arrive at an expression with only six gamma matri
es. We 
ontinue the work,

S

1

= 2 (k � p) tr

�

p=

0

"=

0

"=k="="=

0

	

= �2 (k � p) tr

�

p=

0

"=

0

k="="="=

0

	

= (9.52a)

= 2 (k � p) tr

�

p

0

"=

0

k="=

0

	

= 2 (k � p)

�

2

�

k � "

0

�

tr

�

p=

0

"=

0

�

� tr

�

p=

0

"=

0

"=

0

k=

	�

= (9.52b)

= 8 (k � p)

�

2

�

k � "

0

� �

p

0

� "

0

�

+

�

p

0

� k

��

: (9.52
)

where we have used "="= = "=

0

"=

0

= �1. We want to eliminate as next step the two s
alar produ
ts

that in
lude p

0

. Four-momentum 
onservation implies (p

0

� k)

2

= (p� k

0

)

2

and thus

p

0

� k = p � k

0

: (9.53)

Multiplying the four-momentum 
onservation equation by "

0

, it follows moreover

p+ k = p

0

+ k

0

) "

0

� p

|{z}

0

+"

0

� k = "

0

� p

0

+ "

0

� k

0

| {z }

0

: (9.54)

Thus our �nal result for S

1

is

S

1

= 8 (k � p)

h

2

�

k � "

0

�

2

+ k

0

� p

i

: (9.55)

S

2


an be obtained observing the 
rossing symmetry of the amplitude by the repla
ements

"$ "

0

and k $ �k

0

. The 
ross term S

3

has to be 
al
ulated and we give here only the �nal

result for the 
ombination of the three terms, where some terms 
an
el

�

�

A

�

�

2

= e

4

�

!

0

!

+

!

!

0

+ 4(" � "

0

)

2

� 2

�

: (9.56)

Cross se
tion To obtain the 
ross se
tion, we have to 
al
ulate the 
ux fa
tor and to perform

the integration over the phase spa
e of the �nal state,

d� =

1

4I

(2�)

4

Æ

(4)

(P

i

� P

f

)jA

fi

j

2

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

=

1

4I

jA

fi

j

2

d�

(n)

; (9.57)

with the �nal state phase spa
e d�

(n)

. The 
ux fa
tor I in the rest system of the ele
tron is

simply

I � v

rel

p

1

� p

2

=m! : (9.58)

Using Eq. (??),

d

3

p

0

2E

0

= d

4

p

0

Æ

(4)

(p

02

�m

2

)#(p

0

0

) ; (9.59)

the phase spa
e integration be
omes

d�

(2)

=

1

(2�)

2

Z

d


k

0

jk

0

j

2

dk

0

2jk

0

j

Z

d

3

p

0

2E

0

Æ

(4)

�

p

0

+ k

0

� p� k

�

= (9.60)

=

1

8�

2

Z

d


k

0

jk

0

jdk

0

Æ

�

�

p+ k � k

0

�

2

�m

2

�

: (9.61)

The argument of the delta fun
tion is

�

p+ k � k

0

�

2

�m

2

= m

2

+ 2p � k � 2p � k

0

� 2k � k

0

�m

2

(9.62a)

= 2m

�

! � !

0

�

� 2!!

0

(1� 
os#) � f(!

0

) : (9.62b)
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In order to evaluate the delta fun
tion we have to determine the derivative f

0

(!

0

),

f

0

(!

0

) = �2m� 2! (1� 
os#) ; (9.63)

and the zeros of f(!

0

),

0 = 2m

�

! � !

0

�

� 2!!

0

(1� 
os#) : (9.64)

Solving for !

0

gives !

0

[! (1� 
os#) +m℄ = m! and

!

0

=

!

1 +

!

m

(1� 
os#)

: (9.65)

This is the famous relation for the frequen
y shift of a photon found �rst experimentally

in the s
attering of X-rays on ele
trons by Compton 1921. The observed energy 
hange of

photons was 
ru
ial in a

epting the quantum nature (\parti
le-wave duality") of photons.

Combining everything, we obtain

d�

(2)

=

1

8�

2

Z

d


k

0

j!

0

jd!

0

Æ

�

2m

�

! � !

0

�

� 2!!

0

(1� 
os#)

�

(9.66a)

=

1

8�

2

Z

d


k

0

!

0

2m

�

1 +

!

m

(1� 
os#)

�

=

1

16�

2

m!

Z

d


k

0

!

02

(9.66b)

and thus as di�erential Klein-Nishina 
ross se
tion

d�

d


=

1

4m!

!

02

16�

2

m!

�

�

A

�

�

2

=

�

2

4m

2

!

02

!

2

�

!

0

!

+

!

!

0

+ 4(" � "

0

)

2

� 2

�

(9.67)

with � � e

2

=(4�). For s
atterings in the forward dire
tion, # ! 0 and thus !

0

! !,

the s
attered photon retains (in the lab frame) its energy even in the ultra-relativisti
 limit

! � m. The same holds in the 
lassi
al limit, ! � m, but now for all dire
tions. Thus we

obtain as 
lassi
al limit of the Klein-Nishina formula the polarised Thomson 
ross se
tion

d�

d


�

�

2

m

2

�

" � "

0

�

2

= r

2

0

�

" � "

0

�

2

; (9.68)

with r

0

= �=m as the 
lassi
al ele
tron radius.

Averaging and summing over the photon polarisation ve
tors is simplest, if we 
hoose the

angle between " and "

0

as #. Then

X

r;r

0

�

" � "

0

�

2

= 1 + 
os

2

# : (9.69)

The integration over the s
attering angle # 
an be done analyti
ally. We use x = 
os# and

set ~! � !=m,

� =

��

2

m

2

Z

1

�1

dx

�

1

[1 + ~!(1� x)℄

3

+

1

1 + ~!(1� x)

�

1� x

2

[1 + ~!(1� x)℄

2

�

(9.70a)

=

��

2

2m

2

�

1 + ~!

~!

3

�

2~!(1 + ~!)

(1 + 2~!

� ln(1 + 2~!)

�

+

ln(1 + 2~!)

2~!

�

1 + 3~!

(1 + 2~!)

2

�

: (9.70b)

Sin
e in the ele
tron rest frame s = (p + k)

2

= m

2

+ 2m! = m

2

(1 + 2~!), we 
an use

~! = (s=m

2

� 1)=2 to express � in an expli
it Lorentz invariant form.
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Approximations for the non-relativisti
 and the ultra-relativisti
 limit are

� = �

Th

�

(

1� 2~! +O(~!

2

) for ~! � 1 ;

3

8~!

�

ln(2~!) +

1

2

�

+O(~!

�2

) for ~! � 1 ;

(9.71)

where the Thomson 
ross se
tion is given by �

Th

= 8��

2

=(3m

2

). These approximations are

shown together with the exa
t result in the left panel of Fig. 9.3. In the ultra-relativisti


limit s � m

2

, the total 
ross se
tion for Compton s
attering de
reases as � / 1=s. On the

other hand, the di�erential 
ross se
tion in the forward dire
tion is 
onstant. As a result, the

relative importan
e of the forward region # � 0 in
reases for in
reasing s: While d�=dx is

symmetri
 around x = 0 in the 
lassi
al limit ! ! 0, it be
omes more and more asymmetri


with a a shrinking peak around the forward region at # � 0, 
f. the right panel of Fig. 9.3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100  1000

σ/
σ T

h

ω/m

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 -0.5  0  0.5  1

1/
σ T

h*
dσ

/d
x

x

Figure 9.3.: Left: The total 
ross se
tion �=�

Th

as fun
tion of ~! together with the 
lassi
al

and ultra-relativisti
 limits given in Eq. (9.71). Right: The normalised di�erential


ross se
tion �

�1

Th

d�=dx as fun
tion of x = 
os# for ~! = 0:01, 0.1, 1, and 10 (from

top to down).

Crossing symmetry We noti
ed that the two amplitudes in Compton s
attering 
an be

transformed into ea
h other repla
ing "$ "

�0

and k $ �k

0

. This is an example of a general

symmetry of relativisti
 quantum �eld theories 
alled 
rossing symmetry. Using the Feynman

rules for in and out parti
les, it follows that matrix elements where an in-going parti
le is

repla
ed by an out-going anti-parti
le or vi
e versa are related by the following substitutions,

� ex
hange the momentum k $ �k

0

;

� ex
hange parti
le and anti-parti
le wave fun
tions; thus in momentum spa
e, 1$ 1 for

spinless parti
les, "$ "

�0

for spin-1 and u$ v for fermions.

� multiply by �1 for ea
h ex
hanged fermion pair.

The additional minus for fermions is required, be
ause the spin sums of fermions and an-

tifermions are related by

X

s

u(p; s)�u(p; s) = (p=+m) = �

�

p=

0

�m

�

= �

X

s

v(p

0

; s)�v(p

0

; s) : (9.72)
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Note that this symmetry allows us to obtain the matrix elements of di�erent pro
esses: For

instan
e, we 
an relate the pro
esses e

�

e

+

! �

�

�

+

with e

�

�

�

! e

�

�

�

and �

�

�

+

! e

�

e

+

.

Using a more formal approa
h, one 
an derive the 
rossing symmetry not relying on per-

turbation theory and the Feynman rules, but using the analyti
al properties of S-matrix

elements: The LSZ redu
tion formula distinguishes in and out parti
les only by the sign of

the momenta used in the Fourier transformation. If one 
an analyti
ally 
ontinue the residue

of a pole in an S-matrix element from p

0

to �p

0

, then one 
onverts the S-matrix for a parti-


le with �(p) into the one for an anti-parti
le with �

�

(�p). Remarkably, the basi
 properties

of a relativisti
 quantum �eld theory, lo
ality and 
ausality, are suÆ
ient to proof that this

analyti
al 
ontinuation is possible.

Finally, note that the fa
tor �1 for ea
h ex
hanged external fermion pair implies a relative

minus sign for diagrams 
onne
ted by 
rossing whi
h 
ontribute to the same pro
ess. Thus

there is a relative minus sign between e.g. the t and the u 
hannel diagrams for e

�

e

�

! e

�

e

�

s
attering.

9.3.2. Heli
ity method and polarised QED pro
esses

Using the tra
e method, the number of terms that have to be 
al
ulated grows as � n

2

with

the number n of diagrams. For large n, it should be therefore favourable to 
al
ulate the

amplitude A(s

1

; : : : ; s

f

) for �xed polarisations s

i

of the external parti
les: The amplitude

is a 
omplex number and 
an be trivially squared. An eÆ
ient way to 
al
ulate polarised

amplitudes uses heli
ity spinors, an approa
h used also in most modern 
omputer programs

for the 
al
ulation of s
attering pro
esses.

Massless fermions We restri
t our short introdu
tion into heli
ity methods to massless

parti
les. In the 
ase of fermions, we know that then the use of Weyl spinors in the 
hiral

representation is most 
onvenient,

u

L

(p) =

�

�

L

(p)

0

�

and u

R

(p) =

�

0

�

R

(p)

�

: (9.73)

We do not need to 
onsider v

L;R

(p), sin
e they 
orrespond to parti
le spinors of opposite

heli
ity, u

R;L

(p). Moreover, two out of the fours possible s
alar produ
ts involving u

L;R

are

zero for massless fermions,

�u

L

(p)u

L

(q) = �u

R

(p)u

R

(q) = 0 : (9.74)

This motivates us to introdu
e a bra
ket notation for the heli
ity spinors as follows

�u

L

(p) = hp ; �u

R

(p) = [p ; u

L

(p) = p℄ ; u

R

(p) = pi : (9.75)

We 
all the quantities on the RHS angle and square bra
kets. The only non-zero Lorentz-

invariant spinor produ
ts are given by a pair of bra
kets of the same type,

�u

L

(p)u

R

(q) = hpqi and �u

R

(p)u

L

(q) = [pq℄ : (9.76)

Next we 
onsider the tensor produ
t of the spinors,

pi[p = u

R

(p)�u

R

(p) = P

R

p= ; and p℄hp = u

L

(p)�u

L

(p) = P

L

p= : (9.77)
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p2

p1

p4

p3

Figure 9.4.: Feynman diagrams for the pro
ess e

�

e

+

! �

+

�

�

.

These identities 
onne
t the massless spinors pi and [p to the light-like four-ve
tor p

�

.

We are now in position to derive some basi
 properties of the bra
kets. First, we 
an


onne
t the two types of spinor produ
ts as

hpqi = �u

L

(p)u

R

(q) = [�u

R

(q)u

L

(p)℄

�

= [qp℄

�

: (9.78)

Multiplying then pi[p and q℄hq and taking the tra
e gives

hpqi[qp℄ = trfP

R

q=P

L

p=g = trfP

R

q=p=g = 2p � q ; (9.79)

so that

jhpqij

2

= j[qp℄j

2

= 2p � q : (9.80)

Next, we express the spinor produ
ts through Weyl spinors and use u

R

(p) = i�

2

u

�

L

(p),

hpqi = �

y

L

(p)�

R

(q) = �

�

La

(p)(i�

2

)

ab

�

�

Lb

(q) : (9.81)

Then the antisymmetry of (i�

2

)

ab

= "

ab

implies

hpqi = �hqpi and [pq℄ = �[qp℄ : (9.82)

Thus the bra
kets are square roots of the 
orresponding Lorentz ve
tor produ
ts whi
h are

antisymmetri
 in their two arguments. Finally, we note that the Fierz identity applied to the

sigma matri
es (
f. with problem 8.??),

(��

�

)

ab

(��

�

)


d

= 2(i�

2

)

a


(i�

2

)

bd

; (9.83)

allows the simpli�
ation of 
ontra
ted spinor expressions,

hp


�

q℄hk


�

`℄ = 2hpki[`q℄ ; hp


�

q℄[k


�

`i = 2hp`i[kq℄ : (9.84)

e

�

e

+

! �

�

�

+

s
attering It is now time to apply this new \bra
ket" formalism. We


onsider the tree-level amplitude for, e.g., e

�

L

(1)e

+

R

(2) ! �

�

L

(3)�

+

R

(4) in QED, given by the

single diagram shown in Fig. 9.4. As it is standard using this formalism, we 
onsider all

momenta as outgoing. Then the amplitude is

iA = (�ie)

2

�i

q

2

�u

L

(3)


�

u

L

(4) �u

L

(2)


�

u

L

(1) (9.85a)

=

ie

2

q

2

h3


�

4℄h2


�

1℄ =

2ie

2

q

2

h32i[14℄ ; (9.85b)
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where we have employed the Fierz identity (9.83) in the last step. Sin
e h32i and [14℄ are

both square roots of

u = (k

2

+ k

3

)

2

= (k

1

+ k

4

)

2

; (9.86)

we 
an repla
e them by the Mandelstam invariant u. We 
onsider the pro
ess in the 
m frame

of the e

+

e

�

pair. With u = �2E

2

(1 + 
os#), and q

2

= s = 4E

2

, the amplitude be
omes

jiAj

2

= e

4

(1 + 
os#)

2

: (9.87)

You should re-derive this result using the more familiar tra
e formalism and 
ompare the

amount of algebra required in the two approa
hes (problem 9.??).

Massless gauge bosons In the next step, we in
orporate massless gauge bosons as the

photon into this framework. We 
laim that the polarisation ve
tors of a massless ve
tor

boson in the �nal-state 
an be represented as

�

��

R

(k) =

1

p

2

hr


�

k℄

hrki

; �

��

L

(k) = �

1

p

2

[r


�

ki

[rk℄

: (9.88)

Here, k is the momentum of the ve
tor boson, and r is a �xed light-like 4-ve
tor, 
alled the

referen
e ve
tor, whi
h is assumed to be not 
ollinear with k.

Now we show that this de�nition makes sense: First, we note that the ve
tors satisfy

["

�

R

(k)℄

�

= "

�

L

(k). One 
an also 
he
k that the polarisation ve
tors are 
orre
tly normalised.

Moreover, the Dira
 equation, k= k℄ = 0, guaranties that the polarisation ve
tors (9.88) are

transverse,

k

�

"

��

R;L

(k) = 0 : (9.89)

Finally, we have to show that a 
hange from one referen
e ve
tor r to another light-like ve
tor

s 
orresponds to a gauge transformation and thus does not a�e
t physi
s. The 
hange of a

polarisation ve
tor under a 
hange of referen
e ve
tor r! s is

"

��

R

(k; r)� "

��

R

(k; s) =

1

p

2

�

hr


�

k℄

hrki

�

hs


�

k℄

hski

�

(9.90a)

=

1

p

2

1

hrkihski

�

� hr


�

k℄hksi+ hs


�

k℄hkri

	

: (9.90b)

Now we use �rst the tensor produ
ts (9.77), and then the antisymmetry of the bra
kets,

"

��

R

(k; r)� "

��

R

(k; s) =

1

p

2

1

hrkihski

�

� hr


�

k=si+ hs


�

k=ri

	

(9.91a)

=

1

p

2

1

hrkihski

�

hs(k=


�

+ 


�

k=)ri

	

(9.91b)

=

1

p

2

1

hrkihski

hsri 2k

�

: (9.91
)

In the last line, we have applied the Cli�ord algebra of Dira
 matri
es. Thus the di�eren
e of

the polarisation ve
tors indu
ed by a 
hange of the referen
e ve
tor is a fun
tion proportional

to the photon momentum,

"

��

R

(k; r)� "

��

R

(k; s) = f(r; s)k

�

: (9.92)

Contra
ted into an on-shell amplitude, A = "

�

A

�

, 
urrent 
onservation implies that this

expression vanishes. Thus we 
an use the most 
onvenient referen
e ve
tor s whi
h 
an be


hosen di�erently in any gauge-invariant subset of Feynman diagrams.
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p1

p2

p3

p4

p1

p2

p4

p3

Figure 9.5.: Feynman diagrams for the pro
ess e

�

e

+

! 

.

e

�

e

+

! 

 s
attering As se
ond example, we 
onsider now a s
attering pro
ess with

photons as external parti
les, e

�

e

+

! 

, as illustration for the use of the polarisation

ve
tors. We label the momenta as in Fig. 9.5, taking all momenta as outgoing. Then the

amplitude for this pro
ess is

iA = (�ie)

2

h2

�

"=(4)

i(2=+ 4=)

s

24

"=(3) + "=(3)

i(2=+ 3=)

s

23

"=(4)

�

1℄ ; (9.93)

where we use the shorthand 2=+ 4= for k=

2

+ k=

4

and de�ne s

ij

= (i+ j)

2

.

There are four possible 
hoi
es for the photon polarisations. Ex
hanging the momenta

3 and 4 relates the 
ases 


R




L

and 


L




R

, while parity 
onne
ts 


R




R

and 


L




L

. We start

showing that the latter two amplitudes are zero in the massless limit we 
onsider. Considering




R




R

, we 
hoose as referen
e ve
tor r = 2 for both polarisation ve
tors,

"

�

(3) =

1

p

2

[2


�

3i

[23℄

; "

�

(4) =

1

p

2

[2


�

4i

[24℄

: (9.94)

Inserting the polarisation ve
tors into Eq. (9.93), we obtain using the Fierz identity (9.83)

h2


�

"

�

(4) / h2


�

[2


�

4i = 2h22i[4 = 0 : (9.95)

In the last step, we used the antisymmetry of the bra
kets, h22i = 0. A similar 
an
ellation

o

urs with "(3) and hen
e the entire matrix element vanishes. Parity implies then that the

amplitudeA(


L




L

)vanishes too. Alternatively, we 
an show the same 
an
ellation using r = 1

in both polarisation ve
tors.

Next we 
ompute the amplitude for the 
ase 


R




L

, 
hoosing

"

�

(3) =

1

p

2

[2


�

3i

h23i

and "

�

(4) = �

1

p

2

[1


�

4i

[14℄

: (9.96)

Then the se
ond diagram in Fig. 9.5 vanishes be
ause of (9.95). Using the Fierz identity, the

�rst diagram results in

iA =

�ie

2

s

24

2 � 2

(�2)h23i[14℄

h24i[1(2=+ 4=)2i[31℄ : (9.97)

Now we use the Dira
 equation, 2=2i = 0, and repla
e the ve
tor 4=

L

by an angle bra
ket,

iA =

2ie

2

s

13

h23i[14℄

h24i[14℄h42i[31℄ =

2ie

2

h13i[31℄h23i

h24ih42i[31℄ = 2ie

2

h24i

2

h23i

2

: (9.98)
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Finally, we introdu
e Mandelstam variables, s

23

= u, s

13

= s

24

= t, reprodu
ing the standard

result

jiAj

2

= 4e

4

t

u

= 4e

4

1� 
os#

1 + 
os#

: (9.99)

This short introdu
tion into heli
ity methods 
onvin
ed you hopefully of their eÆ
ien
y.

The advantage of this method over the traditional tra
e method in
reases with the number of

diagrams involved, sin
e the step A ! jAj

2

is trivial in this approa
h. Massive fermions 
an

be treated using the heli
ity states (A.17), and eÆ
ient extensions to massive gauge bosons

exist.

9.4. Soft photons and gravitons

The addition of a vertex introdu
es typi
ally a fa
tor �=� � 0:2% into a QED 
ross se
tion.

Thus one may hope that perturbation theory in QED 
onverges, at least initially, reasonably

fast. An ex
eption to this rule is the emission of an additional soft or 
ollinear photon from

an external line shown in Fig. 9.6. The denominator of the additional propagator goes for

k ! 0 to

1

(p+ k)

2

�m

2

!

1

2p � k

�

1

2E!(1 � 
os#)

; (9.100)

where we assumed jpj � m in the last step. Hen
e the denominator 
an blow up in two

di�erent limits: Firstly, in 
ase of emission of soft photons, ! ! 0. Se
ondly, in 
ase of


ollinear emission of photons, # ! 0, if the mass of the emitting parti
le 
an be negle
ted.

We have seen in the example of Compton s
attering that both soft and 
ollinear emission


orrespond to the 
lassi
al limit.

p+k
p

k

Figure 9.6.: Emission of an additional soft or 
ollinear photon from an external line in the

�nal state.

Universality and fa
torisation The fa
t that a photon sees in the soft limit k ! 0 a 
lassi
al


urrent should lead to 
onsiderable simpli�
ations: In parti
ular, interferen
e e�e
ts should

disappear and the amplitude A

n+1

for the emission of an additional soft photon should fa
-

tories into an universal fa
tor "

�

S

�

and the amplitude A

n

for the original pro
ess.

Let us start 
onsidering the emission of a soft photon by a spinless parti
le. If a s
alar in

the �nal state with momentum p and 
harge q emits a photon with momentum k ! 0, then

2

A

n+1

= q

"

�

(2p

�

+ k

�

)

(p� k)

2

�m

2

+ i"

A

n

! �q

" � p

p � k � i"

A

n

: (9.101)

2

We use the Feynman rule for a ��A

�

vertex derived in problem 7.??.
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For the emission of a soft photon from an initial state parti
le, the 
orresponding fa
tor is

+q " � p=(p � k + i"). In the 
ase of an internal line, in general no fa
tor (p � k)

�1

appears for

k ! 0, sin
e the virtual parti
le is o�-shell.

For a spin-1/2 parti
le in the initial state, the emission of a soft photon adds the fa
tor

q

"

�

�u(p; s)


�

(p= + k= +m)

(p� k)

2

�m

2

+ i"

! �q

"

�

�u(p; s)


�

(p= +m)

�2p � k + i"

(9.102)

to the amplitude A

n

. Now we repla
e p=+m by the spin sum

P

s

u(p; s)�u(p; s), and use

�u(p; s)


�

u(p; s

0

) = 2E

p

p

�

p

0

Æ

s;s

0

= 2p

�

Æ

s;s

0

: (9.103)

This relation 
an be 
he
ked by dire
t 
al
ulation, or by noting that the 
urrent j

�

=

�u(p; s)


�

u(p; s) should be
ome j

�

= (�; �v) in the 
lassi
al limit k ! 0. Thus we obtain

the same universal fa
tor des
ribing the emission of a soft photon,

S

�

= �q

p

�

p � k � i"

; (9.104)

as in the 
ase of a s
alar. Moreover, we 
on�rmed that the amplitude indeed fa
torises,

A

n+1

= "

�

S

�

A

n

� "

�

A

�

n+1

. If we allow for the emission of m soft photons from external

parti
les with 
harge q

i

, then

A

�

1

����

m

n+m

!

m

X

i=1

s

i

q

i

p

�

m

p � k + is

i

"

A

n

; (9.105)

where the signs are s

i

= �1 for an initial and s

i

= +1 for a �nal state parti
le.

We have seen that the polarisation ve
tor "

�

(k) of a photon does not transform as a four-

ve
tor, 
f. Eq. (7.23), but a
quires a term proportional to k

�

. As we exploited already at

various pla
es, amplitudes 
ontaining polarisation ve
tors "

�

(k) of external photons have to

vanish therefore when 
ontra
ted with k

�

. Thus Eq. (9.105) implies in the limit k ! 0

k

�

j

A

�

1

����

m

n+m

!

m

X

i=1

s

i

q

i

A

n

= 0 : (9.106)

The prefa
tor of A

n

is the total 
harge in the �nal state minus the total 
harge in the initial

state. In order to obtain a Lorentz invariant matrix element for the soft emission of massless

spin-1 parti
les, we have therefore to require that su
h parti
les 
ouple to a 
onserved 
harge,

X

i

q

i

=

X

f

q

f

:

Thus Lorentz invarian
e is suÆ
ient to guaranty the 
onservation of the ele
tromagneti



urrent in the low-energy limit. While this argument does not rely on gauge invarian
e, it

tells us nothing about the behaviour of \hard" photons.
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9. S
attering pro
esses

Spin s > 1 We 
an apply the same line of arguments to the emission of massless parti
les

with spin s > 1. In the 
ase of gravitons, s = 2, one �nds that the universal fa
tor be
omes

S

��

= �f

p

�

p

�

p � k � is"

; (9.107)

where f denotes the 
oupling to the graviton. Requiring again that an amplitude 
ontaining

the polarisation tensor "

��

(k) of external gravitons vanishes when 
ontra
ted with k

�

gives

the 
onstraint

k

�

j

A

�

1

����

m

n+m

!

m

X

i=1

s

i

f

i

p

�

i

A

n

= 0 : (9.108)

Now the sum

P

i

f

i

p

�

i

is 
onserved. For f

i

6= f

j

, a linear 
ombination of the individual

four-momenta other than the total four-momentum would be 
onserved in the s
attering

pro
ess|a 
ondition whi
h is not possible to satisfy in a non-trivial s
attering pro
ess. Thus

we have to 
on
lude that any massless s = 2 parti
le has a universal 
oupling to all types

of parti
le. Re
alling from (5.21) the form of the stress tensor, T

��

= 2N

2

p

�

p

�

, we see

moreover that a massless spin-2 parti
les 
ouples with universal strength to the stress tensor,

S

��

/ T

��

. This result 
an be viewed as the basis of the weak equivalen
e prin
iple. Going

further to s = 3, the universal fa
tor be
omes S

���

/ p

�

p

�

p

�

, requiring that sums quadrati


in the momenta,

P

i

~

f

i

p

�

i

p

�

i

, are 
onserved. This is not possible for any s
attering angles

ex
ept # = 0 and 180

Æ

, and thus no 
onsistent theory of intera
ting massless parti
les with

spin s � 2 is possible.

Bremsstrahlung We dis
uss now as a 
on
rete example the 
ase of bremsstrahlung, i.e.

the emission of a real photon in the s
attering of a 
harged parti
le in the Coulomb �eld

A

0

= �Ze=(4�jxj) of a stati
 nu
lei with 
harge Ze. The S-matrix element of this pro
ess is

iS

fi

= 2�Æ(E

0

+ ! �E

0

)

�Ze

3

jqj

2

�u(p

0

)

�

"=

p=

0

+ k= +m

2p

0

� k




0

+ 


0

p=� k= +m

�2p � k

"=

�

u(p) ; (9.109)

where 1=jqj

2

is the Fourier transform of A

0

. Note that the external �eld breaks translation

invarian
e and the momentum is not 
onserved. We 
ommute now p= and p=

0

,

iS

fi

/ e

2

�u(p

0

)

�

2" � p

0

� (p=

0

�m)"=+ k="=

2p

0

� k




0

+ 


0

2" � p� "=(p=�m) + k="=

�2p � k

�

u(p) ; (9.110)

su
h that we 
an use in the next step the Dira
 equation. Negle
ting additionally in the soft

limit the k= term in the numerator, we �nd

iS

fi

/ e

2

�u(p

0

)


0

u(p)

�

" � p

0

p

0

� k

�

" � p

p � k

�

: (9.111)

As we have shown in the previous paragraph in general, the amplitude fa
torises into the

amplitude des
ribing the \hard" pro
ess and the universal 
orre
tion term. The latter 
onsists

of the two terms expe
ted for the emission of a soft photon from an initial line with momentum

p and a �nal line with momentum p

0

. The probability P for the emission of an additional soft

photon is given integrating the square bra
ket over the phase spa
e,

dP

n+1

=

d�

n+1

d�

n

=

�

" � p

0

p

0

� k

�

" � p

p � k

�

2

d

3

k

(2�)

3

2!

k

/

d!

k

!

k

: (9.112)
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This probability diverges for ! ! 0 and therefore the pro
ess is 
alled infrared (IR) divergent.

The resolution to this IR problem lies in the fa
t that soft photons with energy below the

energy resolution E

th

of the used dete
tor are not dete
table. Therefore the emission of n real

soft photons with E < E

th

is indistinguishable from the s
attering pro
ess in
luding virtual

photons and thus these 
ross se
tions should be added. The IR divergen
es in the real and

virtual 
orre
tions 
an
el, leading to a �nite result for the 
ombined 
ross se
tion. We will

dis
uss a detailed example for how this 
an
ellation works in 
hapter 17.3.

9.A. Appendix: De
ay rates and 
ross se
tions

We establish �rst the 
onne
tion between the normalised transition matrix elementM and the Feyn-

man amplitude A, where the normalisation fa
tors of external parti
les are omitted. Then we derive

de
ay rates and 
ross se
tions des
ribing 1! n and 2! n pro
esses.

Normalisation We have split the s
attering operator S into a diagonal part and the transition

operator T , S = 1 + iT . Taking matrix elements, we obtain

S

fi

= Æ

fi

+ (2�)

4

Æ

(4)

(P

i

� P

f

)iM

fi

(9.113)

where we set also T

fi

= (2�)

4

Æ

(4)

(P

i

� P

f

)M

fi

.

The Feynman amplitude A negle
ts all normalisation fa
tors of external parti
les, while the matrix

element T

fi

de�ned by (9.37) and thus M

fi


ontains a fa
tor N

k

for ea
h external parti
le. Thus

the transition between the matrix element M

fi

and the Feynman amplitude A for a pro
ess with n

parti
les in the initial and m in the �nal states is given by

M

fi

=

n

Y

i=1

(2E

i

V )

�1=2

m

Y

f=1

(2E

f

V )

�1=2

A

fi

: (9.114)

Here we 
hanged also to a �nite normalisation volume, 2E

p

(2�)

3

! 2E

p

V what makes de�ning de
ay

rates and 
ross se
tions easier.

9.A.1. De
ay rate

We 
onsider the de
ay of a parti
le into n parti
les in the �nal state. Squaring the s
attering amplitude

S

fi

for i 6= f using (2�)

4

Æ

(4)

(0) = V T gives as di�erential transition probability

dW

fi

= (2�)

4

Æ

(4)

(P

i

� P

f

)V T jM

fi

j

2

n

Y

f=1

V d

3

p

f

(2�)

3

: (9.115)

The de
ay rate or de
ay width d� is the transition probability per time,

d�

fi

= lim

T!1

dW

fi

T

= (2�)

4

Æ

(4)

(P

i

� P

f

)V jM

fi

j

2

n

Y

f=1

V d

3

p

f

(2�)

3

: (9.116)

Going over to the Feynman amplitude A eliminates the volume fa
tors V ,

d�

fi

= (2�)

4

Æ

(4)

(P

i

� P

f

)

1

2E

i

jA

fi

j

2

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

: (9.117)
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Moreover, the phase spa
e integrals in the �nal state are now Lorentz invariant, d

3

p

f

=(2E

f

). Intro-

du
ing the n-parti
le phase spa
e volume

d�

(n)

= (2�)

4

Æ

(4)

(P

i

� P

f

)

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

; (9.118)

the de
ay rate be
omes

d�

fi

=

1

2E

i

jA

fi

j

2

d�

(n)

: (9.119)

Sin
e both jA

fi

j

2

and the phase spa
e d�

(n)

are Lorentz invariant, the de
ay rate � / 1=E

i

= 1=(


i

m

i

)

shows expli
itly the time dilation e�e
t for a moving parti
le. Finally, we note that a symmetry fa
tor

S = 1=n! has to be added to the total de
ay width or 
ross se
tion, if there are n identi
al parti
les in

the �nal state.

Two-parti
le de
ays We evaluate the two parti
le phase spa
e d�

(2)

in the rest frame of the

de
aying parti
le,

d�

(2)

= (2�)

4

Æ(M �E

1

�E

2

) Æ

(3)

(p

1

+ p

2

)

d

3

p

1

2E

1

(2�)

3

d

3

p

2

2E

2

(2�)

3

(9.120)

We perform the integration over d

3

p

1

using the momentum delta fun
tion. In the resulting expression,

d�

(2)

=

1

(2�)

2

1

4E

1

E

2

Æ(M �E

1

�E

2

) d

3

p

2

; (9.121)

E

1

is now a fun
tion of p

2

, E

2

1

= p

2

2

+m

2

1

. Introdu
ing spheri
al 
oordinates, d

3

p

2

= d
p

2

2

dp

2

,

d�

(2)

=

1

(2�)

2

d


Z

1

0

Æ(M �E

1

�E

2

)

p

2

2

dp

2

4E

1

E

2

; (9.122)

and evaluating the delta fun
tion with M �E

1

�E

2

=M � x and dp

2

=dx = p

2

x=(E

1

E

2

) gives

d�

(2)

=

jp

0


ms

j

4�

2

d
 ; (9.123)

where

p

2


ms

=

�(s;m

2

1

;m

2

2

)

4s

=

1

4M

2

�

M

2

� (m

1

+m

2

)

2

� �

M

2

� (m

1

�m

2

)

2

�

(9.124)

is the 
ms momentum of the two �nal state parti
les. The Kibble fun
tion �(x; y; z) satis�es

�(x; y; z) =

�

(x

2

+ y

2

+ z

2

)� 2xy � 2yz � 2xz

�

1=2

(9.125a)

=

�

x

2

� (

p

y +

p

z)

2

�

1=2

�

x

2

� (

p

y �

p

z)

2

�

1=2

: (9.125b)

Three-parti
le de
ays The three parti
le phase spa
e d�

(3)

is in the rest-frame of the de
aying

parti
le given by

d�

(3)

= (2�)

4

Æ(M �E

1

�E

2

�E

3

) Æ

(3)

(p

1

+ p

2

+ p

3

)

d

3

p

1

2E

1

(2�)

3

d

3

p

2

2E

2

(2�)

3

d

3

p

3

2E

3

(2�)

3

: (9.126)

We 
an use again the momentum delta fun
tion to perform the integration over d

3

p

3

,

d�

(3)

=

1

(2�)

5

Æ(M �E

1

�E

2

�E

3

)

d

3

p

1

d

3

p

2

8E

1

E

2

E

3

; (9.127)
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To pro
eed we have to know the dependen
e of the matrix element on the integration variables. If

there is no preferred dire
tion (either for s
alar parti
les or after averaging over spins), we obtain

d�

(3)

=

1

8(2�)

5

4�p

2

1

dp

1

2�d 
os#dp

2

E

1

E

2

E

3

Æ(M �E

1

�E

2

�E

3

) (9.128a)

=

1

32�

3

p

1

dp

1

(p

1

p

2

d 
os#)(p

2

dp

2

)

E

1

E

2

E

3

Æ(M �E

1

�E

2

�E

3

) : (9.128b)

We rewrite next the momentum integrals as energy integrals. The energy-momentum relation E

2

i

=

m

2

i

+ p

2

i

gives E

i

dE

i

= p

i

dp

i

for i = 1; 2. Furthermore,

E

2

3

= (p

1

+ p

2

)

2

+m

2

3

= p

2

1

+ p

2

2

+ 2p

1

p

2


os#+m

2

3

(9.129)

and thus E

3

dE

3

= p

1

p

2

d 
os# for �xed p

1

;p

2

. Performing the angular integral, we obtain

d�

(3)

=

1

32�

3

dE

1

dE

2

dE

3

Æ(M �E

1

�E

2

�E

3

) ; (9.130)

and �nally

d�

(3)

=

1

32�

3

dE

1

dE

2

: (9.131)

The last step is only valid, if the argument of the delta fun
tion is non-zero. Thus the remaining task

is to determine the boundary of the integration domain. Let us 
hoose E

1

as the outer integration

variable. Then we have to determine the allowed range of E

2

for a given value of E

1

. Inserting energy

and momentum 
onservation into E

2

3

= p

2

3

+m

2

3

, we obtain

(M �E

1

�E

2

)

2

= m

2

3

+ p

2

1

+ p

2

2

+ 2p

1

� p

2

: (9.132)

The extrema 
orrespond to

p

1

� p

2

= �jp

1

jjp

2

j = �

q

(E

2

1

�m

2

1

)(E

2

2

�m

2

2

) : (9.133)

Inserting them into Eq. (9.132), we obtain the 
urve de�ning the boundary of the integration area as

fun
tion of E

1

and E

2

,

M

2

� 2M(E

1

+E

2

) + 2E

1

E

2

+m

2

1

+m

2

2

�m

2

3

= �

q

(E

2

1

�m

2

1

)(E

2

2

�m

2

2

) : (9.134)

In order to visualise the integration area easier, we set �rst m

1

= m

2

= 0. Then the equation with

the plus sign be
omes E

2

=M=2+m

2

3

=(4E

1

� 2M), while the equation with the minus sign simpli�es

to a straight line E

2

= �E

1

+M=(2� 2m

2

3

=M

2

). The resulting integration area is shown in Fig. 9.7

for m

3

=M = 0:1. Setting also m

3

= 0, the integration area is a triangle in the E

1

{E

2

plane.

If one prefers Lorentz invariant integration variables, one 
an introdu
e the invariant mass of the

pair (i; j)

m

2

23

= (p� p

1

)

2

= (p

2

+ p

3

)

2

=M

2

� 2ME

1

+m

2

1

(9.135a)
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2

= (p

1
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3
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� 2ME

2
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(9.135b)

m

2
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= (p� p

3

)

2

= (p

1

+ p

2

)

2

=M

2

� 2ME

3

+m

2

3

; (9.135
)

Be
ause of m

2

23

+m

2

13

+m

2

12

= M

2

+m

2

2

+m

2

3

, only two out of the three variables are independent.

They 
an be used to to repla
e E

1

and E

2

in Eq. (9.131).
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Figure 9.7.: Phase-spa
e boundary for m

3

=M = 0:1 (left). and m

3

= 0 (right); in both 
ases

we set m

1

= m

2

= 0.

9.A.2. Cross se
tions

We 
onsider now the intera
tion of two parti
les in the rest system of either parti
le 1 or 2. For

simpli
ity, we 
onsider two uniform beams. They may produ
e n �nal state parti
les. The total

number of su
h s
atterings is

dN / v

M�l

n

1

n

2

dV dt (9.136)

where n

i

is the density of parti
le type i = 1; 2. The M�ller velo
ity v

M�l

is a quantity whi
h 
oin
ides

in the rest frame of parti
le 1 or 2 with jv

2

j and jv

1

j, respe
tively. Therefore it is often denoted simply

as relative velo
ity v

rel

. The proportionality 
onstant in (9.136) has the dimension of an area and is


alled 
ross se
tion �. We de�ne in the rest system of either parti
le 1 or 2

dN = �v

M�l

n

1

n

2

dV dt ; (9.137)

while we set in an arbitrary frame

dN = An

1

n

2

dV dt : (9.138)

We determine now A. Sin
e both dN and dV dt = d

4

x are Lorentz invariant, the expression An

1

n

2

has to be Lorentz invariant too. The densities transform as

n

i

= n

i;0


 = n

i;0

E

i

m

i

; (9.139)

and thus the expression

A

E

1

E

2

p

1

� p

2

(9.140)

is also Lorentz invariant. In the rest system of parti
le 1, it be
omes

A

E

1

E

2

E

1

E

2

� p

1

p

2

= A = �v

M�l

: (9.141)

Thus we found that A in an arbitrary frame is given by

A = �v

M�l

p

1

� p

2

E

1

E

2

: (9.142)

We still have to determine v

M�l

: In the rest frame 1, we have

p

1

� p

2

= m

1

E

2

= m

1

m

2

q

1� v

2

M�l

: (9.143)
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Thus the M�ller velo
ity is given in general by

v

M�l

=

s

1�

m

2

1

m

2

2

(p

1

� p

2

)

2

: (9.144)

Sin
e this expression is Lorentz invariant, we see that the notion of the M�ller velo
ity as relative

velo
ity is misleading.

Next we de�ne the 
ux fa
tor

I � v

M�l

p

1

� p

2

=

q

(p

1

� p

2

)

2

�m

2

1

m

2

2

: (9.145)

Inserting (9.142) for A together with the de�nition of I into (9.138), we obtain

dN = �

I

E

1

E

2

V

(n

1

V )(n

2

dV )dt : (9.146)

Here, we re-grouped the terms to make 
lear that after integration the total number N of s
attering

events is proportional to the number N

1

= n

1

V and N

2

=

R

n

2

dV of parti
les of type 1 and 2,

respe
tively. The number N of s
attering events per time and per parti
les 1 and 2 is however simply

the transition probability per time,

dW

fi

T

=

dN

N

1

N

2

T

= d�

I

E

1

E

2

V

: (9.147)

Inserting the expression (9.116) for dW

fi

, we �nd

d� =

E

1

E

2

V

2

I

(2�)

4

Æ

(4)

(P

i

� P

f

)jM

fi

j

2

n

Y

f=1

V d

3

p

f

(2�)

3

: (9.148)

Changing from the normalised matrix element M to the Feynman amplitude A introdu
es a fa
tor

(2E

1

V )

�1

(2E

2

V )

�1

for the initial state and

Q

f

(2E

f

V )

�1

for the �nal state. Thus the arbitrary

normalisation volume V 
an
els and we obtain

d� =

1

4I

(2�)

4

Æ

(4)

(P

i

� P

f

)jA

fi

j

2

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

=

1

4I

jA

fi

j

2

d�

(n)

(9.149)

with the �nal state phase spa
e d�

(n)

. The three pie
es 
omposing the di�erential 
ross se
tion, the


ux fa
tor I , the Feynman amplitude A, and the �nal state phase spa
e d�

(n)

, are ea
h Lorentz

invariant.

2{2 s
attering For a 1+2! 3+4 s
attering pro
ess, it is useful to introdu
e Mandelstam variables

s; t, and u as

s = (p

1

+ p

2

)

2

= (p

2

+ p

4

)

2

; (9.150)

t = (p

1

� p

3

)

2

= (p

2

� p

4

)

2

; (9.151)

u = (p

1

� p

4

)

2

= (p

2

� p

3

)

2

: (9.152)

Sin
e s+ t+ u =

P

4

i=1

m

2

i

, the s
attering amplitude A depends only on two variables, e.g A(s; t). In

the 
ms, the 
ux fa
tor be
omes

I

2

= (p

1

� p

2

)

2

�m

2

1

m

2

2

= p

2


ms

(E

1

+E

2

)

2

= p


ms

p

s : (9.153)

Adding the expression for the 2-parti
le phase spa
e gives

d�

d


=

1

64�

2

s

p

0


ms

p


ms

jA

fi

j

2

: (9.154)
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Here the 
m momentum of the initial state is p

2


ms

= �(s;m

2

1

;m

2

2

)=(4s), while p

02


ms

= �(s;m

2

3

;m

2

4

)=(4s)

is the one of the �nal state. Using as variable the momentum transfer t, the di�erential 
ross se
tion

be
omes

d�

dt

=

1

64�sp

2


ms

jA

fi

j

2

; (9.155)

where the allowed range of t has to be determined from Eq. (9.151) and �1 � 
os# � 1.

The opti
al theorem 
onne
ts the imaginary part of the forward amplitude =T

ii

with the total 
ross

se
tion as

�

tot

=

=T

ii

�

1=2

(s;m

2

1

;m

2

2

)

: (9.156)

Summary

The LSZ redu
tion formula shows that S-matrix elements are obtained from 
onne
ted Green

fun
tions by a repla
ement of the propagators on external lines with the 
orresponding wave-

fun
tions times the wavefun
tion renormalisation 
onstant

p

Z. Cross se
tions are 
al
ulated

from the squared Feynman amplitude A, the �nal state phase spa
e d�

(n)

and the 
ux fa
tor

I, whi
h are all three Lorentz-invariant. Squared Feynman amplitudes 
an be obtained using

\Casimir's tri
k". If the number of diagrams in
reases, it is more 
onvenient to 
al
ulate

dire
tly the amplitude using heli
ity methods.

The amplitude for the emission of additional soft parti
les fa
torises in the amplitude of

the hard pro
ess and an universal fa
tor. Lorentz invarian
e requires that a massless spin-1

parti
le 
ouples in the low-energy limit to a 
onserved 
harge, while a massless spin-2 parti
le

has to 
ouples with universal strength to the energy-momentum stress tensor.

Further reading

[Ste93℄ dis
usses the opti
al theorem and its 
onne
tion to 
ut diagrams in more detail. The

LSZ formula for parti
les with spin s > 0 is presented e.g. in [GR08℄, while [BL93℄ derive

S-matrix elements de�ning a new fun
tional Z

0

[J ℄ with the 
orre
t boundary 
onditions.

For additional information about the heli
ity formalisms see [Hab94℄ and [Pes11℄ from whi
h

our examples are taken. [A

+

12℄ provide a tutorial for several software tools useful for the


al
ulation of s
attering pro
esses. The dis
ussion of soft photon emission follows 
losely the

original dis
ussion of [Wei65℄, for an introdu
tion see [Whi15℄.
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10. Gauge theories

We dis
uss in this 
hapter �eld theories in whi
h the Lagrangian is invariant under a 
on-

tinuous group of lo
al transformations in internal �eld spa
e. The symmetry group of these

transformations is 
alled the gauge group and the ve
tor �elds asso
iated to the generators of

the group the gauge �elds. We introdu
e as a �rst step unbroken gauge theories, i.e. theories

with massless gauge bosons, and defer the more 
omplex 
ase of broken gauge symmetries to

the 
hapters 13 and ??. The Standard Model (SM) of parti
le physi
s 
ontains with quantum

ele
trodynami
s (QED) and quantum 
hromodynami
s (QCD) two examples for unbroken

gauge theories. While QED is an abelian gauge theory based on the gauge group U(1), QCD

whi
h des
ribes the strong intera
tions is an non-abelian gauge theory with group SU(3).

Non-abelian gauge theories were �rst studied by Yang and Mills and are therefore also often


alled Yang-Mills theories. The stru
ture of Yang-Mills theories has many similarities with

gravity. We use this property to introdu
e the 
urvature of a spa
e-time as the analogue of

the �eld-strength in the Yang-Mills 
ase.

10.1. Ele
trodynami
s as abelian gauge theory

In 
lassi
al ele
trodynami
s, the �eld-strength tensor F

��

= �

�

A

�

� �

�

A

�

is an observable

quantity, while the potential A

�

is merely a 
onvenient auxiliary quantity. From its de�nition

as an antisymmetri
 tensor, it is 
lear that F

��

is invariant under lo
al gauge transformations

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) (10.1)

of the potentials. Thus A

0

�

(x) is for any smooth �(x) physi
ally equivalent to A

�

(x), leading

to the same �eld-strength tensor and thus e.g. to the same Lorentz for
e on a parti
le.

Consider now e.g. a free Dira
 �eld  (x) with ele
tri
 
harge q. We saw already that this

�eld is invariant under global phase transformations exp[iq�℄ 2 U(1), implying a 
onserved


urrent j

�

=

�

 


�

 via Noether's theorem. Can we promote this global U(1) symmetry to a

lo
al one,

 (x)!  

0

(x) = U(x) (x) = exp[iq�(x)℄ (x) ; (10.2)

by making the phase U spa
e-time dependent as in (10.1)? The partial derivatives in the

Dira
 Lagrangian will lead to an additional term / �

�

U(x), destroying the invarian
e of the

free Lagrangian. However, if we add a �eld A

�

(x) whi
h transforms as de�ned in (10.1) and


ouples to the Noether 
urrent j

�

of the 
omplex �eld as L

I

= �q j

�

A

�

, the two gauge-

dependent terms will 
an
el. Thus lo
al U(1) gauge invarian
e of the Dira
 �eld requires the

existen
e of a massless gauge boson and �xes its intera
tion with matter: The 
oupling of

matter to photons is obtained by repla
ing the normal derivative by the 
ovariant derivative,

�

�

! D

�

= �

�

+ iqA

�

; (10.3)
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whi
h transforms as the matter �elds,

D

�

 (x)! D

0

�

 

0

(x) = f�

�

+ iq[A

�

(x)� �

�

�(x)℄g exp[iq�(x)℄ (x) = (10.4)

= exp[iq�(x)℄f�

�

+ iqA

�

(x)℄g (x) = U(x)D

�

 (x) : (10.5)

We 
an rewrite the gauge transformation of A

�

as

A

�

(x)! A

0

�

(x) = A

�

(x)� �

�

�(x) = A

�

(x)�

i

q

U(x)�

�

U

y

(x) ; (10.6)

expressing the 
hange ÆA

�

(x) through the group elements U(x). Finally, we note that we 
an


onne
t the �eld-strength tensor to the 
ommutator of 
ovariant derivatives,

[D

�

;D

�

℄ = iq([�

�

; A

�

℄� [�

�

; A

�

℄) = iq (�

�

A

�

� �

�

A

�

) = iq F

��

: (10.7)

To summarise: The invarian
e of 
omplex (s
alar or Dira
) �elds under global phase transfor-

mations exp[iq�℄ 2 U(1) implies a 
onserved 
urrent, promoting it to a lo
al U(1) symmetry

requires the existen
e of a massless U(1) gauge boson 
oupled via gauge-invariant derivatives

to these �elds.

10.2. Non-abelian gauge theories

10.2.1. Gauge invariant intera
tions

We want to generalise now ele
trodynami
s, using as symmetry group instead of the abelian

group U(1) larger groups like SO(n) or SU(n). A group like SU(n) will des
ribe the intera
-

tions of n

2

� 1 gauge bosons with matter, using as a single parameter the gauge 
oupling g.

The gauge transformations will moreover mix fermions living in the same representation of

the group, requiring that these fermions have the same intera
tions and the same mass if the

symmetry is unbroken. In this way, non-abelian gauge theories lead to a partial uni�
ation of

matter �elds and intera
tions. Note the di�eren
e to an abelian symmetry: The emission of a

photon does not 
hange any quantum number (apart from the momentum) and thus does not

\mix" di�erent parti
les. Therefore there is also no 
onne
tion between the ele
tri
 
harge of

di�erent parti
les.

The two non-abelian groups used in the SM are SU(2) for weak and SU(3) for strong inter-

a
tions. A matrix representation for the fundamental representation of these two groups are

the Pauli matri
es, T

a

= �

a

=2, and the Gell-Mann matri
es, T

a

= �

a

=2, respe
tively. Un-

der the fundamental representation the fermions transform as doublets for SU(2), as triplets

for SU(3), et
. Sin
e the number of generators is m = n

2

� 1 for SU(n), the groups SU(2)


ontains three gauge bosons, while SU(3) 
ontains eight bosons 
arrying strong intera
tions.

The most important di�eren
e of these non-abelian groups 
ompared to U(1) is that the gen-

erators T

a

� T

a

ij

of su
h groups do not 
ommute with ea
h other. As a result, we may expe
t

that both the expression for the �eld-strength tensor, Eq. (7.11), and the transformation law

for the gauge �eld, Eq. (7.12), be
omes more 
ompli
ated. In 
ontrast, we postulate that

the repla
ement �

�

! D

�

and the intera
tion law j

�

A

�

of gauge bosons with matter remain

valid, with the sole di�eren
e that now A

�

= A

a

�

T

a

. Thus A

�

is a Lorentz ve
tor with values

in the Lie algebra of the gauge group.
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We derive now the transformation laws and stru
ture of the gauge se
tor, requiring that the

transformation of the fermions and their intera
tion with the gauge �eld are lo
ally invariant.

A lo
al gauge transformation

U(x) = exp[ig

P

m

a=1

#

a

(x)T

a

℄ � exp[ig#(x)℄ (10.8)


hanges a ve
tor of fermion �elds  with 
omponents f 

1

; : : : ;  

n

g as

1

 (x)!  

0

(x) = U(x) (x) : (10.9)

Already global gauge invarian
e of the fermion mass term requires m

1

= m

2

= : : : = m

n

and for simpli
ity we set m

i

= 0. We 
an implement lo
al gauge invarian
e, if derivatives

transform in the same way as  . Hen
e we de�ne a new 
ovariant derivative D

�

requiring

D

�

 (x)! [D

�

 (x)℄

0

= U(x)[D

�

 (x)℄ : (10.10)

The gauge �eld should 
ompensate the di�eren
e between the normal and the 
ovariant

derivative,

D

�

 (x) = [�

�

+ igA

�

(x)℄ (x) : (10.11)

In the non-abelian 
ase, the gauge �eld A

�

is a matrix that is 
onne
ted to its 
omponent

�elds by

A

�

= A

a

�

T

a

: (10.12)

We now determine the transformation properties of D

�

and A

�

demanding that (10.9) and

(10.10) hold. Combining both requirements gives

D

�

 (x)! [D

�

 ℄

0

= UD

�

 = UD

�

U

�1

U = UD

�

U

�1

 

0

; (10.13)

and thus the 
ovariant derivative transforms as D

0

�

= UD

�

U

�1

. Using its de�nition (10.11),

we �nd

[D

�

 ℄

0

= [�

�

+ igA

0

�

℄U = UD

�

 = U [�

�

+ igA

�

℄ : (10.14)

We 
ompare now the se
ond and the fourth term, after having performed the di�erentiation

�

�

(U ). The result

[(�

�

U) + igA

0

�

U ℄ = igUA

�

 (10.15)

should be valid for arbitrary  and hen
e we arrive after multiplying from the right with U

�1

at

A

�

! A

0

�

= UA

�

U

�1

+

i

g

(�

�

U)U

�1

= UA

�

U

�1

�

i

g

U�

�

U

�1

: (10.16)

Here we used also �

�

(UU

�1

) = 0. In most 
ases, the gauge transformation U is an unitary

transformation and one sets U

�1

= U

y

. A term 
hanging as U(x)D

�

(x)U

y

(x) is 
alled to

transform homogeneously, while the potential A

�

is said to transforms inhomogeneously.

1

We suppress in the following most indi
es; writing them out gives e.g.  

0

i

(x) = U

ij

(x) 

j

(x) with U

ij

(x) =

exp[ig

P

m

a=1

#

a

(x)T

a

ij

℄.
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10. Gauge theories

Example 10.1: We 
an determine the transformation properties of A

�

also by demanding that

(10.11) de�nes the intera
tion term in a gauge invariant way. Repla
ing �

�

! D

�

in the free Lagrange

density of fermions and inserting then U

�1

U = 1 gives

L

f

+L

I

= i

�

 


�

D

�

 = i

�

 


�

�

�

 � g

�

 


�

A

�

 =

= i

�

 U

�1

U


�

�

�

U

�1

U � g

�

 U

�1

U


�

A

�

U

�1

U : (10.17)

Using then  

0

= U , we obtain

L

f

+L

I

= i

�

 

0




�

U�

�

U

�1

 

0

� g

�

 

0




�

UA

�

U

�1

 

0

= i

�

 

0




�

�

�

 

0

� g

�

 

0




�

�

UA

�

U

�1

�

i

g

U(�

�

U

�1

)

�

 

0

: (10.18)

The Lagrange density L

f

+L

I

is thus invariant, if the gauge �eld transforms as in Eq. (10.16).

Spe
ialising to in�nitesimal transformations,

U(x) = exp(ig#

a

(x)T

a

) = 1 + ig#(x) +O(#

2

) ; (10.19)

it follows

A

�

(x)! A

0

�

(x) = A

�

(x)� ig[A

�

(x); #(x)℄ � �

�

#(x) : (10.20)

In the abelian U(1) 
ase, the 
ommutator term is not present and the transformation law

redu
es to the known A

�

! A

�

� �

�

#. For a (semi-simple) Lie group one de�nes

[T

a

; T

b

℄ = if

ab


T




(10.21)

with stru
ture 
onstants f

ab


that 
an be 
hosen to be 
ompletely antisymmetri
. Thus

A

a

�

(x)! A

a0

�

(x) = A

a

�

(x) + gf

ab


A

b

�

(x)#




(x)� �

�

#

a

(x) (10.22a)

= A

a

�

(x)� [Æ

a


�

�

� gf

ab


A

b

�

(x)℄#




(x) (10.22b)

� A

a

�

(x)�D

a


�

#




(x) ; (10.22
)

where the last line de�nes how the 
ovariant derivative a
ts on the gauge �elds: Comparing

this expression to the general de�nition D

�

= �

�

+ igA

a

�

T

a

, we see that the gauge �elds live

in the adjoint representation of the gauge group

2

, 
f. problem ??. The in�nitesimal 
hange

of the gauge �elds A

a

�

is given by the 
ovariant derivative a
ting on the parameters #

a

of the

gauge transformation.

Finally, we have to derive the �eld strength tensor F

��

= F

a

��

T

a

and the Lagrange density

L

YM

of the gauge �eld. The quantity F

2

requires now additionally a summation over the

group index a,

L

YM

= �

1

4

F

a

��

F

a��

= �

1

2

tr F

��

F

��

; (10.23)

where we assumed in the se
ond step that the standard normalisation tr T

a

T

b

= Æ

ab

=2 for

the group generators T

a

holds. The last equation shows that it is suÆ
ient for the gauge

invarian
e of the a
tion that the �eld-strength tensor transforms homogeneously,

F

��

(x)! F

0

��

(x) = U(x)F

��

(x)U

y

(x) : (10.24)

2

The n 
omplex fermion and n

2

� 1 real gauge �elds of SU(n) live in di�erent representations of the group,

as already the mismat
h of their number indi
ates, see also Appendix B. Note also that the gauge trans-

formations of the gauge �elds have to be real, in 
ontrast to the ones of the fermion �elds.
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There are several ways to derive the relation between F

��

and A

�

. The �eld-strength tensor

should be antisymmetri
. Thus we should 
onstru
t it out of the 
ommutator of gauge

invariant quantities that in turn should 
ontain A

�

. An obvious try is igF

��

= [D

�

;D

�

℄ that

worked in the abelian 
ase. Now, additionally the non-zero 
ommutator of the gauge �elds


ontributes,

F

��

= F

a

��

T

a

=

1

ig

[D

�

;D

�

℄ = �

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄ : (10.25)

In 
omponents, this equation reads expli
itly

F

a

��

= �

�

A

a

�

� �

�

A

a

�

� gf

ab


A

b

�

A




�

: (10.26)

Remark 10.1: Antisymmetri
 tensors of rank n 
an also be seen as di�erential forms. We know

already fun
tions as forms of order n = 0 and 
o-ve
tors as forms of order n = 1. Sin
e di�erentials

df = �

i

f dx

i

of fun
tions are forms of order n = 1, the dx

i

form a basis, and one 
an write in general

A = A

i

dx

i

. For n > 1, the basis has to be antisymmetrised. Hen
e, a two-form as the �eld-strength

tensor is given by

F =

1

2

F

��

dx

�

^ dx

�

(10.27)

with dx

�

^dx

�

= �dx

�

^dx

�

. Looking at df suggestions to de�ne the di�erentiation of a form ! with


oeÆ
ients w and degree n as an operation that in
reases its degree by one to n+ 1,

d! =

1

n!

(�

�

w

�

1

:::;�

n

)dx

�

^ dx

�

1

^ : : : ^ dx

�

n

: (10.28)

Thus we have F = dA. Moreover, it follows d

2

! = 0 for all forms. Hen
e we 
an write an abelian

gauge transformation as F

0

= d(A� d�) = F.

10.2.2. Gauge �elds as 
onne
tion

There is a 
lose analogy between the 
ovariant derivative r

�

introdu
ed for a spa
e-time


ontaining a gravitational �eld and the gauge invariant derivative D

�

required for a spa
e-

time 
ontaining a gauge �eld. In the former 
ase, the moving 
oordinate basis in 
urved

spa
e-time, �

�

e

�

6= 0, introdu
es an additional term in the derivative of ve
tor 
omponents

V

�

= e

�

�V . Analogously, a non-zero gauge �eld A

�

leads to a rotation of the basis ve
tors e

i

in group spa
e whi
h in turn produ
es an additional term  � (�

�

e

i

) performing the derivative

of a  

i

=  � e

i

.

Let us rewrite our formulas su
h that the analogy between the 
ovariant gauge derivative

D

�

and the 
ovariant spa
e-time derivative r

�

be
omes obvious. The ve
tor  of fermion

�elds with 
omponents f 

1

; : : : ;  

n

g transforming under a representation of a gauge group


an be written as

 (x) =  

i

(x)e

i

(x) : (10.29)

We 
an pi
k out the 
omponent  

j

by multiplying with the 
orresponding basis ve
tor e

j

,

 

j

=  � e

j

(x) : (10.30)

If the 
oordinate basis in group spa
e depends on x

�

, then the partial derivative of  

i

a
quires

a se
ond term,

�

�

 

i

= (�

�

 ) � e

i

+ � (�

�

e

i

) : (10.31)
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dx

1

3

dy 4

x x+ dx

x+ dy x+ dx+ dy

2

Figure 10.1.: Parallelogram used to 
al
ulate the rotation of a test �eld  

i

moved along a


losed loop in the presen
e of a non-zero gauge �eld A

�

.

We 
an argue as in se
tion 6.2 that (�

�

 ) � e

i

is an invariant quantity, de�ning therefore as

gauge invariant derivative

D

�

 

i

= (�

�

 ) � e

i

= �

�

 

i

� � (�

�

e

i

) : (10.32)

The 
hange �

�

e

i

of the basis ve
tor in group spa
e should be proportional to gA

�

. Setting

�

�

e

i

= �ig(A

�

)

ij

e

j

(10.33)

we are ba
k to our old notation.

Gauge loops The 
orresponden
e between the derivatives r

�

and D

�

suggests that we 
an

use the gauge �eld A

�

to transport �elds along a 
urve x

�

(�). In empty spa
e, we 
an use

the partial derivative �

�

 (x) to 
ompare �elds at di�erent points,

�

�

 (x) /  (x+ dx

�

)�  (x) : (10.34)

If there is an external gauge �eld present, the �eld  is additionally rotated in group spa
e

moving it from x to x+ dx,

~

 (x+ dx) =  (x+ dx) + igA

�

(x) (x)dx

�

(10.35a)

=  (x) + �

�

 (x)dx

�

+ igA

�

(x) (x)dx

�

: (10.35b)

Then the total 
hange is

~

 (x+ dx)�  (x) = [�

�

+ igA

�

(x)℄ (x)dx

�

= D

�

 (x)dx

�

: (10.36)

Thus we 
an view

3

P

dx

(x) = 1� igA

�

(x)dx

�

(10.37)

as an operator whi
h allows us to transport a gauge-dependent �eld the in�nitesimal distan
e

from x to x+ dx.

We ask now what happens to a �eld  

i

(x), if we transport it along an in�nitesimal paral-

lelogram, as shown in Fig. 10.1. Cal
ulating the path 2, we �nd

P

dy

(x+ dx) = 1� igA

�

(x+ dx)dy

�

= 1� igA

�

(x)dy

�

� ig�

�

A

�

(x)dx

�

dy

�

;

(10.38)

3

Note the sign 
hange 
ompared to the 
ovariant derivative: there we pull-ba
k the �eld from x+ dx to x.
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where we Taylor expanded A

�

(x+ dx). Combining the paths 1 and 2, we arrive at

P

dy

(x+ dx)P

dx

(x) = [1� igA

�

(x)dy

�

� ig�

�

A

�

(x)dx

�

dy

�

℄[1� igA

�

(x)dx

�

℄

= 1� igA

�

(x)dx

�

� igA

�

(x)dy

�

� ig�

�

A

�

(x)dx

�

dy

�

� g

2

A

�

(x)A

�

(x)dy

�

dx

�

+O(dx

3

) :

(10.39)

Instead of performing the 
al
ulation for a round trip 1!2!3!4, we evaluate next 4!3

whi
h we then subtra
t from 1! 2. In this way, we 
an re-use our result for 1! 2 after

ex
hanging labels, A

�

dx

�

$ A

�

dy

�

, obtaining

P

dx

(x+ dy)P

dy

(x) = 1� igA

�

(x)dy

�

� igA

�

(x)dx

�

� ig�

�

A

�

(x)dx

�

dy

�

� g

2

A

�

(x)A

�

(x)dx

�

dy

�

+O(dx

3

) :

(10.40)

The �rst three terms on the RHS's of (10.39) and (10.40) 
an
el in the result P (�) for the

round-trip, leaving us with

P (�) � P

dy

(x+ dx)P

dx

(x)� P

dx

(x+ dy)P

dy

(x) =

� ig f�

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄g dx

�

dy

�

:

(10.41)

Maxwell's equations inform us that the line integral of the ve
tor potential equals the en
losed


ux: The area of the parallelogram 
orresponds to dx

�

dy

�

, and the prefa
tor has to be

therefore the �eld-strength tensor. If the en
losed 
ux is non-zero, then P (�) 

i

6=  

i

and

thus the �eld is rotated.

10.2.3. Curvature of spa
e-time

Curvature and the Riemann tensor We 
ontinue to work out the analogy between Yang-

Mills theories and gravity. Both the gauge �eld A

�

and the 
onne
tion �

�

��

transform ho-

mogeneously. Therefore we 
an not use them to judge if a gauge or gravitational �eld is

present. In the gauge 
ase, we introdu
ed therefore the �eld-strength F

��

: It transforms

homogeneously and thus the statement F

��

(x) = 0 holds in any gauge. This suggests to

transform (10.25) into a de�nition for a tensor measuring a non-zero 
urvature of spa
e-time,

(r

�

r

�

�r

�

r

�

)T

�:::

�:::

= [r

�

;r

�

℄T

�:::

�:::

6= 0 : (10.42)

Thus the 
urvature of spa
e-time should be proportional to the area of a loop and the amount

a tensor is rotated.

For the spe
ial 
ase of a ve
tor V

�

we obtain with

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

(10.43)

�rst

r

�

r

�

V

�

= �

�

(�

�

V

�

+ �

�

��

V

�

) + �

�

��

(�

�

V

�

+ �

�

��

V

�

)� �

�

��

(�

�

V

�

+ �

�

��

V

�

) : (10.44)

The se
ond part of the 
ommutator follows from the simple relabelling � $ � as

r

�

r

�

V

�

= �

�

(�

d

V

�

+ �

a

��

V

�

) + �

�

��

(�

�

V

�

+ �

�

b�

V

�

)� �

�

��

(�

�

V

�

+ �

�

��

V

�

) : (10.45)
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Now we subtra
t the two equations using that �

�

�

�

= �

�

�

�

and �

�

��

= �

�

��

,

[r

�

;r

�

℄V

�

=

�

�

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

�

V

�

� R

�

���

V

�

: (10.46)

The tensor R

�

���

is 
alled Riemann or 
urvature tensor. In problem ??, you are asked to

show that the tensor R

����

= g

�


R




���

is antisymmetri
 in the indi
es �$ �, antisymmetri


in �$ � and symmetri
 against an ex
hange of the index pairs (��)$ (��). Therefore, we


an 
onstru
t out of the Riemann tensor only one non-zero tensor of rank two, 
ontra
ting �

either with the third or fourth index, R

�

���

= �R

�

���

. We de�ne the Ri

i tensor by

R

��

= R

�

���

= �R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

: (10.47)

A further 
ontra
tion gives the 
urvature s
alar,

R = R

��

g

��

: (10.48)

Example 10.2: Cal
ulate the Ri

i tensor R

ab

and the s
alar 
urvature R of the two-dimensional

unit sphere S

2

.

We have already determined the non-vanishing Christo�el symbols of the sphere S

2

as �

�

#�

= �

�

�#

=


ot# and �

#

��

= � 
os# sin#. We will show later that the Ri

i tensor of a maximally symmetri


spa
e as a sphere satis�es R

ab

= Kg

ab

. Sin
e the metri
 is diagonal, the non-diagonal elements of the

Ri

i tensor are zero too, R

�#

= R

#�

= 0. We 
al
ulate with

R

ab

= R




a
b

= �




�




ab

� �

b

�




a


+ �




ab

�

d


d

� �

d

b


�




ad

the ## 
omponent, obtaining

R

##

= 0� �

#

(�

�

#�

+ �

#

##

) + 0� �

d

#


�




#d

= 0 + �

#


ot#� �

�

#�

�

�

#�

= 0� �

#


ot#� 
ot

2

# = 1 :

From R

ab

= Kg

ab

, we �nd R

##

= Kg

##

and thus K = 1. Hen
e R

��

= g

��

= sin

2

#.

The s
alar 
urvature is (diagonal metri
 with g

��

= 1= sin

2

# and g

##

= 1)

R = g

ab

R

ab

= g

��

R

��

+ g

##

R

##

=

1

sin

2

#

sin

2

#+ 1� 1 = 2 :

We 
an push the analogy further by remembering that the �eld-strength de�ned in

Eq. (10.25) is a matrix. Writing out the impli
it matrix indi
es of F

��

in Eq. (10.25) gives

(F

��

)

ij

= �

�

(A

�

)

ij

� �

�

(A

�

)

ij

+ ig f(A

�

)

ik

(A

�

)

kj

� (A

�

)

ik

(A

�

)

kj

g : (10.49)

Comparing this expression to

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

(10.50)

we see that the �rst two indi
es of the Riemann tensor, � and �, 
orrespond to the group

indi
es ij in the �eld-strength tensor. This is in line with the relation of the potential (A

�

)

ij

and the 
onne
tion �

�

��

implied by (10.33).
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10.3. Quantisation of gauge theories

10.3.1. Abelian 
ase

We dis
ussed already in Se
. 7.2 that we 
an derive the photon propagator only �xing a gauge.

Now we re
onsider this problem, and ask how we should modify the Lagrange density in order

to be able to obtain the photon propagator. The Lagrange density that leads to the Maxwell

equation is

L = �

1

4

F

��

F

��

= �

1

2

(�

�

A

�

�

�

A

�

� �

�

A

�

�

�

A

�

)

=

1

2

(A

�

�

�

�

�

A

�

�A

�

�

�

�

�

A

�

) =

1

2

A

�

[�

��

�� �

�

�

�

℄A

�

=

1

2

A

�

D

�1

��

A

�

;

(10.51)

where we made a partial integration dropping as usual the surfa
e term. Deriving the photon

propagator requires to invert the term in the square bra
ket. Performing a Fourier transfor-

mation, we see that we should �nd the inverse of the operator

D

�1

��

(k) = k

2

P

��

T

(k) = k

2

�

�

��

� k

�

k

�

=k

2

�

: (10.52)

We have already seen that this operator proje
ts any four-ve
tor on the three-dimensional

subspa
e orthogonal to k. More formally, we see that P

��

T

(k) is a proje
tion operator,

P

��

T

P

�

T�

= P

��

T

; (10.53)

and has thus as only eigenvalues 0 and 1. Sin
e P

��

T

(k) is not the unit operator, it has at

least one zero eigenvalue and is thus not invertible. More pre
isely, its tra
e is

P

�

T�

= �

��

P

��

T

= Æ

�

�

� 1 = 3 ; (10.54)

and thus three eigenvalues are one and one eigenvalue is zero. The latter eigenvalue 
orre-

sponds to k

�

P

��

T

= 0, as required for a proje
tion operator on the three-dimensional subspa
e

orthogonal to k. The orthogonal part Æ

�

�

� P

�

T�

is given by the longitudinal proje
tion

operator P

��

L

= k

�

k

�

=k

2

.

We 
an invert D

�1

��

, if we 
hoose a gauge su
h that the subspa
e parallel to k is in
luded.

The simplest 
hoi
e is the Lorenz gauge. Imposing this gauge on the level of the Lagrangian

means adding

L ! L

eff

= L +L

gf

= L �

1

2

(�

�

A

�

)

2

: (10.55)

More generally, we 
an add the term

L

gf

= �

1

2�

(�

�

A

�

)

2

(10.56)

that depends on the arbitrary parameter �. This group of gauges is employed in the proof

of the renormalisability of gauge theories and is therefore 
alled R

�

gauge. The 
ombined

e�e
tive Lagrange density is thus

L

eff

= �

1

4

F

��

F

��

�

1

2�

(�

�

A

�

)

2

=

1

2

A

�

�

�

��

��

�

1�

1

�

�

�

�

�

�

�

A

�

: (10.57)
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Fourier transforming the term in the square bra
kets, we obtain

P

��

= �k

2

�

��

+ (1� �

�1

)k

�

k

�

: (10.58)

Now we split this expression into its transverse and longitudinal parts,

P

��

=� k

2

�

P

��

T

+

k

�

k

�

k

2

�

+ (1� �

�1

)k

�

k

�

(10.59a)

=� k

2

P

��

T

� �

�1

k

2

P

��

L

: (10.59b)

Sin
e P

��

T

and P

��

L

proje
t on orthogonal subspa
es, we obtain the inverse P

�1

��

simply by

inverting their prefa
tors, 
f. problem 8.??. Thus the photon propagator in R

�

gauge is given

by

iD

��

F

(k

2

) =

�iP

��

T

k

2

+ i"

+

�i�P

��

L

k

2

+ i"

=

�i

k

2

+ i"

h

�

��

� (1� �)

k

�

k

�

k

2

i

: (10.60)

Spe
ial 
ases are the Feynman gauge � = 1, the Landau gauge � = 0, while � !1 
orresponds

to the unitary gauge. The arbitrary, � dependent part of the photon propagator vanishes

in physi
al quantities, where it is mat
hed between 
onserved 
urrents with �

�

J

�

(x) = 0 or

k

�

J

�

(k) = 0.

10.3.2. Non-abelian 
ase

An important 
on
eptional di�eren
e between abelian and non-abelian theories is that in the

latter 
ase the 
onserved Noether 
urrent is not gauge invariant, 
f. problem 10.??. Moreover,

the non-abelian gauge transformation (10.22
) adds not only a term �

�

# but mixes also the

�elds via the term f

ab


A

b

�

#




. Therefore it is in general not guaranteed that the gauge-

dependent unphysi
al degrees of freedom 
ontained e.g. in the propagator (10.60) de
ouple

and the quantisation of non-abelian theories be
omes more 
hallenging.

We 
onsider �rst as a toy model for the generating fun
tional of a Yang-Mills theory the

two-dimensional integral

Z /

Z

dxdy e

iS(x)

: (10.61)

Sin
e the integration extends from �1 to 1, the y integration does not merely 
hange the

normalisation of Z but makes the integral ill-de�ned. We 
an eliminate the dangerous y

integration by introdu
ing a delta fun
tion,

Z /

Z

dxdy Æ(y)e

iS(x)

: (10.62)

Sin
e the value of y in the delta fun
tion plays no role, we 
an repla
e Æ(y) by Æ(y � f(x))

with an arbitrary fun
tion f(x). If y = f(x) is the solution of g(x; y) = 0, we obtain with

Æ(g(x; y)) =

Æ(y � f(x))

j�g=�yj

(10.63)

assuming that �g=�y > 0

Z /

Z

dxdy

�g

�y

Æ(g)e

iS(x)

: (10.64)
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Generalising this to n dimensions, we need n delta fun
tions and have to in
lude the Ja
obian,

Z /

Z

d

n

xd

n

y det

�

�g

i

�y

j

�

Y

i

Æ(g

i

)e

iS(x)

: (10.65)

We now translate this toy example to the Yang-Mills 
ase. The fun
tions g are the gauge

�xing 
onditions that we 
hoose as

g

a

(x) = �

�

A

a

�

(x)� !

a

(x) ; (10.66)

where the !

a

(x) are arbitrary fun
tions. The dis
rete index i 
orresponds to fx; ag, explaining

why the gauge freedom results in an in�nity: Although the integration measure of a 
ompa
t

gauge group is �nite, the summation over R

4

gives an in�nite answer. Finally, we see that

from the transformation law A

a

�

(x) ! A

a0

�

(x) = A

a

�

(x) � D

a


�

#




(x) that the parameters #

a


orrespond to the redundant 
oordinates y

i

.

The generating fun
tional for a Yang-Mills theory is thus with DA �

Q

3

�=0

Q

m

a=1

DA

a

�

as

short-
ut given by

Z[0℄ /

Z

DA Det

�

Æg

a

Æ#

b

�

Y

x;a

Æ(g

a

)e

iS

YM

; (10.67)

where we set for the moment the sour
es to zero. Our task is to evaluate �rst Æg

a

=Æ#

b

and then to transform the determinant into the Lagrangian of new, auxiliary �elds su
h

that we 
an use the language of Feynman diagrams to perform perturbative 
al
ulations

in the usual way. Inserting into the gauge �xing 
ondition (10.66) the in�nitesimal gauge

transformation (10.22
), we obtain as 
hange

Æg

a

(x) = ��

�

D

ab

�

#

b

(x) : (10.68)

Thus the required fun
tional derivative is

Æg

a

(x)

Æ#

b

(y)

= ��

�

D

ab

�

Æ(x� y) : (10.69)

We 
an eliminate the determinant remembering

R

d�d�� e

��A�

= detA from Eq. (8.103), ex-

pressing the Ja
obian as a path integral over Gra�mann variables 


a

and �


a

,

Det

�

Æg

a

(x)

Æ#

b

(y)

�

/

Z

D
D�
 e

iS

FP

: (10.70)

The 
orresponding Lagrangian is

L

FP

= ��


a

�

�

D

ab

�




b

= (�

�

�


a

)(D

ab

�




b

) = �

�

�


a

�

�




a

+ gf

ab


�

�

�


a




b

A




�

; (10.71)

where we made a partial integration and inserted the de�nition of the 
ovariant derivatives

a
ting on the gauge �eld, Eq. (10.22
). As a result, we have re
ast the determinant as the

kineti
 energy of 
omplex s
alar �elds 


a

that intera
t with the gauge �elds. Sin
e we had to

use for the s
alar �elds Gra�mann variables 


a

, their statisti
s is fermioni
. Clearly, su
h �elds

should be seen as a purely mathemati
al 
onstru
t and they are therefore 
alled Faddeev-

Popov ghosts. In an abelian theory as U(1), the intera
tion term in Eq. (10.71) is absent and

ghost �elds de
ouple. Sin
e they 
hange then only the normalisation of the path integral,

they 
an be omitted in QED.
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10. Gauge theories

Next we have to eliminate the Æ(g

a

(x)). They 
ontain the arbitrary fun
tions !

a

(x), but

the path integral does not dependent on them. Thus we have the freedom to multiply with a


hosen fun
tion f(!

a

), thereby 
hanging only the normalisation. Our aim is to generate after

integrating over the delta fun
tions a term exp(iS

gf

), as in the 
ase of QED. Choosing

Z ! exp

�

�

i

2�

Z

d

4

x !

a

(x)!

a

(x)

�

Z ; (10.72)

integrating

Q

x;a

Æ(g

a

) exp

�

�

i

2�

R

d

4

x !

a

(x)!

a

(x)

�

with the help of Æ(g

a

) and (10.66), we

obtain as gauge-�xing term the desired

L

gf

= �

1

2�

�

�

A

a

�

�

�

A

a

�

: (10.73)

The 
omplete Lagrange density L

eff

of a non-abelian gauge theory 
onsists thus of four

parts,

L

eff

= L

YM

+L

gf

+L

FP

+L

s

; (10.74)

where the last one 
ouples sour
es linearly to the �elds,

L

s

= J

�

A

�

+ ��
+ �
� : (10.75)

We break both L

YM

and L

FP

into a pie
e of O(g

0

) de�ning the free propagator, and pie
es

of O(g) 
orresponding to a three gluon and a two ghost-gluon vertex, respe
tively, and a four

gluon vertex of O(g

2

). After a partial integration of the free part, we obtain

L

YM

+L

FP

=

1

2

A

a

�

(�

��

�� �

�

�

�

)A

a

�

� gf

ab


A

a

�

A

b

�

�

�

A


�

�

g

2

4

f

abe

f


de

A

a

�

A

b

�

A


�

A

d�

� �


a

�


a

+ gf

ab


�

�

�


a




b

A




�

: (10.76)

The Feynman rules 
an now be read o� after Fourier transforming into momentum spa
e,


f. problem 10.??. Combining the resulting expression with L

gf

, we see that the gluon

propagator is diagonal in the group indi
es and otherwise identi
al to the photon propagator

in R

�

gauge. The ghost propagator is the one of a massless s
alar parti
le,

�

ab

(k) =

Æ

ab

k

2

+ i"

: (10.77)

Being a fermion, a 
losed ghost loop introdu
es however a minus sign.

Non-
ovariant gauges The introdu
tion of ghost �elds 
an be avoided, if one uses non-


ovariant gauges whi
h depend on an arbitrary ve
tor n

�

. An example used often in QED is

the Coulomb or radiation gauge,

�

�

A

�

� (n

�

�

�

)

2

= 0 (10.78)

with n

�

= (1; 0; 0; 0). In QCD, one employs often the set of gauges

n

�

A

�

a

= 0; a = 1; : : : ; 8 (10.79)
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with the 
onstant ve
tor n

�

. More spe
i�
ally, one 
alls the 
ase n

2

= 0 light-
one, n

2

< 0

axial and n

2

> 0 temporal gauge. They have in 
ommon that the Faddeev-Popov determi-

nant does not depend on A

�

a

, and 
an be absorbed in the normalisation of the path integral,

exer
ise 10.??. While non-
ovariant gauges thus bypass the introdu
tion of unphysi
al parti-


les in loop graphs, the resulting propagators are unhandy. Moreover, they 
ontain spurious

singularities whi
h require 
are. Therefore in pra
ti
al all appli
ations the use of the R

�

gauge

is advantageous.

Let us �nally 
omment on the 
ase of external gluons. In the 
ase of photons, we 
an

sum their polarisation states using

P

3

r=0

"

(r)�

�

"

(r)

�

= ��

��

, sin
e the nonphysi
al degrees of

freedom 
an
el in physi
al observables. In the non-abelian 
ase, we 
an use this "tri
k" only

in the 
ase of a single external gluon. For two or more external gluons, we have to employ

the polarisation sum derived in problem 7.??, sin
e the non-abelian verti
es mix physi
al and

non-physi
al degrees of freedom. As a result, the 
onserved Noether 
urrent is not gauge

invariant, and we 
annot use the argument of se
tion 7.2. Alternatively, we 
an use the R

�

-

gauge if we in
lude Faddeev-Popov ghosts also as external parti
les. In order to subtra
t


orre
tly the unphysi
al 
ontributions to the squared matrix elements, one has to add the

fa
tor (�1)

n

to a term A

i

A

�

j

with 2n Faddeev-Popov ghosts [Na
90℄.

10.A. Appendix: Feynman rules for an unbroken gauge theory

The Feynman rules for a non-broken Yang-Mills theory as QCD are given in the R

�

gauge;

for the abelian 
ase of QED set the stru
ture 
onstants f

ab


= 0, T = 1 and repla
e g

s

! eq

f

,

where q

f

is the ele
tri
 
harge of the fermion in units of the elementary 
harge e > 0. The

momentum 
ow is indi
ated by the thin arrow: For instan
e, all momenta are 
hosen as

in-going in the triple gauge vertex (10.82).

Propagators

� iÆ

ab

�

�

��

k

2

+ i�

� (1� �)

k

�

k

�

(k

2

)

2

�

(10.80)

PSfrag repla
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Æ
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(10.82)

PSfrag repla
ements

�; a

�; b

�; 


p

1

p

2

p

3

163
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Quarti
 Gauge Intera
tions

�ig

2

s

h

f

eab

f

e
d

(�

��

�

��

� �

��

�

��

)

+f

ea


f

edb

(�

��

�

��

� �

��

�

��

)

+f

ead

f

eb


(�

��

�

��

� �

��

�

��

)

i

p

1

+ p

2

+ p

3

+ p

4

= 0

(10.83)
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Summary

Requiring lo
al symmetry under a gauge group as SU(n) or SO(n) spe
i�es the self-

intera
tions of massless gauge boson as well as their 
ouplings to fermions and s
alars. The

presen
e of self-intera
tions implies that a pure Yang-Mills theory is non-linear. The gauge

invariant derivative D

�

is the analogon to the 
ovariant derivative r

�

of gravity, while the

�eld-strength 
orresponds to the Riemann tensor: Both measure the rotation of a ve
tor

whi
h is parallel-transported along a 
losed loop. The quantisation of Yang-Mills theories

in the 
ovariant R

�

gauge leads to ghost parti
les: These fermioni
 s
alars 
ompensate the

unphysi
al degrees of freedom still 
ontained in the gauge �elds A

�

using a 
ovariant gauge

�xing 
ondition as �

�

A

�

= 0.

Note also the interplay between lo
al and global symmetries: A global symmetry trans-

formation U maps a physi
al state onto a di�erent physi
al state with the same properties,

implying via Noether's theorem a 
onserved 
urrent. A lo
al symmetry transformation U(x)

maps a physi
al state on itself, implying a redundan
y in our des
ription of the system. Sin
e

lo
al symmetries 
ontain global transformations as a subgroup, they imply always also the
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onservation of global 
harges via Noether's theorem.

Further reading

The Feynman rules in the appendix are taken from [RS12℄. This arti
le 
ontains all Feynman

rules for the SM in a 
onvention independent notation whi
h allows an easy 
omparison of

referen
es with di�ering 
onventions. Current 
onservation in non-abelian theories is dis
ussed

e.g. in [LP13℄. The extension of the heli
ity formalism to QCD, where it leads to both

phenomenologi
al useful and theoreti
ally interesting results, is dis
ussed by [Pes11℄, [S
h13℄,

and [Wei16℄.
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11. Renormalisation I: Perturbation theory

We en
ountered three examples of divergent loop integrals dis
ussing the ��

4

theory. In

these 
ases, it was possible to subtra
t the in�nities in su
h a way that we obtained �nite

observables whi
h depend only on the experimentally measured values ofm, � and �. The aim

of this and the following 
hapter is to obtain a better understanding of this renormalisation

pro
edure. We will see that the ��

4

theory as well as the ele
troweak and strong intera
tions

of the SM are examples for renormalisable theories: For su
h theories, the renormalisation of

the �nite number of parameters 
ontained in the 
lassi
al Lagrangian is suÆ
ient to make all

observables �nite at any order perturbation theory.

11.1. Overview

Why renormalisation at all? We are using perturbation theory with the free, non-intera
ting

Lagrangian as starting point to evaluate non-linear quantum �eld theories. Intera
tions


hange however the parameters of the free theory, as we know already both from 
lassi-


al ele
trodynami
s and quantum me
hani
s. In the former 
ase, Lorentz studied 1904 the


onne
tion between the measured ele
tron mass m

phy

, its me
hani
al or inertial mass m

0

and

its ele
tromagneti
 self-energy m

el

in a toy model. He des
ribed the ele
tron as a spheri
ally

symmetri
 uniform 
harge distribution with radius r

e

, obtaining

m

phy

= m

0

+m

el

= m

0

+

4e

2

5r

e

: (11.1)

Spe
ial relativity for
es us to des
ribe the ele
tron as a point parti
le: Taking thus the limit

r

e

! 0, 
lassi
al ele
trodynami
s implies an in�nite \renormalisation" of the \bare" ele
tron

mass m

0

by its ele
tromagneti
 self-energy m

el

.

Another familiar example for renormalisation appears in quantum me
hani
s. Perturbation

theory is possible, if the Hamilton operator H 
an be split into a solvable part H

(0)

and an

intera
tion �V ,

H = H

(0)

+ �V ; (11.2)

and the parameter � is small. Using then as starting point the normalised solutions jn

(0)

i of

H

(0)

,

H

(0)

jn

(0)

i = E

(0)

n

jn

(0)

i ; (11.3)

we 
an �nd the eigenstates jni of the 
omplete Hamiltonian H as a power-series in �,

jni = jn

(0)

i+ �jn

(1)

i+ �

2

jn

(2)

i+ : : : (11.4)

Sin
e we started with normalised states, hn

(0)

jn

(0)

i = 1, the new states jni are not longer


orre
tly normalised. Thus going from free (or \bare") to intera
ting states requires to renor-

malise the states,

R

hnjni

R

= 1 ) jni

R

� Z

1=2

jni : (11.5)
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11.1. Overview

A very similar problem we en
ountered introdu
ing the LSZ formalism. In the parlan
e of

�eld theory, we 
ontinue often to 
all this pro
edure wave-fun
tion renormalisation, although

Z renormalises �eld operators.

Why regularisation at all? The familiar pro
ess of renormalisation be
omes more obs
ure

by the fa
t that the renormalisation 
onstants are in�nite in most quantum �eld theories.

Mathemati
al manipulations as shifting the integration variable in a divergent loop integral

are only well-de�ned, if we 
onvert �rst these integrals into 
onvergent ones. Thus we have to

regularise as �rst step, i.e. employing a method whi
h makes our expressions �nite, so that our

mathemati
al manipulations are well-de�ned and we 
an perform the renormalisation. You

should keep in mind that the two operations, regularisation and renormalisation, are logi
ally

independent: Renormalisation of the parameters in the free theory is ne
essary be
ause they

are 
hanged by intera
tions. This 
hange may be �nite, as the 
hange of the photon mass in

a plasma, and no regularisation is ne
essary.

The se
ond question to ask is why the renormalisation 
onstants are in�nite, or in other

words why do we have regularise at all? There are (at least) two possible answers to this

question: Either we use a bad theory as starting point, i.e. the full quantum theory de-

�ned non-perturbatively by its generating fun
tional Z[J ℄ is ill-de�ned. Or we employ a bad

expansion s
heme evaluating Z[J ℄ in perturbation theory.

Example 11.1: An example for a bad expansion is the following toy model for the ��

4

intera
tion,

Z(�) =

Z

1

�1

dx e

�

1

2

x

2

��x

4

?

=

Z

1

�1

dx

�

1� �x

4

+

(�x

4

)

2

2!

� : : :

�

e

�

1

2

x

2

: (11.6)

The LHS is well-de�ned for � > 0. Doing perturbation theory and summing up the �rst N terms of

the expansion on the RHS results in an alternating series,

Z

N

(�) =

N

X

n=0

(��)

n

n!

Z

1

�1

dxx

4n

e

�x

2

=2

=

N

X

n=0

a

n

�

n

with

a

n

=

(�1)

n

n!

2

2n+1=2

�(2n+ 1=2) :

The 
oeÆ
ients a

n

of this series grow like a fa
torial and thus the 
onvergen
e radius of the expansion

is zero. Plotting Z

N

(�)=Z(0) for the �rst few N as fun
tion of �, problem 11.??, you see �rstly that

adding more terms makes the expansion worse beyond at 
ertain value �

max

(N), and se
ondly that

�

max

(N)! 0 for N !1, see [FHS12℄ for more details.

It should be not too surprising that the expansion (11.6) has a zero 
onvergen
e radius:

Moving from � > 0 to � < 0 
hanges fundamentally physi
s, sin
e the va
uum is unstable for

arbitrarily small negative �. An interesting 
onsequen
e of the failure of perturbation theory

is that the 
omplete theory may 
ontain additional non-perturbative physi
s. Next we look

at an example where we start from a bad theory.

Example 11.2: We dis
ussed in problem 2.?? the s
attering on a short-range potential in d = 1,

and found that no 
onsistent solution exists for an odd potential. We rephrase this problem now in
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a language 
lose to the one used in QFT. The perturbative expansion of the S-matrix in quantum

me
hani
s is given by

hp

f

jS jp

i

i = 2�Æ(E

i

�E

f

)

�

hp

f

jV jp

i

i+

Z

dp hp

f

jV jpi

i

E � p

2

=2 + i"

hpjV jp

i

i+ � � �

�

for p

i

6= p

f

. Re
oiling on the in�nitely heavy stati
 sour
e, the (virtual) parti
le in the intermediate

states 
an have any momentum p while its energy is 
onserved. With V

0

(x) = 


0

Æ(x), it follows

hp

f

jV

0

jpi = 


0

=(2�) and then the momentum integral in the 2.nd order 
orre
tion be
omes

�




0

2�

�

2

Z

dp

i

E � p

2

=2 + i"

:

Thus this momentum integral, and similarly those at higher orders, are well-de�ned. Next we set




0

= 0. Using then Æ

0

f = �Æf

0

, we obtain hp

f

jV

1

jpi = i


1

(p

f

� p)=(2�) and thus the momentum

integral

�




1

2�

�

2

Z

dp

i(p� p

i

)(p� p

f

)

E � p

2

=2 + i"

is linearly divergent. The divergen
e means that the s
attering probability is sensitive to arbitrarily

high momentum modes. We 
an understand this behaviour looking at the wave-fun
tion  (x): Be
ause

the potential is odd, also  (x) is odd and then
e has to 
hange rapidly within jxj < a. As result, its

Fourier transform  (k) ne
essarily 
ontains also high-frequen
y modes.

In this simple toy-model, the natural way to solve the UV divergen
e problem is to repla
e the

mathemati
al idealisation of a delta-fun
tion like potential by the true, smooth potential. If we either

do not know the \true" potential or if we insist that a delta-fun
tion like potential 
aptures all the

physi
s 
ontained in a s
attering pro
ess at a short-range potential, then we have to regularise the

potential, repla
ing V (x) = 


1

Æ

0

(x) e.g. by

V (x) = 


1

Æ(x + a)� Æ(x� a)

2a

:

In this way, we eliminate high-frequen
y modes with p � 1=a. Repeating the 
omputation of the

transmission amplitude, we �nd T ' iap=


2

1

. Hen
e 


R

� 


2

1

=a plays the role of an e�e
tive 
oupling


onstant in the regularised theory. Physi
al observables like the transmission amplitude depend only

on the single parameter 


R

, if we res
ale 


1

(a) / a

�1=2

. Thus this simple example from quantum

me
hani
s exhibits the key features of a UV divergent QFT: We regularise the theory, 
utting o� UV

modes. Requiring the independen
e of physi
al observables from the 
uto� s
ale, we obtain running

parameters.

It is very likely that our favourite ��

4

intera
tion su�ers from both diseases: First, the

expansion in � is not 
onvergent but results in an asymptoti
 series. Se
ond, the full theory


ontains only the trivial � = 0 
ase as 
onsistent solution. Even if the intera
ting theory

may be mathemati
ally in
onsistent, it 
an however be used as an e�e
tive model des
ribing

physi
s up to a �nite energy s
ale.

Regularisation methods We have already seen that the regularisation of divergent loop

integrals 
an be done in various ways. In general, one reparametrises the integral in terms of

a parameter � (or ") 
alled regulator su
h that the integral be
omes �nite for a �nite value

of the regulator, while the limit �!1 (or "! 0) returns the original integral.

� We 
an avoid UV divergen
es evaluating loop-integrals introdu
ing an (Eu
lidean) mo-

mentum 
uto� �. Somewhat more sophisti
ated, we 
ould introdu
e instead of a hard
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11.1. Overview


uto� a smooth fun
tion whi
h suppresses large momenta. Using S
hwinger's proper-

time representation (4.90) we 
an 
ut-o� large momenta setting

1

p

2

+m

2

!

e

�(p

2

+m

2

)=�

2

p

2

+m

2

=

Z

1

�

�2

ds e

�s(p

2

+m

2

)

: (11.7)

Although 
on
eptual easy, both regularisation s
hemes violate generi
ally all symmetries

of our theory. This is not a prin
ipal 
aw, sin
e we should be able to re
over these

symmetries in the limit � ! 1. However, this \re
overy pro
ess" may be non-trivial

to perform. Moreover, intermediate 
al
ulations be
ome mu
h more transparent if we


an use the symmetries of the theory, and therefore these s
hemes are in pra
tise not

used ex
ept for the simplest 
ases.

� Pauli-Villars regularisation is a s
heme where one adds heavy parti
les having the same

quantum numbers and 
ouplings as the originals ones. Thus the propagator of a massless

s
alar parti
le is 
hanged to

1

k

2

+ i"

!

1

k

2

+ i"

+

X

i

a

i

k

2

�M

2

i

+ i"

:

For k

2

� M

2

i

, physi
s is un
hanged, while for k

2

� M

2

i

and a

i

< 0 the 
ombined

propagator s
ales as M

2

i

=k

4

and the 
onvergen
e of loop integrals improves. Sin
e the

heavy parti
les enter with the wrong sign, they are unphysi
al ghosts and serve only as

a mathemati
al tool to regularise loop diagrams. Pauli-Villars regularisation respe
ts

the gauge invarian
e of QED, if the heavy parti
les are 
oupled gauge invariantly to the

photon.

� Latti
e regularisation repla
es the 
ontinuous spa
e-time by a dis
rete latti
e. The �-

nite latti
e spa
ing a introdu
es a momentum 
uto�, eliminating all UV divergen
es.

Moreover the (Eu
lidean) path-integral be
omes well-de�ned and 
an be 
al
ulated nu-

meri
ally without the need to do perturbation theory. Thus this approa
h is parti
ularly

useful in the strong-
oupling regime of QCD where it has been used to 
al
ulate stati


quantities as e.g. the hadron mass spe
trum. Note that latti
e regularisation for �nite

a respe
ts gauge symmetries, but spoils the translation and Lorentz symmetry of the

underlying QFT. Nevertheless, one re
overs in the limit a ! 0 a relativisti
 QFT. A

longstanding problem of latti
e theory was how to implement 
orre
tly 
hiral fermions.

This question was solved around the year 2000 and thus the SM 
an be de�ned now in

a mathemati
ally 
onsistent, non-perturbative way as a latti
e theory.

� Dimensional regularisation (DR) is the method we applied in the 
al
ulations of the

one-loop diagrams of the ��

4

theory. While DR has the important virtue of preserving

Lorentz and gauge invarian
e, it is one of the least intuitive regularisation methods. We

will show later that an integral without mass s
ale is zero in DR, e.g.

R

d

d

kk

�2

= 0. This

example shows that the integration measure we implement using physi
al requirements

with DR is not positive|as a mathemati
ian would require. In problem 11.??, we

examine how DR modi�es the range of momentum values 
ontributing to Feynman

integrals.

Using DR with fermions, we have to extend the Cli�ord algebra to d dimensions. A

natural 
hoi
e is tr(


�




�

) = d�

��

and tr(1) = 4. Problemati
 is however the treatment

of 


5

� i


0




1




2




3

relying heavily on d = 4.
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� Various other regularisation methods as e.g. zeta fun
tion regularisation or point split-

ting methods exists.

Even �xing a regularisation method as e.g. DR, we 
an 
hoose various renormalisation

s
hemes. Four popular 
hoi
es are

� on-shell renormalisation. In this s
heme, we 
hoose the subtra
tion su
h that the on-

shell masses and 
ouplings 
oin
ide with the 
orresponding values measured in pro
esses

with zero momentum transfer q. For instan
e, we de�ne the renormalised ele
tri
 
harge

via the Thomson limit of the Compton s
attering amplitude. While this 
hoi
e is very

intuitive, it is not pra
ti
al for QCD: We will see soon that in this theory s
attering

amplitudes 
al
ulated in perturbation theory be
ome ill-de�ned in the limit q

2

! 0.

� The momentum subtra
tion (MoM) s
heme is a generalisation of the on-shell s
heme

whi
h 
an be applied also to QCD. Here we subtra
t from the Green fun
tions 
ounter-

terms su
h that the 
orre
tions are zero at a �xed spa
e-like four-momentum p

2

= ��

2

.

In this way, divergen
es in the limit q

2

! 0 are avoided.

� In the minimal subtra
tion (MS) s
heme, we subtra
t only the divergent 1=" poles.

� In the modi�ed minimal subtra
tion MS (read em-es-bar) s
heme, we subtra
t also the

ln(4�)�
 term appearing frequently. This s
heme gives more 
ompa
t expressions than

the others and is most often used in theoreti
al 
al
ulations.

The main advantage of the MS and MS s
hemes is that they are mass independent, i.e. that

the subtra
tion terms do not depend on the parti
le masses. This independen
e simpli�es

the derivation of \running 
ouplings" (
f. with the 
al
ulation of �(�) in se
tion 4.3.4). As

a drawba
k of the MS and MS s
hemes, quantities like the ele
tron mass 
al
ulated in these

s
hemes, m

MS

e

or m

MS

e

, have to be translated into the physi
al mass m

e

.

At a �xed order perturbation theory, predi
tions and reliability of di�erent s
hemes vary

for given external parameters: A simple example is the 
hange from the MS to the MS s
heme

whi
h are 
onne
ted by ~�

2

= 4��

2

e

�


. Thus this transition is equivalent to a 
hange of the

renormalisation s
ale, altering thereby the size of the ln(�

2

) term and thus the strength of the

running 
oupling. More drasti
 
hanges result moving from a mass independent to a mass

dependent s
heme, or 
omparing DR with other s
hemes. As a result, running 
ouplings

whi
h are small enough to allow perturbation theory in one s
heme may be prohibitive large

in other s
hemes.

11.2. Anomalous magneti
 moment of the ele
tron

After this overview, let us move on to the 
al
ulation of the magneti
 moment of the ele
tron

whi
h is shifted by loop 
orre
tions from the tree-level value g = 2 you derived in problem 8.??.

Apart from being the �rst su

essful loop 
al
ulation in the history of QFT, this pro
ess

illustrates also several generi
 properties of loop graphs in renormalisable theories like QED.

Vertex fun
tion The tree-level intera
tion L

int

= �e

�

 


�

 A

�

between an ele
tron and a

photon 
orresponds in momentum spa
e to e�u(p

0

)


�

u(p)"

�

(q). Sin
e loop integrals depend

generally on the external momenta, the tree-level vertex 


�

is modi�ed by loop graphs as
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q

p

p′

=
q

p

p′

+ k
q

p

p′

1

Figure 11.1.: The general vertex for the intera
tion of a fermion with a photon and its per-

turbative expansion within QED, 
orre
tions in external lines are omitted.

the one shown in Fig. 11.1 and be
omes a fun
tion of the momenta, �

�

(p; p

0

; q). We want

to write down the most general form of the vertex fun
tion �

�

for the 
oupling between an

external ele
tromagneti
 �eld and an on-shell Dira
 fermion, 
onsistent with the symmetries

of the problem. It is as usually 
onvenient to apply the tensor method, i.e. to express �

�

as

a sum of linearly independent rank-1 tensors multiplied by s
alar fun
tions.

Translation invarian
e implies q = p

0

� p and thus �

�

is only a fun
tion of two momenta

whi
h we 
hoose as p and p

0

. Sin
e p

2

= p

02

= m

2

, the only non-trivial s
alar variable in the

problem is p � p

0

. We 
hoose to use the equivalent quantity q

2

= (p

0

� p)

2

as the variable on

whi
h the arbitrary s
alar fun
tions in our ansatz for �

�

depend. Next we have to form all

possible ve
tors out of the momenta p

�

and p

0

�

and the 16 basis elements (8.40) of the Cli�ord

algebra. Restri
ting ourselves to QED, we have to impose additionally parity 
onservation

what forbids the use of 


5

. Hen
e the most general ansatz 
ompatible with Poin
ar�e invarian
e

and parity is

�

�

(p; p

0

) = A(q

2

)


�

+B(q

2

)p

�

+ C(q

2

)p

0�

+D(q

2

)�

��

p

�

+E(q

2

)�

��

p

0

�

: (11.8)

Current 
onservation requires q

�

�

�

(p; p

0

) = 0 and leads to C = B and E = �D. Hen
e

�

�

(p; p

0

) = A(q

2

)


�

+B(q

2

)(p

�

+ p

0�

) +D(q

2

)�

��

q

�

: (11.9)

Hermiti
ity �nally implies that A;B are real and D is purely imaginary.

Gordon de
omposition We derive now an identity that allows us to eliminate one of the

three terms in Eq. (11.9), if we sandwi
h �

�

between two spinors whi
h are on-shell. We

evaluate

F

�

= �u(p

0

)

�

p=

0




�

+ 


�

p=

�

u(p) (11.10)

�rst using the Dira
 equation for the two on-shell spinors, �nding

F

�

= 2m�u(p

0

)


�

u(p) : (11.11)

Se
ondly, we 
an use 


�




�

= �

��

� i�

��

, obtaining

F

�

= �u(p

0

)

�

(p

0

+ p)

�

+ i�

��

(p

0

� p)

�

�

u(p) : (11.12)
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Equating (11.11) and (11.12) gives the Gordon identity: It allows us to separate the Dira



urrent into a part proportional to (p+ p

0

)

�

, i.e. with the same stru
ture as a s
alar 
urrent,

and a part vanishing for q = p

0

� p! 0 whi
h 
ouples to the spin of the fermion,

�u(p

0

)


�

u(p) = �u(p

0

)

�

(p

0

+ p)

�

2m

+

i�

��

(p

0

� p)

�

2m

�

u(p) : (11.13)

Using the results from problem 8.??, we 
an identify in the non-relativisti
 limit the se
ond

term as 
ontribution to the magneti
 moment of the fermion.

The Gordon identity shows that the three terms in Eq. (11.9) are not independent. De-

pending on the 
ontext, we 
an eliminate therefore the most annoying term in the vertex

fun
tion. We follow 
onventions and introdu
e the (real) form-fa
tors F

1

(q

2

) and F

2

(q

2

) by

�

�

(p; p

0

) = F

1

(q

2

)


�

+ F

2

(q

2

)

i�

��

q

�

2m

= (11.14a)

= F

1

(q

2

)

(p

0

+ p)

�

2m

+ [F

1

(q

2

) + F

2

(q

2

)℄

i�

��

q

�

2m

: (11.14b)

The form-fa
tor F

1

is the 
oeÆ
ient of the ele
tri
 
harge, eF

1

(q

2

)


�

, and should thus go to

one for small momentum transfer, F

1

(0) = 1. Therefore the magneti
 moment of an ele
tron

is shifted by 1 + F

2

(0) from the tree-level value g = 2. The deviation a � (g � 2)=2 is 
alled

anomalous magneti
 moment, the two form-fa
tors are often 
alled ele
tri
 and magneti


form-fa
tors.

Note the usefulness of the pro
edure to express the vertex fun
tion using only general

symmetry requirements but not a spe
i�
 theory for the intera
tion: Equation (11.14a) allows

experimentalists to present their measurements using only two s
alar fun
tions whi
h in turn


an be easily 
ompared to predi
tions of spe
i�
 theories.

Anomalous magneti
 moment After having dis
ussed the general stru
ture of the ele
tro-

magneti
 vertex fun
tion, we turn now to its 
al
ulation in perturbation theory for the 
ase

of QED. The Feynman diagrams 
ontributing to the matrix element at O(e

3

) with wave-

fun
tions as external lines are shown in Fig. 11.1, where we omit self-energy 
orre
tions in

the external lines: As we will see soon, the later do not 
ontribute to the anomalous magneti


moment. We separate the matrix element into the tree-level part and the one-loop 
orre
tion,

�ie�u(p

0

) [


�

+ �

�

℄u(p). Using the Feynman gauge for the photon propagator, we obtain

�

�

(p; p

0

) =

Z

d

4

k

(2�)

4

�i

k

2

+ i"

(�ie


�

)

i

p=

0

+ k= �m+ i"




�

i

p=+ k= �m+ i"

(�ie


�

) : (11.15)

This integral is logarithmi
ally divergent for large k,

Z

�

dk

k

3

k

2

k

2

/ ln� : (11.16)

Before we perform the expli
it 
al
ulation, we want to understand if this divergen
e is 
on-

ne
ted to a spe
i�
 kinemati
al 
on�guration of the momenta. We split therefore the vertex


orre
tion into an on-shell and an o�-shell part,

�

�

(p; p

0

) = �

�

(p; p) + [�

�

(p; p

0

)� �

�

(p; p)℄ � �

�

(p; p) + �

�

off

(p; p

0

) : (11.17)
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Next we rewrite the �rst fermion propagator using the identity (A + B)

�1

= B

�1

�

B

�1

AB

�1

+ : : : for small A = p

0

� p as

1

p=

0

+ k= �m

=

1

p=+ k= �m+ (p=

0

� p=)

= (11.18a)

=

1

p=+ k= �m

�

1

p=+ k= �m

(p=

0

� p=)

1

p= + k= �m

+ : : : (11.18b)

The �rst term of this expansion leads to the logarithmi
 divergen
e of the loop integral for

large k. In 
ontrast, the remainder of the expansion that vanishes for p

0

� p = q ! 0 
ontains

additional powers of 1=k and is thus 
onvergent. Hen
e the UV divergen
e is 
ontained solely

in the on-shell part of the vertex 
orre
tion, while the fun
tion �

�

off

(p; p

0

) = �

�

(p; p

0

)��

�

(p; p)

is well-behaved. Moreover, we learn from Eq. (11.14a) that the divergen
e is 
on�ned to F

1

(0),

while F

2

(0) is �nite. This is good news: The divergen
e is only 
onne
ted to a quantity

already present in the 
lassi
al Lagrangian, the ele
tri
 
harge. Thus we 
an predi
t the

fun
tion �

�

(p; p

0

) for all values p

0

6= p, after we have renormalised the ele
tri
 
harge in the

limit of zero momentum transfer.

We now 
al
ulate the vertex fun
tion (11.15) expli
itly. We set

�

�

(q) = �ie

2

Z

d

4

k

(2�)

4

N

�

(k)

[(p

0

+ k)

2

�m

2

℄ [(p+ k)

2

�m

2

℄ k

2

(11.19)

with

N

�

= 


�

(p=

0

+ k= +m)


�

(p=+ k= +m)


�

: (11.20)

Then we 
ombine the propagators introdu
ing as Feynman parameter integrals

1

xyz

= 2

Z

1

0

d�

Z

1��

0

d�

1

[z + �(x� z) + �(y � z)℄

3

= 2

Z

1

0

d�

Z

1��

0

d�

1

D

: (11.21)

Setting z = k

2

, we obtain

D = fk

2

+ �[(p

0

+ k)

2

�m

2

� k

2

℄ + �[(p+ k)

2

�m

2

� k

2

℄g

3

: (11.22)

The 
omplete 
al
ulation of the vertex fun
tion (11.15) for arbitrary o�-shell momenta is

already quite 
umbersome. In order to shorten the 
al
ulation, we restri
t ourselves therefore

to the part 
ontributing to the magneti
 form fa
tor F

2

(0). Be
ause of

�

�

(p; p

0

) =

�

F

1

(q

2

) + F

2

(q

2

)

�




�

� F

2

(q

2

)

(p

0

+ p)

�

2m

(11.23)

we 
an simplify the 
al
ulation of N

�

(k), throwing away all terms proportional to 


�

whi
h

do not 
ontribute to the magneti
 moment. This justi�es also why we 
an negle
t diagrams

with self-energy 
orre
tions in the external lines. Moreover, we 
an 
onsider the limit that

the ele
trons are on-shell and the momentum transfer to the photon vanishes.

Using the on-shell 
ondition, p

2

= p

02

=m

2

, the two square bra
kets in D simplify to 2p

0

�k

and 2p � k, respe
tively,

D =

�

k

2

+ 2k � (�p

0

+ �p)

	

3

: (11.24)

Next we eliminate the term linear in k 
ompleting the square,

D =

n

(k + �p

0

+ �p

| {z }

`

)

2

� (�p

0

+ �p)

2

o

3

=

�

[`

2

� (�

2

m

2

+ �

2

m

2

+ 2��p

0

� p)

	

3

: (11.25)
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Sin
e the momentum transfer to the photon vanishes, q

2

= 2m

2

� 2p

0

� p! 0, we 
an repla
e

p

0

� p! m

2

and obtain as �nal result for the denominator

D =

�

`

2

� (�+ �)

2

m

2

	

3

: (11.26)

Now we move on to the evaluation of the numerator N

�

(k). Performing the 
hange of our

integration variable from k = `� (�p

0

+ �p) to `, the numerator be
omes

N

�

(`) = 


�

(P=

0

+ =̀+m)


�

(P= + =̀+m)


�

(11.27)

with P=

0

� (1 � �)p=

0

� �p= and P= � (1 � �)p= � �p=

0

. Multiplying out the two bra
kets and

ordering the result a

ording to powers of m, we observe �rst that the term / m

2

leads to

/ 


�

and thus does not 
ontribute to F

2

(0). Next we split further the term linear in m

a

ording to powers of `: The term linear in ` vanishes after integration, while the term m=̀

0

results in

m(


�

P=

0




�




�

+ 


�




�

P=


�

) = 4m(P

0�

+ P

�

) = 4m[(1� 2�)p

0�

+ (1� 2�)p

�

℄ : (11.28)

Using the symmetry in the integration variables � and �, we 
an rewrite this expression as

! 4m[(1� �� �)(p

0�

+ p

�

)℄ : (11.29)

We split the m

0

term in the same way a

ording to the powers of =̀. The m

0

=̀

2

term gives a




�

term, the m

0

=̀ vanishes after integration, and the m

0

=̀

0

gives after some work




�

P=

0




�

P=


�

! 2m[�(1 � �) + �(1� �)℄(p

0

+ p)

�

: (11.30)

Finally, the m

0

term 
ontributes to the anomalous magneti
 moment

! �2m(p

0

+ p)

�

[2(1 � �)(1� �)℄ : (11.31)

Combining all terms, we �nd

N

�

= 4m(1� �� �)(p

0

+ p)

�

+ 2m[�(1 � �) + �(1� �)℄(p

0

+ p)

�

� 4m(1� �)(1 � �)(p

0

+ p)

�

=

= 2m[(1 � �� �)(� + �)℄(p

0

+ p)

�

: (11.32)

Thus

�

�

2

(0) = �2ie

2

Z

d�d�

Z

d

2!

`

(2�)

2!

N

�

[`

2

� (�+ �)

2

m

2

℄

3

; (11.33)

where the subs
ript 2 indi
ates that we a

ount only for the 
ontribution to the anomalous

magneti
 moment. We expressed also the loop integral in 2! dimensions, su
h that we 
an

apply the general formula derived in the appendix 4.A. Using Eq. (4.106) for I(!; a) with

! = 2 and a = 3,

I(2; 3) = �

i

32�

2

1

(�+ �)

2

m

2

+ i"

; (11.34)

we obtain as expe
ted a �nite result. As last step, we perform the integrals over the Feynman

parameters � and �,

Z

1

0

d�

Z

1��

0

d�

1� �� �

�+ �

=

1

2

; (11.35)
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and �nd thus

�

�

2

(0) = �

e

2

8�

2

1

2m

(p

0

+ p)

�

: (11.36)

Re
alling Eq. (11.23), we 
an identify the fa
tor e

2

=(8�

2

) with the magneti
 form fa
tor F

2

(0).

We have thus reprodu
ed the result of the �rst su

essful 
al
ulation of a loop 
orre
tion in

a QFT, performed by S
hwinger, and independently by Feynman and Tomonaga, in 1948,

F

2

(0) = �=(2�). Together with Bethe's previous estimate of the Lamb shift in the hydro-

gen energy spe
trum, this stimulated the view that a 
onsistent renormalisation of QED is

possible.

The 
urrently most pre
ise experimental value for the ele
tron anomalous magneti
 moment

a

e

� F

2

(0) is

a

exp

e

= 0:001 159 652 180 73 � 2:4� 10

�10

: (11.37)

The 
al
ulation of the universal (i.e. 
ommon to all 
harged leptons) QED 
ontribution has

been 
ompleted up to fourth order. There exists also an estimate of the dominant �fth order


ontribution,

a

uni

`

= 0:5

�

�

�

�

� 0:328 478 965 579 193 78 : : :

�

�

�

�

2

+ 1:181 241 456 587 : : :

�

�

�

�

3

� 1:9144(35)

�

�

�

�

4

+ 0:0(4:6)

�

�

�

�

5

= 0:001 159 652 176 30(43)(10)(31) � � � (11.38)

The three errors given in round bra
kets are the error from the un
ertainty in �, the nu-

meri
al un
ertainty of the �

4


oeÆ
ient and the error estimated for the missing higher order

terms [Jeg07℄. Comparing the measured value and the predi
tion using QED, we �nd an ex-

tremely good agreement. First of all, this is strong support that the methods of perturbative

QFT we developed so far 
an be su

essfully applied to weakly 
oupled theories as QED.

Se
ond, it means that additional 
ontributions to the anomalous magneti
 moment of the

ele
tron have to be tiny.

Ele
troweak and other 
orre
tions The lowest order ele
troweak 
orre
tions to the anoma-

lous magneti
 moment 
ontain in the loop virtual gauge bosons (W

�

, Z) or a Higgs boson h

and are shown in Fig. 11.2. We will 
onsider the ele
troweak theory des
ribing these diagrams

only later; for the present dis
ussion it is suÆ
ient to know that the weak 
oupling 
onstant is

g ' 0:6 and that the s
alar and weak gauge bosons are mu
h heavier than leptons, M � m.

The �rst diagram 
orresponds s
hemati
ally to the expression

� g

2

Z

d

4

k

(2�)

4

1

k

2

�M

2

A(m

2

; k)

[(p� k)

2

�m

2

℄

2

: (11.39)

As in QED, this integral has to be �nite and we expe
t that it is dominated by momenta

up to the mass M of the gauge bosons, k

<

�

M . Therefore its value should be proportional

to g

2

m

2

=M

2

(times a possible logarithm ln(M

2

=m

2

)) and ele
troweak 
orre
tions to the

anomalous magneti
 moment of the ele
tron are suppressed by a fa
tor (m=M)

2

� 10

�10


ompared to the QED 
ontribution. The property that the 
ontribution of virtual heavy

parti
les to loop pro
esses is suppressed in the limit jq

2

j �M

2

is 
alled \de
oupling". Note

the di�eren
e to the 
ase of the mass of a s
alar parti
le or the 
osmologi
al 
onstant: In

these examples, the loop 
orre
tions are in�nite and we 
annot predi
t these quantities. In
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Z ν h

Figure 11.2.: Lowest order ele
troweak 
orre
tions to the anomalous magneti
 moment of

fermions.


ontrast, the anomalous magneti
 moment is �nite but, as we in
lude loop momenta up

to in�nity, depends in prin
ipal on all parti
les 
oupling to the ele
tron, even if they are

arbitrarily heavy. Only if these heavy parti
les \de
ouple", we 
an 
al
ulate a

e

without

knowing e.g. the physi
s at the Plan
k s
ale. Thus the de
oupling property is a ne
essary

ingredient of any reasonable theory of physi
s, otherwise no predi
tions would be possible

before knowing the \theory of everything".

Clearly, the 
ontribution of heavy parti
les (either ele
troweak gauge and Higgs bosons

or other not yet dis
overed parti
les) is more visible in the anomalous magneti
 moment

of the muon than of the ele
tron. Moreover, a relativisti
 muon lives long enough that a

measurement of its magneti
 moment is feasible. This is one example how radiative 
orre
tions

(here evaluated at q

2

= 0) are sensitive to physi
s at higher s
ales M : If an observable 
an

be measured and 
al
ulated with high enough pre
ision, one 
an be sensitive to suppressed


orre
tions of order g

2

m

2

=M

2

. Other examples are rare pro
esses like � ! e + 
 or B

s

!

�

+

�

�

: These pro
esses are suppressed by a spe
i�
 property of the SM whi
h one does not

expe
t to hold in general. The a
hieved pre
ision in measuring and 
al
ulating su
h pro
esses

is high enough to probe generi
ally s
ales of M � 100 TeV, i.e. mu
h higher than the mass

s
ales that 
an be probed dire
tly at 
urrent a

elerators as LHC.

Finite versus divergent parts of loop 
orre
tions We found that the vertex 
orre
tion 
ould

be split into two parts

�

�

(p; p

0

) = F

1

(q

2

)


�

+ F

2

(q

2

)

i�

��

q

�

2m

; (11.40)

where the form fa
tor F

2

(q

2

) is �nite for all q

2

, while the form fa
tor F

1

(q

2

) diverges for

q

2

! 0. The important observation is that F

2

(q

2

) 
orresponds to a Lorentz stru
ture that

is not present in the original Lagrangian of QED. This suggests that we 
an require from a

\ni
e" theory that

� all UV divergen
es are 
onne
ted to stru
tures 
ontained in the original Lagrangian,

all new stru
tures are �nite. The basi
 divergent stru
tures are also 
alled \primitive

divergent graphs".

� If there are no anomalies, then loop 
orre
tions respe
t the original (
lassi
al) symme-

tries. Thus, e.g., the photon propagator should be at all orders transverse, respe
ting

gauge invarian
e. We will see that as 
onsequen
e the high-energy behaviour of the

theory improves.
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In su
h a 
ase, we are able to hide all UV divergen
es in a renormalisation of the original

parameters of the Lagrange density.

11.3. Power 
ounting and renormalisability

We try to make the requirements on a \ni
e" theory a bit more pre
ise. Let us 
onsider the

set of ��

n

theories in d = 4 spa
e-time dimensions and 
he
k whi
h graphs are divergent.

We de�ne the super�
ial degree D of divergen
e of a Feynman graph as the di�eren
e be-

tween the number of loop momenta in the numerator and denominator of a Feynman graph.

We 
an restri
t our analysis to those diagrams 
alled 1P irredu
ible (1PI) whi
h 
annot be

dis
onne
ted by 
utting an internal line: All 1P redu
ible diagrams 
an be de
omposed into

1PI diagrams whi
h do not 
ontain 
ommon loop integrals and 
an be therefore analysed

separately. Moreover, we are only interested in the loop integration and de�ne therefore the

1PI Green fun
tions

1

as graphs where the propagators on the external lines were stripped

o�. In d = 4 spa
e-time dimensions, the super�
ial degree D of divergen
e of a 1PI Feynman

graph is thus

D = 4L� 2I ; (11.41)

where L is the number of independent loop momenta and I the number of internal lines.

The former 
ontributes a fa
tor d

4

p, while the latter 
orresponds to a s
alar propagator with

1=(p

2

�m

2

) � 1=p

2

for p!1.

Momentum 
onservation at ea
h vertex leads for an 1PI-diagram to

L = I � (V � 1) ; (11.42)

where V is the number of verti
es and the �1 takes into a

ount the delta fun
tion leading

to overall momentum 
onservation: The latter 
onstrains only the external not the loop

momenta. Thus

D = 2I � 4V + 4 : (11.43)

Ea
h vertex 
onne
ts n lines and any internal line redu
es the number of external lines by

two. Therefore the number E of external lines is given by

E = nV � 2I : (11.44)

As result, we 
an express the super�
ial degree D by the order of perturbation theory (V ),

the number of external lines E and the degree n of the intera
tion polynomial �

n

,

D = (n� 4)V + 4�E : (11.45)

From this expression, we see that

� for n < 4, the 
oeÆ
ient of V is negative. Therefore only a �nite number of terms in

the perturbative expansion are in�nite. Su
h a theory is 
alled super-renormalisable,

the 
orresponding terms in the Hamiltonian are also 
alled relevant.

1

Similar to their relatives, the (dis-) 
onne
ted Green fun
tions, also the 1PI Green fun
tions 
an be derived

from a generating fun
tional whi
h we will introdu
e in the next 
hapter.

177



11. Renormalisation I: Perturbation theory

Figure 11.3.: Primitive divergent diagrams in QED (without va
uum diagrams).

� For n = 4, we �nd D = 4�E. Thus the degree of divergen
e is independent of the order

of perturbation theory being only determined by the number of external lines. Su
h

theories 
ontain an in�nite number of divergent graphs, but they all 
orrespond to a

�nite number of divergent stru
tures|the so-
alled primitive divergent graphs. These

intera
tions are also 
alled marginal and are 
andidates for a renormalisable theory.

� Finally, for n > 4 the degree of divergen
e in
reases with the order of perturbation the-

ory. As result, there exists an in�nite number of divergent stru
tures, and in
reasing the

order of perturbation theory requires more and more input parameter to be determined

experimentally. Su
h a theory is 
alled non-renormalisable, the intera
tion irrelevant.

In parti
ular, the ��

4

theory as an example for a renormalisable theory has only three

divergent stru
tures: i) the 
ase E = 0 and D = 4 
ontributes to the va
uum energy, ii) the


ase E = 2 and D = 2 
orresponding to the self-energy, and iii) the 
ase E = 4 and D = 0,

i.e. logarithmi
ally divergen
e, to the four-point fun
tion. As we saw in 
hapter 3, the three

primitive divergent diagrams of the ��

4

theory 
orrespond to the following physi
al e�e
ts:

Va
uum bubbles renormalise the 
osmologi
al 
onstant. The e�e
t of self-energy insertions

is twofold: Inserted in external lines it renormalises the �eld, while self-energy 
orre
tions

in internal propagators lead to a renormalisation of its mass. The vertex 
orre
tion �nally

renormalises the 
oupling strength �.

Let us move to the 
ase of QED. Repeating the dis
ussion, we obtain the analogue to

Eq. (11.45), but a

ounting now for the di�erent dimension of fermioni
 and bosoni
 �elds,

D = 4�B �

3

2

F ; (11.46)

where B and F 
ount the number of external bosoni
 and fermioni
 lines, respe
tively. There

are six di�erent super�
ially divergent primitive graphs in QED shown in Fig. 11.3: The

photon and the fermioni
 
ontribution to the 
osmologi
al 
onstant (D = 4), the va
uum

polarisation (D = 2), the fermion self-energy (D = 1), the vertex 
orre
tion (D = 0) and

light-by-light s
attering (D = 0). Re
all that Furry's theorem implies that loops with a an

odd number of fermion propagator vanish in QED. Therefore we have not in
luded in our

list of primitive divergent graphs of QED the tadpole (B = 1 and D = 3) and the \photon

splitting" graph (B = 3 and D = 1).

In a theory with symmetries su
h as a gauge theory, the true degree of divergen
e 
an

be smaller than the super�
ial one. For instan
e, light-by-light s
attering 
orresponds to a

term L � A

4

that violates gauge invarian
e. Thus either the gauge symmetry is violated by

quantum 
orre
tions or su
h a term is �nite.

Be
ause of the 
orresponden
e of the dimension of a �eld and the power of its propagator,

we 
an 
onne
t the super�
ial degree of divergen
e of a graph to the dimension of the 
oupling
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onstants at its verti
es. The super�
ial degree D(G) of divergen
e of a graph is 
onne
ted

to the one of its verti
es D

v

by

D(G)� 4 =

X

v

(D

v

� 4) (11.47)

whi
h in turn depends as

D

v

= Æ

v

+

3

2

f

v

+ b

v

= 4� [g

v

℄ (11.48)

on the dimension of the 
oupling 
onstant g at the vertex v. Here, f

v

and b

v

are the number

of fermion and boson �elds at the vertex, while Æ

v


ounts the number of derivatives. Thus the

dimension of the 
oupling 
onstant plays a 
ru
ial role de
iding if a 
ertain theory is \ni
e"

in the naive sense de�ned above. Clearly D = 0 or [g℄ = m

0

is the border-line 
ase:

� If at least one 
oupling 
onstant has a negative mass dimension, [g℄ < 0 and D

v

> 4,

the theory is non-renormalisable. Examples are the Fermi theory of weak intera
tions,

[G

F

℄ = m

�2

, and gravitation, [G

N

℄ = m

�2

.

� If all 
oupling 
onstants have positive mass dimension, [g℄ > 0 and D

v

< 4, the theory

is super-renormalisable. An example is the ��

3

theory in D = 4 with [�℄ = m

0

.

� The remaining 
ases, with all [g

i

℄ = 0, are 
andidates for renormalisable theories. Ex-

amples are Yukawa intera
tions, ��

4

, Yang-Mills theories that are unbroken (QED and

QCD) or broken by the Higgs me
hanism (ele
troweak intera
tions).

Theories with massive bosons We have assumed that bosoni
 propagators behave as / 1=k

2

for large (Eu
lidean) momenta k. This is true both for massive and massless s
alars, while it

holds only for massless parti
les with spin s � 1: As we have seen, the massless spin-1 and

spin-2 propagators in the R

�

gauge de
rease like / 1=k

2

for large k. In 
ontrast, the massive

spin-1 propagator behaves as D

��

F

(k) / 
onst: Thus the divergen
es in loop diagrams are more

severe for massive ve
tor parti
les than for massless ones. For a massive bosoni
 �eld of spin

s, the polarisation tensors 
ontains s tensor produ
ts of k

�

k

�

and therefore its propagator

s
ales as D

�

1

;��� ;�

s

;�

1

;��� ;�

s

(k) / k

2s�2

. This implies that the divergen
es of loop diagrams

aggravate for higher spin �elds. In parti
ular, inserting additional massive propagators into a

loop graph does not improve its 
onvergen
e and thus a theory with massive s > 0 parti
les


ontains an in�nite number of divergent diagrams at ea
h loop order. In
luding an expli
it

mass term for gauge bosons leads therefore to a non-renormalisable theory. A solution to this

problem is the introdu
tion of gauge boson masses via the Higgs me
hanism, whi
h we will

introdu
e in 
hapter 13.3. Combined with our �nding that intera
ting theories of massless

bosons are only possible for s � 2, we 
an 
on
lude that elementary parti
les should have

spin s � 2.

11.4. Renormalisation of the ��

4

theory

We have argued that a theory with dimensionless 
oupling 
onstant is renormalisable. In this


ase a multipli
ative shift of the parameters 
ontained in the 
lassi
al Lagrangian is suÆ
ient

to obtain �nite Green fun
tions. The simplest theory of this type in d = 4 is the ��

4

theory

for whi
h we will dis
uss now the renormalisation pro
edure at one loop level. As starter, we

examine the general stru
ture of the UV divergen
es.
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11.4.1. Stru
ture of the divergen
es

We learnt that the degree of divergen
e de
reases in
reasing the number of external lines, sin
e

the number of propagators in
reases. The same e�e
t has taking derivatives w.r.t. external

momenta p,

�

�p=

Z

d

4

k

(2�)

4

1

k= + p=�m

= �

Z

d

4

k

(2�)

4

1

(k= + p=�m)

2

:

This means that

1. we 
an Taylor expand loop integrals, 
on�ning the divergen
es in the lowest order terms.

Choosing e.g. p = 0 as expansion point in the fermion self-energy,

�(p) = A

0

+A

1

p=+A

2

p

2

+ : : : with A

n

=

1

n!

�

n

�p=

n

�(p) ;

we know that A

0

is (super�
ially) linear divergent. Thus A

1


an be maximally loga-

rithmi
ally divergent, while all other 
oeÆ
ients A

n

are �nite.

2. We 
ould 
hoose a di�erent expansion point, leading to di�erent renormalisation 
on-

ditions (within the same regularisation s
heme).

3. The divergen
es 
an be subtra
ted by lo
al operators, i.e. by polynomials of the �elds

and their derivatives. These terms 
alled 
ounter-terms have for a renormalisable theory

the same stru
ture as the terms present in the 
lassi
al Lagrangian. For instan
e,

the linear divergent term A

0


an be asso
iated to a 
ounter-term ÆA

0

�

  , while A

1

p=


orresponds to the 
ounter-term ÆA

1

�

 �= .

It is easy to show that the 
ounter-terms are lo
al operators at the one-loop level, where

diagrams 
ontain only one integration variable. Any loop integral I(p) with super�
ial degree

of divergen
e n� 1 be
omes �nite after taking n derivatives w.r.t. an external momentum p.

Using a 
uto� � as regulator, this implies that in

�

n

�p

n

I(p) = f(p) +O(p=�) (11.49)

the fun
tion f(p) is �nite and independent of �, while the remainder vanishes in the limit

�!1. Integrating this expression n times, we obtain

I(p) = F (p) + P

n

(p) +O(p=�) ; (11.50)

where F (p) is also �nite and independent of �. The fun
tion P

n

(p) is a n.th order polynomial


ontaining the integration 
onstants. Sin
e F (p) is �nite, P

n

(p) 
omprises all divergen
es.

They are therefore the 
oeÆ
ients of polynomials in the external momentum p and 
an be

subtra
ted by lo
al operators, as we 
laimed. This argument shows also that all non-trivial

analyti
al stru
tures like 
uts have to be 
ontained in F (p). Moreover, 
hoosing a di�erent

regularisation s
heme or point leads to the same f(p) in (11.49), and thus all the s
heme

dependen
e is 
ontained in the polynomial P

n

(p). As a result, the di�eren
es 
aused by

di�erent s
hemes reside only in lo
al terms whi
h are absorbed in the renormalisation of the

parameters.

Going to higher loop orders, non-lo
al terms as e.g. ln(p

2

=�

2

) 
an be generated by sub-

divergen
es. These are divergen
es 
onne
ted to integration regions where one or more loop
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momenta are �nite, while the remaining ones are send to in�nity. Su
h terms are 
an
elled by


ounter-terms determined at lower order. A sket
h why this should be true goes as follows:

Green fun
tions be
ome singular for 
oin
iding points, i.e. when the 
onvergen
e fa
tor e

�kx

in the

Eu
lidean Green fun
tion be
omes one. In the simplest 
ases as h0j�(x

0

)�(x)j0i

x

0

!x

, the in�nities are

eliminated by normal ordering, i.e. by rewriting all 
reation operators on the left of the annihilation

operators, 
f. problem 3.??. More 
ompli
ated are overlapping divergen
es where two or more divergent

loops share a propagator. Wilson suggested to expand the produ
t of two �elds as the sum of lo
al

operators O

i

times 
oeÆ
ient fun
tions C

i

(x � y) as

�(x)�(y) =

X

i

C

i

(x� y)O

i

(x) ;

where the dependen
e on the relative distan
e is 
arried by the 
oeÆ
ients and the lo
al operators O

i

are of the type O

i

(x) = �(x)�

�

� � � �

�

�(x). For a massless s
alar �eld, dimensional analysis di
tates

that C

i

(x) / x

�2+d

i

, if the lo
al operator O

i

has dimension d

i

. Note that only the unity operator has

a singular 
oeÆ
ient fun
tion 1=x

2


orresponding to the massless s
alar propagator. Similarly we 
an

expand produ
ts of operators,

O

n

(x)O

m

(y) =

X

i

C

i

nm

(x� y)O

i

(x) ;

where now C

i

nm

(x) / x

�d

n

�d

m

+d

i

. Thus we 
an use this operator produ
t expansion (or brie
y

\OPE") to rewrite the overlapping divergen
es in terms of (singular) 
oeÆ
ient fun
tions and lo
al

operators. Moreover, the sub-divergen
e o

urring at order k, when p < k points 
oin
ide, are

eliminated by the 
ounter-terms found at order p.

Elaborating this argument in detail, one 
an 
on
lude that non-lo
al terms due to overlapping

divergen
es are 
an
elled by the 
ounter-terms found at lower order. We will see how this

works in pra
ti
e in the next se
tion, when we 
al
ulate the va
uum energy at two-loop.

11.4.2. The ��

4

theory at O(�)

There are two equivalent ways to perform perturbative renormalisation. In the one 
alled

often \
onventional" perturbation theory we use the \bare" (unrenormalised) parameters in

the Lagrangian,

L = L

0

+L

int

=

1

2

(�

�

�

0

)

2

�

1

2

m

2

0

�

2

0

�

�

0

4!

�

4

0

: (11.51)

Then we introdu
e a renormalised �eld �

R

= Z

�1=2

�

�

0

and 
hoose the parameters Z

�

;m

0

and

�

0

as fun
tion of the regularisation parameter (", �; : : :) su
h that the �eld �

R

has �nite

Green fun
tions. In the following, we dis
uss the renormalisation pro
edure at the one-loop

level for the Green fun
tions of the ��

4

theory in this s
heme. Sin
e any 1P redu
ible diagram


an be de
omposed into 1PI diagrams whi
h do not 
ontain 
ommon loop integrals, we 
an

restri
t our analysis again to 1PI Green fun
tions.

Mass and wave-fun
tion renormalisation We de�ned the exa
t or full propagator

i�

F

(x

1

; x

2

) in Eq. (4.2) as the path integral average of the two �elds �(x

1

)�(x

2

). Now

we want to �nd a de�nition whi
h is useful for 
al
ulations in perturbation theory: We 
laim

that

[i�

F

(p)℄

�1

= [i�

F

(p)℄

�1

��(p) = p

2

�m

2

��(p)� i" (11.52)
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is the exa
t propagator, where the exa
t self-energy �(p) represents the 1PI 
orre
tions to

the s
alar mass, m

2

phys

= m

2

0

+�. Multiplying this de�nition from the right with i�

F

(p) and

from the left with i�

F

(p), the so-
alled Dyson equation follows,

i�

F

(p) = i�

F

(p) + i�

F

(p)�(p)i�

F

(p) = i�

F

(p) [1 +�(p)i�

F

(p)℄ : (11.53)

Graphi
ally, we 
an express this equation as

= +

= + + + · · ·

where the se
ond line follows by iteration. Hen
e, i�

F

(p) sums up the amplitudes to propa-

gate at momentum p with zero, one,. . . self-energy � insertions, and 
orresponds therefore to

the full propagator. At O(�), we see that this relation holds 
omparing it to Eq. (4.33).

Next we have to show that the self-energy �(p

2

) is �nite after renormalisation. The one-loop

expression

� i�(p

2

) =

�i�

0

2

Z

d

4

k

(2�)

4

i

k

2

�m

2

0

+ i"

(11.54)

is quadrati
ally divergent. As a parti
ularity of the �

4

theory, the p

2

dependen
e of the

self-energy � shows up only at the two-loop level. We perform a Taylor expansion of �(p

2

)

around the arbitrary point �,

�(p

2

) = �(�

2

) + (p

2

� �

2

)�

0

(�

2

) +

~

�(p

2

) ; (11.55)

where �(�

2

) / �

2

, �

0

(�

2

) / ln� and

~

�(p

2

) is the �nite remainder. A term linear in � is

absent, sin
e we 
annot 
onstru
t a Lorentz s
alar out of p

�

. Note also

~

�(�

2

) = 0.

Now we insert (11.55) into (11.52),

i

p

2

�m

2

0

� �(p

2

) + i"

=

i

p

2

�m

2

0

� �(�

2

)

| {z }

p

2

��

2

�(p

2

� �

2

)�

0

(�

2

)�

~

�(p

2

) + i"

; (11.56)

where we see that we 
an identify � with the renormalised mass given by the pole of the

propagator.

We aim at rewriting the remaining e�e
t for p

2

! �

2

= m

2

of the self-energy insertion,

�

0

(m

2

), as a multipli
ative res
aling. In this way, we 
ould remove the divergen
e from the

propagator by a res
aling of the �eld. At leading order in �, we 
an write

~

�(p

2

) =

�

1� �

0

(m

2

)

�

~

�(p

2

) +O(�

2

0

) (11.57)

and thus

i�

F

(p) =

1

1� �

0

(m

2

)

i

p

2

�m

2

�

~

�(p

2

) + i"

=

iZ

�

p

2

�m

2

�

~

�(p

2

) + i"

(11.58)

with the wave-fun
tion renormalisation 
onstant

Z

�

=

1

1��

0

(m

2

)

= 1 + �

0

(m

2

) : (11.59)

182



11.4. Renormalisation of the ��

4

theory

Close to the pole, the propagator is the one of a free parti
le with mass m,

i�

F

(p) =

iZ

�

p

2

�m

2

+ i"

+O(p

2

�m

2

) : (11.60)

Thus the renormalisation 
onstant Z

�

equals the wave-fun
tion renormalisation 
onstant Z

we had to introdu
e into the LSZ formalism to obtain 
orre
tly normalised states.

We de�ne the renormalised �eld � = Z

�1=2

�

�

0

su
h that the renormalised propagator

i�

R

(p) =

Z

d

4

x e

ipx

h0j Tf�(x)�(0)g j0i = Z

�1

�

i�(p) =

i

p

2

� �

2

�

~

�(p

2

) + i"

(11.61)

is �nite. Similarly, we de�ne renormalised n-point fun
tions by

G

(n)

R

(x

1

; : : : ; x

n

) = h0j Tf�(x

1

) � � � �

n

(x

n

)g j0i = Z

�n=2

�

G

(n)

0

(x

1

; : : : ; x

n

) : (11.62)

Sin
e the 1PI n-point Green fun
tions miss n �eld renormalisation 
onstants 
ompared to


onne
ted n-point Green fun
tions, the 
onne
tion between renormalised and bare 1PI n-

point fun
tions is given by

�

(n)

R

(x

1

; : : : ; x

n

) = Z

n=2

�

�

(n)

0

(x

1

; : : : ; x

n

) : (11.63)

Coupling 
onstant renormalisation We 
an 
hoose an arbitrary point inside the kinemati
al

region, s + t + u = 4�

2

and s � 4�

2

, to 
onne
t the 
oupling to a physi
al measurement at

this point. For our 
onvenien
e and less writing work, we 
hoose instead the symmetri
 point

s

0

= t

0

= u

0

=

4�

2

3

:

The bare four-point 1PI Green fun
tion is (see se
tion 4.3.3)

�

(4)

0

(s; t; u) = �i�

0

+ �(s) + �(t) + �(u) ; (11.64)

the renormalised four-point fun
tion at (s

0

; t

0

; u

0

) is

�

(4)

R

(s

0

; t

0

; u

0

) = �i� : (11.65)

Next we expand the bare 4-point fun
tion around s

0

; t

0

; u

0

,

�

(4)

0

(s; t; u) = �i�

0

+ 3�(s

0

) +

~

�(s) +

~

�(t) +

~

�(u) (11.66)

where the

~

�(x) are �nite and zero at x

0

. Now we de�ne a vertex (or 
oupling 
onstant)

renormalisation 
onstant by

� iZ

�1

�

�

0

= �i�

0

+ 3�(s

0

) (11.67)

Inserting this de�nition in (11.66) we obtain

�

(4)

0

(s; t; u) = �iZ

�1

�

�

0

+

~

�(s) +

~

�(t) +

~

�(u) (11.68)

what simpli�es at the renormalisation point to

�

(4)

0

(s

0

; t

0

; u

0

) = �iZ

�1

�

�

0

: (11.69)
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11. Renormalisation I: Perturbation theory

We use now the 
onne
tion between renormalised and bare Green fun
tions,

�

(4)

R

(s; t; u) = Z

2

�

�

(4)

0

(s; t; u) ; (11.70)

and thus

� i� = Z

2

�

Z

�1

�

(�i�

0

) : (11.71)

The relation between the renormalised and bare 
oupling in the ��

4

theory is thus

� = Z

2

�

Z

�1

�

�

0

: (11.72)

Now we have to show that �

(4)

R

(s; t; u) is �nite. Inserting (11.68) into (11.70), we �nd

�

(4)

R

(s; t; u) = �iZ

2

�

Z

�1

�

�

0

+ Z

2

�

[

~

�(s) +

~

�(t) +

~

�(u)℄

= �i�+ Z

2

�

[

~

�(s) +

~

�(t) +

~

�(u)℄ (11.73)

Sin
e Z

�

= 1 +O(�

2

) and

~

� = O(�

2

), this is equivalent to

�

(4)

R

(s; t; u) = �i�+ [

~

�(s) +

~

�(t) +

~

�(u)℄ +O(�

3

) (11.74)


onsisting only of �nite expressions. This 
ompletes the proof that at one-loop order all

Green fun
tions in the ��

4

theory are �nite, renormalising the �eld �, its mass and 
oupling


onstant. as

Renormalised perturbation theory In this approa
h, we res
ale �rst the bare �eld in the


lassi
al Lagrangian by �

0

= Z

1=2

�

�, obtaining

L =

1

2

Z

�

(�

�

�)

2

�

1

2

Z

�

m

2

0

�

2

�

�

0

4!

Z

2

�

�

4

: (11.75)

Next we introdu
e the renormalised mass and 
oupling bym

2

0

= Z

�1

�

Z

m

m

2

and �

0

= Z

�2

�

Z

�

�,

obtaining

L =

1

2

Z

�

(�

�

�)

2

�

1

2

Z

m

m

2

�

2

�

�

4!

Z

�

�

4

: (11.76)

The renormalisation 
onstants Z

i

vanish at tree-level and allow for a perturbative expansion.

Setting Z

i

= 1 + Æ

i

, we 
an split the Lagrangian into

L =

1

2

(�

�

�)

2

�

1

2

m

2

�

2

�

�

4!

�

4

+

1

2

Æ

�

(�

�

�)

2

�

1

2

Æ

m

m

2

�

2

�

�

4!

Æ

�

�

4

;

(11.77)

where the �rst line 
ontains only renormalised quantities. The terms in the se
ond line 
ontain

the divergent renormalisation 
onstants, and this part is 
alled the 
ounter-term Lagrangian

L


t

. An advantage of renormalised perturbation theory is that now the expansion parameter

is the renormalised 
oupling �. Treating L


t

as a perturbation, Z

i

= 1+

P

1

n=1

Æ

(n)

i

, we obtain

in momentum spa
e as additional Feynman verti
es

�

= i[Æ

�

p

2

� Æ

m

m

2

℄ (11.78)

and

�

= �iÆ

�

� : (11.79)

Applying renormalised perturbation theory 
onsists of the following steps:
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4

theory

1. Starting from (11.76 ) with n = 0, i.e. Æ

(0)

i

= 0, one derives propagator and verti
es.

2. One 
al
ulates 1-loop 1PI diagrams and �nds the divergent parts whi
h determine the


ounter-terms Æ

(1)

i

at order O(�). Then all other one-loop diagrams 
an be 
al
ulated.

3. Moving to two-loops, one generates two-loop 1PI diagrams using the Lagrangian with

the one-loop 
ounter-terms Æ

(1)

i

. They are used to extra
t the 
ounter-terms Æ

(2)

i

at

order O(�

2

).

4. The pro
edure is iterated moving to higher orders.

We illustrate the use of renormalised perturbation theory with the 
al
ulation of the remain-

ing loop diagram at O(�), the va
uum energy density. This example for a two-loop diagram

shows also how sub-divergen
es are 
an
elled by 
ounter-terms found at lower loop order.

In
luding the va
uum energy density, the Lagrangian (11.76) be
omes L ! L + � + Æ

�

�.

This example shows also that the 
orre
t expansion parameter is the number of loops, not

the power of the 
oupling 
onstant.

Example 11.3: Va
uum energy density at two-loop:

A

ording to step 2., we should determine �rst the 
ounter-terms in L

(1)


t

from the already 
al
ulated

one-loop 1PI diagrams. We start 
olle
ting the relevant results derived in 
hapter 4,

�

(1)

= �

m

4

(4�)

2

�

1

"

+ ln(�

2

=m

2

)

�

; Æ

(1)

�

=

1

(4�)

2

1

"

; and Æ

(1)

m

=

�

2

1

(4�)

2

1

"

; (11.80)

where we use the MS s
heme and re-s
aled �

2

! 4��

2

exp(�
). Inserting the one-loop self-energy

into the two-loop expression �

(2)

a

= �=8�

2

F

(0) results in

�

(2)

a

=

�

8

�

2

F

(0) =

�

8

m

4

(4�)

4

�

1

"

2

+

2

"

ln

�

�

2

m

2

�

+ ln

2

�

�

2

m

2

��

: (11.81)

Here a mixed term, 
ombining a pole term 1=" and a logarithm with argument �

2

=m

2

, has appeared. In

general, the logarithm will depend both on the masses of the loop parti
les and the external momenta

p, ln[f(�

2

=m

2

; �

2

=p

2

)℄. Su
h terms 
annot be subtra
ted by lo
al polynomials in the momenta p

as 
ounter-terms. In a renormalisable theory, they have to be therefore 
an
elled by 
ounter-terms

determined at lower loop order.

In our 
on
rete 
ase, we have to add only the Feynman diagram generated by the 
ounter-term

�

1

2

Æ

(1)

m

m

2

�

2

, sin
e Æ

�

�


ontributes only from the two-loop level on. This intera
tion generates at O(�)

the following 
ontribution to the va
uum energy density

�

(2)

b

=

�

=

1

2

Æ

(1)

m

m

2

�

F

(0) = �

�

8

m

4

(4�)

4

2

"

�

1

"

+ ln(�

2

=m

2

)

�

: (11.82)

Combining the two 
ontributions, the mixed terms disappear as expe
ted and the remaining 1="

2

pole 
an be subtra
ted by the 
ounter-term

Æ

(2)

�

=

�

8

1

(4�)

4

1

"

2

: (11.83)

Thus the two-loop 
ontribution to the va
uum energy density is

�

(2)

=

m

4

(4�)

4

ln

2

(�

2

=m

2

) =

�

m

(1)

(�)

4�

�

4

: (11.84)
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Summary

Using a power 
ounting argument for the asymptoti
 behaviour of the free Green fun
tions,

we singled out theories with dimensionless 
oupling 
onstants: Su
h theories with marginal

intera
tions are renormalisable, i.e. are theories with a �nite number of primitive divergent

diagrams. In this 
ase, the multipli
ative renormalisation of the �nite number of parameters


ontained in the 
lassi
al (e�e
tive) Lagrangian is suÆ
ient to obtain �nite Green fun
tions

at any order perturbation theory.

Further reading

The renormalisation of the ��

4

theory at the two-loop level is performed e.g. by [Pok87℄. Non-

renormalisable theories are dis
ussed by [S
h13℄. [Jeg07℄ reviews the status of ele
troweak

pre
ision 
al
ulations.
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12. Renormalisation II: Improving

perturbation theory

We 
ontinue our dis
ussion of renormalisation, introdu
ing �rst the quantum a
tion as the

generating fun
tional of 1PI Green fun
tions. Then we apply the developed formalism to

derive the Ward identities whi
h imply e.g. that the exa
t photon propagator is transverse

and that the renormalisation of the ele
tri
 
harge is universal. Next we introdu
e the renor-

malisation group equations whi
h des
ribe the evolution of n-point Green fun
tions under a


hange of s
ale. These equations suggest to 
onvert the parameters 
ontained in the 
lassi
al

Lagrangian into \running parameter", summing up thereby the most important 
orre
tions

of an in�nite set of diagrams. Finally, we introdu
e in the last se
tion a non-perturbative

approa
h based on ideas developed in solid-state physi
s and the renormalisation group.

12.1. Quantum a
tion

In the 
lassi
al limit, the equation of motion ÆS[�℄=Æ� = �J allows us to determine the

sour
e J(x) whi
h produ
es a given �eld �(x). Our aim is to �nd the quantum analogue of

this 
lassi
al equation. Let us re
all �rst the de�nition for the generating fun
tionals of a real

s
alar �eld,

Z[J ℄ =

Z

D� e

ifS[�℄+

R

d

4

xJ(x)�(x)g

= e

iW [J℄

: (12.1)

Then we de�ne the 
lassi
al �eld �




(x) as �




(x) = ÆW [J ℄=ÆJ(x). Performing the fun
tional

derivative in its de�nition, we see immediately why this de�nition makes sense,

�




(x) =

ÆW [J ℄

ÆJ(x)

=

1

iZ

ÆZ[J ℄

ÆJ(x)

=

1

Z

Z

D��(x) exp i

Z

d

4

y(L + J�) (12.2a)

=

h0j�(x)j0i

J

h0j0i

J

= h�(x)i

J

: (12.2b)

Thus the 
lassi
al �eld �




(x) is the va
uum expe
tation value of the quantum �eld �(x) in

the presen
e of the sour
e J(x). Now we de�ne the quantum

1

a
tion �[�




℄ as the Legendre

transform of W [J ℄,

�[�




℄ =W [J ℄�

Z

d

4

xJ(x)�




(x) �W [J ℄� hJ�i ; (12.3)

where �




(x) = ÆW [J ℄=ÆJ(x) should be used to repla
e J(x) by �




(x) on the RHS. We 
ompute

the fun
tional derivative w.r.t. �




of this new quantity,

Æ�[�




℄

Æ�




(y)

=

Z

d

4

x

ÆW

ÆJ(x)

ÆJ(x)

Æ�




(y)

�

Z

d

4

x

ÆJ(x)

Æ�




(y)

�




(x)� J(y):

1

Many authors 
all �[�




℄ the e�e
tive or quantum e�e
tive a
tion.

187
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Using the de�nition ÆW=ÆJ(x) = �




(x), the �rst and se
ond term 
an
els and we end up as

desired with

Æ�[�




℄

Æ�




(y)

= �J(y) : (12.4)

The analogy to the 
lassi
al equation of motion suggests that �[�




℄ is the quantum version of

the 
lassi
al a
tion. We will show next that its tree-level diagrams 
ontain all loop 
orre
tions

indu
ed by the usual a
tion S[�℄. It is this feature that justi�es the name quantum a
tion

for �[�




℄.

Expansion in ~ as a loop expansion In order to pro
eed, we perform a saddle-point expan-

sion around the 
lassi
al solution �

0

, given by the solution to

ÆfS[�℄ + hJ�ig

Æ�

�

�

�

�

�

0

= 0 (12.5)

or

��

0

+ V

0

(�

0

) = J(x) : (12.6)

We write the �eld as � = �

0

+

~

�, i.e. as a 
lassi
al solution with quantum 
u
tuations on top.

Then we 
an approximate the path integral Z = expfiW=~g as

Z ' e

i[S[�

0

℄+hJ�

0

i℄=~

Z

D

~

� exp

�

i

~

Z

d

4

x

1

2

h

(�

�

~

�)

2

� V

00

(�

0

)

~

�

2

i

�

: (12.7)

We have restored Plan
k's 
onstant ~ to indi
ate that this saddle point expansion 
an be

viewed as an expansion in ~. Next we want to show that the expansion in ~ 
orresponds to

a loop expansion. We introdu
e arti�
ially a parameter a into our Lagrangian so that

L (�; �

�

�; a) = a

�1

L (�; �

�

�) : (12.8)

Let us determine the power P of a in an arbitrary 1PI Feynman graph, a

P

: A propagator

is the inverse of the quadrati
 form in L and 
ontributes thus a positive power a, while

ea
h vertex / L

int

adds a fa
tor a

�1

. The number of loops in an 1PI diagram is given by

L = I � V + 1, 
f. Eq. (11.42), where I is the number of internal lines and V is the number

of verti
es. Putting this together we see that

P = I � V = L� 1 (12.9)

and thus

2

the power of a gives us the number of loops. We should stress that using a loop

expansion does not imply a semi-
lassi
al limit, S � ~: Our �
titious parameter a is not

small; in fa
t, it is one.

Quantum a
tion as generating fun
tional for 1PI Green fun
tions We have now all the

ne
essary ingredients in order to show that the tree-level graphs generated by the quantum

2

We assume here that parti
le masses whi
h 
arry a fa
tor ~

�1


an be negle
ted. In few appli
ations, as

e.g. 
al
ulating quantum 
orre
tions to the Newtonian potential between two masses m

1

and m

2

, this

assumption is not valid.
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12.1. Quantum a
tion

a
tion �[�℄ 
orrespond to the 
omplete s
attering amplitudes of the 
orresponding a
tion

S[�℄. We 
ompare the \true" generating fun
tional

Z[J ℄ =

Z

D� expfiS + hJ�ig = e

iW [J℄

; (12.10)

with the fun
tional V

a

[J ℄ of a �
titious �eld theory whose 
lassi
al a
tion S is the quantum

a
tion �[�℄ of the theory (12.10) we are interested in,

V

a

[J ℄ =

Z

D� exp

�

i

a

f�[�℄ + hJ�ig

�

= e

iU

a

[J℄

: (12.11)

Additionally, we introdu
ed the parameter a with the same purpose as in (12.8): In the limit

a ! 0, we 
an perform a saddle-point expansion and the path integral is dominated by the


lassi
al path. From (12.7), we �nd thus

lim

a!0

aU

a

[J ℄ = �[�℄ + hJ�i =W [J ℄ ; (12.12)

where we used the de�nition of the quantum a
tion, Eq. (12.3), in the last step. The RHS

is the sum of all 
onne
ted Green fun
tions of our original theory. The LHS is the 
lassi
al

limit of the �
titious theory V

a

[J ℄, i.e. it is the sum of all 
onne
ted tree graphs generated

using �[�℄ as a
tion. But a 
onne
ted graph whi
h is one-parti
le redu
ible is 
omposed

of one-parti
le irredu
ible subgraphs 
onne
ted by simple propagators. Hen
e a 
onne
ted

graph 
orresponds to a tree-level graph with 1PI subgraphs �

(n)

(x

1

; :::; x

n

) as (non-lo
al)

verti
es. This shows that the quantum a
tion �[�℄ is the generating fun
tional for the 1PI

Green fun
tions. Expanding �[�℄ in �




gives us thus

�[�




℄ =

X

n

1

n!

Z

d

4

x

1

� � � d

4

x

n

�

(n)

(x

1

; :::; x

n

)�




(x

1

) � � � �




(x

n

) (12.13)

with �

(n)

as the one-parti
le-irredu
ible Green fun
tions. In the following, we will need only

the two- and three-point fun
tions whi
h we 
onstru
t now expli
itly.

Example 12.1: Show that �

(2)

is equal to the inverse propagator or inverse 2-point fun
tion, and

derive the 
onne
tion of �

(3)

to the 
onne
ted 3-point fun
tion.

We write �rst

Æ(x

1

� x

2

) =

Æ�




(x

1

)

Æ�




(x

2

)

=

Z

d

4

x

Æ�




(x

1

)

ÆJ(x)

ÆJ(x)

Æ�




(x

2

)

using the 
hain rule. Next we insert �




(x) = ÆW=ÆJ(x) and J(x) = �Æ�=Æ�




(x) to obtain

Æ(x

1

� x

2

) = �

Z

d

4

x

Æ

2

W

ÆJ(x)ÆJ(x

1

)

Æ

2

�

Æ�




(x)Æ�




(x

2

)

:

Setting J = �




= 0, it follows

Z

d

4

x iG(x; x

1

) �

(2)

(x; x

2

) = �Æ(x

1

� x

2

) (12.14)

or �

(2)

(x

1

; x

2

) = iG

�1

(x

1

; x

2

). Thus the 1PI 2-point fun
tion is the inverse propagator. Taking a

further derivative Æ=ÆJ(x

3

) of this relation, we have

Æ

3

W

ÆJ(x

1

)ÆJ(x

2

)ÆJ(x

3

)

= �

Æ

ÆJ(x

3

)

�

Æ

2

�

Æ�




(x

1

)Æ�




(x

2

)

�

�1

: (12.15)
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Di�erentiating MM

�1

= 1, we �nd dM

�1

= �M

�1

dMM

�1

for a matrix M . Applied to (12.15), we

obtain

Æ

3

W

ÆJ(x

1

)ÆJ(x

2

)ÆJ(x

3

)

=

Z

d

4

y

1

d

4

y

2

G

(2)

(y

1

; x

1

)G

(2)

(y

2

; x

2

)

Æ

3

�

Æ�




(x

1

)Æ�




(x

2

)ÆJ(x

3

)

: (12.16)

Using the 
hain rule, inserting �




(x

3

) = ÆW=ÆJ(x

3

) and setting J = �




= 0 gives

G

(3)

(x

1

; x

2

; x

3

) =

Z

d

4

y

1

d

4

y

2

d

4

y

3

G

(2)

(y

1

; x

1

)G

(2)

(y

2

; x

2

)G

(2)

(y

3

; x

3

)�

(3)

(x

1

; x

2

; x

3

) : (12.17)

Thus the 
onne
ted 3-point fun
tion G

(3)

(x

1

; x

2

; x

3

) is obtained by appending propagators to the

irredu
ible 3-point vertex fun
tion �

(3)

(x

1

; x

2

; x

3

), one for ea
h external leg. This generalises to all

n 6= 2 and therefore one 
alls the �

(n)

also amputated Green fun
tions.

12.2. Ward-Takahashi identities

We now turn to QED, the simplest 
ase of a gauge theory. Dis
ussing the quantum version

of Noether's theorem, we have already shown that the vev of the ele
tromagneti
 
urrent

is 
onserved, �

�

hj

�

i = 0. Hen
e loop 
orre
tions respe
t the 
lassi
al gauge symmetry and

therefore we expe
t also that the photon remains massless. The redundan
y implied by lo
al

gauge invarian
e leads to interrelations of Green fun
tions. In turn, su
h dependen
ies are a

ne
essary ingredient for the quantisation of a gauge symmetry, as we 
an see as follows: In

QED, we de�ne wave-fun
tion renormalisation 
onstants for the ele
tron and photon as

 

0

� Z

1=2

2

 and A

�

0

� Z

1=2

3

A

�

: (12.18)

Analogous to Eq. (11.72), the ele
tri
 
oupling is renormalised by

e(�) = Z

2

Z

1=2

3

Z

�1

1

e

0

; (12.19)

where Z

1

is the 
harge renormalisation 
onstant, and Z

2

and Z

1=2

3

take into a

ount that two

ele
tron �elds and one photon �eld enter the three-point fun
tion.

As it stands, the renormalisation 
ondition (12.19) 
reates two major problems: First, the

fa
tor Z

2

will vary from fermion to fermion. For instan
e, the wave-fun
tion renormalisation


onstant of a proton in
ludes the e�e
ts of strong intera
tions while the one of the ele
tron

does not. As a result, it is diÆ
ult to understand why the ele
tri
 
harge of an ele
tron and

an proton are renormalised su
h that they have the same value at q

2

= 0. Se
ond, we see

that the renormalised 
ovariant derivative

D

�

= �

�

+ i

Z

1

Z

2

e(�)A

�

(12.20)

remains only gauge-invariant, if Z

1

= Z

2

. Clearly, this 
ondition would also ensure the

universality of the ele
tri
 
harge. Thus it is essential that we are able to show that Z

1

= Z

2

holds in suitable renormalisation s
hemes. In a non-abelian theory as QCD, where we have

to ensure that the gauge 
oupling in all terms of Eq. (10.76) remains after renormalisation

the same, several 
onstraints of the type Z

1

= Z

2

arise.

We will pro
eed in two steps: First, we will show that the photon remains massless or, more

te
hni
ally, that the exa
t photon va
uum polarisation is transverse. Then we will derive the

Ward-Takahashi identities using the quantum a
tion whi
h imply in parti
ular the relation

Z

1

= Z

2

.
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Photon propagator Consider the generating fun
tional of QED,

Z[J

�

; �; ��℄ =

Z

DAD

�

 D expfi

Z

d

4

xL

eff

g; (12.21)

where J

�

is a four-ve
tor sour
e, � and �� are Gra�mannian sour
es and the e�e
tive La-

grangian L

eff

is 
omposed of a 
lassi
al term L


l

, a gauge �xing term L

gf

and a sour
e term

L

s

,

L


l

= �

1

4

F

��

F

��

+ i

�

 


�

D

�

 �m

�

  ; (12.22a)

L

gf

+L

s

= �

1

2�

(�

�

A

�

)

2

+ J

�

A

�

+

�

 � + �� : (12.22b)

We 
onsider now the renormalised version of the Lagrangian L

eff

, where the renormalised


ovariant derivative D

�

is given by Eq. (12.20) with Z

1

6= Z

2

in general. This implies that an

in�nitesimal gauge transformation has the form

A

�

! A

0

�

= A

�

+ �

�

� (12.23a)

 !  

0

=  � i�e� with �e �

Z

1

Z

2

e : (12.23b)

As L


l

is gauge invariant by 
onstru
tion, the variation of L

eff

under an in�nitesimal gauge

transformation 
onsists only of

Æ

Z

d

4

x (L

gf

+L

s

) =

Z

d

4

x

�

�

1

�

(�

�

A

�

)�� + J

�

�

�

�+ i�e�(

�

 � � �� )

�

: (12.24)

Now we integrate by parts the �rst term twi
e and the se
ond term on
e, to fa
tor out the

arbitrary fun
tion �,

ÆS

eff

= Æ

Z

d

4

xL

eff

=

Z

d

4

x

�

�

1

�

�(�

�

A

�

)� �

�

J

�

+ i�e(

�

 � � �� )

�

� : (12.25)

Thus the variation of the generating fun
tional Z[J

�

; �; ��℄ is

ÆZ[J

�

; �; ��℄ =

Z

DAD

�

 D exp

�

i

Z

d

4

xL

eff

�

iÆ

Z

d

4

xL

eff

: (12.26)

The �elds A

�

,

�

 and  are however only integration variables in the generating fun
tional.

The gauge transformation (12.23) is thus merely a 
hange of variables whi
h does not a�e
t

the fun
tional Z[J

�

; �; ��℄, sin
e the Ja
obian of this transformation is one. Thus this variation

has to vanish, ÆZ[J

�

; �; ��℄ = 0.

If we substitute �elds by fun
tional derivatives of their sour
es, the 
hange ÆS

eff


an be

moved outside the fun
tional integral. Sin
e the fun
tion �(x) is arbitrary, we 
an drop the

integration and arrive at

0 =

�

�

1

�

��

�

Æ

ÆJ

�

� �

�

J

�

+ i�e

�

�

Æ

Æ�

� ��

Æ

Æ��

��

expfiWg

= �

1

�

�

�

�

�

ÆW

ÆJ

�

�

� �

�

J

�

+ i�e

�

�

ÆW

Æ�

� ��

ÆW

Æ��

�

:
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Di�erentiating this equation with respe
t to J

�

(y) and setting then the sour
es J

�

, � and ��

to zero gives us our �rst result,

�

1

�

�

�

�

�

Æ

2

W

ÆJ

�

(x)ÆJ

�

(y)

�

= �

�

�

��

Æ(x� y) : (12.27)

The se
ond derivative of W w.r.t. to the ve
tor sour
es J

�

is the full photon propagator

D

��

(x� y). If we go to momentum spa
e, we have

i

�

k

2

k

�

D

��

(k) = k

�

: (12.28)

Splitting the propagator into a transverse part and a longitudinal part as in (10.60), the

transverse part immediately drops out and we �nd

i

�

k

2

k

�

D

L

(k

2

) = k

�

: (12.29)

Thus the longitudinal part of the exa
t propagator agrees with the longitudinal part of the

tree level propagator,

iD

L

(k

2

) = iD

L

(k

2

) =

�

k

2

: (12.30)

This implies that higher order 
orre
tions do not a�e
t D

L

(k

2

). In other words, the loop


orre
tion �

��

to the photon propagator is transverse. Sin
e we 
an expand all relations as

power series in the 
oupling 
onstant e, this holds also at any order in perturbation theory.

Ward identity Z

1

= Z

2

Let us go ba
k to the 
onstraint for the variation of the generating

fun
tional Z under gauge transformations, Eq. (12.27). We aim to derive identities between

1PI Green fun
tions and want therefore to transform it into a 
onstraint for the quantum

a
tion �. If we Legendre transform W [J; ��; �℄ into �[A;

�

 ; ℄,

�[ ;

�

 ;A

�

℄ =W [�; ��; J

�

℄�

Z

d

4

x(J

�

A

�

+

�

 � + �� ) ; (12.31)

we 
an repla
e the fun
tional derivatives of W with 
lassi
al �elds, and the sour
es with

fun
tional derivatives of �, i.e.

ÆW

ÆJ

�

= A

�

;

ÆW

Æ�

=

�

 ;

ÆW

Æ��

=  

Æ�

ÆA

�

= �J

�

;

Æ�

Æ

�

 

= ��;

Æ�

Æ 

= ��� :

This transforms Eq. (12.27) into

1

�

�(�

�

A

�

(x))� �

�

Æ�

ÆA

�

(x)

+ i�e

�

 

Æ�

Æ (x)

�

�

 

Æ�

Æ

�

 (x)

�

= 0 ; (12.32)

a master equation from whi
h we 
an derive relations between di�erent types of Green fun
-

tions. Di�erentiating with respe
t to  (x

1

) and

�

 (x

2

) and setting then the �elds to zero
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gives us the most important one of the Ward-Takahashi identities, relating the 1PI 3-point

fun
tion �

(3)

(x; x

1

; x

2

) to the 2-point fun
tion �

(2)

(x

1

; x

2

) of fermions,

�

�

�

(3)

�

(x; x

1

; x

2

) = i�e

�

�

(2)

(x; x

1

)Æ(x� x

2

)� �

(2)

(x; x

2

)Æ(x � x

1

)

�

(12.33)

or, after Fourier transforming

k

�

�

(3)

�

(p; k; p+ k) = �eS

�1

F

(p+ k)� �eS

�1

F

(p) : (12.34)

Taking the limit k

�

! 0, the identity �

(3)

�

(p; 0; p) = �e�

�

S

�1

F

(p) found originally by Ward

follows. The Green fun
tions in this equation are �nite, renormalised quantities and thus

Z

1

=Z

2

has to be �nite in any 
onsistent renormalisation s
heme too. In all s
hemes where

we identify dire
tly e(0) with the measured ele
tri
 
harge, also the �nite parts of Z

1

and Z

2

agree, i.e. the measured ele
tri
 
harge is universal.

12.3. Va
uum polarisation

The Ward identities guaranty that the gauge 
ouplings in QED and QCD are determined

solely by the loop 
orre
tions �

��

to the photon and gluon propagator, respe
tively. These


orre
tions 
onvert the 
lassi
al 
oupling 
onstants into running 
ouplings. How the running


oupling 
hange as fun
tion of the s
ale is one of the most 
hara
teristi
 properties of a

quantum �eld theory. The aim of this se
tion is therefore to derive the one-loop 
orre
tions

to the gauge boson propagator. An interpretation of these results will then be performed in

the next se
tion.

12.3.1. Va
uum polarisation in QED

We 
al
ulate next the one-loop 
orre
tion to the photon propagator, the so 
alled va
uum

polarisation tensor �

��

. In QED, only the �rst diagram of Fig. 12.1 
ontributes. Using the

Feynman rules, we obtain for the 
ontribution of one fermion spe
ies with mass m

i�

��

(q) = �(�ie)

2

Z

d

4

k

(2�)

4

tr[


�

i(k= +m)


�

i(k= + q=+m)℄

(k

2

�m

2

)[(k + q)

2

�m

2

℄

= �e

2

Z

d

4

k

(2�)

4

N

��

D

: (12.35)

As a warm-up, we want to 
on�rm that the va
uum polarisation tensor respe
ts at the one-

loop level gauge invarian
e, as we know already from Eq. (12.30). Gauge invarian
e implies

q

�

�

��

(q) = 0 and thus the tensor stru
ture of the va
uum polarisation tensor has to be

�

��

(q) = (q

2

�

��

� q

�

q

�

)�(q

2

). Hen
e we have to 
al
ulate only the simpler s
alar fun
tion

�(q

2

) knowing that �

��

(q) is gauge invariant.

In order to show that q

�

�

��

(q) = 0, we write �rst

q = (q + k �m)� (k �m) (12.36)

and obtain

q

�

N

��

= trf[(q= + k= �m)� (k= �m)℄(k= +m)


�

(k= + q=+m)g (12.37a)

= [(q + k)

2

�m

2

℄trf(k= +m)


�

g � (k

2

�m

2

)trf


�

(k= + q=+m)g (12.37b)
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where we used the 
y
li
 property of the tra
e. Employing dimensional regularisation (DR)

with d = 4� 2" in order to obtain well-de�ned integrals,

q

�

i�

��

(q) = �e

2

�

2"

Z

d

d

k

(2�)

d

�

tr[(k= +m)


�

℄

(k

2

�m

2

)

�

tr[


�

(k= + q=+m)℄

(k + q)

2

�m

2

�

; (12.38)

we are allowed to shift the integration variable in one of the two terms. Thus q

�

�

��

(q) = 0

and hen
e the va
uum polarisation tensor at order O(e

2

) is transverse as required by gauge

invarian
e.

Let us pause a moment and summarise what we know already, before we start with the

evaluation of �(q

2

): In our power-
ounting analysis we found as super�
ial degree of diver-

gen
e D = 2. This result was based on the assumption that the numerator N behaves as a


onstant. But the only 
onstant available is m

2

whi
h would lead to a mass term of the pho-

ton, e

2

A

�

�

��

A

�

/ e

2

m

2

A

�

�

��

A

�

. Thus the transversality of �

��

implies that the m

2

term

in the numerator will disappear at some step of our 
al
ulation. Thereby the 
onvergen
e of

the polarisation tensor improves, be
oming a \mild logarithmi
" one.

We pro
eed with the expli
it evaluation of �

��

. Taking the tra
e of (12.35) and using its

transversality, we �nd in d = 2! dimensions

�

�

�

(q) = (q

2

Æ

�

�

� q

2

)�(q

2

) = (d� 1)q

2

�(q

2

)

and

(d� 1)q

2

i�(q

2

) = �e

2

�

2"

Z

d

d

k

(2�)

d

tr[


�

(k= +m)


�

(k= + q=+m)℄

(k

2

�m

2

)[(k + q)

2

�m

2

℄

= �e

2

�

2"

Z

d

d

k

(2�)

d

N

D

:

(12.39)

We 
ombine the two propagators introdu
ing the Feynman parameter integral 1=(AB) =

R

1

0

dx [Ax+B(1� x)℄

�2

with A = (k + q)

2

�m

2

and B = k

2

�m

2

. Thus the denominator

be
omes

D = Ax+B(1� x) = k

2

+ 2kqx+ q

2

x�m

2

= (k + qx)

2

+ q

2

x(1� x)�m

2

: (12.40)

Next we introdu
e as new integration variable K = k + qx,

D = K

2

+ q

2

x(1� x)�m

2

= K

2

� a ; (12.41)

and a = m

2

� q

2

x(1� x) > 0 as short-
ut.

Evaluating the tra
e in the denominator using DR, we have to extend the Cli�ord algebra

to d = 2! dimensions. A natural 
hoi
e is tr(


�




�

) = d�

��

, giving with 


�




�

= d and




�

q=


�

= (2� d)q= as result for the tra
e

N = N

�

�

= d[(2� d)k � (k + q) + dm

2

℄ = df(2� d)[K

2

� q

2

x(1� x)℄ + dm

2

g : (12.42)

In the last step, we performed the shift k ! K = k + qx omitting linear terms in K that

vanish after integration. Combining our results for N and D we arrive at

(d� 1)q

2

i�(q

2

) = �e

2

�

2"

d

Z

1

0

dx

Z

d

d

K

(2�)

d

(2� d)K

2

+ dm

2

� (2� d)q

2

x(1� x)℄

(K

2

� a)

2

: (12.43)

Finally, we use our results for the Feynman integrals I

0

(!; �) and I

2

(!; �) whi
h were

obtained performing a Wi
k rotation. The latter is possible as long as we do not pass a
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singularity. Sin
e the prefa
tor x(1 � x) of q

2

has as maximum 1/4, this requires q

2

< 4m

2

.

We start to look for the �rst two terms where we expe
t a 
an
ellation of the m

2

term in the

numerator,

Z

d

d

K

(2�)

d

(2� d)K

2

+ dm

2

(K

2

� a)

2

= (2� d)I

2

(!; 2) + dm

2

I(!; 2) (12.44a)

=

i

(4�)

!

�(2)

�

�2!(1� !)�(1� !) a

!�1

+ 2!m

2

�(2� !) a

!�2

�

(12.44b)

=

i

(4�)

!

2!�(2� !)(�a+m

2
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!�2

(12.44
)

=

4 i

(4�)

2

�(") (4�)

"

q

2

x(1� x)

[m

2

� q

2

x(1� x)℄

"

: (12.44d)

Hen
e the m

2

term dropped indeed out of the numerator and the whole expression is propor-

tional to q

2

, as required by the LHS of (12.43). Evaluating the third term in the same way

we obtain

�

Z

d

d
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(2�)

d

(2� d)q

2

x(1� x)

(K

2
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2
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2

x(1� x)I(!; 2) (12.45a)

=
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"

q
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2

� q

2

x(1� x)℄

"

: (12.45b)

Adding the two 
ontributions, we arrive at

�(q

2

) = �

8e

2

(4�)

2

�(")

Z

1

0

dxx(1� x)

�

4��

2
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� q

2

x(1� x)

�

"

; (12.46)

where the fa
tor iq

2


an
elled. We in
luded also the fa
tor (4��

2

)

"

into the last term, whi
h

be
omes thereby dimensionless. Now we expand the Gamma fun
tion, �(") = 1="�
+O("),

around d = 4� 2" and be
ause of the resulting 1=" term all other " dependent quantities,

�(q

2

) = �

e

2

12�

2

�

1

"

� 
 + ln(4�)� 6

Z

1

0

dx x(1� x) ln

�

m

2

� q

2

x(1� x)

�

2

��

: (12.47)

The prefa
tor x(1�x) has its maximum 1/4 for x = 1=2. Thus the bran
h 
ut of the logarithm

starts at q

2

= 4m

2

, i.e. when the virtuality of the photon is large enough that it 
an de
ay into

a fermion pair of mass 2m. This is a ni
e illustration of the opti
al theorem: The polarisation

tensor is real below the pair 
reation threshold, and a
quires an imaginary part above (whi
h

equals the pair 
reation 
ross se
tion of a photon with mass m

2

= q

2

, 
f. problem 12.??).

The x integral 
an be integrated by elementary fun
tions, but we display the result only

for the two limiting 
ases of small and large virtualities, q

2

=m

2

! 0 and jqj

2

=m

2

! 1. In

the �rst 
ase, we obtain with ln(1� x) ' �x

�(q

2

) = �

e

2

12�

2

�

1

"

� 
 + ln(4�) + ln(�

2

=m

2

) +

q

2

5m

2

+ : : :

�

; (12.48)

while the opposite limit gives

�(q

2

) = �

e

2

12�

2

�

1

"

� 
 + ln(4�)� ln(jq

2

j=�

2

) + : : :

�

: (12.49)
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Figure 12.1.: Feynman diagrams des
ribing va
uum polarisation in QCD at one-loop.

In the MS s
heme, we obtain the renormalisation 
onstant Z

3

for the photon �eld as the


oeÆ
ient of the pole term,

Z

3

= 1�

e

2

12�

2

"

: (12.50)

More often the on-shell renormalisation s
heme is used in QED. Here we require that quantum


orre
tions to the ele
tri
 
harge vanish for q

2

= 0, i.e. we 
hoose Z

3

su
h that �

on

(q

2

= 0) =

0. This is obviously a
hieved setting

�

on

(q

2

) = �(q

2

)��(0) = �

e

2

60�

2

q

2

m

2

+ : : : ; (12.51)

for jq

2

j � m

2

. This q

2

dependen
e leads to a modi�
ation of the Coulomb potential, whi
h


an be measured e.g. in the Lamb shift.

12.3.2. Va
uum polarisation in QCD

We only sket
h the 
al
ulations in QCD, stressing the new or di�erent points 
ompared

to QED. In Fig. 12.1, we show the various 1-loop diagrams 
ontributing to the va
uum

polarisation tensor in a non-abelian theory as QCD. Most importantly, the three- and four-

gluon verti
es allow in addition to the quark loop now also gluon loops. Sin
e a fermion loop

has an additional minus sign, we expe
t that the gluon loop gives a negative 
ontribution to

the beta fun
tion. This opens the possibility that non-abelian gauge theories are in 
ontrast

to QED asymptoti
ally free, if the number of fermion spe
ies is small enough.

Quark loop The vertex 
hanges from �ie


�

in QED to �ig

s

T

a




�

in QCD. Sin
e the quark

propagator is diagonal in the group index, a quark loop 
ontains for ea
h 
avor additionally

the fa
tor

trfT

a

T

a

g =

1

2

Æ

aa

= 4 : (12.52)

Thus we have only to repla
e e ! 4n

f

g

s

in the QED result, where n

f


ounts the number of

quark 
avors. For the three light quarks, u, d and s, it is an ex
ellent approximation to use

m = 0. In 
ontrast, the masses of the other three quarks (
, b and t) 
an not be negle
ted

when 4m

2

f

<

�

�

2

. The e�e
t of parti
le masses 
an be approximated in
luding in the loop only

parti
les with mass 4m

2

f

< �

2

, making n

f

s
ale dependent.
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Loop with three-gluon vertex Sin
e the three-gluon vertex 
onne
ts identi
al parti
les, we

have to take into a

ount symmetry fa
tors similar as in the 
ase of the ��

4

theory. We

learnt that the imaginary part of a Feynman diagram 
orresponds to the propagation of real

parti
les. Thus the imaginary part of the gluon va
uum polarisation 
an be 
onne
ted to the

total 
ross se
tion of g ! gg s
attering. This 
ross se
tion 
ontains a symmetry fa
tor 1=2!

to a

ount for two identi
al parti
les in the �nal state. Therefore the same symmetry fa
tor

should be asso
iated to the va
uum polarisation with a gluon loop

3

. Applying the Feynman

rule for the three-gluon vertex and using the Feynman-t'Hooft gauge, we �nd

i�

��

ab 2

(q

2

) =

1

2

(�ig)

2

i

2

Z

d

4

k

(2�)

4

N

��

ab

(k

2

+ i")[(k + q)

2

+ i"℄

(12.53)

with

N

��

ab

= f

b
d

[��

��

(q + k)

�

+ �

��

(2k � q)

�

+ �

��

(2q � k)

�

℄

� f

a
d

[��

�

�

(q + k)

�

+ �

��

(q � 2k)

�

+ �

�

�

(k � 2q)

�

℄ :

(12.54)

Evaluating the 
olour tra
e,

f

a
d

f


db

= N




Æ

ab

(12.55)

and extra
ting in the usual way the pole part using DR one obtains for d = 4� 2"

�

��

ab 2

(q

2

) = �

N




g

2

32�

2

"

�

�

2

q

2

�

"=2

�

11

3

q

�

q

�

�

19

6

�

��

q

2

�

+O("

0

) : (12.56)

Thus the 
ontribution from the three-gluon vertex alone is not transverse|demonstrating

again that a 
ovariant gauge requires the introdu
tion of ghost parti
les.

Ghost loop This diagram has the same dependen
e on the stru
ture 
onstants as the pre-

vious one,

i�

��

ab; 3

(q

2

) = �(�ig)

2

i

2

Z

d

4

k

(2�)

4

f

bd


(k � q)

�

f

a
d

k

�

(k

2

+ i")[(k + q)

2

+ i"℄

; (12.57)

and 
an thus be 
ombined with the three-gluon loop. Note the extra minus sign due to the

fermioni
 nature of the ghost parti
le. Evaluating the integral results in

�

��

ab; 3

(q

2

) =

N




g

2

32�

2

"

�

�

2

q

2

�

"=2

�

1

3

q

�

q

�

+

1

6

�

��

q

2

�

+O("

0

) (12.58)

and summing the three-gluon and ghost loops gives the expe
ted gauge-invariant expression.

Moreover, the sum has the opposite sign as the quark loop and 
an thus lead to the opposite

behaviour of the beta fun
tion as in QED.

Four-gluon loop and tadpole diagrams The loop with the four-gluon vertex 
ontains a

massless propagator and does not depend on external momenta,

i�

��

ab;4

(q

2

) /

Z

d

d

k

k

2

+ i"

: (12.59)

3

This argument does not apply to the quark loop, sin
e 
utting leads in this 
ase to a distinguishable �qq state
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Our general experien
e with DR tells us that this graph is zero, as gluons are massless.

However, this loop integral is also in DR ambiguous: For any spa
e-time dimension d, the

integral is either UV or IR divergent. To pro
eed, we split therefore the integrand introdu
ing

the arbitrary mass M as

1

k

2

+ i"

=

1

k

2

�M

2

+ i"

�

M

2

(k

2

+ i")(k

2

�M

2

+ i")

: (12.60)

Now the IR and UV divergen
es are separated, and we 
an use d < 2 in the �rst term and

2 < d < 4 in the se
ond. By dimensional analysis, both terms have to be proportional to a

power of the arbitrary mass M . As the LHS is independent of M , the only option is that

the two terms on the RHS 
an
el, as an expli
it 
al
ulation 
on�rms. The remaining tadpole

diagrams (5 and 6 of Fig. 12.1) vanish by the same argument. We will 
ome ba
k to the


ombined result for the 
oupling g

s

(Q

2

) in QCD, after having introdu
ed running 
ouplings

and dis
ussing their behaviour in general.

12.4. Renormalisation group

Renormalisation group equations Let us 
onsider two renormalisation s
hemes R and R

0

.

In the two s
hemes, the renormalised �eld will in general di�er, being �

R

= Z

�1=2

�

(R)�

0

and

�

R

0

= Z

�1=2

�

(R

0

)�

0

, respe
tively. Hen
e the 
onne
tion between the two renormalised �elds

is

�

R

0

=

Z

�1=2

�

(R

0

)

Z

�1=2

�

(R)

�

R

� Z

�1=2

�

(R

0

; R)�

R

: (12.61)

As both �

R

and �

R

0

are �nite, also Z

�

(R

0

; R) is �nite. The transformations Z

�1=2

�

(R

0

; R)

form a group, 
alled the renormalisation group. If we 
onsider

G

(n)

0

(x

1

; : : : ; x

n

) = Z

n=2

�

G

(n)

R

(x

1

; : : : ; x

n

) ; (12.62)

we know that the bare Green fun
tion is independent of the renormalisation s
ale �. Taking a

derivative with respe
t to �, the LHS thus vanishes. To avoid 
lutter, we restri
t ourselves to

the simplest 
ase of a massless theory with a single 
oupling g. Then the renormalised Green

fun
tions 
an depend (in a mass independent s
heme) only on the renormalised 
oupling g(�),

and we �nd thus

0 =

d

d ln�

h

Z

n=2

�

G

(n)

R

(x

1

; : : : ; x

n

)

i

(12.63a)

=

�

�

� ln�

+

�g

� ln�

�

�g

+

n

2

� lnZ

�

� ln�

�

G

(n)

R

(x

1

; : : : ; x

n

) (12.63b)

�

�

�

� ln�

+ �

�

�g

+

n

2




�

G

(n)

R

(x

1

; : : : ; x

n

) : (12.63
)

Here we introdu
ed in the last step the anomalous dimension


(�) = �

� lnZ

�

(�)

��

(12.64)
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of the �eld � and the beta fun
tion

�(g) = �

�g(�)

��

; (12.65)

whi
h determines the logarithmi
 
hange of the 
oupling 
onstant. The beta fun
tion is often

re-expressed as

�(g

2

) � �

2

�g

2

��

2

= g�(g) (12.66)

or as �(�

2

) with � = g

2

=(4�). Equations of the type (12.63
) are 
alled generi
ally renor-

malisation group equations or brie
y RGE. They 
ome in various 
avors, 
arrying the name

of their inventors: St�u
kelberg{Petermann, Callan{Symanzik, Gell-Mann{Low, . . . We 
an

use (11.63) to derive a similar RGE for the 1PI Green fun
tions. Note that the sign di�er-

en
e between (11.63) and (11.62) in the power of the wave-fun
tion renormalisation 
onstant

indu
es a 
orresponding sign 
hange in the RGE for 1PI Green fun
tions.

Remark 12.1: In order to understand the term \anomalous dimensions," we look �rst at the


anoni
al dimension of �elds under a 
hange of units. Note that in 
ontrast to the s
ale transformations

x ! e

�

x dis
ussed in problem 5.??, we now 
hange all parameters in
luding 
ouplings and masses.

The 
lassi
al a
tion is then invariant, and a n-point Green fun
tion G(p

1

; : : : ; p

n

) 
an be expressed as

G(p

1

; : : : ; p

n

) = m

a

g

b

p




1

1

� � � p




n

n

though the parameters of the 
lassi
al Lagrangian. Dimensional analysis 
onstrains the exponents as

a� 


1

� : : :� 


n

= n, and the n-point Green fun
tion s
ales 
lassi
ally as G! e

n�x

G.

The renormalised Green fun
tion depends however also on the s
ale �, i.e. the subtra
tion point of

our renormalisation s
heme whi
h we keep �xed,

G(p

1

; : : : ; p

n

) = m

a

g

b

p




1

1

� � � p




n

n

�




:

Hen
e the renormalised n-point Green fun
tion s
ales as G ! e

(n�
)�x

G and satis�es therefore

�dG=d� = 
G.

Knowing the two universal fun
tions �(�) and 
(�), we 
an 
al
ulate the 
hange of any Green

fun
tion under a 
hange of the renormalisation s
ale �. The general solution of (12.63
) 
an

be found by the method of 
hara
teristi
s or by the analogy of d=d ln� with a 
onve
tive

derivative, 
f. problem 12.??. Here we 
onsider only the simplest 
ase of a dimensionless

observable R in a renormalisable theory whi
h depends on a single physi
al momentum s
ale

Q. Thus we assume that the 
oupling 
onstant is dimensionless, and 
onsider the limit that

all masses 
an be negle
ted, jQ

2

j � m

2

i

. An important example is the e

+

e

�

annihilation


ross se
tion into hadrons whi
h 
an be made dimensionless dividing by �(e

+

e

�

! �

+

�

�

) as

referen
e 
ross se
tion. Then R 
an be only a fun
tion of the ratio Q

2

=�

2

and of �(�

2

). A

physi
al observable like R should be independent of the s
ale �, or

0 = �

2

dR

d�

2

=

�

�

2

�

��

2

+ �(�)

�

��

�

R(Q

2

=�

2

; �(�

2

)) =

�

�

�

��

+ �(�)

�

��

�

R(�; �(�

2

)) ;

(12.67)

where we introdu
ed � = ln(Q

2

=�

2

). The two di�erential operators 
ompensate ea
h other

setting

� =

Z

�(Q

2

)

�(�

2

)

dx

�(x)

: (12.68)
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The 
oupling �(Q

2

) = �(�; �(�

2

)) de�ned by (12.68) as fun
tion of the physi
al momentum

Q

2

is 
alled the \running 
oupling". Setting the renormalisation s
ale equal to the physi
al

s
ale, �

2

= Q

2

, results in

R(Q

2

=�

2

; �(�

2

)) = R(1; �(Q

2

)) : (12.69)

Hen
e all s
ale dependen
e in R 
an be absorbed into the running of �(Q

2

). We have seen

already an example for this behaviour, dis
ussing ��! �� s
attering in se
tion 4.3.4, 
ompare

espe
ially with Eq. (4.89).

Example 12.2: Any fun
tion of the running 
oupling, and thus in parti
ular the running 
oupling

itself, solves the homogeneous RGE. To show the latter 
laim, we di�erentiate �rst the de�nition

Eq. (12.68) w.r.t. � , obtaining

1 =

�

��

"

Z

�(Q

2

)

�(�

2

)

dx

�(x)

#

=

1

�(�(Q

2

)

��(Q

2

)

��

(12.70)

or �

�

�(Q

2

) = �(�(Q

2

)). Next we di�erentiate (12.68) w.r.t. �(�

2

), obtaining

0 =

�

��(�

2

)

"

Z

�(Q

2

)

�(�

2

)

dx

�(x)

#

=

1

�(�(Q

2

))

��(Q

2

)

��(�

2

)

�

1

�(�(Q

2

))

(12.71)

or

��(Q

2

)

��(�

2

)

=

�(�(Q

2

))

�(�(�

2

))

: (12.72)

Evaluating the di�erential operator of the homogeneous RGE (i.e. for 
 = 0) for the 
oupling, we see

that the two terms 
an
el as required,

�

�

��

+ �(�(�

2

))

�

��(�

2

)

�

�(�; �(�

2

)) = ��(�(Q

2

)) + �(�

s

(�

2

))

�(�(Q

2

))

�(�(�

2

))

= 0 : (12.73)

Working through problem 11.??, you found that the beta-fun
tion of the ��

4

theory at one

loop is given by

�(�) = b

1

�

2

+ b

2

�

3

+ : : : =

3�

2

16�

2

+O(�

3

) ; (12.74)

so that the running 
oupling at leading order satis�es

�(Q) =

�(�)

1� 3�(�)=16�

2

ln(Q=�)

: (12.75)

Thus our new de�nitions (12.68) and (12.65) reprodu
e the result of our more intuitive ap-

proa
h in se
tion 4.3.4. As a bonus, we know now what we should 
hoose as the argument of

the 
oupling, at least in the simple 
ase 
onsidered with a single physi
al s
ale Q. Expanding

the running 
oupling,

�(Q) = �(�) + b

1

ln(Q=�)� [b

1

ln(Q=�)℄

2

+ : : : : (12.76)

we see that �(Q) 
ontains arbitrary powers of [b

1

�(� ln(Q=�)℄

n

, although we derived the

beta fun
tion only at one-loop: The RGE ensures that the running 
oupling sums up the

largest terms in ea
h order perturbation theory, 
f. problem 12.??. In general, the running


oupling 
al
ulated at n-loop pre
ision 
ontains the leading ln

n

(Q=�) terms of loop diagrams

of any order. A

ordingly, one speaks of LL (leading logarithmi
), NLL (next-to-leading

logarithmi
), NNLL, . . . approximations.
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g

�(g)

g




g

�(g)

g




IR

UV

UV

IR

Figure 12.2.: Left: Example of a beta fun
tion with a perturbative IR and an UV �xed point.

Right: General 
lassi�
ation of UV and IR stable �xed points of the RGE 
ow.

Asymptoti
 behaviour of the beta-fun
tion The behaviour of the beta-fun
tion �(�) in the

limit � ! 0 and � ! 1 provides a useful 
lassi�
ation of quantum �eld theories. Consider

e.g. the example shown in the left panel of Fig. 12.2: This beta fun
tion has a trivial zero at

zero 
oupling, as we expe
t it in any perturbative theory, and an additional zero at g




. How

does the beta-fun
tion �(�) evolve in the UV limit �!1?

� Starting in the range 0 � g(�) < g




implies � > 0 and thus dg=d� > 0. Therefore g

grows with in
reasing � and the 
oupling is driven towards g




.

� Starting with g(�) > g




implies � < 0 and thus dg=d� < 0. Therefore g de
reases for

in
reasing � and we are driven again towards g




.

Fixed points g




approa
hed in the limit � ! 1 are 
alled UV �xed points, while IR �xed

points are rea
hed for de
reasing �. The range of values [g

1

: g

2

℄ whi
h is mapped by the

RGE 
ow on the �xed point is 
alled its basin of attra
tion.

To see what happens for � ! 0, we have only to reverse the RGE 
ow, d� ! �d�, and

are thus driven away from g




: If we started in 0 � g(�) < g




, we are driven to zero, while

the 
oupling goes to in�nity for g(�) > g




. Thus g = 0 is an IR �xed point. The distin
tion

between IR and UV �xed points is sket
hed in the right panel of Fig. 12.2. If the beta fun
tion

has several zeros, the theory 
onsists of di�erent phases whi
h are not 
onne
ted by the RG


ow.

Looking ba
k at our one-loop result for the beta-fun
tion of the ��

4

theory, we see that

the theory has � = 0 as an IR �xed point. Thus the free states we use as asymptoti
 initial

and �nal states have a dire
t physi
al meaning. On the other hand, the 
oupling in
reases

for �!1 formally as �!1. Clearly, we 
annot trust the behaviour of �(�) based on the

on-loop result in the strong-
oupling limit, be
ause perturbation theory breaks down. The

solution (12.75) suggests however that the 
oupling explodes already for a �nite value of �:

The beta fun
tion has a pole for a �nite value of � 
alled Landau pole where the denominator

of (12.75) be
omes zero.

Beta fun
tion of QED We 
an derive the s
ale dependen
e of the renormalised ele
tri



harge from

e

0

= �

"

Z

�1=2

3

e ; (12.77)
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where we used Z

1

= Z

2

. Then the beta fun
tion is given as

�(e) � �

�e

��

= �

�

��

�

�

�"

Z

1=2

3

e

0

�

: (12.78)

Sin
e the bare 
harge e

0

is independent of �, we have to di�erentiate only � and Z

3

,

�(e) = �

�e

��

= �"�

�"

Z

1=2

3

e

0

+ ��

�"

1

2

Z

�1=2

3

�Z

3

��

e

0

= �"e+

�

2Z

3

�Z

3

��

e : (12.79)

Inserting Z

3

= 1� e

2

=(12�

2

") and thus

�Z

3

��

= �

1

12�

2

"

2e�e

��

(12.80)

gives

�(e) = �"e�

�

12�

2

"Z

3

�e

��

e

2

= �"e�

1

12�

2

"Z

3

�(e) e

2

: (12.81)

Note that Z

3

is s
heme-dependent, while the beta-fun
tion remains s
heme independent up

to two loops for all mass-independent s
hemes (problem 12.??). Solving for � and negle
ting

higher order terms in e

2

, we �nd in the limit "! 0

�(e) = �"e

�

1�

e

2

12�

2

"

�

+O(e

4

) =

e

3

12�

2

: (12.82)

Thus the beta fun
tion is determined by the 
oeÆ
ient of the pole term of Z

3

. Its solution,

e

2

(�) =

e

2

(�

0

)

1�

e

2

(�

0

)

6�

2

ln

�

�

�

0

�

(12.83)

shows not only expli
itly the in
rease of e

2

with �, but that the ele
tri
 
oupling has a Landau

pole too. However, the s
ale of the Landau pole 
orresponds to

� = �

0

exp(6�

2

=e

2

(�

0

)) = m

e

exp(3�=2�(m

e

)) � 10

56

GeV �M

Pl

(12.84)

and has therefore no dire
t physi
al relevan
e.

Alternatively, we 
ould derive the beta fun
tion from the renormalised va
uum polarisation,

using

�(e) =

e

2

�

�

��

�

MS

(q

2

) ; (12.85)

where in the on-shell s
heme the derivative � ln�

2

should be repla
ed with � ln q

2

.

Beta fun
tion of QCD and asymptoti
 freedom Deriving the beta fun
tion in QCD, we

should evaluate

g(�) =

Z

2

Z

1=2

3

Z

1

g

0

= Z

1=2

3

g

0

; (12.86)

where Z

1

is the 
harge renormalisation 
onstant, and Z

2

and Z

3

are quark and gluon renor-

malisation 
onstants, respe
tively. Without proof, we note that the generalisation of the

Ward-Takahashi identities to the non-abelian 
ase, the Slavnov-Taylor identities, ensure that
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Z

1

= Z

2

. Combining all 
ontributions to the 1=" poles as 1-loop 
ontribution b

1

to the beta

fun
tion of QCD gives (
f. problem 12.??)

�(�

s

) = �

2

��

s

��

2

= ��

2

s

�

b

1

+ b

2

�

s

+ b

3

�

2

s

+ : : :

�

(12.87)

with �

s

� g

2

s

=(4�),

b

1

=

11

3

N




�

2

3

n

f

(12.88)

and n

f

as number of quark 
avors. For n

f

< 17, the beta fun
tion is negative and the

running 
oupling de
reases as � ! 1. Asymptoti
 freedom of QCD explains the apparent

paradox that protons are intera
ting strongly at small Q

2

, while they 
an be des
ribed in

deep-inelasti
 s
attering as a 
olle
tion of independently moving quarks and gluons.

Let us 
onsider now the opposite limit, �! 0. The solution of (12.87) at one loop,

1

�

s

(�

2

)

=

1

�

s

(�

2

0

)

+ b

1

ln

�

�

2

�

2

0

�

(12.89)

shows that the QCD 
oupling 
onstant be
omes formally in�nite for a �nite value of �.

We de�ne �

QCD

as the energy s
ale where the running 
oupling 
onstant of QCD diverges,

�

�1

s

(�

2

QCD

) = 0. Experimentally, the best measurement of the strong 
oupling 
onstant has

been performed at the Z resonan
e at LEP, giving �

s

(m

2

Z

) � 0:1184. Thus at one-loop level,

�

QCD

= m

Z

exp

�

1

2b

1

�

s

(m

2

Z

)

�

: (12.90)

�

QCD

depends on the renormalisation s
heme and, numeri
ally more importantly, on the

number of 
avours used in b

1

: For instan
e, �

MS

QCD

' 220MeV for n

f

= 3. The fa
t that the

running 
oupling provides a 
hara
teristi
 energy s
ale is 
alled dimensional transmutation:

Quantum 
orre
tions lead to the break-down of s
ale-invarian
e of 
lassi
al QCD with massless

quarks and to the appearan
e of massive bound-states, the mesons and baryons with masses of

order �

QCD

. Note also that we are able to link exponentially separated s
ales by dimensional

transmutation.

Coupling 
onstant uni�
ation While the strong 
oupling �

s

� �

3

de
reases with in
reasing

Q

2

, the ele
tromagneti
 
oupling �

em

� �

1

in
reases. Sin
e two lines in a plane meet at

one point, there is a point with �

1

(Q

�

) = �

3

(Q

�

) and one may spe
ulate that at this point a

transition to a \Grand uni�ed theory" (GUT) happens. Sin
e the running is only logarithmi
,

uni�
ation happens at exponentially high s
ales, Q

�

� 10

16

GeV, but interestingly still below

the Plan
k s
ale M

Pl

. The problems be
omes more 
hallenging, if we add to the game the

third, the weak 
oupling �

2

. The situation in 1991 assuming the validity of the SM is shown

in the left panel of Fig. 12.3. The width of the lines indi
ates the experimental and theoreti
al

error, and the three 
ouplings 
learly do not meet within these errors. The right panel of

the same �gure assume the existen
e of supersymmetri
 partners to all SM parti
les with

an \average mass" of around M

SUSY

� 200GeV. As a result, the running 
hanges above

Q = 1TeV, and now the three 
ouplings meet at 2� 10

16

GeV.
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Figure 12.3.: The gauge 
ouplings measured at low energies do not evolve towards a uni�ed

value in the SM (left), but meet assuming low-s
ale supersymmetry at ' 2 �

10

16

GeV (right), from [Kaz00℄ based on [AdBF91℄.

12.5. Renormalisation, 
riti
al phenomena and e�e
tive theories

Overview The behaviour thermodynami
al systems exhibit 
lose to the 
riti
al points in

their phase diagram are 
hara
terised as \
riti
al phenomenon." For a �xed number of par-

ti
les, we 
an 
hara
terise thermodynami
al systems using the free energy F = U � TS.

Ehrenfest introdu
ed the 
lassi�
ation of phase transitions a

ording to the order of the �rst

dis
ontinuous derivative of F with respe
t to any thermodynami
al variable �. Hen
e a phase

transition where at least one derivative �

n

F=��

n

is dis
ontinuous while all �

n�1

F=��

n�1

are


ontinuous is 
alled a n.th order phase transition.

Criti
al phenomena are for a parti
le physi
ist interesting by at least three reasons:

� We 
an learn about symmetry breaking: We should look out for ideas how we 
an

generate mass terms without violating gauge invarian
e. Systems like ferromagnets

show that symmetries as rotation symmetry 
an be broken at low energies although the

Hamiltonian governing the intera
tions is rotation symmetri
.

Another example is a plasma: Here the s
reening of ele
tri
 
harges modi�es the

Coulomb potential to a Yukawa potential; the photon has three massive degrees of

freedom, still satisfying gauge invarian
e, k

�

�

��

(!;k) = 0, but with !

2

� k

2

6= 0.

� Experimentally one �nds that 
lose to a 
riti
al point, T ! T




, the 
orrelation length

� diverges, while otherwise 
orrelations are exponentially suppressed. If we 
onsider a

statisti
al system on a latti
e, then the 2-point fun
tion of a 
ertain order parameter �

s
ales as

h�

n

�

0

i / exp(�n=�) ;

where � is measured in multiples of the latti
e spa
ing a. Comparing this with jxj = na

to the 2-point fun
tion of an Eu
lidean s
alar �eld �,

h�(x)�(0)i !

4�

jxj

2

exp(�mjxj)
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in the limitmjxj � 1, we �nd the 
orresponden
e � = 1=(ma). Therefore the 
ontinuum

limit a! 0 is only possible for �nite m, if � !1.

Thus the 
orrelation fun
tions of a statisti
al system 
orrespond for non-zero a to bare

Green fun
tions and a �nite value of the regulator of the 
orresponding quantum �eld

theory. The 
onne
tion to renormalised Green fun
tions (a ! 0 or � ! 1) is only

possible when the statisti
al system is at a 
riti
al point.

� Near a 
riti
al point, T ! T




, thermodynami
al systems show a universal behaviour.

More pre
isely, they fall in di�erent universality 
lasses whi
h unify systems with very

di�erent mi
ros
opi
 behaviour. The various universality 
lasses 
an be 
hara
terised by


riti
al exponents, i.e. by the exponents 


i

with whi
h 
hara
teristi
 thermodynami
al

quantities X

i

diverge approa
hing T




, i.e. X

i

= [b(T � T




)℄

�


i

.

This phenomenon is similar to our realisation that e.g. two ��

4

theories, one with

� = 0:1 and another one with � = 0:2, are not fundamentally di�erent but 
onne
ted

by a RGE transformation.

Landau's mean �eld theory Landau suggested that the free energy F of a thermodynami
al

system 
an be expanded 
lose to a se
ond-order phase transition as an even series in its order

parameter. Considering e.g. the magnetisation M , we 
an write for zero external �eld H the

free energy as

F = A(T ) +B(T )M

2

+ C(T )M

4

+ : : : (12.91)

We 
an �nd the possible value of the magnetisation M by minimising the free energy,

0 =

�F

�M

�

�

�

�

T

= 2B(T )M + 4C(T )M

3

: (12.92)

The variable C(T ) has to be positive in order that F is bounded from below. If also B(T )

is positive, only the trivial solution M = 0 exists. If however B(T ) is negative, two solutions

with non-zero magnetisation appear. Let us use a linear approximation, B(T ) � b(T � T




),

and C(T ) � 
 valid 
lose to T




. Then

M =

(

0 for T > T




,

�

�

b

2


(T




� T )

�

1=2

for T < T




.

(12.93)

Note also that the ground-state breaks theM ! �M symmetry of the free energy for T < T




.

Representing the thermodynami
al quantity M as integral of the lo
al spin density,

M =

Z

d

3

x s(x) ; (12.94)

we 
an rewrite the free energy in a way resembling the Hamiltonian of a stationary s
alar

�eld,

F =

Z

d

3

x

�

(rs)

2

+ b(T � T




)s

2

+ 
s

4

�H � s

�

: (12.95)

Here, (rs)

2

is the simplest ansatz leading to an alignment of spins in the 
ontinuous language.

Minimising F will give us the ground-state of the system for a pres
ribed external �eldH(x)

and temperature T . For small s, we 
an ignore the s

4

term. The spin 
orrelation fun
tion

hs(x)s(0)i is found as response to a delta fun
tion-like disturban
e H

0

Æ(x). Using the
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Figure 12.4.: One blo
k spin transformation a! 2a for an one-dimensional latti
e model.

analogy with the Yukawa potential after the substitution m

2

! b(T � T




), the 
orrelation

fun
tion follows immediately as

hs(x)s(0)i =

Z

d

3

k

(2�)

3

H

0

e

ik�x

k

2

+ b(T � T




)

=

H

0

4�r

e

�r=�

(12.96)

with

� = [b(T � T




)℄

�1=2

: (12.97)

Hen
e Landau's theory reprodu
es the experimentally observed behaviour � !1 for T ! T




.

Moreover, the theory predi
ts as 
riti
al exponent 1=2 for the magnetisation. Noti
e that the

value of the exponent depends only on the polynomial assumed in the free energy, not on

the underlying mi
ro-physi
s. Thus another predi
tion of Landau's theory is an universal

behaviour of thermodynami
al systems 
lose to their 
riti
al points in the dependen
e on

T � T




. Experiments show that this predi
tion is too strong: Thermodynami
al systems fall

into di�erent universality 
lasses, and we should try to in
lude some mi
ro-physi
s into the

des
ription of 
riti
al phenomena.

Kadano�'s blo
k spin transformation Close to a 
riti
al point, 
olle
tive e�e
ts play a

de
isive role even in 
ase of short-range intera
tions. In d dimension, a parti
le is 
oupled by


olle
tive e�e
ts to (�=a)

d

parti
les and standard perturbative methods will 
ertainly fail for

� ! 1. Kadano� suggested to remove the short wave-length 
u
tuations by the following

pro
edure: Ea
h step of a blo
k spin transformation 
onsists of i) dividing the latti
e into


ells of size (2a)

d

, ii) assigning a 
ommon spin variable to the 
ell, and iii) of a res
aling

2a! a.

At ea
h step, the number of strongly 
orrelated spins is redu
ed. After n transformations,

the 
orrelation length de
reases as �

n

= �=(2

n

). When the 
orrelation length be
omes of

the order of the latti
e spa
ing, 
olle
tive e�e
ts play no role: All the physi
s 
an be read

o� from the Hamiltonian. If the pro
edure is not trivial, this implies that in ea
h step the

Hamiltonian 
hanges. In parti
ular, the 
oupling 
onstant K is 
hanged as

K

2

= f(K) ; K

3

= f(K

2

) = f(f(K)) ; : : : (12.98)

One-dimensional Ising model We illustrate the idea behind Kadano�'s blo
k spin transfor-

mation using the example of the one-dimensional Ising model. This model 
onsists of spins

with value s

i

= �1 on a line with spa
ing a, intera
ting via nearest neighbour intera
tions.
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We 
onsider only the pie
e of six spins shown in Fig. 12.4. The 
orresponding partition

fun
tion is

Z

6

=

X

s

N�1

;s

0

;s

1

;:::;s

4

exp [K(s

N�1

s

0

+ s

0

s

1

+ : : : s

3

s

4

)℄ (12.99a)

=

X

s

0

0

;s

0

1

;s

0

2

X

s

N�1

;s

1

;s

3

exp

�

K(s

N�1

s

0

0

+ s

0

0

s

1

+ : : : s

3

s

4

)

�

; (12.99b)

where the summation is over the two spin values �1 and K = J=T is a dimensionless 
oupling


onstant. The step a! 2a requires to perform the sums over the unprimed spins. Expanding

the exponentials using (s

i

s

j

)

2n

= 1 gives terms like

exp[K(s

0

0

s

1

)℄ = 1 +Ks

0

0

s

1

+

K

2

2!

+

K

3

3!

s

0

0

s

1

+ : : : (12.100a)

= 
osh(K) + s

0

0

s

1

sinh(K) = 
osh(K)[1 + s

0

0

s

1

tanh(K)℄ : (12.100b)

The terms linear in s

1


an
el in the sum and we obtain

X

s

1

=�1

exp[Ks

0

0

s

1

℄ exp[Ks

1

s

0

1

℄ = 2 
osh

2

(K)[1 + tanh

2

(K) s

0

0

s

0

1

℄ : (12.101)

Thus the summation over the unprimed spins 
hanges the strength of the nearest neighbour-

hood intera
tion and generates additionally a new spin-independent intera
tion term. We try

now to rewrite the last expression in a form similar to the original one,

2 
osh

2

(K)[1 + tanh

2

(K) s

0

0

s

0

1

℄ = exp[g(K) +K

0

s

0

0

s

0

1

)℄ : (12.102)

Using (12.100b) to repla
e exp(K

0

s

0

0

s

0

1

) and setting g(K) = lnh(K), we �nd

2 
osh

2

(K)[1 + tanh

2

(K) s

0

0

s

0

1

℄ = h(K) 
osh(K

0

)[1 + tanh(K

0

) s

0

0

s

0

1

)℄ : (12.103)

This determines the fun
tion g = lnh(K) as

h(K) =

2 
osh

2

(K)


osh(K

0

)

; (12.104)

while the 
ouplings are related by

tanh(K

0

) = tanh

2

(K) : (12.105)

The summation over the other spins s

3

; s

5

; : : : 
an be performed in the same way. Thus

the partition fun
tion on a latti
e of size 2a has the same nearest-neighbour intera
tions

with a new 
oupling K

0

� K

1

determined by (12.105). Iterating this pro
edure generates a

renormalisation 
ow with

tanh(K

n

) = tanh

2n

(K) : (12.106)

Additionally, the RGE 
ow generates all 
ouplings 
ompatible with the symmetries of the

fundamental Hamiltonian: Sin
e any operator O

n

for n 2 Z satis�es these symmetries if O

does, there is an in�nite number of them.
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Fixed point behaviour In general, we will not be able to 
al
ulate the transformation fun
-

tion f(K). But even without the knowledge of f(K), we 
an draw some important insight

from general 
onsiderations. First, the RGE equations are of the type of a heat or di�usion

equation

4

. Its 
ow is therefore a gradient 
ow whi
h has only two possible asymptoti
s: a

runaway solution to in�nity and the approa
h to a �xed point de�ned by K




= f(K




). With

�

n+1

= �

n

=2 and labeling the n dependen
e impli
itly via �

n

= f(K

n

) we 
an write

�(f(K)) =

1

2

�(K) : (12.107)

At a �xed point K




= f(K




) only two solutions exist,

�(K




) = 0 and �(K




)!1 : (12.108)

The se
ond possibility 
orresponds to the approa
h of a 
riti
al point, allowing the limit a! 0

and thus the 
ontinuum limit ne
essary for the transition to a QFT. This point is 
alled a


riti
al �xed point, while the �xed point with zero 
orrelation length is 
alled trivial.

We 
an now generalise our previous dis
ussion of the �xed point behaviour for the beta

fun
tion from one to n dimensions. The general behaviour of the RGE 
ow 
an be understood

from the two-dimensional example shown in Fig. 12.5. The dashed lines show surfa
es of


onstant 
orrelation length, in
luding a 
riti
al surfa
e � =1. Also shown are three 
riti
al

�xed points (A, B, C) and a trivial one (D). In ea
h RGE step the 
orrelation length de
reases.

Thus the trivial �xed point is an attra
tor, i.e. inside a small enough neighbourhood all points

will 
ow towards it. Moreover, 
riti
al lines have at least one unstable dire
tion, the one

orthogonal to their surfa
e: Even points in�nitesimal 
lose to the surfa
e will 
ow away and

eventually end in a trivial �xed point. Finally, also inside the 
riti
al surfa
e stable and

unstable dire
tions exist: For instan
e, the �xed point B will attra
t all points in-between A

and C (\its basin of attra
tion"). Universality 
lasses of QFTs 
an be identi�ed with stable


riti
al �xed points and their basin of attra
tion.

Wilsonian a
tion Let us now return to QFTs in the 
ontinuum limit. Wilson suggested

to transfer the idea of integrating out 
u
tuations on small s
ales by in
luding in the path

integral only modes up to the 
uto� s
ale � � 1=a. This de�nes an e�e
tive �eld theory whi
h

is by 
onstru
tion UV �nite. The 
orresponding e�e
tive or Wilsonian a
tion depends on the

assumed value of the 
uto� s
ale �, and we 
an generate a RGE 
ow by 
hanging �.

Let us start from the Eu
lidean generating fun
tional in momentum spa
e restri
ted to

wave-numbers below a 
uto�, k � �. Then we split the �eld modes into slow modes � and

fast modes  ,

Z =

Z

D� e

�S[�℄

=

Z

D�D� e

�S[�+ ℄

; (12.109)

with

� = � +  and

�

� = 0, unless jkj � �=f

 = 0, unless �=f � jkj � �

: (12.110)

Next we want to integrate out the fast modes  ,

e

�S[�℄

=

Z

D e

�S[�+ ℄

; (12.111)

4

An example is given later in remark 13.1
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� = 1
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D

Figure 12.5.: A two-dimensional illustration of the RGE 
ow: A, B and C are three �xed

points on the 
riti
al surfa
e � = 1. The �xed points A and C have a stable

dire
tion along the 
riti
al surfa
e, while B has two unstable dire
tions. The

trivial �xed point D is a stable �xed point, attra
ting all points starting not on

the 
riti
al surfa
e.

lowering thereby the 
uto�, � ! �=f . In general, we will not be able to perform this path

integral. Using perturbation theory, we expand e

�S[�+ ℄

and exponentiate then again the

result. As illustrated with a toy model in problem 12.??, this pro
edure will renormalise the

values of the parameters 
ontained in the original Lagrangian and introdu
e an in�nite set of

irrelevant operator O

d;i

with dimension d > 5.

Having integrated out  , we relabel � as �. Next we have to re
over the 
anoni
al normal-

isation for its kineti
 energy. If we res
ale distan
es by x! x

0

= x=f , the fun
tional integral

is again over modes �(x

0

) with x > a, 
omplying with step iii) of the Kadano�-Wilson pre-

s
ription. Keeping then the kineti
 term invariant,

Z

d

4

x (�

�

�)

2

=

Z

d

4

x

0

(�

0

�

�

0

)

2

=

1

f

2

Z

d

4

x (�

�

�

0

)

2

; (12.112)

requires a res
aling of the �eld as �

0

= f�. Let us 
onsider now an irrelevant intera
tion, e.g.

g

6

�

6

. Then

g

6

Z

d

4

x�

6

=

g

6

f

2

Z

d

4

x

0

�

0 6

(12.113)

shows that the new 
oupling g

0

6

is res
aled as g

0

6

= g

6

=f

2

: As f grows and the 
uto� s
ale �

de
reases, the value of an irrelevant 
oupling is driven to zero. Clearly, a relevant operator as

the 
osmologi
al 
onstant � or a mass termm

2

�

2

shows the opposite behaviour and grows. As

result, irrelevant 
ouplings are in our low-energy world suppressed and as �rst approximation

a renormalisable theory emerges at low energies. Note that both dire
tions of the RGE 
ow|

towards the UV or the IR|are useful dis
ussing QFTs. The point of view of a RGE 
ow

towards the IR is useful, if we want to 
onne
t a theory at high energy s
ales to a theory

valid at lower s
ales. An example for this approa
h is 
hiral perturbation theory where one
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12. Renormalisation II: Improving perturbation theory


onne
ts QCD to an e�e
tive theory of mesons and baryons at low energies. In the opposite

view, we may look e.g. at the SM as an e�e
tive theory known to be valid up to s
ales around

TeV and ask what happens if we in
rease the 
uto�.

We 
an generalise now our earlier dis
ussion of the two-dimensional RGE 
ow sket
hed in

Fig. 12.5. The RGE 
ow stops at �xed points on 
riti
al surfa
es of low dimension. All initial

values on the 
riti
al surfa
e inside the basin of attra
tion 
ow to the 
riti
al �xed point.

Dire
tions perpendi
ular to the 
riti
al surfa
e are 
ontrolled by the irrelevant intera
tions;


ows beginning o� the surfa
e are driven to the trivial �xed point. On the way towards

� ! 1 only the relevant and marginal intera
tions survive. Insisting not on � ! 1 and

keeping a �nite 
uto� (somewhere between TeV and M

Pl

, depending on the limit of validity

of the theory we assume) we 
an keep irrelevant intera
tions whi
h are however suppressed.

E�e
tive theories While integrating out momentum shells in the path integral, as required

in Eq. (12.111), is useful to demonstrate the 
on
ept of e�e
tive theories, it is not the method

applied by pra
titioners. Instead, either fun
tional RGE methods are used for whi
h we will

give later an example in remark 13.1. Or one evaluates e�e
tive theories using the same

apparatus as we have developed for renormalisable ones. In the following, we want �rst to

illustrate how this is done and, se
ond, to show that e�e
tive theories are predi
tive, despite

of being non-renormalisable.

We note �rst that the fa
t that divergen
es are polynomial in the external momenta guar-

antees also for non-renormalisable theories that all divergen
es 
an be subtra
ted by lo
al


ounter-terms. In 
ontrast to renormalisable theories, the number of 
ounter-terms and thus

of a priori required measurements is in�nite. Thus it is important to show that a trun
ation

s
heme for e�e
tive theories in
luding loop 
orre
tion exists whi
h makes them predi
tive.

As usually, we use as an example a real s
alar �eld in d = 4 spa
e-time dimensions. Then an

operator O

n;m


onsisting of n �elds and m derivatives 
ontributes to the a
tion

S �

g

n;m

�

p+q�4

Z

d

4

xO

n;m

� 


n;m

�

E

�

�

n+m�4

; (12.114)

where the g

n;m

are dimensionless 
ouplings to be determined by experiment. We see again

that irrelevant operators, n+m > 4, are suppressed at energies E � �. Clearly, an in
rease of

the mass dimension n+m results in a stronger suppression of the operator O

n;m

. This allows

us to trun
ate the e�e
tive theory at some 
hosen dimension D = n + m. The trun
ated

theory 
ontains only a �nite number of operators with unknown 
ouplings g

n;m

whi
h have to

be determined from experiment. The predi
tions of the trun
ated theory be
ome exa
t in the

limit E ! 0. For �nite E � �, we 
an in
rease the pre
ision in
luding higher dimensional

operators, at the expense of more 
al
ulational work and additional experimental input with

suÆ
ient pre
ision. In 
ontrast, for E

>

�

� an in�nite number of operators 
ontribute a priori

equally and the e�e
tive theory approa
h breaks down. Finally, note that in 
ontrast to the

Wilsonian a
tion the value of the 
uto� s
ale � is determined experimentally: For instan
e,


al
ulating weak pro
esses using a four-fermion intera
tion �xes the s
ale �

2

through the

Fermi 
onstant G

F

.

Our estimate (12.114) holds at tree-level, and we should 
onsider next the e�e
t of loop


orre
tions. To be spe
i�
, we estimate the order of the one-loop 
orre
tions indu
ed by

the operators g

6

�

6

=�

2

, g

8

�

4

(��)

2

=�

4

, . . . , to the basi
 ��

4

vertex. Cutting the momentum
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12.5. Renormalisation, 
riti
al phenomena and e�e
tive theories

integrals at � results in

Æ� �

g

6

�

2

Z

�

d

4

k

(2�)

4

1

k

2

�m

2

�




6

�

2

�

2

; (12.115)

Æ� �

g

8

�

4

Z

�

d

4

k

(2�)

4

k

2

k

2

�m

2

�




8

�

4

�

4

; : : : (12.116)

Thus all one-loop 
orre
tions are of O(1), sin
e the fa
tor 1=�

D�4


ontained in O

n;m

is 
om-

pensated by a fa
tor �

D�4

generated in the momentum integrations. Going to higher loops

makes things even worse. The solution to this problem is to use a mass independent regulator

as the MS or MS s
hemes in DR. Then the fa
tors �

n

originating from the momentum inte-

gration are repla
es by m

n

. With E � m, the loop 
orre
tions preserve thus the expansion

s
heme (E=�)

n+m�4

found at tree-level. As a result, the trun
ation of an e�e
tive theories

at a 
hosen order D leads to a predi
tive theory in
luding loop 
orre
tions at energies below

the 
uto� s
ale.

Summary

Intera
tions 
an be 
hara
terised by the asymptoti
 behaviour of their 
oupling 
onstants.

Gauge theories with a suÆ
iently small number of fermions are the only renormalisable in-

tera
tions whi
h are asymptoti
ally free, i.e. their running 
oupling 
onstant goes to zero

for � ! 1. The s
ale dependen
e of renormalised Green fun
tions 
an be interpreted as

a running of 
oupling 
onstants and masses. The use of a running 
oupling sums up the

leading logarithms of type ln

n

(�

2

=�

2

0

), and a suitable 
hoi
e of the renormalisation s
ale in a

spe
i�
 problems redu
es the remaining s
ale dependen
e of perturbative results. The non-

perturbative approa
h of Wilson provides an argument why the SM as des
ription of our

low-energy world is renormalisable: Integrating out high-energy degrees of freedom, irrele-

vant 
ouplings are driven to zero and thus it is natural that a renormalisable theory emerges

at low energies.

Further reading

Our dis
ussion of the renormalisation of gauge theories left out most details. I re
ommend

those interested to �ll the gaps to start with [Ram94℄ and [Pok87℄. A useful text-book to

learn about 
riti
al phenomena is [LB92℄.
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13. Symmetries and symmetry breaking

The analogy of Landau's mean �eld model for a ferromagnet with a s
alar ��

4

theory suggests

that we 
an hide its � ! �� symmetry at low temperatures, if we 
hoose a negative mass

term in the Lagrangian. Although su
h a 
hoi
e seems at �rst sight unnatural, we will

investigate this 
ase in the following in detail. Our main motivation is the expe
tation that

hiding a symmetry by 
hoosing a non-invariant ground-state retains the \good" properties of

the symmetri
 Lagrangian. Coupling then su
h a s
alar theory to a gauge theory, we hope

to break gauge invarian
e in a \gentle" way whi
h allows e.g. gauge boson masses without

spoiling the renormalisability of the unbroken theory. As an additional motivation we re
all

that 
ouplings and masses are not 
onstants but depend on the s
ale 
onsidered. Thus it might

be that the parameters determining the Lagrangian of the Standard Model at low energies

originate from a more 
omplete theory at high s
ales, where the squared mass parameter �

2

is originally positive. In su
h a s
enario, �

2

(Q

2

) be
omes negative only after running it down

to the ele
troweak s
ale Q = m

Z

.

13.1. Symmetry breaking and Goldstone's theorem

We 
onsider in the following systems where the Lagrangian 
ontains an exa
t symmetry whi
h

is not shared by its ground-state. Sin
e parti
le masses in a �eld theory are determined by

the ground-state, the symmetry of the Lagrangian is thus not visible in the mass spe
trum of

physi
al parti
les. This opens the possibility of having a gauge invariant Lagrangian despite

of massive gauge bosons. If the ground-state breaks the original symmetry be
ause one or

several s
alar �elds a
quire a non-zero va
uum expe
tation value, one 
alls this spontaneous

symmetry breaking (SSB). As the symmetry is not really broken on the Lagrangian level, a

perhaps more appropriate name would be \hidden symmetry".

In this and the following 
hapter, we dis
uss the 
ase of SSB, �rst in general and then

applied to the ele
troweak se
tor of the SM. Sin
e the breaking of an internal symmetry

should leave Poin
ar�e symmetry inta
t, we 
an give only s
alar quantities � a non-zero va
uum

expe
tation value. This ex
ludes non-zero expe
tation values for �elds with spin, whi
h would

single out a spe
i�
 dire
tion. On the other hand, we 
an 
onstru
t s
alar expe
tation values

as h0j�j0i = h0j

�

  j0i 6= 0 out of the produ
t of multiple �elds. In the following, we will

always treat � as an elementary �eld, but we should keep in mind the possibility that � is

a 
omposite obje
t, e.g. a 
ondensate of fermion �elds, h�i = h

�

  i, similar to the 
ase of

super
ondu
tivity.

Spontaneous breaking of dis
rete symmetries We start with the simplest example of a

theory with a broken symmetry: A single s
alar �eld with a dis
rete re
e
tion symmetry.

Consider the familiar ��

4

Lagrangian, but with a negative mass term whi
h we in
lude into

the potential V (�),

L =

1

2

(�

�

�)

2

+

1

2

�

2

�

2

�

�

4

�

4

=

1

2

(�

�

�)

2

� V (�) : (13.1)
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13.1. Symmetry breaking and Goldstone's theorem

The Lagrangian is for both signs of �

2

invariant under the dis
rete Z

2

symmetry, � ! ��.

The �eld 
on�guration with the smallest energy is a 
onstant �eld �

0

, 
hosen to minimise the

potential

V (�) = �

1

2

�

2

�

2

+

�

4

�

4

; (13.2)

whi
h has the two minima

�

0

= �v � �

p

�

2

=� : (13.3)

In quantum me
hani
s, we learnt that the wave-fun
tion of the ground state for the potential

V (x) = �

1

2

�

2

x

2

+�x

4

will be a symmetri
 state,  (x) =  (�x), sin
e the parti
le 
an tunnel

through the potential barrier. In �eld theory, su
h a tunnelling 
an happen in prin
iple too.

However, the tunnelling probability is inversely proportional to the volume L

3

o

upied by the

system, and vanishes in the limit L ! 1: In order to transform �(x) = �v into �(x) = +v

we have to swit
h an in�nite number of os
illators, whi
h 
learly 
osts an in�nite amount

of energy. Thus in quantum �eld theory, the system has to 
hoose between the two va
ua

�v and the symmetry of the Lagrangian is broken in the ground state. Had we used the �

4

Lagrangian with a positive mass term, the va
uum expe
tation value of the �eld would have

been zero, and the ground state would respe
t the symmetry.

Quantising the theory (13.1) with the negative mass around the usual va
uum, j0i with

h0j�j0i = �




= 0, we �nd modes behaving as

�

k

/ exp(�i!t) = exp(�i

p

��

2

+ jkj

2

t) ; (13.4)

whi
h 
an grow exponentially for jkj

2

< �

2

. More generally, exponentially growing modes

exist, if the potential is 
on
ave at the position of �




, i.e. for

m

2

eff

(�




) = V

00

(�




) = ��

2

+ 3��

2




< 0 (13.5)

or j�




j <

p

�

2

=(3�).

Clearly, the problem arises be
ause we should expand the �eld around the ground-state v.

This requires that we shift the �eld as

�(x) = v + �(x) ; (13.6)

splitting it into a 
lassi
al part h�i = v and quantum 
u
tuations �(x) on top of it. Then we

express the Lagrangian as fun
tion of the �eld �,

L =

�

4

4�

+

1

2

(�

�

�)

2

�

1

2

(2�

2

)�

2

� �

p

��

3

�

�

4

�

4

: (13.7)

In the new variable �, the Lagrangian des
ribes a s
alar �eld with positive mass m

�

=

p

2� >

0. The original symmetry is no longer apparent: Sin
e we had to sele
t one out of the

two possible ground states, a �

3

term appeared and the � ! �� symmetry is broken. The

new 
ubi
 intera
tion term rises now the question, if our s
alar ��

4

theory be
omes non-

renormalisable after SSB: As we have no 
orresponding 
ounter-term at our disposal, the

renormalisation of � and � has to 
ure also the divergen
es of the �

3

intera
tion.

Finally, we note that the 
ontribution �

4

=(4�) to the energy density of the va
uum is, in


ontrast to the va
uum loop diagrams generated by Z[0℄, 
lassi
al and �nite. We see later

that symmetries will be restored at high temperatures or at early times in the evolution of

the Universe. Even if we take the freedom to shift the va
uum energy density, we have either

before or after SSB an una

eptable large 
ontribution to the va
uum energy (problem 13.1).
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13. Symmetries and symmetry breaking

Spontaneous breaking of 
ontinuous symmetries Our main aim is to understand the SSB

of the ele
troweak gauge symmetry. As next step we look therefore at a system with a global


ontinuous symmetry. We dis
ussed already in se
tion 5.1 the 
ase of N real s
alar �elds

des
ribed by the Lagrangian

L =

1

2

�

(�

�

�)

2

+ �

2

�

2

�

�

�

4

(�

2

)

2

: (13.8)

Sin
e � = f�

1

; : : : ; �

N

g transforms as a ve
tor under rotations in �eld spa
e, �

i

! R

ij

�

j

with R

ij

2 O(n), the Lagrangian is invariant under orthogonal transformations. Before we


onsider the general 
ase of arbitrary N , we look at the 
ase N = 2 for whi
h the potential is

shown in Fig. 13.1. Without loss of generality, we 
hoose the va
uum pointing in the dire
tion

of �

1

: Thus v = h�

1

i =

p

�

2

=� and h�

2

i = 0. Shifting the �eld as in the dis
rete 
ase gives

L =

�

4

4�

+

1

2

(�

�

�)

2

�

1

2

(2�

2

)�

2

1

+L

int

; (13.9)

i.e. the two degrees of freedom of the �eld � split after SSB into one massive and one massless

mode.

Sin
e the mass matrix 
onsists of the 
oeÆ
ients of the terms quadrati
 in the �elds, the

general pro
edure for the determination of physi
al masses is the following: Find �rst the

minimum of the potential V (�). Expand then the potential up to quadrati
 terms,

V (�) = V (�

0

) +

1

2

(�� �

0

)

i

(�� �

0

)

j

�

2

V

��

i

��

j

| {z }

M

ij

+ : : : (13.10)

The se
ond derivatives form a symmetri
 matrix with elements M

ij

� 0, be
ause we evaluate

the mass matrix by assumption at the minimum of V . DiagonalisingM

ij

gives as eigenvalues

the squared masses of the �elds. The eigenve
tors of M

ij

are 
alled the mass eigenstates or

physi
al states. Propagators and Green fun
tions des
ribe the evolution of �elds with de�nite

masses and should be therefore build up on these states. If the potential has n > 0 
at

dire
tions, the va
uum is degenerated and n massless modes appear.

Looking at Fig. 13.1 suggests to use polar instead of Cartesian 
oordinates in �eld spa
e.

In this way, the rotation symmetry of the potential and the periodi
ity of the 
at dire
tion

is re
e
ted in the variables des
ribing the s
alar �elds. Introdu
ing �rst the 
omplex �eld

� = (�

1

+ i�

2

)=

p

2, the Lagrangian be
omes

L = �

�

�

y

�

�

�+ �

2

�

y

�� �(�

y

�)

2

: (13.11)

Next we set

�(x) = �(x)e

i#(x)

(13.12)

and use �

�

� = [�

�

�+ i��

�

#℄e

i#

to express the Lagrangian in the new variables,

L = (�

�

�)

2

+ �

2

(�

�

#)

2

+ �

2

�

2

� ��

4

: (13.13)

Shifting �nally again the �elds as � = v + � with v =

p

�

2

=2�, we �nd

L =

�

4

4�

+

�

2

2�

(�

�

#)

2

+ (�

�

�)

2

� 2�

2

�

2

� 2�

p

2��

3

� ��

4

+

h

p

2�

2

=�� + �

2

i

(�

�

#)

2

:

(13.14)
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13.1. Symmetry breaking and Goldstone's theorem

Figure 13.1.: S
alar potential with \Mexi
an hat" shape symmetri
 under O(2).

The phase # whi
h parametrises the 
at dire
tion of the potential V (#; �) remained massless.

This mode is 
alled Goldstone (or Nambu-Goldstone) boson and has derivative 
ouplings to

the massive �eld �, given by the last term in Eq. (13.14). This is a general result, implying

that stati
 Goldstone bosons do not intera
t. Another general property of Goldstone bosons

is that they 
arry the quantum number of the 
orresponding symmetry generator. They are

therefore (pseudo-) s
alar parti
les, if an internal symmetry is broken,

Let us now dis
uss brie
y the 
ase of general N for the Lagrangian (13.8). The lowest

energy 
on�guration is again a 
onstant �eld. The potential is minimised for any set of �elds

�

0

that satis�es �

2

0

= �

2

=�. This equation only determines the length of the ve
tor, but

not its dire
tion. It is 
onvenient to 
hoose a va
uum su
h that �

0

points along one of the


omponents of the �eld ve
tor. Aligning �

0

with its Nth 
omponent,

�

0

=

�

0; : : : ; 0;

p

�

2

=�

�

; (13.15)

we now follow the same pro
edure as in the previous example. First we de�ne a new set of

�elds, with the Nth �eld expanded around the va
uum

�(x) = (�

k

(x); v + �(x)) ; (13.16)

where k now runs from 1 to N � 1. Then we insert this, and the value v =

p

�

2

=� for the

va
uum expe
tation value into the Lagrangian, and obtain

L =

1

2

(�

�

�

k

)

2

+

1

2

(�

�

�)

2

�

1

2

(2�

2

)�

2

+

1

4

�

4

�

�

p

���

3

�

p

���(�

k

)

2

�

�

2

�

2

(�

k

)

2

�

�

4

�

(�

k

)

2

�

2

�

�

4

�

4

:

(13.17)

This Lagrangian des
ribes N � 1 massless �elds and a single massive �eld �, with 
ubi
 and

quarti
 intera
tions. The O(N) symmetry is no longer apparent, leaving as symmetry group

the subgroup O(N-1), whi
h rotates the �

k

�elds among themselves. This rotation des
ribes

movements along dire
tions where the potential has a vanishing se
ond derivative, while the

massive �eld 
orresponds to os
illations in the radial dire
tion of V .
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13. Symmetries and symmetry breaking

Goldstone's theorem The observation that massless parti
les appear in theories with spon-

taneously broken 
ontinuous symmetries is a general result, known as Goldstone's theorem.

The �rst example for su
h parti
les was suggested by Nambu in 1960: He showed that a mass-

less quasi-parti
le appears in a magnetised solid, be
ause the magneti
 �eld breaks rotation

invarian
e. Goldstone applied soon after that this idea to relativisti
 QFTs and showed that

massless s
alar elementary parti
les appear in theories with SSB. Sin
e no massless s
alar

parti
les are known to exist, this theorem appeared to be a dead end for the appli
ation of

SSB to parti
le physi
s. So our task is two-fold: First we should derive Goldstone's theorem

and then we should �nd out how we 
an bypass the theorem applying it to our 
ase of interest,

gauge theories.

The theorem is obvious at the 
lassi
al level: Consider a Lagrangian with a symmetry G

and a va
uum state invariant under a subgroup H of G. For instan
e, 
hoosing a Lagrangian

invariant under G = O(3) and pi
king out a va
uum along �

3

, the subgroup H = O(2) of

rotation around �

3

keeps the va
uum invariant. Let us denote with U(g) a representation

of G a
ting on the �elds � and with U(h) a representation of H, respe
tively. Sin
e we


onsider 
onstant �elds, derivative terms in the �elds vanish and the potential V alone has

to be symmetri
 under G, i.e.

V (U(g)�) = V (�) : (13.18)

Moreover, we know that the va
uum is kept invariant for all h, �

0

0

= U(h)�

0

, but 
hanges

for some g, �

0

0

6= U(g)�

0

. Using the invarian
e of the potential and expanding V (U(g)�

0

)

for an in�nitesimal group transformation gives

V (�

0

) = V (U(g)�

0

) = V (�

0

) +

1

2

�

2

V

��

i

��

j

�

�

�

�

0

Æ�

i

Æ�

j

+ : : : ; (13.19)

where Æ�

i

denotes the resulting variation of the �eld. Equation (13.19) implies that

M

ij

Æ�

i

Æ�

j

= 0 : (13.20)

The variation Æ�

i

depends on whether the transformation belong to U(h) or not: In the

former 
ase, the va
uum �

0

is un
hanged, Æ�

i

= 0 and (13.20) is automati
ally satis�ed.

If on the other hand g does not belong to H, i.e. is a member of the left 
oset G=H, then

Æ�

i

6= 0, implying that the mass matrix M

ij

has a zero eigenvalue. It is now 
lear that the

number of massless parti
les is simply determined by the dimensions of the two groups G and

H: The number of Goldstone bosons equals dim(G) � dim(H), or the dimension dim(G=H)

of the left 
oset.

Quantum 
ase The previous dis
ussion was based on the 
lassi
al potential. Thus we

should address the question if this pi
ture survives quantum 
orre
tions. Noether's theorem

tells us that every 
ontinuous symmetry has asso
iated to its generators g

i


onserved 
harges

Q

i

. On the quantum level this means the operators Q

i


ommute with the Hamiltonian,

[H;Q

i

℄ = 0. Subtra
ting the va
uum energy, we have H j0i = 0. If the va
uum is invariant

under the symmetry Q, then exp(i#Q) j0i = j0i. For the in�nitesimal form of the symmetry

transformation, exp(i#Q) � 1 + i#Q, we 
on
lude that the 
harge annihilates the va
uum,

Q j0i = 0 : (13.21)

Or, in simpler words, the va
uum has the 
harge 0.
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13.2. Renormalisation of theories with SSB

Now we 
ame to the 
ase we are interested in, namely that the symmetry is spontaneously

broken and thus Q j0i 6= 0. We �rst determine the energy of the state Q j0i. From

HQ j0i = (HQ�QH) j0i

| {z }

Hj0i=0

= [H;Q℄ j0i = 0 ; (13.22)

we see that at least another state Q j0i exists whi
h has as the va
uum j0i zero energy.

We represent the 
harge operator as the volume integral of the time-like 
omponent of the


orresponding 
urrent operator,

Q =

Z

d

3

xJ

0

(t;x) : (13.23)

The state

jsi =

Z

d

3

x e

ip�x

J

0

(t;x) j0i ! Q j0i for p! 0 (13.24)

be
omes in the zero-momentum limit equal to the state Q j0i we are sear
hing for. Moreover,

applying the momentum operator P on jsi gives (problem 13.5)

P jsi = p jsi : (13.25)

Thus the SSB of the va
uum, Q j0i 6= 0, implies ex
itations of the system with a frequen
y

that vanishes in the limit of long wavelengths. In the relativisti
 
ase, Goldstone's theorem

predi
ts massless states, while in the non-relativisti
 
ase relevant for solid states the theorem

predi
ts 
olle
tive ex
itations with zero energy gap.

13.2. Renormalisation of theories with SSB

When we went through the SSB of the s
alar �eld, we saw that new �

3

intera
tions were

introdu
ed. The question then arises, are new renormalisation 
onstants needed when a

symmetry is spontaneously broken? This would make these theories non-renormalisable. We


an address this questions in two ways. One possibility is to repeat our analysis of the

renormalisability of the s
alar theory in se
tion 11.4.2, but now for the broken 
ase with a

negative mass term. Then we would �nd that the �

3

term be
omes �nite, renormalising �elds,

mass and 
oupling as in the unbroken 
ase. This is not unexpe
ted, be
ause shifting the �eld,

whi
h is an integration variable in the generating fun
tional, by � !

~

� = � � v should not

a�e
t physi
s. On the other hand, su
h a shift reshu�es the splitting L = L

0

+L

int

in our

standard perturbative expansion in the 
oupling 
onstant. To avoid this problem, we will

use the quantum a
tion employing a loop expansion. Additionally of being not a�e
ted by a

shift of the �elds, this formalism allows us to 
al
ulate the potential in
luding all quantum


orre
tions in the limit of 
onstant �elds.

E�e
tive potential Let us start re
alling the de�nition of the quantum a
tion

1

�[�




℄ =W [J ℄�

Z

d

4

x

0

J(x

0

)�




(x

0

) �W [J ℄� hJ�i : (13.26)

1

We will suppress the subs
ript 
 on the 
lassi
al �eld from now on and use bra
kets hJ�i to indi
ate

integration.

217



13. Symmetries and symmetry breaking

In general we will not be able to solve the quantum a
tion. Studying SSB, we 
an how-

ever make use of a 
onsiderable simpli�
ation: The �elds we are interested in are 
onstant.

Performing then a gradient expansion of the quantum a
tion �[�℄,

�[�℄ =

Z

d

4

x

�

�V

eff

(�) +

1

2

F

2

(�)(�

�

�)

2

+ : : :

�

; (13.27)

only the zeroth order term V

eff

(�) of the expansion in (�

�

�)

2

survives. If we now 
hoose the

sour
e J(x) to be 
onstant, the �eld �(x) has to be uniform too, �(x) = �, by translation

invarian
e. Together this implies that

� = �
V

eff

; and � J =

Æ�[�℄

Æ�

= �


�V

eff

(�)

��

; (13.28)

where 
 denotes the spa
e-time volume. In the absen
e of external sour
es, J = 0, Eq. (13.28)

simpli�es to V

0

eff

(�) = 0. This is the quantum version of our old approa
h where we minimised

the 
lassi
al potential V (�) in order to �nd the va
uum expe
tation value of �. Therefore

V

eff

(�) is 
alled the e�e
tive potential, whi
h in
ludes all quantum 
orre
tions to the 
lassi
al

potential in the limit of zero gradients.

In order to pro
eed, we use that we know the 
lassi
al potential and we assume that

quantum 
u
tuations are small. Then we 
an perform a saddle-point expansion around the


lassi
al solution �

0

, given by the solution to ��

0

+ V

0

(�

0

) = J(x). We split the �eld as

� = �

0

+

~

� and approximate the path integral as

Z = e

iW

' expfi [S[�

0

℄ + hJ�

0

i℄g

Z

D

~

� exp

�

i

Z

d

4

x

1

2

h

(�

�

~

�)

2

� V

00

(�

0

)

~

�

2

i

�

: (13.29)

The negle
ted terms are of order O(~

2

) and 
orrespond thus to two- and higher loop 
ontribu-

tions. The fun
tional integral over

~

� is quadrati
 and is formally given by Det(�+ V

00

)

�1=2

.

Using then the identity lnDetA = Tr lnA, we �nd

W = S[�

0

℄ + hJ�

0

i+

i

2

Tr ln[�+ V

00

(�

0

)℄ +O(~

2

) : (13.30)

The tra
e implies a summation over all dis
rete and an integration over the 
ontinuous quan-

tum numbers. In the 
ase of a s
alar parti
le, no dis
rete quantum numbers exist and we have

to integrate the matrix element hxj ln[�+V

00

℄jxi only over spa
e-time. To �nd the eigenvalues

of the operator, we insert a 
omplete sets of plane waves,

Tr ln[�+ V

00

℄ =

Z

d

4

xhxj ln[�+ V

00

℄jxi =

Z

d

4

x

d

4

k

(2�)

4

hxj ln[�+ V

00

℄jkihkjxi =

=

Z

d

4

x

d

4

k

(2�)

4

ln[�k

2

+ V

00

℄hxjkihkjxi = 


Z

d

4

k

(2�)

4

ln[�k

2

+ V

00

℄ : (13.31)

Performing the Legendre transformation and using S[�

0

℄ = �
V (�

0

), we obtain for the

e�e
tive potential V

eff

(�

0

) in
luding the �rst quantum 
orre
tions

V

eff

(�

0

) = V (�

0

)�

i

2

Z

d

4

k

(2�)

4

ln

�

�k

2

+ V

00

(�

0

)

�

+O(~

2

) : (13.32)
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As an example we 
an use the ��

4

theory: From

V

00

(�

0

) = �

2

+

1

2

��

2

0

; (13.33)

we see that V

00

(�

0

) 
an be interpreted as an e�e
tive mass, 
onsisting of �

2

and the 
on-

tribution ��

2

0

=2 due to the 
onstant ba
kground �eld �

0

. The total e�e
tive potential at

order O(~

2

) 
onsists of the 
lassi
al potential V (�), i.e. the 
lassi
al energy density of a s
alar

�eld with va
uum expe
tation value �, while the �rst quantum 
orre
tion is given by the

zero-points energies

2

of a s
alar parti
le with e�e
tive mass V

00

(�

0

).

Not surprisingly, the e�e
tive potential is divergent and we have to introdu
e 
ounter-terms

that eliminate the divergent parts. Our e�e
tive potential is then

V

eff

(�

0

) = V (�) +

1

2

Z

d

4

k

E

(2�)

4

ln

�

k

2

E

+ V

00

(�

0

)

k

2

E

�

+B�

2

0

+ C�

4

0

+O(~

2

) : (13.34)

Here, we Wi
k rotated the integral to Eu
lidean spa
e and subtra
ted an in�nite 
onstant in

order to make the logarithm dimensionless. (Equivalently we 
ould have added an additional


onstant 
ounter-term A renormalising the va
uum energy density.) The integral 
an be

evaluated in di�erent regularisation s
hemes. Here we will expand the logarithm,

ln

�

1 +

V

00

k

2

E

�

=

1

X

n=1

1

n

�

V

00

k

2

E

�

n

; (13.35)

and 
uto� the integral at some large momentum �. The �rst two terms of the sum will

depend on the 
uto�, being proportional to �

2

and ln(�

2

=V

00

), respe
tively. Performing the

integral and negle
ting terms that vanish for large �, we obtain

V

eff

(�

0

) = V (�

0

) +

�

2

32�

2

V

00

(�

0

) +

V

00

(�

0

)

2

64�

2

ln

�

V

00

(�

0

)

�

2

�

: (13.36)

Now we see that if we start out with a massless ��

4

theory, our 
uto�-dependent terms are

V

00

=

1

2

��

2

0

; and (V

00

)

2

=

�

2

4

�

4

0

; (13.37)

whi
h both 
an be absorbed into the 
ounter-terms B and C by imposing appropriate renor-

malisation 
onditions.

Let us stress the important point in this result: The renormalisation of the ��

4

theory

using the e�e
tive potential approa
h is not a�e
ted by a shift of the �eld: We are free to

use both signs of �

2

and any value of the 
lassi
al �eld �

0

in Eq. (13.36). Independently of

the sign of �

2

, we need only symmetri
 
ounter-terms, as a 
ubi
 term does not appear. We


an rephrase this point as follows: If we renormalise before we shift the �elds, we know that

we obtain �nite renormalised Green fun
tions. But shifting the �elds does not 
hange the

total Lagrangian. Thus the quantum a
tion and the e�e
tive potential are un
hanged too.

Consequently the theory has to stay renormalisable after SSB.

Let us now dis
uss what happens with a non-renormalisable theory in the e�e
tive potential

approa
h. In
luding e.g. a �

6

term leads to (V

00

)

2

/ �

8

whi
h requires an additional 
ounter-

term D�

8

, generating in turn even higher order terms and so forth. Thus in this 
ase an

2

Integrating i�

F

(0) w.r.t. m

2

reprodu
es the one-loop term.
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13. Symmetries and symmetry breaking

= + + . . .

Figure 13.2.: Perturbative expansion of the one-loop e�e
tive potential V

(1)

eff

for the ��

4

the-

ory; all external legs have zero momentum.

in�nite number of 
ounter-terms is needed for the 
al
ulation of V

(1)

eff

. The reason for this

behaviour be
omes 
lear, if we look again at the series expansion of the logarithm in the one

loop 
ontribution V

(1)

eff

,

V

(1)

eff

= i

1

X

n=1

Z

d

4

k

(2�)

4

1

2n

�

V

00

(�

0

)

k

2

�

n

: (13.38)

This 
ontribution is an in�nite sum of single loops with progressively more external legs with

zero-momentum atta
hed, see Fig. 13.2 for the 
ase of V

00

(�

0

) =

1

2

��

2

0

. (We added the fa
tor

i, be
ause we returned to Minkowski spa
e; the symmetry fa
tor 2n appearing automati
ally

in this approa
h a

ounts for the symmetry of a graph with n verti
es under rotations and

re
e
tion.) As we saw, the super�
ial degree of divergen
e in
reases with the number of

external parti
les for a ��

n

theory and n > 4. Hen
e every single diagram in the in�nite sum


ontained in V

(1)

eff

diverges for n > 4 and requires a 
ounter-term of higher order. As dis
ussed

in se
tion 12.5, we should treat non-renormalisable theories as e�e
tive theories only valid

below a physi
al 
uto� �. Cal
ulating then loop 
orre
tions as in V

(1)

eff

, we have to us a mass

independent renormalisation s
heme instead of a dimensionfull 
uto�. An alternative is the

fun
tional RGE approa
h, for whi
h we give next a brief example:

Remark 13.1: A RGE 
ow equation for the e�e
tive potential:

Let us de�ne V

k

as the e�e
tive potential 
utting o� the loop integrals at the s
ale k. We 
an repeat

the saddle point expansion, splitting � as � = �

0

+  , where now �

0


ontains the modes k < p and

 the modes p � k � �. For simpli
ity, we assume that the minimum of the potential is at zero and

treat the slow �eld �

0

as uniform. Integrating out the �eld  , we obtain then

V

k

(�

0

) = V

�

(�

0

) +

~

2

Z

�

k

d

4

k

(2�)

4

ln

�

k

2

E

+ V

00

(�

0

)

k

2

E

+ V

00

(0)

�

: (13.39)

Next we di�erentiate w.r.t. k and obtain

k

�

�k

V

k

(�

0

) = �

~k

4

16�

2

ln

�

k

2

E

+ V

00

(�

0

)

k

2

E

+ V

00

(0)

�

; (13.40)

i.e. a di�erential equation des
ribing how the e�e
tive potential 
hanges integrating out UV modes

with momentum k. Similar equations, 
alled RGE 
ow equations, 
an be derived also for the quantum

a
tion. If we 
onsider now an asymptoti
ally free theory, then for suÆ
iently high s
ales, �[�℄ ' S[�℄.

Then also V

k


an be approximated by the 
lassi
al potential, �xing our initial 
ondition.
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Finally, we note that the result for a single, real s
alar generalises as

V

(1)

eff

= (�1)

s

g

i

V

(1)

eff;s
alar

(13.41)

to a parti
le with spin s and g

i

internal degrees of freedom. This should 
ome as now surprise,

sin
e the one-loop expression of the e�e
tive potential sums up the logarithm of the zero-point

energies.

Another proof of the Goldstone theorem With the help of the e�e
tive potential we 
an

give another simple proof of the Goldstone theorem. We know that the zero of the inverse

propagator determines the mass of a parti
le. From Eq. (12.14), the exa
t inverse propagator

in momentum spa
e for a set of s
alar �elds is given by

�

�1

ij

(p

2

) =

Z

d

4

x e

�ip(x�x

0

)

Æ

2

�

Æ�

i

(x)Æ�

j

(x

0

)

: (13.42)

Massless parti
les 
orrespond to zero eigenvalues of this matrix equation for p

2

= m

2

. If we

set p = 0, the �elds are 
onstant. But di�erentiating the quantum a
tion w.r.t. to 
onstant

�elds is equivalent to di�erentiating simply the e�e
tive potential,

�

2

V

eff

��

i

(x)��

j

(x

0

)

= 0 : (13.43)

Thus our previous analysis of Goldstone's theorem using the 
lassi
al potential holds also in

the quantum 
ase, if we repla
e the 
lassi
al by the e�e
tive potential.

Coleman-Weinberg Problem We 
an use the e�e
tive potential to investigate if quantum


u
tuations 
an trigger SSB in an initially massless theory. Rewriting the e�e
tive potential

(and going ba
k to our normalisation ��=4!) we have

V

eff

(�) =

�

�

2

64�

2

�+B

�

�

2

+

�

�

4!

+

�

2

(16�)

2

ln

�

2

�

2

+ C

�

�

4

: (13.44)

Now we impose the renormalising 
onditions, �rst

d

2

V

eff

d�

2

�

�

�

�

�=0

= 0 ; (13.45)

whi
h implies that

B = �

��

2

64�

2

: (13.46)

Renormalising the 
oupling 
onstant, we have to pi
k a di�erent point than � = 0, be
ause

the logarithm is ill-de�ned there. This means that we have to introdu
e a s
ale �. Taking

the fourth derivative and ignoring terms that are independent of �, we �nd

d

4

V

eff

d�

4

�

�

�

�

�=�

= � = 24

�

2

(16�)

2

ln

�

2

�

2

: (13.47)

We 
an 
onvin
e ourselves that this expression gives the 
orre
t beta fun
tion,

�(�) = �

��

��

=

3

16�

2

�

2

+O(�

3

) : (13.48)
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Using the 
omplete expression for Eq. (13.47), we 
an determine C and obtain for the

renormalised e�e
tive potential (problem 13.6)

V

eff

(�) =

�(�)

4!

�

4

+

�

2

(�)

(16�)

2

�

4

�

ln

�

2

�

2

�

25

6

�

+O(�

3

) : (13.49)

This potential has two minima outside of the origin, so it seems that SSB does indeed happen.

These minima lie however outside the expe
ted range of validity of the one loop approximation:

Rewriting the potential as V

eff

(�) = ��

4

=4!(1 + a� ln(�

2

=�

2

) + : : : suggest that we 
an trust

the one-loop approximation only as long as (3=32�

2

)� ln(�

2

=�

2

)� 1.

13.3. Abelian Higgs model

After we have shown that the renormalisability is not a�e
ted by SSB, we now try to apply

this idea to a the 
ase of a gauge symmetry. First of all, be
ause we aim to explain the

masses of the W and Z bosons as 
onsequen
e of SSB. Se
ondly, we saw that SSB of global

symmetries leads to massless s
alars whi
h are however not observed. As SSB 
annot 
hange

the number of physi
al degrees of freedom, we hope that ea
h of the two diseases is the 
ure of

the other: The Goldstone bosons whi
h would remain massless in a global symmetry hopefully

disappear be
oming the required additional longitudinal degrees of freedom of massive gauge

bosons in 
ase of a spontaneously broken gauge symmetry.

The Abelian Higgs model, whi
h is the simplest example for this me
hanism, is obtained

by gauging a 
omplex s
alar �eld theory. Introdu
ing in the Lagrangian (13.11) the 
ovariant

derivative

�

�

! D

�

= �

�

+ ieA

�

(13.50)

and adding the free Lagrangian of an U(1) gauge �eld gives

L = �

1

4

F

��

F

��

+ (D

�

�)

y

(D

�

�) + �

2

�

y

�� �(�

y

�)

2

: (13.51)

The symmetry breaking and Higgs me
hanism is best dis
ussed 
hanging to polar 
oordinates

in �eld-spa
e, � = � expfi#g. Then we insert

D

�

� =

�

�

�

�+ i�(�

�

#+ eA

�

)

�

e

i#

(13.52)

into the Lagrangian, obtaining

L = �

1

4

F

��

F

��

+ �

2

(�

�

#+ eA

�

)

2

+ (�

�

�)

2

+ �

2

�

2

� ��

4

: (13.53)

The only di�eren
e to the ungauged model is the appearan
e of the gauge �eld in the prospe
-

tive mass term �

2

(�

�

#+ eA

�

)

2

. This allows us to eliminate the angular mode # whi
h shows

up nowhere else by performing a gauge transformation on the �eld A

�

: The a
tion of a U(1)

gauge transformation A

�

! A

0

�

= A

�

��

�

� on the original �eld � is just a phase shift, hen
e

� is un
hanged and # is shifted by a 
onstant, # ! #

0

= # + e�. This means that if we


onsider the gauge invariant 
ombination

B

�

= A

�

+

1

e

�

�

# (13.54)
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13.3. Abelian Higgs model

as new variable, we eliminate # 
ompletely, as F

��

(A

�

) = F

��

(B

�

) is gauge invariant,

L = �

1

4

F

��

F

��

+ e

2

�

2

(B

�

)

2

+ (�

�

�)

2

+ �

2

�

2

� ��

4

: (13.55)

It is now evident that the Goldstone mode # has disappeared. Eliminating the �eld � in

favour of 
u
tuations � around the va
uum v =

p

�

2

=�, i.e. shifting as usually the �eld as

� =

1

p

2

(v + �) ; (13.56)

we �nd as new Lagrangian

L =�

1

4

F

��

F

��

+

1

2

M

2

(B

�

)

2

+ e

2

v�(B

�

)

2

+

1

2

e

2

�

2

(B

�

)

2

+

�

4

4�

+

1

2

(�

�

�)

2

�

1

2

(

p

2�)

2

�

2

�

p

���

3

�

�

4

�

4

:

(13.57)

As in the ungauged model we obtain a �

3

self-intera
tion and a 
ontribution to the va
uum

energy density. The gauge �eld B

�

a
quired the mass M = ev, therefore having now three

spin degrees of freedom. The additional longitudinal one has been delivered by the Goldstone

boson whi
h in turn disappeared: The gauge �eld has \eaten" the Goldstone boson. We also

see that the number of degrees of freedom before SSB (2+2) mat
hes the number afterwards

(3 + 1). The phenomenon that breaking spontaneously a gauge symmetry does not lead to

massless Goldstone bosons be
ause they be
ome the longitudinal degree of freedom of massive

gauge bosons is 
alled the Higgs e�e
t.

The gauge transformation we used to eliminate the # �eld 
orresponds to the Higgs model

in the unitary gauge, where only physi
al parti
les appear in the Lagrangian. The massive

gauge boson is des
ribed by the Pro

a Lagrangian and we know that the resulting propagator

be
omes 
onstant for large momenta. Hen
e, this gauge is 
onvenient for illustrating the


on
ept of the Higgs me
hanism, but not suited for loop 
al
ulations. For several reasons

we expe
t that the renormalisability of this model is only hidden in the unitary gauge: The

model before shifting the �elds is renormalisable, and our dis
ussion of SSB using the e�e
tive

potential has taught us that su
h a shift has no impa
t. Moreover, we should be able to negle
t

v in a s
attering pro
ess like B

�

+B

�

! B

�

+B

�

for s� v

2

. Thus the broken theory should

have the same UV behaviour as the unbroken one.

We should therefore explore alternative gauges of the same model. Avoiding the unitary

gauge, we re-start using Cartesian �elds � = (�

1

+ i�

2

)=

p

2 for the 
omplex s
alar. Then the

Lagrangian is

L =�

1

4

F

��

F

��

+

1

2

�

(�

�

�

1

� eA

�

�

2

)

2

+ (�

�

�

2

+ eA

�

�

1

)

2

�

+

�

2

2

(�

2

1

+ �

2

2

)�

�

4

(�

2

1

+ �

2

2

)

2

:

(13.58)

Performing the shift due to the SSB, �

1

= v +

~

�

1

and �

2

=

~

�

2

, the Lagrangian be
omes

L =�

1

4

F

��

F

��

+

1

2

M

2

A

2

�

+ evA

�

�

�

~

�

2

+

1

2

h

(�

�

~

�

1

)

2

� 2�

2

~

�

2

1

i

+

1

2

(�

�

~

�

2

)

2

+ : : : ;

(13.59)
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13. Symmetries and symmetry breaking

where we have omitted intera
tion and va
uum terms not relevant to the dis
ussion. As we

see, the Goldstone boson

~

�

2

does not disappear and it 
ouples to the gauge �eld A

�

. On the

other hand, the mass spe
trum of the physi
al parti
les is the same as in the unitary gauge.

The degrees of freedom before and after breaking the symmetry do not mat
h, hen
e there is

an unphysi
al degree of freedom in the theory, namely that 
orresponding to

~

�

2

.

Gauge �xing and gauge boson propagator In order to make the generating fun
tional

Z[J

�

; J; J

�

℄ of the abelian Higgs model well-de�ned, we have to remove the gauge freedom

of the 
lassi
al Lagrangian. Using the Faddeev-Popov tri
k to a
hieve this implies to add a

gauge-�xing and a Faddeev-Popov ghost term to the 
lassi
al Lagrangian,

L

eff

= L


l

+L

gf

+L

FP

= L


l

�

1

2�

G

2

+ �


�G

�#


 : (13.60)

Here G(A

�

; �) = 0 is a suitable gauge 
ondition, # is the generator of the gauge symmetry

and 
; �
 are Gra�mannian ghost �elds.

In the unbroken abelian 
ase we used as gauge 
ondition G = �

�

A

�

. With the gauge

transformation A

�

! A

�

� �

�

# the ghost term be
omes simply L

FP

= �
(��)
. Thus

the ghost �elds 
ompletely de
ouple from any physi
al parti
les, and the ghost term 
an be

absorbed in the normalisation. In the present 
ase of a theory with SSB, we want to use the

Faddeev-Popov term to 
an
el the mixed A

�

�

�

�

2

term. Therefore we in
lude the Goldstone

boson �

2

in the gauge 
ondition,

G = �

�

A

�

� �ev�

2

= 0 ; (13.61)

what de�nes the R

�

gauge. From �

2

= �

�

A

�

=(�ev) we see that the unitary gauge 
orresponds

to � !1, while we 
ome ba
k to G = �

�

A

�

for v ! 0. We 
al
ulate �rst G

2

,

G

2

= (�

�

A

�

)(�

�

A

�

)� 2�ev�

2

�

�

A

�

+ �

2

e

2

v

2

�

2

2

; (13.62)

integrate by parts the 
ross term and insert the result into L

gf

,

L

gf

= �

1

2�

G

2

= �

1

2�

(�

�

A

�

)

2

� evA

�

�

�

�

2

�

1

2

�(ev)

2

�

2

2

: (13.63)

Now we see that the se
ond term 
an
els the unwanted mixed term inL


l

, while a � dependent

mass term �M

2

for �

2

appeared.

If we write out the terms in L

eff

quadrati
 in A

�

and �

2

,

L

eff;2

= �

1

4

F

��

F

��

+

1

2

M

2

A

2

�

�

1

2�

(�

�

A

�

)

2

+

1

2

(�

�

�

2

)

2

�

1

2

�M

2

�

2

2

; (13.64)

we 
an �nd the boson propagator. Using the antisymmetry of F

��

and a partial integration,

we transform F

2

=4 into standard form, A

�

(�

��

�� �

�

�

�

)A

�

=2. The part of the Lagrangian

quadrati
 in A

�

then reads

L

A

=

1

2

A

�

�

�

��

�� �

�

�

�

�

A

�

+

1

2

A

�

�

��

M

2

A

�

+

1

2�

A

�

�

�

�

�

A

�

(13.65a)

=

1

2

A

�

�

�

��

(�+M

2

)� (1� �

�1

)�

�

�

�

�

A

�

: (13.65b)
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13.3. Abelian Higgs model

To �nd the propagator we want to invert the term in the bra
ket, whi
h we denote by P

��

.

If we go to momentum spa
e, then

P

��

(k

2

) = �(k

2

�M

2

)�

��

+ (1� �

�1

)k

�

k

�

: (13.66)

Next we split P

��

(k

2

) into a transverse and a longitudinal part by fa
toring out terms

proportional to P

��

T

= �

��

� k

�

k

�

=k

2

,

P

��

= �(k

2

�M

2

)

�

P

��

T

+

k

�

k

�

k

2

�

+ (1� �

�1

)k

�

k

�

(13.67a)

= �(k

2

�M

2

)P

��

T

� �

�1

(k

2

� �M

2

)P

��

L

; (13.67b)

with the longitudinal part given by P

��

L

= k

�

k

�

=k

2

. We 
an invert the two parts separately

and obtain

iD

��

F

(k

2

) =

�iP

��

T

k

2

�M

2

+ i"

+

�i�P

��

L

k

2

� �M

2

+ i"

(13.68a)

=

�i

k

2

�M

2

+ i"

h

�

��

� (1� �)

k

�

k

�

k

2

� �M

2

+ i"

i

: (13.68b)

The transverse part propagates with mass M

2

, while the longitudinal part propagates with

mass �M

2

. The limit � !1 
orresponds again to the unitary gauge and � = 1 
orresponds

to the easier Feynman-'t Hooft gauge. For �nite �, the propagator is proportional to 1=k

2

as

in the massless 
ase. The Goldstone boson �

2

has the usual propagator of a s
alar parti
le,

however with gauge-dependent mass �M

2

. As usual in a 
ovariant gauge, the unphysi
al

gauge-dependent modes have to be 
an
elled by ghosts whi
h we dis
uss next.

Ghosts Using the Faddeev-Popov ansatz introdu
es ghosts �eld through the term L

FP

=

�
 (ÆG=Æ#) 
 into the Lagrangian. To 
al
ulate ÆG=Æ#, we have to �nd out how the gauge

�xing 
ondition G 
hanges under an in�nitesimal gauge transformation. Looking �rst at the


hange of the 
omplex �eld,

�!

~

� = �+ ie#� = �+ ie#

1

p

2

(v + �

1

+ i�

2

) ; (13.69)

we see that the �elds �

1

and �

2

are mixed under the gauge transformation.

A

�

!

~

A

�

= A

�

� �

�

# (13.70a)

�

1

!

~

�

1

= �

1

� e#�

2

(13.70b)

�

2

!

~

�

2

= �

2

+ e#(v + �

1

) : (13.70
)

Inserting this into the gauge �xing 
ondition (13.61) and di�erentiating with respe
t to the

generator, we obtain

ÆG

Æ#

=

Æ

Æ#

�

�

�

~

A

�

� �ev

~

�

2

�

= ��� �e

2

v(v + �

1

) : (13.71)

Thus after spontaneous symmetry breaking the ghost parti
les re
eive a �-dependent mass

and intera
t with the Higgs �eld �

1

. To see this expli
itly we insert ÆG=Æ# into the ghost

Lagrangian,

L

FP

= ��


�

�+ �e

2

v(v + �

1

)

�


 = (�

�

�
)(�

�


)� �M

2

�

� �e

2

v�

1

�

 : (13.72)
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13. Symmetries and symmetry breaking

The se
ond term on the RHS 
orresponds to the mass �e

2

v

2

= �M

2

for the ghost �eld, while

the third one des
ribes the ghost-ghost-Higgs intera
tion.

In summary, we have the following propagators in the R

�

gauge, where we denote with h

the physi
al Higgs with mass M = ev, with � the Goldstone boson and with 
 the ghost:

i

k

2

�M

2

+ i"

�

��

��

+ (1� �)

k

�

k

�

k

2

� �M

2

�

(13.73)
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Before 
losing this 
hapter, we should answer why the Goldstone theorem does not apply to

the 
ase of the Higgs model. The 
hara
teristi
 property of gauge theories that no manifestly


ovariant gauge exists whi
h eliminates all gauge freedom is also responsible for the failure

of the Goldstone theorem: In the �rst version of our proof, we may either 
hoose a gauge as

the Coulomb gauge. Then only physi
al degrees of freedom of the photon propagate, but the

potential A

0

(x) drops only as 1=jxj and the 
harge Q de�ned in (13.23) be
omes ill-de�ned.

Alternatively, we 
an use a 
ovariant gauge as the Lorentz gauge. Then the 
harge is well-

de�ned, but unphysi
al s
alar and longitudinal photons exist. The Goldstone theorem does

apply, but the massless Goldstone bosons do not 
ouple to physi
al modes. In the se
ond

version of our proof, the e�e
tive potential for the s
alar and for the gauge se
tor do not

de
ouple and mix by the same reason after SSB. This invalidates our analysis in
luding only

s
alar �elds.

Summary

Examining spontaneous symmetry breaking of internal symmetries, we found three qualita-

tively di�erent types of behaviours: For a broken global 
ontinuous symmetry, Goldstone's

theorem predi
ts the existen
e of massless s
alars. In the 
ase of broken approximate sym-

metries, this 
an explain the existen
e of light s
alar parti
les|an example are pions. The


ase of broken global 
ontinuous symmetry whi
h are exa
t seems to be not realised in na-

ture, sin
e no massless s
alar parti
les are observed. If we gauge the broken symmetry, the

would-be massless Goldstone bosons be
ome the longitudinal degrees of freedom required for

massive spin-1 bosons. Finally, neither Noether's nor Goldstone's theorems apply to the 
ase

of dis
rete symmetries; therefore the breaking of dis
rete symmetries does not 
hange the

mass spe
trum of the theory.

The e�e
tive potential is a 
onvenient tool to study the renormalisability of spontaneously

broken theories: This approa
h allows the 
al
ulation of all quantum 
orre
tions to the 
las-

si
al potential in the limit of 
onstant �elds and is invariant under a shift of �elds. Thereby
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13.3. Abelian Higgs model

we 
ould establish that renormalisability is not a�e
ted by SSB.

Further reading

Our dis
ussion of the e�e
tive potential is based on the 1966 Eri
e le
ture \Se
ret Symmetry"

of Coleman198802.

Problems

13.1 Contribution to the va
uum energy

density from SSB.

Cal
ulate the di�eren
e in the va
uum energy

density before and after SSB in the SM using

v = 256GeV andm

2

h

= 2�

2

= (125)

2

GeV

2

. Com-

pare this to the observed value of the 
osmologi
al


onstant.

13.2 S
alar Lagrangian after SSB.

Derive Eq. (13.9) and write down the expli
it form

of L

int

.

13.3 Quantum 
orre
tions to h�i.

We impli
itly assumed that quantum 
orre
tions

are small enough that the �eld stays at the 
hosen


lassi
al minimum. Cal
ulate h�(0)

2

i for d spa
e-

time dimensions and show that this assumption is

violated for d � 2.

13.4 Instability of h�i.

Cal
ulate the imaginary part of the self-energy for

a s
alar �eld with the Lagrangian (13.1), i.e. with

a negative squared mass �

2

< 0. Dis
uss the phys-

i
al interpretation.

13.5 Goldstone mode as zero mode.

Show that the state jsi de�ned in Eq. (13.24) has

zero energy for k ! 0.

13.6 Coleman-Weinberg problem.

Derive Eq. (13.49), �nd the minima of the poten-

tial and dis
uss the validity of the one-loop ap-

proximation.

13.7 E�e
tive potential in DR.

Repeat the 
al
ulation of the e�e
tive potential

using DR.
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14. Thermal �eld theory

The Green fun
tions we have 
onsidered so far were de�ned as the expe
tation value of �eld

operators in a pure state, the va
uum j0i in the absen
e of real parti
les. Out of these Green

fun
tions, we 
ould built up our quantities of prime interest, de
ay or s
attering amplitudes

for 1! n and 2! n parti
les via the LSZ formalism. In this 
hapter, we dis
uss how Green

fun
tions should be 
al
ulated for a system whi
h is not in its ground state but des
ribed by a

density matrix �. Examples for su
h systems are the early Universe or the dense, hot interior

of a star. The simplest and at the same time most important 
ases of thermal systems

are those in equilibrium. The appendix of this 
hapter 
olle
ts a few basi
 formulas from

statisti
al physi
s we will need later.

14.1. Overview

In equilibrium statisti
al physi
s, the partition fun
tion Z is of 
entral importan
e as all

thermodynami
 quantities 
an be derived from it. In the grand 
anoni
al ensemble (where

both parti
les and energy may be ex
hanged between the system and the reservoir) the

partition fun
tion takes the form

Z(V; T; �

1

; �

2

; : : : ) =

X

n

hnj e

��H��

i

N

i

jni = e

��


; (14.1)

where � � 1=T is the inverse temperature of the system, n denotes a 
omplete set of quantum

numbers, �

i

the 
hemi
al potential and N

i

the number of parti
les of type i. The Landau or

grand 
anoni
al free energy


(V; T; �

i

) = �T lnZ = U � TS � �

i

N

i

= �PV (14.2)


onne
ts the mi
ros
opi
 partition fun
tion to thermodynami
s: While the partition fun
tion

is 
losely related to the generating fun
tional of the 
orresponding �eld theory in Eu
lidean

spa
e, we 
an derive from 
 all relevant thermodynami
al quantities. For instan
e, we ob-

tain the pressure P from 
 as P = �
=�V j

T;�

i

. In addition, the expe
tation value of any

observable O is given as

hOi = Z

�1

Tr

h

e

��H��

i

N

i

O

i

: (14.3)

In the following, we will always set �

i

= 0. Then the partition fun
tion Z(N;V; T ) determines

the free (Helmholtz) energy F as F = �T lnZ.

Cal
ulational approa
hes Two main approa
hes to 
al
ulations are used in thermal �eld

theory:
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14.1. Overview

� In the real-time formalism, one applies the formula (14.3) valid for any observable

dire
tly to Green fun
tions, that is one evaluates

G(x

1

; : : : ; x

n

) = hT (�(x

1

) � � � �(x

n

))i

= Z

�1

Tr

h

e

��H

T (�(x

1

) � � � �(x

n

))

i

:

(14.4)

The main advantage of this method is that it 
an be extended to the non-equilibrium


ase. In parti
ular, one 
an investigate the time evolution of a system towards thermal

equilibrium. The proper de�nition of the propagators be
omes, however, more involved

than in the va
uum.

� In the imaginary time formalism, we perform a Wi
k rotation from Minkowski to Eu-


lidean spa
e, t! t

E

= it, so that the transition amplitude from an initial state, jq(t

i

)i,

to a �nal state, jq(t

f

)i, is given by

hq(t

f

)j e

�(t

f

�t

i

)H

jq(t

i

)i =

Z

q(t

f

)

q(t

i

)

Dq e

�S

; (14.5)

where S is now the Eu
lidean a
tion. If we set the evolution time, t

f

� t

i

, equal to the

inverse temperature � and integrate over all periodi
 paths q(t

f

) = q(t

i

+ �), we obtain

Z =

X

q

hqj e

��H

jqi =

Z

q(t+�)

q(t)

Dq e

�S

: (14.6)

We now see that we have formally 
onne
ted the path integral formulation of quantum

me
hani
s (in Eu
lidean spa
e) to the partition fun
tion of statisti
al me
hani
s. In


ontrast to �eld theories at zero temperature, the partition fun
tion in the Eu
lidean

and the resulting Eu
lidean Green fun
tions are not merely a mathemati
al tool but our

main obje
ts of interest. Sin
e the Eu
lidean Green fun
tions depend on temperature

instead of time, we are not able to des
ribe time-dependent phenomena in this approa
h.

Thermal Green fun
tions The tra
e in the partition fun
tion of statisti
al physi
s implies

that we have to sum over 
on�gurations 
onne
ting the same physi
al state at t and t + �.

In the path integral 
orresponding to statisti
al me
hani
s, the periodi
ity 
ondition q(t) =

q(t + �) for the real 
oordinate q is 
learly the only possible 
hoi
e. In 
ontrast, �elds may

only be observable through bilinear quantities, as e.g.

�

 � for a fermion �eld. This raises

the question, if we should require periodi
 or anti-periodi
 boundary 
onditions.

We start by 
onsidering thermal Green fun
tions G

�

for a free s
alar �eld. We split

the Feynman propagator into two pie
es, setting G

+

(x; x

0

) = h�(x)�(x

0

)i for t > t

0

and

G

�

(x; x

0

) = h�(x

0

)�(x)i for t < t

0

. From the Heisenberg equation for the �eld operator,

�(t;x) = e

iHt

�(0;x)e

�iHt

; (14.7)

we �nd inserting 1 = e

�H

e

��H

into the de�nition (14.3) and using then (14.7),

G

+

�

(t

0

;x

0

; t;x) = Tr [e

��H

�(t

0

;x

0

)�(t;x)℄=Z (14.8a)

= Tr [e

��H

�(t

0

;x

0

)e

�H

e

��H

�(t;x)℄=Z (14.8b)

= Tr [�(t

0

+ i�;x

0

)e

��H

�(t;x)℄=Z (14.8
)

= Tr [e

��H

�(t;x)�(t

0

+ i�;x

0

)℄=Z = G

�

�

(t

0

+ i�;x

0

; t;x) : (14.8d)
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Hen
e Green fun
tions satisfy G

�

�

(t

0

;x

0

; t;x) = G

�

�

(t

0

+i�;x

0

; t;x). Repeating the pro
edure,

we obtain G

�

�

(t

0

;x

0

; t;x) = G

�

�

(t

0

+ i�;x

0

; t;x) = G

�

�

(t

0

+ 2i�;x

0

; t;x), implying periodi


boundary 
ondition for the thermal propagators of bosoni
 �elds,

G

�

(t

0

;x

0

; t;x) = G

�

(t

0

+ 2i�;x

0

; t;x) : (14.9)

We de�ne now the Matsubara propagator G

�

(�;x), i.e. the analogue to the Feynman prop-

agator in the imaginary-time formalism, setting the real part of the temporal argument to

zero and applying time-ordering to its imaginary part � = =(t),

G

�

(�

0

;x

0

; �;x) = G

�

(�

0

+ 2�;x

0

; �;x) = Tr fe

��H

T

�

[�(�

0

;x

0

)�(�;x)℄g=Z : (14.10)

The derivation (14.8d) goes through un
hanged for fermioni
 �elds,

S

�

�

(t

0

;x

0

; t;x) = S

�

�

(t

0

+ i�;x

0

; t;x) : (14.11)

But now the anti-
ommuting nature of fermioni
 �elds, i.e. the minus sign in the de�nition

of time-ordered produ
t (8.85), leads to anti-periodi
 boundary 
ondition for their thermal

propagators,

S

�

(t

0

;x

0

; t;x) = �S

�

(t

0

+ 2i�;x

0

; t;x) : (14.12)

Both periodi
ity 
onditions dis
retise the frequen
y spe
trum of the thermal wave-fun
tions

and propagator. Moreover, they 
onstrain the set of allowed frequen
ies, su
h that bosoni


�elds 
ontain only even frequen
ies, while fermioni
 �elds 
ontain only odd frequen
ies,


f. problem 15.??. Thus the Fourier transform of thermal �elds 
ontained in a box of size

� � V is given by

�(t;x) =

1

p

�V

1

X

n=�1

X

p

�

n;p

e

�i(!

n

t+p�x)

(14.13)

with !

n

= 2n�T for bosoni
 and !

n

= (2n+1)�T for fermioni
 �elds, respe
tively, and n 2 Z.

The frequen
ies !

n

are 
alled Matsubara frequen
ies. Similarly, the Green fun
tions for a free

s
alar �eld is given in the limit V !1 by

G

�

(t;x) =

1

�

1

X

n=�1

Z

d

3

p

(2�)

3

G

n

(!

n

;p) e

�i(!

n

t+p�x)

(14.14)

with

G

n

(!

n

;p) =

1

!

2

n

+ p

2

+m

2

: (14.15)

Thermal Green fun
tions and verti
es 
ome without imaginary units, be
ause we have trans-

formed the path integral to Eu
lidean time.

14.2. S
alar gas

We will illustrate the basi
s of thermal �eld theory 
onsidering the simplest example, a gas

of s
alar parti
les, evaluating its free energy density F = F=V as a power series in �,

F = F

0

+ �F

1

+ �

2

F

2

+ : : : (14.16)

The free energy is determined by 
onne
ted va
uum diagrams. The lowest order 
ontribu-

tion in perturbation theory is given by a one-loop va
uum diagram and 
orresponds to the

Stefan-Boltzmann law valid for a free, non-intera
ting gas. Going on to the two-loop va
uum

diagrams, we will be able to derive the �rst quantum 
orre
tion to the Stefan-Boltzmann law.
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14.2.1. Free s
alar gas

In the 
ase of a non-intera
ting s
alar �eld, we 
an perform the path integral in the free

partition fun
tion Z, obtaining as formal solution in Eu
lidean spa
e

Z

D� e

�S

0

= N Det(��

2

+m

2

)

�1=2

: (14.17)

Negle
ting the temperature independent normalisation 
onstant N and using the identity

lnDetA = Tr lnA, we arrive at

�F = � lnZ =

1

2

Tr ln(��

2

+m

2

) : (14.18)

We evaluate the operator tra
e as in the 
ase of the e�e
tive potential in se
tion 13.2, but

take into a

ount the 
hanges

Z

1

�1

dt!

1

�

Z

�

0

d� and

Z

1

�1

dk

0

!

1

�

1

X

n=�1

in the 
ompleteness relation for thermal states. Inserting a 
omplete set of plane waves, we

�nd

Tr ln[��

2

+m

2

℄ =

Z

�

0

d�

Z

d

3

xh�;xj ln[��

2

+m

2

℄j�;xi

=

Z

�

0

d�

Z

d

3

x

1

�

X

n

d

3

k

(2�)

3

h�;xj ln[��

2

+m

2

℄j!

n

;kih!

n

;kj�;xi (14.19)

=V

X

n

d

3

k

(2�)

3

ln[!

2

n

+ k

2

+m

2

℄ :

The free energy density F = F=V follows as

�F =

1

2

1

X

n=�1

Z

d

3

k

(2�)

3

ln

�

!

2

n

+ k

2

+m

2

�

: (14.20)

In order to evaluate the sum, it is suÆ
ient to 
onsider

A = T

X

n

ln

�

�(i!

n

)

2

+E

2

k

�

(14.21)

with E

2

k

= k

2

+m

2

. First we eliminate the logarithm by di�erentiating A w.r.t. E

k

,

dA

dE

k

= �2TE

k

X

n

1

(i!

n

)

2

�E

2

k

: (14.22)

The fun
tion dA=dE

k

has poles in the 
omplex ! plane along the imaginary axis at ! =

i!

n

= 2�nT i plus two poles on the real axis at ! = �E

k

� i", 
f. Fig. 14.1. We 
onvert the

sum into a 
ontour integral using Cau
hy's theorem in \reverse order". Be
ause of 
oth(z) =

sinh

0

(z)= sinh(z), we see that 
oth(z) has simple poles at k�i with residue 1 and k 2 Z. Thus


oth(�!=2) has poles at i!

n

with residua 2=�, and we obtain

dA

dE

k

= �2TE

k

�

2

X

n

res

!

n

�


oth(�!=2)

!

2

n

�E

2

k

�

=

E

k

2�i

I

C

d!


oth(�!=2)

!

2

�E

2

k

: (14.23)
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Im(!)

Re(!)

�! + i"
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+
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+
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Re(!)

�! + i"

+
! � i"

+

+
+
+
+
+
+
+
+
+

Figure 14.1.: Poles and 
ontours in the 
omplex ! plane used for the evaluation of the free

energy F .

The integrand vanishes as 1=j!j

2

for j!j ! 1, and thus we 
an break up the 
ontour C into

two pie
es whi
h we 
lose at �i1. Note that we pi
k up thereby a minus sign, sin
e we 
hange

the orientation of the integration path. Now we 
an use Cau
hy's theorem in the \normal

order" to evaluate the residua of the two en
losed poles at �E

k

� i",

dA

dE

k

= E

k

X

�

res

�E

k

�


oth(�!=2)

!

2

�E

2

k

�

= 
oth(�E

k

=2) = 1 +

2

e

�E

k

� 1

: (14.24)

Integration gives

F =

1

2

Z

d

3

k

(2�)

3

h

E

k

+ 2T ln(1� e

��E

k

) + 


i

: (14.25)

The integration 
onstant 
 
an
els against the normalisation 
onstant of the path integral;

dropping also the T = 0 va
uum part and taking the high-temperature limit T � m gives

F = T

Z

d

3

k

(2�)

3

ln(1� e

��E

k

)

=

T

4

2�

2

Z

1

0

dxx

2

ln

�

1� expf�

p

x

2

+ (�m)

2

g

�

' �

�

2

T

4

90

+

m

2

T

2

24

:

(14.26)

With F = �P , the Stefan-Boltzmann law P = �

2

T

4

=90 for a massless real s
alar gas follows.

Example 14.1: Derive the high-temperature expansion (14.26) of the free energy F .

Performing a Taylor expansion of ln(1� expf�[x

2

+ (�m)

2

℄

1=2

g) around �m = 0, we �nd

Z

1

0

dxx

2

ln(1� e

�[x

2

+(�m)

2

℄

1=2

) =

Z

1

0

dxx

2

ln(1� e

�x

) +

(�m)

2

2

Z

1

0

dx

x

e

x

� 1

+O(�m)

4

:

In the �rst integral we expand the logarithm,

Z

1

0

dxx

2

ln(1� e

�x

) = �

1

X

n=1

Z

1

0

dxx

2

e

�nx

= �2

1

X

n=1

1

n

4

= �2�(4) = �2

�

4

90

;

while we use in the se
ond integral 1=(e

x

�1) = e

�x

=(1�e

x

) =

P

1

n=1

e

�nx

. With the de�nition (A.24)

for the Gamma fun
tion, the se
ond integral results in �(2)�(2) = �

2

=6.
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14.2.2. Intera
ting s
alar gas

As main appli
ation of the formalism of thermal �eld theory we next 
al
ulate the �rst

quantum 
orre
tion to the equation of state of a gas of s
alar parti
les intera
ting with a ��

4

intera
tion. This O(�) 
orre
tion is given by the two-loop va
uum diagram we 
onsidered

already at T = 0; the overlapping divergen
es of the type 1=" ln(p

2

=�

2

) 
orrespond now to

UV divergent terms multiplied by temperature-dependent fa
tors. Again, su
h terms have to

be 
an
elled by 
ounter-terms found at lower order.

Equation of state of a s
alar gas The �rst-order 
ontribution �F

1

to the free energy density


orresponds to the two-loop va
uum diagram,

�

=

�

4!




�

4

�

=

3�

4!




�

2

�


�

2

�

=

�

8

�

�(0)

�

2

;

Re
all from se
tion 4.2 that the fa
tor three a

ounts for the three possible ways of joining

the lines to form the two loops. Alternatively, we 
an determine this fa
tor using that h�

n

i

is the expe
tation value of �

n

times a Gaussian. We 
ould now insert into this formula the

Matsubara Green fun
tion derived in the imaginary time formalism. Instead, we use a more

intuitive argument to obtain the propagator (for 
oin
iding points) in the real-time formalism.

At T = 0, we 
an express the propagator at 
oin
ident points as the sum over the zero-point

energies,

�(0) = h0j�(x

0

)�(x)j0i

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

e

�ik(x

0

�x)

�

�

�

�

x

0

&x

=

Z

d

3

k

(2�)

3

1

2!

k

: (14.27)

The va
uum 
ontains no real parti
les, and the a

y

k

a

k

term in H

0

=

P

k

!

k

(1=2 + a

y

k

a

k

) gives

zero 
ontribution. For T > 0, the expe
tation value of the number operator N

k

= a

y

k

a

k

is

just the number distribution n

k

of � parti
les,

�(t = 0; x = 0) =

Z

d

3

k

(2�)

3

1

!

k

�

1

2

+

D

a

y

k

a

k

E

�

=

Z

d

3

k

(2�)

3

1 + 2n

k

2!

k

: (14.28)

In thermal equilibrium the number density n

k

of a s
alar �eld is a Bose-Einstein distribution,

n

k

=

1

e

�!

k

� 1

: (14.29)

This result 
an be derived dire
tly from the periodi
ity 
ondition of the Green fun
tions

(problem 15.??). Note that we 
an view the propagator as the sum of a va
uum part (\1/2")

and a thermal part (\n

k

"). In the latter, the high energy modes are exponentially suppressed

and thus no UV divergen
es should appear in the temperature dependent parts of physi
al

observables. Thus our standard renormalisation program at T = 0 should apply in the same

way at T > 0.

Continuing the derivation of the �rst-order 
orre
tion to F we have

�

4!




�

4

�

=

�

8

h

X

k

1 + 2n

k

2!

k

i

2

(14.30)

=

�

8

"

�

X

k

1

2!

k

�

2

| {z }

va
uum

+

�

X

k

n

k

!

k

�

2

| {z }

T dependent

+2

�

X

k

1

2!

k

��

X

k

n

k

!

k

�

| {z }

va
uum � T dependent

#

: (14.31)
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The mixed term gives rise to a temperature dependent UV divergen
e, whi
h from the previous

argument should not appear in our 
al
ulation. Similarly as at T = 0, this term should be


an
elled by a one-loop 
ounter-term. We 
onsider therefore the one-loop self-energy �, whi
h

is given by

� =

�

2

�(t = 0;x = 0) =

�

2

X

k

1 + 2n

k

2!

k

; (14.32)

and 
ontains the usual T = 0 divergen
e 
oming from the unsuppressed sum over frequen-


ies. We use renormalised perturbation theory, adding the 
ounter-term Æ

m

m

2

�

2

to the

Lagrangian, where Æ

m

is 
hosen su
h that m 
orresponds to the physi
al mass. Thus Æ

m

m

2

is determined by

Æ

m

m

2

+

�

2

X

k

1

2!

k

= 0 : (14.33)

Be
ause the produ
t Æ

m

m

2

�(0) is of O(�), we have to add the following va
uum diagram to




1

,

1

2

Æ

m

m

2

�(0; 0) = =

1

2

 

�

�

2

X

k

1

2!

k

! 

X

k

1 + 2n

k

2!

k

!

: (14.34)

Comparing this expression to the troublesome mixed term, we see that they agree but have

the opposite sign. Thus the one-loop subdivergen
e 
an
els the temperature dependent UV

divergen
e at two-loop in 


1

. As result, we obtain the 
onsistent expression

�

4!




�

4

�

=

�

8

�

X

k

n

k

!

k

�

2

+ va
 ; (14.35)

whi
h we 
an now 
al
ulate expli
itly. For simpli
ity, we restri
t ourselves to the high-

temperature limit setting m = 0,

X

k

n

k

!

k

=

Z

d

3

k

(2�)

3

1

!

1

e

�!

� 1

=

T

2

2�

2

Z

1

0

dx

x

e

x

� 1

| {z }

�

2

=6

=

T

2

12

; (14.36)

Hen
e our �nal result for F

1

is

F

1

=

�

8

�

T

2

12

�

2

=

�

1152

T

4

; (14.37)

whi
h we may 
ompare to the non-intera
ting result, 


0

= �

2

T

4

=90: The ratio 


1

=


0

�

10

�2

� seems to indi
ate a fast 
onvergen
e of the perturbative expansion of the pressure for

any reasonable value of the 
oupling.

We simply quote the result to three loops or se
ond order in � from the literature,

P =

�

2

T

4

9

�

1

10

�

1

8

�

16�

2

+

1

8

�

3 ln

�

4�T

+

31

35

+ C

��

�

16�

2

�

2

�

: (14.38)

The parameter � in Eq. (14.38) is not the 
hemi
al potential but as usually the renormalisation

s
ale. As the pressure is a physi
al quantity, it should not depend upon su
h a parameter.
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However, the trun
ation of the perturbative series leads to a residual � dependen
e of O(�

3

).

Examining this � dependen
e of P we obtain

�

dP

d�

=

�

2

T

4

9

�

�

1

8

1

16�

2

�

d�

d�

+

3

8

�

�

16�

2

�

2

+O(�

3

)

�

= O(�

3

) ; (14.39)

where we have used �d�=d� = � = 3�

2

=16�

2

. Thus the dependen
e on the renormalisation

s
ale � is indeed of higher order in � than the order of perturbation theory we are working

with. Still we 
an try to minimise the remaining dependen
e by a suitable 
hoi
e of �:

Clearly, a sensible 
hoi
e in this 
ase is � = 4�T , for whi
h the logarithm vanishes. Still,

any other 
hoi
e is mathemati
ally as 
orre
t as this one. Instead of being worried about this

dependen
e on the renormalisation s
ale, we may take advantage of it as follows: Varying

the renormalisation s
ale � in a \reasonable range", say between � = 2�T and � = 8�T , we

obtain an error estimate for the missing higher-order 
orre
tions. Finally, note that � / T

implies that a QCD plasma be
omes in the large temperature limit an asymptoti
ally free

gas of quarks and gluons. Sin
e we know that at T = 0 quarks and gluons are 
on�ned in

hadrons, we expe
t that at T = O(�

QCD

) a phase transition from a quark-gluon gas to a gas

of 
olourless mesons and baryons takes pla
e. Both analyti
al 
al
ulations and latti
e QCD

simulations 
on�rm this pi
ture.

IR behaviour We have found a fast 
onvergen
e of the perturbative expansion from the

results for the pressure of a s
alar gas. For appli
ations parti
ularly interesting is the 
ase of

a massless parti
le and we 
onsider now as a toy-model for QCD a ��

4

theory with m = 0.

Looking ba
k at our previous result for the self-energy, Eq. (14.32), setting m ! 0 and

dropping the va
uum term, we have

� =

�

2

�(t = 0;x = 0)!

�

2

Z

d

3

k

(2�)

3

n

k

!

k

=

�

2

T

2

12

: (14.40)

Thus the thermal part of the self-energy indu
es at �rst order in � a thermal or Debye mass,

m

2

D

=

�

2

T

2

12

: (14.41)

Swit
hing to the 
ovariant form of the thermal propagator, Eq. (14.14), the 
ontribution

shown in the left panel of Fig. 14.2 at se
ond order is

�

2

= �

�

2

T

X

n

Z

d

3

k

(2�)

3

m

2

D

(!

2

n

+ k

2

)

2

: (14.42)

While in the terms with n 6= 0 the !

n

a
t as a IR 
uto�, we see that for n = 0 and thus

!

0

= 0 the integral is proportional to

R

dk=k

2

and thus IR divergent. If we go to higher terms

in the expansion and add additional loops to the \primary loop" as shown in the right panel

of Fig. 14.2, then the degree of the IR divergen
e in
reases.

The solution to this problem is to a

ount for the thermal mass of the s
alar parti
le

properly. If we use an e�e
tive propagator whi
h in
ludes the Debye mass of the parti
le,

1

!

2

n

+ k

2

!

1

!

2

n

+ k

2

+m

2

D

; (14.43)

235



14. Thermal �eld theory

Figure 14.2.: Left: A se
ond order 
orre
tion to the mass; Right: Ring diagram, ea
h external

bubble 
orresponds to an insertion of m

2

D

.

then the n = 0 term of Eq. (14.42) with !

0

= 0 is given by

�

2;n=0

= �

�

2

T

Z

d

3

k

(2�)

3

m

2

D

(k

2

+m

2

D

)

2

= �

�

2

4

�

T

2

12

��

T

8�m

D

�

(14.44)

and thus �nite. Sin
e the Debye mass s
ales as m

D

/ �

1=2

, the 
ontribution of �

2;n=0

in the

perturbative expansion is not of order �

2

but of order �

3=2

. Thus we obtained a term whi
h

is non-analyti
 in the 
oupling|what 
an not happen, if we sum a �nite number of terms.

As explanation, we have to look at the expansion of the e�e
tive propagator for small m

D

(restri
ting ourselves again to the n = 0 term),

1

k

2

+m

2

D

=

1

k

2

�

m

2

D

k

4

+

m

4

D

k

6

+ : : : (14.45)

Here we 
an view e.g. the m

4

D

=k

6

term as a ring diagram with three massless propagators

k

�2

and two fa
tors m

2

D

produ
ed by self-energy insertions. Thus in
luding the thermal mass


orresponds to summing up the in�nite sum of diagrams shown in the right panel of Fig. 14.2.

We 
an formalise the in
lusion of the Debye mass in the originally massless s
alar theory

as follows: We reorganise perturbation theory by adding a mass term to the free Lagrangian

and subtra
ting it from the the intera
tion term,

L

0

=

1

2

(�

�

�)

2

�

1

2

m

2

�

2

and L

int

= �

�

4!

�

4

+

1

2

m

2

�

2

: (14.46)

Here we may set m

2

= m

2

D

or keep it as a free parameter to be determined by, for example,

that the free energy is independent of this parameter, dF=dm

2

= 0. This reformulation of the

perturbative expansion in thermal �eld theories is 
alled s
reened or optimised perturbation

theory.

Symmetry restoration at high temperature We have 
hosen the sign of the mass term su
h

that the ��

4

theory is in the unbroken phase, and the minimal energy is obtained for h�i = 0.

In this 
ase thermal e�e
ts simply in
rease the e�e
tive mass of the � parti
le,

V (�; T ) =

1

2

�

m

2

+

�

24

T

2

�

�

2

+

�

4!

�

4

; (14.47)

Something more interesting happens, if we 
onsider the broken phase 
hoosing m

2

< 0. Then

for T = 0 the minimal energy is obtained for �

0

= �

p

�6m

2

=�, and the �! �� symmetry
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Figure 14.3.: Potential with negative mass term showing restoration of symmetry for T > T




.

of the Lagrangian is broken. In
reasing the temperature, the positive thermal mass grows.

Above some 
riti
al temperature, the e�e
tive mass be
omes therefore positive and the min-

imal energy 
on�guration be
omes �

0

= 0, 
f. with Fig. 14.3. This behaviour resembles the

one we know from a ferromagnet: Below some 
riti
al temperature, spontaneous magnetisa-

tion breaks rotation invarian
e, whi
h is above T




restored. In the 
ontext of 
osmology, this

observation suggests that symmetries that are broken today might have been unbroken in the

early, hot universe.

14.A. Appendix: Equilibrium statisti
al physi
s in a nut-shell

The one-parti
le distribution fun
tion f(p) of a free gas in kineti
 equilibrium is given by

f(p) =

1

exp[�(E � �)℄� 1

(14.48)

where � = 1=T is the inverse temperature, E =

p

m

2

+ p

2

, and +1 refers to fermions and �1 to

bosons, respe
tively. A spe
ies X stays in kineti
 equilibrium, if in the rea
tion X + Y 
 X + Y the

energy ex
hange with at least one other spe
ies Y , whi
h is in thermal equilibrium is fast enough. The


hemi
al potential � is the average energy needed, if an additional X parti
le is added, dU = �

X

dN

X

.

If the spe
ies X is also in 
hemi
al equilibrium with other spe
ies, e.g. via the rea
tion X+

�

X 
 
+
,

then their 
hemi
al potentials are related by �

X

+ �

�

X

= 2�




= 0.

The number density n, energy density � and pressure P of a spe
ies X (whi
h may be not in

equilibrium) are 
onne
ted to its one-parti
le distribution fun
tion f(p) as

n = g

Z

d

3

p

(2�)

3

f(p) ; � = g

Z

d

3

p

(2�)

3

Ef(p) ; (14.49)

P = g

Z

d

3

p

(2�)

3

p

2

3E

f(p) : (14.50)

The fa
tor g takes into a

ount the internal degrees of freedom like spin or 
olour. Thus for a photon,

a massless spin-1 parti
le g = 2, for an ele
tron g = 2, a quark g = 6, et
.
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Table 14.1.: The number of relativisti
 degrees of freedom g

�

present in the Universe as fun
-

tion of its temperature T .

Temperature new parti
les 4�g

�

4g

�

T < m

e


 + �

i

4� (2 + 3� 2� 7=8) 29

m

e

< T < m

�

e

�

14 43

m

�

< T < m

�

�� 14 57

m

�

< T < T

QCD

�

�

; �

0

12 69

T

QCD

< T < m

s

u; �u; d;

�

d; g 6� 14 + 4� 8� 2� 12 205

m

s

< T < m




s; �s 3� 14 = 42 247

m




< T < m

�


; �
 42 289

m

�

< T < m

b

�

�

14 303

m

b

< T < m

W;Z

b;

�

b 42 345

m

W;Z

< T < m

h

W

�

; Z 4� 3� 3 = 36 381

m

h

< T < m

t

h 4 385

m

t

< T < ? t;

�

t 42 427

In the non-relativisti
 limit T � m or e

�(m��)

� 1, and thus di�eren
es between bosons and

fermions disappear,

n =

g

2�

2

e

��(m��)

Z

1

0

dp p

2

e

��

p

2

2m

= g

�

mT

2�

�

3=2

exp[��(m� �)℄ ; (14.51)

� = mn and P = nT � �. These expressions 
orrespond to the 
lassi
al Maxwell-Boltzmann statisti
s.

The number of non-relativisti
 parti
les is exponentially suppressed, if their 
hemi
al potential is small.

In the relativisti
 limit T � m with T � �, all properties of a gas are determined by its temperature

T ,

n =

g T

3

2�

2

Z

1

0

dx

x

2

e

x

� 1

= "

1

�(3)

�

2

gT

3

; (14.52)

� = 3P =

g T

4

2�

2

Z

1

0

dx

x

3

e

x

� 1

= "

2

�

2

30

gT

4

; (14.53)

where for bosons "

1

= "

2

= 1 and for fermions "

1

= 3=4 and "

2

= 7=8, respe
tively.

Sin
e the energy density and the pressure of non-relativisti
 spe
ies is exponentially suppressed,

the total energy density and the pressure of all spe
ies present in the universe 
an be approximated

in
luding only the relativisti
 ones,

�

rad

= 3P

rad

=

�

2

30

g

�

T

4

; (14.54)

where

g

�

=

X

bosons

g

i

�

T

i

T

�

4

+

7

8

X

fermions

g

i

�

T

i

T

�

4

: (14.55)

We denote the relativisti
 spe
ies also 
olle
tively as radiation. Table 14.1 shows the number of

relativisti
 degrees of freedom g

�

in the SM as fun
tion of the temperature. Here T

QCD

denotes the

temperature of the QCD phase transition, above whi
h quarks and gluons as free parti
les exist.

The total entropy density s � S=V of the universe 
an again approximated by the relativisti


spe
ies,

s =

2�

2

45

g

�S

T

3

; (14.56)
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where now

g

�;S

=

X

bosons

g

i

�

T

i

T

�

3

+

7

8

X

fermions

g

i

�

T

i

T

�

3

: (14.57)

The entropy S is a useful quantity, be
ause it is 
onserved if the universe evolves adiabati
ally. Then

the 
onservation of S implies that S / g

�;S

a

3

T

3

= 
onst:, where a(t) is the s
ale fa
tor des
ribing the

expansion of the universe. Thus the temperature of the universe evolves as T / g

�1=3

�;S

a

�1

, and when

g

�

= 
onst:, the temperature s
ales as T / 1=a. Consider now the 
ase that a parti
le spe
ies, e.g.

ele
trons, be
omes non-relativisti
 at T � m

e

. Then the parti
les annihilate, e

+

e

�

! 

, and their

entropy is transferred to photons. Formally, g

�;S

de
reases and therefore the temperature de
reases

for a short period less slowly than T / 1=a.

Sin
e the net number density n of parti
les with a 
onserved 
harge and the entropy density s
ale

both as / a

�3

, the ratio n=s is 
onstant. Therefore it is often 
onvenient to 
onsider the time evolution

of the dimensionless variable Y = n=s.

Summary

Thermal Green fun
tions are (anti-) periodi
 fun
tions in imaginary time, leading to dis
rete

energies with !

n

= 2n�T for bosoni
 and !

n

= (2n+ 1)�T for fermioni
 �elds, respe
tively.

No new UV divergen
es appear for T > 0, sin
e the thermal distribution fun
tion vanish

exponentially for E=T !1. In a plasma, even massless parti
les 
an a
quire a temperature

dependent (Debye) mass and symmetries of the Lagrangian may be hidden at low tempera-

tures.

Further reading

This 
hapter 
ould give only a 
avour of what thermal �eld theory is. The le
ture notes

of [Bla11℄ are a useful starting point to learn more, before turning to text books dedi
ated to

thermal �eld theory as [LV16℄ or [KG11℄.
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15. Phase transitions and topologi
al defe
ts

We introdu
ed at the end of the last 
hapter the idea that spontaneously broken symmetries

of �eld theories 
ould be restored at high temperatures. In this 
ase, the hot early Universe

would be in a symmetri
 phase, followed by transitions to phases with more and more broken

symmetries. Phase transitions in the early Universe 
an lead to observable 
onsequen
es

for mainly two reasons: First, phase transitions lead often to the formation of topologi
al

defe
ts. These defe
ts are zero-, one- or two-dimensional extended solutions of the 
lassi
al

equations of motion for the Higgs-gauge se
tor whi
h 
ontain in their 
ore the unbroken h�i =

0 va
uum. Depending on the symmetry breaking s
ale and their dimensionality, they lead to

(un-) desirable 
osmologi
al 
onsequen
es and 
an thus be used to 
onstrain parti
le physi
s

models beyond the SM. Se
ond, the state of the Universe deviates from thermodynami
al

equilibrium during a �rst-order phase transition. Thus pro
esses like the generation of a

baryon asymmetry whi
h require out-of-equilibrium 
onditions may take pla
e during �rst-

order phase transitions.

15.1. Phase transitions

E�e
tive potential at T > 0 We have seen that the ground-state of a quantum �eld theory

in
luding quantum 
u
tuations is determined by the e�e
tive potential V

eff

. We 
an in
lude

additionally thermal 
u
tuations by studying the temperature-dependent e�e
tive potential.

The latter is obtained in a rather straight-forward way in the imaginary-time formalism, where

we only have to repla
e va
uum expe
tation values with thermal averages in the de�nition

of 
lassi
al �elds, and to use periodi
 boundary 
onditions in the Eu
lidean e�e
tive a
tion

and e�e
tive potential. In parti
ular, we 
an transform the T = 0 e�e
tive potential (13.32)

de�ned in Eu
lidean spa
e,

V

eff

(�) = V (�) +

1

2

Z

d

4

k

(2�)

4

ln

�

k

2

+ V

00

(�)

�

+O(~

2

) ; (15.1)

into the temperature-dependent e�e
tive potential repla
ing the integration over the 
ontin-

uous energy k

0

by a summation over dis
rete Matsubara frequen
ies !

n

,

�V

eff

(�) = �V (�) +

1

2

X

n

Z

d

3

k

(2�)

3

ln

�

!

2

n

+ k

2

+ V

00

(�)

�

+O(~

2

) : (15.2)

The sum over n is performed in the same way as in the 
al
ulation of the free energy F of a

non-intera
ting s
alar gas in se
tion 14.2.1,

�V

(1)

eff

(�) =

1

2

Z

d

3

k

(2�)

3

h

�E

k

+ 2 ln(1� e

��E

k

)

i

(15.3)
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with E

2

k

= k

2

+ V

00

(�). Next we split the one-loop 
ontribution �V

(1)

eff

(�) into the T = 0

va
uum part V

(1)

eff

(�; 0) and a temperature dependent thermal part V

(1)

eff

(�; T ),

V

(1)

eff

(�) =

1

2

Z

d

4

k

(2�)

4

ln

�

k

2

+ V

00

(�)

�

+ T

Z

d

3

k

(2�)

3

ln

�

1� e

��E

k

�

; (15.4)

where we dropped a �-independent 
onstant.

In order to simplify the dis
ussion we 
onsider separately the two limiting 
ases that quan-

tum or thermal 
u
tuations dominate. In the latter 
ase, V

(1)

eff

(�; 0)� V

(1)

eff

(�; T ), we evaluate

V

(1)

eff

(�; T ) in the high-temperature limit

1

V

(1)

eff

(�; T ) = T

Z

d

3

k

(2�)

3

ln(1� e

��E

k

) =

T

4

2�

2

Z

1

0

dxx

2

ln(1� e

�

p

x

2

+a

) (15.5)

= �

�

2

T

4

90

+

aT

4

24

+ : : : : (15.6)

with a = �

2

V

00

(�). For the 
hoi
e V

00

(�) = ��

2

+

1

2

��

2

, the e�e
tive potential be
omes

V (�) + V

(1)

eff

(�; T ) = �

1

2

�

2

�

2

+

�

24

�

4

�

�

2

T

4

90

�

1

24

�

2

T

2

+

1

48

��

2

T

2

+

�

12

�

4

: (15.7)

The terms quadrati
 in the �eld � reprodu
e the thermal or Debye mass m

2

D

= �T

2

=24

whi
h we found in (14.41). The minimum of V

eff

(�) moves smoothly away from � = 0 below

the 
riti
al temperature and no barrier is formed, as shown in Fig. 14.3. Thus the phase

transition is in this 
ase of se
ond order. More interesting is a �rst order phase transition

whi
h is shown s
hemati
ally in Fig. 15.1. As the system 
ools down, a lo
al minimum h�i 6= 0

develops at the temperature T

1

. The 
hara
teristi
 feature of a �rst order transition is that

in the temperature range T

2

< T < T

1

the two lo
al minima at h�i = 0 and h�i 6= 0 
oexist.

Thus a potential barrier has to separate them. At the 
riti
al temperature T




, the minimum at

h�i 6= 0 be
omes the global minimum. Be
ause of the barrier, the transition from h�i = 0 to

h�i 6= 0 
annot pro
eed 
lassi
ally, but has to pro
eed via a quantum or thermal 
u
tuation.

This tunnelling pro
ess may lead to deviations from thermal equilibrium whi
h in turn may

lead to tra
es observable today.

An example for a �rst order phase transition is given by the SM for a small Higgs mass,

m

h

<

�

70GeV. In this (unphysi
al) limit, V

eff

(�; T ) is given for large T by

V

eff

(�; T ) '

1

2

a(T

2

� T

2

1

)�

2

�

1

3

bT�

3

+

1

4

��

4

(15.8)

with

a =

3

16

g

2

+

�

1

2

+

m

2

t

m

2

h

�

� ; b =

9g

3

32�

; T

1

=

m

h

2

p

a

: (15.9)

The 
riti
al temperature of the �rst-order phase transition follows as T




=

T

1

=

p

1� 2b

2

=(9a�) > T

1

. Between T




and T

1

, the e�e
tive potential V

eff

(�; T ) has two

degenerate minima at � = 0 and �




= 2bT




=(3�) separated by a barrier. This 
orresponds to

the e�e
tive potential sket
hed in Fig. 15.1.

1

The derivation follows the one of Eq. (14.26); re
all also that a resummation of ring diagrams may be

ne
essary.
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Tc 

V
(φ

)

φ

Figure 15.1.: The e�e
tive potential V

eff

(�; T ) in 
ase of a �rst-order phase transition.

15.2. De
ay of the false va
uum

When the Universe goes through a �rst order phase transition as it 
ools down, the �elds

sitting in the false va
uum have to tunnel to the true minimum. The true va
uum nu
leates

at a lo
alised position in spa
e-time, when a quantum (or thermal) 
u
tuation tunnels through

(or above) the barrier. It forms an extending bubble whi
h 
ontains the energeti
ally favoured

ground-state. In the 
ase of thermal 
u
tuations, this phenomenon is known to everybody

from boiling water. The equivalent problem in quantum me
hani
s is the tunnelling through

the barrier in a double-well potential V (x) depi
ted in the left panel of Fig. 15.2. The

tunnelling probability P 
an be 
al
ulated using the WKB method as

P � exp

�

�i

Z

b

a

dx

p

2m[V (x)�E℄

�

; (15.10)

where a and b are the turning points of the tunnelling traje
tory. In order to translate this

pres
ription to a �eld theory, we rewrite the tunnelling probability P �rst as an Eu
lidean

path integral. The exponent is the integral over the (imaginary) momentum of the parti
le,

whi
h we 
an express as

i

Z

dx p = i

Z

dt p _x = i

Z

dt (E + L) =

Z

dt

E

(�L

E

) : (15.11)

In the last step we assumed that the energy of the parti
le is normalised to zero and 
hanged

to Eu
lidean time t

E

= it. Thus the tunnelling probability is given by the Eu
lidean path

integral

P =

Z

Dx exp(�S

E

[x℄) (15.12)

with

S

E

[x℄ =

Z

dx

�

1

2

d

2

x

dt

2

E

+ V (x)

�

: (15.13)
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ay of the false va
uum

From (15.10), we know that the (Minkowski) path integral is dominated by the path depi
ted

on the left of Fig. 15.2. Sin
e the potential V 
hanges sign performing a Wi
k rotation,

a 
lassi
ally forbidden path in Minkowski spa
e 
orresponds to an allowed Eu
lidean path

shown in the right panel of Fig. 15.2. Thus �nding the tunnelling probability between two

va
ua amounts to �nding solutions in the Eu
lidean theory whi
h 
onne
t the two va
ua and

minimise the a
tion.

Figure 15.2.: Tunnelling through a double-hill potential in Minkowski spa
e 
orresponds to

the 
lassi
ally allowed path from one maxima to another one in Eu
lidean spa
e.

Boun
e solution We now turn to the 
ase we are interested in, namely the tunnelling of a

s
alar �eld � sitting in the false, metastable va
uum a into the true va
uum b, 
f. Fig. 15.3. In

Eu
lidean spa
e, we should �nd solutions of the 
lassi
al a
tion starting from b whi
h boun
e

at the 
lassi
al turning point a ba
k to b. These solutions are 
alled \boun
e" or instanton,

sin
e the tunnelling happens instantaneously in Minkowski spa
e. Moreover, these solutions

should have a �nite a
tion su
h that they give a non-zero 
ontribution to the semi-
lassi
al

limit of the path integral. In prin
iple, we should �nd all solution with a �nite a
tion and

then integrate their 
ontribution. Sin
e the tunnelling probability is however exponentially

suppressed, the integral is dominated by the solution whi
h minimises the a
tion.

Solutions whi
h are symmetri
 under rotations minimise the gradient energy. We use

therefore an O(4) symmetri
 ansatz, where the real s
alar �eld � is only a fun
tion of the

radial 
oordinate r

2

= x

2

+ t

2

E

. Then the Eu
lidean a
tion for a real s
alar �eld be
omes

S = 2�

2

Z

1

0

dr r

3

"

1

2

�

d�

dr

�

2

+ V (�)

#

(15.14)

and the �eld equation simpli�es to (problem 16.2)

d

2

�

dr

2

+

3

r

d�

dr

�

dV

d�

= 0 : (15.15)

The boundary 
onditions � ! 0 for r ! 1 and d�=drj

r=0

= 0 ensure a regular solution at

r = 0 and a �nite a
tion. Viewing (15.15) as a me
hani
al problem, it des
ribes the motion

of a parti
le in a potential with the fri
tion term

3

r

d�

dr

. Thus the two parts a! b and b! a
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b

a

φ

V (φ) V (φ)

φb a

Figure 15.3.: Left: Transition from the false va
uum (a) to the true one (b) requires in

Minkowski spa
e tunnelling through a barrier. Right: In Eu
lidean spa
e, a


lassi
ally allowed path starts from b and boun
es at a ba
k to b; the zero point

of the potential is 
hosen to agree with a.

of the boun
e are not equivalent: We should 
hoose the starting position �(t = �1) uphill

of b su
h that at t = +1 the �eld 
omes to rest at a.

We 
an pro
eed analyti
ally, if we 
onsider the limiting 
ase that either the potential

di�eren
e between the true and the false va
uum is mu
h smaller or mu
h larger than the

potential barrier whi
h separates them. We will 
onsider here the �rst 
ase, whi
h 
orresponds

to the so 
alled thin-wall approximation. This allows us to approximate the potential as

V (�) = V

0

(�) +O(") ; (15.16)

where V

0

(�) is the symmetri
 potential and the di�eren
e " = V (�

+

) � V (�

�

) between the

false and the true minima is a small parameter. For small ", the volume energy / "r

4

of a

bubble dominates the surfa
e energy / r

3

only, if the bubble is suÆ
iently large. In this 
ase,

the thi
kness of the bubble wall, i.e. the region where d�=dr deviates signi�
antly from zero,

is also mu
h smaller than the bubble size. Thus we 
an negle
t the

3

r

d�

dr

term in (15.15), and

the �eld equation simpli�es to the one of a one-dimensional problem,

�

00

�

d

2

�

dr

2

=

dV

0

d�

: (15.17)

Using the 
hain rule, dV

0

=d� = V

0

0

=�

0

and (�

0 2

)

0

= 2�

00

�

0

, we �nd after one integration

1

2

�

0 2

� V

0

= 
 : (15.18)

We determine the integration 
onstant by asking that the 
ontribution to the a
tion S goes

to zero for r !1. With �

0

(1) = 0, this gives 
 = �V (�

+

). Separating variables in (15.18)

leads then to

r =

Z

d�

p

2[V

0

(�)� V (�

+

)℄

: (15.19)

To gain more insight, we 
onsider now a spe
i�
 potential. We 
hoose our favourite ��

4

potential,

V

0

(�) =

�

4

�

�

2

� �

2

�

2

: (15.20)
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Compared to 
hapter 13, we shifted the potential su
h that the two minima at � = �� =

�

p

�

2

=� have the value zero, V

0

(�

�

) = 0, as required. Inserting this potential into

Eq. (15.19), we �nd

r = �

p

2

�

p

�

ar
tanh (�=�) + r

0

: (15.21)

The integration 
onstant r

0

determines the position of the bubble wall. Inverting (15.21)

gives as �eld pro�le

�

�

(r) = �� tanh

 

�

p

�

p

2

(r � r

0

)

!

: (15.22)

The solution �

�

interpolate between the two va
ua �� of the symmetri
 potential V

0

(�).

The thi
kness of the bubble wall is determined by the argument of the tanh and is given by

Æ �

p

2=(�

p

�).

Knowing the solution �(r), we 
an 
al
ulate the a
tion. For r � r

0

, the �eld is 
onstant,

� � �, and V (�

+

) = 0. Therefore, the 
ontribution S

>

from this region to the a
tion is zero.

For r � r

0

, the �eld � � �� is again 
onstant, but the potential 
ontributes V (�

�

) ' �"

and thus

S

<

= 2�

2

Z

r

0

0

dr r

3

�

1

2

�

�

0

�

2

+ V (�)

�

' �

1

2

�

2

"r

4

0

: (15.23)

Finally, the 
ontribution from the bubble wall is

S

w

= 2�

2

r

3

0

Z

dr

�

1

2

�

�

0

�

2

+ V (�)

�

= 2�

2

r

3

0

Z

dr 2V (�) =

= 2�

2

r

3

0

Z

�

2

�

1

d�

p

2V (�) = 2�

2

r

3

0

I ;

(15.24)

with �

1=2

� �(r

0

� Æ). The quantity

I =

Z

�

2

�

1

d�

p

2V (�) (15.25)

has the interpretation of the surfa
e tension of the bubble. Adding the two 
ontributions, the

total a
tion follows as

S = S

<

+ S

w

= �

1

2

�

2

"r

4

0

+ 2�

2

r

3

0

I : (15.26)

We �nd the solution whi
h gives the largest tunnelling probability minimising the a
tion S

w.r.t. r

0

, resulting in the 
ondition

r

0

=

3I

"

: (15.27)

For our 
hoi
e (15.19) for the potential, the surfa
e tension is I = 2�

3

=(3�) and the a
tion

S =

27�

2

I

4

2"

3

=

8�

2

�

12

3�

4

"

3

: (15.28)

For " ! 0, the a
tion be
omes in�nite. Equivalently, the tunnelling from one to another

ground-state �� of the symmetri
 potential V

0

(�) 
osts an in�nite amount of energy, as we

argued in 
hapter 13.
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The tunnelling probability per time and volume follows then as

p = A

Z

D� exp(�S[�℄) ; (15.29)

where the prefa
tor A is determined by Det(� � V

00

(�))

�1=2

and its zero-modes [CC77℄. In

pra
ti
e, the result is rather insensitive to the exa
t value of A, and setting A � V

00

(�

0

) is

suÆ
ient for simple estimates.

We 
an now justify the assumptions made: Our starting assumption that " is small implies

that r

0

is large, r

0

/ 1=". Moreover, a small " implies that the bubble of true va
uum is

separated by a thin wall from the metastable va
uum, Æ � ("r

0

)

�1=3

. This is the reason for

the name thin-wall approximation.

In order to des
ribe the time evolution of a bubble, we have to 
ontinue analyti
ally the

O(4) symmetri
 solution r

2

0

= x

2

+ t

2

E

ba
k to Minkowski spa
e. From r

2

0

= x

2

� t

2

, we see

that the bubble extends 
lose to the speed of light for t� r

0

. The resulting O(1,3) symmetry

means that all inertial observers

2

will measure the same expansion law.

S
alar instantons For the 
ase of a massless ��

4

theory we 
an �nd a 
lass of exa
t solutions

for the boun
e (15.15), whi
h are often 
alled s
alar instantons. For a massless parti
le, the


lassi
al solution should fall o� as a power-law. Then dimensional analysis tell us that � has

the dimension of an inverse length. Sin
e the massless theory is s
ale-invariant, the solutions

should be parametrised by an arbitrary parameter � 
hara
terising their size. This suggests

to insert as ansatz �(r) / �=(r

2

+ �

2

) into Eq. (15.15) what results in (problem 16.3)

�(r) =

�

8

�

�

1=2

�

r

2

+ �

2

: (15.30)

Thus the a
tion of the boun
e be
omes

S =

27�

2

I

4

2"

3

=

8�

2

3�

: (15.31)

Example 15.1: De
ay of the metastable SM va
uum:

We use V = �

eff

�

4

=4 as 
rude approximation for the s
alar potential of the SM, where �

eff

is the

running Higgs self 
oupling at the s
ale � = �. Using the thin-wall approximation, we 
an 
he
k that

the result (15.31) makes sense: The surfa
e tension is I � (j�

eff

j=2)

1=2

�

3

=3 and " � j�

eff

j�

4

=4. Thus

the a
tion of the boun
e be
omes

S =

27�

2

I

4

2"

3

=

8�

2

3j�

eff

j

agreeing with (15.31). An analysis of the RGE of the SM gives for the e�e
tive Higgs boson 
oupling

at the Plan
k s
ale �

eff

(M

Pl

) � �0:01, using the 
entral experimental values for m

h

and m

t

. For the

estimate of the probability P that a bubble of the true va
uum has nu
leated in the past-light 
one

of an observer, we 
an set V T � t

4

0

with t

0

as the present age of the universe. Setting the prefa
tor A

by dimensional reasons equal to A � �

4

�M

4

Pl

, the tunnelling probability is

P � (t

0

M

Pl

)

4

expf�8�

2

=(3j�

eff

j)g � 10

�900

: (15.32)

2

The fa
ts that the bubble extends with v � 1 and that the bubble is thin imply (un?)-fortunately that any

potential observers will be dissolved without having the time to noti
e the arrival of the wall.
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Despite of the enormous volume fa
tor, (t

0

M

Pl

)

4

� (8�10

60

)

4

the tunnelling probability is ex
eedingly

small.

Although the SM va
uum is unstable when extrapolated to the Plan
k s
ale, the probability

that inside the past-light 
one of the observed universe a tunnelling has happened is pra
ti
ally

zero. This 
orresponds to the \metastable region" of the SM shown in Fig. ??.

15.3. Topologi
al defe
ts

A rather generi
 
onsequen
e of phase transitions is the formation of extended solutions to

the �eld equations whi
h are stable by virtue of a topologi
al quantum number. The latter

arises if the spa
e of possible va
uum �eld 
on�gurations 
onsists of two or more subspa
es

whi
h 
annot be 
onne
ted by solutions with a �nite 
lassi
al a
tion. We 
all two �eld


on�gurations �

1

and �

2

topologi
ally equivalent, if they 
an be transformed 
ontinuously

into ea
h other keeping the the potential energy and the Eu
lidean a
tion �nite during the

transformation. Thus topologi
ally equivalent �eld 
on�gurations form equivalen
e 
lasses

whi
h 
an be 
hara
terised by a topologi
al quantum number and are separated by an in�nite

energy barrier. Within ea
h equivalen
e 
lass, the minimal energy solution will be stable. The

spatially uniform ground-state we have assumed up to now as our va
uum in perturbative


al
ulations may thus be dis
onne
ted from other stable solutions whi
h 
annot spread out

to be
ome spatially uniform due to their non-trivial topology.

As a system 
rosses its 
riti
al temperature 
ooling down, it performs a transition from its

symmetri
 state to a state with broken symmetry. While the 
orrelation length � = h�(0)�(x)i

be
omes formally in�nite at the phase transition, the order parameter in the broken phase


an take the same value only in a �nite volume, restri
ted by the �nite propagation speed

of the relevant waves. In the 
ase of the expanding Universe, we expe
t the formation of

order one topologi
al defe
t per 
ausally 
onne
ted region. This pro
ess was �rst suggested

by Kibble, and is therefore 
alled Kibble me
hanism. In a big bang model, it follows thus

�(t) < t with t as the age of the universe. The number density n of topologi
al defe
ts 
reated

in a phase-transition at time t is therefore bounded from below as n > �

�3

� t

�3

.

Domain walls are two-dimensional topologi
al defe
ts whi
h separate three-dimensional

volumes 
ontaining a di�erent va
ua. Examples are ferromagnets where domains of uniform

magnetisation exist. Depending on the gauge group and the pattern of symmetry breaking,

topologi
al defe
ts with one and zero dimensions are also possible: In the �rst 
ase, an one-

dimensional line or string 
ontains a va
ua di�erent from the surrounding, while it is the

se
ond 
ase a point-like obje
t 
alled monopole. We will pro
eed as in 
hapters 13 and ??,

starting with a Higgs model with a single s
alar �eld and in
reasing then the number of s
alar

�elds. At the same, the dimensionality of the topologi
al defe
ts formed will de
rease. As

start, we will 
onsider however the Sine-Gordon model whi
h is de�ned in 1+1 spa
e-time

dimensions.

Sine-Gordon solitons We have 
hosen in general as potential V (�) a polynomial in the

�eld �. In the 
ase of SSB, the periodi
ity of the angular variable in � = �e

i#

leads to a

periodi
ity of the potential. Another example for a Lagrangian with a periodi
 potential is

the Sine-Gordon model de�ned by

L =

1

2

(�

�

�)

2

� V (�) =

1

2

(�

�

�)

2

�

a

b

2

[1� 
os(b�)℄ (15.33)
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with � = f0; 1g and two real parameters a and b. The potential V (�) has zeros for � = 2�n=b.

Expanding V (�) for small �,

L =

1

2

(�

�

�)

2

�

1

2

a�

2

�

ab

2

4!

�

4

+ : : : (15.34)

and 
omparing to our usual ��

4

potential, we see that they agree for small � if we identify

3

a = m

2

and b

2

= �.

From the Lagrangian (15.33), the Sine-Gordon equation

�

2

�

�t

2

�

�

2

�

�x

2

+

a

b

sin(b�) = 0 (15.35)

follows. It admits stati
 and travelling wave solutions, �(x; t) = f(�(x� vt)) � f(��). You


an 
he
k that

f(�) =

4

b

ar
tan[exp(�


p

a=b�)℄ (15.36)

is a solution with 
 = (1� v

2

)

�1=2

as usual Lorentz fa
tor (problem 16.4). The solution with

the plus sign is 
alled a kink, the one with the minus an anti-kink. The kink interpolates

between the n = 0 ground-state at x ! �1 and n = 1 (� = 2�=

p

�) at x ! 1. The

extension ` of the kink is determined by the argument of the ar
tan and is given by ` =

p

b=(


p

a) = �=(
m), 
f. Fig. 15.4.

 0

π/2

π

3π/2

2π

-2π -π  0 π 2π

φ(
ξ)

ξ/l

 0

 0.5

 1

 1.5

 2

-2π -π  0 π 2π

dφ
(ξ

)/
dξ

ξ/l

Figure 15.4.: Left: Kink solution �(�) for a = b = 1; Right: its derivative d�(�)=d�.

The energy (or mass) of a stati
 solution interpolating between n = 0 and n = 1 is

E =

Z

1

�1

dx

"

1

2

�

��

�x

�

2

+ V (�)

#

=

Z

1

�1

dx 2V (�) =

Z

2�=b

0

d�

�x

��

V (�) =

=

Z

2�=b

0

d�

p

2V (�) =

p

2a

b

2

Z

2�

0

d# [1� 
os(#)℄

1=2

=

8m

�

: (15.37)

3

Re
all that a s
alar �eld has dimension [�℄ = (d � 2)=2 in d spa
e-time dimensions. Thus the argument of


os(b�) is dimensionless while the �

4

intera
tion requires a m

2

prefa
tor.

248



15.3. Topologi
al defe
ts

Here we used in the se
ond step the �eld equation together with the requirement that the

energy E is �nite, i.e. Eq. (15.18) with 
 = 0. More generally, a stati
 solution 
onne
ting

n

1

and n

2

has the energy E = 8jn

1

� n

2

jm=�. Thus the energy spe
trum of these solutions

is dis
rete and inverse proportionally to the 
oupling 
onstant. The latter property implies

that these solutions are not a

essible in a perturbative 
al
ulation whi
h is a power series in

the 
oupling 
onstant �. In the weak 
oupling regime, the mass 8m=� of the kink is mu
h

larger than the mass m of the elementary �eld �, while in the strong 
oupling limit the kink

is the lightest ex
itation.

We 
an imagine the Sine-Gordon model as a 
hain of arrows, whi
h the for
e F = ��

x

V

tries to orient e.g. downwards. Then a kink is a solution whi
h points from x = �1 : : : � `

downwards, turning at � � 0 by 2�, and pointing at x

>

�

` again downwards. To untwist the


hain, we would have to turn the arrows on one of the two sides of � � 0 whi
h would 
ost an

in�nite amount of energy. Therefore the winding number � � n

1

�n

2

is a 
onserved quantum

number and the solutions are stable. We 
an understand why the winding number is 
alled a

topologi
al quantum numbers as follows: Identifying the points x = �1 and x =1, we map

R on a 
ompa
t interval. Then the kink be
omes a M�obius band, whi
h 
annot be smoothly

transformed into a 
ir
le S

1

.

A 
onserved quantum number implies the existen
e of a 
onserved 
urrent: The 
ondition

E <1 requires that the �eld approa
hes for x�1 one of the va
uum states, and thus

�(1)� �(�1) =

2�

p

�

� : (15.38)

We 
an rewrite this is an integral,

Z

1

�1

dx�

x

� =

2�

p

�

� : (15.39)

Sin
e the solution is two-dimensional, we 
an set as 
urrent

j

�

=

p

�

2�

"

��

�

�

� : (15.40)

The antisymmetry of "

��

ensures then that �

�

j

�

= 0. The 
onserved 
harge follows with

"

01

= 1 as

Q =

Z

dx j

0

=

p

�

2�

Z

dx �

x

� =

p

�

2�

[�(1)� �(�1)℄ = n

1

� n

2

; (15.41)

i.e. it equals the winding number �. In 
ontrast to the 
onserved 
harges we have en
ountered

up to now, the 
urrent is not the Noether 
urrent of a global symmetry and we did not have

to use the equations of motion in its derivation. Instead, the 
harge has a topologi
al origin.

The solutions of the Sine-Gordon equation maintain their shape, although the equation is

non-linear. Classi
al solutions with this property are 
alled solitons. The distin
tive property

of the Sine-Gordon solitons in 1+1 spa
e-time dimensions is that this holds also for the

asymptoti
 regions of a s
attering event: In parti
ular, two solitons emerge from a 
ollision

un
hanged ex
ept possibly for a phase shift, although the superposition prin
iple is not valid

for non-linear equations of motion.
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Domain walls We now move to topologi
al defe
ts in 3 + 1 dimensions 
onsidering two-

dimensional topologi
al defe
ts 
alled domain walls. Assuming that the domain wall is uni-

form in the y � z plane, its energy (per area) is

E[�℄ =

Z

1

�1

dx

�

1

2

(�

0

)

2

+ V (�)

�

: (15.42)

We assume that the potential energy V (�) is shifted su
h that min(V (�)) = 0. Then the

energy is the sum of two (semi-) positive terms, E[�℄ � 0. Instead of integrating the equation

of motions, as in Eqs. (15.17) to (15.19), we will use now an argument due to Bogomolnyi:

He suggested to rewrite the energy \
ompleting the square" as

E[�℄ =

1

2

Z

1

�1

dx

h

�

0

�

p

2V (�)

i

2

�

Z

�(1)

�(�1)

d

~

�

q

2V (

~

�) : (15.43)

The se
ond integral depends only on the boundary values of the �eld at in�nity. For �eld


on�gurations whi
h 
onne
t the same ground-state at x = �1 and +1, this boundary

term vanishes, and the minimum E[�℄ = 0 of the energy is attained for 
onstant �elds. If the

�eld 
on�gurations 
onne
t however di�erent ground-states, then we 
an asso
iate the se
ond

integral to a non-zero topologi
al 
harge. The winding number in the Sine-Gordon 
ase is a

spe
i�
 example for su
h a topologi
al 
harge.

A lower bound for the energy of �elds with non-zero topologi
al 
harge is

E[�℄ �

�

�

�

�

�

Z

�(1)

�(�1)

d

~

�

q

2V (

~

�)

�

�

�

�

�

; (15.44)

whi
h is attained when the �rst integral vanishes. In this 
ase, the �eld satis�es a �rst-order

equation �

0

= �

p

2V (�) whi
h is generally mu
h easier to solve than the original se
ond-order

equation of motion. Separating again variables, we arrive at

x = �

Z

d�

p

2V (�)

: (15.45)

To pro
eed, we have to 
hoose a de�nite potential. For the 
hoi
e (15.20), we 
ome ba
k to

the solution

�

�

(x) = �� tanh

 

�

p

�

p

2

(x� x

0

)

!

(15.46)

whi
h we have used in the 
al
ulation of the boun
e. The solution �

�

interpolates between

the two va
ua �� of the symmetri
 potential V

0

(�) and 
ontains at x = x

0

a two-dimensional

plane with the unbroken va
uum � = 0. More generally, the two-dimensional surfa
es whi
h

separate domains with opposite values of � 
an have a �nite size.

Global 
osmi
 strings We 
ontinue our way through possible topologi
al defe
ts looking at

the 
onsequen
es of a global 
ontinuous symmetry. Thus we repla
e the single real �eld by a

set of two real or one 
omplex �eld � = �

1

+ i�

2

with potential

V (�) =

�

4

�

�

y

�� �

2

�

2

: (15.47)
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We use 
ylinder 
oordinates �; �; z, and sear
h for stati
 solutions using as ansatz

� = �e

in#

f(�) : (15.48)

The phase e

in#


an be 
hosen arbitrarily at � = 0, unless the �eld is zero at the origin. In

order to ensure a single-valued �eld, we have therefore to impose the boundary 
ondition

f(�) ! 0 for � ! 0. In the opposite limit, � ! 1, the �eld should approa
h one of its

minima,

�! �e

in#

and f(�)! 1 ; (15.49)

in order to minimise the energy.

For the ansatz (15.48), the �eld equations are separable and we �nd from �� = �(�

2

��

2

)�

as di�erential equation for f

d

2

f

d�

2

+

1

�

df

d�

�

n

2

�

2

f = �(f

2

� 1)f : (15.50)

Here we have introdu
ed also the new dimensionless variable � = �

1=2

��. This di�erential

equation together with the two boundary 
onditions for � ! 0 and � ! 1 has to be solved

numeri
ally.

We 
an however estimate the extension of a 
osmi
 string by dimensional arguments. The

s
ale of the problem is set by �=� = �

�1=2

�

�1

. Thus the 
ore 
ontaining the unbroken

va
uum � = 0 has the radius O(�

�1=2

�

�1

), while for larger distan
es �� �

�1=2

�

�1

the �eld

approa
hes the broken phase j�j = �. The extended solution should have a �nite energy E

per length L,

E

L

=

Z

1

0

d��

Z

2�

0

d#

h

jr�j

2

+ V (�)

i

(15.51a)

=

Z

1

0

d��

Z

2�

0

d#

�

�

�

�

y

�

�

�+

1

�

2

��

y

�#

��

�#

+ V (�)

�

: (15.51b)

The �rst and the last term in (15.51b) give a �nite 
ontribution to E=L, sin
e �

�

f(�) ! 0

and V (�) ! 0 for � ! 1. In 
ontrast, the middle term 
ontributes /

R

R

0

d��

�1

f(�), i.e.

a logarithmi
ally diverging term ln(R=Æ) to the linear energy density. The s
ale Æ has to

be determined by the typi
al extension of the string, and thus the energy density inside the

radius R around the string is E=L � ln[R=(�

1=2

�)℄. If we 
onsider instead of the idealisation

of an isolated global string the realisti
 
ase of a string network, then R should be given by

the typi
al distan
e of strings.

Lo
al 
osmi
 strings We 
an avoid the (formal) problem of the in�nite energy asso
iated

with a string if we gauge the model. In this 
ase we obtain the abelian Higgs model,

L = �

1

4

F

��

F

��

+ (D

�

�)

y

(D

�

�) + �

2

�

y

�� V (�) : (15.52)

The kineti
 term D

�

� = �

�

� + ieA

�

� 
ontains now two 
ontributions whi
h 
an 
an
el for

�!1. We require therefore that A

�

is a pure gauge �eld for �!1 with

A

�

� �

i

e

�

�

ln(�=�) : (15.53)
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Then D

�

� and F

��

approa
h zero for � ! 1, and the energy density per length of a lo
al

string is �nite.

A lo
al string 
arries magneti
 
ux � of the 
orresponding gauge �eld. Integrating (15.53)

around a 
ir
le in a plane with z = 
onst: and large � gives

� =

Z

B � dS =

I

A � dl = �

i

e

Z

2�

0

d#�

#

(in#) =

2�n

e

: (15.54)

Thus the magneti
 
ux 
arried by lo
al strings is quantised in units of 2�=e. If we go ba
k

to 
gs units, then the unit of magneti
 
ux be
omes h
=e, determined 
ompletely by the

three fundamental 
onstants of a relativisti
 quantum theory. A lo
al 
osmi
 string with

winding number n 
arries n 
ux quanta, analogous to quantised tubes of magneti
 
ux in a

super
ondu
tor.

Global monopoles Let us try to 
ondense our results before we pro
eed: If we split 
omplex

s
alar �elds intro real ones, � = �

1

+ i�

2

, then we 
onsidered in d = 4 potentials of the type

V (�) =

�

4

 

n

X

i=1

�

2

i

� �

2

!

2

: (15.55)

For n = 1, the possible ground-states �

2

= �

2


orrespond to the zero-dimensional sphere

S

0

. The single 
onstraint �(x

1

; x

2

; x

3

) = 0 de�nes a two-dimensional surfa
e in R

3

, whi
h


orresponds to a domain wall. The abelian Higgs model with one 
omplex s
alar doublet has

n = 2. Now �

2

1

+ �

2

2

= �

2

de�nes an one-dimensional sphere S

1

as manifold of the possible

ground-states, while a topologi
al defe
t de�ned by �

1

= �

2

= 0 is as the se
tion of two

surfa
es a line. These results are summarised in the �rst two entries of Table 15.1.

The logi
al next step is to 
onsider three s
alar �elds whi
h transform under SO(3). Then

the va
uum manifold is the sphere S

2

and we expe
t zero-dimensional topologi
al defe
ts

whi
h are 
alled monopoles. We start again examining the global 
ase. Using spheri
al


oordinates, we sear
h for stati
 solutions using as ansatz

�

i

= �h(r)

x

i

r

; (15.56)

whi
h satis�es the requirement

�

i

�

i

= �

2

for jxj ! 1 ; (15.57)

if h(r)! �1 for r !1. Additionally, the fun
tion h(r) should satisfy the boundary 
ondition

h(r) ! 0 for r ! 0 to ensure a non-singular �(0). Estimating again the energy density at

defe
t n d homotopy group

domain wall 1 2 �

0

(M

0

)


osmi
 string 2 1 �

1

(M

0

)

monopole 3 0 �

2

(M

0

)

texture 4 { �

3

(M

0

)

Table 15.1.: The number n of s
alars de-

termines the dimension d of

the va
uum manifoldM

0

and

the dimension 3�n of the hy-

persurfa
e 
ontaining the un-

broken va
uum.
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large r by simple dimensional analysis gives

� �

1

2

(�

i

�)

2

�

3

2

�

2

r

2

(15.58)

and thus the energy 
ontained inside a sphere of radius R diverges linearly, E � 3�

2

R=2. In


ontrast to the mild logarithmi
 divergen
e in 
ase of global strings, the behaviour E � 3�R=2

is 
learly disastrous.

The natural way-out is to go on to lo
al monopoles and to 
he
k if the gauge �elds 
an


ompensate the s
alar gradient energy. Before we do so, we ask however if there is a way

to ensure that the total energy of global monopoles is �nite. Imagine a monopole (h(r) = 1

for r ! 1) and an anti-monopole (h(r) = �1 for r ! 1) pair separated by the distan
e d:

Their �elds �

i

(r) will 
an
el for r � d, leaving over only higher multipole moments �

i

� r

�2

.

Thus the energy density of a monopole-antimonopole pair s
ales as � � �r

�4

and therefore

their total energy E is �nite. Separating a monopole-antimonopole pair would 
ost an in�nite

amount of energy|instead a new monopole-antimonopole pair will be 
reated as soon as the

potential energy between the pair ex
eeds a 
ertain threshold. We 
an view this behaviour

therefore as a model for the 
on�nement of 
oloured parti
les as quarks and gluons in QCD,

where the potential energy V (r) for distan
es r

>

�

�

�1

QCD

s
ales also linearly.

't Hooft-Polyakov monopoles The simplest model exhibiting lo
al monopoles is the Georgi-

Glashow model. It 
ontains a SO(3) gauge �eld A

a

�

supplemented by a triplet of real Higgs

s
alars �

a

. Choosing a uniform vev as �

a

= (0; 0; v) leaves a residual U(1) symmetry unbroken,


orresponding to rotations around the 3-axis in isospin spa
e. Thus one 
an view the Georgi-

Glashow model as a toy model for the ele
troweak se
tor of the SM, where the gauge �eld

A

3

�

plays the role of the photon and the Z boson is missing.

't Hooft and Polyakov showed �rst that this model 
ontains extended 
lassi
al solutions

whi
h have �nite energy and 
orrespond to lo
al magneti
 monopoles. Using the adjoint

representation (T

a

adj

)

b


= �if

ab


for the s
alar triplet of real Higgs s
alars �

a

, the 
ovariant

derivative be
omes

D

i

�

a

= �

i

�

a

� e"

ab


A

b

i

�




(15.59)

or in ve
tor notation D

i

� = �

i

��eA

i

��. Here, we assumed for simpli
ity that the monopole


arries no ele
tri
 
harge, setting A

a

0

. We �x again the asymptoti
 behaviour of the gauge

�elds by requiring that the kineti
 term D

i

�

a

vanishes for r !1. From

�

i

�

a

� �

Æ

ai

� x

i

x

a

r

2

;

we 
on
lude that A

b

i

should be 
onstant, while (15.59) implies that A

i

is perpendi
ular to �.

Evaluating D

i

�

a

using "

aij

"

akl

= Æ

ik

Æ

jl

� Æ

il

Æ

jk

shows that

A

a

i

=

�

e

[1� f(r)℄"

aij

x

j

r

(15.60)

with f(r)! 0 for r !1 leads to the desired asymptoti
 behaviour of the 
ovariant derivative.

Now the regularity of the solution A

a

i

at r = 0 requires f(0) = 1.

Inserting the two Ans�atze (15.56) and (15.60) into the energy fun
tional of the Georgi-

Glashow model and minimising the energy results in two 
oupled di�erential equations for
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the fun
tions h(r) and f(r). In order to be be able to pro
eed analyti
ally, we 
onsider only

the limit �=g

2

=m

2

h

=(2m

2

W

)! 0. Then the potential energy V (�) is negligible,

V (�) =

�

4

 

3

X

a=1

�

2

a

� �

2

!

2

! 0 for �! 0 ; (15.61)

if the �elds satisfy the 
onstraint (15.57). Thus the boundary 
onditions (15.57) remain valid

in the limit 
onsidered. Negle
ting V (�), we 
an use Bogomolnyi's tri
k to derive an exa
t

solution. We express the stati
 energy as

E =

1

2

Z

d

3

x

�

(B

a

i

)

2

+ (D

�

�

a

)

2

�

=

1

2

Z

d

3

x

�

(B

a

i

�D

i

�

a

)

2

� 2B

a

i

D

i

�

a

�

� 0 : (15.62)

Then we obtain the bound

E �

Z

d

3

xB

a

i

D

i

�

a

(15.63)

whi
h is attained, if the �elds satisfy D

i

�

a

= �B

a

i

. Now we have to solve only the simpler

�rst-order equation D

i

�

a

=

1

2

"

ijk

F

a

jk

. Its solution is 
alled a Bogomolnyi-Parad-Sommer�eld

(BPS) monopole and, generalising, all solitons whi
h minimise the 
lassi
al a
tion are denoted

as BPS states or BPS solitons.

Example 15.2: Find the solution of the �rst-order equation D

i

�

a

= �B

a

i

.

We evaluate with (15.56) the LHS,

D

i

�

a

= �

Æ

ai

� x

i

x

a

r

fh+ �

x

i

x

a

r

2

h

0

(15.64)

and with (15.60) the RHS,

B

a

i

=

1

2

"

ijk

F

a

jk

=

1

2

"

ijk

�

�

j

A

a

k

� �

k

A

a

j

� e"

ab


A

b

j

A




k

�

(15.65a)

= "

ijk

�

j

A

a

k

�

1

2

e"

ijk

"

ab


A

b

j

A




k

=

1

g

r

2

Æ

ai

� x

i

x

a

r

2

f

0

+

1

g

x

i

x

a

r

3

(1� f

2

) : (15.65b)

Sin
e the two tensors r

2

Æ

ai

� x

i

x

a

and x

i

x

a

are orthogonal, the two 
oupled di�erential equations for

the pro�le fun
tions h(r) and f(r) simplify to

f

0

(r) = �g�f(r)h(r) and h

0

(r) =

1

g�r

2

[1� f(r)

2

℄ : (15.66)

Taking into a

ount the boundary 
onditions, the solution expressed through the dimensionless variable

� = g�r is given by

h(r) = 
oth(�)�

1

�

and f(r) =

�

sinh(�)

: (15.67)

Finally, we want to determine the 
harge of a BPS monopole. While the massive �elds

fall o� exponentially for r ! 1, the 
omponent of F

a

ij


onne
ted to the massless photon

de
rease as a power-law. Moreover, the �elds (15.56) and (15.60) are pra
ti
ally uniform at

large distan
es r from the 
enter of the monopole. Thus in a laboratory at x, the �eld F

ij


orresponds to the massless photon, while the two states orthogonal to F

ij

are the massive
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weak gauge bosons. This implies that the part of F

a

ij

whi
h 
orresponds to the ele
tromagneti


�eld is parallel to �

a

,

F

ij

= F

a

ij

�

a

v

: (15.68)

The magneti
 part of the SU(2) �eld-strength tensor is

B

a

i

=

1

2

"

ijk

F

a

jk

= "

ijk

�

j

A

a

k

�

1

2

e"

ijk

"

ab


A

b

j

A




k

; (15.69)

where we inserted the de�nition of F

a

jk

. If we are far away from the 
enter of the soliton, we


an use the asymptoti
 expression for the �elds, setting f(r) = 0 and h(r) = 1. Performing

the di�erentiations (problem 16.8) we arrive at

B

a

i

=

1

g

n

i

n

a

r

2

: (15.70)

Thus the U(1) magneti
 �eld is given by

B

i

=

1

g

n

i

r

2

: (15.71)

Comparing this to the expression qn

i

=(4�r

2

) for the �eld of a monopole, we 
on
lude that

the magneti
 
harge of the BPS monopole is q

m

= 4�=g.

Textures Finally we should 
omment on the 
ase n = 4 whi
h 
orresponds to the ele
-

troweak model. The four equations �

i

(x

1

; x

2

; x

3

) = 0 have in general no solution in R

3

. Thus

regions whi
h 
ontain the unbroken va
uum �

i

= 0 will be not formed during the ele
troweak

phase transition. Still, 
orrelations 
an not exist beyond the horizon s
ale and thus non-zero

gradients �

�

�

i


an be produ
ed. In the 
ase of global textures, stati
 solutions with positive

energy density 
an exist. In the 
ase of a broken gauge symmetry, gauge �elds will 
ompen-

sate the �

�

�

i

term in D

�

�

i

. Thus lo
al textures as predi
ted by the SM have no observable


onsequen
es.

Homotopy groups and winding numbers The topologi
al quantum numbers we have met

dis
ussing extended 
lassi
al solutions 
an be asso
iated to winding numbers of maps between

the ground states of a �eld theory and its 
on�guration spa
e. Let us de�ne the ground-state

or va
uum manifold M

0

of a theory as the set of all global minima V (�) = 0 of its potential,

M

0

= f� : V (�) = 0g : (15.72)

The 
ondition that the potential energy is �nite requires that

lim

jxj!1

�(x) = � 2M

0

: (15.73)

We 
an 
ompa
tify R

n

(where n is the number of spatial dimensions) to the sphere S

n

using

e.g. a stereographi
 proje
tion as shown in Fig. 15.5. Then we 
an view the 
ondition that

the potential energy is �nite as a mapping S

n

! M

0

. We ask now the question when two

su
h mappings are topologi
ally distinguished.

We 
onsider only the mappings S

1

! S

1

� R

2

nf0g whi
h are easiest to visualise. Two


losed loops with base point x

0

, i.e. 
urves x(t) with t 2 [0 : 1℄ and x(0) = x(1) = x

0

,
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N

P

P

0

R

n

S

n

Figure 15.5.: A stereographi
 proje
tion maps points P 2 R

n

onto points P

0

2 S

n

. The north

pole N of the sphere S

n


orresponds to the sphere S

n�1

R

at spatial in�nity,

x

2

i

+ � � �+ x

2

n

= R

2

!1, of R

n

.

are shown in Fig. 15.6. While the dashed loop is 
ontra
table, the solid one is wrapped on
e

around f0g and therefore not 
ontra
table to its base-point x

0

by 
ontinuous transformations.

We de�ne the maps

U

(�)

= e

i#�

=

h

U

(1)

i

�

; (15.74)

whi
h 
ount the number of times a loop is wrapped around the origin. The integer � is 
alled

the winding number of the map and 
an be rewritten as an integral,

� =

i

2�

Z

2�

0

d#U�

#

U

y

: (15.75)

Clearly, this formula reprodu
es the 
orre
t values for the mappings de�ned above. Moreover,

it is useful for the proof that � is invariant under 
ontinuous transformations. It is suÆ
ient

to investigate an in�nitesimal 
hange ÆU . Unitarity UU

y

= 1 implies that ÆUU

y

+UÆU

y

= 0

and ÆU

y

= �U

y

ÆUU

y

. Sin
e we will interested later in the non-abelian version of the winding

number, we will not use that the U are 
ommuting 
omplex numbers.

We 
al
ulate the variation of the integrand in the integral formula (15.75) for �,

Æ(U�

#

U

y

) = ÆU�

#

U

y

+ U�

#

ÆU

y

(15.76a)

= ÆU�

#

U

y

� U�

#

U

y

ÆUU

y

� UU

y

�

#

ÆUU

y

� UU

y

ÆU�

#

U

y

(15.76b)

= �U

h

�

#

U

y

ÆU + U

y

�

#

ÆU

i

U

y

= �U�

#

h

U

y

ÆU

i

U

y

: (15.76
)

Here, we inserted �rst ÆU

y

= �U

y

ÆUU

y

and performed the di�erentiations. Then the �rst

and fourth terms 
an
el, and �nally we 
ombined the remaining two terms using the produ
t

rule. In 
ase of the abelian winding number � of (15.75), we obtain then

Æ� =

i

2�

Z

2�

0

d# Æ(U�

#

U

y

) = �

i

2�

Z

2�

0

d#�

#

h

U

y

ÆU

i

= 0 : (15.77)

Thus the winding number � is an integer whi
h is invariant under in�nitesimal deformations

of the loop. Sin
e any 
ontinuous transformation 
an be built up out of in�nitesimal ones,
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#

x

y

x

0

x

0

Figure 15.6.: Two loops in R

2

nf0g with 
ommon base point x

0

: the dashed line is 
ontra
table

and has winding number � = 0, the solid loop is wrapped on
e around f0g and

has winding number � = �1.

the maps S

1

! S

1


an be divided into di�erent equivalen
e 
lasses, ea
h 
hara
terised by

the value � 2 Z. Only maps within ea
h 
lass 
an be 
ontinuously transformed into ea
h

other. Mathemati
ians say that su
h maps are homotopi
. The theory of homotopy groups

addresses the question into how many homotopy 
lasses �

n

(X) the set of maps S

n

! X


an be divided. If �

n

(M

0

) 6= 1, then the theory with va
uum manifoldM

0


ontains stable

topologi
al defe
ts, 
f. table 15.1. Expressed in the language of homotopy groups, we have

shown that �

1

(S

1

) = Z. Sin
e S

1

' U(1), this shows also that �

1

(U(1)) = Z.

A general results from the theory of homotopy groups says that the se
ond homotopy

group �

2

(G=H) of the quotient group G=H equals the �rst homotopy group �

1

(H) of H. If

we identify the SM with H, then H = SU(3) 
 U(1) and �

1

(U(1)) = Z is non-trivial. Thus

the sequen
e

�

2

(G=H) = �

1

(H) = �

1

(SU(3)
 U(1)) = Z 6= 1 (15.78)

shows that, if U

em

(1) is uni�ed at a higher s
ale within a larger semi-simple groupG, then mag-

neti
 monopole solutions exist. Thus a grand uni�ed theory implies that magneti
 monopoles

are produ
ed at the GUT phase transition. We will see later that su
h monopoles would

over
lose the universe, leading to a very short life-time of the universe. The wish to dilute

the density of monopoles was a prime motivation for the invention of in
ation.

Summary

Classi
al stati
 solutions of theories with SSB 
an fall into di�erent equivalen
e 
lasses whi
h

are separated by an in�nite potential energy barrier. This 
an lead to two-, one- or zero-

dimensional topologi
al defe
ts whi
h 
ontain in their 
ore the unbroken va
uum of the sym-

metri
 phase. Instantons or boun
es are solutions of the 
lassi
al �eld equation in Eu
lidean

spa
e whi
h evolve in Eu
lidean time between two di�erent va
ua. If their a
tion is �nite,
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al defe
ts

they des
ribe in Minkowski spa
e instantaneous tunnelling from the false to the true va
uum.

Further reading

A 
lear a

ount of topologi
ally non-trivial solutions of the 
lassi
al �eld equations is given

by [Rub02℄. For a 
al
ulation of the e�e
tive potential of the SM and the resulting tunnelling

probability see [Esp14℄ and the referen
es therein.

Problems

15.1 Order of the phase transition.

Determine the 
riti
al temperature T




of the ��

4

theory from Eq. (15.7). Cal
ulate the pressure and

the heat 
apa
ity above and below T




and 
on�rm

thereby that the phase transition is of se
ond or-

der.

15.2 Field equation for the boun
e solution.

Show that Eq. (15.15) agrees with the Klein-

Gordon equation �� = V

0

(�) for a radial symmet-

ri
 �. (Use Eq. (6.61) to evaluate �� = r

a

r

a

�.)

15.3 S
alar instantons.

Show that the ansatz �(r) = A�=(r

2

+ �

2

) solves

(15.15). Determine the a
tion S.

15.4 Soliton solution of the Sine-Gordon

equation.

Show that Eq. (15.36) solves the Sine-Gordon

equation and dis
uss the behaviour under Lorentz

transformations. .

15.5 Domain wall

Estimate the extension of a domain wall using di-

mensional analysis.

15.6 Derri
k's theorem.

Consider the behaviour of the energy fun
tional

E[�℄ = T [�℄ +V [�℄ for a s
alar �eld � under s
ale

transformation x ! �x in D spa
e dimensions.

Show that for D � 2 no stable solutions with �-

nite energy exist.

15.7 D

�

for the adjoint representation.

Show that D

�

= �

�

+ eA

�

results for SO(3) in

Eq. (15.59) for the adjoint representation.

15.8 Duality of Maxwell

Show that the sour
e-free Maxwell equations are

invariant under the duality transformation E

0

=

E 
os� + B sin� and B

0

= �E sin� + B 
os�.

Show that the invarian
e of the Maxwell equa-

tions with sour
es requires the existen
e of mag-

neti
 monopoles.

15.9 Magneti
 �eld of a monopole

Derive Eq. (15.70).
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16. Anomalies, instantons and axions

At the 
lassi
al level, any global 
ontinuous symmetry of a system des
ribed by a Lagrangian

leads to a lo
ally 
onserved 
urrent. In order to de
ide if these symmetries do survive quan-

tisation, we have to study if the generating fun
tional Z[J ℄ retains the symmetries of the


lassi
al Lagrangian L . Several examples where a quantised system does not share the sym-

metries of its 
lassi
al 
ounter-part have been found. As this behaviour 
ame as a surprise, it

was 
alled \anomalous" and the non-zero terms violating on the quantum level the 
lassi
al


onservation laws were 
alled \anomalies". A 
ase we en
ountered already is the breaking of

s
ale invarian
e (or 
onformal symmetry) in the pro
ess of renormalising massless theories;

we will 
al
ulate this anomaly in the next 
hapter. The only other example of anomalous

theories in d = 4 spa
e-time dimensions are models 
ontaining 
hiral fermions, i.e. theories

where left- and right-
hiral fermions intera
t di�erently. This anomaly is 
alled axial or 
hiral

anomaly and shows up in loop graphs 
ontaining 
hiral fermions 
oupled to gauge �elds or

gravitons. In the SM, the axial anomaly leads to three important phenomenologi
al 
on-

sequen
es: First, the anomaly in the ele
troweak 
urrents vanishes, if the ele
tri
 
harges

of all left-handed fermions sum up to zero. Thus the fa
t that ele
troweak Ward identities

hold restri
ts the parti
le 
ontent of the theory. Se
ond, the axial anomaly in 
onjun
tion

with topologi
ally non-trivial solutions of the Yang-Mills equations leads to the violation of

CP invarian
e in strong intera
tions, in 
ontradi
tion to observations. This is the so-
alled

\strong CP problem". Finally, the violation of CP is a ne
essary 
ondition for the generation

of a baryon asymmetry, and thus these topologi
ally non-trivial solutions play an important

role in models of baryogenesis.

The fa
t that a 
lassi
al symmetries is broken by quantum e�e
ts is often des
ribed as

\the anomaly breaks the 
lassi
al symmetry". One should keep in mind that on the quantum

level there is no symmetry to start with. Thus there is no Goldstone boson asso
iated to a

symmetry broken by an anomaly.

16.1. Axial anomalies

Anomaly from non-invarian
e of the path integral measure The simplest model exhibiting

an axial anomaly is axial ele
trodynami
s, i.e. a fermion 
oupled via its ve
tor and axial


urrent to two di�erent gauge �elds. The Lagrangian for this system reads

L =

�

 i


�

(�

�

+ iqV

�

+ igA

�




5

) �

1

4

F

2

�

1

4

G

2

(16.1)

with

F

��

= �

�

A

�

� �

�

A

�

and G

��

= �

�

V

�

� �

�

V

�

: (16.2)

Performing a 
ombined U

V

(1)
U

A

(1) gauge transformation,

V

�

! V

0

�

= V

�

� �

�

�(x) and A

�

! A

0

�

= A

�

� �

�

�(x) ; (16.3)
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indu
es the following 
hange of the fermion �elds,

 (x)!  

0

(x) = exp fiq�(x) + ig�(x)


5

g (x) ; (16.4a)

�

 (x)!

�

 

0

(x) =

�

 (x) exp f�iq�(x) + ig�(x)


5

g : (16.4b)

In order to determine the transformation properties of the fermioni
 path integral measure,

we introdu
e �rst eigenfun
tions of the gauge-invariant Dira
 operator iD= ,

iD=�

n

= �

n

�

n

and

X

n

�

x

(x)�

y

n

(y) = Æ(x � y)1 : (16.5)

Then we 
an expand the fermion �elds as

 (x) =

X

n

a

n

�

n

(x) and

�

 (x) =

X

n

�

y

n

(x)

�

b

n

; (16.6)

where the 
oeÆ
ients a

n

and

�

b

n

are Gra�mann variables. Thus we 
an rewrite the path

integral measure as D D

�

 =

Q

n

da

n

d

�

b

n

. Next we relate the 
hange in the fermion �elds to

a 
hange in the expansion 
oeÆ
ients,

 

0

(x) =

X

n

a

0

n

�

n

(x) =

X

n

a

n

exp fiq�(x) + ig�(x)


5

g�

n

(x) (16.7a)

�

 

0

(x) =

X

n

�

y

n

(x)

�

b

0

n

=

X

n

�

y

n

(x) exp f�iq�(x) + ig�(x)


5

g

�

b

n

: (16.7b)

Thus the variation introdu
ed by a ve
tor U

V

(1) gauge transformation 
an
els in the fermioni


measure D D

�

 , while the 
orresponding 
hange under the axial U

A

(1) gauge transformation

adds up. We 
an determine the latter taking into a

ount that the �

n

are an orthonormal

basis as

a

0

m

=

X

n

Z

d

4

x�

y

m

(x) exp fig�(x)


5

g�

n

(x)a

n

� C

mn

a

n

: (16.8)

Re
alling the transformation rules for Gra�mann integrals, D ! D J

�1

= D [Det(C)℄

�1

,

the produ
t D D

�

 of the fermioni
 measure 
hanges as

D D

�

 ! D D

�

 [Det(C)℄

�2

= D D

�

 exp

 

�2ig

X

n

Z

d

4

x �(x)tr �

y

n

(x)


5

�

n

(x)

!

: (16.9)

Here we used also the identity Det exp(A) = expTr(A). The sum 
ontains a tra
e over the

spinor indi
es whi
h is zero, but also a divergent sum over the eigenfun
tions of iD= . Therefore

we have to regularise the expression. We add as gauge-invariant regulator the fun
tion

f = exp

�

��

2

n

=M

2

	

= exp

n

D=

2

=M

2

o

; (16.10)

whi
h approa
hes zero fast for �

2

n

! 1. The limit f ! 1 of the regulator 
orresponds to

M !1, whi
h will allow us later an expansion of our result for

A(x) �

X

n

tr

n

�

y

n

(x)


5

exp

�

D=

2

=M

2

�

�

n

(x)

o

(16.11)
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16.1. Axial anomalies

in powers of 1=M

2

. Note that we have expressed the 
hange of the measure as an additional

term ÆL = 2g�(x)A(x) in the Lagrangian.

As the ve
tor U

V

(1) gauge transformation keeps the integration measure invariant, we

ignore it in the following 
al
ulations. Thus we need to 
al
ulate D=

2

in
luding only the axial

gauge �eld A,

D=D= = 


�




�

D

�

D

�

= D

2

+

g

2

�

��

F

��

(16.12)

with

D

2

= (�

�

+ igA

�

)(�

�

+ igA

�

) = �

2

+ 2igA

�

�

�

+ ig

�

�

�

A

�

�

� g

2

A

�

A

�

: (16.13)

We evaluate D

2

using for �

n

plane-waves, �

n

= e

�ikx

1. Then we 
an repla
e the di�erentia-

tions by momenta,

exp

�

D

2

M

2

�

�

n

(x) = exp

�

�

(k

�

+ gA

�

)

2

M

2

+

ig(�

�

A

�

)

M

2

�

�

n

(x) : (16.14)

Taking the 
ontinuum limit of the sum and writing out the full regulator, we obtain

A(x) =

Z

d

4

k

(2�)

4

tr

n

e

ikx




5

exp

h

D=

2

=M

2

i

e

�ikx

o

(16.15a)

=

Z

d

4

k

(2�)

4

tr

�




5

exp

�

�

(k

�

+ gA

�

)

2

M

2

+

ig�

�

A

�

M

2

+

g

2

�

��

F

��

M

2

��

: (16.15b)

The se
ond term in f� � � g is zero be
ause it does not depend on k

�

and tr[


5

℄ = 0. Shifting

variables to the dimensionless MK

�

= k

�

+ gA

�

we obtain

A(x) =M

4

Z

d

4

K

(2�)

4

e

�K

2

tr

�




5

exp

�

g

2

�

��

F

��

M

2

��

: (16.16)

If we expand the exponential in powers of 1=M

2

, only the terms up to O(M

�4

) will survive

in the limit M !1. Using the antisymmetry of F

��

, we 
an also repla
e �

��

by i


�




�

and

�nd then

exp

�

: : :

	

= 1 +

ig

2




�




�

F

��

1

M

2

+

1

2

�

ig

2

�

2




�




�




�




�

F

��

F

��

1

M

4

+O

�

1

M

6

�

: (16.17)

The tra
e properties of the gamma matri
es inform us that the �rst two terms vanish, while

the third results in a term proportional to the totally antisymmetri
 tensor "

����

. Introdu
ing

the dual �eld-strength tensor

~

F

��

=

1

2

"

����

F

��

and then performing the Gaussian integral

over K we are left with

ÆS =

g

2

8�

2

Z

d

4

x�(x)

~

F

��

F

��

: (16.18)

It is sometimes stated that this result is exa
t, be
ause our derivation seems not to rely on

perturbation theory. However, we repla
ed in the evaluation of D=

2

�

n

the 
orre
t solutions �

n

a

ounting for the external gauge �elds by plane-waves. Therefore our derivation 
orresponds

to an one-loop result, similar to our 
al
ulation of the e�e
tive potential in se
tion 13.2.

In a 
lassi
al theory without gauge �elds, a lo
al axial gauge transformation leads to the


hange

L ! L + g(�

�

�)

�

 


�




5

 : (16.19)
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Thus the non-invarian
e of the measure in the path integral violates the 
lassi
al 
onservation

of the axial 
urrent,

�

�

j

�

5

= �

�

(

�

 


�




5

 ) = �

�

(j

�

R

� j

�

L

) =

g

2

8�

2

~

F

��

F

��

: (16.20)

This equation is also known as the Adler-Bell-Ja
kiw anomaly equation.

The extra term introdu
ed in the Lagrangian by an axial gauge transformation is pro-

portional to

~

F

��

F

��

and transforms thus odd under CP. If this intera
tion were physi
ally

relevant, ele
trodynami
s 
oupled to 
hiral fermions would violate CP. The

~

F

��

F

��

term is

gauge invariant, has dimension four and 
orresponds therefore to a renormalisable intera
tion.

The reason why we have not 
onsidered it earlier is that it is a total derivative,

F

��

~

F

��

=

1

2

"

����

(�

�

A

�

� �

�

A

�

)(�

�

A

�

� �

�

A

�

) = 2"

����

�

�

A

�

�

�

A

�

=

= 2"

����

�

�

(A

�

�

�

A

�

) = �

�

(2"

����

A

�

�

�

A

�

) � �

�

K

�

:

(16.21)

Sin
e the four-divergen
e K

�

is not gauge invariant, it 
annot be an observable. Therefore it

is not ex
luded that K

�

is singular, leading after integration to non-zero e�e
ts in the a
tion.

Before we dis
uss in more detail when it is justi�ed to negle
t a total derivative term, we will

re-derive the anomaly using a diagrammati
 approa
h.

Perturbative appearan
e of anomalies Histori
ally, the 
hiral anomaly was �rst en
oun-

tered 
al
ulating the pro
ess �

0

! 

 using perturbation theory. Des
ribing the neutral pion

within a non-relativisti
 quark pi
ture as a �

0

= (�uu+

�

dd)=

p

2 state, we 
an view the pro
ess

as

k + p2

kk − p1

p2

p1

γµγ5

γλ

γκ

+

k + p1

kk − p2

p1

p2

γµγ5

γκ

γλ

Here, the 


5

matrix a

ounts for the fa
t that the pion is a pseudos
alar parti
le. The two

diagrams are 
onne
ted by the 
rossing symmetry �$ �, p

1

$ p

2

. The total matrix element

of this pro
ess is thus given by the sum

A

���

(p

1

; p

2

) = S

���

(p

1

; p

2

) + S

���

(p

2

; p

1

) ; (16.22)

where the matrix element S

���

des
ribing the �rst diagram (negle
ting 
oupling 
onstants)

is given by

S

���

= �(�i)

3

Z

d

4

k

(2�)

4

tr

�




�

i

k= � p=

1




�




5

i

k= + p=

2




�

1

k=

�

: (16.23)

It is suÆ
ient to 
onsider only massless fermions: The anomaly is 
onne
ted to the UV

divergen
es of these diagrams and in this limit masses play no rôle.

We 
he
k now, if the 
lassi
al 
onservation law for the ve
tor and the axial 
urrent hold also

at the one-loop level. Current 
onservation implies the following three relations in momentum
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spa
e,

p

�

1

A

���

= p

�

2

A

���

= 0 (16.24a)

(p

1

+ p

2

)

�

A

���

= 0 ; (16.24b)

where (16.24a) are the equations for the 
onservation of the ve
tor 
urrent, and (16.24b) for

the 
onservation of the axial 
urrent. Crossing symmetry implies that these relations must

also hold for the two individual amplitudes S.

We 
he
k �rst, if the axial 
urrent is 
onserved. In evaluating

I

��

� (p

1

+ p

2

)

�

S

���

= �

Z

d

4

k

(2�)

4

tr

�




�

(k= � p=

1

)(p=

1

+ p=

2

)


5

(k= + p=

2

)


�

k=

�

(k � p

1

)

2

(k + p

2

)

2

k

2

(16.25)

we use

(p=

1

+ p=

2

)


5

= p=

1




5

� 


5

p=

2

= �(k= � p=

1

)


5

� 


5

(k= + p=

2

)

and (k= � p=

i

)

2

= (k � p

i

)

2

, so that we 
an split the integral into two parts,

I

��

=

Z

d

4

k

(2�)

4

tr

�




�




5

(k= + p=

2

)


�

k=

�

(k + p

2

)

2

k

2

| {z }

A

��

(p

2

)

+

Z

d

4

k

(2�)

4

tr

�




�

(k= � p=

1

)


5




�

k=

�

(k � p

1

)

2

k

2

| {z }

B

��

(p

1

)

: (16.26)

Observe now that the LHS is a pseudo-tensor of rank 2, while the RHS is the sum of the

two quantities A

��

and B

��

whi
h ea
h only depend on one momentum. As it is not possible

to 
reate a pseudo-tensor of rank 2 from that, the RHS must be zero. We have thus shown

(ostensibly!) that the axial 
urrent is 
onserved.

Next we verify the 
onservation of the ve
tor 
urrent, following the same line of argument

as in the 
ase of the axial 
urrent. Starting from

J

��

� p

�

1

S

���

= �

Z

d

4

k

(2�)

4

tr

�

p=

1

(k= � p=

1

)


�




5

(k= + p=

2

)


�

k=

�

(k � p

1

)

2

(k + p

2

)

2

k

2

; (16.27)

we shift the integration variable k

0

= k + p

2

and reorder the terms in the tra
e, obtaining

J

��

= �

Z

d

4

k

0

(2�)

4

tr

�

(k=

0

� p=

1

� p=

2
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5

k=
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(k
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1
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2

k

02
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1

+p

2
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+

Z
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4

k
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(2�)

4

tr
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(k=

0

� p=

2
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5

k=
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�
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k

02

(k

0

� p

2

)

2

| {z }

B

��

(p

2

)

: (16.28)

Thus we 
on
lude that J

��

also vanishes. For the p

�

2

S

���

part, we follow the same argument,

but we shift the integration variable by k

0

= k � p

1

instead.

We have now shown that both the axial 
urrent and the ve
tor 
urrent are 
onserved. Using

these results in the 
al
ulation for the de
ay width of a �

0

leads however to a width whi
h

vanishes in the limit of a massless pion. In
luding the small pion mass leads still to life-time

mu
h longer than observed. Looking ba
k at our 
al
ulation, we should 
he
k therefore if

all our manipulations were legitimate, although we have not regularised the divergent loop

integrals. In parti
ular, the super�
ial divergen
e of the diagrams S

���

is worse than the

logarithmi
 divergen
es we have be
ome a

ustomed to,

S

���

= �

Z

d

4

k

(2�)

4

tr

�




�

k=


�




5

k=


�

k=

�

k

6

+ subleading terms (16.29)
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produ
ing a linearly divergent term.

An essential ingredient for the derivation of the 
urrent 
onservation was the shift of our

integration variable. Su
h a shift 
an only be done if the integral is properly 
onvergent (after

regularisation, if required) or only logarithmi
 divergent. By 
ontrast, in the 
ase of a linearly

divergent integral, the shift k

0

= k � a

Z

d

4

k

0

f(k

0

)

?

=

Z

d

4

kf(k � a) =

Z

d

4

k

�

f(k)� a

�

�f

�k

�

+ : : :

�

(16.30)


hanges the value of the integral: Using Gauss' theorem, we 
an 
onvert the gradient term

into a surfa
e integral whi
h will lead to a �nite 
hange of the integral be
ause of dS

�

/ k

3

and f / k

�3

. You should show in problem 17.?? that the shift k

�

� a

�

in (16.29) 
hanges

S

���

as

S

���

! S

0

���

= S

���

+

1

8�

2

�

����

a

�

(16.31)

where �

����

is again the totally anti-symmetri
 tensor.

We 
an look ba
k at the 
orresponding proof of gauge invarian
e for the va
uum polari-

sation, Eqs. (12.36{12.38). There we used dimensional regularisation whi
h respe
ts gauge

symmetry. Sin
e 


5

is not well-de�ned for d 6= 4, we 
annot apply this regularisation method

here. Using Pauli-Villars regularisation as an alternative would break axial symmetry, sin
e

it 
onsists of adding massive parti
les. Thus, from a te
hni
al point of view, anomalies arise,

if no regularisation pro
edure exists whi
h respe
ts the 
lassi
al symmetry.

Sin
e the shifts of the integration variables required to obtain 
urrent 
onservation di�er

for the ve
tor and axial 
urrent, we 
an absorb only one of the resulting boundary terms

(16.31) by a suitably 
hosen 
ounter-term. Clearly, we will 
hoose the ve
tor 
urrent to be


onserved: Otherwise ele
tri
 
harge 
onservation would be violated, while the axial 
urrent

is anyway broken by mass e�e
ts. If we 
onsider as amplitude in
luding a 
ounter-term

A

���

= S

���

(p

1

; p

2

) + S

���

(p

2

; p

1

) +

1

4�

2

�

����

(p

�

1

+ p

�

2

) ; (16.32)

the ve
tor 
urrent will still be 
onserved, but the axial 
urrent will not

(p

1

+ p

2

)

�

A

���

=

1

2�

2

�

����

p

�

2

p

�

1

: (16.33)

The added 
ontribution gives a non-zero 
ontribution to the divergen
e of the axial 
urrent

whi
h is identi
al to our previous result (16.18),

�

�

j

�

5

=

e

2

8�

2

F

��

~

F

��

: (16.34)

Let us 
ome ba
k to the question, if these results are exa
t. Studying higher-order 
orre
tions,

one 
an show that these 
orre
tions vanish and thus the perturbative one-loop result for the

anomaly is exa
t. As an heuristi
 argument we 
an use that adding additional propagators

will redu
e the super�
ial degree of divergen
e, while the anomaly is 
onne
ted to linearly

divergent diagrams. As a 
onsequen
e, pro
esses whi
h are dominated by the anomaly like

�

0

! 2
 
an be 
al
ulated reliably in lowest-order perturbation theory, although for Q

2

=

m

2

�

� �

2

QCD

the strong 
oupling 
onstant �

s

(Q

2

) is 
ertainly not small and higher-order


orre
tions are naively expe
ted to be large.
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16.1. Axial anomalies

Can
ellations of anomalies Anomalies may be useful when they 
an break "a

idental"

global symmetries like baryon and lepton number. As we will see later, this opens the possi-

bility to explain why the universe 
onsists mainly of matter. Similarly, the expli
it breaking

of global symmetries in the quark Lagrangian 
an explain why in 
ertain 
ases no Goldstone

bosons are observed. In 
ontrast, symmetries and the resulting Ward identities between

Green fun
tions are 
ru
ial for the renormalisability of gauge theories. If these identities are

not satis�ed, physi
al observables in renormalisable gauges depend on the gauge-�xing pa-

rameter �, while Lorentz invarian
e is violated in unitary gauges. The ex
ellent agreement of

ele
troweak pre
ision data with experiment is a strong argument that the underlying theory

is renormalisable. As the V{A stru
ture of the ele
troweak intera
tions is however similar to

our toy model of axial ele
trodynami
s, we 
an only expe
t that the anomalies of individual

loop diagrams 
an
el after summing over all 
ontributions.

Compared to axial ele
trodynami
s, we have to 
onsider in the GSW model both U

Y

(1)

and SU(2) 
urrents. Then ea
h vertex i 
omes with the 
orresponding generator, T

i

= Y 1

and T

i

= �

a

=2, respe
tively. The anomaly is thus proportional to

A

ab


= tr

�

T

a

T

b

T




�

+ tr

�

T

a

T




T

b

�

= tr

�

T

a

�

T

b

T




	�

; (16.35)

where the tra
e is over SU(2) doublets and the se
ond term 
orresponds to the ex
hange

diagram b $ 
. Con
entrating on diagrams 
ontaining SU(2) 
urrents, we have to 
onsider

A

(1)

ab


= tr

�

�

a

�

�

b

; �




	�

, A

(2)

ab


= tr

�

�

a

�

Y

b

; Y




	�

and A

(3)

ab


= tr

�

�

a

�

Y

b

; �




	�

. In the �rst two 
ases,

the properties of the Pauli matri
es imply that the anomaly vanishes automati
ally,

A

(1)

ab


/ tr (�

a

f�

b

; �




g) = 2Æ

b


tr(�

a

) = 0 and A

(2)

ab


/ tr(�

a

) = 0 : (16.36)

In the third 
ase, we use the Gell-Mann{Nishijima relation to repla
e the hyper
harge, Y =

2(T

3

�Q), obtaining

A

(3)

ab


/ tr (�

a

fQ

b

; �




g) = tr (Q

b

f�

a

; �




g) = 2Æ

ab

X

i

Q

i

: (16.37)

Re
alling that only the left-
hiral fermions 
ouple to the W boson, the 
ondition that this

anomaly vanishes is thus

P

i

Q

L

i

= 0. If we now only look at the leptons and quarks separately,

then

Q

e

+Q

�

= �1 6= 0 and Q

u

+Q

d

=

2

3

�

1

3

=

1

3

6= 0 : (16.38)

In
luding both leptons and quarks where we a

ount by the fa
tor three for their 
olour

quantum number we �nd as required for the anomaly 
an
ellation

Q

e

+Q

�

+ 3(Q

u

+Q

d

) = �1 + 3

1

3

= 0 : (16.39)

The last remaining triangle 
ontribution to the anomaly 
ontains three U

Y

(1) 
urrents,

A

(4)

ab


= tr

�

Y

a

�

Y

b

; Y




	�

. Again, the anomaly vanishes, if the 
ondition

P

i

Q

i

= 0 is met,


f. problem 17.??. Thus 
hiral anomalies are 
an
elled within ea
h full fermion generation.

In the SM, there is no explanation for this 
onspira
y between the quark and lepton se
tor,

and this has been one of the major motivations to 
onsider GUTs. Note also that if a single

member of a hypotheti
al fourth generation of fermions would be found, anomaly 
an
ellation

would require the existen
e of a 
omplete set of quarks and leptons.
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16. Anomalies, instantons and axions

We have restri
ted our analysis of the anomaly to an abelian model. In the non-abelian 
ase,

the �eld-strength 
ontains term linear and quadrati
 in the gauge �elds. As a result, additional

anomalies in square and pentagon diagrams appear. However, the absen
e of anomalies in

the triangle diagrams guaranties also their absen
e in square and pentagon diagrams.

Remark 16.1: Grand Uni�ed Theories: The gauge group of the SM 
ontains four 
ommuting gen-

erators, i.e. it has rank four. Be
ause SU(n) has rank n � 1, SU(5) is thus the smallest SU(n) group

en
ompassing the SM. In the 5-dimensional fundamental representation, we 
an set T

a

=

�

�

a

=2 0

0 0

�

and T

i

=

�

0 0

0 �

i

=2

�

, with �

a

and �

i

as the Gell-Mann and Pauli matri
es. Thus SU(5) 
ontains SU(3)

and SU(2) as subgroups. The remaining diagonal matrix 
an be 
hosen proportional to hyper
harge,

T

0

/ diag(�2;�2;�2; 3; 3). Additionally, there are 12 o�-diagonal matri
es.

We 
ombine three 
olour states of down-like quarks together with a lepton doublet in  =

(

�

d

r

;

�

d

b

;

�

d

g

; �

e

; e)

T

, while the remaining ten states 
an be �tted into an antisymmetri
 5 � 5 matrix.

From this, we 
an draw immediately three 
on
lusions: First, the 12 o�-diagonal matri
es 
orrespond

to new gauge boson (
alled X

�

and XY

�

) whi
h inter
hange quarks and leptons. Thus baryon and

lepton number is generi
ally broken in GUTs, and the X

�

and XY

�

bosons have to be suÆ
iently

heavy su
h that proton de
ay is suppressed. Se
ond, the ele
tri
 
harge is diagonal, and thus any

multiplet has zero ele
tri
 
harge. Applied to  = (

�

d

r

;

�

d

b

;

�

d

g

; �

e

; e)

T

, this leads to 
harge quantisation,

Q

�

d

= �Q

e

=3. Finally, above the energy s
ale M

GUT

where the SU(5) symmetry is restored, a single

gauge 
oupling 
ontrols all intera
tions. In su
h a pi
ture, one expe
ts that the SM 
ouplings meet in

one point at the s
ale M

GUT

.

16.2. Instantons and the strong CP problem

The e�e
tive Lagrangian indu
ed by the 
hiral anomaly is a surfa
e term. This suggests that

a term of the same stru
ture 
an be obtained as the topologi
al 
harge of a Yang-Mills theory,

following the argument of Bogomol'nyi in Eq. (15.43). If su
h a topologi
al 
harge exists,

then an unbroken Yang-Mills theory has a non-trivial va
uum. Su
h a non-trivial va
uum

stru
ture has however only physi
al 
onsequen
es if the 
orresponding 
lassi
al tunnelling

solutions have a �nite a
tion. We should therefore sear
h for 
lassi
al solutions of a pure,

Eu
lidean Yang-Mills theory with S

YM

< 1. These solutions are the non-abelian analogue

of the s
alar boun
e solution we have 
onsidered earlier.

Instantons We de�ne an Eu
lidean Yang-Mills theory by the a
tion

S =

1

2

Z

d

4

x tr

�

F

��

F

��

	

; (16.40)

where F

��

= F

a

��

T

a

= �

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄ and derivatives and integrations are with

respe
t to Eu
lidean 
oordinates (x

1

; x

2

; x

3

; x

4

= ix

0

) with x

i

2 R. Sin
e the metri
 tensor

is �

��

= Æ

��

, we do not need to distinguish between lower and upper indi
es. Note that in

Eu
lidean spa
e the dual of the dual �eld-strength tensor is again the �eld-strength tensor,

~

~

F

��

= F

��

, while in Minkowski spa
e it is its negative,

~

~

F

��

= �F

��

. Next we de�ne instantons

as self-dual and anti-self-dual solutions,

~

F

��

= F

��

and

~

F

��

= �F

��

; (16.41)
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16.2. Instantons and the strong CP problem

of the 
lassi
al Yang-Mills equations. Using Bogomol'nyi's tri
k, we 
an show that they


orrespond to the topologi
ally non-trivial solutions with the lowest energy|if su
h non-

trivial solutions exist. We write �rst

tr

�

(F

��

�

~

F

��

)

2

	

= tr

�

F

2

��

+

~

F

2

��

� 2F

��

~

F

��

	

� 0 : (16.42)

For the 
al
ulation of

~

F

2

we use �

����

�

����

= 2(Æ

��

Æ

��

� Æ

��

Æ

��

) and end up with

~

F

2

= F

2

.

Thus

tr

�

F

��

F

��

	

� tr

�

F

��

~

F

��

	

; (16.43)

whi
h is minimised if F is self-dual. We obtain the same bound for an antiself-dual solution,

if we 
hoose a plus sign in Eq. (16.42).

We �rst examine if QED, i.e. an abelian Yang-Mills theory, 
ontains instantons. A �nite

a
tion,

�

�

�

�

�

Z


(�)

d

4

x

~

FF

�

�

�

�

�

�

�

�

�

�

�

Z


(�)

d

4

xFF

�

�

�

�

�

<1 (16.44)

requires that F de
reases faster than �

�2

in the limit �

2

= x

2

+ x

2

4

!1. But as a 
lassi
al

Yang-Mills theory 
ontains no s
ale,

~

FF must be a polynomial in � : Thus F � O(�

�3

),

A � O(�

�2

), and then the total derivative (16.21) behaves as

K

�

= 2�

����

A

�

�

�

A

�

� O(�

�5

) : (16.45)

As a result, the surfa
e term in

Z




d

4

x

~

FF =

Z

�


dS

�

K

�

! 0 (16.46)

vanishes and we see that in an abelian theory

~

FF does not in
uen
e physi
al quantities. This

argument justi�es our usual pra
tise to negle
t surfa
e terms in QED.

We now turn to the non-abelian 
ase. Then we 
an express tr f

~

F

��

F

��

g again as a four-

divergen
e,

�

�

K

�

= 2 tr

~

F

��

F

��

(16.47)

where now

K

�

= 2"

����

tr

�

A

�

F

��

+

2

3

igA

�

A

�

A

�

�

: (16.48)

Choosing at in�nity a pure gauge �eld,

A

�

=

i

g

(�

�

U)U

y

; (16.49)

results in F

��

= 0 for � ! 1 and ensures that the a
tion is �nite. On the other hand, a

gauge transformation U whi
h be
omes 
onstant for � ! 1, i.e. depends in this limit only

on the angles, gives A � O(�

�1

) and thus K � O(�

�3

). As a result, the surfa
e integral

may be
ome non-zero. One may wonder if we 
an gauge away A

�

/ (�

�

U)U

y

on � = 1 by

performing a suitable gauge transformation

~

U : Sin
e

~

U has to be regular in all R

4

, it must

be 
onstant a � = 0 and independent of the angles. Thus

~

U is 
ontinuously 
onne
ted to the

identity and 
an be used only to gauge away �elds A

�

in the same homotopy 
lass. Thus the

surfa
e term F

~

F has only physi
al signi�
an
e, if the gauge �elds at � ! 1 are split into

non-trivial topologi
al 
lasses.
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16. Anomalies, instantons and axions

We next move to the spe
i�
 
ase of SU(2). Any SU(2) matrix 
an be written as U = a+ib��

with a

2

+ jbj

2

= 1. Thus SU(2) is isomorphi
 to S

3

. Compa
tifying the boundary �R

4

= R

3

of

Eu
lidean spa
e at large � to S

3

, the fun
tion (16.49) de�nes a map S

3

! S

3

. The question

if non-trivial instanton solutions exist is thus equivalent to the existen
e of topologi
ally

non-trivial mappings S

3

! S

3

, what in turn requires that �

3

(S

3

) is not the identity. We


an generalise the winding number (15.75) from S

1

! S

1

to the 
ase S

3

! S

3

as follows:

If we use as 
oordinates the three Euler angles spe
ifying a point on S

3

, then ea
h angle i


ontributes a fa
tor U�

i

U

y

as in the S

1


ase. Sin
e the winding number is a pseudo-s
alar, we

have to 
ontra
t ijk with the Levi-Civita tensor and to take the tra
e over the SU(2) indi
es,

arriving at

� = �

1

24�

2

Z

dx

1

dx

2

dx

3

"

ijk

tr

h

�

U�

i

U

y

��

U�

j

U

y

��

U�

k

U

y

�

i

: (16.50)

Be
ause of dx

i

�

i

=

~

dx

i

~

�

i

, the expression is equally valid using Cartesian 
oordinates. In order

to show that the winding number is invariant under 
ontinuous transformations, Æ� = 0, it

is suÆ
ient to 
onsider the variation of a single fa
tor in the tra
e. Now we 
an pro�t from

(15.75) where we derived already the variation of this fa
tor in the non-abelian 
ase as

Æ(U�

i

U

y

) = �U�

i

�

U

y

ÆU

�

U

y

:

Inserting this relation into the integrand results in

E � "

ijk

tr

h

�

U�

i

U

y

��

U�

j

U

y

�

Æ

�

U�

k

U

y

�

i

= �"

ijk
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h

�

i

U

y

U�

j

U

y

U�

k

�

U

y

ÆU

�

i

: (16.51)

Then we perform a partial integration and use that terms like �

k

�

i

U

y

vanish 
ontra
ted with

"

ijk

, obtaining

E = "

ijk

tr

h

�

i

U

y

�

k

U�

j

U

y

ÆU + �
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U

y

U�

j

U

y

�

k

UU

y

ÆU
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: (16.52)

In the se
ond term, we use U�

j

U

y

= ��

j

UU

y

and �

k

UU

y

= �U�

k

U

y

to symmetrise the

expression in j and k,

E = "

ijk

tr

h

�

i

U

y

�

k

U�

j

U

y

ÆU + �

i

U

y

�

j

U�

k

U

y

ÆU

i

= 0 : (16.53)

Thus the winding number � is invariant under in�nitesimal and thus under 
ontinuous trans-

formations.

Next we try to express the winding number as a volume integral over tr f

~

F

��

F

��

g. We

write (16.50) as a surfa
e integral,

� =

1

24�

2

Z

dS

�

"

����

tr

h

�

U�

�

U

y

��

U�

�
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(16.54a)

= �

ig

3

24�

2

Z

dS

�

"

����

tr [A

�

A

�

A

�

℄ ; (16.54b)

where we 
ould use U�

�

U

y

= igA

�

be
ause A

�

is a pure gauge �eld for � ! 1. Sin
e

then also F

a

��

= 0, only the se
ond term in the expression (16.48) for the four-divergen
e K

�

survives and we obtain

� =

g

2

32�

2

Z

dS

�

K

�

=

g

2

16�

2

Z

d

4

x tr f

~

F

��

F

��

g : (16.55)
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16.2. Instantons and the strong CP problem

Thus we have shown that gauge �elds A

a

�

exist whi
h are solutions of the 
lassi
al Yang-Mills

equations, have a �nite a
tion and fall into distin
t equivalen
e 
lasses 
hara
terised by the

winding number

1

�. Our remaining task is to write down an expli
it form of the mappings

S

3

! S

3

and to show that the de�nition (16.50) results in a integer winding number. We


hoose to write U(x) as

U

(n)

(x) =

�

x

4

+ ix � �

�

�

n

(16.56)

where x

�

is the unit ve
tor x

�

= (sin�e; 
os�). Evaluation of (16.50) for U

(1)

(x) 
on�rms

then that � = 1. Integrating now tr

�

F

��

F

��

	

� tr

�

F

��

~

F

��

	

over spa
e, we �nd on the LHS

twi
e the Eu
lidean a
tion, while the RHS equals 16�

2

�=g

2

. Thus the Eu
lidean a
tion is

bounded by

S �

8�

2

j�j

g

2

; (16.57)

and instantons as the non-trivial solutions with the lowest energy have the a
tion S = 8�

2

=g

2

.

We used for our dis
ussion of instantons in non-abelian Yang-Mills theories the spe
i�


example of SU(2). A theorem of Brott states that for any simple Lie group G 
ontaining

SU(2) the maps S

3

! G 
an be deformed 
ontinuously to the ones of S

3

! SU(2). Thus

all our results apply identi
ally to the 
ase of strong intera
tions, SU(3). In the remaining

part of this 
hapter, we will dis
uss the impa
t of instantons on the QCD va
uum, while we

postpone the ele
troweak 
ase to 
hapter 21.

Tunnelling interpretation We 
onsider the four-dimensional 
ylinder de�ned by jx

4

j � T

and jxj � R in the limit T;R ! 1. At x

4

= �T , we 
hoose A

�

as a pure gauge �eld with

winding number �

1

, and at x

4

= T with �

2

. On the boundary jxj = R, we 
hoose U 
onstant

and thus A

�

is zero. Cal
ulating the total winding number, we �nd

g

2

16�

2

Z




d

4

x tr

�

F

~

F

�

=

g

2

32�

2

Z

�


d

3

S

�

K

�

=

=

g

2

32�

2

Z

d

3

x

�

K

0

(t = �1)�K

0

(t = +1)

�

= �

1

� �

2

= � :

(16.58)

The minus sign appears, be
ause of the opposite orientations of the two 
aps. Thus the 
las-

si
al solutions we have determined interpolate between a va
uum with winding number �

1

at

time t = �1 and a va
uum with winding number �

2

at time t = +1. The two va
ua are

separated by a �nite energy barrier, and thus the solutions des
ribe the quantum tunnelling

between di�erent va
ua. This agrees with our �nding in 
hapter 15.2 that tunnelling solutions


orrespond to solutions of the Eu
lidean �eld equations. These solutions were dubbed instan-

tons by 't Hooft, sin
e the tunnelling they des
ribe happens instantaneously in Minkowski

spa
e.

The # va
uum The tunnelling interpretation indi
ates that the true va
uum of a pure

Yang-Mills theory is the superposition of all va
ua with �xed winding number �. Let us 
all

1

Mathemati
ians 
all the winding number of the mapping S

3

! S

3

the Pontryagin index, while mathemati
al

physi
ists use often the term Chern-Simon number.
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16. Anomalies, instantons and axions

these va
ua j�i and the true one j#i. Applying a gauge transformation U � U

(1)

with unit

winding number results in

U j�i = j� + 1i : (16.59)

On the other hand, the Yang-Mills Hamiltonian is invariant under gauge transformations,

UHU

y

= H ; (16.60)

or [H;U ℄ = 0. Thus the true va
uum j#i is a 
ommon eigenstate of H and U . Sin
e the

va
uum is normalised, the eigenvalue of U has to be a phase,

U j#i = e

i#

j#i : (16.61)

The angle # is a 
onserved quantum number. Thus a 
lassi
al Yang-Mills theory is 
hara
-

terised by two numbers, the 
oupling g and the angle #.

The true va
uum j#i is a linear superposition of the va
ua with �xed winding number n

given by

j#i =

1

X

n=�1

e

�in#

jni ; (16.62)

sin
e

U j#i =

1

X

n=�1

e

�in#

jn+ 1i = e

i#

1

X

n=�1

e

�in#

jni : (16.63)

The matrix elements hn

0

jH jni depend only on the di�eren
e � = n

0

�n, be
ause (16.60) gives




n

0

+ 1

�

�

H jn+ 1i =




n

0

�

�

H jni : (16.64)

Using also the parity properties, P jni = � jni and PHP

�1

= H, we obtain




n

0

�

�

H jni =




�n

0

�

�

H j�ni : (16.65)

Hen
e the matrix elements hn

0

jH jni depend only on the absolute value j�j = jn

0

� nj. We


on
lude that instantons lead to an e�e
tive potential V

eff

(#) whi
h is periodi
 and even in

#

H j#i = L

3

V

eff

(#) j#i ; (16.66)

with V

eff

(#) = V

eff

(#+ 2�) and V

eff

(#) = V

eff

(�#), where L

3

is the 
onsidered volume. A

general argument due to Weinberg shows that points of enhan
ed symmetry are stationary

points of the a
tion. Thus we expe
t the minimum of V

eff

(#) to 
oin
ide with the CP


onserving point # = 0.

We in
luded into our de�nition of the path integral using the Faddeev-Popov tri
k only

gauge �elds whi
h are 
ontinuously 
onne
ted with the identity. Thus our next task is to add

the e�e
t of the # va
uum to the path integral. The path integral in the presen
e of external

sour
es is identi
al to the va
uum persisten
e amplitude,

h#

0

j#i

J

=

X

n;n

0

e

i(n

0

#

0

�n#)

hn

0

jni

J

: (16.67)
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16.2. Instantons and the strong CP problem

Now we introdu
e the di�eren
e � = n

0

� n so that we 
an rewrite the phase as n

0

#

0

� n# =

n(#

0

� #) + �#

0

. But hn

0

jni

J

depends only on � and thus we 
an perform the sum over n.

This leads to a fa
tor Æ

#

0

;#

, whi
h expresses the fa
t that # is 
onserved. Thus

h#j#i

J

=

X

�

e

i�#

Z

DA

(�)

e

�S+hJAi

; (16.68)

where DA

(�)

denotes the integration over all gauge �eld 
on�gurations with the �xed winding

number �. Repla
ing � with the help of Eq. (16.55) and introdu
ing DA �

P

�

DA

(�)

gives

h#j#i

J

=

Z

DA e

�S+hJAi

exp

n

i

#g

2

16�

2

tr(F

~

F )

o

: (16.69)

Thus instantons indu
e an additional term L

#

to the 
lassi
al Yang-Mills Lagrangian,

L

eff

= L +

#g

2

16�

2

tr(F

~

F ) ; (16.70)

whi
h depends on the arbitrary parameter # 2 [0; 2�[. In order to dis
uss observable e�e
ts

of this additional term, we have to add fermions to the pure Yang-Mills theory we dis
ussed

up to now.

Fermioni
 
ontribution to # We have derived in Eq. (16.20) the axial anomaly for an abelian

gauge theory. The 
orresponding result for a Yang-Mills theory 
oupled to a single massless

fermion is

�

�

j

�

5

= �

�

(j

�

R

� j

�

L

) =

g

2

8�

2

tr(F

~

F ) : (16.71)

Thus the axial anomaly leads to the additional term

L

eff

= L +

�n

f

g

2

8�

2

tr(F

~

F ) ; (16.72)

in the e�e
tive QCD Lagrangian, if we perform a 
hiral U

A

(1) transformation q

L;R

! e

i�


5

q

L;R

on the n

f

quark �elds. This term has the same stru
ture as the instanton 
ontribution, and

if we 
hoose

� = �

#

2n

f

(16.73)

the two terms 
an
el. Thus for massless quarks the # parameter is unphysi
al and we 
an


hoose the # = 0 va
uum.

We 
an understand this, if we 
onsider the e�e
t of an instanton transition. Integrating

Eq. (16.71) gives as 
hange of the axial 
harge Q

5

= N

R

�N

L

per massless quark 
avor

�Q

5

= Q

5

(t = �1)�Q

5

(t = +1) = 2� : (16.74)

Thus an instanton pro
ess � = �1 
hanges the axial quark number by two units, 
reating

a left-
hiral and destroying a right-
hiral quark and vi
e versa. As 
hirality is a 
onserved

quantum number for massless parti
les, at least one of the two states 
onne
ted by the

instanton pro
ess 
an therefore not 
orrespond to the va
uum. By 
ontrast, for m > 0 the

mass term mixes left- and right-
hiral �elds: the quark-antiquark pair 
an annihilate via the

mass term and the states 
an be identi�ed with the va
uum.
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16. Anomalies, instantons and axions

We now 
onsider massive quarks. Then the 
onservation of the axial 
urrent is additionally

to the axial anomaly expli
itly broken by the quark masses, sin
e a Dira
 mass term transform

as

m�qq ! m�qe

2i�


5

q = 
os(2�)m�qq + i sin(2�)m�q


5

q (16.75)

under a 
hiral transformation q

L;R

! e

i�


5

q

L;R

. The se
ond term violates T (CP) invarian
e,

as the originalL

#

we wanted to eliminate. Therefore, CP violation implied byL

#

is a physi
al

e�e
t for massive quarks. If we 
onsider n

f


avor of quarks, then the mass matrix M

ij

will


hange as M

ij

! e

2i�

M

ij

and thus

arg detM ! arg detM + 2n

f

� : (16.76)

Therefore only the 
ombination

�

# � #+ arg detM (16.77)

is an observable quantity: It is a question of 
onvenien
e, if we 
hoose real mass matri
es and

rotate all CP violation via the axial anomaly into the # term. Or if we eliminate L

#

and

transfer its e�e
t into CP violating 
omplex mass matri
es.

Example 16.1: Two Higgs doublet model: Let assume that the Higgs doublet �

1

= (�

+

; �

0

)

generates the masses for down-like fermions, while a se
ond Higgs doublet �

2

= (�

0

; �

�

) generates

the masses for up-like fermions,

L

Y

= �X

��

�

Q

�

�

1

d

R;�

� Y

��

�

Q

�

�

2

u

R;�

+ h.
. (16.78)

with

h0j�

1

j0i =

1

p

2

�

0

v

1

e

iÆ

1

�

and h0j�

2

j0i =

1

p

2

�

v

2

e

iÆ

2

0

�

: (16.79)

The resulting quark mass matrix M

ij

, i; j = 1; : : : ; 6 has the determinant

det(M) =

(v

1

v

2

)

2

8

e

3i(Æ

1

+Æ

2

)

det(X) det(Y ) (16.80)

and thus

arg detM = argdet(XY ) + 3i(Æ

1

+ Æ

2

) : (16.81)

By an SU(2) gauge transformation U = exp(i��

3

=2) we 
an eliminate one of the two phases. Thus a

general two Higgs doublet model has one CP violating phase. In 
ontrast, the SM uses �

2

= i�

2

�

�

.

Then Æ

1

= �Æ

2

, and no CP violation arises in the Higgs se
tor.

We look now for observable 
onsequen
es of the # va
uum in the low-energy intera
tions of

hadrons. Sin
e the # term and the axial anomaly are 
avour blind, the 
hange 
 in the quark

masses,


 � sin(2�

q

)m

q

; (16.82)

is the same for all quarks. In order to shift the e�e
ts of the # term 
ompletely into the mass

matrix of the quarks, we need also

P

n

f

q=1

2�

q

= �#. Eliminating �

q

in the limit of small #

gives


 = �

#

P

q

m

�1

q

; (16.83)
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16.3. Axions

and thus the # dependent, CP violating part of the mass term be
omes

L

(#)

m

= �i#

�

X

q

m

�1

q

�

�1

X

q

�q


5

q : (16.84)

For light nu
leons and mesons whi
h 
onsist only of u and d quarks this simpli�es to

L

(#)

m

= �i#

m

u

m

d

m

u

+m

d

�

�u


5

u+

�

d


5

d

�

: (16.85)

This mass term generates a CP violating e�e
tive pion-nu
leon intera
tion whi
h in turn

leads to an ele
tri
 dipole moment d

n

of the neutron. The 
orresponding limit on d

n

bounds

the value of

�

# as j

�

#j � 2� 10

�10

. Although the value of

�

# is a free parameter within the SM,

it seems natural to ask for an explanation why

�

# is so small.

The most straight-forward explanation would be that one 
urrent quark mass is zero,

i.e. that one quark has no Yukawa 
oupling to the SM Higgs. Then (16.85) shows for

n

f

= 2 
learly that the CP violating e�e
t disappears. This holds also for n

f

> 2, be
ause

arg detM = 0 if one mass eigenvalue is zero. While it has been debatable, if m

u

� 5MeV

dedu
ed from 
hiral perturbation theory for the 
urrent u quark mass might be lowered to

m

u

= 0, this possibility was 
losed by latti
e data around 2005. The question why

�

# is so

small is 
alled the strong CP problem of the SM.

16.3. Axions

Pe
eei and Quinn proposed to promote the parameter # to a dynami
al variable whi
h settles

automati
ally at its minimum zero. The basi
 ingredient of this proposal is a new massless

pseudo-s
alar �eld a whi
h 
ouples to gluons with an intera
tion of the same stru
ture as the

# term,

L

a

=

1

2

(�

�

a)

2

�

g

2

16�

2

a

f

a

F

~

F : (16.86)

Sin
e a is a pseudo-s
alar, the intera
tion term aF

~

F 
onserves CP. AddingL

a

to the e�e
tive

Lagrangian (16.70) of QCD means that observables depend only on the 
ombination #�a=f

a

.

If L

a

is invariant under the shift a! a+
onst:, then we 
an use this arbitrariness to absorb

the # parameter into a rede�nition of the �eld a. Su
h a shift symmetry is typi
al for a

Goldstone boson whi
h has only derivative 
ouplings. Thus the pseudo-s
alar parti
le a

should be the Goldstone boson of a spontaneously broken global symmetry, and the aF

~

F

intera
tion suggests to 
hoose this symmetry as a 
hiral U(1) symmetry. This symmetry is


alled Pe
eei-Quinn symmetry U

PQ

(1) and its Goldstone boson a is the axion.

Weinberg and Wilz
ek realised that there is an additional twist in this proposal. The

e�e
tive potential (16.66) generated via the F

~

F term has two e�e
ts: First, instanton e�e
ts

break the shift symmetry, generating a mass term m

2

a

= �

2

V

eff

=�a

2

for the axion. Thus the

axion be
omes a massive pseudo Goldstone boson. Se
ond, the va
uum expe
tation value of

the axion �eld will relax to the minimum of the potential, �V

eff

=�a = 0. But we have argued

above that the minimum of V

eff

(#) is situated at # = 0. Thus also in the 
ase of a massive

axion the strong CP problem is solved.

Let us illustrate the key points of this idea with a simple model. We add a 
omplex s
alar

�eld � and a set of heavy fermions  to the SM,

L = i

�

 �= +

1

2

�

�

�

y

�

�

�� y

i

(

�

 

L

 

R

�+ h.
.)� V (�) : (16.87)

273



16. Anomalies, instantons and axions

While � is a SM singlet, the fermions are 
harged under SU(3) and U(1). The Lagrangian is

invariant under the global 
hiral U

PQ

(1) gauge transformation

�! e

i�

� and  

L=R

! e

�i�=2

 

L=R

: (16.88)

We now break spontaneously the Pe

ei-Quinn U

PQ

(1) symmetry, 
hoosing the usual Mexi
an

hat potential for V (�). Splitting � into its va
uum expe
tation value and the 
u
tuating �elds,

� =

f

a

+ �

p

2

e

ia=f

a

�

0

1

�

; (16.89)

generates a mass term for � while a remains massless. We assume that f

a

is mu
h larger than

the energy s
ale E we are interested in, and thus we 
an negle
t the �eld �,

L =

1

2

(�

�

a)

2

�m

i

�

 e

i


5

a=f

a

 � V (�) +O(E

2

=f

2

a

) : (16.90)

The 
ombined expression is 
learly invariant under U

PQ

(1) transformations a ! a + �f

a

.

Expanding the exponential, we generate mass terms m

i

= y

i

f

a

=

p

2 for the heavy fermions

plus fermion-axion intera
tions,

L

int

= �m

i

�

  � i

m

i

f

a

a

�

 


5

 � : : : (16.91)

The latter lead to a AV V triangle graph for the pro
ess a ! 2g whi
h in turn indu
es via

the axial anomaly the desired F

~

F term. In the same way, an e�e
tive a ! 2
 
oupling is

generated. Thus the 
hara
teristi
 features of an axion are its two-gluon and two-photon


ouplings. Moreover, the parameters of the pion and axion se
tor are 
onne
ted by

m

a

f

a

�m

�

f

�

; (16.92)

sin
e the two Goldstone bosons mix via their two-gluon 
oupling, a$ 2g $ �

0

.

Summary

The CP-odd term

~

F

��

F

��

is a gauge invariant renormalisable intera
tion. Terms of this

type are produ
ed by instanton transitions between Yang-Mills va
ua with di�erent winding

numbers and by the 
hiral anomaly. While we 
an rotate 
lassi
ally all CP violating phases


ontained in the quark mass matri
es into the single CP violating phase of the CKM matrix,

the 
hiral anomaly leads additionally to the 
hange #!

�

# = #+arg detM in the 
oeÆ
ient of

the

~

F

��

F

��

term. Sin
e the physi
s origin of both 
ontributions seem to be dis
onne
ted, it is

puzzling that they sum up to j

�

#j

<

�

10

�10

. A possible solution is the Pe
eei-Quinn symmetry

whi
h promotes the parameter # to the �eld a = f

a

# whi
h settles automati
ally at the

minimum at

�

# = 0 of the instanton potential V

eff

.

Further reading

Instantons are dis
ussed in more detail by [Rub02℄. For an introdu
tion into the physi
s of

axions see [KN13℄, while [CL88℄ 
ontains a 
on
ise introdu
tion to grand uni�
ation.
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17. Hadrons, partons and QCD

We introdu
ed QCD as a non-abelian gauge theory that des
ribes strong intera
tions in terms

of quarks and gluons. The 
hara
teristi
 feature of a Yang-Mills theory, asymptoti
 freedom,

implies however that perturbation theory breaks down for small momentum transfer: The

strong 
oupling �

s

(Q

2

) diverges in perturbation theory at a �nite value, introdu
ing �

QCD

as a new mass s
ale. Thereby the s
ale invarian
e of QCD, 
lassi
ally valid in the limit of

zero quark masses, is broken. Another 
onsequen
e of asymptoti
 freedom is 
on�nement

1

:

Quarks and gluons are not observed as isolated parti
les, but exist only in bound-states

whi
h are 
olour-singlets. Aim of this 
hapter is to dis
uss how 
al
ulations in perturbation

theory using quarks and gluons 
an be 
onne
ted to experiments whi
h observe hadrons. For

instan
e, we aim to des
ribe pro
esses like

�

XX ! �qq ! hadrons, where the initial state 
ould

be e.g. a pair of leptons or dark matter parti
les. We start the 
hapter however elu
idating

the surprising fa
t that the masses of hadrons are mu
h larger than expe
ted from the Higgs

e�e
t.

17.1. Tra
e anomaly and hadron masses

The 
lassi
al QCD Lagrangian is s
ale and 
onformally invariant in the limit of zero quark

masses. We introdu
e �rst these symmetries before we 
al
ulate the anomalous term intro-

du
ed by quantum 
orre
tions whi
h breaks these symmetries. It is this \
orre
tion" whi
h

is responsible for 95% of the mass of ordinary matter in the Universe.

S
ale and 
onformal invarian
e We de�ned in 
hapter 7.4 the dynami
al energy-momentum

stress tensor T

��

as the response of the matter a
tion S

m

under an in�nitesimal 
hange of the

metri
 tensor, T

��

= (2=

p

jgj)ÆS

m

=Æg

��

. This pro
edure implies that we leave temporarily

Minkowski spa
e, even if we are only interested in the behaviour of a Lorentz invariant �eld

theory. Having performed the variation Æg

��

, we move ba
k to Minkowski spa
e setting

g

��

! �

��

.

We want to study when we 
an extend the Poin
ar�e group as the symmetry group of

Minkowski spa
e a
ting on lo
al �elds to the larger group of 
onformal transformations. We

start 
onsidering s
ale transformations of the 
oordinates, x ! x

0

= e

!

x with �xed !. As a

result of this 
oordinate transformation, the metri
 tensor 
hanges as

g

��

(x)! g

��

(x

0

) = e

2!

g

��

(x) : (17.1)

Thus distan
es are res
aled by a 
onstant fa
tor, while angles and hen
e the light-
one stru
-

ture given by ds

2

= 0 are 
onserved. Sin
e only the latter is important for theories without

mass parameters, we expe
t them to be invariant under su
h transformations. For an in-

�nitesimal s
ale 
hange, x! x

0

= (1+ Æ!)x, the metri
 varies as Æg

��

= 2g

��

Æ!. The matter

1

While 
on�nement is an observational fa
t, it has not been derived from �rst prin
iples and is part of one

of the six open \millennium problems".
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a
tion S

m


hanges as a result of the variation of the metri
 as

ÆS

m

=

Z

d

4

x

ÆS

m

Æg

��

Æg

��

=

1

2

Z

d

4

x

p

jgj T

��

Æg

��

=

=

Z

d

4

x

p

jgj T

��

g

��

Æ! = Æ!

Z

d

4

x

p

jgj T

�

�

:

(17.2)

The variation ÆS

m

of the a
tion remains un
hanged, if we add a total derivative r

�

K

�

to

T

�

�

. Thus we 
an 
on
lude for ! = 
onst: only that the tra
e of the stress tensor has to equal

a total derivative,

T

�

�

= g

��

2

p

jgj

ÆS

m

Æg

��

= r

�

K

�

; (17.3)

whi
h may be zero. If we promote ! to a lo
al fun
tion !(x), the resulting spa
e-time

dependent transformations are 
alled spe
ial 
onformal transformations. Now we 
annot

pull out Æ!(x) from the integral and 
onsequently the requirement ÆS

m

= 0 implies that the

tra
e of the stress tensor has to vanish, T

�

�

= 0. Clearly, 
onformal invarian
e implies s
ale

invarian
e. The opposite dire
tion holds in pra
ti
ally all interesting 
ases, but ex
eptions

exist.

These additional symmetries should lead a

ording to Noether's theorem to 
onserved 
ur-

rents. We re
all that the stress tensor has the properties T

��

= T

��

and �

�

T

��

= 0. For

a s
ale invariant a
tion, we 
an de�ne the additional 
onserved 
urrent D

�

= T

��

x

�

�K

�

,

be
ause then

�

�

D

�

= �

�

(T

��

x

�

�K

�

) = T

��

�

��

� �

�

K

�

= T

�

�

� �

�

K

�

= 0 : (17.4)

The 
onserved quantity D

�

is 
alled the dilatation 
urrent, the four-divergen
e K

�

the virial


urrent. For a 
onformally invariant a
tion, we obtain additionally the four 
onserved


urrents

S

�

= d

�

[�

��

x

2

� 2x

�

x

�

)℄T

�

�

; (17.5)

whi
h are parametrised by the ve
tor d

�

. The 
ondition that the stress tensor is tra
eless

(and symmetri
) implies the 
onservation of these 
urrents,

�

�

S

�

= d

�

�

�

[�

��

x

2

� 2x

�

x

�

℄T

�

�

= 2d

�

[x

�

�

��

� x

�

Æ

�

�

� x

�

Æ

�

�

℄T

�

�

= 0 : (17.6)

In problem 6.??, we en
ountered already the 
onformal Killing equation. Its solutions, the


onformal Killing ve
tor �elds of Minkowski spa
e, agree with the in�nitesimal generators of

the group of 
onformal transformations, 
f. appendix B.3. This generalises our results for the

Poin
ar�e group from example 6.2.

Theories with tra
eless stress tensors we met already are ele
trodynami
s (or more generally

pure Yang-Mills theories) and the massless Dira
 �eld. Thus the invarian
e group of these

theories in Minkowski spa
e is the 15-dimensional 
onformal group. Now we look at the 
ase

of a s
alar �eld. In problem 5.??, we found that a massless s
alar �eld in invariant under

s
ale transformations. The tra
e of its stress tensor is given by

T

�

�

= (�

�

�)

2

� Æ

�

�

L

0

=

�

1�

d

2

�

(�

�

�)

2

: (17.7)
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The virial 
urrent follows using �� = 0 as K

�

= (1 � d=2)��

�

� and thus the a
tion for a

free massless s
alar �eld is s
ale invariant for all d. By 
ontrast, the a
tion is only in d = 2

dimensions 
onformally invariant, in whi
h 
ase the �eld is dimensionless and does not s
ale

2

.

Conne
tion to hadron masses The matrix element of the stress tensor T

��

for a hadron h(k)


an depend for zero momentum transfer only on the 
ombination k

�

k

�

. Assuming hadron

states normalised as hh(k)jh(k)i = 1, the matrix element of the stress tensor is therefore

hh(k)jT

��

jh(k)i = 2k

�

k

�

: (17.8)

Thus the vanishing of the tra
e T

�

�

would imply that all hadrons are massless,

hh(k)jT

�

�

jh(k)i = 2m

2

h

= 0 : (17.9)

In reality, the masses of the light quarks are non-zero and thus the s
ale invarian
e of strong

intera
tions is broken already on the 
lassi
al level. Nevertheless, the relation (17.9) poses a

problem, sin
e the masses of the light quarks due to the Higgs e�e
t, m

u;d

� (4 � 10)MeV,

are mu
h smaller than the masses of the lightest hadrons, the pions. Thus the dominant


ontribution to hadron masses should 
ome from strong intera
tions, but Eq. (17.9) informs

us that 
onformal invarian
e forbids su
h a 
ontribution. The resolution to this apparent

problem lies in the fa
t that quantum 
orre
tions spoil 
lassi
al 
onformal invarian
e, be
ause

we have to introdu
e a dimensionful parameter 
al
ulating quantum 
orre
tions.

Tra
e anomaly The phenomenon that the tra
e of the stress tensor re
eives non-zero 
or-

re
tions due to loop e�e
ts is 
alled tra
e anomaly. This e�e
t 
an be analysed using the

same approa
h as for the axial anomaly, and we summarise therefore only the main steps: If

the Ja
obian J for the 
onformal transformation

 (x) = expf�3!(x)=2g 

0

(x) (17.10)

is not the identity, an anomalous 
ontribution to T

�

�

in addition to the usual mass term

appears,

i

Z

d

4

x ! T

�

�

= lnJ =3 + i

Z

d

4

x !m

�

  : (17.11)

Using the same regulator in the evaluation of the Ja
obian as in the 
ase of the 
hiral anomaly,

J = exp!

X

n

Z

d

4

x�

�

n

(x) exp

n

�D=

2

=M

2

o

�

n

; (17.12)

the only 
hange 
ompared to Eq. (16.11) is the absen
e of the 


5

matrix. Following the same

steps but keeping tra
k of the non-abelian part of the QCD �eld-strength F

a

��

, one �nds

T

�

�

=

g

2

s

48�

2

F

a

��

F

a��

+m

�

  : (17.13)

2

The fa
t that we 
an express the tra
e in (17.7) as T

�

�

= �

�

�

�

L

��

(where L

��

= (2� d)=4�

��

�

2

using the

equation of motions) signals that we 
an \improve" the stress tensor adding appropriate terms su
h that

the stress tensor be
omes tra
eless and the a
tion 
onformally invariant.
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This the O(g

2

s

) 
ontribution to the tra
e anomaly. We 
an obtain the full non-perturbative

expression for the tra
e anomaly by the following, more intuitive argument: We res
ale �rst

the Lagrange density by A

a

�

!

�

A

a

�

= A

a

�

=g

s

as

L = �

1

4

F

a

��

F

a��

+ i

�

 (�= + ig

s

A= ) ! �

1

4g

2

s

�

F

a

��

�

F

a��

+ i

�

 (�= + i

�

A= ) : (17.14)

If we view this Lagrange density as the renormalised Lagrange density, then g

s

depends on

the renormalisation s
ale � and the a
tion is not longer s
ale invariant: The 
hange ÆS under

an in�nitesimal s
ale transformations results solely from the dependen
e via the renormalised


oupling,

ÆS = �

1

4

Z

d

4

x

�

�!

�

1

4g

2

s

(�)

�

�

F

a

��

�

F

a��

!

Z

d

4

x

�(g

s

)

2g

s

F

a

��

F

a��

: (17.15)

Thus the full result for the tra
e of the stress tensor in QCD is, in
luding the anomaly and

the mass terms of the quarks that break s
ale invarian
e expli
itly, given by

T

�

�

=

�

(6)

QCD

2g

F

a

��

F

a��

+m

u

�uu+m

d

�

dd+m

s

�ss+

X

h

m

h

�qq : (17.16)

Sin
e the anomaly is due to an UV divergen
e, it is independent of the quark masses and we

should use the beta fun
tion �

QCD

for six 
avours, b

QCD

= 11� 2n

f

=3 = 7. We have singled

out in (17.16) the 
ontribution of the heavy quarks,

P

h=
;b;t

m

h

�qq, sin
e they are present in

a hadron only as virtual 
u
tuations. Be
ause of m

h

� �

QCD

, a systemati
 expansion in

Q

2

=m

2

h

of the term

P

h

m

h

�qq is possible. At leading order, these 
u
tuations 
onne
t m

h

via

a quark loop to two gluons. Therefore one 
an rewrite the mass term for heavy quarks using

the e�e
tive Lagrangian derived in problem 14.?? for the Higgs-gluon-gluon 
oupling,

m

h

�qq !

2

3

�

s

8�

F

a

��

F

a��

: (17.17)

Now we see that the mass terms 
an
el the 
ontribution of the heavy quarks in the beta

fun
tion. As a result, we obtain for the matrix element between on-shell nu
leons

m

2

N

= hN jT

�

�

jNi = hN j

�

(3)

2g

s

F

a

��

F

a��

jNi+

X

l=u;d;s

hN jm

l

�qq jNi (17.18)

with b

(3)

QCD

= 9. The matrix elements hN jm

l

�qq jNi � f

(N)

q

m

N


an be estimated using results

from latti
e QCD simulations: Numeri
al values for the so-
alled mass fra
tions f

(N)

q

are

shown in Table 17.1. Thus only � 5% of the mass of proton is given by the 
urrent quarks

masses, or in other words by the Higgs e�e
t, while 95% of the proton mass is a 
onsequen
e

of the gluon 
ondensate via the tra
e anomaly.

17.2. DGLAP equations

Experiments studying ele
tron-nu
leon s
attering at large momentum transfer Q

2

� m

2

N

revealed in the late 1960s that a nu
leon 
an be des
ribed as a 
olle
tion of nearly massless,

freely intera
ting s
attering 
enters whi
h share the total nu
leon momentum. These point-

like s
attering 
enters were 
alled partons and are formed by the valen
e quarks (whi
h
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Proton Neutron

f

(p)

u

0.019(5) f

(n)

u

0.013(3)

f

(p)

d

0.027(6) f

(n)

d

0.040(9)

f

(p)

s

0.009(22) f

(n)

s

0.009(22)

Table 17.1.: The mass fra
tions f

(N)

q

(with

errors) 
ontributed by the

u; d and s quarks to the

nu
leon mass dedu
ed by

[HNN15℄ from latti
e QCD

simulations.

quantum numbers sum up to those of the nu
leon), a sea of virtual �qq pairs and gluons.

Moreover, 
ross se
tions were found in this limit to follow approximately s
aling invariant:

For instan
e, the energy spe
trum of hadrons produ
ed with energy E

h

in a rea
tion at 
m

energy

p

s� m

N


an be approximated by

E

h

�

d�(s;E

h

)

dE

h

�

x

�

d�(x)

dx

; (17.19)

introdu
ing the s
aling variable x = 2E

h

=

p

s. With hindsight, we 
an 
onne
t these features

easily to the general properties of QCD: Asymptoti
 freedom explains why the 
onstituents of

the nu
leon behave at large momentum transfer as unbound parti
les. Moreover, we 
an treat

the light quarks for Q

2

� m

2

N

� m

2

q

as massless, and s
attering on quark and gluons 
ontains

therefore no mass s
ale. Hen
e we expe
t only logarithmi
 s
aling violations, 
aused by the

running of the 
oupling �

s

(Q

2

), in quantities whi
h are not sensitive to IR singularities. As

we will dis
uss at the end of this se
tion, these are so 
alled \in
lusive observables" like the

e

+

e

�

annihilation 
ross se
tion where at �xed order perturbation theory IR divergen
es from

real and virtual gluon emission 
an
el.

In 
ontrast, \ex
lusive quantities" like a di�erential 
ross se
tion to produ
e a �xed number

of partons 
ontain large IR logarithms. They are 
aused by the emission of soft and 
ollinear

partons, similar to the 
ase of QED dis
ussed in se
tion 9.4, and spoil naive perturbation

theory. What 
omes to our res
ue, however, is that these logarithms are 
onne
ted to the

emission of additional partons in the semi-
lassi
al regime: Therefore, we should be able to

develop an approximate probabilisti
 pi
ture where quantum me
hani
al interferen
e terms


an be negle
ted. Additionally, we have to add to this semi-
lassi
al pi
ture a 
onne
tion

between the perturbative des
ription using partons, valid at Q

2

� �

2

QCD

, and a des
rip-

tion using hadrons, valid at Q

2

<

�

�

2

QCD

: This 
onne
tion 
annot (yet) be derived from �rst

prin
iples and therefore one has to employ phenomenologi
al models.

Our aim in this se
tion is to des
ribe pro
esses like

�

XX ! �qq ! hadrons, where the initial

state 
ould be e.g. a pair of leptons or DM parti
les. We 
an break this pro
ess into several

steps: The 
al
ulation of the \hard" pro
ess

�

XX ! �qq uses standard perturbation theory,

with whi
h we are familiar by now. Subsequently, a parton 
as
ade develops, q ! q + g !

q + g + g ! : : : In ea
h splitting pro
ess, the virtuality t of the partons de
reases, until we

have to stop at t � few � �

2

QCD

the perturbative evolution before �

s

(t) be
omes too large.

Hadrons are then formed out of partons using a phenomenologi
al model. For the 
al
ulation

of this perturbative parton 
as
ade, we need two main ingredients: An evolution equation

whi
h determines the probability that a parton evolves from t

n

to t

n+1

without splitting,

and splitting fun
tions P

ij

(z) whi
h des
ribe how the energy is shared between the daughter

partons in a splitting pro
ess.
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k

a

k

b

k




#

b

#




"

a

"

b

"




Figure 17.1.: Left: The momenta and angles used to des
ribe the parton splitting a ! b
;

Right: Choi
e of the polarisation ve
tors.

Splitting fun
tions We start determining the splitting fun
tions des
ribing the time-like

evolution of a parton 
as
ade. We 
onsider the bran
hing of a parton a into the parton pair

b
 with t � k

2

a

� k

2

b

; k

2




> 0 in the small angle approximation, # = #

b

+ #




� 1, 
f. Fig. 17.1.

De�ning then the energy fra
tion taken by the parton b as z = E

b

=E

a

= 1�E




=E

a

, we obtain

t = 2E

b

E




(1� 
os#) � z(1� z)E

2

a

#

2

: (17.20)

Conservation of transverse momentum implies #

b

E

b

= #




E




or

#

b

1� z

=

#




z

: (17.21)

Solving (17.20) for # and using (17.21) together with # = #

b

+ #




, we �nd

# =

s

t

z(1� z)

1

E

a

=

#

b

1� z

=

#




z

: (17.22)

To pro
eed, we have to �x the parton type and we 
onsider here as an example the pro
ess

of gluon splitting, g ! gg. The triple gluon vertex is given by

V

ggg

= igf

ABC

"

�

a

"

�

b

"







[�

��

(k

a

� k

b

)




+ �

�


(k

b

� k




)

�

+ �


�

(k




� k

a

)

�

℄ ; (17.23)

where all momenta are de�ned as outgoing, k

a

= �k

b

� k




, and "

�

a

is the polarisation ve
tor

of gluon a. We assume that all three gluons are 
lose to mass shell, k

2

� 0, what allows us

to use transverse polarisation ve
tors. In order to use these 
onditions to simplify V

ggg

, we

repla
e k

a

= �k

b

�k




in the �rst and third, and k




= �k

a

�k

b

in the se
ond fa
tor, obtaining

V

ggg

= �2igf

ABC

[("

a

� "

b

)("




� k

b

)� ("

b

� "




)("

a

� k

b

)� ("




� "

a

)("

b

� k




)℄ : (17.24)

Then we evaluate the s
alar produ
ts "

i

�k

j

in the limit of small #, 
hoosing the two transverse

polarisation states as "

in

i

in the plane spanned by k

b

and k




as shown in the right panel of

Fig. 17.1 and "

out

i

perpendi
ular to this plane,

"

in

i

� "

in

j

= "

out

i

� "

out

j

= �1 and "

in

i

� "

out

j

= "

out

i

� k

j

= 0 :

Now we express the three remaining s
alar produ
ts as fun
tions of E

a

and #,

"

in

a

� k

b

= �E

b

#

b

= �z(1� z)E

a

# ; (17.25)

"

in

b

� k




= E




# = (1� z)E

a

# ; (17.26)

"

in




� k

b

= �E

b

# = �zE

a

# : (17.27)
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a b 
 F (a; b; 
; z)

in in in

1�z

z

+

z

1�z

+ z(1 � z)

in out out z(1 � z)

in in out

1�z

z

out out in

z

1�z

Table 17.2.: The fun
tion F

ab


(z) for dif-

ferent gluon polarisations.

Ea
h of the three terms in V

ggg


ontains one fa
tor #. Combined with the propagator 1=t /

1=#

2

, this results in a 
ollinear 1=t singularity of the squared amplitude. We express jA

n+1

j

2

as

jA

n+1

j

2

�

4g

2

t

C

A

F (a; b; 
; z)jA

n

j

2

; (17.28)

where the fun
tion F (a; b; 
; z) for the various non-zero 
ombinations of polarisation ve
tors

is given in table 17.2. The 
olour fa
tor C

A

equals for the gauge group SU(N) C

A

=

P

ab


f

ab


f

ab


= N , see Eq. (B.14).

Example 17.1: We evaluate the vertex as an example for the 
ase of fab
g = fin, out, outg

polarisations,

V

ggg

= �2igf

ab


[("

in

a

� "

out

b

)("

out




� k

b

)� ("

out

b

� "

out




)("

in

a

� k

b

)� ("

out




� "

in

a

)("

out

b

� k




)℄

= �2igf

ab


[0� (�1)(�z(1� z)E

a

#)� 0℄ = 2igf

ab


[z(1� z)E

a

#℄ :

Thus the squared amplitude for this 
ombination of polarisation states is

jA

n+1

j

2

=

�

�

�

�

V

ggg

t

A

n

�

�

�

�

2

�

4g

2

t

C

A

z(1� z) jA

n

j

2

;

and thus F (in, out, out; z) = z(1� z).

The enhan
ement of the amplitude for z ! 0 (gluon b is soft) and z ! 1 (
 is soft) 
omes

from the emission of soft gluons polarised in the plane of bran
hing. Therefore A

n+1


arries

some � dependen
e. As this dependen
e is small and washed out 
onsidering several su

essive

splittings, one uses unpolarised splitting fun
tions P

i!j

(z) de�ned for g ! gg by

P

g!g

(z) =

1

2

C

A

X

a;b;


F (a; b; 
; z) = C

A

�

1� z

z

+

z

1� z

+ z(1� z)

�

: (17.29)

The gluon splitting fun
tion P

g!g

(z) is obviously symmetri
 under an ex
hange of the two

gluons produ
ed, P

g!g

(z) = P

g!g

(1 � z). It is 
alled an unregularised splitting fun
tion,

be
ause it be
omes in�nite for z ! 1 (and z ! 0). These IR divergen
es 
an be 
an
elled

adding the e�e
t of virtual gluon emission, and one obtains thereby regularised splitting

fun
tions. Pro
eeding in the same way for the pro
esses g ! qq and q ! qg, you should

be able to derive the other three splitting fun
tions of QCD, P

g!q

(z), P

q!q

(z) and P

q!g

(z)

(problem 18.??).

We 
an now 
ompute the probability for the emission of an additional parton. We 
ompare

the 
ross se
tion d�

n+1

and d�

n

for the pro
ess with and without emission of an additional

parton. Their phase spa
e is given by

d�

n

/

d

3

k

a

(2�)

3

2E

a

(17.30)
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g ! gg P

g!g

(z) = C

A

h

1�z

z

+

z

1�z

+ z(1� z)

i

g ! qq P

g!q

(z) = n

f

T

F

�

z

2

+ (1� z)

2

�

q ! qg P

q!q

(z) = C

F

h

1+z

2

1�z

i

q ! gq P

q!g

(z) = C

F

h

1+(1�z)

2

z

i

Table 17.3.: The four unreg-

ularised splitting

fun
tions of QCD,

with C

F

= 4=3,

T

F

= 1=2, N

C

= 3

and n

f

as the num-

ber of a
tive quark


avors.

and

d�

n+1

/

d

3

k

b

(2�)

3

2E

b

d

3

k




(2�)

3

2E




: (17.31)

With k




= k

a

� k

b

and d

3

k




= d

3

k

a

for �xed k

b

, we obtain trading the variables fE

b

; #

b

g

versus fz; tg in the small-angle approximation

d�

n+1

= d�

n

1

2(2�)

3

Z

E

b

dE

b

#

b

d#

b

d�dt

dz

1� z

Æ(t�E

b

E




#

2

)Æ(z �E

b

=E

a

)

= d�

n

1

4(2�)

3

dtdzd� :

(17.32)

Performing the � integral, we �nd for their ratio,

d�

n+1

d�

n

=

dt

t

dz

�

s

2�

P

i!j

(z) : (17.33)

This ratio is the relative probability density for the emission of an additional 
ollinear parton

with virtuality t and energy fra
tion z by the state n. Integrating this probability using P (z) �

1=z for the emission of a soft gluon results in d�

n+1

=d�

n

/ ln

2

(t=t

min

). Thus the probability

for the emission of an additional parton in
reases with t, spoiling naive perturbation theory.

Moreover, the preferen
e for the emission of 
ollinear partons is the basis for the explanation

of jets observed in hadroni
 �nal states.

Evolution equation We want to derive an equation whi
h determines how the number den-

sity f

i

(x; t) of partons of type i with a 
ertain energy fra
tion x evolves by parton bran
hing

from t to t + Æt. In the 
ase of a spa
e-like evolution, t

n+1

> t

n

and x

n+1

< x

n

, su
h an

equation 
an be used to determine the number of partons inside a hadron, if it is probed

e.g. by a photon with virtuality t. The fun
tions f

i

(x; t) are then 
alled parton distribution

fun
tions. For a time-like evolution, t

n+1

< t

n

and x

n+1

< x

n

, the same equation determines

the number of partons or hadrons whi
h are produ
ed in a pro
ess like e

+

e

�

! hadrons as

fun
tion of the squared 
m energy s. The fun
tions f

i

(x; t) are then 
alled fragmentation or

hadronisation fun
tions.

To be 
on
rete, we 
onsider the spa
e-like evolution of a single parton type. Then the


hange Æf 
onsists of all paths arriving from x

0

> x and all paths leaving f , as shown in

Fig. 17.2. We obtain the number of in
oming paths integrating from x

0

= x to x

0

= 1 under
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x

n�1

1

x

n

0

t

max

t

n

t

0

Figure 17.2.: Possible paths with

t

n+1

> t

n

and

x

n+1

< x

n

des
rib-

ing the spa
e-like

evolution of par-

tons.

the 
onstraint x

0

= x=z,

Æf

in

(x; t) =

Æt

t

Z

1

x

dx

0

dz

�

s

2�

P (z)f(x

0

; t)Æ(x � zx

0

)

=

Æt

t

Z

1

0

dz

z

�

s

2�

P (z)f(x=z; t) :

(17.34)

Here, we extended the integration range from [x; 1℄ to [0; 1℄ in the se
ond step, whi
h is

possible be
ause of f(x=z; t) = 0 for z < x. In the same way, we �nd the number of leaving

paths as

Æf

out

(x; t) =

Æt

t

f(x; t)

Z

0

x

dx

0

dz

�

s

2�

P (z)Æ(x

0

� zx)

=

Æt

t

f(x; t)

Z

1

0

dz

z

�

s

2�

P (z) :

(17.35)

Combing both expressions, we obtain for the total 
hange

Æf(x; t) = Æf

in

(x; t)� Æf

out

(x; t) =

Æt

t

Z

1

0

dz

�

s

2�

P (z)

�

f(x=z; t)

z

� f(x; t)

�

: (17.36)

Now we introdu
e the \plus pres
ription", de�ning

Z

1

0

dx

g(x)

x

+

�

Z

1

0

dx

�

g(x)� g(1)

x

�

; (17.37)

for any suÆ
iently regular fun
tion g(x), and regularised splitting fun
tions

^

P (z) by

^

P (z) = P (z)

+

: (17.38)

Thus the regularised splitting fun
tion

^

P (z) equals the unregularised splitting fun
tion P (z)

everywhere ex
ept at z = 1 where a delta fun
tion is added so that Eq. (17.37) is satis�ed. For

z < 1, both splitting fun
tion des
ribe the emission of real partons and allow a probabilisti


interpretation. The emission of virtual partons does not 
hange the energy and 
orresponds

therefore to the 
ontribution at z = 1. The 
oeÆ
ient of the delta fun
tion 
an be expli
itly
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17. Hadrons, partons and QCD

determined requiring momentum 
onservation, see problem 18.??, without the need to eval-

uate virtual pro
esses. Rewriting the evolution equation as a di�erential equation, we obtain

the DGLAP equation

3

,

t

�f(x; t)

�t

=

�

s

(t)

2�

Z

1

x

dz

z

^

P (z) f(x=z; t) : (17.39)

Given the initial values on [x

min

: 1℄ of the fun
tion f at a �xed s
ale t

0

, we 
an 
al
ulate

within perturbative QCD its evolution as fun
tion of the virtuality t. The initial values

f(x; t

0

), however, have to be determined from measurements. These fun
tions depend on the

hadron probed, but are independent of a spe
i�
 pro
ess. Thus one 
an determine e.g. f

p

i

(x; t)

for a proton from a mixture of pp and e

�

p rea
tions, and apply them then to neutrino-nu
leon

s
attering.

Monte Carlo methods The evolution equation (17.39) admits a probabilisti
 interpretation,

sin
e interferen
e terms disappeared in the semi-
lassi
al limit. This allows a straightforward

appli
ation of Monte Carlo methods to solve it. Compared to a numeri
al integration of

(17.39), the Monte Carlo approa
h has the advantage of being more 
exible, allowing e.g. in

a straightforward way to add hadronisation models and experimental 
uts. Moreover, this

method reprodu
es event-by-event 
u
tuation whi
h is an important ingredient to estimate

the statisti
al signi�
an
e of an observed signal.

We 
an either start from Eq. (17.36) or use as short-
ut the analogy to the radioa
tive

de
ay problem with a time-varying de
ay 
onstant. Using the latter pi
ture, we denote the

di�erential probability for the de
ay of an atom (or the bran
hing of a parton) at t by P(t).

It equals minus the time-derivative of the survival probability whi
h we 
all �(t). Moreover,

the di�erential probability P(t) that something happens at t is proportional to the survival

probability �(t), with a proportionality 
onstant F (t) whi
h equals the de
ay rate in the

radioa
tive de
ay problem,

P(t) = �

d�(t)

dt

= F (t)�(t) : (17.40)

Integration gives

�(t) = �(0) exp

�

�

Z

t

0

dtF (t)

�

; (17.41)

if the evolution starts at t = 0, and thus

P(t) = F (t)�(t) = F (t) exp

�

�

Z

t

0

dt

0

F (t

0

)

�

: (17.42)

In the 
ase of a parton 
as
ade, P(t) denotes the di�erential probability that a splitting

happens at the virtuality t, while the probability that a parton survives, i.e. does not split

between the virtuality t and t

min

, is 
alled the Sudakov form fa
tor �(t). In turn, the

probability for a parton to survive between t

0

and t is given by the ratio �(t

0

)=�(t). The

fun
tion F (t) playing the role of the de
ay 
onstant is given by the ratio d�

n+1

=d�

n

from

Eq. (17.33). Be
ause of its 1=t singularity, we have to introdu
e a 
uto� t

0

whi
h should be

3

Until the 1990s, equations of this type were 
alled Altarelli-Parisi equations. The name evolved then from

Gribov-Lipatov-AP to its present form, Dokshitzer-Gribov-Lipatov-Altarelli-Parisi or DGLAP equations.
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17.2. DGLAP equations

moreover large enough that we 
an trust perturbative 
al
ulations. Combining all this, the

di�erential probability distribution for the splitting of the parton i into the 
hannels j is

dP

i

(t; z) =

X

j

dt

t

dz

2�

�

s

P

ij

(z)

�

i

(t

0

)

�

i

(t)

: (17.43)

Here, the sum in
ludes all possible bran
hing 
hannels j, and �

i

is given by

�

i

(t) = exp

2

4

�

Z

t

t

min

dt

0

t

0

X

j

Z

z

max

z

min

dz

2�

�

s

P

ij

(z)

3

5

: (17.44)

As the use of distributions like Æ(1� x) is problemati
 doing numeri
al 
al
ulations, we have

used the unregularised splitting fun
tions P

ij

(z) given in Table 17.3 together with an IR 
uto�

t

min

. The latter serves both as a boundary to the non-perturbative regime, t

min

� �

2

QCD

,

and as a regulator of the IR singularities in the splitting fun
tions,

z

min

=

p

t

min

=t and z

max

= 1�

p

t

min

=t : (17.45)

We 
an now set up a simple Monte Carlo s
heme for the simulation of parton 
as
ades. In

ea
h step (t

n

; x

n

) ! (t

n+1

; x

n+1

), we determine �rst the new t

n+1

from the Sudakov fa
tor

as follows: We 
hoose a random number r from an uniform distribution between [0; 1℄. For a

spa
e-like parton 
as
ade, we 
ompare then this random number with the probability for the

evolution from t

n

to t

n+1

> t

n

,

r =

�(t

n+1

)

�(t

n

)

; (17.46)

and solve for t

n+1

. If t

n+1

is larger than the hard s
ale in the pro
ess 
onsidered, the 
as
ade

stops. Otherwise we determine the splitting 
hannel j and the energy fra
tion z = x

n+1

=x

n

a

ording to the probability distribution �

s

P

i!j

(z) and 
ontinue.

For a time-like parton 
as
ades, where the virtuality de
reases, we 
ompare a random

number r with

r =

�(t

n

)

�(t

n+1

)

: (17.47)

If r < �(t

n

; t

0

), the equation has no solution and no further splitting happens. Otherwise we

solve again for the parton type and the energy fra
tion z and 
ontinue. As �nal out
ome of

the time-like 
as
ade, we obtain a set of quarks and gluons whose virtualities are 
lose to our


uto� s
ale t

min

.

This des
ription of a parton 
as
ade has been s
hemati
 in few respe
ts: First, we have not

yet spe
i�ed the argument of �

s

. A more 
areful analysis shows that 
hoosing p

2

?

= z(1� z)t

sums up partially NLL e�e
ts. Se
ond, in a time-like 
as
ade 
oheren
e e�e
ts lead to an

angular-ordered 
as
ade. As a result, the evolution parameter used di�ers for the two 
ases.

Hadronisation models The quarks and gluons produ
ed as the �nal state of a parton shower

have to be 
onverted into hadrons using a phenomenologi
al model. An ansatz whi
h requires

no additional theoreti
al input is to determine fragmentation fun
tions f

h

i

(z; t

0

) from exper-

imental data. These fun
tions give the probability that a parton i with energy E produ
es

a hadron h with energy zE. Convoluting then the fragmentation fun
tions with the parton
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17. Hadrons, partons and QCD

t

x

Figure 17.3.: Left: Yo-yo movement of a �qq pair in the massless limit. Right: Break-up of

the string into fragments.

spe
tra D

i

(x=z;

p

s; t

0

) obtained from the perturbative evolution from

p

s down to t

0

, one

obtains the hadron spe
tra as

D

h

(x;

p

s) =

X

i=q;g

Z

1

x

dz

z

D

i

(x=z;

p

s; t

0

)f

h

i

(z; t

0

) : (17.48)

An alternative to this purely phenomenologi
al method is to develop models that try to


apture basi
 properties of QCD like 
on�nement. The 
luster hadronisation model used �rst

in HERWIG is based on the idea of pre-
on�nement, i.e. it assumes that the parton spe
tra

at the end of the 
as
ade resemble 
losely the hadron spe
tra. Sin
e the P

gg

splitting fun
tion

is the most singular one, the majority of partons in the 
as
ade are gluons. In order to 
reate

the valen
e quarks ne
essary to form mesons and baryons, one adds therefore an arti�
ial

splitting g ! �qq after the parton 
as
ade stopped at t

min

.

The Lund string model whi
h is another s
heme often employed in Monte Carlo simula-

tions is based on a rather di�erent ansatz: Latti
e QCD 
al
ulations show that the poten-

tial between two stati
 quarks 
an be approximated at large distan
e by V (r) � �r with

� � 0:2GeV

2

. Thus in a 
on�ning theory like QCD, the for
e lines between a �qq pair are


on
entrated in a narrow tube 
onne
ting the pair. This tube of 
olour �eld 
an be viewed

as a string with tension �, trying to pull the quark pair together. The string model uses this

pi
ture to des
ribe the hadronisation of partons into hadrons. Let us dis
uss the simplest 
ase

that a �qq pair is 
reated in an e

+

e

�

annihilation. As we will show in se
tion 22.3, a 
onstant

a

eleration �x = �� leads to a hyperbola as traje
tory. In the limit of massless quarks, we


an approximate the hyperbola by straight line segments as shown in Fig. 17.3: Negle
ting

further intera
tions, the two quarks would os
illate ba
k and forth in a yo-yo mode. Instead,

a new �qq pair will be 
reated when the energy ��x in the string tube is suÆ
iently large

su
h that two 
olour singlet states 
an be formed, (�qq)(�qq). If one adds the assumption that

all breakings happen during the initial expansion phase of the yo-yo modes, a formulation of

the break-up pro
ess as a probabilisti
 pro
ess is possible. Moreover, this pro
ess is Lorentz

invariant, sin
e it is based on the dynami
s of a relativisti
 string.

While the basi
 pi
ture underlying the 
luster hadronisation or the string model are theo-

reti
ally well motivated, a rather large number of additional assumptions and parameters is

required to model the momentum distributions of the various types of mesons and baryons

produ
ed and their bran
hing ratios. These parameters are partly obtained from �ts to ex-

perimental data and interfere with the properties of the basi
 hadronisation model. It is
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17.3. Corre
tions to e

+

e

�

annihilation

therefore diÆ
ult to di�erentiate whi
h one of these two models better des
ribes nature.

17.3. Corre
tions to e

+

e

�

annihilation

In this se
tion, we examine the total annihilation 
ross se
tion of an e

+

e

�

pair into hadrons.

While the s
heme (17.43{17.44) allows us to 
al
ulate the relative fra
tion of �nal-states

in a QCD pro
ess, it a

ounts for the e�e
t of virtual pro
esses only indire
tly, imposing


avour 
onservation,

P

i

R

dxP

q!q

(x) = 1, or momentum 
onservation,

P

i

R

dxxP

i

= 1, on

the regularised splitting fun
tions. As a 
onsequen
e, we 
annot 
al
ulate the impa
t of

higher-order 
orre
tions to the total rate within this formalism. Instead, a perturbative QCD


al
ulation for the total annihilation 
ross se
tion is suÆ
ient and, as we will see, free IR

divergen
es. This requires that the large logarithms whi
h are present in individual pro
esses


an
el in the total e

+

e

�

annihilation 
ross se
tion.

Let us give �rst a heuristi
 argument why the total annihilation 
ross se
tion into hadrons


an be 
al
ulated using partons: The partoni
 pro
ess 
ontains the time s
ale 1=

p

s, while

hadronisation o

urs on the time s
ale 1=�

QCD

. This means that the produ
tion of par-

tons pro
eeds independently of their latter hadronisation, if we 
onsider pro
esses with

s � �

2

QCD

. More pre
isely, we expe
t from hadronisation 
orre
tions of order �

2

QCD

=s

to the result of a perturbative QCD 
al
ulations using partons. We 
an make this argu-

ment a bit more quantitative: Let us denote the amplitude to 
reate a quark state by a

hadroni
 QCD 
urrent J(t) whi
h evolves then into a �nal-state of hadrons jhi s
hemati
ally

by A

h

/

R

dt h0j J(t)U(t;1) jhi. The probability determining the total annihilation 
ross

se
tion is then jA

h

j

2

summed over all possible hadroni
 states,

�

ann

/

X

h

A

h

A

�

h

/

X

h

h0j J(t

0

)U(t

0

;1) jhi hhjU(t;1)J(t) j0i =

= h0j J(t

0

)U(t

0

;1)U(1; t)J(t) j0i = h0j J(t

0

)U(t

0

; t)J(t) j0i :

(17.49)

Thus unitarity,

P

h

jhi hhj = 1, leads to a 
an
ellation of the 
ompli
ated long-distan
e

physi
s, and only the short-distan
e s
ale t � t

0

� 1=

p

s enters the total e

+

e

�

annihilation


ross se
tion. As a result, su
h quantities 
an be 
al
ulated within perturbative QCD.

After these preliminaries, let us move to the spe
i�
 pro
ess e

+

e

�

! hadrons. We split

the annihilation 
ross se
tion into

�

hadrons

= �

q�q

+ �

q�qg

+ : : : (17.50)

a

ording to the partoni
 �nal state. Fa
toring out expli
itly the strong 
oupling, the pertur-

bative series up to �

s

is

�

q�q

=

1

4I

Z

d�

2

jA

q�q

j

2

=

1

4I

Z

d�

2

h

jA

(0)

q�q

j

2

+ 2�

s

<

�

A

(0)

q�q

A

(2)�

q�q

�

+ : : :

i

; (17.51a)

�

q�qg

=

1

4I

Z

d�

3

jA

q�qg

j

2

=

1

4I

Z

d�

3

h

�

s

jA

(1)

q�qg

j

2

+ : : :

i

: (17.51b)

We expe
t that the IR divergen
es of the real gluon emission pro
ess are 
an
elled by those

of the interferen
e term between the tree-level pro
ess and the virtual 
orre
tion. At order

O(�

s

), a �nite total annihilation 
ross se
tion requires

Z

d�

2

2<

�

A

(0)

q�q

A

(2)�

q�q

�

+

Z

d�

3

jA

(1)

q�qg

j

2

= �nite. (17.52)
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As we are used from the 
ase of UV divergen
es, we have to apply also to IR divergen
es a

regularisation s
heme in order to make our mathemati
al manipulations well-de�ned. The

simplest s
heme, introdu
ing a �nite gluon mass, breaks gauge invarian
e. We 
an maintain

gauge invarian
e using again DR, now however in the limit d = 2! = 4+2", i.e. extrapolating

to more than four dimensions.

Before embarking onto 
al
ulations, let us dis
uss two features of this pro
ess that 
an be

used to simplify the 
al
ulations. First, we 
an express j

�

Aj

2

= L

��

H

��

=Q

4

always as the

produ
t of a leptoni
 and hadroni
 tensor, L

��

and H

��

, if we are interested only in QCD


orre
tions. Moreover, QCD 
orre
tions a�e
t only the hadroni
 tensor H

��

. Then we 
an

write the 
ross se
tions as

� =

1

2Q

2

L

��

1

Q

4

Z

d�H

��

; (17.53)

where we used the 
ux fa
tor 4I = 4p


ms

p

s = 2s and s = Q

2

. Se
ond, gauge invarian
e

implies Q

�

L

��

= � � � = Q

�

H

��

= 0, where Q

�

denotes the four-momentum of the photon or

Z boson in the s 
hannel. Hen
e the tensor stru
ture of the leptoni
 and hadroni
 tensor has

to be of the form ��

��

+Q

�

Q

�

=Q

2

. This allows us to simplify the phase spa
e integration,

introdu
ing

Z

d�H

��

(Q) =

1

d� 1

�

��

��

+

Q

�

Q

�

Q

2

�

H(Q

2

) (17.54)

with

H(Q

2

) = ��

��

Z

d�H

��

(Q) = �H

�

�

(Q

2

)� : (17.55)

The last step is valid, whenH

��

depends only onQ

2

, as it is the 
ase after averaging over spins.

Thus our task is redu
ed to the 
al
ulation of the tra
e of the hadroni
 tensor. As additional

simpli�
ation, we in
lude only the photon diagrams whi
h give the dominant 
ontribution to

the total annihilation 
ross se
tion of an e

+

e

�

pair into hadrons, ex
ept 
lose to the Z pole

when s ' m

2

Z

.

Tree-level pro
ess We 
onsider �rst the tree-level pro
ess e

+

e

�

! �qq, denoting the four-

momenta of the parti
les by l

+

; l

�

; �q; q. The leptoni
 and hadroni
 tensor, L

��

and H

��

, are

given by

L

��

= e

2

[l

+

�

l

�

�

+ l

�

�

l

+

�

�Q

2

�

��

=2℄ (17.56)

and

H

��

= (e

q

e)

2

4N




[�q

�

q

�

+ q

�

�q

�

�Q

2

�

��

=2℄ ; (17.57)

where e

q

denotes the quark 
harge in units of the positron 
harge e. Evaluating L

�

�

=

e

2

[2(l

+

� l

�

)�Q

2

d=2℄ = e

2

Q

2

(1� d=2), we �nd as general expression for the 
ross se
tion

� =

e

2

4Q

4

d� 2

d� 1

H(Q

2

) : (17.58)

The spe
i�
 ingredient of the tree-level pro
ess is the tra
e of the hadroni
 tensor. In the

limit of massless quarks, we obtain for its tra
e

H

�

�

= �2(e

q

e)

2

N




(2� d)Q

2

: (17.59)
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Figure 17.4.: Feynman diagrams for real gluon emission and vertex 
orre
tion.

Adding also the two-parti
le phase spa
e in DR, 
f. Eq. (17.82), with p

2

= s=4 = Q

2

=4 gives

for the tree-level 
ross se
tion

�

(0)

=

e

2

2Q

4

1� "

3� 2"

� 4(e

q

e)

2

N




Q

2

(1� ")�

1

4�

1

2

�

4�

Q

2

�

"

�(1� ")

�(2� 2")

=

4��

2

2Q

2

e

2

q

N




�

4��

2

Q

2

�

"

(1� ")

2

3� 2"

�(1� ")

�(2� 2")

:

(17.60)

Simple inspe
tion shows that this formula reprodu
es for " ! 0 the standard result (prob-

lem 18.??).

Real emission The hadroni
 
urrent in
luding the emission of an additional gluon with

momentum g and polarisation ve
tor "

(r)

�

as shown by the �rst two graphs in Fig. 17.4 is

given by

J

�

= "

(r)�

�

J

��

= �i�

2"

ee

q

g

s

T

a

ij

"

(r)�

�

�u(q)

�




�

q=+ g=

(q + g)

2




�

+ 


�

��q=� g=

(�q + g)

2




�

�

v(�q) :

The hadroni
 tensor is obtained 
ontra
ting the squared 
urrents with the polarisation ve
tor

of the gluon,

H

��

=

X

r

"

(r)�

�

"

(r)

�

X

J

��

J

���

= �J

��

J

��

�

: (17.61)

Here we 
ould evaluate the polarisation sum using

P

"

(r)�

�

"

(r)

�

= ��

��

, be
ause only o ne

external gluon is involved. Evaluating then the tra
e H

��

gives us

H

�

�

= C

F

N

C

(ee

q

g

s

)

2

�

S

qq

(2q � g)

2

+

S

�q�q

(2�q � g)

2

�

S

qq

+ S

�q�q

(2q � g)(2�q � g)

�

: (17.62)

In this expression, IR divergen
es have shown up as poles for q � g ! 0 and �q � g ! 0. With

q �g = E

q

E

g

(1�
os �

q

), where �

q

is the quark velo
ity, we 
an identify them as a 
ombination

of soft (E

g

! 0) and 
ollinear (�

q

! 0) singularities. Next we evaluate the spinor tra
es,

�nding

S

qq

= S

�q�q

= 32(1 � ")

2

[(q � g)(�q � g)℄ (17.63)

and

S

q�q

+ S

�qq

= �32(1 � ")[(q � q)Q

2

� 2"(q � g)(�q � g)℄ : (17.64)
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As we have already seen dis
ussing the splitting fun
tions, the double pole from the propa-

gators will be 
onverted into a simple pole, 
an
elling against the fa
tor (q � g)(�q � g) in the

tra
es.

Now we introdu
e the momentum fra
tions x

i

= 2p

i

� Q=Q

2

, whi
h for massless quarks

be
ome e.g. 1 � x

q

= 2�q � g=Q

2

. Combining then H

�

�

together with the three-parti
le phase

spa
e given in (17.83), we obtain

H

�

�

=

C

F

N

C

e

2

q

��

s

Q

2

�

�

4��

2

Q

2

�

"

(1� ")

�(2� 2")

�

Z

1

0

dx

q

Z

1

1�x

�q

dx

�q

1

[(1� x

q

)(1� x

�q

)(x

q

+ x

�q

� 1)℄

"

�

�

(1� ")

�

1� x

q

1� x

�q

+

1� x

�q

1� x

q

�

+

2(x

q

+ x

�q

� 1)

(1� x

q

)(1� x

�q

)

� 2"

�

:

(17.65)

The nested integrals be
ome easier substituting x

q

= x and x

�q

= 1� vx. Solving them using

the de�nition (A.28) of Euler's Beta fun
tion, adding the 3-parti
le phase spa
e (17.83) and

expanding then the Gamma fun
tion around their poles, we end up with

� =

2C

F

N

C

e

2

q

��

s

Q

2

�

"

�

4��

2

Q

2

�

"

(1� ")

�(2� 2")

�

3

(1� ")

�(1� 3")

�

2

"

2

+

3

"

+

19

2

+O(")

�

= �

(0)

C

F

�

s

2�

�

4��

2

Q

2

�

"

�

2

(1� ")

�(1� 3")

�

2

"

2

+

3

"

+

19

2

+O(")

�

: (17.66)

Here, the 1="

2

term 
orresponds to a 
ombined soft and 
ollinear divergen
e, while the 1="

term 
orresponds to soft singularities.

Virtual 
orre
tions The QCD one-loop 
ontribution to e

+

e

�

! �qq 
onsists of self-energy


orre
tions to the quark lines and the vertex 
orre
tion. The interferen
e terms between these

virtual 
orre
tions and the tree-level diagram are of the same order as the real emission, 
f.

Eq. (17.51a), and should 
an
el the IR divergen
es found above. Sin
e we restri
t ourselves

to massless quarks, the self-energy diagram 
ontains no s
ale and vanishes in DR, 
f. the

dis
ussion of tadpoles in se
tion 12.3.2. Therefore we have to 
onsider only the vertex 
orre
-

tion. Contra
ting the hadroni
 tensor of the interferen
e term between the vertex 
orre
tion

evaluated in R

�

gauge with � = 1 and the tree-level diagram gives

��

��

H

��

= 2i(eqg

s

�

2"

)

2

trfT

b

T

b

g

Z

d

d

k

(2�)

d

1

k

2

(k + q)

2

(k � �q)

2

� trfq=


�

(k= + q=)


�

(k= � �q=)


�

q=


�

g :

(17.67)

Combining the denominators using Feynman parameters results in

1

k

2

(k + q)

2

(k � �q)

2

=

Z

1

0

d�

Z

1��

0

d�

2

[�(k + q)

2

+ �(k � �q)

2

+ (1� �� �)k

2

℄

3

=

Z

1

0

d�

Z

1��

0

d�

2

[(k + �q � ��q)

2

+ ��Q

2

℄

3

: (17.68)
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Now the 
hange of variables k ! k��q+��q transforms the loop integral into standard form,

I(!; 3). Note that the loop integral in UV �nite, sin
e QCD 
orre
tions 
annot renormalise

the 
�qq vertex. Next we work out the tra
e in (17.67), and shift then variables, obtaining

trf� � � g = 8(1 � ")fQ

4

� 4[(k � q)(k � �q)� 2k � (q � �q)Q

2

+ "k

2

Q

2

g

= 8(1 � ")Q

2

f[1� �� � + (1� ")��℄Q

2

� (1� ")

2

(2� ")

�1

k

2

g :

(17.69)

Here, we have omitted all terms linear in k and repla
ed in the se
ond line k

�

k

�

by k

2

�

��

=d.

Combining then the tra
e and the loop integral, we obtain

�

V

= i�
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+ ��Q

2

℄

3

�

�

(1� �� � + (1� ")��)Q

2

� (1� ")

2

=(2 � ")k

2

�

= ��

(")

0

�

s

2�

C

F

�

4��

2

�Q

2

�

"

�(1 + ") I(") ;

(17.70)

where we de
ouple the parameter integrals in I(") by the substitution � = (1� �)v,

I(") =

Z

1
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Z

1��

0
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1
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"

�
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1� 2"
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: (17.71)

Inserting the result in the formula for the 
ross se
tion gives

�

V

= ��

(")

0

�

s

2�

C

F

�

4��

2
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"

+ 8 +O(")

�

: (17.72)

Re
all that only the real part of this expression enters the total 
ross se
tion.

Total 
ross se
tion Combining the result for the real and virtual 
orre
tion, we arrive at

� = �

(")

0

�

1 +

�

s

2�
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F
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4��

2
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� 8 +O(")
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(17.73)

A 
an
ellation of the poles requires thus that the prefa
tor in the se
ond line equals one up

to O("

3

) terms. Using

�(1 + ") = 1� "
 +

�

�

2

12

+

1

2




2

�

"

2

+O("

4

) (17.74)

we obtain

�(1 + ")�(1 � 3")

�(1� 2")

= 1 +

1

2

(�")

2

+O("

3

) : (17.75)
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Combined with <f(�1)

"

g = <fexp(i�")g = 1� (�")

2

=2+O("

4

), we see that the O("

2

) terms

do 
an
el as required in the 
ombined prefa
tor. The total 
ross se
tion of e

+

e

�

annihilation

into hadrons at O(��

s

) is therefore free of IR divergen
es and we 
an perform the limit "! 0,

obtaining

� = �

0

�

1 +

3

2

�

s

2�

C

F

+O(�

2

s

)

�

: (17.76)

Two obvious questions arise: First, what should we use as argument of �

s

? And se
ond,

whi
h 
onditions 
hara
terise in general a quantity free of IR divergen
es? The answer to the

�rst question follows from our general dis
ussion of the RGE equation in se
tion 12.4: We


an absorb all s
ale dependen
e into the running 
oupling �

s

(�

2

) 
hoosing as s
ale �

2

= s.

As a bonus, we sum thereby the leading logarithmi
 
orre
tions of all orders perturbation

theory.

IR safe observables The se
ond question is more 
omplex, and we sket
h only a few general

results about so-
alled IR safe observables. From an experimental point of view, physi
al

observables have to be measurable. However, any experimental devi
e has a �nite energy

and angular resolution, �E and �#, respe
tively. Any soft or 
ollinear splitting below these

resolution limits in pra
tise 
annot be measured and therefore the individual 
ross se
tions

of these unresolved pro
esses have to be summed up. Thus any observable like e.g. a n-jet

rate should be de�ned su
h that it is invariant under the repla
ement p

i

! p

j

+p

k

whenever

p

j

or p

k

are small or 
ollinear. While the individual rates of unresolved pro
esses may have

IR divergen
es, they should disappear if we use suÆ
iently in
lusive quantities. This idea is

made pre
ise in the Kinoshita-Lee-Nauenberg theorem whi
h states that the total rate

X

i;f2D

j hf jS jii j

2

(17.77)

in a general quantum �eld theory is IR �nite. Here, D � D(p

�

i

;�E;�#

i

) denotes the set

of states whi
h are degenerated for a given energy and angular resolution with the initial

and �nal states, respe
tively. In general, one has to sum thus also over all unresolved initial

states, in
luding e.g. initial bremsstrahlung. An ex
eption is QED, where a summation over

unresolved �nal states is suÆ
ient to obtain IR �nite quantities, be
ause no massless parti
les

with non-zero ele
tri
 
harged exist. This also the reason why it was suÆ
ient to sum over

�nal-states in our example, where only the �nal state 
ontained strongly intera
ting parti
les.

17.A. Appendix: Phase spa
e integrals in DR

The two parti
le phase spa
e d�

2

was given in Eq. (9.120) for d = 4 dimensions. We rewrite

�rst this expression for general d,

d

2d�2

�

2

= (2�)

d

Æ

(d)

(q � p

1

� p

2

)

d

d�1

p

1

2E

1

(2�)

d�1

d

d�1

p

2

2E

2

(2�)

d�1

; (17.78)

and integrate then over d

d�1

p

2

,

Z

d

d�1

p

2

Æ

(d)

(q � p

1

� p

2

) = Æ(q �E

1

�E

2

) : (17.79)
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The remaining integrals be
ome

d

d�1

p

2

2E

1

=

1

2

E

d�3

1

sin

d�3

#

1

sin

d�4

#

2

� � � sin#

d�3

d#

1

d#

2

� � � d#

d�2

dE

1

; (17.80)

where the #

i

are the angles to d�2 
oordinate axes. The spin-averaged jAj

2

does not depend

on the angles #

i

, and thus the integrals 
an be performed with the help of Eq. (A.29), giving

Z

d

d�1

p

2

2E

1

= 2

d�3

�

(d�2)=2

�(d=2� 1)

�(d� 2)

dE

1

: (17.81)

Evaluating �nally the energy integral as in d = 3, we arrive at

Z

d

2d�2
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2

=

1

4�

p

p

s

�

�

p

2

�

"

�(1� ")

�(2� 2")

: (17.82)

Following the same pro
edure, one obtains for the three-parti
le phase spa
e

Z

d�

3

=

Q

2

2(4�)

3

�

4�

Q

2

�

2"

1

�(2� 2")

Z

1

0

dx

Z

1

1�x

dy

1

[(1 � x)(1 � y)(1� z)℄

"

: (17.83)

Summary

Theories like QED or QCD with massless fermions 
ontain no dimensionful parameters and

are 
lassi
ally s
ale and 
onformal invariant. The s
ale invarian
e of these theories is broken

by quantum 
orre
tions whi
h unavoidably introdu
e a mass s
ale. This quantum e�e
t is

responsible for the bulk of hadron masses.

In the parton pi
ture, we repla
e a hadron whi
h is probed in a pro
ess with momentum

transfer Q

2

by a 
olle
tions of quarks and gluons. For Q

2

� �

2

QCD

, we 
an treat them

as \free" parti
les whi
h are intera
ting independently. Measuring the parton distribution

fun
tions f

i

(x;Q

2

) at one s
ale Q

2

, perturbative QCD des
ribes via the DGLAP equation

their evolution to the new s
ale Q

02

. In the 
al
ulation of suÆ
iently ex
lusive quantities,

infrared singularities due to massless gluons and quarks 
an
el.

Further reading

Two very useful referen
es 
overing most aspe
ts of perturbative QCD are [DKS09℄ and

[ESW03℄. Our presentation follows the one given in these referen
es, where you 
an �nd

also a dis
ussion of 
oheren
e e�e
ts and the resulting angular-ordered 
as
ade. E�e
tive

low-energy models for QCD as well as the tra
e anomaly are dis
ussed by [DGH14℄.
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18. Gravity as a gauge theory

We introdu
e in this 
hapter the a
tion and the �eld equations of gravity, pro
eeding in

a way whi
h stresses the similarity of gravity and Yang-Mills theories: In parti
ular, we

determine the 
oupling between matter and gravity promoting the invarian
e of matter �elds

under global Lorentz transformations to a lo
al symmetry. As a bonus, this approa
h allows

us to des
ribe also the gravitational intera
tions of fermions as well as to understand how

gravity sele
ts the 
onne
tion among the many mathemati
ally possible ones on a Riemannian

manifold. We also derive the linearised Einstein equations whi
h 
an be used to des
ribe the

emission and propagation of weak gravitational waves.

18.1. Vielbein formalism and the spin 
onne
tion

The equivalen
e prin
iple postulates that in a small enough region around the 
enter of a freely

falling 
oordinate system all physi
s is des
ribed by the laws of spe
ial relativity. On larger

distan
es, gravity manifests itself as 
urvature of spa
e-time. Thus physi
al laws involving

only quantities transforming as tensors on Minkowski spa
e are valid on a 
urved spa
e-time

performing the repla
ement

f�

�

; �

��

;d

4

xg ! fr

�

; g

��

;d

4

x

p

jgjg : (18.1)

Here, the 
ovariant derivative r

�

was de�ned using as 
onne
tion the Christo�el symbols

(or Levi-Civita 
onne
tion) from Eq. (6.43). We re
all that the two requirements r

�

g

��

= 0

(\metri
 
onne
tion") and �

�

�


= �

�


�

(\torsionless 
onne
tion") sele
t uniquely this 
onne
-

tion. In the following, we want to understand if these 
onditions are a 
onsequen
e of Einstein

gravity or ne
essary additional 
onstraints. A useful framework to address these questions

is the vielbein formalism whi
h is also ne
essary to in
lude fermions into the framework of

general relativity.

Vielbein formalism We apply the equivalen
e prin
iple as physi
al guide line to obtain the

physi
al laws in
luding gravity: More pre
isely, we use that we 
an �nd at any point P a

lo
al inertial frame in whi
h the physi
al laws be
ome those known from Minkowski spa
e.

We demonstrate this �rst for the 
ase of a s
alar �eld �. The usual Lagrange density without

gravity,

L =

1

2

�

�

��

�

�� V (�) ; (18.2)

is still valid on a general manifold M(fx

�

g), if we use in ea
h point P lo
ally free-falling


oordinates, �

a

(P ). In order to distinguish these two sets of 
oordinates, we label inertial


oordinates by Latin letters a; b; : : : while we keep Greek indi
es �; �; : : : for arbitrary 
oor-

dinates. We 
hoose the lo
ally free-falling 
oordinates �

a

to be ortho-normal. Thus in these


oordinates the metri
 is given by ds

2

= �

ab

d�

a

d�

b

with � = diag(1;�1;�1;�1). Then the
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18.1. Vielbein formalism and the spin 
onne
tion

a
tion of a s
alar �eld in
luding gravity is

S[�℄ =

Z

d

4

�

�

1

2

�

ab

�

a

��

b

�� V (�)

�

(18.3)

with �

a

= �=��

a

. This a
tion looks formally exa
tly as the one without gravity { however

we have to integrate over the manifoldM(fx

�

g) and all e�e
ts of gravity are hidden in the

dependen
e �

a

(x

�

).

We introdu
e now the vielbein (or for d = 4 tetrad) �elds e

a

�

by

d�

m

=

��

m

�x

�

dx

�

� e

m

�

(x) dx

�

: (18.4)

Thus we 
an view the vielbein e

m

�

(x) both as the transformation matrix between arbitrary


oordinates x and inertial 
oordinates � or as a set of four ve
tors in T

�

x

M . In the absen
e

of gravity, we 
an �nd in the whole manifold 
oordinates su
h that e

m

�

(x) = Æ

m

�

. The inverse

vielbein e

�

m

is de�ned analogously by

dx

�

=

�x

�

��

m

d�

m

� e

�

m

(x) d�

m

: (18.5)

The name is justi�ed by

d�

m

= e

m

�

dx

�

= e

m

�

e

�

n

d�

n

(18.6)

and thus e

m

�

e

�

n

= Æ

m

n

. We 
an view the vielbein as a kind of square-root of the metri
 tensor,

sin
e

ds

2

= �

mn

d�

m

d�

n

= �

mn

e

m

�

e

n

�

dx

�

dx

�

= g

��

dx

�

dx

�

(18.7)

and hen
e

g

��

= �

mn

e

m

�

e

n

�

: (18.8)

Taking the determinant, we see that the volume element is

d

4

� =

p

jgjd

4

x = det(e

m

�

)d

4

x � Ed

4

x : (18.9)

We 
an 
onstru
t mixed tensors, having both Latin and Greek indi
es. Then Latin indi
es

are raised and lowered by the 
at metri
, while Greek indi
es are raised and lowered by the


urved metri
. For instan
e, we 
an rewrite the energy-momentum tensor as T

��

= e

m

�

T

m�

=

e

m

�

e

n

�

T

mn

.

We have now all the ingredients needed to express the a
tion (18.3) in arbitrary 
oordinates

x

�

of the manifoldM. We �rst 
hange the derivatives,

L =

1

2

�

mn

e

m

�

e

n

�

�

�

��

�

�� V (�) =

1

2

g

��

�

�

��

�

�� V (�) (18.10)

and then the volume element in the a
tion,

S[�℄ =

Z

d

4

x

p

jgj

�

1

2

g

��

�

�

��

�

�� V (�)

�

: (18.11)

As it should, we reprodu
ed the usual a
tion of a s
alar �eld in
luding gravity. Note that the

sole e�e
t of gravitational intera
tions is 
ontained in the metri
 tensor and its determinant,

while the 
onne
tion plays no role sin
e r

�

� = �

�

�. Similarly, the 
onne
tion drops out of

the Lagrangian of a Yang-Mills �eld, sin
e its �eld-strength tensor is antisymmetri
.
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18. Gravity as a gauge theory

Fermions and the spin 
onne
tion We now pro
eed to the spin-1/2 
ase. In this 
ase,

the simple substitution rule �

�

! r

�


an not be used, be
ause the 
onne
tions de�ned by

Eq. (6.26) 
an be applied only to obje
ts with tensorial indi
es. Applying instead the vielbein

formalism, we re
all �rst the Dira
 Lagrangian without gravity,

L =

�

 (i


�

�

�

�m) (18.12)

where f


�

; 


�

g = 2�

��

. Performing a Lorentz transformation, ~x

�

= �

�

�

x

�

, the Dira
 spinor

 transforms as

~

 (~x) = S(�) (x) = exp

�

�

i

4

!

��

�

��

�

 (x) (18.13)

with !

��

= �!

��

as the six parameters and �

��

=

i

2

[


�

; 


�

℄ as the six in�nitesimal generators

of these transformations.

Swit
hing on gravity, we repla
e x

�

! �

m

and 


�

! 


m

. General 
ovarian
e redu
es now to

the requirement that we have to allow in any lo
al inertial system independent Lorentz trans-

formations. In other words, we promote the invarian
e under global, spa
e-time independent

Lorentz transformations � to the invarian
e under lo
al Lorentz transformations �(x). This

requirement allows us to derive the 
orre
t 
ovariant derivative, in a manner 
ompletely anal-

ogous to the Yang-Mills 
ase: We have to 
ompensate the term introdu
ed by the spa
e-time

dependen
e of S(�(�)) in

�

a

 !

~

�

a

~

 (

~

�) = �

b

a

�

b

[S(�) (�)℄ (18.14)

by introdu
ing a \Latin" 
ovariant derivative,

r

a

= e

�

a

(�

�

+ i!

�

) ; (18.15)

and requiring the inhomogeneous transformation law

!

�

! e!

�

= S!

�

S

y

� iS�

�

S

y

(18.16)

for !. As a result, the 
ovariant derivative transforms as

r

a

!

e

r

a

= �

b

a

Sr

b

S

y

(18.17)

and the Dira
 Lagrangian is invariant under lo
al Lorentz transformations. The 
onne
tion

!

�

is a matrix in spinor spa
e. Expanding it in the basis elements �

��

, we �nd as more

expli
it expression for the 
ovariant derivative

r

a

= �

a

+

i

2

!

��

a

�

��

= e

�

a

�

�

�

+

i

2

!

��

�

�

��

�

= e

�

a

(�

�

+ !

��

�

J

��

) : (18.18)

In the last step we repla
ed the in�nitesimal generators �

��

spe
i�
 for the spinor represen-

tation by the general generators J

��

of Lorentz transformations 
hosen appropriate for the

representation the r

a

a
t on. In this form, the 
ovariant derivative 
an be applied to a �eld

with arbitrary spin. The Lie algebra of the Lorentz group implies that the 
onne
tion !

��

a

is

antisymmetri
 in its Greek indi
es, if they are both up or down, !

��

a

= �!

��

a

.

The transformation law (18.16) of the spin 
onne
tion !

a

under a Lorentz transformation S

is 
ompletely analogous to the transformation properties (10.16) of a Yang-Mills �eldA

�

under

a gauge transformation U . One should keep in mind however two important di�eren
es: First,

a ve
tor lives in a tangent spa
e whi
h is naturally asso
iated to a manifold: In parti
ular,
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18.1. Vielbein formalism and the spin 
onne
tion

we 
an asso
iate a ve
tor in T

P

M with a traje
tory x

�

(�) through P . Therefore we have

the natural 
oordinate basis �

�

in T

P

M and 
an introdu
e in a se
ond step vielbein �elds.

In 
ontrast, matter �elds  (x) live in their group manifold whi
h is atta
hed arbitrarily at

ea
h point of the manifold, and the gauge �elds a
t as a 
onne
tion telling us how we should

transport  (x) to

~

 (x

0

). Se
ond, we asso
iate physi
al parti
les with spin s to irredu
ible

representations of the Poin
ar�e group: Thus we identify 
u
tuations of the gauge �eld A

�

as

the quanta of the ve
tor �eld, while we asso
iate in the 
ase of gravity not the 
u
tuations

of the 
onne
tion but of the metri
 tensor g

��

with parti
les.

Transition to the standard notation We now establish the 
onne
tion between the vielbein

and the standard formalism, using that for tensor �elds the two formalisms have to agree.

Inserting into the de�nition of the 
ovariant derivative for the 
omponents A

a

of a ve
tor A,

r

�

A

a

= �

�

A

a

+ !

a

� b

A

b

; (18.19)

the de
omposition A

a

= e

a

�

A

�

and requiring the validity of the Leibniz rule gives

r

�

A

a

= (r

�

e

a

�

)A

�

+ e

a

�

(r

�

A

�

) (18.20a)

= (r

�

e

a

�

)A

�

+ e

a

�

�

�

�

A

�

+�

�

��

A

�

�

: (18.20b)

Using

�

�

A

a

= �

�

(e

a

�

A

�

) = e

a

�

(�

�

A

�

) + (�

�

e

a

�

)A

�

(18.21)

to eliminate the se
ond term in (18.20b), we obtain

r

�

A

a

= (r

�

e

a

�

)A

�

+ �

�

A

a

� (�

�

e

a

�

)A

�

+ e

a

�

�

�

��

A

�

: (18.22)

Comparing this to Eq. (18.19) we 
an read o� how the 
ovariant derivative a
ts on an obje
t

with mixed indi
es,

r

�

e

a

�

= �

�

e

a

�

� �

�

��

e

a

�

+ !

a

� b

e

b

�

: (18.23)

More generally, 
ovariant indi
es are 
ontra
ted with the usual 
onne
tion �

�

��

while vielbein

indi
es are 
ontra
ted with !

a

� b

. In a moment, we will show that the 
ovariant derivative of

the vielbein �eld is zero, r

�

e

a

�

= 0. Sometimes this property is 
alled \tetrade postulate",

but in fa
t it follows naturally from the de�nition of the vielbein �eld.

In order to derive an expli
it formula for the spin 
onne
tion !

a

� b

we 
ompare now the


ovariant derivative of a ve
tor in the two formalisms. First, we write in a 
oordinate basis

rA = (r

�

A

�

)dx

�


 �

�

= (�

�

A

�

+ �

�

��

A

�

)dx

�


 �

�

: (18.24)

Next we 
ompare this expression to the one using a mixed basis,

rA = (r

�

A

m

) dx

�


 e

m

= (�

�

A

m

+ !

m

� n

A

n

) dx

�


 e

m

(18.25a)

= [�

�

(e

m

�

A

�

) + !

m

� n

e

n

�

A

�

℄ dx

�


 (e

�

m

�

�

) : (18.25b)

Moving e

�

m

to the left and using the Leibniz rule as well as e

�

m

e

m

�

= Æ

�

�

, it follows

rA = e

�

m

[e

m

�

�

�

A

�

+A

�

�

�

e

m

�

+ !

m

� n

e

n

�

A

�

℄ dx

�


 �

�

(18.26a)

= [�

�

A

�

+ e

�

m

(�

�

e

m

�

)A

�

+ e

�

m

e

n

�

!

m

� n

A

�

℄ dx

�


 �

�

: (18.26b)
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18. Gravity as a gauge theory

Relabelling indi
es and 
omparing to Eq. (18.24), we �nd as relation between the two 
on-

ne
tions

�

�

��

= e

�

m

�

�

e

m

�

+ e

�

m

e

n

�

!

m

� n

: (18.27)

Clearly, the 
onne
tion �

�

��

is in general not symmetri
, �

�

��

6= �

�

��

. Now we are also in

the position to show that the 
ovariant derivative of the vielbein �eld vanishes. Multiplying

Eq. (18.27) with two vielbein �elds, we arrive �rst at

!

m

� n

= e

m

�

e

�

n

�

�

��

� e

�

n

�

�

e

m

�

: (18.28)

Multiplying on
e again with a vielbein �eld, we obtain

e

n

�

!

m

� n

= e

n

�

(e

m

�

e

�

n

�

�

��

� e

�

n

�

�

e

m

�

) (18.29a)

= e

m

�

Æ

�

�

�

�

��

� Æ

�

�

�

�

e

m

�

= e

m

�

�

�

��

� �

�

e

m

�

: (18.29b)

Inserted into Eq. (18.23), the \tetrade postulate" r

�

e

a

�

= 0 follows.

18.2. A
tion of gravity

Einstein-Hilbert a
tion The analogy between the Yang-Mills �eld-strength and the Riemann

tensor shown by Eq. (10.49) suggests as Lagrange density for the gravitational �eld

L = �

p

jgjR

����

R

����

: (18.30)

This Lagrange density has mass dimension 4 and would thus lead to a dimensionless grav-

itational 
oupling 
onstant and a renormalisable theory of gravity. However, su
h a theory

would be in 
ontradi
tion to Newton's law. Hilbert 
hose instead the 
urvature s
alar whi
h

has the required mass dimension d = 6,

L

EH

= �

p

jgjR : (18.31)

As we know, we 
an always add a 
onstant term to the Lagrangian, R ! R + 2�. Su
h

a term would imply that 
lassi
ally empty spa
e has a 
onstant va
uum energy whi
h

gravitates. The Lagrangian is a fun
tion of the metri
, its �rst and se
ond derivatives

1

,

L

EH

(g

��

; �

�

g

��

; �

�

�

�

g

��

). The resulting a
tion

S

EH

[g

��

℄ = �

Z




d

4

x

p

jgj fR+ 2�g (18.32)

is a fun
tional of the metri
 tensor g

��

, and a variation of the a
tion with respe
t to the metri


gives the �eld equations for the gravitational �eld. If we 
onsider gravity 
oupled to fermions,

we have to use the spin 
onne
tion !

�

in the matter Lagrangian as well as expressing

p

jgj

and R through Latin quantities,

p

jgj ! E and R = R

��

g

��

! R

mn

�

mn

.

We derive the resulting �eld equations for the metri
 tensor g

��

dire
tly from the a
tion

prin
iple

ÆS

EH

= �Æ

Z




d

4

x

p

jgj(R+ 2�) = �Æ

Z




d

4

x

p

jgj (g

��

R

��

+ 2�) = 0 : (18.33)

1

Re
all that the Lagrange equations are modi�ed in the 
ase of higher derivatives whi
h is one reason why

we dire
tly vary the a
tion in order to obtain the �eld equations.
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18.2. A
tion of gravity

We allow for variations of the metri
 g

��

restri
ted by the 
ondition that the variation of g

��

and its �rst derivatives vanish on the boundary �
,

ÆS

EH

= �

Z




d

4

x

n

p

jgj g

��

ÆR

��

+

p

jgjR

��

Æg

��

+ (R+ 2�) Æ

p

jgj

o

: (18.34)

Our task is to rewrite the �rst and third term as variations of Æg

��

or to show that they are

equivalent to boundary terms. Let us start with the �rst term. Choosing inertial 
oordinates,

the Ri

i tensor at the 
onsidered point P be
omes

R

��

= �

�

�

�

��

� �

�

�

�

��

: (18.35)

Hen
e

g

��

ÆR

��

= g

��

(�

�

Æ�

�

��

� �

�

Æ�

�

��

) = g

��

�

�

Æ�

�

��

� g

��

�

�

Æ�

�

��

; (18.36)

where we ex
hanged the indi
es � and � in the last term. Sin
e �

�

g

��

= 0 at P , we 
an

rewrite the expression as

g

��

ÆR

��

= �

�

(g

��

Æ�

�

��

� g

��

Æ�

�

��

) = �

�

X

�

: (18.37)

The quantity X

�

is a ve
tor, sin
e the di�eren
e of two 
onne
tion 
oeÆ
ients transforms

as a tensor. Repla
ing in Eq. (18.37) the partial derivative by a 
ovariant one promotes it

therefore in a valid tensor equation,

g

��

ÆR

��

= r

�

V

�

=

1

p

jgj

�

�

(

p

jgjV

�

) : (18.38)

Thus this term 
orresponds to a surfa
e term whi
h we assume to vanish. Next we rewrite

the third term using

Æ

p

jgj =

1

2

p

jgj

Æjgj =

1

2

p

jgj g

��

Æg

��

= �

1

2

p

jgj g

��

Æg

��

(18.39)

and obtain

ÆS

EH

= �

Z




d

4

x

p

jgj

�

R

��

�

1

2

g

��

R� � g

��

�

Æg

��

= 0 : (18.40)

Hen
e the metri
 ful�ls in va
uum the equation

�

1

p

jgj

ÆS

EH

Æg

��

= R

��

�

1

2

Rg

��

� �g

��

� G

��

� �g

��

= 0 ; (18.41)

where we introdu
ed the Einstein tensor G

��

. The 
onstant � is 
alled the 
osmologi
al


onstant.

We 
onsider now the 
ombined a
tion of gravity and matter, as the sum of the Einstein-

Hilbert Lagrangian L

EH

=2� and the Lagrangian L

m

in
luding all relevant matter �elds,

L =

1

2�

L

EH

+L

m

= �

1

2�

p

jgj(R + 2�) +L

m

: (18.42)

We will determine the value of the 
oupling 
onstant � in the next se
tion, demanding that

we reprodu
e Newtonian dynami
s in the weak-�eld limit. We have already argued that
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18. Gravity as a gauge theory

the sour
e of the gravitational �eld is the energy-momentum stress tensor whi
h lead to the

de�nition

2

p

jgj

ÆS

m

Æg

��

= T

��

: (18.43)

Einstein's �eld equation follows then as

G

��

� �g

��

= �T

��

: (18.44)

Two remarks are in order: First, the 
osmologi
al 
onstant � measures the 
urvature of an

empty 
lassi
al spa
e-time. Moving � to the RHS of the Einstein equations, we see that its

e�e
t is equivalent to the stress density T

��

= ��g

��

or a va
uum energy density �

�

= ��

with EoS w = P

�

=�

�

= �1, see problem 19.??. Se
ond, we assumed that the boundary

term arising from g

��

ÆR

��

= r

�

V

�

vanishes, whi
h 
orrespond to a zero 
ux of V

�

through

�
. In general, this 
ux is zero only for a 
ompa
t manifold 
 (sin
e then �
 = 0) or if we

require that not only Æg

��

but also Æ�

�

��

vanishes on the boundary �
. The se
ond option

is naturally implemented in the Palatini a
tion prin
iple whi
h we 
onsider next. Using the

Einstein-Hilbert a
tion, one should add instead a boundary term whi
h 
an
els the variation

of g

��

ÆR

��

= r

�

V

�

, for details see [Poi07℄.

Palatini a
tion We start from the Einstein-Hilbert Lagrangian (18.31), but 
onsider

it now as a fun
tion of the metri
 tensor, the 
onne
tion and its �rst derivatives,

L

EH

(g

��

;�

�

��

; �

�

�

�

��

), while we allow an independent variation of the metri
 tensor and

the 
onne
tion in the a
tion. We obtain the desired dependen
e of the Lagrangian expressing

the Ri

i tensor through the 
onne
tion and its derivatives,

L

EH

= �

p

jgjg

��

R

��

=

p

jgjg

��

�

�

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

�

: (18.45)

For simpli
ity, we set also � = 0. Then the variation with respe
t to the metri
,

Æ

g

S

EH

= �

Z




d

4

x Æ

n

p

jgj g

��

o

R

��

= 0 (18.46)

gives R

��

= 0. As we will show in (18.66), this 
ondition is equivalent with the usual Einstein

equations in va
uum. For the variation with respe
t to the 
onne
tion we use �rst the Palatini

equation,

Æ

�

S

EH

= �

Z




d

4

x

p

jgj g

��

ÆR

��

= �

Z




d

4

x

p

jgj g

��

�

r

�

(Æ�

�

��

)�r

�

(Æ�

�

��

)

�

: (18.47)

Applying then the Leibniz rule and relabelling some indi
es, we �nd

Æ

�

S

EH

=�

Z




d

4

x

p

jgjr

�

�

g

��

Æ�

�

��

� g

��

Æ�

�

��

�

�

Z




d

4

x

p

jgj

�

(r

�

g

��

)Æ�

�

��

� (r

�

g

��

)Æ�

�

��

�

:

(18.48)

We kept the se
ond line, be
ause we we do not know yet if the 
ovariant derivative of the

metri
 vanishes for an arbitrary 
onne
tion. Next we perform a partial integration of the �rst
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18.3. Linearised gravity

two terms, 
onverting it into a surfa
e term whi
h we 
an drop. In the remaining part we

relabel indi
es so that we 
an fa
tor out the variation of the 
onne
tion,

Æ

�

S

EH

=

Z




d

4

x

p

jgj

�

Æ

�

�

r

�

g

��

�r

�

g

��

�

Æ�

�

��

: (18.49)

We use now that the 
onne
tion is symmetri
 in the absen
e of fermion. Then also the

variation Æ�

�

��

is symmetri
 and the antisymmetri
 part in the square bra
ket drops out.

Asking that Æ

�

S

EH

= 0 gives therefore

1

2

Æ

�

�

r

�

g

��

+

1

2

Æ

�

�

r

�

g

��

�r

�

g

��

= 0 (18.50)

or r

�

g

��

= r

�

g

��

= 0. Thus the Einstein-Hilbert a
tion implies the metri
 
ompatibility of

the 
onne
tion.

Performing the same exer
ise with the Einstein-Hilbert plus the matter a
tion 
onsidered

as fun
tional of the vielbein e

�

m

and the 
onne
tion !

�

, one �nds the following: From the

variation Æ

!

S

EH

one obtains automati
ally a metri
 
onne
tion whi
h is however in general not

symmetri
. The torsion is sour
ed by the spin-density of fermions. The variation Æ

e

S

EH

gives

the usual Einstein equation. This result justi�es the usual 
hoi
e of a torsionless 
onne
tion

whi
h is metri
 
ompatible: Although e.g. a star 
onsists of a 
olle
tion of individual parti
les


arrying spin s

i

, its total spin sums up to zero,

P

i

s

i

' 0, be
ause they are un
orrelated.

Thus we 
an des
ribe ma
ros
opi
 matter in general relativity as a 
lassi
al spinless

2

point

parti
le (or a 
uid if its extension is important) leading to a symmetri
 
onne
tion.

18.3. Linearised gravity

We are looking for small perturbations h

��

around the Minkowski metri
 �

��

,

g

��

= �

��

+ h

��

; h

��

� 1 : (18.51)

These perturbations may be 
aused either by the propagation of gravitational waves or by

the gravitational potential of a star. In the �rst 
ase, experimental limits showed that one

should not hope for h larger than O(h) � 10

�21

. Keeping only terms linear in h is therefore

an ex
ellent approximation. Choosing in the se
ond 
ase as appli
ation e.g. the spiral-in of a

binary system, deviations from the Newtonian limit 
an be
ome arbitrarily large. Hen
e one

needs a systemati
 \post-Newtonian" expansion or has to perform a full numeri
al analysis

to des
ribe properly su
h 
ases.

Linearised Einstein equations in va
uum From �

�

�

��

= 0 and the de�nition

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) (18.52)

we �nd for the 
hange of the 
onne
tion linear in h

Æ�

�

��

=

1

2

�

��

(�

�

h

��

+ �

�

h

��

� �

�

h

��

) =

1

2

(�

�

h

�

�

+ �

�

h

�

�

� �

�

h

��

) : (18.53)

2

The 
urious reader may wonder if orbital angular momentum leads to torsion: One way to see that the

answer is no is to realise that one 
annot de�ne an orbital angular momentum density whi
h transforms

properly as a tensor, 
f. Eq. (5.26f).
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18. Gravity as a gauge theory

Here we used � to raise indi
es whi
h is allowed in linear approximation. Remembering the

de�nition of the Riemann tensor,

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

; (18.54)

we see that we 
an negle
t the terms quadrati
 in the 
onne
tion terms. Thus we �nd for the


hange

ÆR

�

���

= �

�

Æ�

�

��

� �

�

Æ�

�

��

=

1

2

�

�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h

��

� (�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h

��

)

	

=

1

2

�

�

�

�

�

h

�

�

+ �

�

�

�

h

��

� �

�

�

�

h

��

� �

�

�

�

h

�

�

	

: (18.55)

The 
hange in the Ri

i tensor follows by 
ontra
ting � and �,

ÆR

�

���

=

1

2

n

�

�

�

�

h

�

�

+ �

�

�

�

h

��

)� �

�

�

�

h

��

� �

�

�

�

h

�

�

o

: (18.56)

Next we introdu
e h � h

�

�

, � = �

�

�

�

, and relabel the indi
es,

ÆR

��

=

1

2

�

�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

��h

��

� �

�

�

�

h

	

: (18.57)

We now rewrite all terms apart from �h

��

as derivatives of the ve
tor

�

�

= �

�

h

�

�

�

1

2

�

�

h ; (18.58)

obtaining

ÆR

��

=

1

2

f��h

��

+ �

�

�

�

+ �

�

�

�

g : (18.59)

Looking ba
k at the properties of h

��

under gauge transformations, Eq. (7.41), we see that we


an gauge away the se
ond and third term. Thus the linearised Einstein equation in va
uum,

ÆR

��

= 0, be
omes simply

�h

��

= 0 ; (18.60)

if the harmoni
 gauge

�

�

= �

�

h

�

�

�

1

2

�

�

h = 0 (18.61)

is 
hosen. Hen
e the familiar wave equation holds for all ten independent 
omponents of

h

��

, and the perturbations propagate with the speed of light. Inserting plane waves h

��

=

"

��

exp(�ikx) into the wave equation, one �nds immediately that k is a null ve
tor.

TT gauge We want to re-derive our old result for the polarisation tensor des
ribing the

physi
al states 
ontained in a gravitational perturbation. We 
onsider a plane wave h

��

=

"

��

exp(�ikx). After 
hoosing the harmoni
 gauge (18.61), we 
an still perform a gauge

transformation using four fun
tions �

�

satisfying ��

�

= 0. We 
an 
hoose them su
h that

four 
omponents of h

��

vanish. In the TT gauge, we set (i = 1; 2; 3)

h

0i

= 0; h = 0 : (18.62)
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18.3. Linearised gravity

The harmoni
 gauge 
ondition be
omes �

�

= �

�

h

�

�

or

�

0

= �

�

h

�

0

= �

0

h

0

0

= �i!"

00

e

�ikx

= 0 ; (18.63a)

�

a

= �

�

h

�

a

= �

b

h

b

a

= ik

b

"

ab

e

ikx

= 0 : (18.63b)

Thus "

00

= 0 and the polarisation tensor is transverse, k

b

"

ab

= 0. If we 
hoose the plane wave

propagating in z dire
tion, k = ke

z

, the z raw and 
olumn of the polarisation tensor vanishes

too. A

ounting for h = 0 and "

��

= "

��

, only two independent elements are left, and we

re
over our old result,

"

��

=

0

B

B

�

0 0 0 0

0 "

11

"

12

0

0 "

12

�"

11

0

0 0 0 0

1

C

C

A

: (18.64)

In general, one 
an 
onstru
t the polarisation tensor in TT gauge by setting �rst the non-

transverse part to zero and then subtra
ting the tra
e. The resulting two independent ele-

ments are (again for k = ke

z

) then "

11

= 1=2("

xx

� "

yy

) and "

12

.

Linearised Einstein equations with sour
es We rewrite �rst the Einstein equation in an

alternative form where the only geometri
al term on the LHS is the Ri

i tensor. Be
ause of

R

�

�

�

1

2

Æ

�

�

(R+ 2�) = R� 2(R + 2�) = �R� 4� = �T

�

�

; (18.65)

we 
an perform with T � T

�

�

the repla
ement R = ��T � 4� in the Einstein equation and

obtain

R

��

= �(T

��

�

1

2

g

��

T )� g

��

� : (18.66)

This form of the Einstein equations is often useful, when it is easier to 
al
ulate T that R.

Note also that (18.66) informs us that an empty universe with � = 0 has a vanishing Ri

i

tensor R

��

= 0.

Now we move on to the determination of the linearised Einstein equations with sour
es.

We found 2ÆR

��

= ��h

��

. By 
ontra
tion follows 2ÆR = ��h. Combining both terms gives

�

�

h

��

�

1

2

�

��

h

�

= �2(ÆR

��

�

1

2

�

��

ÆR) = �2�ÆT

��

: (18.67)

Sin
e we assumed an empty universe in zeroth order, ÆT

��

is the 
omplete 
ontribution to the

stress tensor. We omit therefore in the following the Æ in ÆT

��

. Next we introdu
e as useful

short-hand notation the \tra
e-reversed" amplitude as

�

h

��

� h

��

�

1

2

�

��

h : (18.68)

The harmoni
 gauge 
ondition be
omes then

�

�

�

h

��

= 0 (18.69)

and the linearised Einstein equation in the harmoni
 gauge follow as

�

�

h

��

= �2�T

��

: (18.70)

Be
ause of

�

�

h

��

= h

��

and Eq. (18.66), we 
an rewrite this wave equation also as

�h

��

= �2�

�

T

��

(18.71)

with the tra
e-reversed stress tensor

�

T

��

� T

��

�

1

2

�

��

T .
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18. Gravity as a gauge theory

Newtonian limit The Newtonian limit 
orresponds to v=
 ! 0 and thus the only non-zero

element of the energy-momentum tensor be
omes T

00

= �. We will show later that the metri


around a point mass 
an be written in the weak-�eld limit as

ds

2

= (1 + 2�)dt

2

� (1� 2�)

�

dx

2

+ dy

2

+ dz

2

�

(18.72)

with � as the Newtonian gravitational potential. Comparing this metri
 to Eq. (18.51), we

�nd as metri
 perturbations

h

00

= 2� h

ij

= 2Æ

ij

� h

0i

= 0 : (18.73)

In the stati
 limit �! �� and v = 0, and thus

��

�

h

00

�

1

2

�

00

h

�

= �4�� = �2�� : (18.74)

Hen
e the linearised Einstein equation has the same form as the Newtonian Poisson equation,

and the 
onstant � equals � = 8�G.

Dete
tion prin
iple of gravitational waves Consider the e�e
t of a gravitational wave on a

free test parti
le that is initially at rest, u

�

= (1; 0; 0; 0). Then the geodesi
 equation simpli�es

to _u

�

= �

�

00

. The four relevant Christo�el symbols are in the linearised approximation, 
f.

Eq. (18.53),

�

�

00

=

1

2

(�

0

h

�

0

+ �

0

h

�

0

� �

�

h

00

) : (18.75)

We are free to 
hoose the TT gauge in whi
h all 
omponent of h

��

appearing on the RHS

are zero. Hen
e the a

eleration of the test parti
le is zero and its 
oordinate position is

una�e
ted by the gravitational wave: The TT gauge de�nes a \
omoving" 
oordinate system.

The physi
al distan
e l between two test-parti
les is given by integrating

dl

2

= g

ab

d�

a

d�

b

= (h

ab

� Æ

ab

)d�

a

d�

b

; (18.76)

where g

ab

is the spatial part of the metri
 and d� the spatial 
oordinate distan
e between

in�nitesimal separated test parti
les. Hen
e the passage of a gravitational wave, h

��

/

"

��


os(!t), results in a periodi
 
hange of the separation of freely moving test parti
les.

Figure 18.1 shows that a gravitational wave exerts tidal for
es, stret
hing and squashing test

parti
les in the transverse plane. The relative size of the 
hange, �L=L, is given by the

amplitude h of the gravitational wave. It is this tiny periodi
 
hange, �L=L

<

�

10

�21


os(!t),

whi
h gravitational wave experiments aim to dete
t. There are two basi
 types of gravitational

wave experiments: In the �rst one, one uses that the tidal for
es of a passing gravitational wave

ex
ite latti
e vibrations in a solid state. If the wave frequen
y is resonant with a latti
e mode,

the vibrations might be ampli�ed to dete
table levels. In the se
ond type of experiment, the

free test parti
les are repla
ed by mirrors. Between the mirrors, a laser beam is many times

re
e
ted, in
reasing thereby the e�e
tive length L and thus �L, before two beams at 90

Æ

are brought to interferen
e. As the most promising gravitational wave sour
e the inspiral of

binary systems 
omposed of neutron stars or bla
k holes have been suggested. In September

2015, the Advan
ed Laser Interferometer Gravitational-Wave Observatory (Advan
ed LIGO)

dete
ted for the �rst time su
h a signal [A

+

16, CM16℄. Additionally, a sto
hasti
 ba
kground

of gravitational waves might be produ
ed during in
ation and phase transitions in the early

universe.
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18.3. Linearised gravity

Figure 18.1.: The e�e
t of a right-handed polarised gravitational wave on a ring of trans-

verse test parti
les as fun
tion of time; the dashed line shows the state without

gravitational wave.

Linearised a
tion of gravity We have derived the linearised wave equation des
ribing grav-

itational waves dire
tly from the Einstein equation. Now we want to obtain the linearised

a
tion of gravity. A straightforward but lengthy approa
h would be to expand the Einstein-

Hilbert a
tion to O(h

3

). Instead, we pro�t from our knowledge of the graviton propagator,

whi
h we derived in 
hapter 4 in Eq. (7.46),

D

��;��

F

(k) =

1

2

(��

��

�

��

+ �

��

�

��

+ �

��

�

��

)

k

2

+ i"

=

P

��;��

(k)

k

2

+ i"

: (18.77)

The 
orresponding Lagrangian is as usually quadrati
 in the �elds,

1

2

h

��

P

��;��

�h

��

. Per-

forming partial integrations and the 
ontra
tions with the metri
 tensors gives us as the


orresponding a
tion

S = �

1

32�G

Z

d

4

x

�

1

2

(�

�

h

�


)

2

�

1

4

(�

�

h)

2

�

: (18.78)

We know that the propagator of a massless parti
les with heli
ity h > 1=2 
an be inverted only,

if either the gauge freedom is 
ompletely �xed or a gauge-�xing term is added. In 
ontrast

to the TT gauge, the harmoni
 gauge 
ontains still unphysi
al degrees of freedom. Thus the

expression (18.78) equals the quadrati
 Einstein-Hilbert Lagrangian in the harmoni
 gauge

plus a gauge-�xing term. The propagator derived in Eq. (7.46) 
orresponds to the R

�

-gauge

with � = 1, and thus the e�e
tive Lagrangian is

L

(2)

EH

+L

gf

= �

1

32�G

�

1

2

(�

�

h

�


)

2

�

1

4

(�

�

h)

2

�

= L

(2)

EH

�

�

�

�

h

��

�

1

2

�

�

h

�

2

: (18.79)

Spe
ialising Eq. (18.78) to the TT gauge, we obtain

S

EH

= �

1

32�G

Z

d

4

x

1

2

(�

�

h

ij

)

2

: (18.80)

We 
an express an arbitrary polarisation state as the sum over the polarisation tensors for


ir
ular polarised waves,

h

��

=

X

a=+;�

h

(a)

"

(a)

��

: (18.81)
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18. Gravity as a gauge theory

Inserting this de
omposition into (18.80) and using "

(a)

��

"

��(b)

= Æ

ab

, the a
tion be
omes

S

TT

EH

= �

1

32�G

X

a

Z

d

4

x

1

2

�

�

�

h

(a)

�

2

: (18.82)

Thus the gravitational a
tion in the TT gauge 
onsists of two s
alar degrees of freedom, h

+

and

h

�

, whi
h determine the 
ontribution of left- and right-
ir
ular polarised waves. Apart from

the prefa
tor, the a
tion is the same as the one of two s
alar �elds. This means that we 
an

short-
ut many 
al
ulations involving gravitational waves by using simply the 
orresponding

results for s
alar �elds. We 
an understand this equivalen
e by re
alling that the part of the

a
tion a
tion quadrati
 in the �elds just enfor
es the relativisti
 energy-momentum relation

via a Klein-Gordon equation for ea
h �eld 
omponent. The remaining 
ontent of (18.78) is

just the rule how the unphysi
al 
omponents in h

��

have to be eliminated. In the TT gauge,

we have applied already this information, and thus the two s
alar wave equations for h

(�)

summarise the Einstein equations at O(h

2

).

Before summarising, we mention a re
ently found 
onne
tion between gravity and gauge

theories. First we note that we 
an express the polarisation tensor "

��

of a graviton as the

tensor produ
t of two polarisation ve
tors "

�

of a gauge boson, "

(a)

��

= "

(a)

�

"

(a)

�

. Motivated

by this relation, one may wonder if one 
an 
onne
t amplitudes 
ontaining gravitons to those


ontaining e.g. gluons. In general, this 
annot be true sin
e loop graphs of renormalisable

and non-renormalisable have very di�erent properties. However, one 
an 
onne
t tree-level

amplitudes in gravity to the \square" of the 
orresponding amplitude in a non-abelian gauge

theory: For instan
e, the vertex V

�

1

�

2

�

3

�

1

�

2

�

3

(p

1

; p

2

; p

3

) 
onne
ting three on-shell gravitons


an be expressed as

V

�

1

�

2

�

3

�

1

�

2

�

3

(p

1

; p

2

; p

3

) =

i�

4

V

�

1

�

2

�

3

(p

1

; p

2

; p

3

)V

�

1

�

2

�

3

(p

1

; p

2

; p

3

) ; (18.83)

with V

�

1

�

2

�

3

= �

�

1

�

2

(p

1

� p

2

)

�

3

+ �

�

2

�

3

(p

2

� p

3

)

�

1

+ �

�

3

�

1

(p

3

� p

1

)

�

2

. But V

�

1

�

2

�

3

agrees with

the three-gluon vertex (10.82) after stripping o� its 
olour fa
tor.

Summary

The vielbein formalism allows us not only to 
ouple fermions to gravity but 
lari�es also that

the metri
 
ompatibility of the 
onne
tion is a 
onsequen
e of Einstein's general relativity.

In 
ontrast, the 
onne
tion is in general not symmetri
, although deviations 
an be negle
ted

for ma
ros
opi
 sour
es of gravity. The linearised Einstein equations are often suÆ
ient to

des
ribe the propagation of gravitational waves. In the TT gauge, the Einstein-Hilbert a
tion

is proportional to the a
tion of a massless s
alar �eld.

Further reading

[Car03℄ presents a 
lear dis
ussion of the vielbein formalism and Cartan's stru
ture equations.

The Einstein-Hilbert a
tion in
luding boundary term is dis
ussed by [Poi07℄. For an intro-

du
tion to gravitational waves see e.g. [HEL06℄. The 
onne
tion of tree-level amplitudes in

gauge and gravity theories is dis
ussed by [Wei16℄.
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19. Cosmologi
al models for an homogeneous,

isotropi
 universe

The most important observational property of our Universe is its homogeneity and isotropy

on suÆ
iently large s
ales: Only this feature allows us to dedu
e from observations performed

at a single point generi
 properties of the Universe. While the homogeneity and isotropy of

the Universe was merely a postulate|dubbed 
osmologi
al prin
iple| at the beginning of

the 20th 
entury, observations of the 
osmi
 mi
rowave ba
kground (CMB) have shown that

the early Universe was isotropi
 at the level of 10

�4

around us. Note that a spa
e isotropi


around at least two points is also homogeneous, while a homogeneous spa
e is not ne
essarily

isotropi
. Baring suggestions that we live at a unique pla
e, the early Universe was therefore

also homogeneous on large s
ales. The homogeneity of the Universe implies moreover that

beyond a suÆ
iently large s
ale no new types of gravitationally bound stru
tures appear:

In parti
ular, the sequen
e of hierar
hi
al stru
tures ! star 
lusters ! galaxies ! galaxy


lusters ! super
luster of galaxies stops and super
lusters with sizes of order 100Mp
 are

the largest bound systems found in the Universe. For 
omparison, the size of the Universe

visible at the present epo
h is of order 3000Mp
, i.e. a fa
tor 30 larger. In this 
hapter, we

will dis
uss the evolution of perfe
tly homogeneous and isotropi
 
osmologi
al models. The

question how the inhomogeneities measured in the CMB were generated and how they have

evolved into the very inhomogeneous present Universe will be addressed in 
hapter 23.

19.1. FLRW metri


Weyl's postulate In 1923, Hermann Weyl suggested the existen
e of a privileged 
lass of

observers in the universe, namely those following the \average" motion of galaxies. He postu-

lated that these observers follow time-like geodesi
s that never interse
t. They may however

diverge from a point in the (�nite or in�nite) past or 
onverge towards su
h a point in the

future. Weyl's postulate implies that we 
an �nd 
oordinates su
h that galaxies|and the

observers residing in them|are at rest. These 
oordinates are 
alled 
omoving 
oordinates

and 
an be 
onstru
ted as follows: One 
hooses �rst a spa
e-like hypersurfa
e. Through ea
h

point P in this hypersurfa
e passes a unique worldline of a 
omoving observer. We 
hoose

the 
oordinate time su
h that it agrees with the proper-time of all observers, g

00

= 1, and

the spatial 
oordinate ve
tors su
h that they are 
onstant and lie in the tangent spa
e T

P

at

this point. Then u

�

= Æ

�

0

and for n

�

2 T

P

it follows n

�

= (0; n

i

) and

0 = u

�

n

�

= g

��

u

�

n

�

= g

0b

n

b

: (19.1)

Sin
e n

�

is arbitrary, the elements g

0b

of the metri
 tensor have to vanish, g

0b

= 0. Hen
e as

a 
onsequen
e of Weyl's postulate we may 
hoose the metri
 as

ds

2

= dt

2

� dl

2

= dt

2

� g

ij

dx

i

dx

j

: (19.2)
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The 
osmologi
al prin
iple 
onstrains further the form of dl

2

: Homogeneity requires that

the g

ij


an depend on time only via a 
ommon fa
tor S(t), while isotropy requires that only

the s
alars x � x � r

2

, x � dx and dx � dx enter dl

2

. Hen
e the spatial part of the metri
 has

the form

dl

2

= C(r)(x � dx)

2

+D(r)dx � dx (19.3a)

= C(r)r

2

dr

2

+D(r)[dr

2

+ r

2

d#

2

+ r

2

sin

2

#d�

2

℄ : (19.3b)

We 
an eliminate the fun
tion D(r) by the res
aling r

2

! Dr

2

. Then the line-element

be
omes

dl

2

= S(t)

�

B(r)dr

2

+ r

2

d


�

(19.4)

with d
 = d#

2

+ sin

2

#d�

2

. While the dynami
al fun
tion S(t) has to be determined from

Einstein equations for a given matter 
ontent of the Universe, we 
an 
onstrain the fun
tion

B(r) further using the 
osmologi
al prin
iple.

Maximally symmetri
 spa
es This are spa
es with 
onstant 
urvature. Hen
e the Riemann

tensor of su
h spa
es 
an depend only on the metri
 tensor and a 
onstant K spe
ifying the


urvature. The only form that respe
ts the (anti-)symmetries of the Riemann tensor is

R

��
Æ

= K(g

�


g

�Æ

� g

�Æ

g

�


) : (19.5)

Then we obtain for the Ri

i tensor in three spatial dimensions

R

bd

= g

a


R

ab
d

= Kg

a


(g

a


g

bd

� g

ad

g

b


) = K(3g

bd

� g

bd

) = 2Kg

bd

: (19.6)

A �nal 
ontra
tion gives as 
urvature R of a three-dimensional maximally symmetri
 spa
e

R = g

ab

R

ab

= 2KÆ

a

a

= 6K : (19.7)

A 
omparison of Eq. (19.6) with the Ri

i tensor for the metri
 (19.4) will �x the still unknown

fun
tion B(r). We pro
eed in the standard way: We 
al
ulate the Christo�el symbols with

the help of the geodesi
 equation (or alternatively dire
tly from Eq. (6.43)) and use then the

de�nition of the Ri

i tensor.

Example 19.1: Find the Christo�el symbols and the Ri

i tensor for the metri
 (19.4).

We solve the Lagrange equations for a test parti
le moving in (19.4),

L = B(r) _r

2

+ r

2

(

_

#

2

+ sin

2

#

_

�

2

) ;

where we negle
ted the overall fa
tor S(t). Comparing the Lagrange equations

�r �

B

0

2B

_r

2

� (

_

#

2

+ sin

2

#

_

�

2

)

r

B

= 0 ;

�

�+

2

r

_r

_

�+ 2 
ot#

_

#

_

� = 0 ;

�

#+

2 _r

_

#

r

� 
os# sin#

_

�

2

= 0

with the geodesi
 equation �x

�

+�

�

��

_x

�

_x

�

= 0, we 
an read o� the non-vanishing Christo�el symbols

as

�

r

rr

= �B

0

=(2B) ; �

r

��

= �r sin

2

#=B and �

r

##

= �r=B

�

�

r�

= �

#

r#

= 1=r ; �

�

�#

= 
ot# and �

#

��

= � 
os# sin# :

Sin
e the metri
 is diagonal, the non-diagonal elements of the Ri

i tensor are zero too. We 
al
ulate

with

R

ab

= R




a
b

= �




�




ab

� �

b

�




a


+ �




ab

�

d


d

� �

d

b


�




ad
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for instan
e the rr 
omponent as

R

rr

= 0� 0 + �




rr

�

d


d

� �

d

r


�




rd

= �

r

rr

(�

�

r�

+ �

#

r#

) = �

B

0

rB

: (19.8)

Similarly, we �nd R

##

= 1 +

r

2B

2

dB

dr

�

1

B

and R

��

= sin

2

#R

##

.

Inserting our result for the spatial Ri

i tensor into Eq. (19.6), we obtain

R

rr

=

1

rB

dB

dr

= 2Kg

rr

= 2KB (19.9a)

R

##

= 1 +

r

2B

2

dB

dr

�

1

B

= 2Kg

##

= 2Kr

2

; (19.9b)

while the �� equation 
ontains no additional information. Integration of Eq. (19.9a) gives

B =

1

A�Kr

2

(19.10)

with A as integration 
onstant. Inserting then the result into Eq. (19.9b) �xes the 
onstant

as A = 1. Thus we have determined the line-element of a maximally symmetri
 3-spa
e with


urvature K as

dl

2

=

dr

2

1�Kr

2

+ r

2

(sin

2

#d�

2

+ d#

2

) : (19.11)

Going over to the full four-dimensional line-element, we res
ale for K 6= 0 the r 
oordinate

by r ! jKj

1=2

r. Then we absorb the fa
tor 1=jKj in front of dl

2

by de�ning the s
ale fa
tor

a(t) as

a(t) =

�

S(t)=jKj

1=2

; K 6= 0

S(t); K = 0 :

(19.12)

As result we obtain the Friedmann-Lemâ�tre-Robertson-Walker (FLRW) metri
 for an homo-

geneous, isotropi
 universe,

ds

2

= dt

2

� a

2

(t)

�

dr

2

1� kr

2

+ r

2

(sin

2

#d�

2

+ d#

2

)

�

: (19.13)

The 
onstant k distinguishes the 
ases where the three-dimensional spa
e has negative (k =

�1), positive 
urvature (k = 1) or is 
at (k = 0). Finally, we give two alternatives forms

of the FLRW metri
 that are often more useful. In the �rst one, we introdu
e a new radial

variable by r = sin� for k = 1. Then dr = 
os�d� = (1 � r

2

)

1=2

d� and the line-element

follows as

ds

2

= dt

2

� a

2

(t)

�

d�

2

+ S

2

(�)(sin

2

#d�

2

+ d#

2

)

�

(19.14)

with S(�) = sin� = r. De�ning

r = S(�) =

8

>

<

>

:

sin� for k = 1 ;

� for k = 0 ;

sinh� for k = �1 ;

(19.15)

the metri
 (19.14) is valid for all three values of k.
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In the se
ond alternative, we repla
e the 
omoving time t by the 
onformal time d� = dt=a,

ds

2

= a

2

(�)

�

d�

2

�

dr

2

1� kr

2

� r

2

(sin

2

#d�

2

� d#

2

)

�

(19.16a)

= a

2

(�)

�

d�

2

� d�

2

� S

2

(�)(sin

2

#d�

2

+ d#

2

)

�

: (19.16b)

Then the metri
 has for k = 0 the same form as the one of a uniformly expanding Minkowski

spa
e. The des
ription of light propagation be
omes therefore parti
ularly simple using the


oordinates (19.16b): Sin
e ds

2

= 0, a radial light-ray satis�es d� = �d� and light-rays are

straight lines at �45 degrees in the � � � plane.

Geometry of the Friedmann-Lemâ�tre-Robertson-Walker metri
 Let us 
onsider a sphere

of �xed radius at �xed time, dr = dt = 0. The line-element ds

2

simpli�es then to

a

2

(t)r

2

(sin

2

#d�

2

+ d#

2

), whi
h is the usual line-element of a sphere S

2

with radius ra(t).

The area of a sphere is A = 4�(ra(t))

2

= 4�[S(�)a(t)℄

2

and the 
ir
umferen
e of a 
ir-


le is L = 2�ra(t). Hen
e these quantities agree for a = 1 with the ones in an Eu
lidean

spa
e. By 
ontrast, the radial distan
e between two points (r; #; �) and (r + dr; #; �) is

dl = a(t)dr=

p

1� kr

2

. Thus the radius of a sphere 
entered at r = 0 is

l = a(t)

Z

r

0

dr

0

p

1� kr

0 2

= a(t)�

8

<

:

ar
sin(r) for k = 1 ;

r for k = 0 ;

ar
sinh (r) for k = �1 :

(19.17)

Using � as 
oordinate, the same result follows immediately,

l = a(t)

Z

�(r)

0

d� = a(t)� : (19.18)

Hen
e for k = 0, i.e. a 
at spa
e, one obtains the usual result L=l = 2�, while for k = 1

(spheri
al geometry) it is L=l = 2�r= ar
sin(r) < 2� and for k = �1 (hyperboli
 geometry)

L=l = 2�r=ar
sinh (r) > 2�. For k = 0 and k = �1, l is unbounded, while for k = +1 there

exists a maximal distan
e l

max

(t). Hen
e the �rst two 
ase 
orrespond to open spa
es with

an in�nite volume, while the latter is a 
losed spa
e with �nite volume.

Hubble's law Lemâ�tre, Hubble and other astronomers found empiri
ally that the spe
tral

lines of \distant" galaxies are redshifted, z = ��=�

0

> 1, proportional to their distan
e d,

z = H

0

d : (19.19)

If this redshift is interpreted as Doppler e�e
t, z = ��=�

0

= v

r

, then the re
ession velo
ity

of galaxies follows as

v = H

0

d : (19.20)

The restri
tion \distant galaxies" means more pre
isely that the pe
uliar motion of galaxies


aused by the gravitational attra
tion of nearby galaxy 
lusters should be small 
ompared to

the Hubble 
ow, H

0

d� v

pe


� few�100 km/s. Note that the interpretation of v as re
ession

velo
ity is problemati
. The validity of su
h an interpretation is 
ertainly limited to v � 1.

The parameter H

0

is 
alled Hubble 
onstant and has the value H

0

' (67:7� 0:8) km/s/Mp
.
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We will see soon that the Hubble law Eq. (19.20) is an approximation valid for z � 1. In

general, the Hubble 
onstant is not 
onstant but depends on time, H = H(t), and we will


all it therefore Hubble parameter for t 6= t

0

.

We 
an derive Hubble's law as 
onsequen
e of the homogeneity of spa
e: Consider Hubble's

law as a ve
tor equation with us at the 
enter of the 
oordinate system,

v = Hd : (19.21)

What sees a di�erent observer at position d

0

? She has the velo
ity v

0

= Hd

0

relative to us.

We are assuming that velo
ities are small and thus

v

00

� v � v

0

= H(d� d

0

) = Hd

00

; (19.22)

where v

00

and d

00

denote the position relative to the new observer. Hen
e a linear relation

between v and d as Hubble law is the only relation 
ompatible with homogeneity and thus

the \
osmologi
al prin
iple" for v � 1.

Lemâ�tre's redshift formula A non-stati
 universe posses no time-like Killing ve
tor �eld

and thus we expe
t that the energy of a parti
le is a�e
ted by the expansion of spa
e. In

order to derive this 
hange, we 
onsider a massive parti
le moving along a geodesi
 x(�) with

four-velo
ity u

�

. An observer with four-velo
ity U

�

will measure as energy E of the massive

parti
le E = mu

�

U

�

. Along the traje
tory x(�), this energy E 
hanges as

d

d�

E = u

�

r

�

E = mu

�

r

�

�

u

�

U

�

�

= mu

�

u

�

r

�

U

�

; (19.23)

where we used the geodesi
 equation u

�

r

�

u

�

= 0 in the last step. Evaluating the derivative

using the Christo�el symbols for the FLRW metri
 and for 
omoving observers with U

�

=

(1;0) gives (
f. problem 20.??)

r

�

U

�

=

_a

a

(g

��

� U

�

U

�

) : (19.24)

Inserting the derivative, we �nd with u

�

u

�

= 1

d

d�

E = m

_a

a

�

1�E

2

=m

2

�

= �

_a

a

�

E

2

�m

2

m

�

; (19.25)

or

�

da

a

=m

dt

d�

dE

E

2

�m

2

=

EdE

E

2

�m

2

=

1

2

dE(E

2

�m

2

)

E

2

�m

2

=

dp

p

: (19.26)

Thus the momentum of a parti
le is inverse proportionally to the s
ale fa
tor of the universe,

p / 1=a. An intuitive explanation of this result is that the expansion of the universe stret
hes

all length s
ales of unbound systems, in
luding the wave-length of free parti
les. As a 
onse-

quen
e, the kineti
 energy of non-relativisti
 parti
les goes quadrati
ally to zero, and hen
e

pe
uliar velo
ities relative to the Hubble 
ow are strongly damped by the expansion of the

universe.

We 
an derive now Hubble's law by a Taylor expansion of the s
ale fa
tor a(t),

a(t) = a(t

0

) + (t� t

0

) _a(t

0

) +

1

2

(t� t

0

)

2

�a(t

0

) + : : : (19.27a)

= a(t

0

)

�

1 + (t� t

0

)H

0

�

1

2

(t� t

0

)

2

q

0

H

2

0

+ : : :

�

; (19.27b)
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where we introdu
ed the Hubble 
onstant

H

0

�

_a(t

0

)

a(t

0

)

and q

0

� �

�a(t

0

)a(t

0

)

_a

2

(t

0

)

; (19.28)

the so 
alled de
eleration parameter: If the expansion is slowing down, �a < 0 and q

0

> 0.

Hubble's law follows as an approximation for small redshift: For not too large time-di�eren
es,

we 
an use the expansion Eq. (19.27a) and write

1� z '

1

1 + z

=

a(t)

a

0

' 1 + (t� t

0

)H

0

: (19.29)

Hen
e Hubble's law, z = (t

0

�t)H

0

= d=
H

0

, is valid as long as z ' H

0

(t

0

�t)� 1. Deviations

from its linear form arises for z

>

�

1 and 
an be used to determine q

0

.

Proper distan
e In an expanding universe, the distan
e to an obje
t depends on the ex-

pansion history, i.e. the behaviour of the s
ale fa
tor a(t) between the time of emission t of

the observed light signal and its re
eption at t

0

. From the metri
 (19.14) we 
an de�ne the

(radial) 
oordinate distan
e

� =

Z

t

0

t

dt

a(t)

(19.30)

as well as the proper distan
e d = g

��

� = a(t)�. The proper distan
e d 
orresponds to

the physi
al distan
e between two points on a hypersurfa
e t = 
onst: However, it is only

for a stati
 metri
 a dire
tly measurable quantity and 
osmologists use therefore other, op-

erationally de�ned measures for the distan
e. The two most important examples are the

luminosity and the angular diameter distan
es.

Luminosity distan
e The luminosity distan
e d

L

is de�ned su
h that the inverse-square law

between the luminosity L of a sour
e at the distan
e d and the re
eived energy 
ux F is valid,

d

L

=

�

L

4�F

�

1=2

: (19.31)

Assume now that a (isotropi
ally emitting) sour
e with luminosity L(t) and 
omoving 
oor-

dinate � is observed at t

0

by an observer at O. The 
ut at O through the forward light 
one

emitted at t

e

by the sour
e de�nes a sphere S

2

with proper area

A = 4�a

2

(t

0

)S

2

(�) : (19.32)

Additionally, we have to take into a

ount that the frequen
y of a single photon is redshifted,

�

0

= �

e

=(1 + z), and that the arrival rate of photons is redu
ed by the same fa
tor due to

time-dilation. Hen
e the re
eived 
ux is

F(t

0

) =

1

(1 + z)

2

L(t

e

)

4�a

2

0

S

2

(�)

(19.33)

and the luminosity distan
e in a FLRW universe follows as

d

L

= (1 + z) a

0

S(�) : (19.34)

Note that d

L

depends via � on the expansion history of the universe between t

e

and t

0

.
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Angular diameter distan
e Instead of basing a distan
e measurement on standard 
andles,

one may use standard rods with known proper length l whose angular diameter �# 
an be

observed. Then we de�ne the angular diameter distan
e as

d

A

=

l

�#

: (19.35)

From the angular part of the FLRW metri
 it follows that l = a(t

e

)S(�)�# and thus

d

A

= a(t

e

)S(�) = a(t

0

)

a(t

e

)

a(t

0

)

S(�) =

a

0

S(�)

1 + z

: (19.36)

At small distan
es, z � 1, the angular diameter and the luminosity distan
e agree by 
on-

stru
tion, while for large redshift the di�eren
e in
reases as (1 + z)

2

.

Observable are not the 
oordinates � or r, but the redshift z of a galaxy. Di�erentiating

1 + z = a

0

=a(t), we obtain

dz = �

a

0

a

2

da = �

a

0

a

2

da

dt

dt = �(1 + z)Hdt : (19.37)

Denoting by t

0

the present age of the Universe, we 
an �nd its age t at redshift z for a given

H(z) as

t

0

� t =

Z

t

0

t

dt =

Z

0

z

dz

H(z)(1 + z)

: (19.38)

Inserting the relation (19.37) into Eq. (19.30), we �nd the 
oordinate � of a galaxy at redshift

z as

� =

Z

t

0

t

dt

a(t)

=

1

a

0

Z

z

0

dz

H(z)

: (19.39)

For small redshift z � 1, we 
an use the expansion (19.27b) to approximate

� =

Z

t

0

t

dt

a

0

[1� (t� t

0

)H

0

+ : : :℄

�1

(19.40a)

�

1

a

0

[(t� t

0

) +

1

2

(t� t

0

)

2

H

0

+ : : :℄ =

1

a

0

H

0

[z �

1

2

(1 + q

0

)z

2

+ : : :℄ (19.40b)

In pra
tise, one observes only the luminosity within a 
ertain frequen
y range instead of the

total (or bolometri
) luminosity. A 
orre
tion for this e�e
t requires the knowledge of the

intrinsi
 sour
e spe
trum.

19.2. Friedmann equations

We 
ould determine the metri
 of a homogeneous and isotropi
 universe by purely geometri
al


onsiderations ex
ept for the value of k 2 f�1; 0;+1g and the unknown fun
tion a(t): Sin
e

the s
ale fa
tor is a dynami
al quantity, it has to be determined by the Einstein equations.

In order to write down these equations, we have to �x a model for the stress tensor T

��

of

the universe. A surprisingly generi
 ansatz for the matter 
ontent of the Universe whi
h is


onsistent with Weyl's postulate is an ideal 
uid: Although an ideal 
uid is 
hara
terised by

only one free parameter|the equation of state (EoS) w = P=� �xing the ratio of its pressure
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P and its energy density �|it 
an des
ribe

1

both ma
rophysi
al systems (a 
uid of galaxies)

and elementary parti
les (e.g. a gas of photon or a 
uid of 
old dark matter parti
les). The

various 
omponents of an ideal 
uid evolve independently and thus the total stress tensor is

simply the sum of the individual 
ontributions.

In problem 5.?? you derived as stress tensor of an ideal 
uid in Minkowski spa
e

T

��

= (�+ P )u

�

u

�

� P�

��

: (19.41)

Clearly, the homogeneity and isotropy of the FLRW metri
 imply that the stress tensor has

the same symmetries and thus � and P 
an be only fun
tions of time. Repla
ing �

��

by g

��

and 
hoosing the 
omoving 
oordinates of Eq. (19.13) gives

g

00

= 1 ; g

11

= �

a

2

1� kr

2

; g

22

= �a

2

r

2

sin

2

# and g

33

= �a

2

r

2

: (19.42)

Sin
e the FLRW metri
 is diagonal, the elements of the inverse metri
 are simply given by

g

��

= 1=g

��

. Thus the stress tensor follows for a 
omoving observer as

T

00

= �g

00

and T

ij

= PÆ

ij

: (19.43)

Next we have to determine the still missing Christo�el symbols �

�

��

, see problem 20.??. The

result is

�

i

0i

=

_a

a

and �

0

ij

= �

_a

a

Æ

ij

(19.44)

from whi
h the non-zero 
omponents of the Ri

i tensor follow as

R

00

= �3

�a

a

g

00

and R

ij

=

a�a+ 2_a

2

+ 2k

a

2

Æ

ij

: (19.45)

The last ingredient needed for the Einstein equations is the 
urvature s
alar,

R = g

��

R

��

= �6

a�a+ _a

2

+ k

a

2

: (19.46)

All the quantities appearing in the gravitational �eld equation are proportional to the metri


tensor and thus the symmetries of the FLRW metri
 lead to only two independent equation

of motions. The time-time 
omponent of the Einstein equation gives

3

_a

2

+ k

a

2

= ��+� ; (19.47)

while the spa
e-spa
e part results in

2a�a+ _a

2

+ 2k

a

2

= ��P +� : (19.48)

Using � = 8�G, we obtain from Eq. (19.47) the Friedmann equation,

H

2

�

�

_a

a

�

2

=

8�

3

G��

k

a

2

+

�

3

; (19.49)

1

Although deviations from this idealisation are small and happen only in spe
i�
 phases during the evolution

of the Universe, they are 
ru
ial to explain the observed amount of reli
 parti
les as baryons and dark

matter: This topi
 will be introdu
ed in the next 
hapter.
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19.2. Friedmann equations

while the \a

eleration equation" follows from (19.48) after eliminating �a with (19.47) as

�a

a

=

�

3

�

4�G

3

(�+ 3P ) : (19.50)

This equation determines the (de-) a

eleration of the Universe as fun
tion of its matter and

energy 
ontent. \Normal" matter is 
hara
terised by � > 0 and P � 0. Thus a stati
 solution

is impossible for a universe with � = 0. Su
h a universe is de
elerating and sin
e today _a > 0,

�a was always negative and there was a \big bang".

We de�ne the 
riti
al density �


r

as the density for whi
h the spatial geometry of the

universe is 
at. From k = 0, it follows

�


r

=

3H

2

0

8�G

(19.51)

and thus �


r

is uniquely �xed by the value of H

0

. One \hides" this dependen
e by introdu
ing

h,

H

0

= 100h km=(sMp
) :

Then one 
an express the 
riti
al density as fun
tion of h,

�


r

= 2:77 � 10

11

h

2

M

�

=Mp


3

= 1:88 � 10

�29

h

2

g=
m

3

= 1:05 � 10

�5

h

2

GeV=
m

3

:

Thus a 
at universe with h = 1 requires an energy density of � 10 protons per 
ubi
 meter.

We de�ne the energy fra
tion 


i

of the di�erent players in 
osmology as their energy density

relative to the 
riti
al density, 


i

= �=�


r

. We will often in
lude the 
osmologi
al 
onstant �

as another 
ontribution to the energy density � via

8�

3

G�

�

=

�

3

: (19.52)

Thereby one re
ognises also that the 
osmologi
al 
onstant a
ts as a 
onstant energy density

with magnitude

�

�

=

�

8�G

or 


�

=

�

3H

2

0

: (19.53)

We 
an understand better the 
onsequen
es of the 
osmologi
al 
onstant by repla
ing � by

(8�G)�

�

in the a

eleration equation. Comparing then the e�e
t of normal matter and of the

� term on the a

eleration,

�a

a

=

8�G

3

�

�

�

4�G

3

(�+ 3P ) : (19.54)

we re
ognise that � is equivalent to matter with an EoS w

�

= P=� = �1, as we showed already

in problem 19.??. Using �

�

instead of � 
orrespond on the level of the Einstein equations to a

reshu�ing of the 
osmologi
al 
onstant from the geometry to the matter side, �T

��

+g

��

�!

�

~

T

��

. Thus the observed value of the 
osmologi
al 
onstant �

obs

in
ludes additionally to �

�

both the 
lassi
al 
ontribution V (�

0

) 6= 0 of all s
alar potentials whose minima are not at

zero and the (renormalised) quantum va
uum 
u
tuations of all matter �elds. The borderline

between an a

elerating and de
elerating universe is given by � = �3P or w = �1=3. The


ondition � < �3P violates the so-
alled strong energy 
ondition for \normal" matter in

equilibrium. An a

elerating universe requires therefore a positive 
osmologi
al 
onstant or a
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dominating form of matter that is not in equilibrium. As a phenomenologi
al generalisation

of the 
osmologi
al 
onstant, one 
alls any form of matter dark energy whi
h leads in the

present epo
h to an EoS parameter w � �1.

Relativisti
 spe
ies today are photons and possibly one of the three SM neutrinos. Their

energy 
ontribution is mu
h smaller than the one of non-relativisti
 matter (stars, gas and


old dark matter). Thus the pressure term in the a

eleration equation 
an be negle
ted at

the present epo
h. Measuring �, _a=a and �a=a �xes therefore the geometry of the Universe:

For a long time, 
osmology was des
ribed therefore as the quest for two numbers, H

0

and q

0

.

Thermodynami
s The �rst law of thermodynami
s be
omes with dS = 0 for a ideal 
uid

simply dU = TdS � PdV = �PdV . Considering a �xed 
omoving volume,

d(�a

3

) = �Pd(a

3

) ; (19.55)

and dividing by dt,

a _�+ 3(�+ P ) _a = 0 ; (19.56)

we obtain

_� = �3(�+ P )H : (19.57)

This result 
ould be also derived from r

�

T

��

= 0, 
f. problem ??. Sin
e r

�

T

��

= 0 is

built-in in the Einstein equations, the three equations (19.49), (19.50), and (19.57) are not

independent.

S
ale-dependen
e of di�erent energy forms The dependen
e of di�erent energy forms as

fun
tion of the s
ale fa
tor a 
an derived from energy 
onservation, dU = �PdV , if an EoS

P = P (�) = w� is spe
i�ed. For w = 
onst:, it follows

d(�a

3

) = �3Pa

2

da (19.58)

or eliminating P

d�

da

a

3

+ 3�a

2

= �3w�a

2

: (19.59)

Separating the variables,

� 3(1 + w)

da

a

=

d�

�

; (19.60)

we 
an integrate and obtain

� / a

�3(1+w)

=

8

<

:

a

�3

for matter (w = 0) ;

a

�4

for radiation (w = 1=3) ;


onst. for � (w = �1) :

(19.61)

The obtained s
aling 
an be understood from heuristi
 arguments: The kineti
 energy of

non-relativisti
 matter is negligible, kT � m. Thus � = nm � nT = P and non-relativisti


matter is pressure-less, w = 0. The mass m is 
onstant and n / 1=a

3

, hen
e � is just diluted

by the expansion of the universe, � / 1=a

3

. Radiation is not only diluted but the energy of

a single parti
le is additionally redshifted, E / 1=a. Thus the energy density of radiation

s
ales as / 1=a

4

. Alternatively, one 
an use that � / T

4

and T / hEi / 1=a. Finally,

the 
osmologi
al 
onstant � a
ts by de�nition as an energy density �

�

= �=(8�G) that is
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onstant in time, independent from a possible expansion or 
ontra
tion of the universe. Note

also that 
osmologists 
all relativisti
 parti
les radiation, while they in
lude into matter only

non-relativisti
 parti
les.

Let us rewrite the Friedmann equation for the present epo
h as

k

a

2

0

= H

2

0

�

8�G

3H

2

0

�

0

+

�

3H

2

0

� 1

�

= H

2

0

(


tot;0

� 1) : (19.62)

We express the 
urvature term for arbitrary times through 


tot;0

and the redshift z as

k

a

2

=

k

a

2

0

(1 + z)

2

= H

2

0

(


tot;0

� 1)(1 + z)

2

: (19.63)

Note that the 
urvature term (


tot;0

� 1)(1 + z)

2

de
reases slower than radiation or matter.

Observations indi
ate that the universe is 
lose to 
at, and thus the 
urvature term 
an be

safely negle
ted in the early universe. This behaviour poses also the question why the Universe

is (nearly) 
at, sin
e for generi
 initial 
onditions one would expe
t j


tot;0

� 1j=


tot

� 1.

Dividing the Friedmann equation (19.49) by H

2

0

= 8�G�


r

=3, we obtain

H

2

(z)

H

2

0

=

X

i




i

(z)� (


tot;0

� 1)(1 + z)

2

(19.64a)

= 


rad;0

(1 + z)

4

+


m;0

(1 + z)

3

+


�

� (


tot;0

� 1)(1 + z)

2

: (19.64b)

This expression allows us to 
al
ulate the age of the universe (19.38), distan
es (19.34), et
. for

a given 
osmologi
al model, i.e. spe
ifying the energy fra
tions 


i;0

and the Hubble parameter

H

0

at the present epo
h.

19.3. Evolution of simple 
osmologi
al models

Cosmologi
al models with one energy 
omponent We 
onsider a 
at universe, k = 0, with

one dominating energy 
omponent with EoS w = P=� = 
onst:. With � = �


r

(a=a

0

)

�3(1+w)

,

the Friedmann equation be
omes

_a

2

=

8�

3

G�a

2

= H

2

0

a

3+3w

0

a

�(1+3w)

; (19.65)

where we inserted the de�nition of �


r

= 3H

2

0

=(8�G). Separating variables we obtain

a

�(3+3w)=2

0

Z

a

0

0

da a

(1+3w)=2

= H

0

Z

t

0

0

dt = t

0

H

0

(19.66)

and hen
e the age of the Universe follows as

t

0

H

0

=

2

3 + 3w

=

8

<

:

2=3 for matter (w = 0) ;

1=2 for radiation (w = 1=3) ;

!1 for � (w = �1) :

(19.67)

While a Universe with only a 
osmologi
al 
onstant � has no \beginning", models with

w > �1 needed a �nite time to expand from the initial singularity a(t = 0) = 0 to the


urrent size a

0

. Sin
e for t! 0 the temperature and density formally diverge, one 
alls these
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ases often (hot) big bang models. We should expe
t that 
lassi
al gravity breaks down when

� �M

4

Pl

. As long as a / t

�

with � < 1, most time elapsed during the last fra
tions of t

0

H

0

.

Hen
e our result for the age of the universe does not depend on unknown physi
s 
lose to the

big bang as long as w > �1=3.

If we integrate Eq. (19.66) to the arbitrary time t, we obtain as time-dependen
e of the

s
ale fa
tor

a(t) / t

2=(3+3w)

=

8

<

:

t

2=3

for matter (w = 0) ;

t

1=2

for radiation (w = 1=3) ;

exp(t) for � (w = �1) :

(19.68)

The spe
ial 
ase with an exponential growing s
ale fa
tor for w = �1 is 
alled de Sitter

spa
e-time.

Age problem of the universe The age of a matter-dominated universe expanded around




0

= 1 is given by (problem 20.??)

t

0

=

2

3H

0

�

1�

1

5

(


0

� 1) + : : :

�

: (19.69)

Globular 
luster ages require t

0

� 13 Gyr. Using 


0

= 1 leads to h � 0:50. Thus a 
at

universe with t

0

= 13Gyr without 
osmologi
al 
onstant requires a value of H

0

whi
h is too

small 
ompared with observations. Choosing 


m

= 0:3 in
reases the age by just 14%, 
f. also

with the left panel of Fig. 19.1.

We derive the age t

0

of a 
at Universe with 


m

+


�

= 1 in the next se
tion as

3t

0

H

0

2

=

1

p




�

ln

1 +

p




�

p

1� 


�

: (19.70)

Requiring H

0

� 65 km/s/Mp
 and t

0

� 13 Gyr means that the fun
tion on the RHS should

be larger than ' 1:3 or 


�

� 0:55. Thus the lower limit t

0

� 13 Gyr on the age of the

Universe together with a lower limit on the Hubble 
onstant is suÆ
ient to dedu
e a non-zero

value of the 
osmologi
al 
onstant.

The �CDM model We 
onsider as approximation to the late Universe a 
at model 
ontain-

ing as its only two 
omponents pressure-less matter and a 
osmologi
al 
onstant, 


m

+


�

= 1.

Thus the 
urvature term in the Friedmann equation and the pressure term in the de
eleration

equation play no role and we 
an hope to solve these equations for a(t). Multiplying the

de
eleration equation (19.50) by two and adding it to the Friedmann equation (19.49), we

eliminate �

m

,

2

�a

a

+

�

_a

a

�

2

= � : (19.71)

Next we rewrite �rst the LHS and then the RHS as total time derivatives: With

d

dt

(a _a

2

) = _a

3

+ 2a _a�a = _aa

2

"

�

_a

a

�

2

+ 2

�a

a

#

; (19.72)

we obtain

d

dt

(a _a

2

) = _aa

2

� =

1

3

d

dt

(a

3

)� : (19.73)
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Figure 19.1.: Left: The produ
t t

0

H

0

for an open universe 
ontaining only matter (dotted

line) and for a 
at 
osmologi
al model with 


�

+


m

= 1 (solid line). Right: The

de
eleration parameter q as fun
tion of t=t

0

for the �CDM model and various

values for 


�

(0.1, 0.3, 0.5, 0.7 and 0.9 from the top to the bottom).

Integrating is now trivial,

a _a

2

=

�

3

a

3

+ C : (19.74)

The integration 
onstant 
an be determined most easily setting a(t

0

) = 1 and 
omparing the

Friedmann equation (19.49) with (19.74) for t = t

0

as C = 8�G�

m;0

=3. Now we introdu
e the

new variable x = a

3=2

. Then

da

dt

=

dx

dt

da

dx

=

dx

dt

2x

�1=3

3

; (19.75)

and we obtain as new di�erential equation

_x

2

� �x

2

=4 + C=3 = 0 : (19.76)

Inserting the solution x(t) = A sinh(

p

�t=2) of the homogeneous equation �xes the 
onstant

A as A =

p

3C=�. We 
an express A also by the 
urrent values of 


i

as A = 


m

=


�

=

(1� 


�

)=


�

. Hen
e the time-dependen
e of the s
ale fa
tor is

a(t) = A

1=3

sinh

2=3

(

p

3�t=2) : (19.77)

The time-s
ale of the expansion is set by t

�

= 2=

p

3�. The present age t

0

of the universe

follows by setting a(t

0

) = 1 as

t

0

= t

�

ar
tanh (

p




�

) : (19.78)

The de
eleration parameter q = ��a=aH

2

is an important quantity for observational tests of

the �CDM model. We 
al
ulate �rst the Hubble parameter

H(t) =

_a

a

=

2

3t

�


oth(t=t

�

) (19.79)
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and �nd then

q(t) =

1

2

[1� 3 tanh

2

(t=t

�

)℄ : (19.80)

The limiting behaviour of q 
orresponds with q = 1=2 for t ! 0 and q = �1 for t ! 1 as

expe
ted to the one of a 
at 


m

= 1 and a 


�

= 1 universe. More interesting is the transition

region and, as shown in the right panel of Fig. 19.1, the transition from a de
elerating to an

a

elerating universe happens for 


�

= 0:7 at t � 0:55t

0

. This 
an be easily 
onverted to

redshift, z

�

= a(t

0

)=a(t

�

)� 1 � 0:7, that is dire
tly measured in supernova observations. The

fa
t that the a

eleration has set in re
ently, i.e. that z

�

is of order one, has been 
oined the


oin
iden
e problem.

Remark 19.1: Topologi
al defe
ts as an energy 
omponent:

We have argued that topologi
al defe
ts are produ
ed during 
osmologi
al phase transition via the

Kibble me
hanism. In order to understand the impa
t of topologi
al defe
ts on the evolution of the

universe, one has to determine their EoS. The simplest 
ase are magneti
 monopoles whi
h are 
reated

with negligible velo
ities. Hen
e their energy density behave as � � 1=a

3

, and their abundan
e 


in
reases during the radiation dominated phase. As a result, they tend to dominate the energy density

of the universe, leading to its early 
ollapse, 
f. with exer
ise 20.??. Next we 
onsider how the energy

density of a network of domain walls evolves in an expanding universe. If we model them for simpli
ity

as a set of stati
 in�nitely extended domain walls parallel to the yz plane, then the expansion of the

universe along the y and z dire
tions does not 
hange the number density of domain walls. Therefore,

the energy density of a network of domain walls evolves as � / 1=a. Simulations of dynami
al networks

of domain walls 
on�rm approximately this behaviour. Interestingly, the equation of state of domain

walls is thus negative, w = �2=3, leading to an a

elerated expansion of the Universe. However, even

a single wall inside the Hubble radius 
ontaining e.g. the ele
troweak va
uum would over
lose the

universe. Thus broken dis
rete symmetries are in general in 
on
i
t with 
osmologi
al observations.

The remaining option, a network of 
osmi
 strings, is viable if the string s
ale is below �

<

�

(10

�4

M

Pl

)

2

.

19.4. Horizons

An important 
onsequen
e of the �nite speed of light and the expansion of the universe is

the possibility that regions of spa
e-time may be ina

essible for a given observer, either at

the present time, or perhaps for all time. The borderline between the a

essible and the

ina

essible parts of the universe is termed a horizon.

Parti
le horizon We de�ne the parti
le horizon d

p

of a 
omoving observer O as the surfa
e

of the region in the past 
ausally 
onne
ted to O. Be
ause of the homogeneity of the FLRW

metri
, it is suÆ
ient to 
onsider an observer at � = 0. The 
ausally 
onne
ted region is

limited by light-rays, and thus bounded by

�

p

(t

�

) = �(t) � �(t

�

) =

Z

t

t

�

dt

a(t)

=

Z

a(t)

0

da

a _a

: (19.81)

Here, the lower integration limit t

�

is zero for models starting with a big bang. and t

�

! �1

otherwise. If the integral diverges, then the observer O 
an re
eive light-signals from an

arbitrary spatial point in the past for suÆ
iently early t

�

. If however the integral 
onverges,
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�

x0

�

r

�

0

P

Figure 19.2.: Causal stru
ture of a spa
e-time with big bang: Parti
le horizons at the time �

r

are shown in grey together with the event horizon of point P (bla
k 
one).

then �

p

(t

�

) de�nes a parti
le horizon. The physi
al size of the horizon is given by d

p

(t) =

a(t)�

p

(t

�

). If the model has a big bang origin, a(0) = 0, then also z ! 1 for t

�

! 0 and

thus the parti
le horizon 
orresponds to a surfa
e of in�nite redshift.

The se
ond form of the integral shows that a �nite parti
le horizon exists if �a < 0, i.e. if

the model was de
elerating for t ! t

�

. We 
an show this expli
itly, if one form of matter

dominates: Then a(t) = a

0

(t=t

0

)

�

, and thus

�

p

(t

0

) =

1

a

0

Z

t

0

dt

�

t

t

0

�

��

=

t

0

a

0

(1� �)

(19.82)

for � < 1. The physi
al size of the horizon follows as d

p

(t

0

) = t

0

=(1 � �). A parti
le horizon

exists if � = 2=[3(1 +w)℄ > 1 or w > �1=3 and q > 0, i.e. for an de
elerated expansion of the

universe.

Di�erentiating the de�nition (19.81) gives d�

p

=dt = 1=a(t), and thus the parti
le horizon

grows in an expanding universe: As time goes by, new obje
ts be
ome visible

2

after they 
ross

the horizon and their redshift de
reases from z =1. Note that in a universe with w > �1=3,

these obje
ts were never before in 
ausal 
onta
t with the observer O: In su
h models, the

observed homogeneity and isotropy of the Universe on large s
ales is a
tually a very puzzling

fa
t 
alled the horizon problem. The best observational probe of anisotropies are the photons

of the 
osmi
 mi
rowave ba
kground (CMB) whi
h s
attered at redshift z ' 1300 the last

time. Their intensity is the one of a bla
k-body, with the same temperature in all dire
tions

ex
ept for 
u
tuations ÆT=T � 10

�5

.

Hubble s
ale The Hubble s
ale (whi
h is often 
alled the Hubble horizon) is de�ned by

d

H

(t) = H

�1

(t). Sin
e H

�1

is of the same order as the 
urvature s
alar R, the Hubble

s
ale is a useful measure on whi
h s
ales spa
e-time 
urvature 
an be negle
ted and a simpler

Newtonian analysis using an inertial 
oordinate system is possible. Moreover, the Hubble

s
ale equals approximately the parti
le horizon for de
elerating 
osmologi
al models, with

H

�1

= (3 + 3w)=2 t. It is therefore often used as a substitute for the parti
le horizon. Note

however that the di�eren
e between the two s
ales be
ome very important for w ! �1.

2

Sin
e photons 
an intera
t, the boundary of the visible Universe is given more pre
isely by the \surfa
e of

last s
attering", whi
h is however 
omparable, see problem 20.??.
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19. Cosmologi
al models for an homogeneous, isotropi
 universe

Event horizon Although the parti
le horizon grows in an expanding universe, there may

be galaxies whi
h may be never be seen by an observer. This is the 
ase if the integral in

Eq. (19.81) 
onverges for t! t

max

. We de�ne the event horizon by

�

p

(t

�

) =

Z

t

max

t

�

dt

a(t)

=

Z

a(t)

0

da

a _a

; (19.83)

where t

max

is either in�nite or 
orresponds to the big 
run
h, a(t

max

) = 0, i.e. the end of

the universe in a future singularity. The existen
e of an event horizon in the limit t

max

!

1 suggests that spa
e expands faster than the speed of light, whi
h is often termed as

\superluminal expansion". Note that this notion is misleading, sin
e the de�nition of the

relative velo
ity of two observers O and O

0

relies on the existen
e of an (approximate) inertial

system 
onne
ting the two. For distan
es

>

�

1=H, when the \relative velo
ity" be
omes

superluminal, su
h a 
onne
tion is not possible and thus their relative velo
ity is not de�ned.

In summary, the parti
le horizon is the maximal distan
e from whi
h we 
an re
eive signals,

while the event horizon de�nes the maximal distan
e to whi
h we 
an send signals. The

horizon problem of a radiation or matter dominated universe is illustrated s
hemati
ally in

Fig. 19.2: Parti
le horizons, i.e. 
ausally 
onne
ted regions, at the time of re
ombination �

r

are shown in red. The event horizon (bla
k 
one) of the observer at the point P is mu
h larger

at the time of re
ombination and 
ontains therefore many apparently 
ausally dis
onne
ted

pat
hes.

Summary

A homogeneous and isotropi
 universe is des
ribed by a FLRW metri
. This family of spa
e-

times is 
ompletely determined by the s
ale fa
tor a(t) and the parameter k distinguishing

between hyperboli
, 
at, or spheri
al 3-spa
es. The time evolution of these models is spe
i�ed,

if at a given time t the Hubble parameter H(t), the abundan
es 


i

of all relevant matter forms

and their equation of state w

i

= P

i

=�

i

is known. Observational data are well des
ribed by

the �CDM model with 


�

' 0:7, 


m

' 0:3 and H

0

' 70km/s/Mp
.

Further reading

For a dis
ussion of important observations in 
osmology and their interpretation see

e.g. [CL02℄. The properties of simple 
osmologi
al models are dis
ussed in more detail

by [HEL06℄.
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20. Thermal reli
s

At large redshifts, we 
an treat the di�erent 
ontributions to the total energy density of the

Universe as nearly homogeneous 
uids whose momenta are in
reasing as p / 1=a for a ! 0.

This energy in
rease has three main e�e
ts: Firstly, bound states like atoms, nu
lei and

hadrons are dissolved when the temperature rea
hes their binding energy, T

>

�

E

b

. Se
ondly,

parti
les with massm

X


an be produ
ed in rea
tions like 

 !

�

XX, when T

>

�

2m

X

. Finally,

most s
attering rates � = n�v in
rease faster than the expansion rate of the universe for t! 0,

sin
e the number density n s
ales as n / T

3

for relativisti
 parti
les, while the expansion rate

goes as H / �

1=2

rad

/ T

2

. Therefore, rea
tions that have be
ome \frozen in" today may have

been important in the early Universe. As a result, the early Universe 
onsisted of a plasma


ontaining parti
les with m

X

<

�

T in a state of thermal equilibrium|ex
ept those parti
les

that are very weakly intera
ting as e.g. axions.

In the previous 
hapter, we have assumed that the evolution of the Universe pro
eeds

adiabati
ally. While this is an ex
ellent approximation during most of its evolution, devia-

tions are 
ru
ial for the explanation of the present Universe: Without su
h deviations, the

abundan
e of all parti
les with masses smaller than the present temperature of the CMB,

m� T

CMB

' 2�10

�4

eV would be exponentially suppressed|or a non-zero 
hemi
al poten-

tial should ensure their survival. In parti
ular, the abundan
e of baryons, of light elements

from helium up to lithium, and likely of dark matter are 
onne
ted to deviations from thermal

equilibrium. Their present abundan
e 
an be 
al
ulated knowing their rea
tion rates and the

expansion history of the universe, and we will develop the required formalism in this 
hapter.

20.1. Boltzmann equation

The evolution of the phase spa
e distribution fun
tion of a thermal reli
 in the expanding

universe 
an be modelled by a Boltzmann equation. As �rst step in its derivation, we re
all

Liouville's theorem and the resulting 
ollisionless Boltzmann equation in Minkowski spa
e,

before we generalise this equation to a spa
e-time des
ribed by a FLRW metri
.

Liouville's theorem We 
onsider �rst the evolution of a 
lassi
al many-parti
le system in 6n-

dimensional phase spa
e !

j

� (q

j

; p

j

) with j = 1; : : : ; 3n. The phase spa
e density f(q

j

; p

j

; t)

determines the probability to �nd the system in the state ! = (q

j

; p

j

) at time t. Conservation

of the parti
le number leads to a 
onservation law for f ,

�f

�t

+

�

�!

i

(f _!

i

) = 0 : (20.1)

We �rst use Hamilton's equations (1.22) to repla
e _! with !,

�

�!

i

(f _!

i

) =

�

�q

i

�

f _q

i

�

+

�

�p

i

(f _p

i

) =

�

�q

i

�

f

�H

�p

i

�

�

�

�p

i

�

f

�H

�q

i

�

; (20.2)
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and then that the mixed se
ond derivatives of H 
ommute, �q

i

�p

i

= �p

i

�q

i

,

�

�!

i

(f _!

i

) =

�f

�q

i

�H

�p

i

�

�f

�p

i

�H

�q

i

= ff;Hg = _q

i

�f

�q

i

+ _p

i

�f

�p

i

: (20.3)

Inserting these results into the 
onservation law (20.1), Liouville's theorem follows

df

dt

=

�f

�t

+ ff;Hg =

�f

�t

+

�f

�q

i

_q

i

+

�f

�p

i

_p

i

= 0 : (20.4)

Thus the phase spa
e density f(q

j

; p

j

; t) of a Hamiltonian system stays 
onstant along a

traje
tory in phase spa
e.

Boltzmann equation in Minkowski spa
e Parti
les in a thermal plasma 
an ex
hange energy

via elasti
 
ollisions, and 
an be 
reated and destroyed in inelasti
 
ollisions. We 
an split the

time-evolution of su
h a system into the free movement of parti
les along spa
e-time geodesi
s

interrupted by 
ollisions, if these s
atterings are 
aused by short-range intera
tions. Without

s
atterings, the 6n dimensional phase-spa
e fun
tion is separable, i.e. it is the n-dimensional

produ
t of single-parti
le distribution fun
tions. Therefore it is suÆ
ient to des
ribe the time-

evolution of a 
ollisionless many-parti
le system in the simpler six-dimensional phase spa
e

! � (q;p). In a se
ond step, we will a

ount for intera
tions by adding a 
ollision term.

Now the six-dimensional phase spa
e density f(q;p; t) determines the density dN =

f(x;p)d

3

xd

3

p of parti
les in the state ! = (q;p) at time t. We 
an view also this sys-

tem as a 
uid with _! as the 
uid velo
ity and f as its density. If the number of parti
les is

not 
hanged by intera
tions, then again a 
onservation law for f is valid,

�f

�t

+

�

�w

i

(f _w

i

) =

�f

�t

+

�f

�q

i

_q

i

+

�f

�p

i

_p

i

= 0 : (20.5)

This is the 
ollisionless Boltzmann equation in Minkowski spa
e.

Boltzmann equation for a FLRW metri
 Next we apply the Boltzmann equation to the


ase of a universe des
ribed by a FLRW metri
. Parti
les move along geodesi
s whi
h we

parametrise by the parameter �. Then the 
ollisionless Boltzmann equation states that the

phase spa
e density f(x;p; t) stays 
onstant along all traje
tories, df=d� = 0. In order

to evaluate the total derivative df=dt = 0, we have to �x the dependen
e �(t). Using the


hoi
e d� = dt=E as aÆne parameter (su
h that dx

�

=d� = p

�

) and assuming an isotropi


and uniform distribution of matter in spa
e, f(x;p; t) = f(p; t), we �nd the 
ollisionless

Boltzmann equation for a FLRW metri
 as

df

d�

=

�

dt

d�

�

�t

+

dp

d�

�

�p

�

f(p; t) = E

�

�

�t

�Hp

�

�p

�

f(p; t) = 0 : (20.6)

In the se
ond step we used also the redshift formula for a free parti
le,

dp

d�

=

dp

dt

dt

d�

= �HpE : (20.7)

Adding the e�e
t of 
ollisions, the total time derivative of the phase spa
e density f be
omes

non-zero,

df

d�

= E

�

�

�t

�Hp

�

�p

�

f(p; t) = C(p; t) ; (20.8)
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20.1. Boltzmann equation

and is determined by the 
ollision term C(p; t).

Most often, we are not interested in the momentum dependen
e of f(p; t) but only in the

total density n(t) of the reli
 parti
les. Dividing by the energy E and taking the �rst moment

of the Boltzmann equation, we arrive at

g

Z

d

3

p

(2�)

3

�

�

�t

�Hp

�

�p

�

f(p; t) = g

Z

d

3

p

(2�)

3

1

E

p

C(p; t) : (20.9)

The �rst term on the LHS is the time derivative of the number density n of reli
 parti
les, as

a 
omparison to the general de�nition in Eq. (14.49) shows. In the se
ond term, we use the

isotropy of the parti
le distribution and perform a partial integration. The boundary term

p

3

f(p; t)j

1

0

vanishes

1

, and thus we obtain

�

�t

n+ 3Hn = g

Z

d

3

p

(2�)

3

1

E

p

C(p) : (20.10)

We 
an express the LHS as the 
hange of the 
omoving number density a

3

n,

d(a

3

n)

dt

= a

3

g

Z

d

3

p

(2�)

3

1

E

p

C(p) � a

3

dn


ol

dt

; (20.11)

and thus the RHS is the net 
hange a

3

_n


ol

of the 
omoving parti
le density due to intera
tions.

Let us determine _n


ol

for the 
ase that the reli
 parti
le intera
ts via de
ays and inverse

de
ays, 1 $ 1

0

2

0

� � � n

0

, with other parti
les in the thermal plasma. Re
all �rst Eq. (9.117),

that gives the number of de
ays 1! 1

0

2

0

� � �n

0

per time of a given parti
le 1 with momentum

p

1

at temperature T = 0. This rate should be multiplied with f

1

(p) to get the number of

de
ays per time of all reli
 parti
les of type 1 with momentum p

1

. Moreover, in a thermal

bath, we have to a

ount for the Pauli blo
king of fermions and the stimulated emission of

bosons by adding the fa
tors 1 � f

i

0

(p

i

0

) to the �nal state phase spa
e. The inverse rea
tion

1

0

2

0

� � �n

0

! 1 is proportional to the number of plasma parti
les and 
ontains a fa
tor 1�f

1

(p)

in the �nal phase-spa
e. Combining everything, we have

dn


ol

1

(p

1

)

dt

=�

1

2E

1

Z

n

0

Y

f=1

d

3

p

f

2E

f

(2�)

3

(2�)

4

Æ

(4)

(p

1

� P

f

)

�

h

f

1

(1� f

1

0

) � � � (1� f

n

0

)j

g

A

fi

j

2

� f

1

0

� � � f

n

0

(1� f

1

)j

g

A

if

j

2

i

;

(20.12)

with P

f

=

P

i

0

p

�

i

0

, f

i

� f(p

i

), while j

g

A

fi

j

2

=

P

s

1

;:::;s

n

0

jA

fi

j

2

denotes the squared Feynman

amplitude summed over both �nal and initial internal degrees of freedom. If ne
essary, sym-

metry fa
tors S = 1=n! should be added for n identi
al parti
les in the initial or �nal state.

As �nal step, we have to integrate the di�erential rate _n


ol

1

(p

1

) over d

3

p

1

=(2�)

3

to obtain the

total 
ollision rate _n


ol

1

per physi
al volume, �nding as Boltzmann equation

1

a

3

d(a

3

n


ol

1

)

dt

= �

Z

d

3

p

1

2E

1

(2�)

3

n

Y

f=1

d

3

p

f

2E

f

(2�)

3

(2�)

4

Æ

(4)

(p

1

� P

f

)

�

h

f

1

(1� f

1

0

) � � � (1� f

n

0

)j

g

A

fi

j

2

� f

1

0

� � � f

n

0

(1� f

1

)j

g

A

if

j

2

i

:

(20.13)

1

A �nite energy density requires that f(p) de
reases faster than 1=p

4

for large p.
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It is instru
tive to spe
ialise this equation to the simplest 
ase of a 1 $ 2 + 3 pro-


esses. Then the de
ay widths s
ale as �

1!2+3

/ g

�1

1

P

s

1

;s

2

;s

3

jA

1!2+3

j

2

and �

2+3!3

/

g

�1

2

g

�1

3

P

s

1

;s

2

;s

3

jA

2+3!1

j

2

, respe
tively. Thus we 
an rewrite the Boltzmann equation as

1

a

3

d(a

3

n


ol

1

)

dt

= �n

1

h�

1!2+3

i+ n

2

n

3

h�

2+3!1

i ; (20.14)

where the fa
tors g

i

entered the densities n

i

and h�i are the rates thermally averaged over

the gamma fa
tors m

i

=E

i

. Going over from a de
ay 1 $ 1

0

2

0

� � �n

0

to a s
attering pro
ess

12 � � � n$ 1

0

2

0

� � �m

0

, we should add to Eq. (20.13) the 
orresponding phase spa
e fa
tors

Z

d

3

p

2

2E

i

(2�)

3

f

2

(p

2

) and

Z

d

3

p

2

2E

i

(2�)

3

(1� f

2

(p

2

))

to the �rst and se
ond term in the square bra
ket of Eq. (20.13), respe
tively.

In most 
ases of interest, the 
ollision rate 
an be simpli�ed drasti
ally: First, we 
an set

jA

fi

j

2

' jA

if

j

2

, be
ause CP violation is generi
ally small

2

. At tree-level, this relation holds

exa
tly. Se
ond, kineti
 de
oupling happens typi
ally mu
h later than 
hemi
al de
oupling:

Consider e.g. a heavy reli
 parti
le X s
attering with neutrinos as part of the thermal bath.

Then, elasti
 
ollisionsX� ! X� may keep the distribution fun
tion of X still 
lose to the one

in thermal equilibrium, although inelasti
 
ollisions like ��� !

�

XX be
ame ine�e
tive below

T � m

X

. As a result, deviations of the reli
 density from a thermal equilibrium distribution

in the time between 
hemi
al and kineti
 de
oupling 
an be simply parametrised by a time-

dependent 
hemi
al potential �(t). Thirdly, we 
an assume that the densities are small

enough su
h that the distribution fun
tions 
an be approximated by Maxwell-Boltzmann

distributions,

n(t) = e

�(t)�(t)

n

eq

(t) = e

�(t)�(t)

g

Z

d

3

p

2E(2�)

3

exp (��(t)E) : (20.15)

Sin
e this 
orresponds to the 
lassi
al limit, we 
an also negle
t the fa
tors for Pauli blo
king

and stimulated emission, setting 1 � f

i

' 1. Finally, we often (but not always) assume that

in the early universe any asymmetry in the number of parti
les and antiparti
les is zero. If

�(0) = ��(0) = 0, then �(t) = ��(t) also at later times.

We employ now the �rst three approximations, but keep �

i

6= 0. Spe
ialising also to the


ase of 12! 34 s
atterings, the se
ond line in (20.13) be
omes

h
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(1� f

3
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(20.16)
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(20.17)

= e

��(E

1

+E

2

)

�

n

1

n

2
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eq

1

n

eq

2

�

n

3

n

4

n

eq

3

n

eq

4

�

j

g

A

fi

j

2

: (20.18)

Here we used also energy 
onservation, E

1

+E

2

= E

3

+E

4

, before we eliminated in the �nal

step the 
hemi
al potentials in favour of the number densities, using n

i

= e

��

i

n

eq

i

. Now we

de�ne the thermally averaged 
ross se
tion h�vi as

h�vi �

1

n

eq

1

n

eq

2

4

Y

i=1

Z

d

3

p

i

2E

i

(2�)

3

e

��(E

1

+E

2

)

(2�)

4

Æ

(4)

(P

i

� P

f

)j

g

A

fi

j

2

: (20.19)

2

We postpone the e�e
t of CP violation to 
hapter 21.
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Here the velo
ity v in h�vi is the relative or M�ller velo
ity, v � v

M�l

. Its sole purpose is to


an
el the 
orresponding fa
tor v

M�l

in the 
ux fa
tor I 
ontained in the T = 0 
ross se
tion

�, 
ompare with Eq. (9.149). As a result, the integration on the RHS is over Lorentz invariant

fa
tors that do 
ontain no expli
it fa
tor v

M�l

. Employing the de�nition (20.19) for h�vi, we

arrive at a rather 
ompa
t expression for the Boltzmann equation,

1

a

3

d(a

3

n

1

)

dt

= �n

eq

1

n

eq

2

h�vi

�

n

1

n

2

n

eq

1

n

eq

2

�

n

3

n

4

n

eq

3

n

eq

4

�

: (20.20)

Note that we managed to redu
e the integro-di�erential equation (20.8) to an ordinary dif-

ferential equation. This equation together with the initial 
ondition n

1

' n

eq

for T ! 1

determines n

1

(t) for a given thermal 
ross se
tion h�vi.

Important appli
ations of this equation are the freeze-out of the baryon asymmetry and the

dark matter abundan
e, the formation of light elements in big bang nu
leosynthesis (BBN),

and the re
ombination of ele
trons and protons into hydrogen. While the stru
ture of the

Boltzmann equation is the same for all theses pro
esses, the energy s
ales involved vary from

few eV to s
ales possibly as high as 10

16

GeV. Correspondingly, the mi
rophysi
s required

as input to des
ribe re
ombination 
onsists of atomi
 physi
s, while BBN depends on weak

intera
tions between nu
leons and neutrinos as well as on nu
lear physi
s. By 
ontrast, the

freeze-out of DM is a problem involving mainly parti
le physi
s. Therefore we will pi
k out

this problem for a dis
ussion of the freeze-out me
hanism whi
h is at work in all the four

pro
esses. After that, we will only sket
h the main points of BBN. We postpone baryogenesis

to the next 
hapter.

20.2. Thermal reli
s as dark matter

A wealth of observational data suggests that a viable dark matter (DM) 
andidate has to

be non-baryoni
 and should be non-relativisti
, at least from the time of matter-radiation

equilibrium on [Lis16℄. As none of the parti
les in the SM has the required properties, DM

has to belong to a new se
tor of parti
les beyond the SM. The various parti
les X proposed

as DM 
andidates 
an be divided in two main sub-
ategories: Thermal reli
s were at least

on
e during the history of the Universe in 
hemi
al equilibrium with the thermal plasma,

while non-thermal reli
s have either suÆ
iently small intera
tions or a high enough mass m

X

to be never produ
ed eÆ
iently by pro
esses like e

�

e

+

! XX. We 
onsider in the following

thermal reli
s, while we 
ome ba
k to the topi
 of non-thermal produ
tion of reli
s later on.

20.2.1. Abundan
e of thermal reli
s

We assume that the thermal reli
X and their annihilation produ
ts are symmetri
, i.e. that no

asymmetry in the number density of parti
les and antiparti
les exist. Moreover, we assume

that the annihilation produ
ts are in thermal equilibrium. Then the Boltzmann equation

simpli�es to,

1

a

3

d(a

3

n

X

)

dt

= �h�

ann

vi

�

n

2

X

� (n

eq

X

)

2

�

: (20.21)

In the 
al
ulation of h�

ann

vi a sum over all relevant �nal states should be in
luded. Knowing

h�

ann

vi as fun
tion of temperature, this equation 
an be numeri
ally integrated using as
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initial 
ondition n

X

' n

eq

X

for a large enough initial temperature T . In order to obtain

simple numeri
al estimates and gaining some insight whi
h physi
al parameters determine

the �nal abundan
e, we will develop instead the more intuitive Gamov 
riterion: It states

that a rea
tion be
omes ine�e
tive, when its rate � drops below the expansion rate H of

the universe. Note that H de�nes also the typi
al time-s
ale for 
hanges in the temperature

T : Thus � � H /

_

T=T implies that the parti
le 
an not follow any longer an equilibrium

distribution. For the important 
ase of a power-law expansion, the 
ondition � � H means

that the time 1=� between a rea
tion be
omes larger than the age t / 1=H(t) of the universe.

In the 
ase of annihilations, we have to determine therefore the \freeze-out" time t

f

de�ned by

�

A

(t

f

) = H(t

f

) with �

A

= n

eq

h�

ann

vi as the annihilation rate. At later times, the 
omoving

density of the reli
 parti
le is then 
onstant.

Freeze-out of thermal reli
 parti
les Without intera
tions, the number density n

X

of a

parti
le spe
ies X is only diluted by the expansion of spa
e, n

X

/ a

�3

. It is 
onvenient to

a

ount for this trivial expansion e�e
t by dividing n

X

through the entropy density

3

s, i.e.

to use the dimensionless quantity Y = n

X

=s. The equilibrium abundan
e Y

eq

expressed as

fun
tion of x = T=m

X

is given for vanishing 
hemi
al potential �

X

= 0 by

Y

eq

=

n

X

s

=

(

45

2�

4

�

�

8

�

1=2

"

1

g

X

g

�S

x

3=2

exp(�x) = 0:145

"

1

g

X

g

�S

x

3=2

exp(�x) for x� 3,

45�(3)

2�

4

"g

X

g

�S

= 0:278

"g

X

g

�S

for x� 3

(20.22)

with " = 3=4 (" = 1) for fermions (bosons). If the parti
le X is in 
hemi
al equilibrium, its

abundan
e is determined for T � m by its 
ontribution to the total number of degrees of

freedom of the plasma, while Y

eq

is exponentially suppressed for T � m.

In an expanding universe, one may expe
t that the rea
tion rate � for pro
esses like e

+

e

�

$

�

XX drops below the expansion rate H mainly for two reasons: First, 
ross se
tions may

de
rease with energy as, e.g., weak pro
esses � / s / T

2

for s

<

�

m

2

W

. Se
ond, the density

n

X

de
reases at least as n

X

/ T

3

. When a rea
tion rate drops below the expansion rate, it

be
omes ine�e
tive, or \freezes out." Around this freeze-out time x

f

, the true abundan
e Y

starts to deviate from the equilibrium abundan
e Y

eq

and be
omes 
onstant, Y (x) ' Y

eq

(x

f

)

for x

>

�

x

f

. This behaviour is illustrated in Fig. 20.1.

Next we rewrite the evolution equation for n

X

(t) using the dimensionless variables Y and

x. We assume that the freeze-out o

urs during the radiation-dominated epo
h. Thus �

rad

/

1=a

4

, H = 1=(2t) and the 
urvature term k=R

2


an be negle
ted. Then the Friedmann

equation simpli�es to H

2

= (8�=3)G� with � = g

�

�

2

=30T

4

, or

1

2t

= H = 1:66

p

g

�

T

2

M

Pl

/ x

�2

: (20.23)

Here we introdu
ed also the Plan
k mass M

Pl

= 1=

p

G

N

' 1:2 � 10

19

GeV. Changing then

from n

X

= sY to Y , we eliminate the 3Hn

X

term obtaining

dY

dx

= �

sx

H

h�

ann

vi

�

Y

2

� Y

2

eq

�

: (20.24)

Finally we re
ast the Boltzmann equation in a form that makes our intuitive Gamov 
riterion

3

Some formulas from equilibrium statisti
s are 
olle
ted in the Appendix 14.A.

328



20.2. Thermal reli
s as dark matter
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Figure 20.1.: Illustration of the freeze-out pro
ess: For x

>

�

x

f

, the abundan
e Y be
omes


onstant, T ! Y

1

; for in
reasing h�

ann

vi, the �nal abundan
e Y

1

de
reases.

expli
it,

x

Y

eq

dY

dx

= �

�

A

H

"

�

Y

Y

eq

�

2

� 1

#

(20.25)

with �

A

= n

eq

h�

ann

vi: The relative 
hange of Y is 
ontrolled by the fa
tor �

A

=H times the

deviation from equilibrium. The evolution of Y = n

X

=s is shown s
hemati
ally in Fig. 20.1:

As the universe expands and 
ools down, n

X

de
reases at least as a

�3

. Therefore, the an-

nihilation rate quen
hes and is not longer suÆ
iently large to keep the parti
le in 
hemi
al

equilibrium. As a result, the abundan
e freezes-out, i.e. the ratio n

X

=s stays 
onstant. For

the dis
ussion of approximate solutions to this equation, it is 
onvenient to distinguish a
-


ording to the freeze-out temperature hot dark matter (HDM) with x

f

� 3, 
old dark matter

(CDM) with x

f

� 3 and the intermediate 
ase of warm dark matter with x

f

� 3.

Abundan
e of hot dark matter For x

f

� 3, freeze-out o

urs when the parti
le is still

relativisti
 and Y

eq

is not 
hanging with time. Thus the asymptoti
 value of the abundan
e,

Y (x!1) � Y

1

, is given by the equilibrium value at freeze-out,

Y

1

= Y

eq

(x

f

) = 0:278

g

eff

g

�S

; (20.26)

and the only temperature-dependen
e is 
ontained in g

�S

. The number density today is then

n

0

= s

0

Y

1

= 2970Y

1


m

�3

= 825

g

eff

g

�S


m

�3

; (20.27)

where we used for the present entropy density s

0

' 2891=
m

3

derived in problem 15.??.

Although a HDM parti
le was relativisti
 at freeze-out, it is today non-relativisti
 if its mass

ism� 3K ' 0:2meV. In this 
ase its energy density is simply �

0

= ms

0

Y

1

and its abundan
e


h

2

= �

0

=�


r

is given by


h

2

= 7:8 � 10

�2

m

eV

g

eff

g

�S

: (20.28)
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Hen
e the abundan
e of HDM parti
les with mass m

>

�

10 eV ex
eeds the observed total

abundan
e of matter, 


m

h

2

' 0:1.

Abundan
e of 
old dark matter For CDM with x

f

� 3, freeze-out o

urs when the parti
les

are already non-relativisti
 and Y

eq

is exponentially 
hanging with time. Thus the main

problem is to �nd x

f

, for late times we use Y

1

� Y (x

f

), i.e. the equilibrium value at freeze-out.

We parametrise the temperature-dependen
e of the annihilation 
ross se
tion as h�

ann

vi =

�

0

(T=m)

n

= �

0

=x

n

whi
h 
orresponds to an expansion in v

2n

M�l

. For simpli
ity, we 
onsider

only the 
ase of s-wave annihilation for CDM, n = 0. Then the Gamov 
riterion be
omes

with H = 1:66

p

g

�

T

2

=M

Pl

and �

A

= n

eq

h�

ann

vi

g

�

mT

f

2�

�

3=2

exp(�m=T

f

)�

0

= 1:66

p

g

�

T

2

f

M

Pl

(20.29)

or

x

�1=2

f

exp(x

f

) = 0:038

g

p

g

�

M

Pl

m�

0

� C : (20.30)

To obtain an approximate solution, we negle
t �rst in

lnC = �

1

2

lnx

f

+ x

f

(20.31)

the slowly varying term lnx

f

. Inserting next x

f

� lnC into Eq. (20.31) to improve the

approximation gives then

x

f

= lnC +

1

2

ln(lnC) : (20.32)

For a DM parti
le with thermal annihilation 
ross se
tion �

0

= 3�10

�26


m

3

=s the freeze-out

temperature 
hanges slowly from x

f

' 23 for m = 10GeV to x

f

' 28 for m = 1TeV. The reli


abundan
e for CDM follows from n(x

f

) = 1:66

p

g

�

T

2

f

=(�

0

M

Pl

) and n

0

= n(x

f

)[R(x

f

)=R

0

℄

3

=

n(x

f

)[g

�;f

=g

�;0

℄[T

0

=T (x

f

)℄

3

as

�

0

= mn

0

� 10

x

f

T

3

0

p

g

�;f

�

0

M

Pl

(20.33)

or




CDM

h

2

=

mn

0

�


r

�

1� 10

�28


m

3

=s

�

0

x

f

: (20.34)

Thus the abundan
e of a CDM parti
le is inverse proportionally to its annihilation 
ross

se
tion, sin
e a more strongly intera
ting parti
le stays longer in equilibrium. Note that the

expli
it dependen
e on the freeze-out temperature T

f

in the fa
tors n(x

f

) and [a(x

f

)=a

0

℄

3


an
elled, leading only to an impli
it dependen
e of the abundan
e via g

�;f

on T

f

. Moreover,

the abundan
e depends only logarithmi
ally on the mass m via Eq. (20.32).

The observed value 


CDM

h

2

' 0:1 implies �

0

' 3�10

�26


m

3

=s = 1�10

�36


m

2

. Su
h 
ross

se
tions are typi
al for a weakly intera
ting massive parti
les, and thus su
h CDM parti
les

are 
alled WIMPs. The numeri
al 
oin
iden
e of the annihilation 
ross se
tion of a thermal

reli
 with a typi
al weak intera
tion 
ross se
tion in the SM has been 
alled by a�
ionados

of this s
enario WIMP mira
le.
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Unitarity limit form

X

We saw that the abundan
e of a CDM parti
le s
ales approximately

inversely with its annihilation 
ross se
tion. Therefore the observed abundan
e of DM implies

a lower bound on h�vi. We show in this se
tion that the unitarity of the S-matrix implies

h�vi / 1=m

2

X

and derive thereby an upper bound on its mass m

X

.

We repeat the steps from Eq. (??) to (??) whi
h lead to the unitary bound on partial

waves amplitudes, but take into a

ount that the �nal states di�ers from the initial one,

p


ms

6= p

0


ms

. Comparing

�

tot

=

16�

s

p

0


ms

p


ms

1

X

l=0

(2l + 1)jT

l

j

2

�

1

X

l=0

�

l

; (20.35)

to the result using the opti
al theorem (??) gives then the unitarity 
onstraint

2p

0


ms

p

s

jT

l

j � 1 : (20.36)

Inserting this 
onstraint for T

l

bounds the 
ontribution of the l.th partial wave to the total


ross se
tion �

l

as

�

l

=

4�

p

2


ms

(2l + 1) : (20.37)

For the non-relativisti
 s
attering of two parti
les with mass m

X

, we 
an use p


ms

'

v

M�l

m

X

=2, giving as unitarity limit

�

l

v

M�l

� (2l + 1)

16�

v

M�l

m

2

X

: (20.38)

A bound stronger by a fa
tor four applies to the annihilation 
ross se
tion, �

ann

= �

tot

� �

el

.

In the 
ase of parti
les with spin, we have to divide this result by the number of spin degrees

of freedom of the initial parti
les [GK90, Hui01℄. For a CDM parti
le, only the l = 0 and

l = 1 partial waves give a sizeable 
ontribution to the total annihilation 
ross se
tion. Using

then 


X

h

2

� 


CDM

h

2

= 0:11 and v

2

M�l

= x

f

=6 and x

f

� 30 we obtain an upper limit of

m

X

<

�

20TeV for any stable parti
le that was on
e in thermal equilibrium.

20.2.2. Annihilation 
ross se
tion in the nonrelativisti
 limit

Sin
e WIMPs freeze-out typi
ally at x

f

� 20, it is useful to 
onsider the WIMP annihilation


ross se
tion in the nonrelativisti
 limit x� 1. This is even more true for annihilations today

in the Milky Way where WIMPs have velo
ities of order v � 220 km=s � 10

�3

. An expansion

in x / v

2


orresponds to a partial wave expansion. Therefore we 
an either proje
t out from

the general Feynman amplitude the 
ontribution to the �rst partial waves l = 0; 1; : : :, or we


an perform an expansion in v

2

of the thermally averaged 
ross se
tion. Su
h an expansion


ontains even powers of the M�ller velo
ity,

h�

ann

vi = �

(s)

ann

+ �

(l)

ann

hvi

2

+ �

(p)

ann

hvi

4

+ : : : ; (20.39)

assuming that the Feynman amplitude is not singular in the limit v ! 0. The o

urren
e

of singularities signals that the initial state 
an form a bound state: For instan
e, at low

energies, the pro
ess e

+

e

�

! n
 should be not des
ribed as the annihilation of a free ele
tron

and a positron but as the annihilation of its bound-state positronium. More generally, the
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small relative velo
ities of CDM parti
les, � = v � 1, means that fa
tors g

2

=� or ln(g

2

=�) 
an

lead to a break-down of perturbation theory. This e�e
t was �rst studied by Sommerfeld for

Coulomb intera
tions, and the resulting boost of rea
tion rates is therefore 
alled Sommerfeld

enhan
ement.

The enhan
ement of the annihilation 
ross se
tion 
an be 
al
ulated non-relativisti
ally

and is, negle
ting bound-state e�e
ts, 
hara
terised by two parameters: The mass ratio " =

M=m

X

of the ex
hange and the DM parti
le determines, if the annihilation pro
eeds in the

Coulomb ("� 1) or in the Yukawa ("� 1) regime, while the ratio x = g

2

eff

=� of the squared

e�e
tive 
oupling 
onstant and the velo
ity determines, if fa
tors g

2

eff

=� or ln(g

2

eff

=�) lead to

a break-down of perturbation theory. Here, the e�e
tive 
oupling 
onstant g

eff

in
ludes all

prefa
tors in front of the Yukawa potential, as e.g. mixing matrix elements. In the Coulomb


ase, the Sommerfeld fa
tor R as ratio of the perturbative and non-perturbative annihilation


ross se
tion is given by

R =

�

np

�

pert

�

�

1� exp(��)

(20.40)

with � = �g

2

eff

=(2�) [LL81℄.

Proje
tion operators and the nonrelativisti
 limit We give now an example how one 
an

obtain the nonrelativisti
 expansion of a Feynman amplitude by proje
ting out the the partial

waves l = 0; 1; : : :. In many models, the DM parti
le is a Majorana fermion whi
h leads to

some parti
ular features whi
h the example will also illustrate.

We use spinors in the Dira
 representation (8.51) to des
ribe a Majorana fermion pair

at rest. The adjoint anti-parti
le spinors are �v(m;�) =

p

2m(0; 0; 0;�1) and �v(m;+) =

p

2m(0; 0; 1; 0). Sin
e we have a pair of indistinguishable fermions in the initial state, we

have to antisymmetrise the initial state. We 
ompute the antisymmetrised two-parti
le state

u(m; s

1

)�v(m; s

2

) � u(m; s

2

)�v(m; s

1

) for di�erent spin 
on�gurations: If the two spins are

parallel, then the result is zero,

u(m;�)�v(m;�)� u(m;�)�v(m;�) = u(m;+)�v(m;+)� u(m;+)�v(m;+) = 0 : (20.41)

For anti-parallel spins, we obtain

u(m;+)�v(m;�)� u(m;�)�v(m;+) = 2m

�

0 1

0 0

�

�  

1

(20.42)

and

u(m;�)�v(m;+)� u(m;+)�v(m;�) = �2m

�

0 1

0 0

�

�  

2

: (20.43)

The two states  

1

and  

2

are linearly dependent and we 
an 
ombine them into

� =

1

p

2

( 

1

�  

2

) = 2

p

2m

�

0 1

0 0

�

: (20.44)

Next we want to rewrite the expression for � whi
h is valid in the rest-frame of the two

Majorana fermions into a Lorentz invariant way. We express �rst

�

0 1

0 0

�

by gamma matri
es,

� = 2

p

2m

1

2

(1 + 


0

)


5

=

p

2(m+ P==2)


5

: (20.45)
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In the se
ond step we introdu
ed the total momentum P = (p

1

+p

2

) = (2m;0) of the fermion

pair and repla
ed m


0

by P==2.

Let us now illustrate the usefulness of this method with a 
on
rete example. We 
onsider

the annihilation of two Majorana fermions � with mass m

�

into a fermion pair f

�

f with mass

m

f

via the ex
hange of a s
alar

~

f

L

with mass M . Their intera
tion is given by

L = g

L

��P

L

f

~

f

L

+ h:
: = g

L

��P

L

f

~

f

L

+ g

L

�

fP

R

�

~

f

L

: (20.46)

For simpli
ity, we 
onsider the limit that the mass M of the ex
hanged s
alar is mu
h larger

than the DM mass, M � m

�

. Then the intera
tion be
omes an e�e
tive four-fermion inter-

a
tion, and the Feynman amplitude simpli�es to

A =

g

2

L

M

2

�v

�

f

(p

4

)P

R

[u

�

(m

�

; s

1

)�v

�

(m

�

; s

2

)� u

�

(m

�

; s

2

)�v

�

(m

�

; s

1

)℄P

L

u

f

(p

3

) (20.47a)

=

p

2g

2

L

M

2

�v

�

f

(p

4

)P

R

(m

�

+ P==2)


5

P

L

u

f

(p

3

) : (20.47b)

The m

�

term vanishes be
ause of P

L

P

R

= 0. Using P = p

3

+ p

4

and the Dira
 equation, we

obtain p

3

+ p

4

= �2m

f

and thus

A = �

p

2m

f

g

2

L

M

2

�v

�

f

(p

4

)


5

P

L

u

f

(p

3

) : (20.48)

Thus the amplitude is proportional to m

f

and the annihilation into light fermions is strongly

suppressed. Additionally to getting this insight with little e�ort, the remaining amplitude is

easier to evaluate and no expansion in v

M�l

has to be performed.

Let us now try to understand why the amplitude is proportional to m

f

: The initial wave-

fun
tion j�i = jL; Si of the identi
al fermion pair has to be antisymmetri
. For zero relative

velo
ity, the orbital angular momentum L is zero and thus jLi is symmetri
. Therefore the spin

wave-fun
tion jSi has to be anti-symmetri
, jSi = j"; #i or jSi = j#; "i. Thus the total spin is

zero, and the pair of Majorana fermions is in a

1

S

0

state. Consequently, � =

p

2(m+P==2)


5

a
ts a proje
tion operator whi
h inserted between two arbitrary spinors extra
ts the

1

S

0

state

or the s-wave 
ontribution to the annihilation amplitude. If the produ
ed fermion pair were

massless, the �nal state would be either f

L

�

f

R

or f

R

�

f

L

: For instan
e, the Majorana fermion

pair 
ould annihilate into a left-handed ele
tron and a right-handed positron. The ele
tron-

positron pair is produ
ed ba
k-to-ba
k and therefore its total spin is S = 1. Sin
e the Dira


mass term 
onne
ts left- and right-
hiral �elds, the 
hirality 
ip required to 
reate a S = 0

state leads to an amplitude proportional to m

f

. Thus for massless fermions, the annihilation


ross se
tion has to vanish for v

M�l

! 0. Alternatively, we 
an allow for a non-zero relative

velo
ity and 
onsider that the orbital angular momentum is one. Thus jLi is anti-symmetri
,

and from the two states

3

P

0

and

3

P

1

only the latter is allowed. Now it is possible to produ
e

the fermion pair without a heli
ity 
ip, but the amplitude will be proportional to v

M�l

.

20.2.3. Dete
tion of WIMPs

Sear
hes for WIMPs rely on the assumption that they intera
t with SM parti
les. Su
h

sear
hes 
an be divided into three main 
ategories: Indire
t dete
tion uses the annihilation

pro
ess X + X ! SM + SM into SM parti
les, while dire
t dete
tion relies on the elasti


s
attering X + SM ! X + SM of WIMPs on SM parti
les. Finally, one 
an sear
h at

a

elerators for the produ
tion SM + SM ! X +X of WIMPs by 
olliding normal matter.

333



20. Thermal reli
s

Cosmology 
onne
ts the measured CDM abundan
e with the required annihilation 
ross

se
tion of a thermal reli
 as h�

ann

vi ' 3 � 10

�26


m

3

/s. Moreover, we know that the three

pro
esses used in the di�erent sear
h 
ategories are related by 
rossing symmetry. This leads

to the question how well we 
an 
onstrain the possible signal strength to be expe
ted in the

WIMP s
enario in these three 
hannels. Let us 
onsider �rst indire
t dete
tion where one


an use the annihilation of WIMPs in the 
enter of the Sun, the halo of the Milky Way or

other galaxies. In all 
ases, typi
al WIMP velo
ities are mu
h smaller than the ones during

freeze-out. For instan
e, we 
an use as typi
al WIMP velo
ity relevant for the annihilation

of DM in the Milky Way the rotation velo
ity of the Sun around the 
enter of the Galaxy,

v � 220 km=s � 10

�3

. As a result, the thermal annihilation 
ross se
tion today is|in

the absen
e of non-perturbative e�e
ts|only bounded from above by the one in the early

universe: If annihilations are dominated by the p-wave 
ontribution, the thermal 
ross se
tion

h�

ann

vi relevant for indire
t sear
hes 
ould be six orders of magnitude smaller than in the

early universe. On the other hand, the annihilation 
ross se
tion at small velo
ities may be

enhan
ed via the Sommerfeld e�e
t 
ompared to the 
osmologi
al one.

The 
onne
tion is even less tight in the 
ase of dire
t and a

elerator sear
hes: In these

sear
hes we test mainly the 
ouplings of the WIMP to the �rst generation of quarks and

leptons, while the annihilation 
ross se
tion sums up all relevant 
hannels. In many models,

the main �nal states of WIMP annihilations are heavy fermions, gauge and higgs bosons. As

a result, the elasti
 
ross se
tion on nu
leons or the produ
tion via proton-proton s
attering


ould be suppressed. Moreover, WIMPs are produ
ed at a

elerators as ultrarelativisti


parti
les, probing again a di�erent kinemati
al regime than annihilations in the early universe.

Dire
t dete
tion A dire
t dete
tion experiment aims to measure the nu
lear re
oil, when

a WIMP s
atters on a nu
leus in a dete
tor. Let us assume that the WIMP intera
ts via

the ex
hange of a gauge or Higgs boson with the nu
leus. The momentum transfer in su
h a

rea
tion is small, q

2

<

�

100 keV

2

, 
f. problem 21.??. Therefore, the ex
hanged virtual parti
les

do not resolve the quark and gluon 
ontent of a nu
leon, but intera
t with the whole nu
leon

4

:

Instead of the 
ouplings to quarks, we have therefore to know the e�e
tive 
oupling of a gauge

or Higgs boson to a nu
leon. The small moment transfer implies also that one 
an integrate out

the intermediate virtual parti
les, 
onstru
ting an e�e
tive Lagrangian for the intera
tions

between the DM parti
le and quarks and gluons. Within a given DM model, this step is

lengthy but straight-forward and gives an e�e
tive Lagrangian 
ontaining higher-dimensional

operators.

Let us illustrate this pro
edure with an example. We assume that the WIMP is a fermion

and write down its intera
tions with light quarks and gluons. For our purposes, it is suÆ
ient

to 
onsider as an example the 
ontribution of s
alar operators to the e�e
tive Lagrangian,

L

eff

= C

q

S

�

XXm

q

qq + C

g

S

�

s

�

�

XXF

a

��

F

a��

: (20.49)

All the information about the physi
s integrated out is 
ontained in the 
oeÆ
ients C

N

S

. We

obtain the matrix elements of these e�e
tive operators between nu
leon states following the

same strategy as in se
tion 17.1 dis
ussing the tra
e anomaly: We use Eq. (17.18) at leading

4

Sin
e the moment transfer is 
omparable to the nu
lear size, they intera
t (partly) 
oherently with the whole

nu
leus. Thus in an additional step, nu
lear physi
s e�e
ts have to be in
orporated.
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order in �

s

,

T

�

�

= �

9

8

�

s

�

F

a

��

F

a��

+

X

q=u;d;s

m

q

�qq ; (20.50)

together with the mass fra
tions f

(N)

q


al
ulated in latti
e QCD. Evaluating then T

�

�

between

nu
leon states jNi and using hN jT

�

�

jNi = m

N

, we obtain

hN j

�

s

�

F

a

��

F

a��

jNi = �

8

9

m

N

f

(N)

G

(20.51)

with f

(N)

G

� 1�

P

q=u;d;s

f

(N)

q

. This determines the e�e
tive operators at the s
ale q

2

' m

N

and allows one to 
al
ulate s
attering rates for given 
oeÆ
ients C

N

S

. The e�e
tive Lagrangian

(20.49) is however de�ned at the s
ale 
orresponding to the mass s
ale of the virtual parti
les

integrated out. Thus as a �nal step, one has to derive the RGE of these e�e
tive operators

and to evolve the 
oeÆ
ients C

N

S

down to the s
ale m

N

.

Indire
t dete
tion The average density of DM in the Galaxy is in
reased by a fa
tor � 10

5


ompared to the extragala
ti
 spa
e. Therefore the annihilation rate of DM 
an be
ome

again appre
iable inside the Milky Way, and in parti
ular in regions where DM is strongly

a

umulated. The se
ondaries of DM annihilations will be the stable parti
le of the standard

model, i.e. photons, neutrinos, ele
trons and protons. The 
hallenge for the indire
t dete
tion


onsists to disentangle these annihilation produ
ts from the ba
kground of high-energy parti-


les produ
ed by astrophysi
al sour
es. Two 
hannels provide a rather unique signature: DM

annihilations into two photons, or a photon and Z, lead to line features whi
h 
annot mim-

i
ked by a astrophysi
al ba
kground. Sin
e a WIMP is by assumption neutral, this pro
ess


an pro
eed however only via loop graphs and it thus suppressed by a fa
tor (�=�)

2

.

Another unique signature are high-energy neutrinos produ
ed by WIMPs that a

umulate

e.g. in the Sun. Here, the dire
tional signal together with the fa
t that neutrinos produ
ed

by astrophysi
al pro
esses have energies

<

�

GeV provides the distin
tive signature. In all

other 
ases, a detailed knowledge of the spe
tral shape of anti-matter 
uxes, both for the

ba
kground produ
ed e.g. in pp 
ollisions and in DM annihilations is required. This requires

the knowledge of strong intera
tions at small virtualities and relies on the use of Monte Carlo

methods, as des
ribed in se
tion 17.2.

20.3. Big bang nu
leosynthesis

Big bang nu
leosynthesis (BBN) is 
ontrolled mainly by two parameters: The mass di�eren
e

between protons and neutrons, � � m

n

�m

p

' 1:29MeV, and the freeze-out temperature

T

f

of rea
tions 
onverting protons into neutrons and vi
e versa. Sin
e the binding energy per

nu
leon has a large peak for

4

He, essentially all free neutrons are bound into helium. Heavier

elements (ex
ept

7

Li) are produ
ed later by stellar fusion, where the densities are suÆ
iently

high that e.g. the triple � pro
ess 3

4

He !

12

C 
an bridge the gap of missing tightly bound

nu
lei between

4

He and

12

C.
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Equilibrium distributions In the non-relativisti
 limit T � m, the number density of a

nu
lear spe
ies with mass number A and 
harge Z is given by

n

A

= g

A

�

m

A

T

2�

�

3=2

exp[�(�

A

�m

A

)℄ : (20.52)

In 
hemi
al equilibrium, �

A

= Z�

p

+ (A � Z)�

n

and we 
an eliminate �

A

by inserting the

equivalent expression of (20.52) for protons and neutrons,

e

��

A

= exp[�(Z�

p

+(A�Z)�

n

)℄ =

n

Z

p

n

A�Z

n

2

A

�

2�

m

N

T

�

3A=2

exp[�(Zm

p

+(A�Z)m

n

)℄ : (20.53)

Here and in the following we 
an set in the prefa
tors m

p

' m

n

' m

N

and m

A

' Am

N

,

keeping the exa
t masses only in the exponentials. Inserting this expression for exp(��

A

)

together with the de�nition of the binding energy of a nu
leus, B

A

= Zm

p

+(A�Z)m

n

�m

A

,

we obtain

n

A

= g

A

�

2�

m

N

T

�

3(A�1)=2

A

3=2

2

A

n

Z

p

n

A�Z

n

exp(�B

A

) : (20.54)

The mass fra
tion X

A


ontributed by a nu
lear spe
ies is

X

A

=

An

A

n

B

with n

B

= n

p

+ n

n

+

X

i

A

i

n

A

i

and

X

i

X

i

= 1 : (20.55)

Next we introdu
e the baryon-photon ratio � = n

B

=n




as variable. With n

Z

p

n

A�Z

n

=n

N

=

X

Z

p

X

A�Z

n

n

A�1

N

and � / T

3

and thus n

A�1

B

/ �

A�1

T

3(A�1)

, we have

X

A

/

�

T

m

N

�

3(A�1)=2

�

A�1

X

Z

p

X

A�Z

n

exp(�B

A

) : (20.56)

The fa
t that � ' 6 � 10

�10

� 1, i.e. that the number of photons per baryon is extremely

large, means that nu
lei with A > 1 are mu
h less abundant and that nu
leosynthesis takes

pla
e later than naively expe
ted.

Let us 
onsider the parti
ular 
ase of deuterium in Eq. (20.56),

X

D

X

p

X

n

=

24�(3)

p

�

�

T

m

N

�

3=2

� exp(�B

D

) (20.57)

with B

D

= 2:23 MeV. The start of nu
leosynthesis 
ould be de�ned approximately by the


ondition X

D

=(X

p

X

n

) = 1, or T

NS

' 0:07MeV a

ording to the left panel in Fig. 20.2.

The right panel of the same �gure shows the results, if the equations (20.56) together with

P

i

X

i

= 1 are solved for the lightest and stablest nu
lei: In thermal equilibrium, essentially

all free neutrons will bind to

4

He at temperatures T

<

�

0:2MeV. The formation of heavier

elements is strongly suppressed be
ause of their mu
h smaller binding energy per nu
leon.

Moreover, the Coulomb barrier will prevent the produ
tion of nu
lei with Z � 1.
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Figure 20.2.: Relative equilibrium abundan
e X

D

=(X

p

X

n

) of deuterium as fun
tion of tem-

perature T (left) and equilibrium mass fra
tions of nu
leons, D,

3

He,

2

He and

12

C (right).

Neutron abundan
e If we do not aim at the 
al
ulation of the (small) abundan
e of elements

other than

4

He, we have to solve only the Boltzmann equation for the neutron abundan
e.

Nu
leons are inter-
onverted by weak pro
esses as n $ p + e

�

+ �

e

. For an estimate of the

freeze-out temperature of weak intera
tions, we 
an use the Gamov 
riteria: The 
ross se
tion

of pro
esses like n$ p+ e

�

+ �

e

or e

+

e

�

$ ��� is � � G

2

F

E

2

. If we approximate the energy

of all parti
le spe
ies by their temperature T , their velo
ity by 
 and their density by n � T

3

,

then the intera
tion rate of weak pro
esses is

� � hv�n

�

i � G

2

F

T

5

: (20.58)

In the radiation-dominated epo
h, �(T

fr

) = H(T

fr

) gives as freeze-out temperature T

fr

of

weak pro
esses

T

fr

�

�

1:66

p

g

�

G

2

F

M

Pl

�

1=3

� 1MeV (20.59)

with g

�

= 10:75. Thus weak intera
tion freeze out before nu
leosynthesis starts. Be
ause

of T

fr

� 1 MeV, we 
an treat nu
leons in the non-relativisti
 limit. Then their relative

equilibrium abundan
e is given by the Boltzmann fa
tor exp (��=T ) for T

>

�

T

fr

. Hen
e at

freeze-out, the ratio of their equilibrium distributions is given by

n

eq

n

n

eq

p

= exp

�

�

�

T

fr

�

: (20.60)

We 
onsider in Eq. (20.13) the rea
tion n + e

�

$ p + �

e

, using for the leptons equilibrium

distributions,

1

a

3

d(a

3

n

n

)

dt

= n

eq

l

h�vi

�

n

p

n

eq

n

n

eq

p

� n

n

�

: (20.61)

Next we repla
e the ratio n

eq

n

=n

eq

p

by the Boltzmann fa
tor exp(���). Moreover, the loss term

n

eq

l

n

n

h�vi equals the neutron-proton s
attering rate �

np

. Changing also from the variable n

n

to the neutron mass fra
tion X

n

, we arrive at

dX

n

dx

= �

np

h

(1�X

n

)e

���

�X

n

i

: (20.62)
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Introdu
ing again the dimensionless x = �=T as evolution variable, we obtain

dX

n

dx

=

x�

np

H(1)

�

e

�x

�X

n

(1 + e

�x

)

�

(20.63)

with H(1) ' 1:13/s. The neutron-proton 
onversion rate 
an be 
onne
ted to the neutron

lifetime �

n

' 886:7s as (problem 21.??),

�

np

=

255

�

n

x

5

(12 + 6x+ x

2

) : (20.64)

Now Eq. (20.63) 
an be integrated and the result shows that X

n

freezes-out below 0.5MeV,

approa
hing the asymptoti
 value X

n

' 0:15.

Up-to now we have treated the neutron as stable. We 
an in
lude into our simple pi
ture

the e�e
t of neutron de
ays by adding the fa
tor exp(�t=�

n

) to the neutron abundan
e X

n

. If

we use that nu
leosynthesis starts at T

NS

' 0:07MeV, t

NS

' 270 s, then exp(�t=�

n

) ' 0:74.

As result, the mass fra
tion of neutrons whi
h 
an be fused into helium is X

n

= 0:11 and thus

the helium fra
tion X

4

= 2X

n

= 0:22. Numeri
al 
al
ulations that in
lude the full nu
lear

rea
tion network lead to X

4

= 0:24, and thus our simple estimate is only 10% away from

the true value. A �t to these numeri
al results shows that the helium abundan
e depends

logarithmi
ally on �

b

,

X

4

= 0:226 + 0:013 ln(�

b

=10

�10

) : (20.65)

Thus the helium abundan
e alone 
an be used to determine the baryon-photon ratio as �

b

'

few � 10

�10

. A 
omparison of the predi
ted with the observed abundan
e of deuterium and

lithium allows then for a 
onsisten
y 
he
k of the BBN pi
ture. An independent determination

of 


b

using CMB observations leads to �

b

' 6:2 � 10

�10

. The su

ess of BBN 
an be used

to limit e.g. the inje
tion of high-energy through parti
le de
ays whi
h 
ould destroy light

elements.

Summary

Boltzmann equations are an important tool to des
ribe pro
esses as diverse as the evolution

of the DM density, BBN nu
leosynthesis or re
ombination. The Gamov 
riterion states that

pro
esses freeze out when their rate be
omes smaller than the Hubble rate. The mass of

any thermal reli
 is bounded by

<

�

20TeV. The abundan
e of a CDM parti
le with h�vi '

3�10

�26


m

3

/s 
orresponds to the observed one, 


CDM

= 0:2. BBN explains su

essfully the

abundan
e of light elements like D and

4

He, and �xes thereby also �

b

.

Further reading

A 
lassi
 presentation of the freeze-out me
hanism is given in [KT94℄. A more detailed

analyti
al treatment of BBN is presented by [Muk05℄ and [GR11b℄, who also dis
uss re
ombi-

nation. Dropping the assumption of uniformity, Boltzmann type equations 
an be also used

to des
ribe the evolution of perturbations, a topi
 whi
h is treated in detail e.g. by [Dod03℄.
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We have seen that BBN determines the baryon-photon ratio as � = n

B

=n




' 6 � 10

�10

. In

problem 21.??, we 
al
ulated the baryon abundan
e in the usual freeze-out formalism for zero


hemi
al potential. Sin
e the �pp annihilation 
ross se
tion is large, nu
leons freeze-out very

late (x

f

� 44) when their density is already strongly suppressed. As a result, the baryon-

photon ratio in a baryon symmetri
 world would be � ' 7�10

�20

, i.e. mu
h smaller than the

observed value. This implies that at temperatures above the freeze-out a tiny surplus of one

quark per 10

10

quarks and antiquarks existed. Therefore the proper de�nition of the baryon-

photon ratio is � = (n

b

� n

�

b

)=n




and the 
hallenge is to explain the origin of the asymmetry

between baryons and antibaryons. Astronomers do not observe the photons from the pro
esses

e

+

e

�

! 2
 and �pp! X
 that would o

ur at the boundaries of matter-antimatter domains.

Using these observational limits, one 
an 
on
lude that the whole observable universe 
onsists

of matter. Moreover, an in
ationary period in the early universe eliminates any pre-existing

baryon asymmetry, for
ing us to explain the observed baryon asymmetry dynami
ally. We

will see that su
h explanations require ne
essarily physi
s beyond the SM.

21.1. Sakharov 
onditions and the SM

Sakharov 
onditions for baryogenesis Sakharov developed in 1967 the �rst model whi
h


ontained the three ingredients ne
essary for the dynami
ally generation of a non-zero baryon

number. These so-
alled Sakharov 
onditions for baryogenesis are

1. violation of baryon number B,

2. violation of the dis
rete symmetries C and CP, and

3. departure from thermal equilibrium.

The �rst 
ondition, the non-
onservation of baryon number B, is obviously ne
essary, if the

universe should evolve from a state with n

B

= 0 to n

B

> 0. We 
an understand the se
ond


ondition from the transformation properties of the baryon number operator B under C and

CP: Be
ause of CBC

�1

= �B and CPB(CP)

�1

= �B, the (thermal) expe
tation value of B

has to vanish, if C and CP are symmetries of the model 
onsidered. More expli
itly, we 
an

express the expe
tation value of B in this 
ase with A = fC;CPg as

hBi = Z

�1

Tr

h

e

��H

B

i

= Z

�1

Tr

h

AA

�1

e

��H

B

i

(21.1a)

= Z

�1

Tr

h

e

��H

A

�1

BA

i

= �Z

�1

Tr

h

e

��H

B

i

= �hBi ; (21.1b)

where we used [H;A℄ = 0 going from the �rst to se
ond line. Thus hBi = 0, if [H;C℄ = 0 or

[H;CP℄ = 0. By the same token, we 
an show that a departure from thermal equilibrium is

required: Sin
e any unitary Lorentz invariant quantum �eld theory is invariant under CPT,

we have [H;CPT℄ = 0 but also CPTB(CPT)

�1

= �B. We 
an avoid the 
on
lusion hBi = 0

only, if Eq. (21.1a), or in other words thermal equilibrium, does not hold.
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CP violation Another 
onsequen
e of CPT invarian
e is that CP violation is equivalent

to T violation. The latter is an anti-unitary operator, T

�1

iT = �i, and therefore 
omplex

parameters in the Lagrangian lead to T and thus CP violation. The only 
omplex parameters


ontained in the SM are the phases of the fermion mixing matri
es. In order to see that

su
h phases result indeed in CP violation, we express the 
harged 
urrent intera
tion for the

example of leptons by mass eigenstates,

L

CC

=

g

p

2

��

L;i




�

U

ij

e

L;j

W

+

�

+ h:
: (21.2)

=

g

p

2

�

��

L;i




�

U

ij

e

L;j

W

+

�

+ �e

L;j




�

U

�

ji

�

L;i

W

�

�

�

: (21.3)

We 
hoose the rest-frame of the W -boson so that W

�

0

= 0. A CP transformation transforms

the 
urrent ��

L;i


e

L;j

into �e

L;j


�

L;i

and the W

+

i

into a W

�

i

. It ex
hanges also the left- and

right-
ir
ular polarisations of the W and transforms all arguments x

�

= (t;x) of the �elds

into x

�

= (t;�x). The latter two e�e
ts are harmless, sin
e we integrate over x

�

and sum

over the two polarisations of the W in the a
tion. Thus the 
ombined e�e
t of CP on the

�rst term in (21.3) is given by

g

p

2

��

L;i




�

U

ij

e

L;j

W

+

�

!

g

p

2

�e

L;j




�

U

ji

�

L;i

W

�

�

: (21.4)

The CP transformed term is identi
al to the Hermitian 
onjugated of the original term, if the

mixing matrix is real, U = U

�

. In this 
ase, a CP transformation simply ex
hanges the �rst

and the se
ond term in (21.3). If however the mixing matrix is 
omplex, the CP transformed

Lagrangian di�ers from the original one, and CP is violated.

In general, the 
omplex parameters required for CP violation 
an arise in two ways: First,

intera
tions may 
ontain physi
al phases, as in the 
ase of the CKM and the MNSP matri
es in

the SM. Se
ond, va
uum expe
tation values may 
ontain physi
al phases. This option 
alled

spontaneous CP violation requires at least two Higgs doublets, as we dis
ussed in remark 17.1.

Enlarging the Higgs se
tor is therefore an eÆ
ient way to add more CP violation to the SM.

Sphaleron transitions andB�L violation Re
all from se
tion 16.2 the e�e
t of an instanton

transition on the divergen
e of the axial 
urrent,

�

�

j

�

A

= �

�

(j

�

R

� j

�

L

) =

g

2

16�

2

tr(F

��

~

F

��

) : (21.5)

Strong intera
tions 
ouple equally to left- and right-
hiral fermions, and therefore the sole

e�e
t of an instanton transition is a 
hirality 
ip of the fermion. In 
ontrast, an ele
troweak

instanton 
ouples only to left-
hiral fermions,

X

i

�

�

j

�

L;i

= �n

g

g

2

16�

2

tr(W

��

~

W

��

) = �� ; (21.6)

where n

g


ounts the number of generations, i stands for all 
omponents of the left-
hiral

SU(2) doublets, L = (�

l

; l) with l = fe; � �g and the 
orresponding nine quark doublets. Now

an instanton transition 
hanges the fermion number of the left-
hiral �elds. More pre
isely,

a transition whi
h 
hanges the winding number by one unit, �� = 1, 
hanges the fermion

number in ea
h doublet by one unit and thus the total fermion number by twelve. Sin
e ea
h
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V

eff

(#)

#0 2�

instanton

sphaleron

Figure 21.1.: Instanton versus sphaleron transition between di�erent # va
ua.

quark 
arries baryon number 1=3, the 
hanges in the lepton 
avour and baryon number are


onne
ted by

�L

e

= �L

�

= �L

�

=

1

3

�L =

1

3

�B (21.7)

or �L = �B = n

g

= 3 for �� = 1. Thus we see that the 
ombination B � L is 
onserved in

the SM even in the presen
e of instanton transitions, while both the baryon and the lepton

number are broken. Adding 
onservation of ele
tri
 
harge and 
olour, the states 
onne
ted

by an instanton are �xed. In parti
ular, a transition with �� = 1 
reates the state

j0i !

�

�

u

L

u

L

d

L

e

�

L

+ 


L




L

s

L

�

�

L

+ t

L

t

L

b

L

�

�

L

�

;

where the three quarks of ea
h generations form a 
olour singlet. Sin
e mass terms and Higgs

intera
tions mix left- and right-
hiral �elds, the resulting 
hange in the number of left-
hiral

fermions is transferred to the right-
hiral fermions.

The di�erential probability p per time and volume of a tunnelling pro
ess 
onne
ting two

va
ua separated by one winding follows from (16.57) as

p = �m

�4

W

exp(�S) = �m

�4

W

exp

�

�

8�

2

g

2

�

�

10

�160

m

4

W

; (21.8)

where the prefa
tor � is a dimensionless fun
tion of order one. Thus at zero temperature,

the e�e
ts of ele
troweak instantons are 
ompletely negligible. In the early Universe however,

we should take into a

ount not only quantum but also thermal 
u
tuations. We in
lude

the latter repla
ing the tunnelling fa
tor exp(�S) by the Boltzmann fa
tor exp(�E=T ). The


lassi
al �eld 
on�guration

1


onne
ting the top of the barrier with the va
uum whi
h has

the smallest free energy is 
alled sphaleron, 
f. Fig. 21.1. Its energy in the broken phase

is E

sp

� m

W

(T )=�

W

, where m

W

(T ) is the temperature dependent mass of the W . Thus

the probability that a thermal 
u
tuation 
rosses the barrier is / exp(�2E

sp

(T )=T ). At

temperatures T

>

�

m

W

, thermal 
u
tuations are larger than the barrier height between the

va
ua and the baryon number violating pro
esses should pro
eed unsuppressed. At these

temperatures, the SM is in the unbroken phase and the only relevant length s
ale is the

analogue of the Debye mass m

D

for a gauge boson, m

D

� �

W

T . Thus we expe
t that the

sphaleron rate

2

is given in the high-temperature limit by

p � �(�

W

T )

4

: (21.9)

1

The potential energy is a fun
tional of the �eld 
on�gurations, V

eff

[W

�

; �℄, and thus the �gure represents

a 
ut through an in�nite dimensional �eld spa
e; the maximum is in fa
t a saddle point.

2

Our dimensional argument does not a

ount for an additional fa
tor �

W

arising in perturbative 
al
ulations

due to IR dynami
s, but is nevertheless with � � 0:1 a good approximation for the sphaleron rate determined

in latti
e 
al
ulation.
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21. Baryogenesis

Comparing the rate per parti
le, � � ��

4

W

T , with the Hubble rate, wee see that the B + L

violating sphaleron transition are (with � � 0:1) up to T

sp

� 10

12

GeV in equilibrium. As the

universe 
ools down, sphaleron pro
esses go out of equilibrium around T � 100GeV, when

the rate be
omes Boltzmann suppressed.

Conne
ting B and B-L In thermal equilibrium, a linear 
ombination of B + aL has to

vanish. The exa
t value of a 
an be determined using that the universe is neutral, i.e. that

the 
onserved 
harges should be zero. Before the ele
troweak phase transition, all the three

gauge for
es are of long-range. The 
orresponding 
harges have to be therefore zero (or better

negligibly small), in order not to outweigh the gravitational for
es. The only other 
onserved


harge is B�L. It is suÆ
ient to 
onsider the hyper
harge Y and B�L. Setting � � �

B�L

,

a parti
le of type i has the 
hemi
al potential

�

i

= �(B

i

� L

i

) + �

Y

Y

i

=2 = ��

�

i

: (21.10)

Using the quantum number assignments of table ??, it follows e.g.

�

h

+ = �

h

0
=

1

2

�

Y

and �

u

L

= �

d

L

=

�

3

+

�

Y

6

(21.11)

with analogous relations for the other members of the �rst fermion generation. Sin
e the

asymmetry is small, �

i

� T , we 
an use Eq. (??) obtaining

�n

i

� n

i

� n

�

i

= Æ

X

i

g

i

�

i

q

i

T

2

3

(21.12)

with Æ = 2 for bosons and Æ = 1 for fermions. The 
ondition that the hyper
harge of the

plasma vanishes be
omes

X

i

�n

i

Y

i

= n

g

�

5

3

�

Y

+

4

3

�

�

+

1

2

n

h

�

Y

= 0 ; (21.13)

where we summed over n

g

fermion generations and n

h

Higgs doublets. Now we 
an solve for

�, eliminate then this variable in the relations for �n

i

, arriving at

n

B

=

1

3

(�n

u

L

+�n

u

R

+�n

d

L

+�n

d

R

) = ��

Y

�

1

2

n

g

+

1

4

n

h

�

T

3

3

; (21.14)

n

L

= �n

�

L

+�n

e

L

+�n

e

R

= �

Y

�

7

8

n

g

+

9

16

n

h

�

T

3

3

: (21.15)

Subtra
tion gives an expression for n

B�L

. Eliminating T

3

with the help of (21.14), we �nd

�nally

n

B

=

24 + 4n

h

66 + 13n

h

n

B�L

= an

B�L

(21.16)

with a = 28=79 in the SM. Be
ause the B + L violating sphaleron transitions are in thermal

equilibrium above T � 100GeV, we have to modify therefore the �rst Sakharov 
ondition:

Any asymmetry proportional to B+L will relax to zero, while the part proportional to B�L

will lead a �nal baryon asymmetry. In parti
ular, a non-zero baryon number arises too, if we

generate at T � 100GeV an asymmetry only in the lepton number.
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21.2. Baryogenesis in out-of equilibrium de
ays

Toy model Let us 
onsider a simple model, where we 
ouple a heavy s
alar X via Yukawa

intera
tions to four SM fermions f

i

,

L

X

= g

12

X

X

�

f

2

f

1

+ g

34

X

X

�

f

4

f

3

+ h:
: (21.17)

To be 
on
rete, we 
hoose the s
alar as a heavy leptoquark X with ele
tri
 
harge q(X) =

�4=3 and the two de
ay modes as

X ! �u�u; r (21.18)

X ! e

�

d; 1� r ; (21.19)

where r is the 
orresponding bran
hing ratio. The baryon number of the �rst de
ay mode

is B = �2=3, while the one of the se
ond mode is B = 1=3. Therefore we 
an not assign

a baryon number to X and thus baryon number is violated. Next we require that in these

de
ays C is violated. Then the 
harge 
onjugated de
ay modes have di�erent bran
hing ratios

�r 6= r,

�

X ! uu; �r (21.20)

�

X ! e

+

�

d; 1� �r : (21.21)

The resulting 
hange �B of the baryon number B per de
ay of a X;

�

X pair is thus

�B = �

2

3

r +

1

3

(1� r) +

2

3

�r �

1

3

(1� �r) = �r � r ; (21.22)

i.e. proportional to the amount of C violation. If we 
onsider these pro
esses at tree-level,

then the de
ay widths are �(X !

�

f

2

f

1

) = jg

12

X

j

2

I

X

and �(

�

X !

�

f

2

f

1

) = jg

12�

X

j

2

I

�

X

where

I

X

= I

�

X

is a real kinemati
al fa
tor determined by the masses, I = I(m

X

;m

i

;m

j

). Thus

at tree-level, CP violating e�e
ts are absent, r = �r, the se
ond Sakharov 
ondition is not

satis�ed, and thus no net baryon number is generated.

This example shows that for su

essful baryogenesis two additional requirements have to

be satis�ed: First, the kinemati
al terms I should be 
omplex. The required imaginary part


an be generated in a loop graph, if one of the virtual parti
les 
an be
ome on-shell. This


an happen, if the mass of the de
aying parti
le is to be larger than the sum of the fermion

masses in the loop. Se
ond, at least two heavy parti
les have to interfere, su
h that the de
ay

widths 
ontain the 
omplex 
ombination g

X

g

�

Y

instead of the real jg

X

j

2

. Adding therefore

L

Y

= g

12

Y

Y

�

f

2

f

1

+ g

34

Y

Y

�

f

4

f

3

+ h:
:

to the Lagrangian produ
es at the one-loop a potentially baryon number violating term,

�B / Im(g

12�

Y

g

12

X

g

34�

Y

g

34

X

)Im(I

XY

) : (21.23)

21.2. Baryogenesis in out-of equilibrium de
ays

Sakharov's third 
ondition for baryogenesis, a departure from thermal equilibrium, 
an be

satis�ed during phase transitions or when a parti
le spe
ies is out of 
hemi
al equilibrium.

In this se
tion, we examine the 
on
eptionally simpler se
ond possibility, 
onsidering out-of

equilibrium de
ays of unstable heavy parti
le X whi
h violate baryon number.
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21. Baryogenesis

Boltzmann equation for de
ays As �rst step, we simplify the Boltzmann equation for de
ays

X ! bb and its inverse rea
tion. Here, the unstable heavy X and Y parti
les may be out of


hemi
al equilibrium, while the light de
ay produ
ts b are in equilibrium. In a GUT s
enario

for baryogenesis, we might identify the X parti
les with the lepto quark-like gauge bosons

with ele
tri
 
harge q = 4=3. Finally, we assume M

Y

�M

X

su
h that the heavier Y parti
le


ontributes only as virtual state in the loop 
orre
tion. Then the de
ays X ! bb 
orresponds

to the annihilation term � and the inverse de
ays bb ! X to the produ
tion term  in the

Boltzmann equation. Using detailed balan
e to relate de
ays and inverse de
ays, we �nd

dn

X

dt

+ 3Hn

X

= ��

D

(n

X

� n

X;eq

) : (21.24)

Let us assume that the relevant de
ays of the X parti
le are to two bb parti
les and to

two

�

b

�

b antiparti
les, with B = +1=2 and B = �1=2, respe
tively. We denote the squared

Feynman amplitudes as

jA(X ! bb)j

2

= jA(

�

b

�

b! X)j

2

=

1

2

(1 + ")jA

0

j

2

; (21.25)

jA(X !

�

b

�

b)j

2

= jA(bb! X)j

2

=

1

2

(1� ")jA

0

j

2

: (21.26)

Then the asymmetry per de
ay of one X parti
le is given by

"

X

=

X

f

B

f

�(X ! f)� �(

�

X !

�

f)

�

tot

=

1

2

(1 + ")jA

0

j

2

�

1

2

(1� ")jA

0

j

2

1

2

(1 + ")jA

0

j

2

+

1

2

(1� ")jA

0

j

2

� " : (21.27)

We derive in the same way the Boltzmann equations for the number density of the b and

�

b

parti
les. However, we have to in
lude additionally to the de
ays 2! 2 s
attering pro
esses

that may wash-out the 
reated baryon asymmetry

3

. Subtra
ting the two Boltzmann equations

and dividing by two, we obtain as equation for the baryon number density n

B

= n

b

� n

�

b

,

dn

B

dt

+ 3Hn

B

= "�

D

(n

X

� n

X;eq

)� �

D

n

B

n

X;eq

n




� 2n

B

n

n

h�vi : (21.28)

The only term whi
h 
an be positive and 
an thus drive the baryon asymmetry, "�

D

(n

X

�

n

X;eq

), shows 
learly the three Sakharov 
onditions: It is zero in 
ase of thermal equilibrium,

n

X

= n

X;eq

, or if C, CP, or B are not violated, i.e. if " = 0. The se
ond term a

ounts for the

inverse de
ays of the X boson, where we used detailed balan
e to relate de
ays and inverse

de
ays. Finally, the third part in
ludes 2! 2 baryon number violating s
attering pro
esses.

Here, a subtle point arises: The imaginary part of this pro
esses 
orresponds to the produ
t

of an inverse de
ay and a de
ay, whi
h we have already taken into a

ount. Thus we should

in
lude only the real, o�-shell part of the s
attering pro
ess.

Next we 
hange to dimensionless variables, introdu
ing x = m

X

=T and Y

i

= n

i

=s. We

de�ne as measure for the departure from equilibrium

K �

�

D

(x)

2H(x)

�

�

�

�

x=1

=

�M

Pl

3:3g

1=2

�

m

X

: (21.29)

3

The existen
e of su
h pro
esses is implied by unitarity, 
f. for an example Fig. 21.2
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Inserting all this, the new Boltzmann equations 
an be written as

dY

X

dx

= �Kx


D

�

Y

X

� Y

eq

X

�

(21.30a)

dY

B

dx

= "Kx


D

�

Y

X

� Y

eq

X

�

�Kx


B

Y

B

(21.30b)

with 


D

= �

D

(x)=�

D

(1) and 


B

= g

�

Y

eq

X




D

+ 2n




h�vi=�

D

(1). The baryon asymmetry Y

B

is

driven by the departure from equilibrium, � = Y

X

� Y

eq

X

and damped by inverse de
ays and

2! 2 s
atterings. Changing to � as variable, we 
an rewrite Eq. (21.30) as

d�

dx

= �

dY

eq

X

dx

�Kx


D

� ; (21.31a)

dY

B

dx

= "Kx


D

��Kx


B

Y

B

: (21.31b)

Integrating these �rst-order equations results in

�(x) = �(x

0

) exp

�

�

Z

x

x

0

dz zK


D

(z)

�

�

Z

x

x

0

dzX

0

eq

(z) exp

�

Z

x

z
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0

z

0

K


D

(z

0

)

�

(21.32)

and

Y

B

(x) = Y

B

(x

0

) exp

�

�

Z

x

x

0

dz zK


B

(z)

�

+ "K

Z

x

x

0

dz


D

(z)�(z) exp

�

�

Z

x

z

dz

0

z

0

K


B

(z

0

)

�

:

(21.33)

The most interesting limiting 
ase isK � 1, when the out-of-equilibrium 
ondition is satis�ed.

Then the exponentials are of order one, and the abundan
es be
ome with 


D

(x) ' 1 for x� 1

Y

X

(x) ' Y

X

(0) exp

�

�Kx

2

=2

�

; (21.34a)

Y

B

(x) = "[X

X

(0) �X(z)℄ ' "X(0) : (21.34b)

Thus the X parti
les de
ay around x � K

�1=2

, resulting in a baryon asymmetry "=g

�

.

GUT baryogenesis Sin
e GUT theories unify quarks and lepton, they 
ontain also gauge

bosons X

�

and Y

�

similar to the lepto-quark dis
ussed in our toy model. In the simplest

GUT theory, SU(5), B � L is 
onserved and thus any non-zero B will be washed out by

sphaleron pro
esses. In GUT theories based on larger groups as e.g. SO(10), B�L is broken

and baryogenesis based on out-of equilibrium de
ays is in prin
iple possible. However, the

ne
essary temperatures, T

>

�

M

GUT

� 10

16

GeV, are larger than the maximal temperature

the universe is reheated after in
ation. A possible solution to this problem is sket
hed in

se
tion 23.3.

Leptogenesis This is an attra
tive model for baryogenesis whi
h 
onne
ts the smallness of

neutrino masses with the 
reation of the baryon asymmetry. In a �rst step, L violating de
ays

of heavy right-handed neutrinos generate L 6= 0. Latter, sphaleron pro
esses that 
onserve

only B � L 
onvert the lepton asymmetry into a baryon asymmetry.
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In the seesaw model, we extend the SM by three right-
hiral neutrinos N

R�

with � =

fe; �; �g. Their intera
tions are des
ribed by

L =M

�

�

N




R�

N

R�

+ (y

��

�

l

L�

�N

R�

+ h:
:) : (21.35)

Sin
e we in
lude Majorana masses, lepton number is violated in the de
ays of the right-
hiral

neutrinos,

N

R�

! l

L�

+

�

� and N

R�

! l




L�

+� : (21.36)

If there is enough CP violation and the out-of-equilibrium 
ondition is satis�ed, these de
ays


an result in a L asymmetry. We 
he
k �rst the latter 
ondition, 
omparing the de
ay width

� � jy

�1

j

2

M

1

=(16�) of the lightest right-
hiral neutrino N

R1

with mass M

1

to the Hubble

rate H(T ) at T = M

1

. This results in the bound M

1

>

�

10

14

GeV for a Yukawa 
oupling of

O(y) = 0:1. Numeri
al 
al
ulations show that the de
oupling 
an happen later, what relaxes

the bound to M

1

>

�

10

12

GeV.

As sour
es for CP violation, we have to 
onsider the interferen
e terms of the tree-level

de
ays (21.36) with one loop 
orre
tions. We have to require N

j

6= N

1

as virtual parti
le,

while the presen
e of the light parti
les l and � ensures that an imaginary part is 
reated.

Additionally to the vertex 
orre
tion, these requirements are also satis�ed by the self-energy

insertion, 
f. the top of Fig. 21.2. Cutting the loops as indi
ated leads automati
ally to

s
attering pro
esses whi
h violate lepton number by two units, �L = 2. These s
attering

pro
esses will wash out the generated L asymmetry, if they are in equilibrium. They are

des
ribed by the e�e
tive intera
tion

L =

1

M

ll�� ; (21.37)

whi
h generates after ele
troweak symmetry breaking Majorana masses m

�

= v

2

=M for the

three light neutrinos via the seesaw me
hanism. For dimensional reasons, the rate �(�L = 2)

of these pro
esses is proportional to

�(�L = 2) �

T

3

M

2

�

T

3

P

i

m

2

i

v

4

: (21.38)

These pro
esses are not e�e
tive, if their rate is smaller than the Hubble rate in the range

T

ew

< T < M

1

. This implies a limit on the masses of the light neutrinos,

X

i=e;�;�

m

2

i

<

�

(0:2 eV )

2

; (21.39)

whi
h is 
omparable to the upper limit from neutrinoless double beta de
ay and from 
os-

mology.

21.3. Baryogenesis in phase transitions

The most e
onomi
al model for baryogenesis is the attempt to use only the SM: It 
ontains C,

CP as well as B violation and hen
e the �rst two of the three Sakharov 
onditions are satis�ed.

Although ele
troweak intera
tions rates are fast 
ompared to the Hubble rate at T � m

W

and we 
an thus not use out-of-equilibrium de
ays, a deviation from thermal equilibrium

may o

ur during the ele
troweak phase transition. In pra
tise, however, the amount of CP
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Figure 21.2.: Top: Feynman diagrams for the tree-level de
ay and the one loop 
orre
tions

whi
h sour
e CP violation. Bottom: S
attering pro
esses with �L = 2; from

[Ra
16℄

violation in the CKM matrix is too small and the phase transition is only a smooth 
ross-over.

It is still tempting to ask, if ele
troweak baryogenesis is possible for a slightly modi�ed SM,

adding e.g. a se
ond Higgs doublet, sin
e su
h models are testable at the LHC.

Re
all that in a �rst-order transition, the two minima at the 
riti
al temperature T




are

separated by a potential barrier. While the universe 
ools below T




, it will be trapped for

some time in the false minimum. As a result of tunnelling through the potential barrier,

nu
leation of bubbles 
ontaining the true va
uum starts. Initially, their surfa
e tension is

too large and the bubbles will 
ollapse. When the temperature lowers further, the volume

energy gain overweights the surfa
e tension and the bubbles start to grow. As the bubbles

expand, the expe
tation value h�i of the Higgs �eld 
hanges from h�i = 0 to h�i = v(T ) when

the bubble passes the 
onsidered point. It is this 
hange of the order parameter v(T ) whi
h

provides the ne
essary departure from equilibrium.

Baryogenesis in a phase transitions is a 
ompli
ated dynami
al pro
ess and we give only

a sket
h of the basi
 physi
s involved. Let us estimate �rst the relative size of the relevant

s
ales:

� The sphaleron rate 
hanges from �

sp

� ��

4

W

T � 10

�6

T outside the bubble to �

sp

�

exp(�E

sp

=T ) � exp(�m

W

(T )=�

W

T ) in the broken phase 
ontained in the expanding

bubble. Requiring that the generated baryon number is not washed out in the broken

phase, requires m

W

(T )=T = gv(T )=2T � 1, or in other words a large jump in the order

parameter v(T ) of the phase transition.

� The time s
ale for kineti
 equilibration is given by strong or ele
troweak Coulomb

s
atterings with rate 
lose to the plasma temperature, �

th

� 0:1T .

� The time s
ale for the 
hange of the Higgs vev when the bubble passes depends on the

bubble speed v

b

and the width of the bubble wall Æ. Typi
ally, one �nds �

v

�

_

�=� �

v

b

=Æ � (0:01 � 0:1)T .

Hen
e the rate of baryon number violating pro
esses is always out of equilibrium near the

wall, �

sp

� �

v

. Depending on the relative size of �

th

and �

v

one distinguishes two regimes:
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21. Baryogenesis

� The adiabati
 thi
k wall regime, �

th

� �

v

, where the plasma is in quasi-stati
 equilib-

rium with time-dependent 
hemi
al potentials.

� The non-adiabati
 thin wall regime, �

th

� �

v

. Here, the individual CP violating

transmission and re
e
tion of parti
les at the bubble wall has to be 
al
ulated. These

pro
esses di�er for L and R 
hiral fermions, be
ause CP is violated: Therefore there

is an ex
ess of f

l

+

�

f

R


ompared to f

R

+

�

f

L

in front of the bubble wall. Sphaleron

intera
tion are e�e
tive only in the unbroken phase outside the bubble. Other pro
esses

ex
hange L to R. Sin
e sphalerons rea
t only with f

L

, the rate for

e

�

L

�

�

L

�

�

L

! u

L

u

L

d

L

+ 


L




L

s

L

+ t

L

t

L

b

L

;

is slower than for

e

+

R

�

+

R

�

+

R

! �u

R

�u

R

�

d

R

+ �


R

�


R

�s

R

+

�

t

R

�

t

R

�

b

R

;

be
ause there are more

�

f

R

than f

L

. The 
hange of the baryon number in the two

rea
tions is opposite, and thus a di�eren
e in their rates results in the 
reation of a

baryon asymmetry. Sin
e the wall is moving, part of the 
reated baryons will end up

inside the broken phase where wash-out pro
esses are not a
tive. It is this part whi
h

survives and 
reates the �nal baryon asymmetry.

Adiabati
 thi
k wall regime Let us 
onsider now in a bit more detail the opposite regime.

We use as a toy model the Yukawa intera
tions between one fermion doublet Q

L

, a singlet

q

R

and two Higgs doublets. Their vev's are spa
e-time dependent and 
ontain one physi
al

phase whi
h we 
an 
hoose as �

1

= v

1

e

iÆ

and �

2

= v

2

e

�iÆ

. The Yukawa intera
tions 
ontain

terms of the type

L

Y

= �y

f

v

1

e

iÆ

�

d

L

d

R

+ h.
. (21.40)

Both v

1

and Æ vary a
ross the bubble wall. Sin
e the bubble is expanding, v

1

and Æ and thus

also the Lagrangian are time dependent. We 
an eliminate the time-dependen
e of L

Y


aused

by Æ(t) performing the time dependent rotation d

R

! e

�iÆ(t)

d

R

. This indu
es an additional

term in the kineti
 energy of right-
hiral quarks,

i

�

d

R

�=d

R

! i

�

d

R

�=d

R

+

_

Æ

�

d

R




0

d

R

: (21.41)

As a result, the Hamiltonian 
hanges as

H ! H �

_

Æ

Z

d

3

x

�

d

R




0

d

R

= H �

_

ÆN

R

: (21.42)

Ele
troweak pro
esses whi
h inter
hange left- and right-
hiral quarks are fast 
ompared to

_

Æ.

In 
ontrast, the sphaleron rate is slower than

_

Æ and we negle
t in a �rst step this rate. In

this approximation, the baryon number B = N

R

+N

L

is zero and we have to add to (21.42)

a 
hemi
al potential,

H ! H �

_

#N

R

� �

B

(N

R

+N

L

) : (21.43)

The resulting e�e
tive 
hemi
al potentials for right- and left-
hiral quarks di�er, and using

again (??), we obtain

�n

B

= n

B;R

+ n

B;L

=

h

(�

B

+

_

Æ) + 2�

B

i

T

2

6

; (21.44)
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where the fa
tor 2 a

ounts for the two 
omponents of the fermion doublet. Setting �n

B

= 0,

we �nd

�

B

= �

1

3

_

Æ : (21.45)

Next we in
lude the e�e
t of the non-zero sphaleron rate. Using �B = 1 and �F = �

B

�B =

�

B

as 
hange of the free energy F and the baryon number B per sphaleron pro
ess, we �nd

applying detailed balan
e

dn

B

dt

= �

�F �B

T

�

sp

= �

�

B

T

�

sp

=

1

3

_

Æ

T

�

sp

: (21.46)

In the last step, we used also that the 
hange of �

B

is mainly driven by

_

Æ, while �

sp

is slow.

Integrating this relation, we obtain the baryon number density generated by a passing bubble

wall,

n

B

=

1

3T

Z

dt

_

Æ�

sp

: (21.47)

For an order of magnitude estimate, we 
an use that the sphaleron rate drops from �

sp

�

��

4

W

T � 10

�6

T to zero. Then we �nd for the ratio of baryon and entropy density

n

B

s

�

45��

4

W

T�#

6�

2

g

�

� 10

�8

�# : (21.48)

This simple estimate shows that su

essful ele
troweak baryogenesis is possible, if the SM is

extended su
h that there is suÆ
ient CP violation and the phase transition is strong enough.

While the �rst 
ondition is relatively easy too satisfy, the se
ond one requires additional

parti
les whi
h generi
ally should be dis
overed at the LHC.

Summary

The dynami
al generation of a baryon asymmetry is only possible, if the Sakharov 
onditions

(violation of B, of C and CP, and departure from thermal equilibrium) are satis�ed. The SM


ontains neither a suÆ
iently strong sour
e of CP violation, nor leads to a departure from

thermal equilibrium in the early Universe. Thus baryogenesis requires ne
essarily physi
s

beyond the SM. Ele
troweak baryogenesis has the virtue of being testable at a

elerators,

while leptogenesis is supported by the observation that the light neutrino masses required to

avoid wash-out of the baryon asymmetry fall in the experimentally allowed range.

Further reading

A more detailed dis
ussion of baryogenesis whi
h in
ludes also the A�e
k-Dine me
hanism


an be found in [GR11b℄. The 
onne
tion between leptogensis and neutrino masses is reviewed

in [BDBP05℄. Baryogenesis is an appli
ation where loop 
orre
tions involving thermal �elds

are essential. This requires to go beyond the Boltzmann equation, sin
e its derivation is based

on the distribution fun
tion in 
lassi
al phase spa
e; for some approa
hes in this dire
tion

see [ABDM11℄.
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22. Quantum �elds in 
urved spa
e-time

Our treatment of quantum �eld theory has been restri
ted up to now to inertial observers

and dete
tors in Minkowski spa
e. This 
ombination is very pe
uliar for two reasons: First,

all Minkowski spa
e is 
overed by a time-like Killing ve
tor �eld. Se
ond, no event horizons

exist for inertial observers in this spa
e-time. The existen
e of a unique time-like Killing

ve
tor �eld �

t

whi
h has as eigenfun
tions the modes e

�i!t

implies that all inertial observers


an agree how to split positive and negative frequen
y modes. This splitting sele
ts in turn

the standard Minkowski va
uum j0i

M

. As a result, the va
uum states de�ned by di�erent

inertial observers agree, and no inertial dete
tor will register parti
les in the va
uum state

j0i

M

. In this 
hapter we will 
onsider more general situations. A 
ase of spe
ial interest

is the expanding universe des
ribed by the FLRW metri
, where no time-like Killing ve
tor

�eld exists. Intuitively, we expe
t that a time-dependent gravitational �eld, in analogy to an

ele
tri
 �eld, 
an 
reate parti
les. Our analysis 
on�rms this expe
tation, but also tea
hes

us that the 
on
ept of a \parti
le" be
omes dubious in a non-stationary metri
. Even more

astonishingly, we will �nd that parti
le 
reation 
an o

ur also in the 
ase of a stati
 spa
e-

time, if an event horizon exists. Su
h a horizon obstru
ts the 
onstru
tion of an unique

time-like Killing ve
tor �eld and 
orresponds to a surfa
e of in�nite redshift. As a result, a

thermal spe
trum of parti
les is 
reated 
lose to the horizon.

22.1. Conformal invarian
e and s
alar �elds

Conformally 
at spa
e-times The problem of quantising �eld theories in 
urved spa
e-

times simpli�es 
onsiderably, if we apply the following two restri
tions: First, we 
onsider

only 
onformally 
at spa
e-times, i.e. those spa
e-times whi
h are 
onne
ted by a 
onformal

transformation to Minkowski spa
e,

g

��

(x) = 


2

(x)�

��

(x) = e

2!(x)

�

��

(x) : (22.1)

Note that 
onformal transformations g

��

(x) ! ~g

��

(x) = 


2

(x)g

��

(x) of the metri
 are not

equivalent to 
onformal transformations of the 
oordinates, x ! ~x = e

!(x)

x, whi
h we 
on-

sidered in 
hapter 17.1. In the latter 
ase, the argument of the metri
 tensor in the LHS

and the RHS in (22.1) would di�er, see also problem 23.??. Re
all also that a 
oordinate

transformation x ! ~x(x) only relabels the spa
e-time points, but does not a�e
t physi
s,

sin
e we require that any a
tion S is invariant under general 
oordinate transformations.

By 
ontrast, a 
onformal transformation of the metri
 shrinks and stret
hes the Riemannian

manifold fM; g

��

g into another manifold f

~

M; ~g

��

g.

Conformal transformations 
hange distan
es, but keep angles invariant. Thus the 
ausal

stru
ture of two 
onformally related spa
e-times is identi
al. In parti
ular, light-rays prop-

agate also in 
onformally 
at spa
e-times along straight lines at �45 degrees to the time

axis. Important examples for 
onformally 
at spa
e-times are the 
at FLRW metri
 and all

two-dimensional spa
e-times.
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e and s
alar �elds

Remark 22.1: Geometri
 quantities derived for the metri
 g

��

(x) are 
onne
ted to those of a


onformally transformed metri
 ~g

��

(x) = 


2

(x)g

��

(x) = e

2!(x)

g

��

(x) as

~

�

�

��

= �

�

��

+


�1

h

Æ

�

�

�

�


+ Æ

�

�

�

�


� g

��

g

��

�

�




i

; (22.2a)

~

R

��

= R

��

� g

��

�! � (d� 2)r

�

r

�

! + (d� 2)r

�

!r

�

! � (d� 2)g

��

r

�

!r

�

! ; (22.2b)

~

R = 


�2

[R � 2(d� 1)�! � (d� 1)(d� 2)r

�

!r

�

!℄ ; (22.2
)

as one 
an 
he
k by dire
t (but tedious) 
omputation.

Conformal invarian
e Another simpli�
ation o

urs if we 
onsider �eld theories whi
h are


onformally invariant in Minkowski spa
e. Re
all that su
h theories 
ontain no dimensions-

full parameter and satisfy T

�

�

= 0. In a 
urved spa
e-time, we 
all su
h a theory 
onformally

or Weyl invariant

1

. The a
tion

S[�; g

��

℄ =

Z

d

d

x

p

jgjL (�; �

�

�; g

��

) (22.3)

of su
h a theory is invariant under a 
onformal transformation of the metri
,

S[�; g

��

℄ = S[

~

�; ~g

��

℄ =

Z

d

d

x

p

~gL (

~

�; �

�

~

�; ~g

��

) ; (22.4)

if we res
ale the �eld a

ording to its 
anoni
al dimension, i.e. �(x)!

~

�(x) = 


(2�d)=2

(x)�(x)

for a boson. Therefore the equations of motion for the �eld

~

� using the metri
 ~g

��

are the

same as those for the �eld � using the metri
 g

��

. This allows us to relate the quantisation of

a Weyl invariant theory in a 
onformally 
at spa
e to the known problem of quantising the

�eld in Minkowski spa
e.

Conformal invarian
e of a s
alar �eld We have experien
ed that most 
al
ulations in

Minkowski spa
e for a s
alar �eld are 
onsiderably less involved than for �elds with non-

zero spin. This holds true also in 
urved spa
e-times, ex
ept for one aspe
t: While massless

Dira
 and Yang-Mills �elds are 
lassi
ally 
onformal invariant, this is not the 
ase for a s
alar

�eld minimally 
oupled to gravity: As dis
ussed in se
tion 17.1 the tra
e T

�

�

of the stress

tensor for a massless s
alar �eld is given by

T

�

�

= �

�

1�

d

2

�

��

2

(22.5)

and vanishes only in d = 2, when the �eld � is dimensionless.

However, we have the freedom to improve the a
tion or the the stress tensor by appropriate

terms whi
h do not a�e
t the equations of motion or the generators of the Poin
ar�e algebra,

respe
tively. We pursue the se
ond approa
h way in problem 21.??. Here we ask if we


an make the s
alar a
tion Weyl invariant, while retaining the usual equation of motions in

Minkowski spa
e.

The latter 
onstraint is taken into a

ount, if we modify only the 
oupling of the s
alar

�eld to gravity, i.e. if we abandon the substitution rule f�

�

; �

��

;d

4

xg ! fr

�

; g

��

;d

4

x

p

jgjg.

1

H. Weyl suggested �rst 1918 the 
ombined s
ale transformation ~g

��

(x) = e

2!(x)

g

��

(x) and

~

A

�

(x) =

e

!(x)

A

�

(x) in an attempt to unify the gravitational and ele
tromagneti
 �eld.
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urved spa
e-time

While this rule is implied by the strong equivalen
e prin
iple, there are two reasons to expe
t

deviations: First, we know already that even within Einstein gravity non-zero torsion 
an

exist. In this 
ase, it is not possible to eliminate lo
ally all e�e
ts of gravity by introdu
ing a

lo
al inertial system. Se
ond, we expe
t that quantum 
orre
tions will add all renormalisable


oupling terms between the s
alar and the gravitational �eld, even if we set them to zero

at tree-level. Thus we should ask ourselves whi
h additional renormalisable 
oupling terms

between the s
alar and the gravitational �eld exist. Sin
e [R℄ = m

2

and thus also [R

��

℄ =

[R

����

℄ = m

2

, the only dimensionless additional intera
tion term is a linear 
oupling of the


urvature s
alar R to �

2

. Su
h a 
oupling R�

2

=2 a
ts as a 
urvature dependent, additional

mass term for the s
alar �eld. Now we ask how the a
tion

2

S =

Z

d

d

x

p

jgj

�

1

2

g

��

�

�

��

�

��

1

2

(m

2

� �R)�

2

�

; (22.6)

where � parametrises the 
oupling to the 
urvature s
alar, transforms under a 
onformal

transformation of the metri
,

g

��

(x)! ~g

��

(x) = 


2

(x)g

��

(x) : (22.7)

From our dis
ussion of s
ale transformations in Minkowski spa
e, we know that a bosoni


�eld in d spa
e-time dimensions s
ales as

�(x)!

~

�(x) = 


(2�d)=2

(x)�(x) = 


D

(x)�(x) : (22.8)

This leads for d > 2 
learly to a non-trivial transformation of the kineti
 term whi
h has

to be 
ompensated by the non-trivial transformation of the s
alar 
urvature term. The

transformation (22.7) implies

g

��

! ~g

��

= 


�2

g

��

and

p

jgj !

p

~g = 


d

p

jgj : (22.9)

As a result, the a
tion S

0

obtained setting � = 0 
hanges as

S

0

!

~

S

0

=

1

2

Z

d

d

x

p

jgj 


d

h




�2

g

��

r

�

(


D

�)r

�

(


D

�)�m

2




2D

�

2

i

(22.10)

or

~

S

0

=

1

2

Z

d

d

x

p

jgj

h

g

��

r

�

�r

�

�+ 2


d�2+D

g

��

r

�

�(r

�




D

)� (22.11a)

+ 


d�2

�

2

g

��

(r

�




D

)(r

�




D

)�m

2




2D

�

2

i

=

1

2

Z

d

d

x

p

jgj

h

g

��

�

�

��

�

��D(�!)�

2

+D

2

(r!)

2

�

2

�m

2




2D

�

2

i

: (22.11b)

Taking into a

ount the transformation rule (22.2
) for the s
alar 
urvature R,

p

jgj R�

2

!

p

jgj [R� 2(d� 1)�! � (d� 1)(d � 2)r

�

!r

�

!℄�

2

; (22.12)

we �nd that the s
alar a
tion is invariant 
hoosing m = 0 and

� = �

d

�

d� 2

4(d� 1)

: (22.13)

A s
alar �eld with � = �

d

is 
alled 
onformally 
oupled to gravity, while the 
hoi
e � = 0 is


alled minimally 
oupled to gravity. Note that for d = 2, i.e. when � is dimensionless and

does not s
ale under 
onformal transformations, minimal and 
onformal 
oupling agree.

2

Sin
e g

��

and g

��

transform inversely, we have to distinguish between �

�

� and �

�

�. Convention is to use

only g

��

and to write all �elds and derivatives with lower indi
es.
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alar �elds

S
alar �eld equation in a FLRW ba
kground Next we derive the equation of motion

for a s
alar �eld with arbitrary � in an expanding universe des
ribed by the 
at FLRW

metri
. Choosing as 
oordinates ft;xg, we have g

��

= diag(1;�a

2

;�a

2

;�a

2

), g

��

=

diag(1;�a

�2

;�a

�2

;�a

�2

), and

p

jgj = a

3

. Varying the a
tion

S =

Z

d

4

x a

3

�

1

2

_

�

2

�

1

2a

2

(r�)

2

� V (�)

�

(22.14)

gives

ÆS =

Z

d

4

x a

3

�

_

�Æ

_

��

1

a

2

(r�) � Æ(r�)� V

;�

Æ�

�

(22.15a)

=

Z

d

4

x

�

�

d

dt

(a

3

_

�) + ar

2

�� a

3

V

;�

�

Æ� (22.15b)

=

Z

d

4

x a

3

�

�

�

�� 3H

_

�+

1

a

2

r

2

�� V

;�

�

Æ� ; (22.15
)

setting V

;�

� dV=d�. Thus the Klein-Gordon equation for a s
alar �eld with the potential

V (�) = (m

2

+ �R)�

2

=2 in a 
at FLRW ba
kground is

�

�+ 3H

_

��

1

a

2

r

2

�+ (m

2

+ �R)� = 0 : (22.16)

The term 3H

_

� a
ts in an expanding universe as a fri
tion term for the os
illating � �eld.

Moreover, the gradient of � is also suppressed for in
reasing a; this term 
an be therefore

often negle
ted.

Next we want to rewrite this equation as the one for an harmoni
 os
illator with a time-

dependent os
illation frequen
y. We introdu
e �rst the 
onformal time d� = dt=a.

Remark 22.2: For a power-law like behaviour of the s
ale fa
tor, a(t) / t

p

, the 
onformal time

� evolves as � =

R

dt t

�p

/ t

1�p

and thus a(�) / �

p

1�p

. In parti
ular, � s
ales as a(�) / � in the

radiation dominated (p = 1=2) and as a(�) / �

2

in the matter dominated epo
h (p = 2=3). For a de

Sitter phase, a(t) / e

Ht

, we obtain

� =

Z

dt e

�Ht

= �H

�1

e

�Ht

+ �

0

= �(aH)

�1

+ �

0

:

Setting �

0

= 0 results in a(�) = �1=(H�). In
ation is de�ned as the phase in the early universe with

an a

elerated expansion, �a > 0. Using the 
onvention �

0

= 0, in
ation ends at � = 0, followed by the

standard big bang evolution for � > 0.

Then we 
hange the derivatives of the �eld,

_

� =

d�

dt

=

d�

d�

d�

dt

=

1

a

�

0

; and

�

� =

1

a

d

d�

�

1

a

�

0

�

=

1

a

2

�

00

�

a

0

a

3

�

0

; (22.17)

and express also the Hubble parameter as fun
tion of �,

H =

_a

a

=

a

0

a

2

�

H

a

: (22.18)
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Inserting these expressions into Eq. (22.16) and multiplying with a

2

gives

�

00

+ 2H �

0

�r

2

�+ a

2

V;

�

= 0 : (22.19)

Performing then a Fourier transformation, �(�;x) =

P

k

�

k

(�)e

ikx

; we obtain

�

00

k

+ 2H�

0

k

+ [k

2

+ (m

2

+ �R)a

2

℄�

k

= 0 : (22.20)

Note that k is the 
omoving wave-number. Sin
e the proper distan
e varies as x / a, the

physi
al momentum is p = k=a.

Finally, we 
an eliminate the fri
tion term 2H�

0

k

by introdu
ing the auxiliary �eld �

k

(�) =

a(�)�

k

(�). Then we obtain a harmoni
 os
illator equation for �

k

,

�

00

k

+ !

2

k

�

k

= 0 ; (22.21)

with the time-dependent frequen
y

!

2

k

(�) = k

2

+ (m

2

+ �R)a

2

�

a

00

a

: (22.22)

For a massless, 
onformally 
oupled (� = 1=6) s
alar �eld, the frequen
y is independent of

the expansion of the universe, !

2

k

(�) = k

2

, 
f. problem 21.??.

Now we 
hoose the spe
ial 
ase of a de Sitter universe as approximation for the in
ationary

phase of the early universe. Moreover, we 
onsider a minimally 
oupled s
alar �eld with

negligible mass. Combining then a = �1=(H�) and a

00

= �2=(H�

3

), or

a

00

a

=

2

�

2

; (22.23)

the wave equation simpli�es to

�

00

k

+

�

k

2

�

2

�

2

�

�

k

= 0 : (22.24)

We examine �rst the short and the long-wavelength limit. In the �rst 
ase, k � j1=�j, the

�eld equation is 
onformally equivalent to the one in Minkowski spa
e, with solution

�

k

(�;x) =

1

p

2k

(A

k

e

�ikx

+B

k

e

ikx

) : (22.25)

Here we fa
tored out a normalisation fa
tor 1=

p

2k � 1=

p

2!

k

. With � = �1=(aH), we 
an

rewrite the short-wavelength 
ondition as jkj=a� H

�1

. Thus the 
omoving wavelength of the

parti
le is mu
h shorter than the 
omoving Hubble radius aH, or equivalently, its physi
al

wavelength is mu
h shorter than the Hubble radius. Therefore these solutions are 
alled

subhorizon modes.

In the opposite limit, we �nd a

00

�

k

= a�

00

k

whi
h has as growing solution �

k

/ a and thus

�

k

= 
onst: Thus modes with wavelengths larger than the horizon are \frozen in" and do

not os
illate. They are 
alled superhorizon modes. The 
omplete solution is given by Hankel

fun
tions H

3=2

(�),

�

k

(�;x) = A

k

e

�ikx

p

2k

�

1�

i

k�

�

+B

k

e

ikx

p

2k

�

1 +

i

k�

�

: (22.26)

354



22.2. Quantisation in 
urved spa
e-times

We 
ould now set out for the quantisation of the s
alar �eld �. If we ignore the time-

dependen
e and quantise the s
alar �eld with the time-dependent mass term (22.22) in the

standard way, we will obtain di�erent va
ua and di�erent Fo
k spa
es at di�erent times t. As

a result, a state whi
h was empty at time t will 
ontain in general parti
les at time t

0

. Thus

the time-dependent gravitational �eld 
an ex
ite modes �

k

, supplying energy and leading to

parti
le produ
tion. We will postpone the quantisation of a s
alar �eld in a FLRW metri
 to

the next 
hapter, where this equation will play a prominent role. Before that we will introdu
e

�rst some formalism needed and dis
uss two 
on
eptionally simpler examples.

22.2. Quantisation in 
urved spa
e-times

Similarly as in Minkowski spa
e, we 
an use both 
anoni
al quantisation or the path integral

approa
h to quantise 
lassi
al �eld theories in 
urved spa
e-times. The latter approa
h is

parti
ularly useful, if we are interested in quantum 
orre
tions to the stress tensor: Its expe
-

tation value for the quantum �eld � in the ba
kground of a 
lassi
al gravitational �eld g

��

is

hT

��

i =

R

D� T

��

e

iS[�;g

��

℄

R

D� e

iS[�;g

��

℄

: (22.27)

Note that now the gravitational �eld g

��

plays the usual role of a 
lassi
al sour
e. Inserting

the de�nition (7.50) of the dynami
al stress tensor and re
alling that the denominator in

(22.27) is the generating fun
tional Z = exp(iW ) leads to

hT

��

i =

1

Z[g

��

℄

2

i

p

jgj

Æ

Æg

��

Z[g

��

℄ =

2

p

jgj

ÆW [g

��

℄

Æg

��

: (22.28)

Having 
al
ulated hT

��

i, one 
ould aim at solving the Einstein equations in the semi-
lassi
al

limit, repla
ing T

��

by hT

��

i. In this way, one takes into a

ount two e�e
ts: First, the

gravitational ba
kground 
an produ
e parti
les. Se
ond, it 
hanges the zero-point energies of

the � va
uum, analogous to the Casimir e�e
t or va
uum polarisation.

One of the main advantages of this approa
h is that it is based on a lo
al quantity, hT

��

i =

hT

��

(x)i. Thus if we 
an show in a spe
i�
 frame that e.g. hT

��

(x)i = 0, then any observer

will agree on that. By 
ontrast, we will see that the expe
tation value h

~

0jN j

~

0i for the number

of parti
les measured in a spe
i�
 va
uum j

~

0i depends on the traje
tory of the 
onsidered

dete
tor. Therefore the 
on
ept of parti
le number and produ
tion is not a lo
al one. This

implies in parti
ular that we 
an address the question where or when a parti
le is 
reated

only in an approximate way. An essential ingredient in both approa
hes is the va
uum state

to be used in the 
al
ulation of expe
tation values. We will therefore 
on
entrate �rst on this

question, and then apply the simpler 
anoni
al quantisation formalism to spe
i�
 examples.

22.2.1. Bogolyubov transformations

Ambiguity of the va
uum A basi
 ingredient of the 
anoni
al quantisation pro
edure is

to split the �elds into positive frequen
ies propagating forward in time, and negative fre-

quen
ies propagating ba
kwards. Sin
e we asso
iate annihilation operators with negative

frequen
y modes and 
reation operators with positive frequen
y modes, this splitting de�nes

the va
uum. As Minkowski spa
e 
ontains a time-like Killing ve
tor �eld �

t

whi
h has as

eigenfun
tions the modes e

�i!t

with positive eigenvalues !, the va
uum is invariant under
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Lorentz transformation: All observers in inertial frames agree on the 
hoi
e of the va
uum

and thus also on one and many-parti
le states.

In 
urved spa
e-times no inertial system 
an be globally extended to 
over the whole man-

ifold. No unique de�nition of the va
uum is possible and thus the notion of parti
le number

be
omes observer dependent whi
h in turn implies the 
reation of parti
les. Using the 
or-

responden
e g

��

(x) ! J(t), we 
an illustrate this behaviour with the simple example of a

harmoni
 os
illator whi
h is driven during a �nite time interval 0 < t < T by an external

for
e J(t).

Example 22.1: Ex
itation of a driven harmoni
 os
illator.

In the notation of 
hapter 2.4, the Hamiltonian of a driven harmoni
 os
illator is given by

H(�; �) =

1

2

�

2

+

1

2

!

2

�

2

� J� : (22.29)

We assume that the 
lassi
al external sour
e J(t) a
ts only in the �nite time interval 0 < t < T .

We keep the de�nition (2.58) of the annihilation and 
reation operators, from whi
h we �nd now as

equation of motion

_a = �i!a+

i

2!

J(t) : (22.30)

Spe
ifying the initial value before we apply the external for
e as a(t = 0) � a

in

results in

a(t) = a

in

e

�i!t

+

i

2!

Z

t

0

dt

0

J(t

0

)e

�i!t

0

: (22.31)

For t > T , we set a(t) � e

�i!t

a

out

� e

�i!t

(a

in

+ J

0

). Our aim is to express the in-states in term of

the out-states. We set j0

in

i =

P

1

n=0




n

jn

out

i, where the 
oeÆ
ients 


n

have to be determined. A
ting

with a

out

on the in-va
uum gives

a

out

j0

in

i =

1

X

n=0




n

a

out

jn

out

i =

1

X

n=0

p

n


n

j(n� 1)

out

i =

1

X

n=0

p

n+ 1


n+1

jn

out

i ; (22.32)

where we relabelled n ! n + 1 in the last step. On the other hand, applying a

in

+ J

0

= a

out

on the

in-va
uum results in

(a

in

+

~

J) j0

in

i = J

0

j0

in

i =

1

X

n=0

J

0




n

jn

out

i : (22.33)

Comparing the two expressions, we obtain 


n+1

= J

0




n

=

p

n+ 1 and thus 


n

= J

n

0




0

=

p

n!. Requiring

that the va
uum is normalised, we 
an determine 


0

as j


0

j = exp(�

1

2

jJ

0

j

2

). Thus

j0

in

i = exp(�

1

2

jJ

0

j

2

+ J

0

a

y

out

) j0

out

i ; (22.34)

up to an undetermined phase: The driving for
e J(t) 
onverted the in-va
uum into a 
oherent state

whi
h 
ontains all n-parti
le states with the amplitude 


n

.

Our 
orresponding task in �eld theory is to �nd a mapping between �eld operators de�ned

with respe
t to di�erent va
ua. The relation between the two sets of �eld operators is a spe
ial


ase of a Bogolyubov transformation. We will �rst dis
uss this transformation in general.
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Bogolyubov transformation We de�ned a s
alar produ
t for solutions of the Klein-Gordon

equation in Eq. (9.25). To simplify the notation, we normalise the solution in a box of �nite

volume, obtaining a dis
rete spe
trum. Then the s
alar produ
t for plane-waves be
omes

('

i

; '

j

) = Æ

ij

; and ('

�

i

; '

�

j

) = �Æ

ij

(22.35)

and zero otherwise,

('

i

; '

�

j

) = ('

�

i

; '

j

) = 0 : (22.36)

If we quantise the s
alar �eld (22.21) with its time-dependent frequen
y at di�erent times t

and

~

t, we will obtain di�erent va
ua and di�erent Fo
k spa
es,

a

i

j0i = 0 8i ; ~a

i

�

�

~

0

�

= 0 8i :

We now sear
h for the 
onne
tion between the two sets of annihilation and 
reation oper-

ators. We 
an express the �eld at any time through the two sets of 
reation and annihilation

operators,

�(x) =

X

i

h

a

i

'

i

(x) + a

y

i

'

�

i

(x)

i

=

X

j

h

~a

j

~'

j

(x) + ~a

y

j

~'

�

j

(x)

i

: (22.37)

Both sets of solutions, f'

j

(x); '

�

j

(x)g and f ~'

j

(x); ~'

�

j

(x)g, form a 
omplete basis. Thus we


an de
ompose any basis ve
tor ~'

j

(x) as

~'

j

(x) =

X

i

[�

ji

'

i

(x) + �

ji

'

�

i

(x)℄ : (22.38)

The unknown matri
es �

ij

and �

ij

are 
alled Bogolyubov 
oeÆ
ients. Using the orthogonality

relations (22.35) and (22.36), we 
an determine the Bogolyubov 
oeÆ
ients as

('

k

; ~'

j

) =

X

i

h

�

ij

('

k

; '

i

) + �

y

ij

('

k

; '

�

i

)

i

= �

jk

(22.39)

and �

jk

= �('

�

k

; ~'

j

). In the reverse dire
tion, we �nd in the same way

'

i

(x) =

X

j

h

�

�

ji

~'

j

(x)� �

y

ji

~'

�

j

(x)

i

: (22.40)

Rewriting Eq. (22.38) and its 
omplex 
onjugated expression in matrix form gives

�

~'

~'

�

�

=

�

� �

�

�

�

�

��

'

'

�

�

= U

�

'

'

�

�

: (22.41)

Sin
e both bases are orthonormal, the matrix U is unitary,

�

ij

�

�

jk

� �

ij

�

�

jk

= Æ

ik

: (22.42)

The transformation properties of the annihilation and 
reation operator follow as

�

a; a

y

�

=

�

~a; ~a

y

�

U : (22.43)
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If �

ij

6= 0, time-evolution mixes positive and negative frequen
y modes. As a result, the

va
uum

�

�

~

0

�

evaluated with the number operator N

i

= a

y

i

a

i

will 
ontain parti
les,

h

~

0jN

i

j

~

0i =

X

j

j�

ji

j

2

: (22.44)

The 
orresponding energy density � in the 
ontinuum limit is

�

k

=

Z

d

3

k

0

(2�)

3

!

k

0

j�

k;k

0

j

2

: (22.45)

The Bogolyubov 
oeÆ
ients � should therefore de
rease faster than k

�2

to ensure a �nite

energy density.

We will see that the presen
e of horizons lead to a thermal 
ux of parti
les. For a thermal

spe
trum with temperature T , the Bogolyubov 
oeÆ
ients have to satisfy the 
ondition

j�

ji

j

2

= e

!

i

=T

j�

ji

j

2

: (22.46)

Then the unitarity 
ondition (22.42) of the Bogolyubov 
oeÆ
ients gives

h

~

0jN

i

j

~

0i =

X

j

j�

ji

j

2

=

1

e

!

i

=T

� 1

: (22.47)

22.2.2. Choosing the va
uum state

Having set up the formalism of Bogolyubov transformations, we have to �ll the formalism

with physi
s: Sin
e there is no unique va
uum, we have to de
ide 
ase by 
ase whi
h is the

physi
ally relevant one. Additionally, we need a s
heme for the 
al
ulation of the Bogolyubov


oeÆ
ients. The �rst problem, the 
hoi
e of a physi
ally sensible va
uum, simpli�es, if the

spa
e-time has \useful" symmetries. This in
ludes in parti
ular the 
ase that the spa
e-time

is 
onformally 
at. Spa
e-times whi
h approa
h asymptoti
ally Minkowski spa
e for � ! �1

are also useful toy-models: For su
h models, we 
an apply our standard formalism to 
onstru
t

the in and out Fo
k spa
e. We study therefore �rst this 
ase, using a model whi
h has the

further virtue of being analyti
ally solvable.

Solvable model We illustrate now the produ
tion of parti
les in an expanding universe for

a spe
i�
, exa
tly solvable model. In this two-dimensional model, the line-element is given by

ds

2

= C(�)

�

d�

2

� dx

2

�

(22.48)

and the s
ale fa
tor 
hanges as

C(�) � a

2

(�) = A+B tanh(��) (22.49)

with A > B and � > 0. For � ! �1, the s
ale fa
tor approa
hes the 
onstant value

C(�)! A�B and thus the metri
 approa
hes asymptoti
ally Minkowski spa
e. In this limit

we should be able to apply our standard approa
h to de�ne va
ua and one-parti
le states.

Using the separation ansatz �

k

(�; x) = �

k

(�)e

ikx

=(2�)

1=2

in the s
alar �eld equation with

� = 0 gives

�

00

k

+

�

k

2

+ C(�)m

2

�

�

k

= 0 : (22.50)
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Thus asymptoti
 in and out states have the frequen
y

!

in

=

p

k

2

+m

2

(A�B) (22.51)

!

out

=

p

k

2

+m

2

(A+B) (22.52)

and approa
h

�

k

(�)!

e

�i(!

in

��kx)

p

4�!

in

and �

k

(�)!

e

�i(!

out

��kx)

p

4�!

out

(22.53)

for � ! �1, respe
tively. The 
omplete solutions are given by hypergeometri
 fun
tions;

we 
ould �nd them either using a 
omputer algebra program or performing the substitution

� = 1 + tanh(��). The important point is that one 
an relate the in and out solutions

�

in

k

(�; x) = �

k

�

out

k

(�; x) + �

k

�

out�

�k

(�; x) (22.54)

using the linear transformation properties of these fun
tions. The 
oeÆ
ients �

k

determine

the Bogolyubov 
oeÆ
ients, �

kk

0

= Æ

�k;k

0

�

k

, and are given by

j�

k

j

2

=

sinh

2

(�!

�

=�)

sinh(�!

in

=�) sinh(�!

out

=�)

(22.55)

where !

�

= (!

in

� !

out

)=2.

Using a variation of the Gamov 
riterion, parti
le 
reation should be 
ontrolled by the

ratio of the expansion rate H =

_

C=(2C) � � and !: High-frequen
y modes (or subhorizon

modes in the language of the previous se
tion) with �=! � 1 should be not a�e
ted by the

expansion and behave as in Minkowski spa
e. Expanding j�

k

j

2

for small �, we see that parti
le

produ
tion is exponentially suppressed in this limit, j�

k

j

2

! exp(�2�!

�

=�).

Adiabati
 va
uum In 
ases of pra
ti
al interest as the FLRW metri
, the spa
e-time does

not approa
h asymptoti
ally Minkowski spa
e. In this 
ase, we need an approximation s
heme

for the 
al
ulation of the Bogolyubov 
oeÆ
ients together with a suitable de�nition for the

va
uum at an arbitrary intermediate time. Two parti
ular 
hoi
es for the va
uum state are

the instantaneous and the adiabati
 va
uum. The �rst one de�nes the va
uum as the state of

lowest energy at ea
h moment of time. This implies that one uses the time-dependent !

k

(�)

in the usual Minkowski modes. This s
heme over-predi
ts the e�e
t of parti
le produ
tion,

as the analogue of a (quantum) me
hani
al pendulum with variable length makes 
lear: The

number of quanta E=! is an invariant, if the length of the pendulum (i.e. !) 
hanges adiabat-

i
ally [LL81℄. This invarian
e is however not taken into a

ount 
hoosing the instantaneous

va
uum.

The de�nition of the adiabati
 va
uum is motivated by the requirement that high-frequen
y

modes should not be a�e
ted by the expansion of the universe: In parti
ular, the model (22.49)

suggests that in this limit parti
le produ
tion is exponentially suppressed. Motivated by the

WKB approximation, we express the positive mode fun
tions as

�

+

k

(�) =

1

p

W

k

(�)

exp

�

i

Z

�

d� W

k

(�)

�

; (22.56)

while the negative modes fun
tions are given by �

�

k

(�) = �

+�

k

(�). We 
an implement the

idea that high-frequen
y modes are una�e
ted by the expansion of the universe requiring the

asymptoti
 expansion of W

k

as

W

k

(�) = !

k

(�)

�

1 + Æ

2

(�)!

�2

k

+ Æ

4

(�)!

�4

k

+ : : :

�

: (22.57)
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An adiabati
 va
uum (of order n) is de�ned by 
hoosing the initial 
onditions for the exa
t

solution of �

00

k

+ !

2

k

�

k

= 0 su
h that only the positive modes (22.56) (with W

k

evaluated

at order Æ

n

) are present at the initial time �

0

. This guaranties that parti
le produ
tion is

exponentially suppressed in the adiabati
, high-frequen
y limit.

At lowest order in the asymptoti
 expansion, W

k

(�) = !

k

(�), we 
an obtain a numeri
al

approximation as follows: In general, the �eld modes 
an be expressed as

�

k

(�) =

�

k

(�)

p

2!

k

(�)

exp

�

�i

Z

�

d� !

k

(�)

�

+

�

k

(�)

p

2!

k

(�)

exp

�

i

Z

�

d� !

k

(�)

�

; (22.58)

where �

k

(�) and �

k

(�) are the \instantaneous" Bogolyubov 
oeÆ
ient. The mode equation

�

00

k

+ !

2

k

�

k

= 0 is satis�ed, if the 
oeÆ
ients satisfy

�

0

k

=

!

0

k

2!

k

exp

�

2i

Z

d� !

k

�

�

k

(22.59a)

�

0

k

=

!

0

i

2!

k

exp

�

�2i

Z

d� !

k

�

�

k

: (22.59b)

Choosing the adiabati
 va
uum at the time �

0

implies the initial 
onditions �

k

(�

0

) = 1 and

�

k

(�

0

) = 0. Negle
ting a quadrati
 term, we obtain as 
losed expression for the Bogolyubov


oeÆ
ients

�

k

(�) '

Z

�

d�

0

!

0

k

2!

k

exp

 

�2i

Z

�

0

d�

00

!

k

!

: (22.60)

Conformal va
uum For a 
onformally 
at spa
e-time, we 
an 
onne
t the solutions of a


onformally invariant theory to those of Minkowski spa
e,

g

��

(x) = 


�2

(x)�

��

: (22.61)

In the 
ase of a 
onformally 
oupled s
alar, the wave equation (�� �

d

R)� = 0 be
omes

�

~

� = �

��

�

�

�

�

(


D

�) ; (22.62)

where we used that in Minkowski spa
e

~

R = 0 and the s
aling law (22.8) for bosoni
 �elds.

The �eld

~

� has the usual Minkowski Fourier modes,

~'

k

(x) = [2!(2�)

d�1

℄

�1=2

e

�ikx

(22.63)

whi
h are eigenfun
tions of the 
onformal Killing ve
tor � = (1;0),

�

��

~'

k

(x) = �i!

k

~'

k

(x) (22.64)

with !

k

> 0. Reversing the s
aling law (22.8),

~

� = 


�D

�, we obtain the solution and the

Green fun
tion in the spa
e-time (M; g

��

) as

�(x) = 


�D

(x)

X

i

h

a

i

~'

i

(x) + a

y

i

~'

�

i

(x)

i

(22.65)

�

F

(x; x

0

) = 


�D

(x)D

F

(x; x

0

)


�D

(x

0

) ; (22.66)
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where the ~'

i

are given by (22.63). The va
uum of the �eld � de�ned by a

i

j0i = 0 is 
alled


onformal va
uum. The se
ond relation for the propagator follows immediately from the def-

inition of the Green fun
tion as time-ordered produ
t of �elds. Note also the 
orresponden
e

to the variable substitution u

k

(�) = a(�)�

k

(�) = 
(�)�

k

(�) whi
h transformed the s
alar

�eld equation in d = 4 into a Minkowskian form.

Sin
e modes whi
h are positive eigenmodes of Eq. (22.64) at one time remain positive

for all times, no mixing between positive and negative frequen
y modes o

urs. As result,

parti
le 
reation of 
onformally invariant �elds in a 
onformally 
at spa
e-time is absent.

The exa
tly solvable model 
on�rms this behaviour, sin
e m ! 0 results in !

�

! 0 and

no parti
le produ
tion for 
onformally 
oupled massless s
alar o

urs. Phenomenologi
ally

important 
ases of massless parti
les are the photon and the graviton. In the �rst 
ase, the


onformal invarian
e of the Maxwell equation implies that ele
tromagneti
 �elds 
an not be

generated during in
ation, unless a me
hanism whi
h breaks gauge invarian
e and generates

a mass term for the photon is invoked. In the 
ase of the gravitational �eld g

��

, the s
aling

law ~g

��

= 


(2�d)=2

g

��

of a bosoni
 �eld is in 
on
i
t with the 
onformal transformation law

~g

��

= 


2

g

��

for all d. Therefore gravitons are generated in an expanding universe.

22.3. A

elerated observers and the Unruh e�e
t

Parti
le produ
tion 
an be divided in two di�erent 
ases: In the �rst one, the spa
e-time

is time-dependent (e.g. via the s
ale fa
tor a(t)) and 
an perform \work" and thus 
reate

parti
les. The se
ond, perhaps more intriguing one, is the emission of a thermal spe
trum of

parti
les 
lose to a horizon. We will 
onsider in this se
tion the se
ond 
ase, investigating the

simplest 
ase of an a

elerated observer in Minkowski spa
e.

Uniformly a

elerated observer In the rest frame of an uniformly a

elerated observer, the

four-a

eleration is given by a

�

= �x

�

= (0;a) with jaj = a = 
onst: We 
an 
onvert this


ondition into a 
ovariant form, writing

�

��

�x

�

�x

�

= �a

2

: (22.67)

In order to determine the traje
tory x

�

(�) of the a

elerated observer, it is 
onvenient to


hange to light-
one 
oordinates,

u = t� x and v = t+ x : (22.68)

Here, we assume that the traje
tory is 
ontained in the t-x plane; in the following we will

suppress the transverse 
oordinates y and z. Forming the di�erentials du and dt, we see

that the line-element in the new 
oordinates is ds

2

= dudv. The normalisation 
ondition

�

��

_x

�

_x

�

= 1 of the four-velo
ity be
omes therefore _u _v = 1, while the a

eleration equation

(22.67) results in �u�v = �a

2

. Di�erentiating then _u = 1= _v, we obtain �u = ��v= _v

2

or

�v

_v

= �a : (22.69)

Integrating results in

v(�) =

A

a

exp(a�) +C (22.70)
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t

x

a!1

Figure 22.1.: Traje
tories of uniformly a

elerated observers together with the horizon and

some va
uum 
u
tuations.

and, using _u = 1= _v, in

u(�) = �

1

Aa

exp(�a�) +D : (22.71)

Going ba
k to the original Cartesian 
oordinates, we obtain

t(�) =

1

a

sinh(a�) and x(�) =

1

a


osh(a�) ; (22.72)

where we set the integration 
onstants A = 1 and C = D = 0 whi
h sele
ts the traje
tory

with t(0) = 0 and x(0) = 1=a. Two traje
tories for �nite a

eleration a are shown together

with the limiting 
urve a!1 in Fig. 22.1.

Exponential redshift We will dis
uss later gravitational parti
le produ
tion as the e�e
t

of a non-trivial Bogolyubov transformation between di�erent va
ua. Before we apply this

formalism, we will dis
uss the basis of this physi
al phenomenon in a 
lassi
al pi
ture. As a

starter, we want to derive the formula for the relativisti
 Doppler e�e
t. Consider an observer

who is moving with 
onstant velo
ity v relative to the Cartesian inertial system x

�

= (t; x)

where we negle
t the two transverse dimensions. We 
an parametrise the traje
tory of the

observer as

x

�

(�) = (t(�); x(�)) = (�
; �
v) ; (22.73)

where 
 denotes its Lorentz fa
tor. A mono
hromati
 wave of a s
alar, massless �eld �(k) /

exp[�i!(t� x)℄ will be seen by the moving observer as

�(�) � �(x

�

(�)) / exp [�i!� (
 � 
v)℄ = exp

"

�i!�

r

1� v

1 + v

#

: (22.74)

Thus this simple 
al
ulation reprodu
es the usual Doppler formula, where the frequen
y ! of

the s
alar wave is shifted as

!

0

=

r

1� v

1 + v

! : (22.75)
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Next we apply the same method to the 
ase of an a

elerated observer. Then t(�) =

a

�1

sinh(a�) and x(�) = a

�1


osh(a�). Inserting this traje
tory again into a mono
hromati


wave with �(k) / exp(�i!(t� x) gives now

�(�) / exp

�

�

i!

a

[sinh(a�)� 
osh(a�)℄

�

= exp

�

i!

a

exp(�a�)

�

� e

�i#

: (22.76)

Thus an a

elerated observer does not see a mono
hromati
 wave, but a superposition of

plane waves with varying frequen
ies. De�ning the instantaneous frequen
y by

!(�) =

d#

d�

= ! exp(�a�) ; (22.77)

we see that the phase measured by the a

elerated observer is exponentially redshifted. As

next step, we want to determine the power spe
trum P (�) = j�(�)j

2

measured by the observer,

for whi
h we have to 
al
ulate the Fourier transform �(�).

Example 22.2: Determine the Fourier transform of the wave �(�).

Substituting y = exp(�a�) in

�(�) =

Z

1

�1

d��(�)e

i��

=

Z

1

�1

d� exp

�

i!

a

exp(�a�)

�

e

i��

(22.78)

gives

�(�) =

1

a

Z

1

0

dy y

�i�=a�1

e

i(!=a)y

: (22.79)

On the other hand, we 
an rewrite the integral representation (A.24) of the Gamma fun
tion as

Z

1

0

dt t

z�1

e

�bt

= b

�z

�(z) = exp(�z ln b) �(z) (22.80)

for <(z) > 0 and <(b) > 0. Comparing these two expressions, we see that they agree setting z =

�i�=a+ " and b = �i!=a+ ". Here we added an in�nitesimal positive real quantity " > 0 to ensure

the 
onvergen
e of the integral. In order to determine the 
orre
t phase of b

�z

, we have rewritten this

fa
tor as exp(�z ln b) and have used

ln b = lim

"!0

ln

�

�

i!

a

+ "

�

= ln

�

�

�

!

a

�

�

�

�

i�

2

sign(!=a) : (22.81)

Thus the Fourier transform �(�) is given by

�(�) =

1

a

�

!

a

�

i�=a

�(�i�=a)e

��=(2a)

: (22.82)

The Fourier transform �(�) 
ontains negative frequen
ies,

�(��) = �(�)e

���=a

=

1

a

�

!

a

�

i�=a

�(�i�=a)e

���=(2a)

: (22.83)

Using the re
e
tion formula of the Gamma fun
tion for imaginary arguments,

�(ix)�(�ix) =

�

x sinh(�x)

; (22.84)
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we �nd the power spe
trum at negative frequen
ies as

P (��) =

�

a

2

e

���=a

(�=a) sinh(��=a)

=

�

�

1

e

��

� 1

(22.85)

with � = 2�=a. Remarkably, the dependen
e on the frequen
y ! of the s
alar wave|still

present in the Fourier transform �(�)|has dropped from the negative frequen
y part of

the power spe
trum P (��) whi
h 
orresponds to a thermal Plan
k law with temperature

T = 1=� = a=(2�).

The o

urren
e of negative frequen
ies is the 
lassi
al analogue for the mixing of posi-

tive and negative frequen
ies in the Bogolyubov method. Therefore we expe
t that on the

quantum level a uniformly a

elerated dete
tor will measure a thermal Plan
k spe
trum with

temperature T = 1=� = a=(2�). This phenomenon is 
alled Unruh e�e
t and T = a=(2�) the

Unruh temperature.

Rindler spa
e-time Re
all that the traje
tory of an a

elerated observer is given by

t(�) =

1

a

sinh(a�) and x(�) =

1

a


osh(a�) : (22.86)

It des
ribes one bran
h of the hyperbola x

2

� t

2

= a

�2

, 
f. Fig. 22.1.

Our aim is to determine the va
uum experien
ed by the uniformly a

elerated observer.

As �rst step, we have to �nd a frame f�; �g 
omoving with the observer. In this frame, the

observer is at rest, �(�) = 0, and the 
oordinate time � agrees with the proper time, � = � .

Introdu
ing 
omoving light-
one 
oordinates,

~u = � � � and ~v = � + � ; (22.87)

these 
onditions be
ome

~u(�) = ~v(�) = � : (22.88)

Moreover, we 
hoose the 
omoving 
oordinates su
h that the metri
 is 
onformally 
at,

ds

2

= 


2

(�; �)(d�

2

� d�

2

) = 


2

(~u; ~v)d~ud~v : (22.89)

Next we have to relate the 
omoving 
oordinates f~u; ~vg to Minkowski 
oordinates ft; xg.

Sin
e d~u

2

and d~v

2

are missing in the line-element, the fun
tions u(~u; ~v) and v(~u; ~v) 
an

depend only on one of their two arguments. We 
an set therefore u(~u) and v(~v). Expressing

the four-a

eleration _u as

du

d�

=

du

d~u

d~u

d�

; (22.90)

inserting _u = �au and

_

~u = 1 we arrive at

� au =

du

d~u

: (22.91)

Separating variables and integrating we end up with u = C

1

e

�a~u

. In the same way, we

�nd v = C

2

e

a~v

. Sin
e the line-element has to agree along the traje
tory with the proper-

time, ds

2

= d�

2

, the two integration 
onstants C

1

and C

2

have to satisfy the 
onstraint
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�a

2

C

1

C

2

= 1. Choosing C

1

= �C

2

, the desired relation between the two sets of 
oordinates

be
omes

u = �

1

a

e

�a~u

and v =

1

a

e

a~v

; (22.92)

or using Cartesian 
oordinates,

t =

1

a

e

a�

sinh(a�) and x =

1

a

e

a�


osh(a�) : (22.93)

The spa
e-time des
ribed by the 
oordinates de�ning the 
omoving frame of the a

elerated

observer,

ds

2

= e

2a�

(d�

2

� d�

2

) ; (22.94)

is 
alled Rindler spa
e-time. It is lo
ally equivalent to Minkowski spa
e, but di�ers globally:

If we vary the Rindler 
oordinates over their full range, � 2 R and � 2 R, then we 
over

only the one fourth of Minkowski spa
e with x > jtj. Thus for an a

elerated observer an

event horizon exist: Evaluating on a hypersurfa
e of 
onstant 
omoving time, � = 
onst:, the

physi
al distan
e from � = �1 to the observer pla
ed at � = 0 gives

d =

Z

0

�1

d�

q

jg

��

j =

1

a

: (22.95)

This 
orresponds to the 
oordinate distan
e between the observer and the horizon in

Minkowski 
oordinates.

Unruh e�e
t We have found that the Fourier spe
trum of a 
lassi
al wave seen by an

a

elerated observer 
ontains negative frequen
ies whi
h exhibit a thermal spe
trum. Now

we want to dis
uss this phenomenon whi
h is 
alled the Unruh e�e
t on the quantum level.

In order to simplify the 
al
ulation, we 
onsider the simplest 
ase of a massless s
alar �eld in

1+1 dimensions. Then the a
tion is 
onformally invariant,

S =

1

2

Z

dtdx

p

jgj �

��

r

�

�r

�

� =

1

2

Z

d�d�

p

jgj g

��

r

�

�r

�

� (22.96)

and the resulting wave equation has the same form for an an inertial observer using u; v and

an a

elerated observer using ~u; ~v (light-
one) 
oordinates,

�

2

�

�u�v

=

�

2

�

�~u�~v

= 0 : (22.97)

The 
orresponding solutions are

�(t; x) = f(u) + g(v) and �(�; �) = f(~u) + g(~v) ; (22.98)

where f and g are arbitrary smooth fun
tions spe
ifying the wave form.

In the overlap region x > jtj, we 
an quantise the �eld using either set of 
oordinates,

�(x) =

Z

1

0

d!

p

(2�)2!

h

a

!

e

�i!u

+ a

y

!

e

i!u

i

+ left-movers (22.99a)

=

Z

1

0

d


p

(2�)2


h

b




e

�i
~u

+ b

y




e

i
~u

i

+ left-movers : (22.99b)
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Here we wrote down expli
itly only the right-moving modes: Be
ause of u(~u) and v(~v), the

two sets of modes propagate independently and we 
an 
onsider them separately.

The va
uum de�ned by b

i

j0

R

i = 0 is 
alled the Rindler va
uum, while the usual Minkowski

va
uum is de�ned by a

i

j0

M

i = 0. One may wonder whi
h one of the two va
ua is the \better"

one? First, the Rindler 
oordinates 
over only part of the Minkowski spa
e-time; they, and

as a result also the Rindler va
uum j0

R

i, are singular on the horizon: Using the two di�erent

representation for the �eld �, its energy density follows as

� = h0

M

j (�

u

�)

2

j0

M

i = h0

R

j (�

~u

�)

2

j0

R

i : (22.100)

Now we 
ompare the expe
tation value of (�

u

�)

2

for the two va
ua,

� = h0

R

j (�

u

�)

2

j0

R

i =

�

�~u

�u

�

2

h0

R

j (�

~u

�)

2

j0

R

i =

1

(au)

2

h0

M

j (�

u

�)

2

j0

M

i : (22.101)

Sin
e the expe
tation value in the Minkowski va
uum is well-behaved, the Rindler va
uum

diverges for u ! 0. More pre
isely, we see that the 
ontribution of the left-movers to the

energy density of the Rindler va
uum diverges at the future horizon u = 0. Similarly, the

right-movers add an in�nite energy density at the past horizon v = 0. While the Rindler

va
uum is thus not able to des
ribe physi
s 
lose to the horizon, the 
orresponding set of �eld

operators should be used to 
al
ulate the response of an uniformly a

elerated dete
tor to

the Minkowski va
uum.

We express now in Eq. (22.99b) the operator b




using the Bogolyubov relation, and 
ompare

then the 
oeÆ
ients of the positive frequen
y part,

1

p

2!

e

�i!u

=

Z

1

0

d


0

p

2


0

h

e

�i


0

~u

�




0

!

� e

�i


0

~u

�

�




0

!

i

: (22.102)

Next we multiply with e

�i
~u

and integrate over ~u. Performing then the trivial 


0

integral on

the RHS, we arrive at

Z

1

0

d~ue

�i!u+i
~u

=

�

�


!

�


!

; (22.103)

whi
h has the same form as (22.78). Hen
e the Bogolyubov 
oeÆ
ients satisfy the 
ondition

for a thermal spe
trum,

j�


!

j

2

= exp(2�
=a)j�


!

j

2

: (22.104)

The expe
tation value of the number operator valid for the a

elerated observer in the

Minkowski va
uum be
omes

D

~

N




E

= h0

M

j b

y




b




j0

M

i =

Z

d!j�

!


j

2

: (22.105)

For ! = 
, the normalisation 
ondition (22.42) be
omes in the 
ontinuum limit

R

1

0

d!

�

j�


!

j

2

� j�


!

0

j

2

�

= Æ(0). Using also (22.104) we arrive at

D

~

N




E

= Æ(0)

1

exp(2�
=a)� 1

: (22.106)

Identifying the fa
tor Æ(0) as usually with the volume, we obtain for the number density of

s
alar parti
les dete
ted by an a

elerated observer in the Minkowski va
uum

h~n




i =

1

exp(2�
=a) � 1

: (22.107)
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22.3. A

elerated observers and the Unruh e�e
t

Sin
e energy is 
onserved in Minkowski spa
e, you should be worried about this thermal 
ux

measured in an a

elerated dete
tor: A tempting answer is that this energy is delivered by

the external agent whi
h a

elerates the dete
tor. Figure 22.1 suggests however a di�erent

interpretation: Minkowski spa
e va
uum 
u
tuations that are 
rossing the horizon of an a
-


elerated observer are experien
ed by the observer as real, thermal 
u
tuations: For instan
e,

the va
uum 
u
tuation at (t; x) = 0 is seen for an a

elerated observer as a real parti
le exist-

ing from � = �1 to � =1. Similarly, all other va
uum 
u
tuation 
rossing the horizon are

interpreted as the 
reation and annihilation of real parti
les. Thus the horizon seems to be

equipped with a thermal atmosphere, whi
h temperature in
reases the 
loser an a

elerated

observer approa
hes it. In 
ontrast, for any Minkowski observer these 
u
tuations are the

usual \harmless" va
uum 
u
tuations.

We 
lose this se
tion with a remark on the topology of the Rindler and Minkowski spa
e-

times: Both spa
e-times are 
at and agree lo
ally in their overlapping region. They di�er

only from a global point of view, and thus their topology should disagree. Performing a

Wi
k rotation, the hyperbola x

2

� t

2

= a

�2

de�ning the horizon be
omes a 
ir
le. Hen
e

the Rindler spa
e-time has the topology S

1

� R

3

. We 
an view this periodi
ity as another

indi
ation for the presen
e of a thermal spe
trum. Its temperature T equals the inverse of

the 
ir
umferen
e 2�=a of the event horizon in the 
ompa
ti�ed dimension.

Summary

The de�nition of the va
uum and of the number of parti
les in a spa
e-time without time-like

Killing ve
tor �eld is ambiguous and dependent on the observer. Field operators de�ned

with respe
t to di�erent va
ua are related by a Bogolyubov transformation; the 
oeÆ
ients

relating positive and negative frequen
ies in two di�erent va
ua determine the amount of

parti
le produ
tion. In spa
e-times without time-like Killing ve
tor �eld, all SM parti
les

ex
ept photons and gluons are produ
ed by the 
hanging metri
. In a spa
e-time with event

horizon, a thermal spe
trum of parti
les is 
reated 
lose to the horizon.

Further reading

[MW07℄ give a pedagogi
al introdu
tion of quantum e�e
ts in gravity, in
luding path inte-

gral methods and the 
al
ulation of the 
onformal anomaly. Two exhaustive dis
ussions of

quantum �eld theory in 
urved spa
e-time are the books of [BD82℄ and of [PT09℄.
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23. In
ation

Observational data show that we live in a universe whi
h is nearly 
at, j


k

j � j


tot

�1j

<

�

0:1%.

A 
at universe however is an unstable �xed point of the time evolution of a radiation or matter

dominated universe. This raises the question about the \naturalness" of the initial 
onditions

of our universe: Is there any hope to explain why the universe is 
at? A similar problem is

posed by the formation of stru
tures: Gravitational 
ollapse 
an enhan
e initial 
u
tuations,

but is not able to 
reate them. Thus in an initially uniform FLRW universe, no stru
tures

like galaxies would evolve. A su

essful 
osmologi
al theory should answer therefore how the

primordial 
u
tuations were 
reated whi
h have served as seeds for the observed stru
tures

today.

An in
ationary phase in the early universe is a very su

essful attempt to explain these

and other observations whi
h are puzzling in the traditional big bang pi
ture. In
ation is

however not a spe
i�
 theory, but resembles from the point of view of parti
le physi
s more a

paradigm: Very di�erent models 
an lead to an observationally indistinguishable in
ationary

phase in the early universe. In order to be spe
i�
, we will use in most of our dis
ussion as

prototype for in
ation a single s
alar �eld, the in
aton, equipped with one of our standard

potentials, V (�) = m

2

�

2

=2 or V (�) = ��

4

=4.

23.1. Motivation for in
ation

A

ording to the standard big bang s
enario, the universe evolved looking ba
kwards to

t! 0 from a matter dominated into an radiation dominated epo
h until it rea
hed the initial

singularity at t = 0. This standard big bang model leads to several short
omings:

� Causality or horizon problem: Why are 
ausally dis
onne
ted regions of the universe

homogeneous, as the isotropy of the CMB shows? This problem arises be
ause the

(parti
le) horizon grows like the 
osmi
 time t, but the s
ale fa
tor a in
reases in the

radiation or matter dominated epo
h only as t

2=3

or t

1=2

, respe
tively. Thus for any

s
ale L 
ontained today 
ompletely inside the horizon, there exists a time t < t

0

where

L 
rossed the horizon. A solution to the horizon problem requires that a grows faster

than t. Sin
e a / t

2=[3(1+w)℄

, this demands w < �1=3 or �a > 0, i.e. an a

elerated

expansion of the universe.

� Flatness problem: The 
urvature term in the Friedmann equation s
ales as k=a

2

and

de
reases thus slower than the matter (/ 1=a

3

) and radiation (1=a

4

) terms. Let us

rewrite the Friedmann equation as

k

a

2

= H

2

�

8�G

3H

2

�� 1

�

= H

2

(


tot

� 1) : (23.1)

The LHS s
ales as (1 + z)

2

, the squared Hubble parameter in the matter dominated

epo
h as (1+ z)

3

, and in the radiation dominated epo
h as (1+ z)

4

. Classi
al gravity is
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23.1. Motivation for in
ation

supposed to be valid until the Plan
k s
aleM

Pl

. Most of time the universe was radiation

dominated, so we 
an estimate the redshift at the Plan
k time as 1+z

Pl

= (t

0

=t

Pl

)

1=2

�

10

30

. Thus if today the deviation from 
atness is j


tot

� 1j

<

�

1%, then it had too be

extremely small at the Plan
k time, j


tot

� 1j

<

�

10

�2

=(1 + z

Pl

)

2

� 10

�62

. Taking the

time-derivative of

j


tot

� 1j =

jkj

H

2

a

2

=

jkj

_a

2

(23.2)

gives

d

dt

j


tot

� 1j =

d

dt

jkj

_a

2

= �

2jkj�a

_a

3

< 0 (23.3)

for �a > 0. Hen
e j


tot

� 1j in
reases, if the universe de
elerates, i.e. _a de
reases, and

de
reases if the universe a

elerates, i.e. _a in
reases. Thus again a phase with �a > 0 (or

w < �1=3) may avoid this problem.

� Magneti
 monopole problem: Grand uni�ed theories (GUT) predi
t the existen
e of

magneti
 monopole with masses M

GUT

=�

GUT

. If they are produ
ed via the Kibble

me
hanism during the GUT symmetry breaking, they would over
lose the universe, 
f.

problem 20.??.

� The standard big bang model 
ontains no sour
e for the initial 
u
tuations required for

stru
ture formation.

Classi
al gravity breaks down around t � t

Pl

or T � M

Pl

, and one may wonder if these

problems 
an be avoided by an appropriate modi�
ation of gravity above the Plan
k s
ale.

This possibility seems to be rather 
ontrived, be
ause for most predi
tions the time interval

between the singularity and t � t

Pl

is negligible. Therefore setting t

Pl

= 0 seems to be a good

approximation, see also problem 24.??.

Solution by in
ation In
ation is a modi�
ation of the standard big bang model where a

phase of a

elerated expansion in the very early universe is introdu
ed. While the initial

singularity in a big bang model happens at t = 0 or � = 0, an in
ationary phase adds

\additional" time at � < 0 (
f. the remark 23.2). During this phase, the universe behaves


lose to a de Sitter universe with w = �1, H = 
onst:, and a(t) = a

0

exp(Ht). If this phase

prevails long enough, it solves the horizon, 
atness, and the monopole problem and generates

as bonus density 
u
tuations:

� The exponential growth of the s
ale fa
tor, a(t

f

)=a(t

i

) = e

(t

f

�t

i

)H

� t

f

=t

i

, blows up a

small, at time t

i


ausally 
onne
ted region to superhorizon s
ales.

� Similarly, the growth of the s
ale fa
tor solves the 
atness problem, driving j


tot

� 1j /

e

�2Ht

exponentially towards zero.

� Magneti
 monopoles or other superheavy reli
s are diluted as n / exp(�3Ht). At the

end of a suÆ
iently long in
ationary phase, their density is therefore pra
ti
ally zero.

� In
ation blows-up quantum 
u
tuation to astronomi
al s
ales, generating initial 
u
-

tuation without s
ale, P

0

(k) / k

�1+"

with "� 1, as required by observations.

369



23. In
ation

ln(1=aH)
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H
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Figure 23.1.: Evolution of the present Hubble s
ale as fun
tion of time; the 
ondition

(a

0

H

0

)

�1

< (a

i

H

i

)

�1

sets a lower limit on a

f

=a

i

.

Figure 23.1 illustrates how the 
omoving Hubble s
ale 1=(aH) evolves in a universe with an

in
ationary phase. During in
ation, 1=(aH) de
reases, be
ause �a > 0 is equivalent to

d

dt

�

1

aH

�

=

d

dt

( _a)

�1

= �

�a

( _a)

2

: (23.4)

More pre
isely, w ' �1 and H ' 
onst: imply that a in
reases exponentially. Thus the


omoving Hubble radius de
reases as ln(1=aH) = � ln(a) + 
onst: during in
ation: As a

result, physi
al s
ales k whi
h had been previously on superhorizon distan
e 
ome in 
ausal


onta
t. In
ation ends at a

f

, and the 
omoving Hubble s
ale starts to grow. During the

intermediate phase a

f

< a < a

rh

the universe goes through a phase of reheating before

the standard big bang evolution starts at a > a

rh

. The value of a

rh

is determined by the

temperature to whi
h the universe is reheated and is very model dependent.

Conditions for su

essful in
ation We 
an rewrite the 
ondition for a

elerated expansion

�a > 0 as

d

dt

�

1

aH

�

= �

_aH + a

_

H

(aH)

2

= �

1

a

(1� "

H

) with "

H

� �

_

H

H

2

: (23.5)

The 
ondition "

H

� 1 ensures that w is 
lose to �1 (problem 24.??). Next we de�ne as

measure for the expansion the number N of e-foldings during in
ation, N = ln(a

2

=a

1

). Using

then dN = d ln(a) = Hdt, we 
an express "

H

as

"

H

= �

_

H

H

2

= �

d lnH

dN

: (23.6)

The relative 
hange of "

H

should be small per Hubble time H

�1

so that in
ation 
an persist

during a suÆ
iently large number of e-foldings. This motivates us to introdu
e as a se
ond

parameter

�

H

�

d ln "

H

dN

=

1

H

_"

H

"

H

; (23.7)

whi
h should be also small, j�

H

j � 1. Thus we 
an quantify the 
onditions for su

essful

in
ation by "

H

� 1 and j�

H

j � 1: These two 
onditions guaranty that the time evolution of

the s
ale fa
tor is for a suÆ
iently long time 
lose to the one in a de Sitter universe.
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23.2. In
ation in the homogeneous limit

Example 23.1: How mu
h in
ation is needed?

We 
an �nd the minimal number of e-folding to solve the horizon problem by 
omparing the 
omoving

Hubble radius today to the one at the beginning of in
ation (
f. Fig. 23.1),

(a

0

H

0

)

�1

< (a

i

H

i

)

�1

: (23.8)

We negle
t the reheating phase and approximate the 
omplete evolution of the universe for a > a

rh

as

radiation dominated. With H / 1=a

2

, we �nd

a

0

H

0

a

f

H

f

=

a

0

a

f

�

a

f

a

0

�

2

=

a

f

a

0

=

T

0

T

f

� 10

�28

; (23.9)

where we used T

f

= 10

15

GeV as temperature of the universe at beginning of the standard big bang

evolution for the numeri
al estimate. Thus

(a

i

H

i

)

�1

> (a

0

H

0

)

�1

� 10

28

(a

f

H

f

)

�1

: (23.10)

With H

i

� H

f

, N � 65 e-foldings are required to solve the horizon problem for our 
hoi
e of T

f

.

23.2. In
ation in the homogeneous limit

We assume in the following that a single s
alar �eld, the in
aton, is responsible for the

in
ationary phase in the early universe. We know that displa
ing the minimum of a s
alar

potential from zero generates a 
osmologi
al 
onstant, whi
h in turn leads to a

elerated

expansion. In a su

essful in
ationary model, we have to 
onvert this stati
 pi
ture into a

dynami
al pro
ess, sin
e in
ation has to start and to stop. In parti
ular, the end of in
ation

has to be su

essfully 
onne
ted to the smooth big bang pi
ture, whi
h is 
alled often the

\gra
eful exit problem."

Re
all also our dis
ussion of s
alar �elds with non-zero vev in 
hapter 13. There we split

the s
alar �eld �(x) into a 
lassi
al part h�i � �

0

and quantum 
u
tuations Æ�(x) on top of

it. Now we 
onsider the more general 
ase where also the 
lassi
al �eld depends on time,

�(x) = �

0

(t) + Æ�(x) ; (23.11)

and its dynami
s is governed by the Einstein equations. Clearly, this problem 
an not be

solved in general. Observations of the CMB show however that the early universe was very

homogeneous, ÆT=T � 10

�5

, and thus we 
an expe
t that lowest order perturbation theory

in Æ�(x) should work reliable. We 
onsidered already the evolution of �

0

(t) in a FLRW

ba
kground. Now we analyse under whi
h 
onditions this evolution leads su

essfully to

in
ation, before we 
al
ulate in the next se
tion the 
u
tuations Æ�(x).

Equation of state of a s
alar �eld 
ondensate A s
alar �eld � sitting at the minimum of

its potential V (�) has the desired EoS w = �1 to drive a

elerated expansion. The simplest

dynami
al model for an in
ationary phase is a single, s
alar �eld whi
h is initially displa
ed

from its minimum. A ne
essary 
ondition for a

elerated expansion is w < �1=3, and thus

we should �nd the EoS of a s
alar �eld � evolving in a FLRW ba
kground.

The stress tensor for a s
alar �eld with L =

1

2

g

��

r

�

�r

�

�� V (�) follows from

T

��

= 2

�L

�g

��

� g

��

L = r

�

�r

�

�� g

��

�

1

2

g

��

r

�

�r

�

�� V (�)

�

; (23.12)
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ation

where we used the relation (??) derived in problem 19.??. We 
an des
ribe the s
alar �eld

also as an ideal 
uid. Equating the two expressions for the stress tensor gives

T

��

= r

�

�r

�

�� g

��

L

!

= (�+ P )u

�

u

�

� Pg

��

: (23.13)

Comparing the two independent tensor stru
tures we 
an identify P = L and

r

�

�r

�

� = (�+ P )u

�

u

�

: (23.14)

Contra
ting the indi
es with g

��

, remembering u

�

u

�

= 1 and using r

�

�r

�

� = 2L + 2V

results in

� = P + 2V : (23.15)

Now we have to 
al
ulate only the energy-density � = T

00

in order to determine the (isotropi
)

pressure P and the equation of state w = P=�. In a FLRW ba
kground, the energy-density

of the �eld � is given by

� = T

00

=

_

�

2

�

�

1

2

_

�

2

�

1

2a

2

(r�)

2

� V (�)

�

=

1

2

_

�

2

+

1

2a

2

(r�)

2

+ V (�) : (23.16)

Thus the pressure

1

follows as

P =

1

2

_

�

2

+

1

2a

2

(r�)

2

� V (�) : (23.17)

If we require that the �eld � respe
ts the symmetries of the FLRW ba
kground, then � has

to be homogeneous and the (r�)

2

term vanishes. As result, the equation of state simpli�es

to

w =

P

�

=

_

�

2

� 2V (�)

_

�

2

+ 2V (�)

2 [�1 : 1℄ : (23.18)

Thus a 
lassi
al s
alar �eld may a
t as dark energy, w < �1=3, leading to an a

elerated

expansion of the Universe. A ne
essary 
ondition is that the �eld is \slowly rolling," i.e. that

its kineti
 energy is suÆ
iently smaller than its potential energy,

_

�

2

< 2V=3.

Slow-roll 
onditions for the potential We 
an integrate _a = aH for an arbitrary time-

evolution of H,

a(t) = a(t

0

) exp

�

Z

dtH(t)

�

: (23.19)

The number N of e-foldings is 
onne
ted to the evolution of H and � as

N = ln

a

2

a

1

=

Z

dt H(t) =

Z

d�

_

�

H(t) : (23.20)

The potential energy 
an dominate only long enough, if

�

� is small. Therefore we 
an approx-

imate the �eld equation

�

�+3H

_

�+V

0

= 0 as

_

� � �V

0

=(3H). Using then also the Friedmann

equation H

2

= 8�GV=3, it follows

N = �

Z

d�

3H

2

V

0

= �

Z

d�

8�GV

V

0

= �

Z

d�

f

M

Pl

V

f

M

Pl

V

0

; (23.21)

1

For an alternative de�nition of the pressure see problem 24.??.
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where we introdu
ed the redu
ed Plan
k mass

f

M

Pl

� (8�G)

�1=2

. Su

essful in
ation requires

N

>

�

60� 1 and thus we require as slow-roll parameter for the potential

"

V

�

1

2

 

f

M

Pl

V

0

V

!

2

� 1 : (23.22)

Hen
e the in
aton potential should be 
at and its value V (�) should be large. An additional


onstraint on the 
urvature V

00

follows by di�erentiating V

0

=V and using then "

V

� 1 as

�

V

�

f

M

2

Pl

V

00

V

� 1 : (23.23)

This de�nes the se
ond slow-roll 
ondition whi
h requires that the 
urvature V

00

of the po-

tential measured in Plan
k units is small 
ompared to the value of the potential V (�).

Example 23.2: The arguable least exoti
 model for in
ation uses a single s
alar �eld � with

potential V =

1

2

m

2

�

2

. Then the two slow-roll parameters 
oin
ide and are given by

"

V

= �

V

=

2

f

M

2

Pl

�

2

: (23.24)

Thus we see that in
ation in this model requires trans-Plan
kian �eld values, �

i

�

p

2

f

M

Pl

. (With a


ertain understatement, one 
alls in this 
ontext �eld values \large" for �

>

�

f

M

Pl

and small otherwise.)

Combining (23.21) and (23.22), we 
an express the number of e-foldings as

N =

Z

�

f

�

i

d�

f

M

Pl

(2"

V

)

�1=2

=

�

2

i

4

f

M

2

Pl

�

1

2

; (23.25)

where we used maxf"

V

; �

V

g = 1 as 
ondition for the end of in
ation. Solving the horizon and 
atness

problem with in
ation requires N � 60 efoldings. Thus the largest s
ales observed in the CMB,

N � 60, 
orrespond to �eld values � = 2

p

N

CMB

� 15M

Pl

.

Classi
al general relativity should be valid as long as the energy density � satis�es � � V � M

4

pl

.

This allows �eld values as large as �

i

� 10

3

for m = 10

15

GeV, and as maximal number of e-folding

N � 10

6

. Therefore it is natural to expe
t that the true number of e-foldings is mu
h larger than 60.

In this 
ase, deviations from 
atness would be extremely small.

Hamilton-Ja
obi equations and phase portraits The evolution of the s
ale fa
tor a and the

�eld � in single-�eld in
ation is determined by

H

2

=

8�G

3

��

k

a

2

=

8�G

3

�

1

2

_

�

2

+ V

�

�

k

a

2

; (23.26a)

�a

a

=

8�G

3

�

V �

_

�

2

�

; (23.26b)

�

�+ 3H

_

�+ V;

�

= 0 : (23.26
)

If the �eld �(t) is a monotoni
 fun
tion of the time t, then we 
an repla
e t by �(t) as evolution

variable: We di�erentiate �rst H = _a=a, obtaining

_

H = �a=a � H

2

. Inserting then (23.26a)

and (23.26b) as well as setting k = 0, we arrive at

_

H = �4�G

_

�

2

(23.27)
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PSfrag repla
ements

�
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�

attra
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Figure 23.2.: Phase portrait for the V = m

2

�

2

=2 potential, from [Muk05℄.

or

H;

�

= �4�G

_

� : (23.28)

Now we 
an eliminate

_

� in (23.26a), obtaining

H;

2

�

�12�GH

2

= �32�

2

G

2

V : (23.29)

The last two equations are equivalent to the usual two Friedmann equations. They have the

virtue to show that 
hoosing the potential V (�) a

ording to (23.29), single-�eld in
ation is


exible enough to des
ribe an arbitrary evolution of the Hubble parameter H. Moreover, we


an use them to 
onne
t the two sets of slow-roll parameters, see problem 24.??.

Next, we want to 
he
k how generi
 the slow-roll 
onditions in the spe
i�
 
ase of a

V =

1

2

m

2

�

2

potential o

ur. Inserting the Friedmann equation (23.26a) and the expli
it form

of the potential into the Klein-Gordon equation (23.26
) gives

�

�+ [12�G(

_

� +m

2

�

2

)℄

1=2

_

�+m

2

� = 0 : (23.30)

Sin
e this se
ond-order di�erential equation 
ontains no expli
it time-dependen
e, it 
an be

redu
ed to a �rst-order equation eliminating

�

� with the help of

�

� =

_

�

d

_

�

d�

: (23.31)

The result,

d

_

�

d�

= �

[12�G(

_

� +m

2

�

2

)℄

1=2

_

�+m

2

�

_

�

; (23.32)

allows to plot the phase portrait shown in Fig. 23.2. We observe two lines at

_

�

a

=

�mM

Pl

=

p

12� that attra
t all traje
tories starting at suÆ
iently large �eld values �: A

�eld that starts its evolution with j

_

�j �

_

�

a

loses fast its kineti
 energy

_

�, moving to the

attra
tor line. Close to the attra
tor line, it evolves with j

_

�j � 0, i.e. it satis�es the slow-roll


ondition and 
an drive in
ation. Around �

f

�

p

2

f

M

Pl

, this 
ondition is violated: The tra-

je
tory leaves the attra
tor line and spirals towards the origin. This �nal stage 
orresponds

to 
oherent os
illations of the in
aton around its minimum and leads to the reheating of the

universe. Thus the phase portrait in Fig. 23.2 illustrates that the potential V = m

2

�

2

=2

implies an in
ationary phase for suÆ
iently large initial �eld values �.
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V (�)

�

b

V (�)

�

b

Figure 23.3.: Typi
al potential of a large-�eld model (left) and of a small-�eld model (right)

for in
ation.

Models for in
ation Up-to now we have dis
ussed the|for a parti
le physi
ist perhaps

most natural|option that a s
alar �eld drives in
ation. Moreover, we have restri
ted our

attention to the 
ase of a single s
alar �eld. Single �eld models 
an be 
hara
terised by two

parameters, e.g. the width and the height of the potential. Generi
ally, we 
an divide these

models into large and small �eld models as shown in Fig. 23.3. In the �rst 
lass, in
ation

requires trans-Plan
kian �eld values as e.g. for the m

2

�

2

or the ��

4

models. The potential of

these models has positive 
urvature, V

00

> 0, and thus "

V

> 0.

The trans-Plan
kian �eld values required to start in
ation lead 
learly to the question how

the in
aton was displa
ed from its equilibrium position. A suggestion by Linde is \
haoti


in
ation": The in
aton �eld � a
quires random values due to quantum 
u
tuations. In

a region of initial size 1=M

4

Pl

with � � M

Pl

, in
ation starts and produ
es a homogeneous

pat
h inside the universe. Other regions do not undergo in
ation at all, or with only a few

e-foldings. Thus on s
ales mu
h larger than our su

essfully in
ated pat
h, the universe is

very inhomogeneous. In a variant, 
alled \sto
hasti
 in
ation", quantum 
u
tuations disturb

the 
lassi
al slow-roll traje
tory so strongly that the volume �lled with large quantum 
u
-

tuations ��M

Pl

grows exponentially. As a result, new pat
hes of in
ating \miniverses" are

generated 
ontinuously, leading to an eternal self-reprodu
tion of the in
ationary universe. A


ontroversial question in these types of models is, how generi
 the observed universe is, and

how su
h a statement 
an be made pre
ise.

Typi
al examples for a small �eld model are potentials like V (�) = �(�

2

� �

2

)

2

=4 or of

the Coleman-Weinberg type. Su
h potentials are generi
ally mu
h 
atter than those of large

�eld models. They often are 
onne
ted to SSB, and the in
aton sits initially at the unstable

equilibrium position � = 0. The potential has negative 
urvature, V

00

< 0, and thus "

V

< 0.

The idea of small �eld models implies that we 
hoose parameters su
h that in
ation starts at

sub-Plan
kian �eld values, and thus e.g. ��

4

f

� V

0

<

�

M

4

Pl

for V (�) = V

0

� ��

4

=4. In
ation

may be realised in this 
lass of models as follows: Before the start of in
ation, the universe is

at high temperature in a potentially inhomogeneous state. The symmetry of the temperature-

dependent e�e
tive potential V

eff

(�; T ) is restored. Thus the �eld � sits initially at � = 0.

As the universe expands, it 
ools down and the size of the temperature dependent 
orre
tions

be
omes smaller, V (�; T ) ' V (�; 0). Finally, the symmetry is broken, the �eld starts to roll

down the potential and in
ation starts.

Using a s
alar �eld as the driving for
e of in
ation, a natural question to address is if

we 
an identify the in
aton with a Higgs �eld. During the 1980s, one tried to 
onne
t the
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GUT phase transition and GUT Higgs �elds to in
ation. However, 
ombining the slow-

roll 
onditions and the size of density 
u
tuations (that will be dis
ussed in the after next

se
tion) restri
ts the potential severely: Generi
ally, loop 
orre
tions destroy the 
atness of

the potential, if the in
ation is not extremely weakly 
oupled to the SM �elds. Therefore, it

seems natural to 
onsider the in
aton as a gauge singlet. The dis
overy of the SM Higgs has


reated nevertheless interest in the question if the SM Higgs 
an a
t as in
aton: First, we

know that the Higgs potential 
attens for large values of the renormalisation s
ale. Se
ond,

its 
oupling ��

2

R to the 
urvature s
alar is un
onstrained. A large enough number of e-

foldings 
an be a
hieved, if the 
oupling � is large, � � 50 000: Su
h a term 
attens the Higgs

potential belowM

Pl

=

p

� suÆ
iently to lead to slow-roll in
ation. This s
enario fa
es however

two problems: First, perturbative unitarity is violated below M

Pl

, requiring the existen
e of

new degrees of freedom. Thus predi
tions in \Higgs in
ation" depend on the unknown UV


ompletion. More severely, we have seen that the SM Higgs potential (for the values of m

h

and m

t


urrently favoured) develops an instability below M

Pl

. Thus the SM Higgs 
annot be

the main agent of in
ation, but may play some rôle during in
ation.

The range of options widens drasti
ally as soon as one uses several in
aton �elds, redu
ing

at the same time however also the predi
tive power of the models. We 
omment here only

brie
y on another option, namely abandoning the idea that the in
aton is a fundamental

�eld. In parti
ular, during the very early universe higher derivative terms in the gravitational

a
tion may have played an important role. As a spe
i�
 possibility, one 
an modify gravity by

generalising the Einstein-Hilbert a
tion as L

EH

= R! f(R). Here, the fun
tion f(R) should

be 
hosen su
h that observational 
onstraints are obeyed in the R ! 0 limit, while for large

R modi�ed gravity may lead to in
ation. An example for this approa
h is the Starobinsky

model proposed in 1979 that uses f(R) = R � R

2

=(6M

2

). It represents the �rst working

theory of in
ation and is still in ex
ellent agreement with data. In va
uum, this theory is

equivalent to standard gravity with a s
alar �eld: Changing �rst the metri
 as g

��

! g

��

=�

with � � �f(R)=�R, and using then � = exp[4

p

��=(

p

3M

Pl

)℄ in order to obtain a 
anoni
ally

normalised kineti
 term gives the s
alar potential

V (�) =

3M

2

M

2

Pl

32�

2

(1� 1=�)

2

=

3M

2

M

2

Pl

32�

2

�

1� exp

�

4

p

��

p

3M

Pl

��

2

: (23.33)

Thus one 
an analyse the Starobinsky model using V (�) and standard gravity. The transfor-

mation g

��

! g

��

=� indu
es however 
ouplings of gravitational strength between � and all

other SM �elds. These additional gravitational 
ouplings indi
ate that it is more natural to

see this 
lass of models as a modi�
ation of gravity.

In order to distinguish between these various possibilities, we have to work out the 
u
-

tuations predi
ted by these models. Before that, we 
onsider �rst the transition from the

in
ationary phase to the standard radiation dominated universe.

23.3. Reheating and preheating

The in
ationary period ends when the EoS be
omes larger than w = �1=3 and the expansion

slows down. In pra
tise, we 
an de�ne as the end of in
ation the time when one of the

slow-roll parameters be
omes of order one. At this point, the universe be
ame empty and


old; all its energy was 
ontained in the in
aton �eld. Reheating is a 
olle
tive term for all

the me
hanisms by whi
h this energy is transferred to a thermal state of ordinary matter,
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initiating the usual radiation dominated epo
h of the universe. One distinguishes between

\perturbative reheating" where the in
aton transfers its energy via perturbative two- or

three-parti
le de
ays and \preheating" where matter �elds 
oupled to the in
aton develop

exponentially growing instabilities.

Perturbative reheating We determine �rst the EoS valid when the energy density of the

universe is dominated by the os
illating in
aton. Assuming a polynomial as in
aton potential,

V / �

n

, we 
an use the virial theorem hT i = �n=2hV i to obtain the EoS averaged over several

os
illations,

w =

P

�

=

hT i � hV i

hT i+ hV i

=

n� 2

n+ 2

: (23.34)

Here we negle
ted the fri
tion fa
tor 3H whi
h is by assumption small. Thus during reheating,

the universe expands as matter-dominated for n = 2 and as radiation-dominated for n = 4.

Initially, the reheating pro
ess of the universe was modelled as perturbative two-parti
le

de
ays of the in
aton �. For instan
e, we 
an 
onsider de
ays into bosons � and fermions  

via the intera
tion terms L

int

= �g

1

v��

2

� g

2

�

�

  . The self-energy of the in
aton obtains

an imaginary part for q

2

� minf4m

2

�

; 4m

2

 

g whi
h is 
onne
ted to the total de
ay width �

tot

via the opti
al theorem (
f. problem 9.??) by

=[�(m)℄ = m�

tot

(�) : (23.35)

We 
an in
lude this imaginary part of the self-energy into the Klein-Gordon equation, setting

m

2

! m

2

+ im�

tot

(�),

�

�+ 3H

_

�+ (m

2

+ im�

tot

)� = 0 : (23.36)

The in
aton has to be very weakly 
oupled to other �elds, �

tot

� �, and the fri
tion term

has to be small too, H � m. Therefore we 
an approximate the in
aton evolution as

�(t) = �(t) sin(mt) (23.37)

with the time-dependent amplitude

�(t) = �

i

exp

�

�

1

2

Z

dt (3H + �

tot

)

�

: (23.38)

We 
an view the os
illating 
lassi
al �eld �(t) as a 
oherent wave of � parti
les with zero

momentum and number density n(t) = �=m � m�

2

(t)=2.

To be 
on
rete, we �x the potential as V = m

2

�

2

=2. Then we �nd in the limit �

tot

� H

with H = 2=(3t)

�(t) = �

f

t

f

t

=

1

p

3�t

M

Pl

m

; (23.39)

where we used �

f

=

p

2

f

M

Pl

= M

Pl

=

p

4� as the in
aton value at the end of in
ation, t

f

=

2H

f

=3 and H

f

= V (�

f

). This implies � � 1=a

3

as expe
ted for n = 2 (problem 24.??). In the

opposite limit, �

tot

� H, the amplitude (23.38) follows the usual de
ay law,

�(t) = �

i

exp(��

tot

t=2) : (23.40)

De�ning the reheating time t

rh

by 3�

tot

= H, the in
aton energy density at that time is

�

rh

=

�

2

tot

M

2

Pl

24�

!

=

�

2

30

g

�

T

4

rh

: (23.41)
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In the se
ond step, we assumed that reheating o

urs instantaneously. In this approximation,

the reheating temperature T

rh

is therefore

T

rh

=

�

5

4�

3

g

�

�

1=4

(�

tot

M

Pl

)

1=2

' 0:14

�

100

g

�

�

1=4

(�

tot

M

Pl

)

1=2

� (mM

Pl

)

1=2

' 10

15

GeV ;

(23.42)

where we used �

tot

� m and as in
aton mass m � 10

�6

M

Pl

.

Using instead the estimate from problem 24.?? for the maximal possible de
ay width of

the in
aton, �

tot

<

�

10

8

GeV, the instantaneous reheating temperature is of order 10

13

GeV.

It is thus 
onsiderably smaller than the GUT energy and thus GUT baryogenesis seems

to be impossible in this pi
ture. Moreover, in any realisti
 model, reheating will be de-

layed and thus the maximal temperature the universe rea
hes after in
ation will be below

10

13

GeV. In this 
ase, even leptogenesis seems to be only marginally possible. A way out is

the non-perturbative s
enario of preheating we dis
uss next, where in a �rst stage parti
les

are resonantly produ
ed before they thermalise by perturbative pro
esses.

Preheating We 
onsider again a light s
alar �eld � 
oupled to the in
aton � via the inter-

a
tion L

int

= �g�

2

�

2

, but treat now � as a 
lassi
al �eld and study the evolution of the

quantum �eld � in this ba
kground. Then the �eld modes �

k

satisfy

��

k

+ 3H _�

k

+

�

k

2

a

2

+ g

2

�

2

�

�

k

= 0 : (23.43)

When the in
aton � starts to os
illate, it 
an transfer energy to the � �eld: In parti
u-

lar, modes �

k

whi
h are resonant with the � os
illations 
an be
ame unstable, leading to

an exponential growth of their o

upation number. This phenomenon is 
alled parametri


resonan
e.

In order to illustrate the basis of the me
hanism, we transform (23.43) into an equation

resembling the S
hr�odinger equation for an ele
tron in a periodi
 potential. Res
aling u

k

=

a

3=2

�

k

gives the os
illator equation �u

k

+ !

2

k

u

k

= 0 with energy

!

2

k

=

k

2

a

2

+ g

2

�

2

�

3

4

(2

_

H + 3H

2

) : (23.44)

Now we introdu
e as new time variable z = mt as well as q

2

= g

2

�

2

=(4m

2

) and A

k

=

2q + k

2

=(ma)

2

, where �(t) satis�es (23.38). Then we arrive at

d

2

u

k

dz

2

+ (A

k

� 2q 
os(2z) +�)u

k

= 0 ; (23.45)

where we lumped the unimportant fa
tors into

� =

m

2

�

m

2

�

3

4m

2

(2

_

H + 3H

2

) : (23.46)

Using H = 2=(3t), and thus 2

_

H + 3H

2

= 0, we see that the se
ond term in � vanishes.

Moreover, we 
an assume that the � �eld is light relative to the in
aton, m

�

=m � 1, and

thus � 
an be negle
ted all-together. If the �elds evolve fast 
ompared to the expansion of
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the universe, one may negle
t also the a dependen
e in A

k

and q. The di�erential equation

(23.45) has then 
onstant 
oeÆ
ients and be
omes a Mathieu equation. Its solutions have

the form u

k

/ exp(iv

k

z), and are therefore unstable for =(v

k

) < 0. The wave-bands with

=(v

k

) < 0 
orrespond to forbidden energy bands of the equivalent S
hr�odinger equation for an

ele
tron in a periodi
 potential. For q

>

�

2A

k

, the bands of unstable wave-numbers k be
ome

large, and o

upy most of k spa
e. The produ
tion of parti
les is eÆ
ient, if !

k


hanges

non-adiabati
ally, i.e. if _!

k

� !

2

k

. This happens when the e�e
tive mass of �, m

�

(t) = g�(t),

be
omes zero for �(t) = 0.

Example 23.3: Broad resonan
e as s
attering:

We 
an break the evolution of u

k

(t) into adiabati
 pie
es where the modes evolve as u

k

/

exp(�i

R

dt!

k

) and the parti
le number is 
onserved, and \s
attering events" when the in
aton 
rosses

zero, �(t

i

) = 0. Thus the �eld modes satisfy for t 6= t

i

Eq. (22.58) with 
onstant Bogolyubov 
oeÆ-


ients and energies,

u

k

(t) =

�

k

p

2!

k

exp

�

�i

Z

t

dt

0

!

k

�

+

�

k

p

2!

k

exp

�

i

Z

t

dt

0

!

k

�

: (23.47)

At t

i

, the in
oming �eld is s
attered into an outgoing �eld with new Bogolyubov 
oeÆ
ients. Let us

assume that the in
oming state t < t

i


ontained no parti
les. Then we know that the rate of parti
le

produ
tion is given by j�

k

j

2

. Close to � = 0, we 
an approximate g

2

�

2

(t) � g

2

�

2

m

2

(t � t

j

)

2

�

k

4

�

(t� t

j

)

2

and thus the os
illator equation �u

k

+ !

2

k

u

k

= 0 be
omes

�u

k

+

�

k

2

=a

2

+ k

4

�

(t� t

j

)

2

�

u

k

= 0 : (23.48)

Now we res
ale momenta, � = k=a, and time, � = k

�

(t � t

j

), mapping thereby our problem on the


al
ulation of the tunnelling probability through the one-dimensional potential V = ��

2

,

d

2

u

k

d�

2

+

�

�

2

+ �

2

�

u

k

= 0 : (23.49)

The analyti
al solution to this problem is known. Alternatively, one 
an employ the WKB approxi-

mation to �nd n

k

= j�

k

j

2

= exp(���

2

), 
f. with problem 24.??.

Thus parti
le produ
tion is eÆ
ient, if �

2

<

�

1 or (k=a)

2

<

�

k

2

�

= gm�. The analysis for a

non-empty initial state shows that generally parti
les 
an be 
reated or destroyed, depending

on the value of the relative phase between initial and �nal state. If one in
ludes the expansion

of the universe, the relative phases behave nearly as random variables. In this limit, one �nds

that in 75% of s
atterings parti
le are 
reated. The number of 
reated parti
les grows therefore

exponentially with time.

At some point, this growth has to slow down and �nally stop. Generi
ally, this happens

already when still most energy is 
ontained in the in
aton �eld. One possible reason is

the ba
k-rea
tion of the produ
ed parti
les on the in
aton �eld: The term




�

2

�

�

2

a
ts as

additional mass term for the in
aton, 
hanges for




�

2

�

� m

2

the dynami
s and shuts o�

parti
le produ
tion via preheating. Thus the initial phase of preheating has to be followed by

perturbative reheating and thermalisation. Note also that the ba
k-rea
tion of the parti
le

produ
tion on the evolution of the s
ale fa
tor 
ouples the evolution of �, � and the Hubble

parameter H.

Remark 23.1: Superheavy dark matter

Parti
les with masses up to � 100T

rh


ould be produ
ed during preheating. Another option is their
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gravitational produ
tion during the end of the in
ation, as dis
ussed in se
tion 22.2. While the �rst

possibility is strongly model-dependent, the se
ond one relies only gravitational intera
tions and is

therefore universal. If su
h parti
les are stable (or have life-times large 
ompared to the age of the

universe), this opens the possibility of superheavy dark matter (SHDM). They should have weak

enough intera
tions with SM parti
les not to thermalise, in order to avoid the unitarity limit (20.38).

This ensures also that SHDM behaves as 
old dark matter.

The energy density of the parti
le type X with mass M

X

at the end of in
ation 
an be 
al
ulated

using Eq. (22.60). The numeri
al results are well des
ribed by

�

X

' 10

�3

M

4

X

�

M

X

H(t

f

)

�

�3=2

exp (�2M

X

=H(t

f

)) ; (23.50)

where H(t

f

) denotes the Hubble parameter at the end of in
ation. Sin
e the modes generated are

non-relativisti
, the relative abundan
e of SHDM has grown as T

0

=T

rh

sin
e reheating. The present

abundan
e follows therefore setting also H(t

f

) equal to the in
aton mass m as




X;0

' 3� 10

�7

�

T

rh

T

0

��

m

M

Pl

�

2

�

M

X

m

�

5=2

exp (�2M

X

=m) : (23.51)

Sin
e T

rh

=T

0

is large, the initial abundan
e of SHDM has to be tiny and a stable parti
le with mass

M

X

� 10

13

GeV would have today an abundan
e of order one.

23.4. Generation of perturbations

We move now on to the study of the 
u
tuations Æ�(x). We negle
t �rst that they ba
k-

rea
t via the Einstein equations on the spa
e-time and 
al
ulate their evolution in a �xed

FLRW metri
. Allowing in the next step for deviations from the FLRW metri
 means that

no preferred foliation of the spa
e-time in time and spa
e exists. This arbitrariness in the


oordinate 
hoi
e requires a 
areful de�nition of observables, so that an unphysi
al gauge

dependen
e of observables is avoided. Having de�ned suitable gauge invariant variables, we

then solve the 
oupled equations for perturbation in the linear theory.

23.4.1. Flu
tuations in a �xed FLRW ba
kground

We 
onsider 
u
tuations of the in
aton �eld � around its 
lassi
al, uniform but time-

dependent average value,

�(x; t) = �

0

(t) + Æ�(x; t) : (23.52)

Inserting this splitting into the Klein-Gordon equation (22.16) with � = 0 and a general

potential V (�) gives six terms

2

,

�

�+ �

2

t

Æ�+ 3H(

_

�+ Æ

_

�)�

1

a

2

r

2

Æ�+ V

0

(�

0

+ Æ�) = 0 : (23.53)

We evaluate �rst the potential term V

0

, expanding it around the 
lassi
al �eld �

0

,

V

0

(�

0

+ Æ�) = V

0

(�

0

) + V

00

(�

0

)Æ� = V

0

(�

0

) +m

2

eff

Æ� : (23.54)

2

Here, a prime on the potential, V

0

, denotes its derivative with respe
t to its argument, not to 
onformal

time.
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Here we introdu
ed also m

2

eff

= V

00

(�

0

) as an e�e
tive mass term for the 
u
tuations Æ�.

Taking into a

ount that the 
lassi
al �eld �

0

satis�es separately the �eld equation (22.16)

gives as equation for the 
u
tuations

�

�

2

�t

2

�

1

a

2

r

2

+ 3H

�

�t

+m

2

eff

�

Æ� = 0 : (23.55)

We perform next a Fourier expansion of the 
u
tuations, Æ�(x; t) = V

�1

P

k

�

k

(t)e

ikx

, with

k as 
omoving wave-number. Sin
e the proper distan
e varies as ax, the physi
al momentum

is then given by p = k=a. Inserting the expansion into (23.55), we obtain

�

�

k

+ 3H

_

�

k

+

�

k

2

a

2

+m

2

eff

�

�

k

= 0 : (23.56)

Thus the 
u
tuations obey basi
ally the same equation as the average �eld, with the e�e
tive

mass term as the only di�eren
e. Introdu
ing again the auxiliary �eld �

k

(�) = a(�)�

k

(�), we

arrive at

�

00

k

+

�

k

2

�

a

00

a

+m

2

eff

�

�

k

= 0 : (23.57)

The e�e
tive mass term, m

2

eff

= V

;��

is mu
h smaller than the squared Hubble parameter H

during slow-roll, sin
e

V

;��

H

2

�

3

f

M

Pl

V

;��

V

= 3�

V

� 1 : (23.58)

This implies that we 
an negle
t V

;��

relative to a

00

=a, be
ause

a

00

a

=

2

�

2

= 2a

2

H

2

� a

2

V

;��

(23.59)

is valid in the slow-roll regime. Hen
e the modes �

k

(�) are also des
ribed by

�

k

(�) = A

k

e

�i!

k

�

p

2!

k

�

1�

i

k�

�

+B

k

e

i!

k

�

p

2!

k

�

1 +

i

k�

�

: (23.60)

In order to �nd the spe
trum of 
u
tuations, we should quantise � and determine its two-

point fun
tion. In the limit � ! �1, the auxiliary �eld � resembles a Minkowski �eld, and

thus we 
an write down immediately the �eld operator in this limit,

�(�;x) =

Z

d

3

k

p

2!

k

(2�)

3

h

A

k

a

k

e

�i(!

k

��kx)

+B

k

a

y

k

e

i(!

k

��kx)

i

: (23.61)

The annihilation and 
reation operators a

k

and a

y

k

satisfy the usual 
ommutation relations,

with the physi
al momenta repla
ed by the 
onformal momenta. However, we have still to


hoose the initial va
uum state, what amounts to �xing the 
oeÆ
ients A

k

and B

k

.

We observe modes whi
h exited the horizon �N � 60 e-folding before the end of in
ation.

If there is no spe
ial 
hoi
e of the initial 
onditions for in
ation, we expe
t that the total

number N

tot

of e-folding is mu
h larger. Thus the physi
al momentum of these modes at

the beginning of in
ation, p(t

i

) � He

N

tot

��N

, is extremely high. A natural assumption is

therefore that these modes at the start of in
ation were empty. Thus we should require that

for early times, � ! �1, only positive frequen
ies survive, what implies B

k

= 0 and A

k

= 1.
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This 
hoi
e is 
alled the Bun
h-Davies va
uum. Inserting this 
hoi
e into (23.60), we �nd for

the 
u
tuations inside the horizon, k � j1=�j = aH,

jÆ�

k

j =

�

�

�

�

k

a

�

�

�

=

H�

p

2k

: (23.62)

Modes outside the horizon, k � aH, are frozen in with amplitude

jÆ�

k

j =

�

�

�

�

k

a

�

�

�

=

H

p

2k

3

: (23.63)

Power spe
trum of perturbations The two-point 
orrelation fun
tion for the s
alar �eld


u
tuation Æ� is given by

hÆ�(x

0

; t

0

)Æ�(x; t)i =

Z

d

3

k

(2�)

3

jÆ�

k

j

2

e

�ik(x

0

�x)

: (23.64)

Introdu
ing spheri
al 
oordinates in Fourier spa
e and 
hoosing x = x

0

results in

hÆ�

2

(x; t)i =

Z

4�k

2

dk

(2�)

3

jÆ�

k

j

2

=

Z

dk

k

2

2�

2

jÆ�

k

j

2

| {z }

�P (k)

=

Z

dk

k

�

2

�

(k) : (23.65)

The fun
tions P (k) and �

2

�

(k) are the linear and logarithmi
 power spe
trum of the 
u
-

tuations, respe
tively. The spe
trum �

2

�

(k) of 
u
tuations outside of the horizon is given

by

�

2

�

(k) =

k

3

2�

2

jÆ�

k

j

2

=

H

2

4�

2

: (23.66)

Hen
e, the power spe
trum of superhorizon 
u
tuations is independent of the wave-number

in the approximation that H is 
onstant during in
ation. The total area below the fun
-

tion �

2

�

(k) plotted versus ln(k) gives h�

2

(x; t)i. Therefore a spe
trum with �

2

�

(k) = 
onst:


ontains the same amount of 
u
tuations in ea
h de
ade of k. Su
h a spe
trum of 
u
tua-

tions is 
alled a Harisson-Zel'dovi
h spe
trum, and is produ
ed by in
ation in the limit of an

in�nitely slow-rolling in
aton.

Remark 23.2: Let us 
ompare the power-spe
trum of 
u
tuations in in
ation to those of normal

Minkowski spa
e. Re
alling (3.57), the latter are given by

h0j�

2

(x)j0i =

Z

d

3

k

(2�)

3

2!

k

=

Z

1

0

dk

k

k

2

(2�)

2

: (23.67)

Thus the amplitude of 
u
tuations in Minkowski spa
e is given by �

�

(k) � (�

2

�

(k))

1=2

= k=(2�), and

their relative size �

�

(k)=k = 1=(2�) is 
onstant: Going to smaller and smaller s
ales, 
u
tuations

keep being important { this is another point of view to understand the problem of UV divergen
es.

Comparing now the relative size of 
u
tuations at the end of in
ation and in Minkowski spa
e, we �nd

��(k)j

dS

�

�

(k)j

M

= H=k

>

�

e

N

f

� e

60

:

This explains why quantum 
u
tuations be
ome ma
ros
opi
ally important by in
ation.

The 
u
tuations in the in
aton �eld, � = �

0

+ Æ�, lead to 
u
tuations in the stress tensor

T

��

= T

��

0

+ ÆT

��

, and thus to metri
 perturbations g

��

= g

��

0

+ Æg

��

. Thus as next step we

have to examine metri
 perturbations.
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23.4.2. Gauge invariant variables for perturbations

Metri
 s
alar, ve
tor and tensor perturbations The spatial uniformity and isotropy of the

FLRW ba
kground metri
 suggests that we de
ompose perturbations of the metri
 tensor

into irredu
ible 
omponents under spatial rotations. Thus we split the full metri
 tensor g

��

into its ba
kground part g

0

��

and s
alar, ve
tor and tensor perturbations,

g

��

= g

0

��

+ Æg

s

��

+ Æg

v

��

+ Æg

t

��

: (23.68)

This de
omposition is useful, sin
e perturbations with di�erent heli
ities develop indepen-

dently in the linear approximation (problem 24.??).

The line-element of the 
at FLRW metri
 using 
onformal time is

ds

2

= a

2

[d�

2

� Æ

ij

dx

i

dx

j

℄ (23.69)

and thus

g

��

= a

2

(�

��

+ h

��

) and g

��

=

1

a

2

(�

��

+ h

��

) : (23.70)

We break up the perturbation h

��

in a �rst step into

h

��

=

�

2A B

i

B

i

�C

ij

�

; (23.71)

whi
h gives as line-element

ds

2

= a

2

�

(1� 2A)d�

2

+ 2B

i

dx

i

d� � (Æ

ij

+ C

ij

)dx

i

dx

j

�

: (23.72)

The fun
tion A is already a s
alar, while we have to �nd the irredu
ible 
omponents of B

i

and C

ij

. Any ve
tor in R

3


an be written as the sum of a divergen
e-free and a rotation-free

ve
tor; the latter is the gradient of a s
alar. Thus we 
an perform the repla
ements

B

i

= ��

i

B + V

i

(23.73)

and

C

ij

= 2DÆ

ij

+ 2�

i

�

j

E + (�

i

E

j

+ �

j

E

i

) + h

ij

: (23.74)

The six degrees of freedom of the redu
ible tensor C

ij

are de
omposed into two s
alar (D;E),

two ve
tor (E

i

with the 
onstraint �

i

E

i

= 0) and two tensor (h

ij

) degrees of freedom. The

tensor h

ij


orresponds to gravitational waves in the TT gauge, with h

ii

= 0 and �

i

h

ij

= 0.

The three degrees of freedom of the redu
ible ve
tor B

i

are de
omposed into one s
alar (B)

and two ve
tor (B

i

with the 
onstraint �

i

B

i

= 0) degrees of freedom. Thus all-together, Æg

��


ontains four s
alar, four ve
tor and two tensor degrees of freedom. Now we 
an split the line-

element into s
alar, ve
tor and tensor perturbations around the uniform FLRW ba
kground,

ds

2

= a

2

�

(1 + 2A)d�

2

+ 2�

i

Bdx

i

d� � [(1� 2D)Æ

ij

+ �

i

�

j

E℄ dx

i

dx

j

	

(23.75a)

ds

2

= a

2

�

d�

2

+ 2V

i

dx

i

d� � (Æ

ij

+ (�

i

E

j

+ �

j

E

i

))dx

i

dx

j

�

(23.75b)

ds

2

= a

2

�

d�

2

� (Æ

ij

+ h

ij

)dx

i

dx

j

�

: (23.75
)

As next step, we have to determine the sour
e terms for the di�erent perturbations.
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Perturbations of a (non-) ideal 
uid The perturbations of the stress tensor serve as sour
e

for the perturbations of the metri
. If we model the energy 
ontent of the universe as an ideal


uid,

T

��

= (�+ P )u

�

u

�

� Pg

��

(23.76)

with u

�

= (1; 0; 0; 0) for a 
omoving observer, then ÆT

��

is parametrised by the perturbations

Æ�, ÆP and velo
ities v

i

. Thus the perturbed stress tensor ÆT

�

�

of an ideal 
uid 
ontains �ve

degrees of freedom,

ÆT

0

0

= Æ� ; ÆT

j

i

= Æ

j

i

ÆP and ÆT

j

0

= (�+ P )v

j

: (23.77)

We split the ve
tor v

i

again in its irredu
ible 
omponents, v

i

= ~v

i

+ �

i

v. Thus the perturbed

stress tensor of an ideal 
uid 
ontains three s
alars (Æ�, ÆP , v) and one ve
tor (~v

i

), summing

up to �ve degrees of freedom. The remaining �ve degrees of freedom of a general stress

tensor ÆT

��

are 
ontained in the anisotropi
 pressure tensor �

ij

. The presen
e of this term is


hara
teristi
 for a non-ideal 
uid, i.e. a 
uid with vis
osity. Sin
e we extra
ted the isotropi


pressure PÆ

ij

, the anisotropi
 pressure tensor is tra
eless, �

ii

= 0. Looking ba
k at the

de
omposition of C

ij

, we see that the anisotropi
 pressure 
ontains two tensor (/ h

ij

), one

ve
tor (/ (�

i

E

j

+ �

j

E

i

) and one s
alar (/ �

i

�

j

E) degrees of freedom.

We 
an now asso
iate the metri
 perturbations with the various 
ontribution to the per-

turbation of the stress tensor: Tensor perturbation h

ij

have as sour
e only the anisotropi


pressure �

ij

. This term is generated e.g. by freely streaming neutrinos after weak de
oupling,

and its e�e
ts are always subleading. Therefore, we will set �

ij

= 0 in the following and treat

gravitational waves as freely propagating. Ve
tor perturbations 
orrespond to rotational 
ows

of matter|these perturbations are without pra
ti
al interest for two reasons: First, it is un-

likely that they are generated during in
ation and, se
ond, they have only de
aying solutions.

Finally, s
alar perturbations are sour
ed by Æ�, ÆP and v

i

. We will see that they 
ontain a

growing solution and are 
onne
ted to the inhomogeneities of matter in the universe.

Gauge invariant variables for s
alar perturbations In a se
ond step, we have to identify how

the perturbations are 
onne
ted to the physi
al degrees of freedom. We know already that

tensor perturbations, i.e. gravitational waves, 
ontain only two physi
al degrees of freedom.

Similarly, the line-element for s
alar perturbations agrees with the Newtonian weak-�eld limit

(18.72), if one sets A = D = � and E

;ij

= B

;i

= 0. Therefore, one may suspe
t that not all

the four s
alar variables des
ribing s
alar perturbations are physi
al.

In order to identify the physi
al degrees of freedom, we examine how the splitting into

s
alar perturbations 
hanges under a �nite gauge transformation,

~

h

��

= h

��

�r

�

�

�

�r

�

�

�

; (23.78)

of the metri
. We de
ompose the gauge ve
tor �

�

as usually in its irredu
ible 
omponents,

�

�

= (�

0

; �

i

) = (�

0

; �

i

� + �

?

) : (23.79)

Consider now e.g. the 00 
omponent of the metri
 tensor, Æg

(s)

00

= h

00

= 2Aa

2

, from whi
h

we 
an read o� the transformation law of A. With �

0

= a

2

�

0

, r

0

�

0

= (a

2

�

0

)

0

� �

�

00

�

�

and

�

0

00

=H , we �nd

Æg

(s)

00

= 2Aa

2

! 2

~

Aa

2

= 2Aa

2

� 2r

0

�

0

= 2Aa

2

� 2(a

2

�

0

)

0

� 2H a

2

�

0

: (23.80)
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Thus the s
alar perturbation A 
hanges under a gauge transformation as

~

A = A�H �

0

� �

00

: (23.81)

Pro
eeding in the same way for the other perturbations, we obtain

~

B = B + �

0

� �

0

; (23.82)

~

D = D +H �

0

; (23.83)

~

E = E � � : (23.84)

The transformations of the potentials are parametrised by only two arbitrary parameters,

�

0

and �

0

, sin
e �

?

in
uen
es only ve
tor perturbations. Moreover, the gauge ve
tor (23.79)


ontains no tensor 
omponent, whi
h expresses the fa
t that h

��

in the TT gauge 
ontains

only physi
al degrees of freedom. As a result, we 
an eliminate two variables: For instan
e,


hoosing �

0

= �D=H and � = E we 
an set

~

D =

~

E = 0.

There are two ways to eliminate the gauge ambiguity in the s
alar perturbations: In the

�rst one, we 
ombine the gauge dependent variables into invariant 
ombinations. Consider

e.g. the quantity

	 = D �H (B �E

0

) (23.85)

whi
h is invariant under gauge transformations,

	!

~

	 =

~

D �

~

H (

~

B �

~

E

0

) = D �H (B �E

0

) : (23.86)

Similarly, the 
ombination

� = A+H (B �E

0

) + (B �E

0

)

0

(23.87)

is shown to be invariant. This method was suggested by Bardeen and therefore 	 and � are


alled Bardeen potentials. An alternative way is to 
hoose a gauge 
ondition whi
h eliminates

the gauge freedom partly or 
ompletely, analogously to the Coulomb gauge in ele
trodynami
s.

The 
onformal Newtonian gauge has the virtue that the metri
 for s
alar perturbations is

diagonal, sin
e one sets B = E = 0. Then the Bardeen potentials be
ome 	 = D and � = A

and we 
an write the s
alar part of metri
 as

ds

2

= a

2

�

(1 + 2�)d�

2

� (1� 2	)Æ

ij

dx

i

dx

j

	

: (23.88)

We show in the appendix that the 
ombination � � 	 is only sour
ed by the anisotropi


pressure. In the absen
e of anisotropi
 pressure, 	 = �, and thus the line-element (ex
ept

for the 
onformal fa
tor a

2

) 
oin
ides with the S
hwarzs
hild metri
 in the Newtonian limit.

This makes an understanding of the perturbation, espe
ially on sub-horizon s
ales, easier.

Gauge invariant 
urvature perturbation In the full theory, gauge transformations 
ouple

matter and 
urvature 
u
tuations. Thus we have to �nd as �nal step a gauge invariant 
om-

bination of both 
u
tuations. We determine �rst how the matter perturbation Æ� transforms

under a gauge transformation ~x

�

= x

�

+ �

�

(x

�

),

f

Æ�(~x) =

~

�(~x)� �

0

(~x) = �(x)� �

0

(x+ �) = �(x)� �

0

(x)

| {z }

Æ�(x)

��

0

�

0

�

0

(x) : (23.89)
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Here we used that � is a s
alar �eld,

~

�(~x) = �(x), and that �

0

is uniform. Thus the pertur-

bation transforms as

f

Æ�(~x) = Æ�(x) � �

0

�

0

0

' Æ�(x) � �

0

�

0

; (23.90)

where we 
ould repla
e also �

0

0

� �

0

negle
ting a quadrati
 term. We know already that D

transforms as

~

D = D +H �

0

. Thus the quantity

R � D +H

Æ�

�

0

0

!

~

R = D +H �

0

+H

Æ�� �

0

�

0

�

0

0

= R (23.91)


alled the 
urvature perturbation is a gauge invariant 
ombination of the metri
 perturbation

D and the matter perturbation Æ�.

23.4.3. Flu
tuations in the full linear theory

Up to now, we have 
onsidered the evolution of the in
aton �eld � in a �xed FLRW ba
k-

ground, negle
ting the ba
k-rea
tion of the 
u
tuation Æ� on the metri
 g

��

. The Einstein

equations 
ouple however the in
aton �eld � and the metri
 g

��

already at the linear level.

Having identi�ed gauge invariant variables for the perturbations, it remains to perform the

straightforward but tedious linearisation of the Einstein equations.

Perturbed stress tensor of the in
aton Inserting into the stress tensor (23.12) of a s
alar

�eld,

T

�

�

= g

��

�

�

��

�

�� Æ

�

�

�

1

2

g

��

�

�

��

�

�� V (�)

�

; (23.92)

the de
omposition �(x) = �

0

(t)+Æ�(x) into a homogeneous ba
kground �eld and 
u
tuation,

we �nd

ÆT

0

0

=

1

a

2

�

���

02

0

+ �

0

0

Æ�+ V

;�

0

Æ�

�

(23.93a)

=

1

a

2

�

���

02

0

+ �

0

0

Æ��

�

�

00

0

+ 2

a

0

a

�

0

0

�

Æ�

�

; (23.93b)

ÆT

0

i

=

1

a

2

�

0

0

�

i

Æ� : (23.93
)

Here we used the Klein-Gordon equation for �

0

to repla
e V

;�

0

. The only information we will

need on the spatial 
omponents ÆT

j

i

of the perturbed stress tensor of the in
aton is that the

uniformity of the ba
kground requires that ÆT

j

i

/ Æ

j

i

.

Next we observe that � =

_

�

2

=2 + V (�) and P =

_

�

2

=2 � V (�) imply for the ba
kground

�eld �

0

that

�+ P =

_

�

2

0

=

�

02

0

a

2

: (23.94)

Comparing ÆT

0

i

= a

�2

�

0

0

�

i

Æ� to an ideal 
uid, ÆT

0

i

= �(� + P )�

i

v = �(�

02

0

=a

2

)�

i

v, we have

thus

v = �

Æ�

�

0

0

: (23.95)

The 
hoi
e of a 
o-moving gauge, where v = 0, leads hen
e to Æ� = 0: The in
aton 
u
tuations

are zero in the frame where the observer is at rest relative to the in
aton. Thus the 
urvature

perturbation R be
omes R = D on the hypersurfa
es de�ned by v = 0. Evaluating then

the three-dimensional 
urvature R

(3)

using the spatial part of the metri
 (23.75a), one �nds

R

(3)

= 4=a

2

�R. This explains the name 
urvature perturbation for R.
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Perturbed Einstein equations As next step, we need the linearised Einstein tensor for per-

turbations around the FLRW metri
. The result of the straight-forward but lengthy 
al
u-

lations are given in the appendix 23.A. We use the 
onformal Newtonian gauge where the

metri
 
ontains the two Bardeen potentials � and 	. Sin
e the anisotropi
 pressure is zero,

it follows � = 	, and thus the Einstein equations 
ontain only two free variables, whi
h we


hoose as � and Æ�. Therefore we 
an sele
t out of three Einstein equations (00, 0i and ij) the

two most 
onvenient ones. Choosing the time-time and the time-spa
e equations, we avoid

se
ond-order time derivatives and �nd

��� 3

a

0

a

�

0

� 3

a

02

a

2

� = 4�G

�

���

02

0

+ �

0

0

Æ�

0

�

�

�

00

0

+ 2

a

0

a

�

0

0

�

Æ�

�

; (23.96a)

�

0

+

a

0

a

� = 4�G�

0

0

Æ� : (23.96b)

Here we 
ould integrate the last equation immediately, sin
e H and �

0

are uniform.

Our aim is to 
ombine these two �rst-order equations into a single se
ond order equation for

the gauge-invariant variable R. An often employed strategy is to simplify �rst Eq. (23.96a),

negle
ting terms whi
h are small in the slow-roll approximation. We prefer to derive the exa
t

equation for single �eld in
ation, massaging the 
omplete Eq. (23.96a) into a suitable form.

We use that the ba
kground �eld �

0

and the s
ale fa
tor a are 
onne
ted by the unperturbed

Einstein equations. Changing Eqs. (19.48) and (19.49) to 
onformal time, we have

2a

00

a

3

+

a

02

a

4

= �8�GP and 3

a

02

a

4

= 8�G� : (23.97)

Subtra
ting then these two equations, we 
an write

a

00

a

� 2

a

02

a

2

= �4�G(� + P )a

2

= �4�G�

02

0

; (23.98)

where we used also (23.94). This allows us to eliminate the � term on the RHS of (23.96a),

��� 3

a

0

a

�

0

�

�

a

02

a

2

+

a

00

a

�

� = 4�G

�

�

0

0

Æ�

0

�

�

�

00

0

+ 2

a

0

a

�

0

0

�

Æ�

�

: (23.99)

Next we eliminate the � term on the LHS: We substitute � by Æ� and �

0

with the help of

(23.96b), and use then again (23.98). The LHS of (23.99) be
omes thereby

��� 4�G(�

02

0

�

0

+ �

0

0

Æ�) :

Then we bring all terms linear in G to the RHS and 
ombine them as

�� = 4�G

a

a

0

�

02

0

d

d�

�

�+

a

0

a�

0

0

Æ�

�

: (23.100)

Now we re
ognise the term in the parenthesis as the gauge-invariant variable R we were out

for. We 
an 
ombine the dependen
e of R on � and Æ� introdu
ing as new variable

~

� = Æ�+

a�

0

0

a

0

� : (23.101)
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Analogous to the uniform 
ase, we repla
e next

~

� by the auxiliary �eld u = a

~

�, whi
h is often


alled the Mukhanov-Sasaki variable. It is 
onne
ted to R by

u = �

a

2

�

0

0

a

0

R � zR : (23.102)

Expressed by the Mukhanov-Sasaki variable, Eq. (23.100) be
omes

�� = 4�G

z

a

�

02

0

d

d�

�

u

z

�

: (23.103)

Then we rewrite the not yet used Eq. (23.96b) as fun
tion of u,

a

0

a

2

d

d�

�

a

3

a

0

�

�

= 4�G�

0

0

u : (23.104)

The remaining task is to 
ombine these two equations. Applying � on (23.100), repla
ing

�� via (23.103) and inserting �

0

0

= za

0

=a

2

, we arrive at

d

d�

�

z

2

�

d

d�

u

z

��

= z�u (23.105)

or

u

00

�

z

00

z

u

2

��u = 0 : (23.106)

This equation des
ribes linear perturbations in single-�eld in
ation exa
tly, i.e. without im-

plying the slow-roll approximation or any spe
i�
 shape of the in
ation potential.

For superhorizon modes, �u � 0, and the growing modes satis�es u / z. The de�nition of

the Mukhanov-Sasaki variable implies then that R is 
onserved during in
ation, i.e. does not

depend on time for superhorizon modes. More generally, one 
an show that R is 
onserved

on superhorizon s
ales also after in
ation, if the perturbations are adiabati
.

In order to quantise u, we need to �nd its a
tion S[u℄. Formally, we 
ould derive S[u℄ by

integrating out the the gravitational potential � from the 
ombined a
tion S[g

��

; �℄. We use

instead that the equation of motion (23.106) �xes the a
tion up to an unknown 
onstant A

as

S[u℄ = A

Z

d

4

x

�

u

02

� (�

i

u)

2

+

z

00

z

u

2

�

: (23.107)

Then we determine A by requiring that the term �

02

whi
h 
omes form the s
alar a
tion, has

the 
orre
t 
oeÆ
ient 1/2. With u = � + z�, we obtain A = 1=2. The e�e
tive mass of the

u �eld is now

m

2

eff

= �

z

00

z

= �

H

a

_

�

�

2

��

2

 

a

_

�

H

!

; (23.108)

where we used

z = �

a

2

�

0

0

a

0

= �

a

_

�

0

H

= �

p

2a

f

M

Pl

" : (23.109)

The ba
k-rea
tion between the s
alar and the gravitational �eld is en
oded in the time

behaviour of

_

� and H. The exa
t solutions of Eqs. (23.106) and (23.107) have to be found

by numeri
al integration. To pro
eed analyti
ally, we employ instead the slow-roll approxi-

mation: Then the Hubble parameter is 
lose to 
onstant, H � 
onst:, and the kineti
 energy
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_

�

0

should be small for a suÆ
iently long time, while a is in
reasing exponentially. Thus we


an treat

_

� and H as 
onstant, obtaining in the slow-roll approximation

m

2

eff

= �

z

00

z

! �

�

00

�

: (23.110)

Therefore we 
an identify in the slow-roll approximation the Mukhanov-Sasaki variable u with

�, while

~

� 
oin
ides with �=a. Hen
e, our results obtained for a �xed FLRW ba
kground

remain valid in the lowest order of the slow-roll approximation, if we expressR by

~

�: Inserting

(23.109) in u = a

~

� = zR, we obtain this relation as

R =

a

z

~

� =

H

_

�

0

~

� : (23.111)

We 
an now use the 
onne
tion between perturbations in R and

~

� using our result in a �xed

ba
kground,

�

2

R

(k) =

H

2

_

�

2

�

2

�

(k) =

H

2

_

�

2

H

2

4�

2

=

�

H

2

2�

_

�

�

2

k=aH

=

1

8�

2

"

�

H

f

M

Pl

�

2

�

�

�

�

�

k=aH

: (23.112)

Here, we used also

_

H = �4�G

_

�

2

from Eq. (23.27) and " = �

_

H=H

2

. Moreover, we a

ounted

for deviations from de Sitter (i.e. the time dependen
e ofH) by evaluating the power spe
trum

for wave-ve
tors at horizon 
rossing, k = aH. Sin
e during slow-roll in
ation H

2

/ V , we see

that the normalisation of the power-spe
trum informs us about the ratio V=".

Tensor perturbations While s
alar perturbations are a gauge-dependent mixture of pertur-

bations in Æg

s

��

and Æ�, tensor perturbations Æg

t

��

are fully �xed by the two physi
al degrees

of freedom in the gravitational wave tensor h

��

present in the TT gauge. Moreover, the

sour
e term for gravitational waves 
orresponds to anisotropi
 pressure, whi
h is absent in

the perturbed stress tensor of the in
aton. We have seen that the a
tion (18.80) for gravita-

tional waves in the TT gauge is identi
al to the one of a free minimally 
oupled s
alar �eld,


hanging its normalisation by 2 � 32�G. Hen
e the power spe
trum �

2

T

(k) of the metri


tensor perturbations is 
onne
ted to the s
alar perturbations �

2

�

(k) by

�

2

t

(k) = 2� 32�G�

2

�

(k)

�

�

k=aH

=

2

�

2

�

H

f

M

Pl

�

2

�

�

�

�

�

k=aH

: (23.113)

Measuring the amplitudes of s
alar and tensor perturbations on the s
ale k = aH determines

thus both the slow-roll parameter " and the Hubble parameter H at horizon 
rossing of this

mode.

Deviations from a s
ale-invariant spe
trum The spe
trum of 
u
tuations is s
ale-invariant

only for a de Sitter universe. Sin
e in
ation has to end, we expe
t deviations from the s
ale-

invariant spe
trum P (k) / 1=k whi
h we parametrise via the s
alar spe
tral index n

s

of the

s
alar 
u
tuations. Thus �

2

R

(k) / k

�(1�n

s

)

and

n

s

� 1 �

ln�

2

R

(k)

ln(k)

=

d ln�

2

R

(k)

dN

dN

d ln(k)

: (23.114)
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Sin
e the slow-roll parameters determine the deviations from de Sitter expansion, we should

be able to express n

s

via " and �. Using �

2

R

(k) = H

2

=(8�

2

")

�

�

k=aH

, we �nd for the �rst fa
tor

d ln�

2

R

(k)

dN

= 2

d lnH

dN

�

d ln "

dN

= �2"� � ; (23.115)

where we used the de�nition of the slow-roll parameters. For the evaluation of the se
ond

fa
tor, we use that modes 
rossing the horizon satisfy k = aH, or

lnk = lna+ lnH : (23.116)

Di�erentiating this expression and re
alling dN = d ln(a) gives

d ln(k)

dN

= 1� " : (23.117)

Combining the results for the two fa
tors and negle
ting se
ond order terms, we arrive at

n

s

� 1 � (�2"� �)(1 + ") � �2"� � : (23.118)

Thus the slope of the s
alar 
u
tuations informs us about deviations from a perfe
t de Sitter

phase, or via "

V

and �

V

, on the shape of the in
aton potential.

Next we 
onsider tensor 
u
tuations, de�ning their spe
tral slope by

n

t

�

ln�

2

r

(k)

ln(k)

: (23.119)

In 
ontrast to the s
alar slope, n

t


ontains no " term and thus it is given simply by

n

t

= �2" : (23.120)

Tensor-s
alar ratio The ratio r of perturbations in tensor and s
alar modes is determined

in single �eld in
ation fully by the slow-roll parameter ",

r �

�

2

t

�

2

R

=

2

�

2

�

H

f

M

Pl

�

2

=

H

2

8�

2

"

=

8

_

�

2

f

M

2

Pl

H

2

= 16" : (23.121)

This result has two important 
onsequen
es. First, we 
an derive an upper limit on rj

k=aH

as fun
tion of the in
aton �eld value at the time of horizon 
rossing of the s
ale k. This limit,

often 
alled the Lyth bound, 
an be derived using d�=(dtH) = d�=dN . Then the amount

�� the in
aton evolved between the horizon exit of the CMB modes and the end of in
ation

is given by

�� �

f

M

Pl

Z

N

CMB

0

dN

p

r=8 � few�

f

M

Pl

�

r

0:01

�

1=2

: (23.122)

Here, we used that r during slow-roll should be nearly 
onstant. This relation 
onne
ts the

tensor-s
alar ratio on CMB s
ales and the minimal initial value of the in
aton. Hen
e large,

observable tensor perturbations require trans-Plan
kian initial values of the in
aton.

As se
ond 
onsequen
e, we 
an derive a so-
alled 
onsisten
y relation. We 
an 
ombine

r = 16" and n

t

= �2" as follows

n

t

= �2" = �

r

8

: (23.123)

The slope of the tensor perturbations is �xed by the ratio of the amplitudes of s
alar and

tensor perturbations. Measuring n

t

independently provides therefore a 
onsisten
y 
he
k of

single �eld in
ation.
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23.5. Outlook: Further evolution of 
u
tuations

Emergen
e of 
lassi
al �elds In
ation ampli�es the length-s
ales of perturbations whi
h

have been generated as quantum 
u
tuations. Sin
e �eld operators as

�(�;x) =

Z

d

3

k

(2�)

3=2

�

�

(+)

k

(�)a

y

k

e

�ikx

+ �

(�)

k

(�)a

k

e

ikx

�

(23.124)

are 
omplex, the expe
tation values of produ
ts of �elds are 
omplex too. Moreover, they

are depending on their order. In 
ontrast, the 
u
tuations of a 
uid are 
lassi
al and real. In

general, we expe
t that the initial quantum 
u
tuations are 
onverted into 
lassi
al 
u
tua-

tions by the phenomenon of de
oheren
e, i.e. by the 
oupling to a thermal bath. In the 
ase

of superhorizon 
u
tuations, the 
oupling between the in
aton and the gravitational �eld is

suÆ
ient for this 
onversion pro
ess: For modes after horizon exit, k

�

� 1=j�j, whi
h are

frozen in, the �eld operator simpli�es to

�(�;x) =

Z

k

�

d

3

k

p

(2�)

3

2!

k

�

�1

k�

�

�

a

y

k

e

�i(kx+�

k

)

+ a

k

e

i(kx��

k

)

�

; (23.125)

where �

k

are arbitrary phases. Thus the mode fun
tions are real, �

(+)

k

(�) = �

(�)

k

(�). As

a result, also the expe
tation values of produ
ts of �elds be
ome real and do not depend

on the order. This 
an be also seen 
al
ulating the 
anoni
ally 
onjugated �eld operator on

super-horizon s
ales,

�(�;x) =

�L

��

0

= �

1

�

�(�;x) (23.126)

whi
h is proportional to �(�;x). Therefore, the two operators 
ommute and � behaves as

a 
lassi
al �eld. Thus we 
an treat the perturbations as 
lassi
al random �elds and repla
e

quantum averages by statisti
al averages. Sin
e we in
luded only the quadrati
 part of the

potential, 
f. Eq. (23.54), the quantum �eld � is a free Gaussian �eld. As a result, the 
or-

responding 
lassi
al random �eld is Gaussian too, implying that all information is 
ontained

in the two-point 
orrelation fun
tions. Deviations from Gaussianity should be non-zero but

tiny.

23.5. Outlook: Further evolution of 
u
tuations

We have found that in
ation generates a nearly power-law like spe
trum of 
urvature 
u
tu-

ations and gravitational waves. Superhorizon modes are frozen-in and 
an be des
ribed by


lassi
al Gaussian random �elds. These 
u
tuations be
ome observable through the temper-

ature 
u
tuations of the CMB and the large-s
ale stru
ture of the universe. The evolution

of these 
u
tuations after in
ation follows 
lassi
al physi
s, and thus this topi
 is outside the

fo
us of this book. We give therefore in this se
tion only a sket
hy overview.

After reheating, the matter 
ontent of the universe 
onsists of a plasma 
ontaining at least

the SM degrees of freedom. Additionally, there should be new parti
les asso
iated to a dark

matter se
tor and to baryogenesis. Initially, all the spe
ies

3

are tightly 
oupled and 
an

des
ribed therefore as an ideal 
uid with a single mode of perturbation Æ�. This implies that

the 
u
tuations are adiabati
, i.e. that they satisfy

Æ�

i

= _�

i

Æ(x) and ÆP

i

=

_

P

i

Æ(x) (23.127)

3

An ex
eption might be e.g. non-thermal DM whi
h presen
e would lead to isothermal 
u
tuations.
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Figure 23.4.: S
hemati
 evolution of perturbations in 
old dark matter, photons, and baryons.

with a single fun
tion Æ(x) des
ribing the density and pressure 
u
tuations of all the 
ompo-

nents i. In this 
ase, the 
onservation law for R 
ontinues to hold for superhorizon modes.

As the universe 
ools down, some spe
ies go �rst out of 
hemi
al and later out of kineti
 equi-

librium. As a result, the evolution of these spe
ies has to be des
ribed either by a non-ideal


uid in
luding anisotropi
 pressure or by a set of 
oupled Boltzmann equations. Examples

where su
h a treatment is ne
essary are the free-streaming of neutrinos after weak de
oupling

and of photons after re
ombination.

During the evolution of the universe, at least two episodes happened where unknown physi
s

beyond the SM 
an in
uen
e the evolution of 
u
tuations: These two episodes are the gen-

eration of the baryon asymmetry and of the dark matter abundan
e. If both are generated

through the freeze-out me
hanism dis
ussed in 
hapter 20 and 21, then the same ratio n

B

=s

and n

DM

=s is generated in the whole universe. As a result, the 
u
tuations remain adiabati
.

Another option is that the ratios n

B

=s or n

DM

=s vary in spa
e. Su
h 
u
tuations are 
alled

iso
urvature perturbations. This may happen e.g. in axion models, if the Pe
eei-Quinn phase

transition takes pla
e at a smaller temperature than reheating. Then the observable uni-

verse today 
ontains many pat
hes with di�erent values of the misalignment angle #. Sin
e

# is spa
e dependent, the resulting axion dark matter density n

DM

=s varies in spa
e, too.

Observations of the CMB are 
onsistent with a purely adiabati
 
u
tuation spe
trum and


an be thus used to limit models predi
ting iso
urvature perturbation.

Matter perturbations The evolution of the perturbations Æ�

i

and ÆP

i


an be determined

from the Einstein equations, following the same strategy as in the 
ase of the in
aton but

using the stress tensor for a sum of the various 
uid 
omponents. The evolution of the density


ontrast in di�erent 
omponents of the energy density of the universe is s
hemati
ally shown

in Fig. 23.4 assuming adiabati
 
u
tuations.

An important feature to note is that the density 
ontrast of radiation is approximately


onstant. This 
an be understood from the fa
t that the s
ale on whi
h radiation is grav-

itationally bound is 
omparable to the Hubble radius (problem 24.??). As a result, also

the density 
ontrast of baryons is approximately 
onstant as long the photon-baryon 
uid is
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tightly 
oupled. In 
ontrast, the density 
ontrast of CDM grows as Æ

CDM

/ (1 + z) starting

from matter-radiation equilibrium z

eq

. At re
ombination, baryons de
ouple from photons

and start to fall into the potential walls formed by CDM. Note also that 
u
tuations of CDM

on small s
ales k 
rossed earlier the horizon. They started therefore to grow and to form

gravitationally bound systems earlier, leading to the hierar
hi
al formation of stru
tures in

a CDM universe. Observations strongly favour this pi
ture. Finally, the growth of the den-

sity 
ontrast stops outside of already gravitationally bound stru
tures, when the a

elerated

expansion of Universe starts at z ' 0:5.

Example 23.4: Derive the 
onne
tion between R and the gravitational potentials.

We mat
hed already the 
u
tuations of the in
aton and the plasma, see Eqs. (23.94) and (23.95),

�nding v = �Æ�=�

0

0

. Thus we 
an express the 
urvature perturbation in the 
onformal Newtonian

gauge as

R = 	�H v : (23.128)

Using now the (integrated) 0i 
omponent of the Einstein equation, 	

0

+H � = 4�Ga

2

(� + P )v and

H

2

= 8�Ga

2

�=3, we obtain

R = 	+

2

3

� +	

0

=H

1 + w

: (23.129)

Here, w = P=� is the e�e
tive EoS with P =

P

i

P

i

and � =

P

i

�

i

for the di�erent 
omponents of the

plasma. This equation allows us to dedu
e two important results, 
f. problem 24.??: First, di�eren-

tiating it for adiabati
 perturbations shows that R is also after in
ation 
onserved on superhorizon

s
ales. Se
ond, we 
an use it to dedu
e from R the gravitational potentials, i.e. we 
an 
onne
t the

predi
tions of in
ationary models with the input for the formation of large-s
ale stru
tures. In parti
-

ular, Eq. (23.129) simpli�es negle
ting anisotropi
 pressure and assuming w = 
onst: on superhorizon

s
ales to

� = 	 =

3 + 3w

5 + 3w

R : (23.130)

This gives � = 2R=3 for the radiation and � = 3R=5 for the matter dominated epo
h.

Angular power spe
trum We will next examine in somewhat more detail the 
osmi
 mi-


rowave ba
kground (CMB). Flu
tuations in the CMB temperature are seen on the sphere of

last s
attering. Thus it is 
onvenient to de
ompose a map of CMB temperatures T (#; �) into

spheri
al harmoni
s Y

lm

(#; �),

T =

1

X

l=0

l

X

m=�l

a

lm

Y

lm

(#; �) : (23.131)

The �rst two moments are usually 
onsidered separately: The monopole moment l = 0 of a

CMB temperature map 
orresponds to the average temperature of the CMB, T

0

= 2:725 K.

The relative motion of the Sun with respe
t to the CMB introdu
es (mainly) a dipole l = 1

anisotropy. More pre
isely, the temperature transforms as

T =

T

0

p

1� �

2

1� � 
os#

= T (1 + 
os� +O(�

2

)) ; (23.132)

where we 
an negle
t the higher order terms be
ause the pe
uliar velo
ity of the Sun is small,

� = v=
 � 1: From the size of the dipole one dedu
es that the Sun moves with 370 km/h

relative to the CMB.

393



23. In
ation

If this dipole anisotropy is subtra
ted, temperature di�eren
es of the order ÆT=T � 10

�5

remain between di�erent dire
tions of the sky. However, in ea
h dire
tion the spe
trum is the

one of a perfe
t bla
k-body. The moments l � 2 of the 
u
tuations ÆT=T ,

�(#; �) �

ÆT

T

=

1

X

l=2

l

X

m=�l

a

lm

Y

lm

(#; �) (23.133)

are 
onne
ted with the 
osmologi
al parameters and physi
al pro
esses between re
ombination

and today. For an isotropi
 universe, the m dependen
e of the 
oeÆ
ients a

lm


ontains no

information and one de�nes therefore

C

l

= ha

lm

a

�

lm

i =

1

2l + 1

l

X

m=�l

a

lm

a

�

lm

: (23.134)

Sin
e a single spheri
al harmoni
 Y

lm


orresponds roughly to angular variations of # � �=l,

the 
oeÆ
ient C

l

determines the power of 
u
tuation with the angular s
ale �=l. Note that

this pro
edure allows one to repla
e an average over an ensemble of universes by an average

over di�erent pat
hes of the observed Universe. For small `, this introdu
es an irredu
ible

statisti
al error ÆC

`

=C

`

� 1=

p

2`+ 1 whi
h is 
alled 
osmi
 varian
e.

We are not interested in the temperature 
u
tuations �(#; �) themselves, but only in

their statisti
al properties. For Gaussian initial quantum 
u
tuations, all the information is


ontained in the two-point 
orrelation fun
tion,

C(#) =




�(#; �)�(#

0

; �

0

)

�

: (23.135)

(Sin
e the initial 
urvature 
u
tuations are small, the perturbations of all other quantities

are linearly related to the 
urvature 
u
tuations and therefore Gaussian too.) A Legendre

transformation gives then

C

l

= 2�

Z

1

�1

d 
os# C(#)P

l

(
os#) ; (23.136)

whi
h summarise in an eÆ
ient way the experimental data ÆT (#; �) 
ontained in the many

pixels of an CMB experiment. In the next step, we have to 
onne
t the temperature 
u
tua-

tions observed today to the 
u
tuations at re
ombination.

Temperature 
u
tuations Our aim is to 
onne
t the frequen
y of a photon emitted on the

last s
attering surfa
e (LSS) to its frequen
y today. This 
al
ulation is simpli�ed performing

it in the frame whi
h is 
onformally 
at for zero perturbations, ~g

��

= g

��

=a

2

(�), using that

light-like geodesi
s 
oin
ide in two 
onformally related frames.

Let us 
onsider the 
ovariant momentum P

�

= dx

�

=d� of a photon as fun
tion of 
onformal

time � = x

0

(�). Then we 
an rewrite the geodesi
 equation dP

�

=d�+�

�

��

P

�

P

�

= 0 using

dP

�

d�

=

d�

d�

dP

�

d�

= P

0

dP

�

d�

(23.137)

as

dP

�

d�

+ �

�

��

P

�

P

0

P

�

P

0

P

0

= 0 : (23.138)
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In the following, we will need only the 
omponent of this equation des
ribing the evolution

of P

0

. Using the 
onformal Newtonian gauge and 
urvature perturbations, the Christo�el

symbols related to the frame ~g

��

are given by �

0

i0

= �

i

�, and �

0

ij

= 	

0

Æ

ij

. Inserting them

into the geodesi
 equation for P

0

, it follows

dP

0

d�

+

�

�

0

+	

0

Æ

ij

P

i

P

0

P

j

P

0

+ 2�

i

�

P

i

P

0

�

P

0

= 0 : (23.139)

Without perturbations, dP

�

=d� = 0 and thus the ve
tor n

i

= n

i

= P

i

=P

0

is a 
onstant

tangent ve
tor along the photon traje
tory with unit norm. Next we rewrite the parenthesis

as

�

0

+	

0

Æ

ij

n

i

n

j

+ 2n �r� = �(�

0

�	

0

) + 2(�

0

+ n �r�) : (23.140)

Here, we 
ombined the terms su
h that the se
ond parenthesis on the RHS is a total derivative,

sin
e

d�(�;x(�))

d�

= �

0

+

�x

��

�r� = �

0

+

�x=��

��=��

�r� = �

0

+

P

P

0

�r� = �

0

+ n �r� :

(23.141)

Integrating (23.140) along the photon traje
tory and using that P

�

is 
onstant at zero order,

we obtain

P

0

(�

0

)� P

0

(�

1

)

P

0

(�

1

)

=

Z

�

0

�

1

d�(�

0

�	

0

)� 2[�(�

0

)� �(�

1

)℄ : (23.142)

Now we have to 
onne
t this expression to the observed photon frequen
y today in the frame

g

��

. Let us denote the frequen
y in the rest-frame of the plasma of a photon emitted at the

point x of the LSS with �!. In the frame 
onne
ted to the g

��


oordinates, the plasma moves

with the four-velo
ity u

�

, with the 
omponents u

0

= (1� �) and u

i

= v

i

(re
all that we use


onformal quantities). Thus it follows

u

0

= (1 + �) and u

i

= u

i

= �v

i

:

We 
hoose in the rest-frame of the plasma at the position where the photon is emitted normal


oordinates, �g

��

(x) = �

��

. Then �u

�

= (1;0) and ! = �u

�

�

P

�

=

�

P

0

. Sin
e ! = u

�

P

�

= �u

�

�

P

�

,

we 
an use

! = u

�

P

�

= (1 + �)P

0

� v � P = (1 + �� n � v)P

0

(23.143)

to 
al
ulate the frequen
y !(�

1

) of the photon emitted at LSS. The same formula applies

to the frequen
y !(�

0

) measured by an observer at present time �

0

with velo
ity v

i

in the


onformal frame. Thus the relative frequen
y shift is

!(�

0

)� !(�

1

)

!(�

1

)

=

Z

�

0

�

1

d�(�

0

�	

0

)� [�(�

0

)� �(�

1

) + n � vj

�

0

� n � vj

�

1

℄ : (23.144)

The RHS is independent of the photon frequen
y and thus an initially thermal photon spe
-

trum remains thermal. Consequently, the same formula gives also the relative temperature


hange �(�n) = ÆT=T of the CMB in the dire
tion k = �kn. The monopole 
ontribution

�(�

0

) is not observable, sin
e it 
an be absorbed into the average CMB temperature. Similarly,

the term n � vj

�

0


orresponds to the dipole term due to the movement of the observer versus
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the CMB whi
h we subtra
ted. Finally, we should add the temperature 
u
tuations on the

LSS whi
h are 
onne
ted to the energy density 
u
tuation on the LSS via Æ�




=�




= 4ÆT=T .

Combining everything, we obtain

�(n; �

0

) =

Z

�

0

�

r

d�(�

0

�	

0

)

| {z }

ISW

+

1

4

Æ�




�




+�(�

r

)

| {z }

SW

+ n � vj

�

r

| {z }

Doppler

: (23.145)

The last term a

ounts for the Doppler e�e
t indu
ed by the movement of the plasma relative

to the 
oordinate frame. The two terms in the middle des
ribe the Sa
hs-Wolfe e�e
t, whi
h

has two 
ontributions: An overdense spot emits photons with larger average energies but

has also a larger (negative) gravitational potential whi
h in turn leads to a larger redshift.

Thus the two 
ontributions 
an
el partly. Finally, the �rst terms 
alled the integrated Sa
hs-

Wolfe e�e
t take into a

ount the 
hange of the gravitational potentials between LSS and

today. Next we should stress the approximations we made: First, we have assumed that

re
ombination happens instantaneously. Se
ond, we have negle
ted that some of the photons

may s
atter on free ele
trons after the universe be
ome reionised by the �rst stars at z

<

�

10.

We omit from now on the argument �

0

and write simply �(n; �

0

) � �(n). On
e again, it

is useful to move to Fourier spa
e: The integral in �(n) re
eives 
ontributions along the path

x(�) = �n with � 2 [�

r

; �

0

℄. Thus the Fourier transformed �(k) is a fun
tion only of �n and

the magnitude k, or �(k) = �(kn; k) � �(k 
os#; k). Performing the Fourier transformation,

we 
an expand thus the phase in Legendre polynomials,

�(n) =

ÆT (�n)

T

=

Z

d

3

k�(
os#; k)e

ik� 
os#

(23.146)

=

X

l

i

l

(2l + 1)

Z

d

3

k

e

�

l

(k)P

l

(
os #) (23.147)

We denoted the Legendre transformed by

~

�

l

(k), be
ause one usually extra
ts the e�e
t of

primordial 
u
tuations in the gravitational potential setting

e

�

l

(k) � �

i

(k)�

l

(k) : (23.148)

Inserting �(n) into (23.135) and the result then in (23.136), we arrive at our �nal formula

for the angular power spe
trum indu
ed by s
alar perturbations,

C

l

= 4�

Z

dk

k

�

�

i

(k)�

2

l

(k) : (23.149)

Hen
e the CMB power spe
trum is determined by the produ
t of the power spe
trum �

�

i

(k)

of initial 
u
tuations and the fun
tions �

2

l

(k). The latter 
ontain proje
tion e�e
ts of the

plane waves onto the sphere of last s
attering, en
ode the physi
s of the 
osmologi
al 
uid at

re
ombination and the evolution of the gravitational potential between in
ation and today.

As simplest appli
ation, we 
onsider the Sa
hs-Wolfe e�e
t whi
h is relevant on large an-

gular s
ales. From an analysis of the 
uid equations one �nds that on superhorizon s
ales

� = �=3 = 3�

i

=10 = R=5 holds (
f. example 24.4),

�(n) =

Z

d

3

k�(n � n; k) =

1

3

Z

d

3

k�(k)e

ik�n(�

0

��

r

)

: (23.150)
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Expanding the plane wave in Legendre polynomials, we obtain as 
oeÆ
ients spheri
al Bessel

fun
tions,

e

�

l

=

1

3

�(k)j

l

(k(�

0

� �

r

)) =

3

10

�

i

(k)j

l

(k(�

0

� �

r

)) ; (23.151)

or, if we extra
t the primordial spe
trum and use �

0

� �

r

,

�

l

=

3

10

j

l

(k(�

0

� �

r

)) '

3

10

j

l

(k�

0

) : (23.152)

Inserting �

l

into Eq. (23.149) results in

C

l

=

36�

100

Z

dk

k

�

�

(k)j

2

l

(k�

0

) : (23.153)

Choosing a power-law �

�

(k) ' A

�

(k=k

0

)

n

s

�1

, we 
an evaluate the integral (problem 24.??)

and obtain �nally in the limit of a 
at spe
trum

C

l

=

18�

100

A

�

l(l + 1)

: (23.154)

Thus a 
at primordial spe
trum results in a 
at temperature power-spe
trum (at l

<

�

100).

Comparing this result to observations determines the normalisation of the primordial 
u
tu-

ations as A

�

' 2:6 � 10

�9

, what in turn �xes (V=")

1=4

� 6� 10

16

GeV using (23.112).

In the left panel of Fig. 23.5, numeri
al results for the temperature power spe
tra from s
alar

perturbations are shown as a bla
k line. After the plateau up to l � 100, a series of peaks

with de
lining amplitude is visible. These peaks are 
aused by the 
oherent os
illations of

the baryon-photon 
uid, with gravitation as the driving and photon pressure as the restoring

for
e. The fundamental frequen
y of these sound waves 
orresponds to the sound horizon,

and thus the �rst peak at l � 200 indi
ates the horizon s
ale at re
ombination. The fa
t that

these peaks are visible in the power spe
trum requires that the os
illations are in phase on

the whole LSS|what is a natural predi
tion of in
ation: Sin
e Fourier modes Æ

k

are frozen-in

outside the horizon, their initial 
ondition is Æ

k

= 
onst: and

_

Æ

k

= 0 at horizon 
rossing. In

other words, all modes Æ

k

� 
os(kx+�

k

) start with �

k

= 0 at horizon 
rossing. The relative

size of these peaks depends on the 
osmologi
al parameters; and the pre
ise measurement of

the CMB power spe
trum has led to the standard model of 
osmology.

Metri
 perturbations and CMB polarisation Another important predi
tion of in
ation are

tensor perturbations whi
h lead to additional temperature 
u
tuations. Their derivation

pro
eeds analogous to the s
alar 
ase, but now the non-vanishing Christo�el symbols in the


onformal Newtonian gauge are given by �

0

ij

= �h

0

ij

. Thus the geodesi
 equation be
omes

dP

0

d�

�

1

2

P

0

h

0

ij

n

i

n

j

= 0 : (23.155)

In linear order, we 
an negle
t again the time dependen
e of P

0

and obtain immediately

P

0

(�

0

)� P

0

(�

1

)

P

0

(�

1

)

=

1

2

Z

�

0

�

1

d� h

0

ij

n

i

n

j

: (23.156)
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Figure 23.5.: CMB temperature and polarisation power spe
tra from s
alar (left) and tensor

perturbations (right) for a (unrealisti
) tensor-to-s
alar ratio r = 0:38, from

[Cha06℄.

The perturbations of an ideal 
uid 
ontain no tensor 
omponent and thus the plasma four-

velo
ity is undisturbed by metri
 perturbations, u

�

= (1; 0). Therefore it is ! = P

0

, and only

the ISW e�e
t 
ontributes to temperature 
u
tuations indu
ed by tensor perturbations,

�(n; �

0

) =

1

2

Z

�

0

�

1

d� h

0

ij

n

i

n

j

: (23.157)

The 
onne
tion between the angular power spe
trum C

l

and the primordial spe
trum of

tensor 
u
tuations is derived following the same logi
 as in the 
ase of s
alar perturbation,

and we summarise therefore just the result: The temperature 
u
tuations indu
ed by tensor

perturbations have also a plateau up to

<

�

100, and de
ay then faster than those of s
alar

perturbations, 
f. with the bla
k line in the right panel of Fig. 23.5. Sin
e the relative size of

tensor and s
alar perturbations is bounded as r < 0:1, it seems thus hopeless to disentangle

the two using only temperature 
u
tuations. What 
omes to our res
ue is that the CMB is

polarised and that one of the two polarisation states 
an be generated only by gravitational

perturbations.

In order to understand how the CMB be
ame polarised, we have to abandon the approxi-

mation of instantaneous re
ombination. Let us model instead the LSS as a layer of thi
kness

2��

r

: Then for �

r

���

r

, photons are tightly 
oupled to the baryon 
uid, while for �

r

+��

r

they are free-streaming. In the intermediate region, they s
atter on free ele
trons. The

s
attering is des
ribed by the non-relativisti
 Thomson 
ross se
tion, � / j"

0

� "j

2

, 
f. with

Eq. (9.69). If we 
hoose linear polarisation ve
tors with "

k


ontained in the s
attering plane

spanned by k and k

0

, and "

?

perpendi
ular to the plane, then �

k

/ 
os

2

# and �

?

/ 1. Thus

Thomson s
attering generates linearly polarised photons. However, this is not suÆ
ient for

the generation of polarised radiation: If the initial photon intensity is isotropi
, the polarisa-

tion is averaged out integrating over the dire
tions of the initial photons. In the 
ase of the

CMB, the initial photon intensity is however anisotropi
, be
ause the intensity of bla
k-body
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radiation is a fun
tion of T . Thus inhomogeneities ÆT=T lead to 
u
tuations of the intensity

whi
h result in turn in 
u
tuations of the polarisation. This implies �rst that the 
u
tuations

in temperatures and the degree of polarisation are 
orrelated and se
ond that the degree of

polarisation is bounded by ÆT=T . Third, the CMB polarisation disappears in the limit of

instantaneous re
ombination, ��

r

! 0. More pre
isely, the polarisation is proportional to

the ratio of the mean-free-path l of photons and the thi
kness ��

r

of the LSS.

Next we dis
uss how we 
an des
ribe the polarisation states of the CMB photons. The

intensity I of a photon beam is determined by the square of the ele
tri
 �eld strength ve
tor,

I /




E

2

�

, where the average h� � �i is taken over one os
illation period. If we distinguish the

two polarisation states of a photon, i.e. set E ! E

a

= fE

+

; E

�

g, then the intensity be
omes

a tensor, I

ab

. This tensor

4

is a Hermitian 2 � 2 matrix and has thus four real 
omponents,

while the polarisation of a photon beam is fully des
ribed by two real parameters. We are

only interested in the polarisation and we introdu
e therefore instead of I

ab

the normalised,

tra
eless 2� 2 polarisation tensor

P

ab

=

1

hE




E




i

�

hE

a

E

b

i �

1

2

hE




E




ig

ab

�

: (23.158)

Sin
e we 
onsider the polarisation on the LSS, we have to use for g

ab

the two-dimensional

metri
 tensor on S

2

. We break the ve
tor E

a

into its rotation and divergen
e free part, whi
h

we 
all E and B, respe
tively,

P

ab

=

�

r

a

r

b

�

1

2

g

ab

�

E + ("

a


r

b

r




+ "

b


r

a

r




)B : (23.159)

From the three quantities T , E, and B, we 
an form six bilinear observables: the auto-


orrelations TT , EE, BB and the 
ross 
orrelations TE, TB, EB. Sin
e T and E are s
alars,

but B is a pseudo-s
alar, the 
ombinations TB and EB are zero (if parity is 
onserved).

Moreover, the polarisation signal is weak and thus the 
ross 
orrelation TE is (after TT )

easiest to observe. Figure 23.5 shows additional to the temperature power spe
tra also the


ross 
orrelation and the E and B power spe
trum.

Typi
al E and B modes are plotted in Fig. 23.6: The expression for P

ab

shows that E

polarisation transforms as a s
alar, while B polarisation is a pseudo-s
alar. As a result, E

modes are symmetri
 with respe
t to re
e
tions at a line through the 
enter, while B modes


hange sign. This distin
tion makes B modes on super-horizon s
ales

5

to a \smoking gun"

for the presen
e of gravitational waves during re
ombination: Sin
e s
alar perturbations are


hara
terised by s
alar fun
tions, they 
an not lead to any B polarisation. On the other hand,

gravitational waves 
onsists of left- and right-
ir
ularly polarised waves, whose amplitudes

h

�

are random variables. Thus in some dire
tions left- and in other dire
tion right-
ir
ular

polarised waves dominate, leading in turn to a (lo
ally) parity breaking B polarisation.

The dete
tion of tensor perturbations would provide important information on the in-


ationary models. Su
h a measurement would inform us that i) B modes are 
orrelated

with temperature 
u
tuations. No 
ausal me
hanism 
an generate these 
orrelations on

superhorizon s
ales. ii) The tensor-s
alar-ratio r measures the energy s
ale of in
ation,

4

Expanding I

ab

on the sphere, we have to use spin-2 spheri
al harmoni
s,

2

Y

l

m

(#; �). This indi
ates already

that the (irredu
ible) spin-2 part of the polarisation signal is sour
ed by tensor perturbations of the metri
.

5

Weak gravitational lensing 
an transform E intoB-modes, as a 
ausal me
hanism however only on subhorizon

s
ales: this 
ontribution is shown in the left panel of Fig. 23.5.
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b b

Figure 23.6.: The two E polarisation (left panel) and B polarisation (right panel) modes

around a polarisation extremum shown by a 
ir
le.

V

1=4

� (r=0:01)

1=4

10

16

GeV. iii) A large value r > 0:01 requires large-�eld models and thus

trans-Plan
kian �eld values. iv) The observation of tensor perturbations would be a proof

that gravity is a usual quantum theory, sin
e they are sour
ed by quantum 
u
tuations.

Su

esses and problems of the in
ationary paradigm In
ation has a set of su

essful

predi
tions: First, the 
atness of the universe, 
 ' 1, whi
h seemed in the 1980s and early

1990s at odds with observations. Se
ond, in
ation seeds s
alar perturbations whi
h are very


lose to Gaussian, nearly s
ale-invariant with a small red tilt, and lead, at least in the simplest

models, to adiabati
 temperature 
u
tuations of the CMB. Third, in
ation predi
ts tensor

perturbations whi
h 
an be dete
ted via B modes. Last but not least, the auto- and 
ross


orrelation of these 
u
tuations have �xed phase relations on superhorizon s
ales, whi
h are

diÆ
ult to understand in any 
ausal me
hanism. From these predi
tions, only the existen
e

of tensor perturbations still awaits 
on�rmation.

Having summarised the su

esses, we turn now to possible problems of the in
ationary

paradigm. First, we 
ome ba
k to the question if trans-Plan
kian �eld values of the in
aton

are problemati
. More pre
isely, we ask if, we 
an trust our analysis of large �eld models

like e.g. V =

1

2

m

2

�

2

. From the point of view of general relativity, the answer is yes: If m

is suÆ
iently small, the energy density satis�es � � V � M

4

pl

and 
lassi
al relativity holds.

Moreover, the virtuality of the quantum 
u
tuations is 
lose to zero and thus spe
ial relativity

ensures that the large spatial momenta are not dangerous as long as their four-momentum

squared is small. However, if we 
on
eive a spe
i�
 in
ationary model L

infl

as part of a


omplete e�e
tive �eld theory L

BSM

beyond the SM, then

L = L

BSM

+L

infl

+

1

X

n=1




n

M

n

Pl

O

4+n

: (23.160)

Usually, we 
an negle
t the operators O

4+n

of dimension �ve and higher, whi
h are suppressed

by powers of (E=M

Pl

)

n

. However, in large �eld models the whole in�nite tower of higher-

dimensional operators should 
ontribute during in
ation with a priori equal weight. Thus

there is no reason to trust the analysis of these models restri
ted to the operators with d � 4


ontained in L

BSM

+L

infl

. If the upper limits on r 
ontinue to improve, this problem might

be
ome in the future however a purely a
ademi
 one,
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23.A. Appendix: Perturbed Einstein equations

Another potential problem be
omes 
lear looking ba
k at Eqs. (23.65) and (23.66). For

a 
onstant power spe
trum, �

2

�

(k) = H

2

=(4�

2

), the two-point fun
tion




Æ�

2

�

is logarithmi-


ally IR and UV divergent. The former divergen
e is 
aused by exponentially large wave-

lengths. These modes are homogeneous over the horizon s
ale both in the present and in

the in
ationary epo
h. Therefore this IR divergen
e 
an be absorbed into a res
aling of the


lassi
al in
aton �eld. Considering the UV divergen
e, we have to re
all that for �eld modes

k

>

�

aH the spe
trum is the one of a free �eld in Minkowski spa
e. Thus the divergen
e of




Æ�

2

�

=

R

dk=k�

2

�

(k) is the same as in Minkowski spa
e, and should be 
ured with our usual

renormalisation pro
edure. Sin
e the modes �

k

of a free �eld are independent, the subtra
tion

of subhorizon modes should not a�e
t the spe
tra of superhorizon modes in �

2

�

(k). While

thus the use of �

2

�

(k) = H

2

=(4�

2

) seems to be in a

ord with our standard pra
tise, other

subtra
tion pro
edures are possible and would lead to di�erent predi
tions. Moreover, we

should keep in mind that our predi
tions depend on the 
hoi
e of the va
uum state. Again,

our sele
tion of the Bun
h-Davies va
uum is well-motivated, but 
annot be derived from �rst

prin
iples.

Finally, let us 
omment on the naturalness of the initial 
onditions in in
ation. We have

seen that in
ation in the homogeneous limit happens for a large set of initial values, 
onsid-

ering e.g. the phase portrait for the 
lassi
al V = m

2

�

2

=2 potential in Fig 23.2. Su
h large


u
tuations should be rare, but the probability per volume to sit inside an in
ationary pat
h

should be large, pre
isely be
ause these pat
hes are exponentially in
ated. In the \eternal

in
ation" s
enario, this simple 
lassi
al pi
ture is 
hanged sin
e quantum 
u
tuations modify

the 
lassi
al in
ation traje
tories. It is un
lear what measure for the initial 
onditions should

be used and thus it is also disputed how natural the initial 
onditions for su

essful in
ation

are in this s
enario.

23.A. Appendix: Perturbed Einstein equations

The derivation of the Einstein equations in the 
onformal Newtonian gauge (23.88) is straight-

forward but tedious. One may either 
al
ulate dire
tly the linearised Einstein tensor for

this metri
, or one may use that the k = 0 FLRW metri
 is 
onformally 
at. Therefore

one 
an map the linearised Einstein equations for perturbations around Minkowski spa
e

derived in 
hapter 18.3 on the FLRW metri
 using the transformation rules (22.2) between


onformally related spa
e-times, see e.g. [GR11a℄. Alternatively, one may use a program

like di�erentialGeometry.py to 
al
ulate �rst the Einstein tensor G

��

for the metri
 (23.88),

expanding then G

��

in � and 	. Either way, the Einstein tensor in the 
onformal Newtonian

gauge at linear order in the perturbations 	 and � follows as

ÆG

0

0

=

2

a

2

�

�	� 3

a

0

a

	

0

� 3

a

02

a

2

�

�

(23.161a)

ÆG

0

i

=

2

a

2

�

�

i

	

0

+

a

0

a

�

i

�

�

(23.161b)

ÆG

j

i

=

1

a

2

�

i

�

j

(��	)�

2

a

2

Æ

j

i

�

	

00

+

1

2

�(��	) +

a

0

a

(�

0

+ 2	

0

) + 2

a

00

a

��

a

02

a

2

�

�

:

(23.161
)

The spatial 
omponents ÆG

j

i

of the Einstein tensor 
ontain the two independent tensor stru
-

tures �

i

�

j

and Æ

j

i

. In the 
ase of an ideal 
uid or a s
alar �eld, anisotropi
 pressure is absent,
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ÆT

j

i

= Æ

j

i

P . As a result, the Einstein equation implies �

i

�

j

(� � 	) = 0 for i 6= j. But

� � 	 
annot be 
onstant, sin
e the perturbed Einstein tensor should vanish in the limit

�;	 ! 0. Moreover, isotropy and homogeneity forbid a linear dependen
e of the potentials

on the 
oordinates. Thus we found that

� = � and A = D (23.162)

in the absen
e of anisotropi
 pressure.

Summary

In
ation denotes a phase of nearly exponential expansion of the early universe, whi
h solves

the horizon and 
atness problem of the standard big bang model. It generates a nearly s
ale-

invariant spe
trum of Gaussian density 
u
tuations whi
h is typi
ally red-tilted, n

s

< 1, and

in the simplest models adiabati
. The 
u
tuations have �xed phase relations on superhorizon

s
ales what results in 
hara
teristi
 os
illations of the CMB temperature 
u
tuations. The

ratio r of power in gravitational waves and 
urvature perturbations is determined by the

slow-roll parameter " = r=16, whi
h 
ontrols also the slope of the tensor perturbations n

T

=

�2" = �r=8.

Further reading

Our derivation of the perturbation spe
trum follows the one of [GR11a℄. For a somewhat


omplementary approa
h see [LL09℄. Both referen
es as well as [Muk05℄ dis
uss also in mu
h

more detail the 
onne
tion to CMB 
u
tuations. A more detailed review of preheating is

given by [ABCRM10℄ and [GR11a℄.
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24. Bla
k holes

John Mi
hell spe
ulated already 1784 that the gravitational attra
tion of a mass 
on
entrated

inside a suÆ
iently small radius 
an be
ome so strong that not even light es
apes. The advent

of general relativity put Mit
hell's premise that energy is subje
t to gravity on a �rm footing

but nevertheless the idea of bla
k holes was a

epted only very slowly. In modern language,

we 
all a bla
k hole a solution of Einstein's equations 
ontaining a physi
al singularity whi
h

in turn is 
overed by an event horizon: The horizon a
ts as a perfe
t unidire
tional membrane

whi
h any 
ausal in
uen
e 
an 
ross only towards the singularity. After this pi
ture be
ame

a

epted in the 1960ies, the dis
overy by Hawking that quantum e�e
ts lead to the emission

of thermal radiation by a bla
k holes 
ame as big surprise. Before we examine this pro
ess of

Hawking radiation, we dis
uss the essential features of stationary and rotating bla
k holes.

24.1. S
hwarzs
hild bla
k holes

De�nitions Let us start by introdu
ing few de�nitions: First, we need to distinguish between

physi
al and 
oordinate singularities. The latter arise only for a spe
i�
 
oordinate 
hoi
e

and all measurable quantities remain �nite at a 
oordinate singularity. By 
ontrast, physi
al

singularities 
an not be eliminated by a 
hange of 
oordinates and physi
al quantities as the


urvature or the stress tensor diverge. Next, we re
all our de�nition of an event horizon as a

three-dimensional hypersurfa
e whi
h limits a region of a spa
e-time whi
h 
an never in
uen
e

an observer. The event horizon is formed by light-rays and is therefore a null surfa
e. Hen
e

we require that at ea
h point of su
h a surfa
e de�ned by f(x

�

) = 0 a null tangent ve
tor

n

�

exists that is orthogonal to two spa
e-like tangent ve
tors. The normal n

�

to this surfa
e

is parallel to the gradient along the surfa
e, n

�

= hr

�

f = h�

�

f , where h is an arbitrary

non-zero fun
tion. From

0 = n

�

n

�

= g

��

n

�

n

�

(24.1)

we see that the line-element vanishes on the horizon, ds = 0. Hen
e the (future) light 
ones

at ea
h point of an event horizon are tangential to the horizon.

We add two additional de�nitions for spa
e-times with spe
ial symmetries. A stationary

spa
e-time has a time-like Killing ve
tor �eld. In appropriate 
oordinates, the metri
 tensor

is independent of the time 
oordinate,

ds

2

= g

00

(x)dt

2

+ 2g

0i

(x)dtdx

i

+ g

ij

(x)dx

i

dx

j

: (24.2)

A stationary spa
e-time is stati
, if it is invariant under time reversal. Thus the o�-diagonal

terms g

0i

have to vanish, and the metri
 simpli�es to

ds

2

= g

00

(x)dt

2

+ g

ij

(x)dx

i

dx

j

: (24.3)

An example for a stationary spa
e-time is the metri
 around a spheri
ally symmetri
 mass

distribution whi
h rotates with 
onstant velo
ity. If the mass distribution is at rest, then the

spa
e-time be
omes stati
.
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S
hwarzs
hild metri
 The S
hwarzs
hild solution des
ribes the stati
 spa
e-time outside a

spheri
ally symmetri
 mass distribution and is therefore of the form (24.3). Our dis
ussion

of symmetri
 spa
es in se
tion 19.1 implies that the spatial part g

ij

of the metri
 tensor is

given by Eq. (19.4) with S(t) = 
onst: Moreover, the metri
 tensor 
an depend only on the

radial distan
e r to the 
enter of the mass distribution. Thus the 
omplete line-element is

ds

2

= A(r)dt

2

�B(r)dr

2

� r

2

(d#

2

+ sin

2

#d�

2

) ; (24.4)

where A(r) and B(r) are two arbitrary fun
tions. Following the steps from Eq. (19.9a)

to (19.13), but using now T

��

= 0 appropriate for the va
uum outside a spheri
al mass

distribution, leads

1

to (problem 25.??)

ds

2

=

�

1�

2M

r

�

dt

2

�

�

1�

2M

r

�

�1

dr

2

� r

2

(d#

2

+ sin

2

#d�

2

) : (24.5)

Here we required also that the metri
 is asymptoti
ally 
at, i.e. that we re
over Minkowski

spa
e for M=r ! 0. The weak-�eld limit r � 2M implies that M is the total mass as

measured by an observer at in�nity. The spe
i�
 
oordinates used in (24.5) whi
h make

the stati
 property of the spa
e-time manifest are 
alled S
hwarzs
hild 
oordinates. The

S
hwarzs
hild solution whi
h is parametrised only by the mass M is the unique spheri
ally

symmetri
 va
uum solution of the Einstein equations: Allowing for time-dependent fun
tions,

A(t; r) and B(t; r) would result in the same stati
 spa
e-time, a result known as Birkho�'s

theorem.

The main properties of the S
hwarzs
hild solution 
an be summarised as follows: The

time-independen
e and spheri
ally symmetry of the metri
 imply the existen
e of four Killing

ve
tors. If we order 
oordinates as ft; r; �; #g, then the two Killing ve
tors leading to the


onservation of energy and z 
omponent of the angular momentum are �

�

� (�

t

; �

r

; �

�

; �

#

) =

(1; 0; 0; 0) and �

�

= (0; 0; 0; 1). The S
hwarzs
hild 
oordinates have two singularities at r =

2M and r = 0. The radius 2M is 
alled S
hwarzs
hild radius R

s

and has numeri
ally the

value

R

s

= 2M =

2G

N

M




2

' 3 km

M

M

�

; (24.6)

where M

�

denotes the mass of the Sun. In a stationary, radial-symmetri
 spa
e-time the

general equation of a surfa
e, f(x

�

) = 0 simpli�es to f(r) = 0. Then the 
ondition de�ning

a horizon be
omes simply g

rr

= 0 or g

rr

= 1=g

rr

= 1. Thus r = R

s

is an event horizon.

Moreover, at R

s

the 
oordinate t and r swit
h their 
hara
ter: for r < R

s

, the \time


oordinate" t be
omes spa
e-like, while r is time-like. In order to de
ide if r = 2M and r = 0

are 
oordinate or physi
al singularities one 
an 
al
ulate the s
alar invariants formed from

the Riemann tensor. For instan
e, one �nds R

����

R

����

= 48M

2

=r

6

, indi
ating that r = 2M

is a 
oordinate and r = 0 a physi
al singularity: Approa
hing r = 0, any ma
ros
opi
 body

would be destroyed by tidal for
es. However, the question if at r = 0 a true singularity exists


annot be addressed within 
lassi
al gravity whi
h is expe
ted to breakdown for 
urvatures

larger than R �M

2

Pl

.

Gravitational redshift An observer with four-velo
ity u measures the frequen
y

! = k � u (24.7)

1

We set G

N

= 1 in this 
hapter, if not otherwise stated.
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of a photon with four-momentum k. For an observer at rest,

u � u = 1 = g

tt

(u

t

)

2

; (24.8)

and hen
e we 
an express u through the Killing ve
tor � as

u = (1� 2M=r)

�1=2

� : (24.9)

Inserting this expression into Eq. (24.7), we �nd for the frequen
y measured by an observer

at the position r

!(r) = (1� 2M=r)

�1=2

� � k : (24.10)

Sin
e � � k is 
onserved and !

1

= � � k, we obtain

!

1

= !(r)

r

1�

2M

r

: (24.11)

Thus a photon 
limbing out of the potential wall of the mass M looses energy, in agreement

with the prin
iple of equivalen
e. In the same way, a signal sent towards an observer at in�nity

by a spa
eship falling towards r = 2M will be more and more redshifted, with !

1

! 0 for

r ! 2M . Thus the event horizon at r = 2M is also an in�nite redshift surfa
e.

Radial infall into a bla
k hole We investigate now the time dependen
e of a traje
tory

des
ribing the infall of an obje
t into a bla
k hole. The geodesi
s of the S
hwarzs
hild

metri
 are easiest derived 
ombining the normalisation 
ondition of the four-velo
ity with

the 
onserved quantities de�ned by the Killing ve
tors � and �.

A test parti
le moving in the S
hwarzs
hild metri
 initially in the radial dire
tion will


ontinue so, be
ause then _u

�

= _u

#

= 0 (problem 25.??). The normalisation 
ondition u�u = 1

written out for a radial traje
tory simpli�es to

1 = A

�

dt

d�

�

2

�A

�1

�

dr

d�

�

2

; (24.12)

where we set also A � 1� 2M=r. Now we repla
e the velo
ity u

t

by the 
onserved quantity

e � � � u = A

dt

d�

; (24.13)

obtaining

1 = �

e

2

A

+

1

A

�

dr

d�

�

2

: (24.14)

We 
onsider the free fall of a parti
le that was at rest at spatial in�nity. Then the proper

and 
oordinate time 
oin
ide for r ! 1, dt=d� = 1, and thus e

2

= 1. Then the radial

equation (24.14) simpli�es to

1

2

�

dr

d�

�

2

= �

M

r

(24.15)

and 
an be integrated by separation of variables,

Z

0

r

drr

1=2

=

p

2M

Z

�

�

�

d� ; (24.16)
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with the result

2

3

r

3=2

=

p

2M (�

�

� �) : (24.17)

Hen
e a freely falling parti
le needs only a �nite proper time to fall from �nite r to r = 0.

In parti
ular, it passes the S
hwarzs
hild radius 2M in �nite proper time, and no singular

behaviour of the traje
tory at 2M is apparent.

We 
an answer the same question using the 
oordinate time t by 
ombining Eqs. (24.13)

and (24.15),

dt

dr

=

dt

d�

d�

dr

= �

�

2M

r

�

�1=2

�

1�

2M

r

�

�1

: (24.18)

Integration gives

t� t

0

=

Z

r

r

0

dr

0

�

2M

r

0

�

�1=2

�

1�

2M

r

0

�

�1

= (24.19)

= �2M

"

�

2

3

�

r

0

2M

�

3=2

� 2

�

r

0

2M

�

1=2

+ ln

�

�

�

�

�

p

r

0

=2M + 1

p

r

0

=2M � 1

�

�

�

�

�

#

r

r

0

!1 for r ! 2M:

Sin
e the 
oordinate time t is the proper time for an observer at in�nity, a freely falling parti
le

rea
hes the S
hwarzs
hild radius r = 2M only for t ! 1 as seen from spatial in�nity. The

last result 
an be derived immediately for light-rays. Choosing a light-ray in radial dire
tion

with d� = d# = 0, the metri
 (24.5) simpli�es with ds

2

= 0 to

dr

dt

= 1�

2M

r

: (24.20)

Thus light travelling towards the star, as seen from the outside, will travel slower and slower

as it 
omes 
loser to the S
hwarzs
hild radius r = 2M . The 
oordinate time is / ln j1�2M=rj

and thus for an observer at in�nity the signal will rea
h r = 2M again only asymptoti
ally

for t!1.

We noted already that at R

s

= 2M the 
oordinates t and r swit
h their 
hara
ter, r

be
oming time-like. Sin
e the proper time � of an observer has to in
reases 
ontinuously,

the time-like 
oordinate has to 
hange 
ontinuously too. Be
ause of dr=dt = 1 � 2M=r < 0,

we anti
ipate therefore that r has to de
rease 
ontinuously for any parti
le that 
rossed the

horizon until it hits the singularity at r = 0.

Eddington-Finkelstein 
oordinates We next try to �nd new 
oordinates whi
h are regular

at r = 2M and valid in the whole range 0 < r < 1. Su
h a 
oordinate transformation has

to be singular at r = 2M , otherwise we 
an not hope to 
an
el the singularity present in

the S
hwarzs
hild 
oordinates. We 
an eliminate the troublesome fa
tor g

rr

= (1 �

2M

r

)

�1

introdu
ing a new radial 
oordinate r

�

de�ned by

dr

�

=

dr

1�

2M

r

: (24.21)

Integrating (24.21) results in

r

�

(r) = r + 2M ln

�

�

�

r

2M

� 1

�

�

�

+A ; (24.22)
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with A � �2Ma as integration 
onstant. The 
oordinate r

�

(r) is often 
alled tortoise 
o-

ordinate, be
ause r

�

(r) 
hanges only logarithmi
ally 
lose to the horizon. This 
oordinate


hange maps the range r 2 [2M;1℄ of the radial 
oordinate onto r

�

2 [�1;1℄. A radial null

geodesi
s satis�es d(t� r

�

) = 0, and thus in- and out-going light-rays are given by

~u � t� r

�

= t� r � 2M ln

�

�

�

r

2M

� 1

�

�

�

�A ; outgoing rays ; (24.23)

~v � t+ r

�

= t+ r + 2M ln

�

�

�

r

2M

� 1

�

�

�

+A ; ingoing rays : (24.24)

For r > 2M , Eq. (24.20) implies that dr=dt > 0 so that r in
reases with t. Therefore (24.23)

des
ribes outgoing light-rays, while (24.24) 
orresponds to ingoing light-rays for r > 2M .

We 
an extend now the S
hwarzs
hild metri
 using as 
oordinate the \advan
ed time pa-

rameter ~v" instead of t. Forming the di�erential,

d~v = dt+ dr +

�

r

2M

� 1

�

�1

dr = dt+

�

1�

2M

r

�

�1

dr ; (24.25)

we 
an eliminate dt from the S
hwarzs
hild metri
 and �nd

ds

2

=

�

1�

2M

r

�

d~v

2

� 2d~vdr � r

2

d
 : (24.26)

This metri
 was found �rst by Eddington and was later redis
overed by Finkelstein. Although

g

~v~v

vanishes at r = 2M , the determinant g = r

4

sin

2

# is non-zero at the horizon and thus the

metri
 is invertible. Moreover, r

�

was de�ned by (24.22) initially only for r > 2M , but we


an use this de�nition also for r < 2M , arriving at the same expression (24.26). Therefore,

the metri
 using the advan
ed time parameter ~v is regular at 2M and valid for all r > 0. We


an view this metri
 hen
e as an extension of the r > 2M part of the S
hwarzs
hild solution,

similar to the pro
ess of analyti
 
ontinuation of 
omplex fun
tions. The pri
e we have to

pay for a non-zero determinant at r = 2M are non-diagonal terms in the metri
: As a result,

the spa
e-time des
ribed by (24.26) is not symmetri
 under the ex
hange t ! �t. We will

see shortly the 
onsequen
es of this asymmetry.

We now study the behaviour of radial light-rays, whi
h are determined by ds

2

= 0 and

d� = d# = 0. Thus radial light-rays satisfy Ad~v

2

� 2d~vdr = 0, whi
h is trivially solved

by ingoing light-rays, d~v = 0 and thus ~v = 
onst: The solutions for d~v 6= 0 are given by

(24.23). Additionally, the horizon r = 2M whi
h is formed by stationary light-rays satis�es

ds

2

= 0. In order to draw a spa
e-time diagram, it is more 
onvenient to repla
e the light-like


oordinate ~v by a new time-like 
oordinate. We show in the left panel of Fig. 24.1 geodesi
s

using as new time 
oordinate

~

t = ~v � r. Then the ingoing light-rays are straight lines at

45 degrees with the r axis. Radial light-rays whi
h are outgoing for r > 2M and ingoing

for r < 2M follow Eq. (24.24). A few future light-
ones are indi
ated: They are formed by

the interse
tion of light-rays, and they tilt towards r = 0 as they approa
h the horizon. At

r = 2M , one light-ray forming the light-
one be
omes stationary and part of the horizon,

while the remaining part of the 
one lies 
ompletely inside the horizon.

Let us now dis
uss how Fig. 24.1 would like using the retarded Eddington-Finkelstein


oordinate ~u. Now the outgoing radial null geodesi
s are straight lines at 45

Æ

. They start

from the singularity, 
rossing smoothly r = 2M and 
ontinue to spatial in�nity. Su
h a

situation, where the singularity is not 
overed by an event horizon is 
alled a \white hole."

The 
osmi
 
ensorship hypothesis postulates that singularities formed in gravitational 
ollapse
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a

b

Figure 24.1.: Left: The S
hwarzs
hild spa
e-time using advan
ed Eddington-Finkelstein 
o-

ordinates; the singularity is shown by a zigzag line, the horizon by a thi
k and

geodesi
s by thin lines. Right: Collapse of a star modelled by pressureless mat-

ter; dashes lines show geodesi
s, the thin solid line en
ompasses the 
ollapsing

stellar surfa
e.

are always 
overed by event horizons. This implies that the time-invarian
e of the Einstein

equations is broken by its solutions. In parti
ular, only the BH solution using the retarded

Eddington-Finkelstein 
oordinates should be realised by nature|otherwise we should expe
t

that 
ausality is violated. This behaviour may be 
ompared to 
lassi
al ele
trodynami
s,

where all solutions are des
ribed by the retarded Green fun
tion, while the advan
ed Green

fun
tion seems to have no relevan
e.

Collapse to a BH After a star has 
onsumed its nu
lear fuel, gravity 
an be balan
ed only

by the Fermi degenera
y pressure of its 
onstituents. In
reasing the total mass of the star

remnant, the stellar EoS is driven towards the relativisti
 regime until the star be
omes

unstable. As a result, the 
ollapse of its 
ore to a BH seems to be inevitable for a suÆ
iently

heavy star.

Let us 
onsider a toy model for su
h a gravitational 
ollapse. We des
ribe the star by

a spheri
ally symmetri
 
loud of pressureless matter. While the assumption of negligible

pressure is unrealisti
, it implies that parti
les at the surfa
e of the star follow radial geodesi
s

in the S
hwarzs
hild spa
e-time. Thus we do not have to bother about the interior solution

of the star, where T

��

6= 0 and our va
uum solution does not apply. In advan
ed Eddington-

Finkelstein 
oordinates, the 
ollapse is s
hemati
ally shown in the right panel of Fig. 24.1.

At the end of the 
ollapse, a stationary S
hwarzs
hild BH has formed. Note that in our toy

model the event horizon forms before the singularity, as required by the 
osmi
 
ensorship

hypothesis. The horizon grows from r = 0 following the light-like geodesi
 a shown by the

thin bla
k line until it rea
hes its �nal size R

s

= 2M . What happens, if we drop latter a lump

of matter ÆM on a radial geodesi
s into the BH? Sin
e we do not add angular momentum

to the BH, the �nal stage is a

ording to the Birkho�'s theorem still a S
hwarzs
hild BH:

All deviations from spheri
al symmetry 
orresponding to gradient energy in the intermediate

regime are being radiated away as gravitational waves. Thus in the �nal stage, the only
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hange is an in
rease of the horizon, size R

s

! 2(M + ÆM). Therefore some light-rays (e.g. b)

whi
h we expe
ted to es
ape to spatial in�nity will be trapped. Similarly, light-ray a whi
h

we thought to form the horizon will be de
e
ted by the in
reased gravitational attra
tion

towards the singularity. In essen
e, knowing only the spa
e-time up to a �xed time t we are

not able to de
ide whi
h light-rays form the horizon. The event horizon of a bla
k hole is a

global property of the spa
e-time: It is not only independent of the observer, but in
uen
ed

by the 
omplete spa
e-time.

How does the stellar 
ollapse looks like for an observer at large distan
es? Let us assume

that the observer uses a neutrino dete
tor and is able to measure the neutrino luminosity

L

�

(r) = dE

�

=dt = N

�

!

�

=dt emitted by a shell of stellar material at radius r. In order to

determine the luminosity L

�

(r), we have to 
onne
t r and t. Linearising Eq. (24.19) around

r = 2M gives

r � 2M

r

0

� 2M

= e

�(t�t

0

)=2M

: (24.27)

For an observer at large distan
e r

0

, the time di�eren
e between two pulses send by a shell

falling into a BH in
reases thus exponentially for r ! 2M . As a result the energy !

�

of an

individual neutrino is also exponentially redshifted

!

�

(r) = !

�

(r

0

)e

�(t�t

0

)=2M

: (24.28)

A more detailed analysis 
on�rms the expe
tation that then also the luminosity de
reases

exponentially. Thus an observer at in�nity will not see shells whi
h slow logarithmi
ally

down as they fall towards r ! 2M , as it is suggested by Eq. (24.19). Instead the signal

emitted by the shell will fade away exponentially, with the short 
hara
teristi
 time s
ale of

M =Mt

Pl

=M

Pl

� 10

�5

s for a stellar-size BH.

Kruskal 
oordinates We have been able to extend the S
hwarzs
hild solution into two dif-

ferent bran
hes, a BH solution using the advan
ed time parameter ~v and a white hole solution

using the retarded time parameter ~u. The analogy with the analyti
 
ontinuation of 
om-

plex fun
tions leads naturally to the question, if we 
an 
ombine these two bran
hes into

one 
ommon solution. Moreover, our experien
e with the Rindler metri
 suggests that an

event horizon where energies are exponentially redshifted implies the emission of a thermal

spe
trum: If true, our BH would not be bla
k after all. One way to test this suggestion is to

relate the va
ua as de�ned by di�erent observers via a Bogolyubov transformation. In order

to simplify this pro
ess, we would like to �nd new 
oordinates for whi
h the S
hwarzs
hild

spa
e-time is 
onformally 
at.

An obvious try to pro
eed is to use both the advan
ed and the retarded time parameters.

For most of our dis
ussion, it is suÆ
ient to 
on
entrate on the t; r 
oordinates in the line-

element ds

2

= d�s

2

+ r

2

d
, and to negle
t the angular dependen
e from the r

2

d
 part. We

start by eliminating r in favour of r

�

,

d�s

2

=

�

1�

2M

r(r

�

)

�

(dt

2

� dr

�2

) ; (24.29)

where r has to be expressed through r

�

. This metri
 is 
onformally 
at, but the de�nition

of r(r

�

) on the horizon 
ontains the ill-de�ned fa
tor ln(2m=r � 1). Clearly, a new set of


oordinates where this fa
tor is exponentiated is what we are looking for.
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This is a
hieved introdu
ing both Eddington-Finkelstein parameters,

~u = t� r

�

; ~v = t+ r

�

; (24.30)

for whi
h the metri
 simpli�es to

d�s

2

=

�

1�

2M

r(~u; ~v)

�

d~ud~v : (24.31)

From (24.22) and (24.30), it follows

~v � ~u

2

= r

�

(r) = r + 2M ln

�

�

�

r

2M

� 1

�

�

�

� 2Ma ; (24.32)

or

1�

2M

r

=

2M

r

exp

�

~v � ~u

4M

�

exp

�

a�

r

2M

�

: (24.33)

This allows us to eliminate the singular fa
tor 1� 2M=r in (24.31), obtaining

d�s

2

=

2M

r

exp

�

a�

r

2M

�

exp

�

�

~u

4M

�

d~u exp

�

~v

4M

�

d~v : (24.34)

Finally, we 
hange to Kruskal light-
one 
oordinates u and v de�ned by

u = �4M exp

�

�

~u

4M

�

and v = 4M exp

�

~v

4M

�

; (24.35)

arriving at

ds

2

=

2M

r

exp

�

a�

r

2M

�

dudv + r

2

d
 : (24.36)

Kruskal diagram The 
oordinates ~u; ~v 
over only the exterior r > 2M of the S
hwarzs
hild

spa
e-time, and thus u; v are initially only de�ned for r > 2M . Sin
e they are regular at the

S
hwarzs
hild radius, we 
an extend these 
oordinates towards r = 0. In order to draw the

spa
e-time diagram of the full S
hwarzs
hild spa
e-time shown in Fig. 24.2, it is useful to go

ba
k to time- and spa
e-like 
oordinates via

u = T �R and v = T +R : (24.37)

Then the 
onne
tion between the pair of 
oordinates fT;Rg, fu; vg and ft; rg is given by

uv = T

2

�R

2

= �16M

2

exp

�

r

�

2M

�

= �16M

2

�

r

2M

� 1

�

exp

�

r

2M

� a

�

; (24.38a)

u

v

=

T �R

T +R

= exp [�t=(2M)℄ : (24.38b)

Lines with r = 
onst: are given by uv = T

2

� R

2

= 
onst: They are thus parabola shown

as dotted lines in Fig. 24.2. Lines with t = 
onst: are determined by u=v = 
onst: and are

thus given by straight (solid) lines through zero. In parti
ular, null geodesi
s 
orrespond to

straight lines with angle 45

Æ

in the R� T diagram. The horizon r = 2M is given by to u = 0

or v = 0. Hen
e two separate horizons exist: A past horizon at t = �1 (for v = 0) and
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Tt = 0

R

t

=

1

t

=

�

1

t

=

�

2

M

t

=

2

M

r

=

3

M

r

=

4

M

r

=

2

M

II

II'

I' I

Figure 24.2.: Spa
e-time diagram for the Kruskal 
oordinates T and R.

a future horizon at t = +1 (for u = 0). Also the singularity at r = 0 
orresponds to two

separate lines in the R� T Kruskal diagram

2

and is given by

T = �

p

16M

2

+R

2

: (24.39)

The horizon lines ft = �1; r = 2Mg and ft = 1; r = 2Mg divide the spa
e-time in four

parts: The future singularity is unavoidable in part II, while in region II' all traje
tories start

at the past singularity. Region I 
orresponds to the original S
hwarzs
hild solution outside

the horizon r > 2M , while region I and II en
ompass the advan
ed Eddington-Finkelstein

solution. The regions I' and II' represent the retarded Eddington-Finkelstein solution, where

II' 
orresponds to a white hole. Note that I' represents a new asymptoti
ally 
at S
hwarzs
hild

exterior solution.

The presen
e of a past horizon v = 0 at t = �1 makes the 
omplete BH solutions time-

symmetri
 and 
orresponds to an eternal BH. If we model a realisti
 BH, i.e. one that was


reated at �nite t by a 
ollapsing mass distribution, with Kruskal 
oordinates, then any e�e
t

indu
ed by the past horizon should be 
onsidered as unphysi
al.

24.2. Kerr bla
k holes

The stationary spa
e-time outside a rotating mass distribution 
an be derived by symmetry

arguments similarly to the 
ase of the S
hwarzs
hild metri
, but it was found �rst a

identally

by R. Kerr in 1963. The bla
k hole solutions of this spa
e-time is fully 
hara
terised by two

quantities, the massM and the angular momentum L of the Kerr BH. Both parameters 
an be

2

Re
all that we suppress two spa
e dimension: Thus a point in the R� T Kruskal diagram 
orrespond to a

sphere S

2

, and a line to R� S

2

.
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manipulated, at least in a Gedankenexperiment, dropping material into the BH: Examining

the response of a Kerr bla
k hole to su
h 
hanges was 
ru
ial for the dis
overy of \bla
k hole

thermodynami
s."

In Boyer-Lindquist 
oordinates, the metri
 outside of a rotating mass distribution is given

by

ds

2

=

�

1�

2Mr

�

2

�

dt

2

+

4Mar sin

2

#

�

2

d�dt�

�

2

�

dr

2

� �

2

d#

2

�

�

r

2

+ a

2

+

2Mra

2

sin

2

#

�

2

�

sin

2

#d�

2

;

(24.40)

with the abbreviations

a = L=M ; �

2

= r

2

+ a

2


os

2

# ; � = r

2

� 2Mr + a

2

: (24.41)

The metri
 is time-independent and axially symmetri
. Hen
e two obvious Killing ve
tors

are as in the S
hwarzs
hild 
ase � = (1; 0; 0; 0) and � = (0; 0; 0; 1), where we order again


oordinates as ft; r; #; �g. The presen
e of the mixed term g

t�

means that the metri
 is

stationary, but not stati
 { as one expe
ts for a star or BH rotating with 
onstant rotation

velo
ity. Finally, the metri
 is asymptoti
ally 
at and the weak-�eld limit shows that L is

the angular momentum of the rotating bla
k hole.

Singularity We examine �rst the potential singularities at � = 0 and � = 0. The 
al
ulation

of the s
alar invariants formed from the Riemann tensor shows that only � = 0 is a physi
al

singularity, while � = 0 
orresponds to a 
oordinate singularity. The physi
al singularity at

�

2

= 0 = r

2

+a

2


os#

2


orresponds to r = 0 and # = �=2. Thus the value r = 0 is surprisingly

not 
ompatible with all # values. To understand this point, we 
onsider the M ! 0 limit of

the Kerr metri
 (24.40) keeping a = L=M �xed,

ds

2

= dt

2

�

�

r

2

+ a

2

dr

2

� r

2

d#

2

� (r

2

+ a

2

) sin

2

#d�

2

: (24.42)

The 
omparison with the Minkowski metri
 shows that

x =

p

r

2

+ a

2

sin# 
os� ; z = r 
os# ;

y =

p

r

2

+ a

2

sin# sin� ;

(24.43)

Hen
e the singularity at r = 0 and # = �=2 
orresponds to a ring of radius a in the equatorial

plane z = 0 of the Kerr bla
k hole.

Horizons We have de�ned an event horizon as a three-dimensional hypersurfa
e, f(x

�

) = 0,

that is null. In a stationary, axisymmetri
 spa
e-time the general equation of a surfa
e,

f(x

�

) = 0, simpli�es to f(r; #) = 0. The 
ondition for a null surfa
e be
omes

0 = g

��

(�

�

f)(�

�

f) = g

rr

(�

r

f)

2

+ g

##

(�

#

f)

2

: (24.44)

In the 
ase of the surfa
e de�ned by the 
oordinate singularity � = r

2

� 2Mr + a

2

= 0 that

depends only on r,

r

�

=M �

p

M

2

� a

2

: (24.45)
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the 
ondition de�ning a horizons be
omes simply g

rr

= 0 or g

rr

= 1=g

rr

=1. Hen
e, r

�

and

r

+

de�ne an inner and outer horizon around a Kerr bla
k hole.

The surfa
e A of the outer horizon follows from inserting r

+

together with dr = dt = 0

into the metri
,

ds

2

= �

2

+

d#

2

+

�

r

2

+

+ a

2

+

2Mr

+

a

2

sin

2

#

�

2

+

�

sin

2

#d�

2

; (24.46)

Using r

2

�

+ a

2

= 2Mr

�

, we obtain

ds

2

= �

2

+

d#

2

+

�

2Mr

+

�

+

�

2

sin

2

#d�

2

: (24.47)

Hen
e the metri
 determinant g

2

restri
ted to the angular variables is given by

p

g

2

=

g

##

g

��

= 2Mr

+

sin# and integration gives the area A of the horizon as

A =

Z

2�

0

d�

Z

�

0

d#

p

g

2

= 8�Mr

+

= 8�M(M +

p

M

2

� a

2

) : (24.48)

Note that the area depends on the angular momentum of the bla
k hole that 
an in turn

be manipulated by dropping material into the hole: The horizon area A for �xed mass M

be
omes maximal for a non-rotating bla
k hole, A = 16�M

2

, and de
reases to A = 8�M

2

for

a maximally rotating one with a = M . For a > M , the metri
 
omponent g

rr

= � has no

real zero and thus no event horizon exists.

Ergosphere and dragging of inertial frames The Kerr metri
 is a spe
ial 
ase of a metri


with g

t�

6= 0. As result, both massive and massless parti
les with zero angular momentum

falling into a Kerr bla
k hole will a
quire a non-zero angular rotation velo
ity ! = d�=dt as

seen by an observer from in�nity.

We 
onsider a light-ray with d# = dr = 0. Then the line-element be
omes

g

tt

dt

2

+ 2g

t�

dtd�+ g

��

d�

2

= 0 : (24.49)

Dividing by g

��

dt

2

we �nd as two possible solutions for the angular rotation velo
ity

_

�

�

= �

g

t�

g

��

�

s

�

g

t�

g

��

�

2

�

g

tt

g

��

: (24.50)

There are two interesting spe
ial 
ases of this equation. First, on the surfa
e g

tt

= 0, the two

possible solutions of ! = d�=dt for light-rays satisfy

_

�

+

= �2

g

t�

g

��

and

_

�

�

= 0 : (24.51)

Hen
e, the rotating bla
k hole drags spa
e-time at g

tt

= 0 so strongly that even a photon 
an

only 
o-rotate. Similarly, this 
ondition spe
i�es a surfa
e inside whi
h no stationary observers

are possible: The normalisation 
ondition u � u = 1 is in
onsistent with u

a

= (1; 0; 0; 0) and

g

tt

< 0: However strong your ro
ket engines are, your spa
e-ship will not be able to hover at
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the same point inside the region with g

tt

< 0. Therefore one 
alls a surfa
e with g

tt

= 0 a

stationary limit surfa
e. Solving

g

tt

= 1�

2Mr

�

2

= 0 ; (24.52)

we �nd the position of the two stationary limit surfa
es at

r

1=2

=M �

p

M

2

� a 
os# : (24.53)

The ergosphere is the spa
e bounded by these two surfa
es.

The other interesting spe
ial 
ase of (24.50) o

urs when the allowed range of values,

�

�

� ! � �

+

, shrinks to a single value, i.e. when

!

2

=

g

tt

g

��

=

�

g

t�

g

��

�

2

: (24.54)

This happens at the outer horizon r

+

and de�nes the rotation velo
ity !

H

of the bla
k hole.

In the 
ase of a Kerr bla
k hole, we �nd

!

H

=

a

2Mr

+

: (24.55)

Thus the rotation velo
ity of the bla
k hole 
orresponds to the rotation velo
ity of the light-

rays forming its horizon, as seen by an observer at spatial in�nity.

Penrose pro
ess and the area theorem The total energy of a Kerr BH 
onsists of its rest

energy and its rotational energy. These two quantities 
ontrol the size of the event horizon

and therefore it is important to understand how they 
hange dropping matter into the BH.

The energy of any parti
le moving on a geodesi
s is 
onserved, E = �p � �. Inside the

ergosphere, the Killing ve
tor � is spa
e-like and the quantity E is thus the 
omponent of a

spatial momentum whi
h 
an have both signs. This lead Penrose to entertain the following

Gedankenexperiment: Suppose the spa
e 
raft A starts at in�nity and falls into the ergo-

sphere. There it splits into two parts: B is dropped into the BH, while C es
apes to in�nity.

In the splitting pro
ess, four-momentum has to be 
onserved, p

A

= p

B

+ p

C

. We 
an now


hoose a time-like geodesi
s for B falling into the BH su
h that E

B

< 0. Then E

C

> E

A

and

the es
aping part C of the spa
e 
raft has at in�nity a higher energy than initially.

The Penrose pro
ess de
reases both the mass and the angular momentum of the BH by an

amount equal to that of the spa
e 
raft B falling into the BH. We want to show now that the


hanges are 
orrelated in su
h a way that the area of the BH in
reases. Let us �rst de�ne a

new Killing ve
tor,

K = � + !

H

� :

This Killing ve
tor is null on the horizon and time-like outside. It 
orresponds to the four-

velo
ity with the maximal possible rotation velo
ity. Now we use E

B

= �p

C

� � and L

B

=

�p

C

� � and

p

B

�K = p

B

� (� + !

H

�) = �(E

B

� !

H

L

B

) < 0; (24.56)

to obtain the bound L

B

< E

B

=!

H

. Sin
e E

B

< 0, the added angular momentum is negative,

L

B

< 0.
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The mass and the angular momentum of the BH 
hange by ÆM = E

B

and ÆL = L

B

, when

parti
le B drops into the BH. Thus

ÆM > !

H

ÆL =

aÆL

r

2

+

+ a

2

(24.57)

Now we de�ne the irredu
ible mass of BH as the mass of that S
hwarzs
hild BH whi
h event

horizon has the same area,

M

2

irr

=

1

2

(M

2

+

p

M

2

� L

2

) (24.58)

or

M

2

=M

2

irr

+

�

L

2M

irr

�

2

: (24.59)

Thus we 
an interpret the total mass as the Pythagorean sum of the irredu
ible mass and a


ontribution related to the rotational energy. Di�erentiating the relation (24.58) results in

ÆM

irr

=

a

4M

irr

p

M

2

� a

2

�

!

�1

H

ÆM � ÆL

�

(24.60)

Our bound implies now ÆM

irr

> 0 or ÆA > 0. Thus the surfa
e of a Kerr BH 
an only

in
rease, even when its mass de
reases.

24.3. Bla
k hole thermodynami
s and Hawking radiation

Bekenstein entropy We have shown that 
lassi
ally the horizon of a bla
k hole 
an only

in
rease with time. The only other quantity in physi
s with the same property is the entropy,

dS � 0. This suggests a 
onne
tion between the horizon area and its entropy. To derive this

relation, we apply the �rst law of thermodynami
s dU = TdS � PdV + : : : to a Kerr bla
k

hole. Its internal energy U is given by U =M and thus

dU = dM = TdS � !dL ; (24.61)

where !dL denotes the me
hani
al work done on a rotating ma
ros
opi
 body.

Our experien
e with the thermodynami
s of non-gravitating systems suggests that the

entropy is an extensive quantity and thus proportional to the volume, S / V . We give now

an argument, that shows that the entropy S of a bla
k hole is proportional to its area A. We

introdu
e the \rationalised area" � = A=4� = 2Mr

+

, 
f. (24.48), or

� = 2M

2

+ 2

p

M

4

� L

2

: (24.62)

The parameters des
ribing a Kerr bla
k hole are its massM and its angular momentum L and

thus � = �(M;L). We form the di�erential d� and �nd after some algebra (problem 25.??)

p

M

2

� a

2

2�

d� = dM +

a

�

dL : (24.63)

Using now Eqs. (24.48) and (24.55), we 
an rewrite the RHS as

p

M

2

� a

2

2�

d� = dM + !

H

dL : (24.64)
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Thus the �rst law of bla
k hole thermodynami
s predi
ts the 
orre
t angular velo
ity !

H

of

a Kerr bla
k hole. In
luding the term �dq representing the work done by adding the 
harge

dq to a bla
k hole, the area law of a 
harged bla
k hole together with the �rst law of BH

thermodynami
s reprodu
es the 
orre
t surfa
e potential � of a 
harged bla
k hole.

The fa
tor in front of d� is positive, as its interpretation as temperature requires. We

identify

TdS =

p

M

2

� a

2

2�

d� (24.65)

and thus S = f(A). The validity of the area theorem requires that f is a linear fun
tion,

the proportionality 
oeÆ
ient between S and A 
an be only determined by 
al
ulating the

temperature of bla
k hole. Hawking 
ould show 1974 that a bla
k hole in va
uum emits

bla
k-body radiation (\Hawking radiation") with temperature

T =

2

p

M

2

� a

2

A

(24.66)

and thus

S =

k


3

4~G

A =

A

4L

2

Pl

: (24.67)

The entropy of a bla
k hole is not extensive, but proportional to its surfa
e. It is large, be
ause

its basi
 unit of entropy, 4L

2

Pl

, is so tiny. The presen
e of ~ in the �rst formula, where we have

inserted the natural 
onstants, signals that the bla
k hole entropy is a quantum property.

The heat 
apa
ity C

V

of a S
hwarzs
hild bla
k hole follows with U = M = 1=(8�T ) from

the de�nition

C

V

=

�U

�T

= �

1

8�T

2

< 0 : (24.68)

As it is typi
al for self-gravitating systems, its heat 
apa
ity is negative: Thus a bla
k hole

surrounded by a 
ooler medium emits radiation, heats up the environment and be
omes

hotter.

Bla
k hole temperature If the interpretation of the BH area as its entropy is 
orre
t, then

we should be able to treat a BH as a thermal system. In parti
ular, a BH should emit

thermal radiation with temperature T . As the entropy and the temperature of a BH are

quantum properties, we should examine the evolution of a quantum �eld in the ba
kground

of a gravitational �eld des
ribing a BH solution. We 
onsider the generating fun
tional Z[J ℄

of a real s
alar �eld in a S
hwarzs
hild ba
kground

Z[J ℄ =

Z

D� e

i(S[�;g

��

℄+hJ�i)

(24.69)

together with the generating fun
tional Z[J

��

℄ of the gravitational �eld 
oupled to an external

stress tensor J

��

as sour
e,

Z[J

��

℄ =

Z

Dg

��

e

i(S[g

��

℄+hJ

��

g

��

i)

: (24.70)

Here S[g

��

℄ is the Einstein-Hilbert a
tion of gravity 
oupled to sour
e J

��

. The path integral

over S[g

��

℄ is even less well-behaved than those of other quantum �elds. In parti
ular, the

gravitational a
tion is not bounded from below and the 
lassi
al limit for a BH 
ontains
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singularities. Lu
kily, we 
an read the quantity of our interest, the BH temperature, from the

path integral without the need to evaluate it.

Using Kruskal 
oordinates, we have eliminated the 
oordinate singularity at r = 2M but

we are left with the physi
al 
urvature singularity at r = 0. Re
alling the 
onne
tion between

the Kruskal 
oordinates T and R and the S
hwarzs
hild 
oordinates t and r given by (24.38)

and setting A = 0 gives

T

2

�R

2

= exp

�

r

2M

��

r

2M

� 1

�

(24.71a)

T +R

T �R

= � exp

�

�t

2M

�

(24.71b)

Thus the singularity at r = 0 is mapped onto the surfa
e R

2

� T

2

= 1. With the 
hange

T ! � = iT , the metri
 be
omes (up to an overall sign) Eu
lidean

� ds

2

=

32M

3

r

exp

�

�

r

2M

�

(d�

2

+ dR

2

) + r

2

d
 : (24.72)

Now (24.71a) implies that r is real and larger than 2M for real � and R. Thus we avoid the

singularity at r = 0 by the 
hange to an Eu
lidean metri
.

If we set R+ i� = �e

i�

, then (24.71b) be
omes

R+ i�

R� i�

= e

2i�

= exp

�

i

t

E

2M

�

; (24.73)

where we also introdu
ed Eu
lidean S
hwarzs
hild time it

E

= t. Our 
oordinates are single-

valued fun
tions only, if 2� = t

E

=(2M) is a periodi
 fun
tion with period � = 2�. Thus the

Eu
lidean time has the period � = 8�M and 
onsequently the Eu
lidean path integral has

to be restri
ted to periodi
 �elds, �(t

E

;x) = �(t

E

+ �;x) and g

��

(t

E

;x) = g

��

(t

E

+ �;x).

However, this 
ondition des
ribes the partition fun
tion of a thermal system with temperature

T = 1=� = 1=(8�M). In this pi
ture, the BH is in thermal equilibrium with its environment

�lled by the s
alar �eld �, emitting and absorbing the same amount of radiation.

Hawking radiation in 1+1 dimension An alternative, more dire
t approa
h to Hawking

radiation is to 
al
ulate the rate of parti
le produ
tion measured by an observer at r ! 1

using the method of Bogolyubov transformations. As usually, the 
al
ulation simpli�es if we


onsider the 
onformally invariant 
ase of a massless s
alar �eld in 1+1 dimensions. Then we


an express the solutions of the a
tion

S =

Z

d

2

x

p

jgj

1

2

g

��

r

�

�r

�

� (24.74)

through light-
one 
oordinates as

� = f(~u) + g(~v) = f(u) + g(v) : (24.75)

Here, f and g are arbitrary smooth fun
tions spe
ifying the wave form, and (~u; ~v) and (u; v)

are the tortoise and Kruskal light-
one 
oordinates, respe
tively.

For an observer at spatial in�nity, we 
an use the tortoise light-
one 
oordinates ~u; ~v and

the metri
 (24.31)

ds

2

=

�

1�

2M

r(~u; ~v)

�

d~ud~v : (24.76)
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Unruh e�e
t Hawking e�e
t

a

eleration a surfa
e gravity � = 1=(4M)

u = � exp(�a~u)=a u = � exp(��~u)=�

v = exp(a~v)=a v = exp(�~v)=�

Minkowski va
uum j0

M

i Kruskal va
uum j0

K

i

Rindler va
uum j0

R

i Boulware va
uum j0

B

i

Table 24.1.: Comparison of variables used in the Unruh and Hawking e�e
t.

With r

�

! r for r !1, the metri
 be
omes at large distan
es Minkowskian,

ds

2

! d~ud~v = dt

2

� dr

2

; (24.77)

and thus 
oordinate time t and proper time � 
oin
ide for su
h an observer. This observer

will split the modes using the S
hwarzs
hild 
oordinate time t,

�(x) =

X

i

h

b

i

e

�i
~u

+ b

y

i

e

i
~u

i

+ left-movers : (24.78)

The va
uum de�ned by b

i

j0

B

i = 0 is 
alled the Boulware va
uum j0

B

i. The tortoise 
o-

ordinates 
over however only the S
hwarzs
hild spa
e-time with r > 2M . They, and as a

result also the Boulware va
uum j0

B

i, are singular on the horizon: the regularised va
uum

h0

B

jT

��

(r = 2M) j0

B

i energy diverges at r = 2M using these 
oordinates

On the other hand, we know that the Kruskal 
oordinates u; v 
over the whole S
hwarzs
hild

spa
e-time; in parti
ular they are not singular on the horizon. Close to the horizon,

ds

2

! dudv = dT

2

� dR

2

; (24.79)

and thus the time T should be used to split the modes into positive and negative frequen
y

modes,

�(x) =

X

i

h

a

i

e

�i
u

+ a

y

i

e

i
u

i

+ left-movers : (24.80)

Now the Kruskal va
uum is de�ned by a

i

j0

a

i = 0 for all i. The energy density of j0

a

i is �nite

(after subtra
ting as usually the zero-point energies) in the whole manifold, and in
reasing

towards the singularity. For a suÆ
iently large BH, we 
an treat the metri
 as a 
lassi
al

stati
 ba
kground, negle
ting any quantum ba
k-rea
tion.

We �nd now the spe
trum of parti
le measured by an observer at r!1 
onne
ting the two

va
ua by a Bogolyubov transformation. Comparing the 
ase at hand with the Unruh e�e
t,

we �nd the following analogy shown in Table 24.1. With the identi�
ation a = � = 1=(4M),

we 
an translate the result for the Unruh e�e
t to the spe
trum emitted by a BH,

D

~

N

E

= h0

K

j b

y

b j0

K

i =

1

exp(2�
=�) � 1

Æ(0) (24.81)

obtaining a thermal spe
trum with temperature T = �=(2�) = 1=(8�M). The quantity

� is the surfa
e gravity of the BH, i.e. it 
orresponds to the a

eleration of a test parti
le

experien
ed on the horizon, 
f. problem 25.??.
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Figure 24.3.: E�e
tive potential d V

eff

des
ribing the 
entrifugal barrier in d = 4 for two

di�erent values of the angular momentum l=M .

The state j0

K

i 
ontains not only outgoing right-movers, but also in
oming left-movers with

the same temperature. Sin
e we are assuming a stati
 system in thermal equilibrium, the

amount of energy emitted and absorbed by the BH should be equal. This assumes that the

BH is stati
 and eternal, i.e. does not originate from the 
ollapse of star. In the latter 
ase,

the past horizon at v = 0 does not exists and the spa
e-time approa
hes the 
at Minkowski

metri
. Therefore it is more appropriate to 
hoose a

i

as annihilation operators only for the

out-going right-movers, and b

i

for the left-movers. Hen
e an observer at spatial in�nity sees

only thermal radiation emitted by the BH.

Comment on 1+3 dimension How are our results modi�ed in d > 2 dimensions? We know

that the 
lassi
al Newtonian potential V (r) =M=r a
quires an additional, e�e
tive term due

to the 
entrifugal barrier. The same happens in the relativisti
 
ase: We 
an separate the

Klein-Gordon equation �� = 0, if we insert the ansatz

�(r

�

; t; #; �) =

X

l;m

f

m

l

(r

�

; t)Y

m

l

(#; �) : (24.82)

The resulting equation for f

m

l

(r

�

; t) is

�

�

2

�t

2

�

�

2

�r

2

+

�

1�

2M

r

��

2M

r

3

+

l(l + 1)

r

2

��

f

m

l

(t; r) = 0 ; (24.83)

where the two terms in the round bra
kets de�ne the e�e
tive potential V

eff

= dV

l

=dr. A plot

of the e�e
tive potential V

eff

des
ribing the 
entrifugal barrier is shown in Fig. 24.3. Note

that even for l = 0 a barrier exists and therefore a parti
le has to tunnel through it. Sin
e

the tunnelling probability is energy dependent, the spe
trum emitted by a BH is modi�ed

by a grey-fa
tor 


l

(E). The 
ondition for thermal radiation, namely an equal emission and

absorption rate, is however satis�ed also for 


l

(E) < 1.
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Information paradox The dis
overy of Hawking that bla
k holes evaporate led to the so


alled information paradox: The event horizon formed during the 
ollapse of a massive star

hides all information about its initial state in a set of 
onserved quantum numbers,M;J , and

Q. If the bla
k hole is stable, the information about the infalling material 
an be stored in

its mi
rophysi
al states. If the bla
k hole evaporates however, then the question arises where

the information goes|or if it is lost.

In order to see why a loss of information during bla
k hole evaporation seems to 
ontra-

di
t basi
 properties of quantum theory, let us re
all �rst the familiar 
ase of s
attering in

Minkowski spa
e. The S-matrix maps initial states j 

in

i at t = �1 on �nal states states

j 

out

i = S j 

in

i at t = +1. Sin
e the S-matrix is unitary, we 
an re
over the initial state

measuring the �nal state, j 

in

i = S

y

j 

out

i. In other words, the unitary time-evolution of

quantum theory guaranties the preservation of information.

Next we 
onsider the 
ase that a BH is formed at �nite time t. We negle
t �rst Hawking

radiation so that the BH is stable. At t ! �1, we are in Minkowski spa
e and we 
an


hoose the initial state j 

in

i as a pure state from the elements of the usual Minkowski Hilbert

spa
e, j 

in

i 2 H

in

(M). Some of the s
attered parti
les will end in the BH and hit �nally

the singularity; others will stay outside the horizon at t ! 1. We denote the Hilbert spa
e

of states ending in the singularity as H

out

(BH), while the Hilbert spa
e of states es
aping

is H

out

(M). Now the question arises what the 
omplete Hilbert spa
e H

out

(M;BH) of �nal

states is. Hawking argued that all operators de�ned on the Hilbert spa
es H

out

(M) and

H

out

(BH) 
ommute, be
ause the BH singularity is at spa
e-like distan
es to the outside fu-

ture. Therefore the 
omplete Hilbert spa
e of �nal states,H

out

(M;BH), is the tensor produ
t

of the individual Hilbert spa
es, H

out

(M;BH) = H

out

(M) 
H

out

(BH). Consequently, the

�nal states j 

out

i are produ
t states, j 

out

(M;BH)i = j 

out

(M)i 
 j 

out

(BH)i. An observer

outside the BH horizon 
an perform only measurements on j 

out

(M)i. Thus the out
ome of

its measurements is des
ribed by a density matrix,

� = tr

BH

fj 

out

(M)i h 

out

(M)jg ; (24.84)

where the tra
e is over a 
omplete set of states in H

out

(BH). Now we add the e�e
t of

Hawking radiation. If the bla
k hole evaporates 
ompletely, then a pure state has been

transformed into a mixed state des
ribed by the density matrix (24.84). Sin
e the time

evolution in quantum theory is unitary, this 
annot happen without assuming that quantum

gravity violates the basi
 prin
iples of quantum theory. Various proposals how this paradox


an be avoided have been made, but no 
lear pi
ture has emerged yet.

Summary

Bla
k holes are solutions of Einstein's equations 
ontaining a physi
al singularity whi
h|

a

ording to the 
osmi
 
ensorship hypothesis|is always 
overed by an event horizon. This

horizon is a global property of the spa
e-time, being independent of the observer and in-


uen
ed by the 
omplete spa
e-time. Within 
lassi
al physi
s, the event horizon 
an only

in
rease and has been therefore asso
iated by Bekenstein with the entropy of a bla
k holes.

However, the event horizon is a in�nite redshift surfa
e and emits in the semi-
lassi
al pi
ture
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thermal radiation. This Hawking radiation leads in turn to the information paradox.

Further reading

The Kerr solution is derived using symmetry arguments by 
iteLudvigsen199905. Additional

material on 
lassi
al BHs 
an be found e.g. in [HEL06℄. [BD82℄ treat Hawking radiation

in four dimensions. The entropy of a BH is 
al
ulated by [BL04℄. For a des
ription of the

information paradox see e.g. [Mat09℄, the more re
ent dis
ussion 
an be tra
ed from [AMPS13℄

and its des
ents.

421



25. Cosmologi
al 
onstant

We have en
ountered three 
ontributions to the 
osmologi
al 
onstant: A non-zero � term

in the Einstein-Hilbert Lagrangian would mean that an empty spa
e-time has 
lassi
ally a

non-zero energy density. Another 
lassi
al 
ontribution to the 
osmologi
al 
onstant arises

naturally in theories with SSB, be
ause the minimum of the potential is non-zero either

before or after the symmetry breaking. We expe
t a sequen
e of broken symmetries during

the 
osmologi
al evolution, and it looks therefore mysterious why we end up today with

V ' 0. Finally, the va
uum 
u
tuations of quantum �elds 
ontribute to the 
osmologi
al


onstant and it is often only this aspe
t whi
h is 
alled the 
osmologi
al 
onstant problem.

We start this 
hapter re
onsidering these quantum 
u
tuations, studying the in
uen
e of the

used regularisation s
heme. Then we will introdu
e alternative explanations for the observed

a

elerated expansion of the universe in the present epo
h whi
h either modify gravity or add a

new 
omponent of matter, dubbed dark energy. This approa
h assumes that the 
osmologi
al


onstant problem is solved, i.e. that �

�

+ h�i = 0. One may argue that we need a theory of

quantum gravity to understand how this works, and we 
lose with some 
omments on this

issue.

25.1. Va
uum energy density

Let us re
all that we obtained for the regularised va
uum energy density h�i two expressions

with a very di�erent dependen
e on the regularisation parameter. Using in the Wilsonian

approa
h an e�e
tive a
tion in
luding only modes up to the s
aleM , we found that � /M

4

. In


ontrast, in DR power-like divergen
es are absent and thus � depends only logarithmi
ally on

the renormalisation s
ale �. We will now re
onsider these 
al
ulations, evaluating additionally

the pressure P exerted by va
uum 
u
tuations. This will allow us to 
he
k whi
h one of the

two results reprodu
e 
orre
tly the equation of state w = �1 required for a Lorentz invariant

va
uum.

As usually, we look at the simplest 
ase, a real s
alar �eld, where we only have to re
olle
t

our previous results from se
tion 3.4 and example 5.1. The 
ontribution of a free s
alar �eld

to the expe
tation value of the va
uum energy density h�i measured by an observer at rest is

given by

h�i = h0jT

00

j0i =

1

2

h0j

_

�

2

+ (r�)

2

+m

2

�

2

j0i =

Z

d

3

k

(2�)

3

1

2

!

k

(25.1)

with !

k

=

p

m

2

+ k

2

. The same observer measures an isotropi
 
ontribution of the s
alar

zero-point 
u
tuations to the va
uum pressure, P

ij

= PÆ

ij

, given by

hP i =

1

3

h0jT

ii

j0i =

1

6

h0j(

_

�)

2

+ (r�)

2

�m

2

�

2

j0i =

1

3

Z

d

3

k

(2�)

3

k

2

2!

k

: (25.2)

The s
alar Feynman propagator �

F

(0) at 
oin
ident points 
an be written as the limit of two
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25.1. Va
uum energy density

�elds at nearby points,

i�

F

(0) = h0j�(x

0

)�(x)j0i

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

e

�ik(x

0

�x)

�

�

�

�

x

0

&x

=

Z

d

3

k

(2�)

3

2!

k

: (25.3)

Thus we 
an 
onne
t the Feynman propagator i�

F

(0) with the stress tensor at the one-loop

level forming the tra
e of the stress tensor of an ideal 
uid and inserting Eqs. (25.1) and

(25.2) for the energy density and pressure, respe
tively,

hT

�

�

i = h�i � 3hP i =

m

2

4�

2

Z

M

0

dk

k

2

p

m

2

+ k

2

= m

2

i�

F

(0) : (25.4)

Using again the equation of state w = hP i=h�i = �1 valid for a 
ontribution to the 
osmo-

logi
al 
onstant, we 
an rewrite this relation as

h�i = �hP i =

m

2

4

i�

F

(0) : (25.5)

Thus we should impose two physi
al 
onditions on the va
uum 
u
tuations: First, Lorentz

invarian
e requires that the energy density and the pressure of the va
uum satisfy the EoS

w = �1. Se
ond, the tra
e hT

�

�

i of the stress tensor and the Feynman propagator �

F

(0) are


onne
ted by (25.5) at the one-loop level (or at O(�

0

)). Sin
e at O(�

0

) the mass m is 
uto�

independent, this implies that a M

4

term is absent at one-loop in the va
uum energy density.

As a side remark, we re
all that 
lassi
ally T

�

�

! 0 for m ! 0. The tra
e anomaly will

generate an additional 
ontribution proportional to the beta fun
tion �(�) = ���=�� of the

��

4

intera
tion,

hT

�

�

i =

1

2

m

2

�

2

+

�

2�

�

4

: (25.6)

The last term is only logarithmi
ally sensitive to the UV 
uto� M . This suggests that a term

/ M

4

is absent in general. Note also that while the tra
e anomaly gives a 
ontribution to

the va
uum energy, its EoS does not qualify it as dark energy.

Cuto� in spatial momenta We start investigating a sharp 
uto� in the spatial momenta,

as used in many dis
ussions of the 
osmologi
al 
onstant problem. Integrating the energy

density (25.7a) up to the maximal s
ale jkj �M , we obtain

h�i =

1

4�

2

Z

M

0

djkjk

2

p

m

2

+ k

2

=

1

4�

2

M

4

Z

1

0

dz z

2

p

x

2

+ z

2

(25.7a)

=

1

16�

2

"

M

4

p

1 + x

2

�

1 +

1

2

x

2

�

�

1

2

m

4

ar
sinh

�

1

x

�

#

; (25.7b)

with z � jkj=M and x � m=M � 1. Similarly, we �nd for the pressure

hP i = =

1

3

1

4�

2

Z

M

0

djkj

k

4

p

m

2

+ k

2

=

1

3

1

4�

2

M

4

Z

1

0

dz

z

4

p

x

2

+ z

2

(25.8a)

=

1

3

1

16�

2

"

M

4

p

1 + x

2

�

1 +

1

2

x

2

�

+

3

2

m

4

ar
sinh

�

1

x

�

#

(25.8b)
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and for the Feynman propagator at 
oin
ident points

i�

F

(0) =

1

4�

2

Z

M

0

djkj

k

2

p

m

2

+ k

2

=

1

4�

2

M

2

Z

1

0

dz

z

2

p

x

2

+ z

2

(25.9a)

=

1

8�

2

"

M

2

p

1 + x

2

�m

2

ar
sinh

�

1

x

�

#

: (25.9b)

All three results show the behaviour expe
ted from naive power-
ounting, � / P / M

4

and

�

F

(0) /M

2

in the limitM � m. We 
an 
he
k now, if these results ful�l the two 
onstraints.

We �rst negle
t the mass of the s
alar parti
le, i.e. 
onsider the limit x ! 0: Then va
uum


u
tuations are predi
ted to have the EoS of radiation, w = hP i=h�i = 1=3 + O(x

4

) and to

break s
ale invarian
e, hT

�

�

i 6= 0 for m

2

! 0. Moreover, the relation (25.5) between the stress

tensor and the Feynman propagator �

F

(0) is violated.

The natural explanation for this behaviour is that regularisation s
hemes that break sym-

metries lead to spurious terms re
e
ting this violation. In our 
ase, a momentum 
uto� breaks

Lorentz invarian
e and thus we 
annot expe
t that a relation like w = �1 for the va
uum


u
tuations is 
orre
tly reprodu
ed. Using a regularisation s
heme whi
h breaks symmetries

requires therefore to add additional, symmetry breaking 
ounter-terms and to subtra
t the

o�ending terms by hand. This suggests that the subleading m

4

terms do satisfy the two


onditions, what is indeed the 
ase.

Dimensional regularisation We repla
e the three-dimensional integrals in (25.1){(25.3) by

d� 1 dimensional ones. Using then DR and the de�nition of Euler's Beta fun
tion, we obtain

h�i =

�

4�d

(2�)

(d�1)

1

2

Z

d

d�1

k

p

m

2

+ k

2

=

�

4

2 (4�)

(d�1)=2

�(�d=2)

�(�1=2)

�

m

�

�

d

: (25.10)

Similarly, it follows

hP i =

�

4�d

(2�)

(d�1)

1

2(d� 1)

Z

d

d�1

k

k

2

!

k

=

�

4

4 (4�)

(d�1)=2

�(�d=2)

�(1=2)

�

m

�

�

d

: (25.11)

and

i�

F

(0) = �

4�d

(m

2

)

d

2

�1

(4�)

d=2

�

�

1�

d

2

�

: (25.12)

Expanding next in " = 4� d results in

h�i = �hP i = �

m

4

64�

2

�

2

"

+

3

2

� 
 + ln

�

4��

2

m

2

��

+O(") : (25.13)

It follows that DR reprodu
es the 
orre
t EoS as well as the relation (25.5). The latter

ensures also that T

�

�

! 0 for m! 0, as expe
ted at O(�

0

). Note also that the integrands in

both Eqs. (25.10) and (25.11) are positive de�nite. Therefore, any 
uto� s
heme has to fail

reprodu
ing the 
orre
t EoS. In 
ontrast, we know that the integration measure of DR is not

positive de�nite and here we see an example where this property is required to reprodu
e the


orre
t physi
s.
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25.2. Dark energy

In order to obtain the observed value of � and P at a 
ertain s
ale �, we have to add a


orresponding 
ounter-term. After subtra
tion of the M

4

term and identifying 4�� with the


uto� s
ale M , we �nd in both s
hemes the same logarithmi
 dependen
e

h�i = �

m

4

32�

2

ar
sinh (M=m) � �

m

4

32�

2

ln (M=m) ; (25.14)

in the limit M = 4�� � m. We thus 
on
lude that the natural value of the va
uum energy

density is h�i � m

4

. While this behaviour redu
es the \numeri
al size" of the 
osmologi
al


onstant problem, it does not solve it, sin
e the natural value of h�i in the SM would be

determined by the top quark, m

4

t

� �

�

.

25.2. Dark energy

Sin
e the theoreti
ally expe
ted value of the 
osmologi
al 
onstant is mu
h larger than the

observed one, one may hope that the 
osmologi
al 
onstant is set to zero by some prin
iple

yet to be dis
overed. In this 
ase, we require an alternative explanation for the a

eler-

ated expansion of the Universe in the present epo
h. Su
h explanations 
an be divided in

modi�
ations of gravity and dark energy, depending on if the LHS or RHS of the Einstein

equations are 
hanged. Sin
e we 
an reshu�e matter and gravity by �eld rede�nitions, su
h

a distin
tion is somewhat ambiguous. As a pra
ti
al 
riterion, one 
an use the presen
e of

additional long-range for
es and thus the violation of the strong equivalen
e prin
iple as the


hara
teristi
 feature of modi�ed gravity models.

Quintessen
e These models introdu
e a s
alar �eld � with a 
anoni
ally normalised kineti


term that evolves in the slow-roll regime. Its potential V (�) has to be 
hosen su
h that the

slow-roll regime sets in only re
ently, i.e. at redshift z ' 0:7. In general, quintessen
e models

predi
t time-dependent deviations from w = �1, whi
h 
an be observationally tested. While

these models 
annot solve the 
osmologi
al 
onstant problem on the fundamental level, they

may address the 
oin
iden
e problem. The observed value of �

�

implies that the potential

energy of the new s
alar �eld is tiny: For instan
e, the potential V (�) = ��

4

requires as


oupling � � 10

�122

, while V (�) = m

2

�

2

=2 leads to m � 10

�33

eV. Thus quintessen
e models

are extremely �ne-tuned. They require therefore some stabilising me
hanism, if they are

embedded in a more 
omplete theory. We negle
t this problem and dis
uss here only how

these models attempt to solve the 
oin
iden
e problem.

We 
onsidered already in Eqs. (23.26a) and (23.27) the in
aton � 
oupled to the Friedmann

equations as a dynami
al system. Re-interpreting � as a quintessen
e �eld and adding normal

matter with density � and EoS w

m

= P=�, we obtain as equations of motion

H

2

=

8�G

3

�

1

2

_

�

2

+ V + �

�

; (25.15a)

_

H = �4�G

h

_

�

2

+ (1 + w

m

)�

i

: (25.15b)

Additionally, we have the usual Klein-Gordon equation for �. Next we introdu
e the dimen-

sionless variables

x =

_

�

p

48�GH

and y =

p

V

p

24�GH

: (25.16)
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The energy fra
tion of the quintessen
e �eld, 


�

= �

�

=�


r

, be
omes then 


�

= x

2

+ y

2

, while

its EoS is given by

w

�

=

x

2

� y

2

x

2

+ y

2

: (25.17)

We obtain dimensionless equations of motion taking derivatives of x and y with respe
t to

N = ln(a). Setting also � � �(8�G)

1=2

V

;�

=V , they are given by

dx

dN

= 3x+

p

6

2

�y

2

+

3

2

x[(1� w

m

)x

2

+ (1 + w

m

)(1� y

2

)℄ ; (25.18a)

dy

dN

= �

p

6

2

�xy +

3

2

y[(1 �w

m

)x

2

+ (1 + w

m

)(1 � y

2

)℄ : (25.18b)

For 
omparisons with observations, it is useful to de�ne the e�e
tive equation of state w

eff

�

P

tot

=�

tot

, sin
e this is the EoS dedu
ed from measuring H and

_

H. Using

_

H = �a=a�H

2

, we


an express the Einstein equations (19.47) and (19.48) for a 
at FLRW metri
 as

3H

2

= �� and 3H

2

+ 2

_

H = ��P : (25.19)

Thus the e�e
tive equation of state be
omes

w

eff

=

P

tot

�

tot

= �1�

2

_

H

3H

2

: (25.20)

Applied to quintessen
e, Eq. (25.15), we �nd

_

H

H

2

= �3x

2

�

3

2

(1 + w

m

)(1� x

2

� y

2

) (25.21)

and thus

w

eff

= w

m

+ (1� w

m

)x

2

� (1 + w

m

)y

2

: (25.22)

An interesting simpli�
ation appears, if � is 
onstant. Then the two equations (25.18) are


losed and 
an be analysed as a two-dimensional dynami
al system. The derivation of the

�xed points of this dynami
al system, whi
h 
an be obtained setting dx=dN = dy=dN = 0, is

the topi
 of problem 26.??. In parti
ular, there exist traje
tories 
onne
ting the saddle point

(x; y) = (0; 0) with 


�

= 0 and w = w

m

to the stable �xed point (x; y) = (�=

p

6;

p

1� �

2

=6)

with 


�

= 1 and w

eff

= w

�

= �1 + �

2

=3. Thus this 
ase 
orresponds to a transition from

a matter-dominated universe to an a

elerated expansion with w

eff

= �1 + �

2

=3 > �1.

Integrating the de�nition of �, we see that the 
ase � = 
onst: 
orresponds to the spe
ial 
ase

of exponential potentials, V (�) = V

0

exp(���=

f

M

Pl

). For other potentials, Eqs. (25.18) have

to analysed 
ombined with the Klein-Gordon equation for the quintessen
e �eld.

Tra
ker solutions Another sub
lass of quintessen
e models uses the potentials

V (�) =

M

4+n

n�

n

(25.23)

with n > 2. Sin
e V (�) is unbounded from below, it violates our standard stability require-

ment and should be therefore modi�ed by quantum 
orre
tion at small �. The Klein-Gordon

equation in a FLRW ba
kground with a(t) / t

�

be
omes for this potential

�

�+

3�

t

_

��

M

4+n

�

n+1

= 0 : (25.24)
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25.3. Modi�ed gravity

A spe
ial solution 
alled tra
ker solution is provided by

�

�

(t) = CM

1+�

t

�

(25.25)

with � = 2=(2 + n), 
f. problem 26.??. This solutions is an attra
tor, as we 
an 
he
k


onsidering the driving for
e

F(�) = �V

0

(�) =

M

4+n

�

n+1

(25.26)

a
ting on �: For �(t) < �

�

(t), the for
e is larger, F(�) > F(�

�

), and the solution � makes

up leeway. Similarly, a �eld with �(t) > �

�

(t) has a smaller driving for
e and falls ba
k to

the tra
king solution. At late times, the evolution of the s
alar �eld �(t) is thus given by the

tra
king solution for a wide range of initial 
onditions.

We 
onsider in the following always the tra
king regime and set for simpli
ity � ' �

�

. Using

(25.25), it follows that the kineti
 �eld energy s
ales as

_

�

2

/ t

2��2

and that

_

�

2

' V (�) holds.

Thus the tra
ker solution violates the slow-roll 
ondition. The energy density �

�

de
reases

with a / t

�

as

�

�

/

1

t

2�2�

/

1

a

(2�2�)=�

: (25.27)

Using � / a

�3(1+w)

, we obtain as EoS for the tra
ker �eld

w

�

= �1 +

2

3

1� �

�

=

n

2 + n

w

m

�

2

2 + n

: (25.28)

Thus for large n, it tra
ks the EoS of the dominant form of usual matter in the universe. In

parti
ular, w

�

is able to follow the 
hange of w

m

during the radiation-matter transition.

Sin
e the �eld does not evolve in the slow-roll regime, it seems that it 
annot lead to the

desired a

elerated expansion. However, the relative 
ontribution 


�

of the �eld to the total

energy density in
reases, 


�

/ t

2�

, and at some point Eq. (25.24) assuming an evolution in

a �xed ba
kground is no longer valid. This happens when �

�

� (�=t)

2

. The 
orresponding

matter density follows with H � 1=t as �

m

� 3H

2

f

M

2

Pl

� (

f

M

Pl

=t)

2

. Thus the 
ontributions

of ordinary matter and the tra
ker �eld are equal for � � M

Pl

. This 
oin
ides with the

generi
 slow-roll 
ondition

1

for power-law potentials: Thus the tra
ker potential leads to an

a

elerated expansion, as soon as it dominates the energy density of the universe. Sin
e 


�

in

this 
lass of models was never extremely small, the 
oin
iden
e problem is alleviated relative

to the �CDM model. However, the question why � �M

Pl

happens at the present epo
h has

still to be addressed in a spe
i�
 dark energy model.

Additionally to reprodu
e 
orre
tly the evolution of a(t), dark energy models have to re-

produ
e the observed large-s
ale stru
ture. Deviations to the standard �CDM model 
an

be
ome important only at late times, and thus these models 
an be 
onstrained mainly using

the evolution of large-s
ale stru
tures at redshifts z

<

�

5.

25.3. Modi�ed gravity

An important 
lass of modi�ed gravity models are the so-
alled f(R) gravity models, whi
h

generalise the Einstein-Hilbert form repla
ing R by a general fun
tion f(R). Thus the a
tion

1

The model belongs to the 
lass of large-�eld models, with its asso
iated problems.
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of f(R) gravity 
oupled to matter has the form

S =

Z

d

4

x

p

jgj

�

1

2~�

f(R) +L

m

�

; (25.29)

where L

m

may 
ontain both non-relativisti
 matter and radiation. Note that for f(R) 6=

R, the gravitational 
onstant ~� = 8�

~

G deviates from Newton's 
onstant G measured in a

Cavendish experiment. The �eld equations 
an be derived from the a
tion (25.29) either

by a variation w.r.t. the metri
 or the 
onne
tion. The dynami
s and the number of the

resulting degrees of freedom di�er in the two treatments. Following the �rst approa
h, we

obtain generalising the derivation in se
tion 18.2

F (R)R

��

�

1

2

f(R)g

��

�r

�

r

�

F (R) + g

��

�F (R) = ��T

��

(25.30)

with F � df=dR. Taking the tra
e of this expression, we �nd

F (R)R � 2f(R)g

��

+ 3�F (R) = ��T : (25.31)

The term �F (R) a
ts as a kineti
 term, so that these models 
ontain an additional propa-

gating s
alar degree of freedom, � = F (R). Applied to a 
at FLRW metri
, one obtains from

the 00 and ii part of the �eld equation (25.30) the modi�ed Friedmann equations as

3FH

2

= ~� (�

m

+ �

rad

) +

1

2

(FR � f)� 3H

_

F ; (25.32a)

�2F

_

H = ~�

�

�

m

+

4

3

�

rad

�

+

�

F �H

_

F : (25.32b)

Dividing (25.32a) by 3FH

2

, we 
an express the RHS through dimensionless variables x

i

whi
h


orrespond at the present epo
h to the density parameters 


i

= ~��

i

=(3F

0

H

2

0

),

x

1

= �

_

F

HF

; x

2

= �

f

6FH

2

; x

3

=

R

6H

2

and x

4

=

~�

2

�

rad

3FH

2

: (25.33)

For a 
at universe, the matter 
omponent has then to satisfy

~��

m

3FH

2

= 1� x

1

� x

2

� x

3

� x

4

: (25.34)

We are interested in the \late" universe, when the e�e
t of radiation is negligible, and set

therefore x

4

= 0. Following the example of quintessen
e, we obtain dimensionless equation of

motions taking derivatives of x

i

with respe
t to N = ln(a),

dx

1

dN

= �1� x

3

� 3x

2

+ x

2

1

� x

1

x

3

; (25.35a)

dx

2

dN

=

x

1

x

3

m

� x

2

(2x

3

� x

1

� 4) ; (25.35b)

dx

3

dN

= �

x

1

x

3

m

� 2x

3

(x

3

� 2) : (25.35
)

Here, m � d lnF=d lnR 
hara
terises the deviation from a �CDM model whi
h has m = 0,

while the se
ond parameter r is de�ned by

r � �

d ln f

d lnR

=

x

3

x

2

: (25.36)
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In order to simplify the 
omparison with observations whi
h assume typi
ally standard Ein-

stein gravity, we keep the de�nition (25.20) of the e�e
tive equation of state w

eff

. Then we

re
all from Eq. (19.46) the 
urvature of a 
at FLRW metri
,

R = g

��

R

��

= 6

a�a+ _a

2

a

2

= 6(

_

H + 2H

2

) : (25.37)

Combined with the de�nition of x

3

, we 
an express the e�e
tive EoS as a fun
tion of only x

3

,

w

eff

= �

2

3

�

x

3

�

1

2

�

: (25.38)

The 
osmologi
al evolution 
an now be studied for a 
hosen f(R) solving numeri
ally the

system (25.35). Alternatively, one 
an determine analyti
ally the �xed points of this dynam-

i
al system, study their stability and the behaviour of w

eff

: As result, one �nds that models

with an a

elerated expansion as attra
tor solution either 
ontradi
t observations (behaving

as a(t) / t

1=2

before a

eleration), violate stability 
onstraints (having w

eff

< �1) or are

hardly distinguishable from quintessen
e models in standard gravity [AGPT07℄. In addition

to reprodu
e the observed large-s
ale stru
ture, modi�ed gravity models have to pass solar

system tests: Sin
e they 
ontain typi
ally a light s
alar (as � = F (R) in f(R) gravity) whi
h

mediates a 5th for
e, they require a s
reening me
hanism to evade 
onstraints of lo
al gravity

tests.

25.4. Comments on quantising gravity

Gravity as an e�e
tive theory The Einstein-Hilbert a
tion 
ontains with the Plan
k s
ale

f

M

Pl

a dimensionfull 
oupling, and gravity is therefore a non-renormalisable theory. As any

other non renormalisable theory, we 
an treat Einstein gravity as an e�e
tive �eld theory, at

least in the limit that horizons play no role. In
luding higher-order operators, we should be

able to 
al
ulate quantum 
orre
tions to observables as e.g. the Newtonian potential following

the s
heme outlined in se
tion 12.5. If we re
all that [R℄ = m

2

and thus also [R

��

℄ = [R

����

℄ =

m

2

, we 
an order possible higher-order terms a

ording their dimension d = 6; 8; : : : as

S

eff

= �

Z

d

4

x

p

jgj

�

(R+ 2�) + L

2

�

A

1

R

2

+A

2

R

��

R

��

+A

3

R

����

R

����

�

+O(L

4

)

	

:

(25.39)

Here, the length s
ale L � 1=M indi
ates when the higher-order operators be
ome important.

Suppressing Lorentz indi
es, we 
an write s
hemati
ally the gravitational wave equation (with

A

i

� 1) as

�h+ L

2

��h � �T : (25.40)

Solving for the propagator, we obtain in momentum spa
e

D(k

2

) �

1

k

2

+ L

2

k

4

=

1

k

2

�

1

k

2

+M

2

: (25.41)

In the stati
 limit, the �rst term 
orresponds to the usual Newtonian 1=r potential, while the

se
ond one is of the Yukawa type,

� � �GM

�

1

r

�

exp(�r=L)

r

�

: (25.42)
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Thus the higher-order operators lead in tree-level amplitudes to short-range intera
tions,

whi
h are exponentially suppressed on s
ales r � L. Newton's law is not tested on sub-mm

s
ales and thus L is only bounded as L

<

�

1mm. If L would be 
lose to this limit, as e.g.

in s
enarios with large extra dimensions, new gravitational e�e
ts may be dete
table both in

Cavendish-like experiments and at a

elerators. However, one usually asso
iates L with the

Plan
k length L

Pl

, and then the a
tion be
omes

S

eff

=

Z

d

4

x

p

jgj

�

�(R � 2�) � a�

2

R

2

+ b�

2

R

��

R

��

+ : : :

	

: (25.43)

Performing perturbation theory, we expand the metri
 g

��

around the 
lassi
al Minkowski

ba
kground. Applied to the inverse g

��

and

p

jgj =

p

det(�g

��

), this will generate an in�nite

tower of gravitational self-intera
tions and 
ouplings to matter. Suppressing again Lorentz

indi
es, we 
an write s
hemati
ally

S

eff

=

f

M

2

Pl

4

Z

d

4

x

��

1

2

h�h+ h�h

2

+ : : :

�

+

�

�ah�

2

h+ bh�

2

h

2

+ : : :

�

+

�

: (25.44)

Sin
e we are interested in quantum e�e
ts, it is 
onvenient to res
ale the gravitational �eld

as h

��

=

1

2

f

M

Pl

h

��

su
h that it is 
anoni
ally normalised and has mass dimension one,

S

eff

=

Z

d

4

x

"

�

1

2

h�h+

1

f

M

Pl

h�h

2

+ : : :

�

+

 

a

f

M

2

Pl

h�

2

h+

b

f

M

3

Pl

h�

2

h

2

+ : : :

!

+

#

: (25.45)

The terms in the �rst round bra
ket 
orrespond to an expansion of the Einstein-Hilbert a
tion.

Their tree-level 
ontributions to the Newtonian potential of a stati
 sour
e with massM have

long-range. The leading term 
orresponding to single graviton ex
hange, 
f. with Eq. (7.47),

is given by

�

= �

2

�

M

f

M

Pl

1

r

1

f

M

Pl

�

M

f

M

2

Pl

1

r

: (25.46)

Here, the heavy sour
e 
ontributes the fa
tor

p

GM , while the 
oupling to the test parti
le

adds only

p

G. We 
an estimate the 
ontribution of the next, trilinear term as follows

�

= �

3

�

�

M

f

M

Pl

�

2

1

f

M

Pl

1

r

2

1

f

M

Pl

�

1

f

M

2

Pl

�

M

f

M

Pl

�

2

1

r

2

: (25.47)

The two heavy sour
es add ea
h a fa
tor M=

f

M

Pl

, while the trilinear 
oupling 
ontributes the

fa
tor 1=

f

M

Pl

. The dependen
e 1=r

2

follows then by dimensional analysis. At �rst sight, one

might guess that the e�e
t of the higher-order term �

3

is unobservable: However, 
lassi
al

sour
es of gravitational �elds 
an be strong, M=

f

M

Pl

� 1, and 
ompa
t, r � few � R

s

�

M=

f

M

2

Pl

. If the latter 
ondition is satis�ed, then �

2

� �

3

� �

n

� 1 and all higher-order terms

in the post-Newtonian expansion be
ome important. Ideal obje
ts to test this expansion are

therefore 
lose binary systems of neutron stars or bla
k holes. Using the virial theorem, we


an express �

3

as �

3

� GM=r � (v=
)

2

, what shows that �

3

is 
lassi
al, �

3

/ ~

0

.

Next we 
onsider how loop 
orre
tion to the Einstein-Hilbert a
tion a�e
t observables like

the Newtonian potential. As we know from our general dis
ussion in se
tion 11.4.1, the

divergen
es have the stru
ture of lo
al operators. Sin
e the one-loop 
orre
tions 
ome with a
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fa
tor �, the one-loop divergen
es of the 
lassi
al Einstein-Hilbert Lagrangian are 
onne
ted

to �

2

terms in the e�e
tive Lagrangian. Thus the sole e�e
t of these terms is to renormalise

the 
oeÆ
ients a and b. Moreover, we know that the non-analyti
 terms indu
ed by the loop


orre
tions are �nite and 
omputable. In parti
ular, the one-loop 
orre
tion to the graviton

propagator in the harmoni
 gauge is given by

k

4

M

2

Pl

�

21

120

(�

��

�

��

+ �

��

�

��

) +

1

120

�

��

�

��

� �

1

"

� ln(k

2

=�

2

) + 
onst:

�

: (25.48)

As in the 
ase of QCD, one has to add the e�e
t of Faddeev-Popov ghosts to obtain a


onsistent results using a 
ovariant gauge. Performing then e.g. on-shell renormalisation, we

are left with the logarithm whi
h turns in the stati
 limit after Fourier transformation into a

1=r

3

term. Combining these results, the Newtonian potential is

� = �

GM

r

"

1�

3M




2

r

2

+

41

10�

~G




2

r

3

�

2

3

exp

 

�

1

a

r

~G

96�


3

r

!#

; (25.49)

where we set for simpli
ity b = 0, and added 
, ~ and the numeri
al prefa
tors [Ste78,

BBDH03℄. This example shows that loop 
orre
tions to observables in 
lassi
al gravity 
an be


al
ulated following the usual e�e
tive theory approa
h. These 
orre
tions are|as expe
ted|

tiny for E � M

Pl

. Additional loop 
orre
tions due to higher-order operators will be even

more suppressed. Therefore any 
onsistent theory of gravity will lead to experimentally indis-

tinguishable predi
tions for the loop 
orre
tions in the limit E � M

Pl

. However, deviations

from Einstein gravity are testable via gravitational wave emission of 
ompa
t obje
ts and

observations on astronomi
al and 
osmologi
al s
ales.

Approa
hes beyond Einstein gravity In addition to being a non-renormalisable theory, grav-

ity poses spe
i�
 te
hni
al problems: For instan
e, 
anoni
al quantisation relies on the light-


one stru
ture of spa
e-time as input, while the metri
 should be the output of a quantum

theory of gravity. Using the path integral avoid this problem and allows even the summation

over spa
e-times with di�erent topologies. However, also the path integral formulation of

quantum gravity is plagued by problems: The justi�
ation for a Wi
k rotation from a metri


with Lorentzian to Eu
lidean signature is obs
ure|but even if we formally perform the Wi
k

rotation, the Eu
lidean gravitational a
tion remains unbounded from below.

In the traditional view, one negle
ts these prin
ipal problems and stays within the frame-

work of QFT in d = 4. The question arises then what UV 
ompletion the Einstein-Hilbert

a
tion has. One possibility is that the graviton is a 
omposite parti
le, similar to the pion.

However, the 
onstraint that the agent of gravity 
ouples in d = 4 QFT to the 
onserved

stress tensor seems to forbid this option. Another possibility is that the graviton is a funda-

mental parti
le, and additional parti
les and symmetries lead to an unitarisation of gravity.

In parti
ular, adding supersymmetries improves the UV behaviour of gravity and makes it

renormalisable up to the two-loop level, sin
e all possible one and two-loop divergen
es are

forbidden by supersymmetri
 Ward identities. While no expli
it three-loop 
al
ulations have

been performed to date, power 
ounting arguments suggest however that divergen
es exist at

the three-loop level. An even more minimalisti
 ansatz is the idea of asymptoti
 safety whi
h

assumes that Einstein gravity, de�ned non-perturbatively e.g. on a latti
e, is a 
onsistent

theory. This requires that the non-perturbatively 
al
ulated running gravitational 
oupling
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onstant G

N

(q

2

) has a UV �xed point. In this 
ase, a 
onsistent 
ontinuum limit of gravity


ould be de�ned. However, even the 
on
ept of a universal running 
oupling 
onstant is, at

least in perturbative 
al
ulations, ill-de�ned [Don12℄. While it is not ex
luded that this is an

artifa
t of perturbation theory, little eviden
e is known that supports asymptoti
 safety.

We give next a simple argument suggesting that quantum gravity does not admit lo
al

observables. As starter, let us 
onsider the 
ase of gauge theories. Here, measurable quanti-

ties are asso
iated to n-point fun
tions hO(x

1

) � � �O(x

n

)i of gauge-invariant operators O(x),

or to S-matrix elements. While the one-parti
le states used in the initial and �nal states

of the S-matrix are not gauge-invariant, the possible gauge transformations are redu
ed in

the limit t ! �1 to global transformations whi
h map one physi
al state onto a di�erent

physi
al state: Tying the states to t = �1 eliminates thus the redundan
y of lo
al gauge

transformations.

Now we 
onsider the 
ase of gravity where the gauge group is the group of all invertible


oordinate transformations. This means that no lo
al operators O(x) exist whi
h are gauge-

invariant, leaving the S-matrix as observable. More expli
itly, we 
an show this as follows: Let

us 
onsider the expe
tation value of observables whi
h are s
alar fun
tions of the metri
 and

a s
alar �eld, O(x) � O(g

��

(x); �(x)). We write hO(x

1

) � � �O(x

n

)i as a path integral average,

and use that a s
alar transforms as O(x) =

~

O(~x) under a general 
oordinate transformation,

hO(x

1

) � � �O(x

n

)i =

Z

D�Dg

��

O(x

1

) � � �O(x

n

) e

iS[�;g

��

℄

(25.50a)

=

Z

D�Dg

��

~

O(~x

1

) � � �

~

O(~x

n

) e

iS[�;g

��

℄

: (25.50b)

Next we apply the invarian
e of the a
tion, S[

~

�; ~g

��

℄ = S[�; g

��

℄, and the measure D

~

�D~g

��

=

D�Dg

��

, and relabel then the integration variables as � and g

��

,

hO(x

1

) � � �O(x

n

)i =

Z

D

~

�D~g

��

~

O(~x

1

) � � �

~

O(~x

n

) e

iS[

~

�;~g

��

℄

(25.51a)

=

Z

D�Dg

��

O(~x

1

) � � �O(~x

n

) e

iS[�;g

��

℄

= hO(~x

1

) � � �O(~x

n

)i : (25.51b)

Thus hO(x

1

) � � �O(x

n

)i 
annot depend on the spa
e-time points x

i

and has to be 
onstant.

We 
an 
ompare this behaviour to the 
ase of spa
e-time symmetries in Minkowski spa
e:

Applying as a symmetry transformation e.g. translations results in the 
onstraint that an

observable 
an depend only on the di�eren
es ~x

i

� x

i

, i.e. it should be translation invariant.

In
reasing the symmetry group to general 
oordinate transformations, the restri
tion on ob-

servables be
omes so severe that no non-trivial solution is possible. This argument suggests

that a quantum theory of gravity is not simply a version of Einstein-Hilbert gravity with

improved UV properties, but should in
lude some fundamentally new features 
ompared to

the lo
al quantum �eld theories of point parti
les we have 
onsidered. Examples for su
h

non-lo
al theories may 
ontain a minimal length s
ale like loop gravity and string theory, or

may be based on the non-
ommutativity of spa
e-time.

Finally, we 
omment on the idea of gravity as an emergent phenomenon. We have usually

assumed that the Universe at higher energies be
omes more and more symmetri
. However,

several 
ondensed matter systems show the opposite behaviour, where new symmetries emerge

at low energies. Applying this pi
ture to gravity, the gravitational �eld and thus spa
e-time

would be no fundamental degrees of freedom, but would appear at E � M

Pl

as an approx-

imate symmetry of the low-energy world. Support for this idea 
omes from few dire
tions:
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First, the 
osmologi
al 
onstant problem is solved, if the 
oupling of the gravitational �eld to

the stress tensor is shift-invariant, T

��

! T

��

+ 
g

��

. However, this simple solution ex
ludes

that the gravitational a
tion is a fun
tional of the metri
 g

��

. Se
ond, one 
an derive the

Einstein equations using a thermodynami
al language, an attempt whi
h is suggested by the

thermodynami
al des
ription of bla
k holes and horizons in general. More importantly, it is

possible to re-interpret the gravitational �eld equations as equations des
ribing the heating

and 
ooling of null surfa
es within this thermodynami
al pi
ture. This thermodynami
 de-

s
ription poses the question, if the gravitational �eld is not merely a ma
ros
opi
 des
ription

for the unknown fundamental degrees of freedom. A 
on
rete example for a theory where

spa
e-time is emergent is string theory, sin
e there the metri
 is not a fundamental degree of

freedom. Last but not least, bla
k hole formation provides a fundamental limitation to the

measurement of spa
e-time: Probing spa
e-time distan
es below the Plan
k s
ale is impossi-

ble, be
ause otherwise the measuring devi
e would 
ollapse to a bla
k hole (problem 26.??).

This implies that the un
ertainty relations derived from the usual 
ommutation relations of

quantum �elds break down on s
ales

<

�

1=M

Pl

, or in other words that lo
al quantum �eld

theory should be repla
ed by a new theoreti
al setting. Matvei Bronstein [Bro36℄ used �rst

this argument to 
on
lude:

\The elimination of the logi
al in
onsisten
ies 
onne
ted with this requires a radi-


al re
onstru
tion of the theory, and . . . perhaps also the reje
tion of our ordinary


on
epts of spa
e and time, modifying them by some mu
h deeper and nonevident


on
epts. Wer's ni
ht glaubt, bezahlt einen Thaler."

Summary

Alternatives to the standard �CDM model involve either new s
alar �elds (dark energy) or

modify gravity. While dark energy models are generi
ally plagued by �ne-tuning problems,

modi�
ations of gravity 
ontain new additional degrees of freedom whi
h pose both theoreti
al

and observational 
hallenges. The 
osmologi
al 
onstant problem raises the question, if our

(e�e
tive) �eld theory approa
h has a restri
ted validity. Few hints suggest that lo
ality has

to be abandoned in a quantum theory of gravity and that spa
e-time may be an emergent

phenomenon.

Further reading

[Mar12℄ dis
usses exhaustively the 
osmologi
al 
onstant problem. Dark energy and modi�ed

gravity models and their observational 
onsequen
es are reviewed by [JLS16℄. The e�e
tive

�eld theory approa
h to gravity is dis
ussed by [Don12℄, while [Pad16℄ reviews links between

gravity and thermodynami
s.
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