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1. Classical mechanics

As a starter we review in this chapter those concepts of classical mechanics which are es-
sential for progressing towards quantum theory. We recall first briefly the Lagrangian and
Hamiltonian formulation of classical mechanics and their derivation from an action principle.
We illustrate also the Green function method using as example the driven harmonic oscillator
and recall the action of a relativistic point particle.

1.1. Action principle

Variational principles Fundamental laws of Nature as Newton’s axioms or Maxwell’s equa-
tions were discovered in the form of differential equations. Starting from Leibniz and Euler,
it was realised that one can re-express differential equations in the form of variational prin-
ciples: In this approach, the evolution of a physical system is described by the extremum of
an appropriately chosen functional. Various versions of such variational principles exist, but
they have in common that the functionals used have the dimension of “energy x time”, i.e.
the functionals have the same dimension as Planck’s constant i. A quantity with this dimen-
sion is called action S. An advantage of using the action as main tool to describe dynamical
systems is that this allows us to implement easily both space-time and internal symmetries.
For instance, choosing as ingredients of the action local functions that transform as scalars
under Lorentz transformations leads automatically to relativistically invariant field equations.
Moreover, the action S summarises economically the information contained typically in a set
of various coupled differential equations.

If the variational principle is formulated as an integral principle, then the functional S will
depend on the whole path ¢(t) described by the system between the considered initial and final
time. In the formulation of quantum theory we will pursue, we will look for a direct connection
from the classical action S[qg] of the path [¢(¢): ¢'(¢')] to the transition amplitude (¢, '|q, t).
Thus the use of the action principle will not only simplify the discussion of symmetries of a
physical system, but lies also at the heart of the approach to quantum theory we will follow.

1.1.1. Hamilton’s principle and Lagrange’s equations

A functional F[f(z)] is a map from a certain space of functions f(z) into the real or complex
numbers. We will consider mainly functionals from the space of (at least) twice differen-
tiable functions between fixed points a and b. More specifically, Hamilton’s principle uses as
functional the action S defined by

b
Sl = / at L(q' ' 1), (L1)

where L is a function of the 2n independent functions ¢' and ¢' = dq¢'/dt as well as of the
parameter ¢. In classical mechanics, we call L the Lagrange function of the system, ¢* are its



1. Classical mechanics

n generalised coordinates, ¢* the corresponding velocities and ¢ is the time. The extrema of
this action give those paths ¢(¢) from a to b which are solutions of the equations of motion
for the system described by L.

How do we find those paths that extremize the action S7 First of all, we have to prescribe
which variables are kept constant, which are varied and which constraints the variations have
to obey. Depending on the variation principle we choose, these conditions and the functional
form of the action will differ. Hamilton’s principle corresponds to a smooth variation of the
path,

q'(t,e) = ¢'(£,0) +en’ (),
that keeps the endpoints fixed, n’(a) = n*(b) = 0, but is otherwise arbitrary. The scale factor
¢ determines the magnitude of the variation for the one-parameter family of paths en’(t). The
notation S[¢’] stresses that we consider the action as a functional only of the coordinates ¢':
The velocities ¢’ are not varied independently because ¢ is time-independent. Since the time
t is not varied in Hamilton’s principle, varying the path ¢*(, ) requires only to calculate the
resulting change of the Lagrangian L. Following this prescription, the action has an extremum

if
b OL d¢' 0L 9g' b oL , OL
:/ dt (—.—q+f—q> :/ dt <—.nl+ﬁf72> . (1.2)
I a 0qt 0 0¢" Oe a 0q" oq
Here we applied—as always in the following—Einstein’s convention to sum over a repeated
index pair. Thus e.g. the first term in the bracket equals

OL ;, ~=0L
a—qin Z;G—qin

for a system described by n generalised coordinates. We can eliminate 7' in favour of 7’
integrating the second term by parts, arriving at

b oL d (8L>] . [6L ]”
£=0 /a [8(]2 dt \ 9¢* " a¢' " |, (1.3)

The boundary term [...]% vanishes, because we required that the functions 1’ are zero at the
endpoints a and b. Since these functions are otherwise arbitrary, each individual term in the
first bracket has to vanish for an extremal curve. The n equations resulting from the condition
08[q'(t,€)]/0e = 0 are called the (Euler-) Lagrange equations of the action S,

or_aor_
dq¢t  dtogt

0S[q*(t )]

0= Oe

9S[q' (t,¢)]
Oe

(1.4)

and give the equations of motion for the system specified by L. In the future, we will use a
more concise notation, calling

5qi = lim qi (ta 8) B qi (ta 0) _ aqi (ta 8)

e—0 £ N Oe (15)

e=0

the variation of ¢*, and similarly for functions and functionals of ¢°. Thus we can re-write e.g.
Eq. (I2) in a more evident form as

i ’ i i ’ oL ; OL .,
0—5S[q]—/a dt5L(q,q,t)—/a dt (8—(]2.5q +8_qi5q>' (1.6)



1.1. Action principle

We close this paragraph with three remarks. First, we note that Hamilton’s principle is often
called the principle of least action. This name is somewhat misleading, since the extremum
of the action can be also a maximum or a saddle point. Second, observe that the Lagrangian
L is not uniquely fixed: Adding a total time-derivative, L — L' = L + df(q,t)/dt, does not
change the resulting Lagrange equations,

b
S'=5+ / at S = 54 (). 0) — Flao). 1), (L.7)

since the last two terms vanish varying the action with the restriction of fixed endpoints a and
b. Finally, note that we used a Lagrangian that depends only on the coordinates and their
first derivatives. Such a Lagrangian leads to second-order equations of motion and thus to
a mechanical system specified by the 2n pieces of information {g;, ¢;}. Ostrogradsky showed
1850 that a stable ground-state is impossible, if the Lagrangian contains higher derivatives
G,q®, ..., cf. problem 1.7?7. Therefore such theories contradict our experience that the vac-
uum is stable. Constructing Lagrangians for the fundamental theories describing Nature, we
should restrict ourselves thus to Lagrangians that lead to second-order equations of motion.

Lagrange function We illustrate now how one can use symmetries to constrain the possible
form of a Lagrangian L. As example, we consider the case of a free non-relativistic particle
with mass m subject to the Galilean principle of relativity. More precisely, we use that the
homogeneity of space and time forbids that I depends on & and ¢, while the isotropy of space
implies that L depends only on the norm of the velocity vector v, but not on its direction.
Thus the Lagrange function of a free particle can be only a function of v?, L = L(v?).

Let us consider two inertial frames moving with the infinitesimal velocity € relative to each
other. (Recall that an inertial frame is defined as a coordinate system where a force-free
particle moves along a straight line.) Then a Galilean transformation connects the velocities
measured in the two frames as v’ = v+e¢. The Galilean principle of relativity requires that the
laws of motion have the same form in both frames, and thus the Lagrangians can differ only
by a total time-derivative. Expanding the difference 6L in ¢ gives with dv? = 2v - & + O(£?)

oL
2

Since v* = dz'/dt, the term OL/0v? has to be independent of v such that the difference 6L
is a total time-derivative. Hence, the Lagrangian of a free particle has the form L = av? + b.
The constant b drops out of the equations of motion, and we can set it therefore to zero. To
be consistent with usual notation, we call the proportionality constant m/2, and the total
expression kinetic energy T,

L=T=_—mv". (1.9)

For a system of non-interacting particles, the Lagrange function L is additive, L =) %mavg.

If there are interactions (assumed for simplicity to depend only on the coordinates), then we
subtract a function V(x1,x9,...) called potential energy. One confirms readily that this
choice for L reproduces Newton’s law of motion.
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Energy The Lagrangian of a closed system does not depend on time because of the homo-
geneity of time. Its total time derivative is

L oL ., JL .,
—=—qd+=—=1. 1.10
Gt " ag ot (1.10)
Using the equations of motion and replacing &L/dq" by (d/dt)0L/d¢', it follows
dL . d oL oL ., d(.0L
—=¢ ——+—=§¢=—1¢ == . 1.11
& Tarog Tt T @ (q aqz) (1.11)
Hence the quantity
; OL
E=¢ — — 1.12
7 5 (1.12)

remains constant during the evolution of a closed system. This holds also more generally, e.g.
in the presence of static external fields, as long as the Lagrangian is not time-dependent.
We have still to show that E coincides indeed with the usual definition of energy. Using
as Lagrange function L = T'(q,q) — V(q), where the kinetic energy T is quadratic in the
velocities, we have
4 0L ;0T
q o q o7 2T (1.13)

and thus E=2T - L =T+ V.

Conservation laws In a general way, we can derive the connection between a symmetry of
the Lagrangian and a corresponding conservation law as follows: Let us assume that under a
change of coordinates ¢* — ¢*+Jd¢’, the Lagrangian changes at most by a total time derivative,

F
L—>L+6L=L+%. (1.14)

In this case, the equation of motions are unchanged and the coordinate change ¢* — ¢ + d¢*
is a symmetry of the Lagrangian. But the change ddF/dt has to equal L induced by the
variation d¢’,

oL ., OL_., diF

—0¢" + =—d6¢" — —— =0. 1.15

2" Yo’ T @ (1.15)
Replacing again 0L/0q’ by (d/dt)0L/d¢" and applying the product rule gives as conserved
quantity
oL
g
Thus any continuous symmetry of a Lagrangian system results in a conserved quantity. In
particular, energy conservation follows for a system invariant under time-translations with
0q" = ¢'6t. Other conservation laws are discussed in problem 1.77.

Q=——0¢"—0F. (1.16)

1.1.2. Palatini’s principle and Hamilton’s equations

Legendre transformation and the Hamilton function In the Lagrange formalism, we de-
scribe a system specifying its generalised coordinates and velocities using the Lagrangian,
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L = L(q",¢’,t). An alternative is to use generalised coordinates and their canonically conju-

gated momenta p; defined as
_ 0L

— a_q"i .
The passage from {¢’, ¢*} to {¢*,p;} is a special case of a Legendre transformationl]: Starting
from the Lagrangian L we define a new function H(q", p;,t) called Hamiltonian or Hamilton

pi (1.17)

function via

H(q',pit) = % ¢ — L(¢",¢",t) = pid" — L(¢", 4", t) . (1.18)

Here we assume that we can invert the definition (LI7)) and are thus able to substitute
velocities ¢* by momenta p; in the Lagrangian L.

The physical meaning of the Hamiltonian H follows immediately comparing its defining
equation with the one for the energy E. Thus the numerical value of the Hamiltonian equals
the energy of a dynamical system; we insist however that H is expressed as function of
coordinates and their conjugated momenta. A coordinate ¢; that does not appear explicitly
in L is called cyclic. The Lagrange equations imply then 0L/0¢; = const., so that the
corresponding canonically conjugated momentum p; = OL/d¢" is conserved.

Palatini’s formalism and Hamilton's equations Previously, we considered the action S as a
functional only of ¢°. Then the variation of the velocities ¢* is not independent and we arrive
at n second order differential equations for the coordinates ¢*. An alternative approach is to
allow independent variations of the coordinates ¢* and of the velocities ¢*. We trade the latter
against the momenta p; = 0L/ d¢' and rewrite the action as

b
Sle', pil 2/ dt [pi¢" — H(q',pi,t)] - (1.19)
The independent variation of coordinates ¢* and momenta p; gives
b
. : , OH .., OH
0S[q", pi] = dt |pi0d" + ¢"op; — —0q" — op;| - 1.20
4", pi] /a [pz ¢ +4'0pi = 5500 — 5 pz] (1.20)

The first term can be integrated by parts, and the resulting boundary terms vanishes by
assumption. Collecting then the d¢* and dp; terms and requiring that the variation is zero,

. b OH\ . . . 9H
", pi] ) bit 5 )00 4~ 5, )P (1.21)

As the variations d¢* and dp; are independent, their coefficients in the round brackets have to
vanish separately. Thus we obtain in this formalism directly Hamilton’s equations,

we obtain

;. OH OH
= d )y = —— . 1.22
=5, A Pi = =5 (1.22)
Consider now an observable O = O(q¢’, p;,t). Its time-dependence is given by
40 90, 90 90 90 0H 00 0H , 90 )

at —od? T o T o T o ops  op o T ot

!The concept of a Legendre transformation may be familiar from thermodynamics, where it is used to change
between extensive variables (e.g. the entropy S) and their conjugate intensive variables (e.g. the temperature
T).
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where we used Hamilton’s equations. If we define the Poisson brackets {A, B} between two
observables A and B as

{A,BYy == o — o (1.24)
then we can rewrite Eq. (L23)) as

% — {0, H} + %—(Z. (1.25)

This equations gives us a formal correspondence between classical and quantum mechanics:

The time-evolution of an operator O in the Heisenberg picture is given by the same equation

as in classical mechanics, if the Poisson bracket is changed to a commutator. Since the Poisson
bracket is antisymmetric, we find

dH  O0H

At ot

Hence the Hamiltonian H is a conserved quantity, if and only if H is time-independent.

(1.26)

1.2. Green functions and the response method

We can test the internal properties of a physical system, if we impose an external force J(t)
on it and compare its measured to its calculated response. If the system is described by
linear differential equations, then the superposition principle is valid: We can reconstruct
the solution z(t) for an arbitrary applied external force J(t), if we know the response to
a normalised delta function-like kick J(¢) = §(t — t'). Mathematically, this corresponds to
the knowledge of the Green function G(t — t') for the differential equation D(t)z(t) = J(t)
describing the system. Even if the system is described by a non-linear differential equation,
we can often use a linear approximation in case of a sufficiently small external force J(t).
Therefore the Green function method is extremely useful and we will apply it extensively
discussing quantum field theories.

We illustrate this method with the example of the harmonic oscillator which is the prototype
for a quadratic, and thus exactly solvable, action. In classical physics, causality implies that
the knowledge of the external force J(t') at times ' < ¢ is sufficient to determine the solution
z(t) at time ¢. We define therefore two Green functions G and Gr by

(t) :/t at' G(t — ) J(t) :/Oo Adt'Gr(t —t")J(t), (1.27)

— 00 — 00

where the retarded Green function G satisfies Gg(t —t') = G(t —t')9(t — ¢'). The definition
(L27) is motivated by the trivial relation J(t) = [dt’ 6(t — ¢')J(¢'): An arbitrary force J(t)
can be seen as a superposition of delta functions 0(¢t — t') with weight J(¢'). If the Green
function G (t — t') determines the response of the system to a delta function-like force, then
we should obtain the solution z(t) integrating Gr(t — t') with the weight J(¢').

We convert the equation of motion mi 4+ mw?z = J of a forced harmonic oscillator into

the form D(t)z(t) = J(t) by writing

2
D(t)z(t) =m (% + w2> z(t) = J(t). (1.28)
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AIm(Q)
Re(2)
r——————-- I ———————= B -
X
\ Zw—ie w=ie |/
\ /
\ /
\\ }/
AN e

Figure 1.1.: Poles and contour in the complex € plane used for the integration of the retarded
Green function.

Inserting (L27)) into (IL28) gives

/ T At DGRt — ) I(t) = J(2) . (1.29)

—00
For an arbitrary external force J(t), this relation can be only valid if
D#t)Gr(t—t)=6(t—-1t). (1.30)

Thus a Green function G(t — t') is the inverse of its defining differential operator D(t). As
we will see, Eq. (L30) does not specify uniquely the Green function, and thus we will omit
the index “R” for the moment. Performing a Fourier transformation,

dQ) . / do . ,
_ = Dt —iQ(t—t") 4y W iQ(t—t)
Gt —1t) /27r G(Q)e and 0(t—1t) /27re , (1.31)
we obtain 10 10
/ 492 @)DE)eet) = / 42 () (1.32)
2w 2w

The action of D(t) on the plane-waves e "2(*~*) can be evaluated easily, since the differentia-

tion has become equivalent with multiplication, d/dt — —if2. Comparing then the coefficients
of the plane-waves on both sides of this equation, we have to invert only an algebraic equation,
arriving at

1 1

G(Q) = Ei(UQ — QQ .

(1.33)

For the back-transformation with 7 =1¢ — ¢/,

e—iQT
G(r) = / sy (1.34)

2mm w? — 2’

we have to specify how the poles at Q% = w? are avoided. It is this choice by which we select

the appropriate Green function. In classical physics, we implement causality (“cause always
precedes its effect”) selecting the retarded Green function.

We will use Cauchy’s residue theorem, ¢ dz f(z) = 2mi ) res,, f(z), to calculate the inte-
gral. Its application requires to close the integration contour adding a path which gives a
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vanishing contribution to the integral. This is achieved, when the integrand G(Q)e 7 van-
ishes fast enough along the added path. Thus we have to choose for positive 7 the contour C_
in the lower plane, e 17 = ¢~ [SIT _ () for () — —oo, while we have to close the contour
in the upper plane for negative 7. If we want to obtain the retarded Green function Gg(T)
which vanishes for 7 < 0, we have to shift therefore the poles {25 = +w into the lower plane

as shown in Fig. [LT by adding a small negative imaginary part, /5 — /9 = *w — ig, or

1 o7
Gr(r) :_%/dg Q- w+ie)(Q+w+ie) (1.35)
The residue res,, f(z) of a function f with a single pole at zj is given by
res,, f(z) = zli_)rrzlo(z —20)f(2). (1.36)
Thus we pick up at @ = —w — ie the contribution 2mi e™“”/(—2w), while we obtain

21 797 /(2w) from Qy = w — ie. Combining both contributions and adding a minus sign
because the contour is clockwise, we arrive at

i 1 sin(wr)

GRr(T) =
as result for the retarded Green function of the forced harmonic oscillator.
We can now obtain a particular solution solving (I.27). For instance, choosing J(t') =
§(t —t'), results in

6= — 7] 9(r) = 9(r) (1.37)

2mw m w

2(t) = 1 sin(wt)
m  w
Thus the oscillator was at rest for ¢ < 0, got a kick at ¢ = 0, and oscillates according z(t)
afterwards. Note the following two points: First, the fact that the kick proceeds the movement
is the result of our choice of the retarded (or causal) Green function. Second, the particular
solution (L38)) for an oscillator initially at rest can be generalised by adding the solution to

the homogeneous equation # 4 w? z = 0.

I(t). (1.38)

1.3. Relativistic particle

In special relativity, we replace the Galilean transformations as symmetry group of space
and time by Lorentz transformations. The latter are all those coordinate transformations
o — M = Ah,2¥ that keep the squared distance

sto = (t1 — 1) — (z1 — 22)> — (Y1 — 12)* — (21 — 22)° (1.39)

between two space-time events z/ and z invariant. The distance of two infinitesimally close
space-time events is called the line-element ds of the space-time. In Minkowski space, it is
given by

ds? = dt? — dz? — dy? — dz? (1.40)
using a Cartesian inertial frame. We can interpret the line-element ds? as a scalar product,
if we introduce the metric tensor 7, with elements

1 0 0 O
0 -1 0 0

=109 o -1 o (1.41)
0 0 0 -1
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(z —y)? > 0 time-like

(z — y)? = 0 light-like

(z — y)? < 0 space-like

Y

Figure 1.2.: Light-cone at the point P(y*) generated by light-like vectors. Contained in the
light-cone are the time-like vectors, outside the space-like ones.

and a scalar product of two vectors as
a-b=nyadbd =a,b =a'b,. (1.42)

In Minkowski space, we call a four-vector any four-tuple V# that transforms as V# = A¥, V.
By convention, we associate three-vectors with the spatial part of four-vectors with upper
indices, e.g. we set z# = {t,z,y, 2z} or A¥ = {¢, A}. Lowering then the index by contraction
with the metric tensor result in a minus sign of the spatial components of a four-vector,
T, = Nt = {t,—x,—-y,—z} or A, = {$,—A}. Summing over an index pair, typically
one index occurs in an upper and one in a lower position. Note that in the denominator,
an upper index counts as a lower index and vice versa, cf. e.g. with Eqs. (LI8]) and (LI7).
Additionally to four-vectors, we will meet tensors T*!"#» of rank n which transform as
THL = AL o AH TV
Since the metric 7, is indefinite, the norm of a vector a* can be

ayal >0,  time-like, (1.43a)
ayat =0, light-like or null-vector, (1.43b)
ayal <0, space-like. (1.43c)

The cone of all light-like vectors starting from a point P is called light-cone, cf. Fig. The
time-like region inside the light-cone consists of two parts, past and future. Only events inside
the past light-cone can influence the physics at point P, while P can influence only the interior
of its future light-cone. The proper-time 7 is the time displayed by a clock moving with the
observer. With our conventions—negative signature of the metric and ¢ = 1—the proper-time
elapsed between two space-time events equals the integrated line-element between them,

2 2 2
Ti2 = / ds = / [ﬂuudx#dxy]lﬂ = / de[1 — 02]1/2 <ty —t. (1.44)
1 1 1

The last part of this equation, where we introduced the three-velocity v’ = dz’/dt of the
clock, shows explicitly the relativistic effect of time dilation, as well as the connection between



1. Classical mechanics

coordinate time ¢ and the proper-time 7 of a moving clock, dr = (1 — v?)/2dt = dt/y. The
line describing the position of an observer is called world-line. Parametrising the worldline
by the parameter o, z = (o), the proper-time is given by

dz# dev )1/

Note that 7 is invariant under a reparameterisation & = f(o).
The only invariant differential we have at our disposal to form an action for a free point-like
particle is the line-element, or equivalently the proper-time,

b b
So :a/ ds:a/ daE (1.46)
a a do

with L = ads/do = ad7/do. We check now if this choice which implies the Lagrangian

dr dzt dzv]'/?

L=aSl = & 1.4
YA [77#1/ do do ] (1.47)

for a free particle is sensible: The action has the correct non-relativistic limit,

b b b
Sozoz/ ds:a/ dt\/l—v2:/ dt (—m+%mv2+0(v4)> ; (1.48)

if we set « = —m. The mass m corresponds to a potential energy in the non-relativistic limit
and has therefore a negative sign in the Lagrangian. Moreover, a constant drops out of the
equations of motion, and thus the term —m can be omitted in the non-relativistic limit. The
time ¢ enters the relativistic Lagrangian in a Lorentz invariant way as one of the dynamical
variables, z# = (¢, ), while o assumes now ¢’s purpose to parametrise the trajectory, z* (o).
Since a moving clock goes slower than a clock at rest, solutions of this Lagrangian maximise
the action.

Example 1.1: Relativistic dispersion relation: We extend the non-relativistic definition of the
momentum, p; = dL/0#!, to four dimensions setting p, = —OL/0i*. Note the minus sign that
reflects the minus in the spatial components of a covariant vector, p, = (E, —p). Then

_OL _ dwa/do _ dwa
aie dr/do — M

Do = = mug - (1.49)

In the last step, we defined the four-velocity u® = dz®/dr. Using dt = ~dr, it follows uqu® = 1 and
pap® = m>. The last relation expresses the relativistic dispersion relation E? = m? + p>.

The Lagrange equations are

d OL oL
el = ) 1.50
do O(dz®/do)  Oz® (1.50)
Consider e.g. the ' component, then
d 0L d (1ds!
e i 1.51
do 9(dz'/do)  do <L da) 0 (1.51)

10



1.3. Relativistic particle

Since L = —mdr/do, Newton’s law follows for the z! coordinate after multiplication with
do/dr,
d?zt
— =0 1.52
— =0, (152)

and similar for the other coordinates.
An equivalent, but often more convenient form for the Lagrangian of a free particle is

L = —-mn, "z, (1.53)

where we set ## = dz#/dr. If there are no interactions (except gravity), we can neglect the
mass m of the particle and one often sets m — —1.

Next we want to add an interaction term Sg,;, between a particle with charge ¢ and an
electromagnetic field. The simplest possible action is to integrate the potential A, along the
world-line z# (o) of the particle,

Sem = —q/dx“ Au(z) = —q/da % Ay(z). (1.54)

Using the choice 0 = 7, we can view ¢z* as the current j# induced by the particle and thus
the interaction has the form L, = —j*A,. Any candidate for Se,, should be invariant under
a gauge transformation of the potential,

Au(@) = Ay(z) — 9,A(z). (1.55)

This is the case, since the induced change in the action,

2 2
nSon = [ o S 20— [Can = qa@ - aq), (1.56)

depends only on the endpoints. Thus 5 Sey, vanishes keeping the endpoints fixed. Assuming
that the Lagrangian is additive,

dzt vV da
p— | g A L.

L:Lg-l—Lem:—m[

the Lagrange equations give now

dz? 0Ay(x)
do O0zc

d [[ mdz,/do

— 1.58
do | [nudzt/do dz¥ /do]'/? (1.58)

+ qAa:| =(q

Performing then the differentiation of A(x(c)) with respect to o and moving it to the RHS,
we find

d [dea/do]  (dz* 94y do* 04, da
do N do 0z do Oz

— e 1.59
dr/do T4 7 (1.59)

where we introduced the electromagnetic field-strength tensor F),, = 9,4, — d,A,. Choosing
o = 7 we obtain the covariant version of the Lorentz equation,
d?z®

mw :qFa/\’U,)\. (160)

11



1. Classical mechanics

You should work through problem 1.?7, if this equation and the covariant formulation of the
Maxwell equations are not familiar to you.

Summary

The Lagrange and Hamilton function are connected by a Legendre transformation,
L(¢', ¢, t) = pi¢* — H(q",p;,t). Lagrange’s and Hamilton’s equations follow extremizing the
action S[¢'] = f; dt L(¢*,¢",t) and S[¢*,p;] = fab dt [pid* — H(q", pi,t)], respectively, keeping
the endpoints a and b in coordinate space fixed. Knowing the Green function G(¢t — ') of a
linear system, we can find the solution z(¢) for an arbitrary external force J(t) by integrating
G(t —t') with the weight J(#).

Further reading

The series of Landau and Lifshitz on theoretical physics is a timeless resource for everybody
studying and working in this field; its volume 1 [LL76] presents a succinct treatment of
classical mechanics.

12



2. Quantum mechanics

The main purpose of this chapter is to introduce Feynman’s path integral as an alternative to
the standard operator approach to quantum mechanics. Most of our discussion of quantum
fields will be based on this approach, and thus becoming familiar with this technique using the
simpler case of quantum mechanics is of central importance. Instead of employing the path
integral directly, we will use as basic tool the vacuum persistence amplitude (0, co|0, —00) ;:
This quantity is the probability amplitude that a system under the influence of an external
force J stays in its ground-state. Since we can apply an arbitrary force J, the amplitude
(0,00]0, —00) s contains all information about the system. Moreover, it serves as a convenient
tool to calculate Green functions which will become our main target studying quantum field
theories.

2.1. Reminder of the operator approach

A classical system described by a Hamiltonian H (¢*, p;, t) can be quantised promoting ¢* and p;
to operator ¢ and p; which satisfy the canonical commutation relations [(ji, ﬁj] = id;. The
latter are the formal expression of Heisenberg’s uncertainty relation. Apart from ordering
ambiguities, the Hamilton operator H(¢’,p;,t) can be directly read from the Hamiltonian
H(q",p;,t). The basic features of any quantum theory can be synthesised into a few principles.

General principles A physical system in a pure state is fully described by a probability
amplitude

P(a,t) = (aly(t)) € C, (2.1)

where {a} is a set of quantum numbers specifying the system and the states |4 (¢)) form a
complex Hilbert space. The probability p to find the specific values a, in a measurement is
given by p(a.) = |1 (a«,t)|?>. The possible values a, are the eigenvalues of Hermitian operators
A whose eigenvectors |a) form an orthogonal, complete basis. In Dirac’s bra-ket notation, we
can express these statements by

Ala) = ala), {ala"y =6 (a—d'), /da la)(a] =1, (2.2)

In general, operators do not commute. Their commutation relations can be obtained by the
replacement {A, B} — i[A, B] in the definition (I.24) of the Poisson brackets.

The state of a particle moving in one dimension in a potential V' (¢) can be described either
by the eigenstates of the position operator ¢ or of the momentum operator p. Both form a
complete, orthonormal basis, and they are connected by a Fourier transformation which we

"When there is the danger of an ambiguity, operators will be written with a “hat”; otherwise we drop it.

13



2. Quantum mechanics

choose to be asymmetric,

00 =) = [ 52 vw) = [ 5 aln) wlv) (2.30)
mm=mw=/@eMmm=/mmmmw. (2.3b)

Choosing this normalisation has the advantage that the factor 1/(27) in the Fourier transfor-
mation is the same as in the density of free states, dpL/(2m), which will enter quantities like
decat rates or cross sections. From Eq. (2.3)), it follows that the asymmetry in the Fourier
transformation is reflected in the completeness relation of the states,

[dalayal=1 and [ 21wl =1. (2.4

Time-evolution Since the states [¢(¢)) form a complex Hilbert space, the superposition
principle is valid: If ¢y and 1o are possible states of the system, then also

P(t) = a1 (t) + cotpa(2), ¢ €C. (2.5)

In quantum mechanics, a stronger version of this principle holds which states that if 4 (¢) and
1) (t) describe the possible time-evolution of the system, then so does also the superposed state
¥ (t). This implies that the time-evolution is described by a linear, homogeneous differential
equation. Choosing it as first-order in time, we can write the evolution equation as

10i4(t)) = Dl9(2)) , (2.6)

where the differential operator D on the RHS has to be still determined.

We call the operator describing the evolution of a state from () to 1 (¢') the time-evolution
operator U(#',t). This operator is unitary, U ! = Ut, in order to conserve probability and
forms a group, U(ts,t1) = U(ts,t2)U(t2,t1) with U(¢,¢) = 1. For an infinitesimal time step
ot,

B+ 51)) = UL+ 38, 1) (1)) (2.7)

we can set with U(¢,t) =1
U(t+0t,t) = 1 — iHdt. (2.8)

Here we introduced the generator of infinitesimal time-translations H. The analogy to classical
mechanics suggests that H is the operator version of the classical Hamilton function H (q,p).

Inserting Eq. (Z.8) into (7)) results in

ot +60) — o)
= = —iH (1)) - (2.9)

Comparing then Eqs. (2.6) and (29) reveals that the operator D on the RHS of Eq. (2.6])
coincides with the Hamiltonian H. We call a time-evolution equation of this type for arbitrary
H Schrodinger equation.

Next we want to determine the connection between H and U. Plugging 4 (t) = U(t,0)(0)
in the Schrodinger equation gives

OU(t,0)
ot

— HU(t,0)| %(0) = 0. (2.10)

14



2.1. Reminder of the operator approach

Since this equation is valid for an arbitrary state (0), we can rewrite it as an operator
equation,

iopU(t',t) = HU(¥,t). (2.11)

Integrating it, we find as formal solution
tl
Ut,t)y=1- i/ dt"H("U(t",t) (2.12)
t

or, if H is time-independent,
U(t,t') = exp(—=iH(t — t')). (2.13)

Up-to now, we have considered the Schrodinger picture where operators are constant and
the time-evolution is given by the change in the state vectors |1 (t)). In the Heisenberg picture,
the time evolution is driven completely by the one of the operators. States and operators in
the two pictures are connected by

Os(t) = Ul(t, to)Ou(t)UT (¢, t0) (2.14a)
s () = Ul(t,to) [Yu(t)) , (2.14b)

if they agree at the time tg.

Propagator We insert the solution of U for a time-independent H into |4 (")) = U(t',t)]4(¢))
and multiply from the left with (¢'|,

P(a', ") = (d'[¥(t) = (d'| exp[-iH(t' = t)][y (1)) - (2.15)

Then we insert 1 = fd3Q|Q><Q|a

Bt = / g (¢ exp[—iH (¢ — 1)]]g) (glp(t)) = / BeK(d tq)p(a,t).  (2.16)

In the last step we introduced the propagator or Green function K in its coordinate repre-
sentation,

K(q'\t'5q,t) = {q'|exp[-1H(t' = t)]|q) - (2.17)

The Green function K equals the probability amplitude for the propagation between two
space-time points; K(q',t';q,t) is therefore also called more specifically two-point Green
function. We can express the propagator K by the solutions of the Schrédinger equation,

PYn(g,t) = (qIn(t)) = (gIn) exp(—iEnt) as

K(q,t'59,) =) (d'In) {n]exp(—iH (¢ — ))|n')(n’|q)

~ v

n,n’

Bt XD~ 1B (1 1) (2.18)
=Y ¥n(q) iy (q) exp(—iE, (' — 1)),

where n represents the complete set of quantum numbers specifying the energy eigenvalues
of the system. Note that this result is very general and holds for any time-independent
Hamiltonian.
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2. Quantum mechanics

Let us compute the propagator of a free particle in one dimension, described by the Hamil-
tonian H = p?/2m. We write with 7 = ¢ — ¢

. . d
K(d\t;q,t) ={¢'| e 7 |q) = (¢/| e TTP"/2m / L 1p) (0] )

0 QQP (2.19)
_ —irp2/2m / 1 _ —irp? [2m+i(¢' —q)p
/—%e {(d'|p)(plq) /%e ;

where we used (¢'| p) = exp(i¢'p) in the last step. The integral is Gaussian, if we add an
infinitesimal factor exp(—ep?) to the integrand in order to ensure the convergence of the
integral. Thus the physical value of the energy E = p?/(2m) seen as a complex variable is
approached from the negative imaginary plane, £ — FE — ie. Taking afterwards the limit
€ — 0, we obtain

m 1/2 i ! 42 T
K({,t;q,t) = (27ri7'> oim(d'—0)*/27 (2.20)

Knowing the propagator, we can calculate the solution 1 (¢') at any time ¢’ for a given initial

state 9 (t) via Eq. (2.10]).

Example 2.1: Calculate the integrals A = [drexp(—2?/2), B = [dzexp(—az?/2 + bz), and
C=[dr- - dv,exp(—zT Az/2 + JTz) for a symmetric n x n matrix A.
a.) We square the integral and calculate then A2 introducing polar coordinates, 72 = z2 + y2,

o0 o0 o0 5 o0
A2=/ d:E/ dyexp(—(w2+y2)/2)=2ﬂ'/ drre™" /2=27r/ dte™t =2m,
—00 —00 0 0
where we substituted ¢ = 72 /2. Thus the result for the basic Gaussian integral is A = v/27. All other

solvable variants of Gaussian integrals can be reduced to this result.
b.) We complete the square in the exponent,

a2\ _ af o b\ P
2 a ) a 2a’

and shift then the integration variable to ' = # — b/a. The result is

o 2 > 2 2
B= / dz exp(—az®/2 + bz) = e° /2a/ dz’ exp(—az'?/2) = \/;ﬂ- /2 (2.21)

c.) We should complete again the square and try X’ = X — A~1J. With
(X —A7'"NTAX —A7'" ) = XTAX — XTAAT T - JTATTAX + JTAT AATYT
=XTAx —2JTx +J747 1T,

we obtain after shifting the integration vector,
C= / dzy - da, exp(~XTAX/2 + JTX) = exp(JT A7 T/2) / dz) - - da! exp(-X'TAX'/2).

Since the matrix A is symmetric, we can diagonalise A via an orthogonal transformation D = OAOT.
This corresponds to a rotation of the integration variables, Y = OX'. The Jacobian of this transfor-
mation is one, and thus the result is

C= exp(JTAflJ/2)H/dyi exp(—a;y;/2) = E::?A exp <%JTA1J> . (2.22)
i=1

In the last step we expressed the product of eigenvalues a; as the determinant of A.
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2.2. Path integrals in quantum mechanics

q2 40
q1

whF————-I——

[
|
|
|
|
0 T 2t 3T

Figure 2.1.: Left: The double slit experiment. Right: The propagator K(qn,T;qo,0) ex-
pressed as a sum over all N-legged continuous paths.

2.2. Path integrals in quantum mechanics

In problem 21?7 you are asked to calculate the classical action of a free particle and of a
harmonic oscillator and to compare them to the corresponding propagators found in quantum
mechanics. Surprisingly, you will find that in both cases the propagator can be written as
K(q',t;q,t) = N exp(iS) where S is the classical action along the path [¢(t) : ¢'(t')] and N a
normalisation constant. This suggests that we can reformulate quantum mechanics, replacing
the standard operator formalism used to evaluate the propagator (ZI7) “somehow” by the
classical action.

To get an idea how to proceed, we look at the famous double-slit experiment sketched in
Fig. 21} According to the superposition principle, the amplitude A for a particle to move
from the source at ¢; to the detector at ¢o is the sum of the amplitudes A; for the two possible
paths,

A= K(q,t2;q1,11) = Z A;. (2.23)
paths

Clearly, we could add in a Gedankenexperiment more and more screens between ¢; and qo,
increasing at the same time the number of holes. Although we replace in this way continuous
space-time by a discrete lattice, the differences between these two descriptions should vanish
for sufficiently small spacing 7. Moreover, for 7 — 0, we can expand U(7) = exp(—iHT) ~
1 —iH7. Applying then H = p?/(2m) + V(§) to eigenfunctions |q) of V(§) and |p) of p?, we
can replace the operator H by its eigenvalues. In this way, we hope to express the propagator
as a sum over paths, where the individual amplitudes A; contain only classical quantities.

We apply now this idea to a particle moving in one dimension in a potential V' (g). The
transition amplitude A for the evolution from the state |¢,0) to the state |¢’,¢) is

A=K(q,t';q,0) = {(q|e " |q) . (2.24)

This amplitude equals the matrix-element of the propagator K for the evolution from the
initial point ¢(0) to the final point ¢'(#'). Let us split the time evolution into two smaller
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2. Quantum mechanics

. o L
steps, writing e HY = o 1HI'—t)e—1Ht1

becomes
A= /dq1 (| e HE=1) |g1) (gi| e7 1Tt ) = /dq1 K(d,t;q1,t1)K(q1,t1;¢,0).  (2.25)

This formula expresses simply the group property, U(t',0) = U(t',t1)U(t1,0), of the time-
evolution operator U evaluated in the basis of the continuous variable q. More physically, we
can view this equation as an expression of the quantum mechanical rule for combining ampli-
tudes: If the same initial and final states can be connected by various ways, the amplitudes
for each of these processes should be added. A particle propagating from ¢ to ¢’ must be
somewhere at the intermediate time ¢;. Labelling this intermediate position as ¢;, we com-
pute the amplitude for propagation via the point ¢; as the product of the two propagators in
Eq. ([2:25) and integrate over all possible intermediate positions ¢;.

We continue to divide the time interval ¢’ into a large number N of time intervals of duration
7 =1'/N. Then the propagator becomes

A= <q/‘ Q—iHTe—iHT L. e_iHT/|q> . (226)

N times

Inserting also [dgqi |g1) (¢1] = 1, the amplitude

We insert again a complete set of states |¢;) between each exponential, obtaining
A= /d(h cee d(]N—l <q" e_iHT |QN—1> <QN—1| e—iHT |QN—2> L <q1| e_iHT |q>

= /d‘h Tt qu*IKQN7‘IN—1KQN—1yQN—2 T KQ2,Q1KQ1,QO ’ (2'27)

where we have defined ¢y = g and gy = ¢'. Note that these initial and final positions are fixed
and therefore are not integrated over. Figure2.]illustrates that we can view the amplitude A
as the integral over the partial amplitudes Ap,¢n of the individual N-legged continuous paths.
We ignore the problem of defining properly the limit N — oo, keeping N large but finite.

We rewrite the amplitude as sum over the amplitudes for all possible paths, A = Epaths Apath,
with

Z = /d‘h -rodgn -1, AP&th = Konanvo 1 Kon_rav—s  Kao,01 K1 g0 -

paths
Let us look at the last expression in detail. We can expand the exponential in each propagator
K = (@41l e~ H7 |g;) for a single sub-interval, because 7 is small,

. 1
Kth+1,th = (qj+1| <1 —1iHT — §H27'2 +- > |Qj>
= (gj+1] j) — i (g1 H lgz) + O(%).
In the second term of (2.28]), we insert a complete set of momentum eigenstates between H
and |g;). This gives

(2.28)

A2

~irtagnl (2 V@) [ L) il a)

2m

2
= —iT/i—fj (p—g + V(Qj—l—l)) (gj+11p5) (pil a5) (2.29)

2m

2
— —iT/ % (p_ﬂ + V(qj+1)> elPi(dj+1-05)
™

2m
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2.2. Path integrals in quantum mechanics

The expression (2.29) is not symmetric in ¢; and ¢;41. The reason for this asymmetry is
that we could have inserted the factor 1 either to the right or to the left of the Hamiltonian
H. In the latter case, we would have obtained p; 4 and V(g;) in (2:29). Since the difference
[V(gj+1) — V(g)]T ~ V'(g;)(gj+1 — q;)T =~ V'(q;)4;7° is of order 72, the ordering problem
should not matter in the continuum limit which we will take eventually; we set therefore
V(gj+1) = V(g).

The first term of (2.28]) gives a delta function, which we can express as

dp; 0
(@71 ) =gz — q) = [ G oo, (2.30)
Now we can combine the two terms, obtaining as propagator for the step ¢; — ¢;j4+1
dp; ip:(gj41-4; (i 2
qu+1,qj :/ﬁelpj(‘IJJrl aj) |:1 — 1T <% +V(Qj) + O(T ) . (231)

Since we work at O(7), we can exponentiate the factor in the square bracket,
1 —ir H(pj, q;) + O(1%) = e THEi @) | (2.32)

Next we rewrite the exponent in the first factor of Eq. ([231) using ¢; = (¢j+1 — ¢;)/7, such
that we can factor out the time-interval 7. The amplitude A, consists of N such factors.
Combining them, we obtain

N1 g N-1
Ao = [T [ SEexpir 3 oy — v (23
j=0 j=0

We recognise the argument of the exponential as the discrete approximation of the action
S[g, p] in the Palatini form of a path passing through the points qo = ¢, q1,- - ,qnv—1,98 = ¢ .
The propagator K = f dqi - - - dgn—1Apasn becomes then

N-1 N-1 dp N-1
k=11 [aq; TT [ Pexvir Y- lids — Hy0)). (2.34)
j=1 i=0 i=0

For N — oo, this expression approximates an integral over all functions p(t), ¢(¢) consistent
with the boundary conditions ¢(0) = ¢, ¢q(t') = ¢. We adopt the notation DpDq for the
functional or path integral over all functions p(t) and ¢(t),

K = / Dp(t)Dy(t)eSo7) = / Dp(t)Dy () exp (i / dt (pq — H(p, q>>). (2.35)

This result expresses the propagator as a path integral in phase-space. It allows us to obtain
for any classical system which can be described by a Hamiltonian the corresponding quantum
dynamics.

If the Hamiltonian is of the form H = p?/2m + V, as we have assumed@ in our derivation,
we can carry out the quadratic momentum integrals in (2:34]). We can rewrite this expression

as
N—

N-1 N-1 N-1 dp;
K = H /dqj exp —ir Z V(q5) H /2—7: expir (pjd; —p?/Zm) .

Jj=0

[y

2Since we evaluated exp(—iH) for infinitesimal 7, the result (Z35) holds also for a time-dependent potential
V(g t).
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2. Quantum mechanics

The p integrals are all uncoupled Gaussians. One such integral gives

or 2miT ’

/ @ ei'r(p(jfp2/2m) = m eiqu2/2 (236)

where we added again an infinitesimal factor exp(—ep?) to the integrand. Thence the propa-

gator becomes
N- N-1 — . md?-
exp iT—=
: 2miT P 2

1
> vig) []
=0

§=0

N—1
K= H /dqjexp —ir
j=1

m N/2 N-1 . N—-1 qu
= <27Ti7') H /dqj exp it TJ -Vig) |- (2.37)
j=1 :

Jj=0

The argument of the exponential is again a discrete approximation of the action S[q] of a
path passing through the points qo = ¢,q1, -+ ,qn_1,qn = ¢, but now seen as functional of
only the coordinate q. As above, we can write this in a more compact form as

K = lapstrlast) = [ Do = [ Dytt)ex (i / ! dtL(q,q)) L@

where the integration includes all paths satisfying the boundary condition ¢(¢;) = ¢; and
q(tf) = qg. This is the main result of this section, and is known as the path integral in
configuration space. It will serve us as starting point discussing quantum field theories of
bosonic fields.

Knowing the path integral and thus the propagator is sufficient to solve scattering problems
in quantum mechanics. In a relativistic theory, the particle number during the course of a
scattering process is however not fixed, since energy can be converted into matter. In order
to prepare us for such more complex problems, we will generalise in the next section the
path integral to a generating functional for n-point Green functions: In this formalism, the
usual propagator giving the probability amplitude that a single particle moves from g;(t;)
to gf(tf) becomes the special case of a 2-point Green function, while Green functions with
n > 2 describe processes involve more points. For instance, the 4-point Green function will
be the essential ingredient to calculate 2 — 2 scattering processes in a quantum field theory
(QFT). The corresponding generating functional is the quantity which n.th derivative returns
the n-point Green functions.

2.3. Generating functional for Green functions

Having re-expressed the transition amplitude (g¢,ts|q;, ;) of a quantum mechanical system as
a path integral, we want to generalise first this result to the matrix elements of an arbitrary
potential V(q) between the states |g;,¢;) and |gf,t7). For all practical purposes, we can
assume that we can expand V(q) as a power-series in ¢; thus it is sufficient to consider the
matrix elements (g, tr|¢™|qi,t;). In a QFT, the initial and final states are generally free
particles which are described mathematically as harmonic oscillators. In this case, we are
able to reconstruct all excited states |n) from the ground-state,
1

n) = 7 ()" 10) .
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2.3. Generating functional for Green functions

Therefore it will be sufficient to study matrix elements between the ground-state |0). With
this choice, we are able to extend the integration limit in the path integral ([2.38]) to t = £o0.
This will not only simplify its evaluation, but also avoid the need to choose a specific inertial
frame. As a result, the generating functional will have an obviously Lorentz invariant form
in a relativistic theory.

Time-ordered products of operators and the path integral In a first step, we try to include
the operator ¢™ into the transition amplitude (gr,%¢|q;,t;). We can reinterpret our result for
the path integral as follows,

(ar b7 1]qis i) = / Dy(t) 165091 (2.39)

Thus we can see the LHS as matrix element of the unit operator 1, while the RHS corresponds
to the path integral average of the classical function f(q,q) = 1. Now we want to generalise
this rather trivial statement to two operators A(t,) and B(#) given in the Heisenberg picture.
In evaluating the unknown function f on the RHS of

/ Da(t) Ata) B(ty) @590 = (g, 1] F{A(t) B(ts)} |ists) (2.40)

we go back to Eq. (Z27) and insert A(t,) and B(f) at the correct intermediate times,

_ { Jdau---dan—1 - (qatistast| Algasta) - @ity o Blapty) ... for to >,
[dgi---dgn—1 ... (@1, to1| Blaw, ts) - - - (dat1s tar1] Algasta) - - - for t, <ty.
(2.41)

Since the time along a classical path increases, the matrix elements of the operators fl(ta)
and B(tp) are also ordered with time increasing from the left to the right. If we define the
time-ordered product of two operators as

T{A(ta)B(ty)} = A(ta) B(ts)9(ta — t) + B(ty) A(ta)9(ty — ta), (2.42)

then the path integral average of the classical quantities A(¢,) and B(t;) corresponds to the
matrix-element of the time-ordered product of these two operators,

(@ T LA () B(E) i ) / Dy(t) Alta) B(ty) 540 (2.43)

and similar for more than two operators.

External sources We want to include next in our formalism the possibility that we can
change the state of our system by applying an external driving force or source term J(t).
In quantum mechanics, we could imagine e.g. a harmonic oscillator in the ground-state |0),
making a transition under the influence of an external force J to the state |n) at the time
t and back to the ground-state |0) at the time ¢ > ¢. Including such transitions, we can
mimic the relativistic process of particle creation and annihilation as follows: We identify the
vacuum (i.e. the state containing zero real particles) with the ground-state of the quantum
mechanical system, and the creation and annihilation of n particle with the (de-) excitation
of the n.th energy level by an external source J. Schwinger realised that adding a linear
coupling to an external source,

L= L+Jt)qt), (2.44)
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2. Quantum mechanics

leads also to an efficient way to calculate the matrix elements of an arbitrary polynomial
of operators q(t,)---q(t1): If the source J(¢) would be a simple number instead of a time-
dependent function in the augmented path-integral

.oty
(qrstslgiti)s = /Dq(t)e‘fti aHL+Ta), (2.45)

then we could obtain (qf,r|¢™|gi, t;).r simply by differentiating (g, t¢|g;, t;).; m-times with
respect to J. However, the LHS is a functional of .J(#) and thus we need to perform instead
functional derivatives with respect to J(t). By analogy with the rules for the differentiation
of functions, e.g. 9z!/0z* = ¢, we defind] a functional derivative as

4] dJ ()

1=0 and

57 57() =i(z —2). (2.46)

Thus we replace for a continuous index the Kronecker delta by a delta function. Moreover,
we assume that the Leibniz and the chain rule holds for sufficiently nice functions J(z).
Now we are able to differentiate (gs,%¢|q;,t;); with respect to the source J. Starting from

/Dq 1f7 dt] /Dq lf dt] ) , (247)

we obtain

(qr tf[T{q(t1) - - - 4(tn) Hai, i) = (_i)n(SJ(tl) 5n 5T (ar,trlai ti) s s (2.48)

Thus the source J(t) is a convenient tool to obtain the functions g(¢1)---¢(t,) in front of
exp(iS). Having performed the functional derivatives, we set the source J(t) to zero, coming
back to the usual path integral. Physically, the expression (2.48]) corresponds to the probabil-
ity amplitude that a particles moves from ¢;(¢;) to g(ts), having the intermediate positions

q(tl)a cee 7q(tn)'

Vacuum persistence amplitude As last step, we want to eliminate the initial and final states
lgi, ;) and |qf,tf) in favour of the ground state or vacuum, |0). In this way, we convert the
transition amplitude (gy,tr|g;,t;) s into the probability amplitude that a system which was
in the ground-state |0) at #; — —oo remains in this state at t; — oo despite the action
of the source J(t). Inserting a complete set of energy eigenstates, 1 = ) |n)(n|, into the
propagator, we obtain

(d,'|q,t) an q) exp(—iE,(t' —1)). (2.49)

We can isolate the ground-state n = 0 by adding either to the energies F,, or to the time
difference 7 = (#' —t) a small negative imaginary part. In this case, all terms are exponentially
damped in the limit 7 — oo, and the ground-state as state with the smallest energy dominates
more and more the sum. Alternatively, we can add a term +ieg® to the Lagrangian.

3 As the notation suggest, the variation of a functional defined in Eq. () is the special case of a directional
functional derivative, cf. problem 1.77.
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2.4. Oscillator as a one-dimensional field theory

Remark 2.1: Wick rotation and Euclidean action:
Instead of adding the infinitesimal small term ieq? to the Lagrangian, we can do a more drastic change,
rotating in the action the time axis clockwise by 90 degrees in the complex plane. Inserting tr = it into
z,x*, we see that this procedure called Wick rotation corresponds to the transition from Minkowski
to Euclidean space,

2 =1 —x® = (~itg)? — 2 = —[th + 2% = -z}

Performing the changes ¢ = —itgy and dt = —idtg in the action of a particle moving in an one-
dimensional potential gives

S = —i/th (—%mq}g - V(q)) =iSp. (2.50)

Note that the Euclidean action Sg = T 4+ V is bounded from below. The phase factor in the path-

integral transforms as e'® = e™57 and thus contributions with large Sg are exponentially damped in

the Euclidean path-integral.

Finally, we have only to connect the results we obtained so far. Adding a coupling to an
external source J(t) and a damping factor +ieq? to the Lagrangian gives us the ground-state
or vacuum persistence amplitude

Z1J] = (0,00[0, —c0) s = / Dy(t) o' f=oo LA Tatien?) (2.51)

in the presence of a classical source J. This amplitude is a functional of J which we denote by
Z[J]. Taking derivatives w.r.t. the external sources .J, and setting them afterwards to zero,
we obtain

AR
6J(t1) e 5J(tn) J

= / Dq(t) qlt1) - gty )e =0 SHETET) (2.52)
=0

The RHS corresponds to the path integral in Eqs. (Z.43]), augmented by the factor ieq?. But
this factor damps in the limit of large ¢ everything except the ground state. Thus we found
that Z[.J] is the generating functional for the vacuum expectation value of the time-ordered
product of operators §(t;),

2L
) Sy 6.0

= <07 OO|T{(j(t1) e d(tn)HOa _OO> = GF(tla cee 7tn) . (2-53)
J=0
In the last step, we defined also the m-point Green function Gp(ty,...,t,). The subscript
F indicates that the icq? prescription selects from the set of possible Green functions (re-
tarded, advanced, ...) the ones suggested by Feynman. These functions will be the main
building block we will use to perform calculations in quantum field theory, and the formula
corresponding to Eq. (2.53]) will be our master formula in field theory.

2.4. Oscillator as a one-dimensional field theory

Canonical quantisation A one-dimensional harmonic oscillator can be viewed as a free quan-
tum field theory in one time and zero space dimensions. In order to exhibit this equivalence
clearer, we rescale the usual Lagrangian

1 1
L(z, i) = §mfg2 - §mw2x2, (2.54)
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2. Quantum mechanics

where m is the mass of the oscillator and w its frequency as

o(t) = Vma(t). (2.55)

We call the variable ¢(t) a “scalar field,” and the Lagrangian now reads

. 1. 1
L(g,9) = 3¢ - 507¢". (2.56)
After the rescaling, the kinetic term ¢? has the dimensionless coefficient 1 /2. This choice is
standard in field theory and therefore such a field is called “canonically normalised.”

We derive the corresponding Hamiltonian, determining first the conjugate momentum 7 as
m(t) = OL/0¢ = ¢(t). Thus the classical Hamiltonian follows as

H(p,m) = %WQ + %w2¢2 . (2.57)

The transition to quantum mechanics is performed by promoting ¢ and 7 to operators which
satisfy the canonical commutation relations [¢, 7] = i. The harmonic oscillator is solved most
efficiently introducing creation and annihilation operators, a' and a. They are defined by

¢ = \/%_w (aT + a) and w= i\/g (aT — a) , (2.58)

and satisfy [a, aT] = 1. The Hamiltonian follows as
— Y (aat +ata) = (atas L
H—E(aa -I—aa)— aa+§ w. (2.59)

We interpret N = aa as the number operator, counting the number n of quanta with energy
w in the state |n).

We now work in the Heisenberg picture where operators are time dependent. The time
evolution of the operator a(t) can be found from the Heisenberg equation,

d
id—‘t’ = [a, H] = wa, (2.60)
from which we deduce that
a(t) = a(0)e ¥ = gge ¥, (2.61)

As a consequence, the field operator ¢(f) can be expressed in terms of the creation and
annihilation operators as

$(t) = \/% (aoe’i“’t + af)ei‘“) : (2.62)
If we look at ¢(t) as a classical variable, then ay and ag have to satisfy ap = ag = ag in order
to make ¢ real: Thus they are simply the Fourier coefficients of the single eigenmode sin(wt).
This suggests that we can short-cut the quantisation procedure as follows: We write down
the field as sum over its eigenmodes 2 = 1,...,k. Then we re-interpret the Fourier coefficients
as creation and annihilation operators, requiring [a;, a;[] = 0.
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2.4. Oscillator as a one-dimensional field theory

Path integral approach We solve now the same problem, the rescaled Lagrangian (2.56]),
in the path integral approach. Using this method, we have argued that it is convenient to
include a coupling to an external force .J. Let us define therefore the effective action Sery as
the sum of the classical action S, the coupling to the external force J and a small imaginary
part ie¢? to make the path integral well-defined,

Sefr =S+ /Oo dt (J¢ +ie¢?) = /Oo dt Eé? — %w%ﬁ + Jp+icg?| . (2.63)

—00

The function e'e/f is the integrand of the path integral. We start our work by massaging
Sefs into a form such that the path integral can be easily performed. The first two terms in
Serf can be viewed as the action of a differential operator D(t) on ¢(t), writing

1. 1 d? 1
S (82 - 020?) = —56(t) 53 + w7 ) 6 = —SB(ODBA(E) (2.64)
2 2 dt 2
Here we performed a partial integration and dropped the boundary term: This is admissible,
because the boundary term vanishes varying the action.

We can evaluate this operator going to Fourier space,

dE _; dE

b(t) = / — e FLy(E) and J(t) = / — e 'FLI(E). (2.65)
27 27

To keep the action real, we have to write all bilinear quantities as ¢(E)¢p(—FE’), etc. Since

only the phases depend on time, the time integration gives a factor 2rd(E — E'), expressing

energy conservation,

1 [dFE .
St =5 | 9e HENE — P +i0)p(~E) + J(EY)-E) + J(-EVYE] . (200
In the path integral, this expression corresponds to a Gaussian integral of the type (Z.21]),
where we should “complete the square.” Shifting the integration variable to

- J(E
3B = 9(F) + T )
we obtain
Sefy = %/g [QE(E)(EQ —w? +ie)p(—E) — J(E) ﬁ J(-E)| . (2.67)

Here we see that the “damping rule” for the path integral makes also the integral over the
energy denominator well-defined. The physical interpretation of this way of shifting the
poles—which differs from our treatment of the retarded Green function in the classical case—
will be postponed to the next chapter, where we will discuss this issue in detail.

We are now in the position to evaluate the generating functional Z[J]. The path integral
measure is invariant under a simple shift of the integration variable, D(ﬁ = D¢, and we omit
the tilde from now on. Furthermore, the second term in Syrr does not depend on ¢ and can

be factored out,
i [(dE 1
Z|J| = — | —J(E) —————— J(—F
L] eXp( 2/ o T E) g i )>
i [(dFE

(2.68)
X /D¢ expg/ﬁ [6(B)(B* — w? +ie)p(—E)] .
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2. Quantum mechanics

Setting the external force to zero, J = 0, the first factor becomes one and the generating
functional Z[0] becomes equal to the path integral in the second line. But for J = 0, the
oscillator remains in the ground-state and thus Z[0] = (0, 00|0, —00) = 1. Therefore

Z[J] = exp <—%/%J(E) ﬁ J(—E)) : (2.69)

Inserting the Fourier transformed quantities, we arrive at

ZL0] = exp (—% / at’ dt J(¢) G (¢ —t)J(t)) , (2.70)

where the Feynman propagator

dE —iE(t—t 1

differs from the retarded propagator G defined in Eq. (IL35) by the position of its poles.

The generating functional Z[.J] given by (2.70)) is in the form most suitable for deriving
arbitrary n-point Green functions using our master formula (2.53)). Note that finding Z[J]
required only to determine the inverse of the differential operator D(t), accounting for the
right boundary conditions induced by the ie¢? term. This inverse is the Feynman propagator
or two-point function Gp(#' — ¢) which we can determine directly solving

—D)Gr(t' —t)=d6(t —t). (2.72)

Going to Fourier space, we find immediately

1

This suggests that we can short-cut the calculation of Z[J] by determining the Feynman
propagator and using then directly (2:69) or (Z.70).

These results allow us also to calculate arbitrary matrix elements between oscillator states.
For instance, we obtain the expectation value (0] ¢ |0) from

52 Z[J]

O [T{()¢(t)} |0) = (—i)QW =iGp(t' —t) = 2i elwlt=t1. (2.74)

J=0 w

Here, we used in the last step the explicit expression for Gr which you should check in
problem 2.??. Taking the limit # \, ¢t and replacing ¢> — ma?, we reproduce the standard
result (0| z2|0) = 1/(2mw). Matrix elements between excited states |n) = (n!)~/2(at)” |0)
are obtained by expressing the creation operator af using 7(t) = $(t) as

ot = % (1 - é%) (1) . (2.75)

2.5. The need for quantum fields

We have already argued that any relativistic quantum theory has to be a many-particle
theory. Such a theory has to include infinitely many degrees of freedom—as field theories like
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2.5. The need for quantum fields

electrodynamics do. Before we move on to introduce the simplest quantum field theory in
the next chapter, we present an argument that relativity and the single particle picture are
incompatible.

In classical mechanics, the principle of relativity implies that all trajectories of massive
particles are time-like, while massless particles move along light-like trajectories. This imple-
ments causality, i.e. the requirement that no signal can be transmitted faster than light. How
should we translate this principle into a quantum theory? Causality would be clearly sat-
isfied, if the relativistic propagator K(z',¢';x,t) vanishes for space-like distances. Another,
less restrictive translation of the principle of relativity would be to ask that measurements
performed at space-like separated points do not influence each other. This is achieved, if all
observables O(z) commute for space-like distances,

Oz, 1), 0", )] =0  for (t—1t)% < (x—a)%. (2.76)

In quantum mechanics, the Heisenberg operators &(¢) and p(t) depend, however, only on
time. Therefore we can not implement the condition (2.76) in such a framework.

The only rescue for causality in relativistic quantum mechanics is therefore the vanishing
of the propagator K (t',2';t, ) outside the light-cone. We evaluate the propagator as in the
non-relativistic case,

d3p
(2m)?

inserting however the relativistic dispersion relation, F, = y/m? + p2. Next we use that the
momentum operator p generates space translations, exp(—ipx)|0) =|z), to obtain

(@']e” 0 |p) (p| ) (2.77)

K(:c',t';:c,t) _ <m" efiH(t',t) |:B> — /

3
K@t @, t) = K(z' —z) = / A (0]p)|? e~ P —2) (2.78)
(2m)?

Here we introduced also the four-vector p# = (E,,p), rewriting the plan-wave thereby in a
Lorentz-invariant way. In order that the complete propagator is invariant, we have to choose
as integration measure oc d3p/Ep, cf. problem 2.7?, and we set therefore |(0|p)|?> = 1/(2Ep).
Knowing its explicit expression, it is a straight-forward exercise to show that the propagator
does not vanish outside the light-cone, but goes only exponentially to zero, K(z',0;2,0) o
exp(—m|z’ — z|). Thus we failed to implement both versions of causality into relativistic
quantum mechanics. Instead, we will develop quantum field theory with the aim to implement
causality via the condition (2.76]).

Before starting this endeavour, we can draw still some important conclusion from Eq. (2.78]).
For space-like distances, (z—2')? < 0, a Lorentz boost can change the time order of two space-
time events, cf. problem 1.7?. Consistency requires thus to include both time-orderings: If
a particle is created at ¢t and absorbed at # > #, then it can be created necessarily also at #'
and absorbed at ¢t > t'. We extend therefore the propagator as

d3p : ’ . ’
/ - ! ip(z' —x) N ip(z' —x)
K(z' —z) = /7(2 1P2E, [ﬁ(t —t)e +9(t—t)e , (2.79)

where we chose the opposite sign for the plan-wave in the second factor: In this way, the
phase of the plane-waves observed in both frames agree, —E,79(7) < 0 and +Epm9(—7) <
0, and similarly for the momenta. If we imagine that the propagating particle carries a
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2. Quantum mechanics

conserved charge, then we can associate the positive frequencies to the propagation of a
particle (with charge ¢) and the negative frequencies to the propagation of an antiparticle
(with charge —q). Then the resulting current is frame-independent, if the antiparticle has the
same mass but the opposite additive charges. This prediction of relativistic quantum field
theory is experimentally confirmed with extreme accuracy: For instance, the limits on the
mass and charge difference of electrons and positrons are smaller than 8 x 10~ and 4 x 1078,
respectively [OF14].

Finally, we should mention an alternative way to implement causality: Instead of defin-
ing quantum fields &(z“) on classical space-time, we could promote time ¢ to an operator,
parametrising the world-line ##(7) of a particle e.g. by its proper-time 7. Considering then
the surface z#(7, o) generated by a set of world-lines is the starting point of string theory.

Summary

Using Feynman’s path integral approach, we can express a transition amplitude as a sum
over all paths weighted by a phase which is determined by the classical action, (g, t¢|q;, ;) =
[ Dq(t) exp(iS[g]). Adding a linear coupling to an external source J and a damping term
to the Lagrangian, we obtain the ground-state persistence amplitude (0, 00|0, —oo);. This
quantity serves as the generating functional Z[J] for n-point Green functions G(t1,...,ty)
which are the time-ordered vacuum expectation values of the operators §(t1),...,q(t,).

Further reading

For additional examples for the use of the path integral and Green functions in quantum
mechanics see e.g. [Mac00] or [Das06]. [Sch05] sketches the historical development that lead

to Schwinger’s Green functions, including his quantum action principle.
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3. Free scalar field

We extend in this chapter the path integral approach from quantum mechanics to the simplest
field theory, containing a single real scalar field ¢(x). Such a field may either represent
an elementary particle like the Higgs scalar, a bound-state like a scalar meson, or a scalar
parameter describing a specific property of a more complex theory. Proceeding similar to our
approach in quantum mechanics, we will introduce the generating functional Z[J] = (0+|0—) s
of n-point Green functions as our main tool to calculate the time-ordered vacuum expectation
value of a product of fields ¢(z1) - - - ¢(zy,). Calculating the vacuum energy of the scalar field,
we will encounter for the first time that many calculations in quantum field theories return a
formally infinite result. In order to extract sensible predictions, we have to introduce therefore
the concepts of regularisation and renormalisation.

3.1. Lagrange formalism and path integrals for fields

A field is a map which associates to each space-time point = a k-tupel of values ¢,(z), a =
1,...,k. The space of field values ¢,(z) can be characterised by its transformation properties
under Poincaré transformations, i.e. the group of translations and Lorentz transformations,
and internal symmetry groups. The latter are in practically all physical applications Lie
groups like U(1), SU(n) or SO(n). Except for a real scalar field ¢, these fields have several
components. Thus we have to generalise Hamilton’s principle to a collection of fields ¢,(z),
where the index a includes all internal as well as space-time indices. Moreover, the Lagrangian
for a field ¢,(z) will contain not only time but also space derivatives.

To ensure Lorentz invariance, we consider a scalar Lagrange density .Z (z) that depend as a
local function on the fields and their derivatives. By analogy to L(g, ), we restrict ourselves
to fields ¢,(z) and their first derivatives d,¢,(z). We include no explicit time-dependence,
since “everything” should be explained by the fields and their interactions. The Lagrangian
L(¢a, 0u¢a) is obtained by integrating the density . over a given space volume V. The action
S is thus the four-dimensional integral

143
S[pa] = / dt L(¢a, Opda) = /Qd‘*x ZL(pas Outa) (3.1)
la
with Q@ =V x [t, : tp]. A variation d¢d,(z) of the fields leads to a variation of the action,
0L 0L
5S:/d4x[—5a+756 a], 3.2
where we have to sum over field components (a = 1, ..., k) and the Lorentz index 4 = 0,.. ., 3.

The correspondence ¢(t) — ¢(z*) implies that the scale factor e parametrising the variations
¢a(z",¢) depends not on z#. We can therefore eliminate again the variation of the field
gradients d,,¢, by a partial integration using Gauss’ theorem,

65:/Qd4x [%—aﬂ (%)]5%:0. (3.3)
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3. Free scalar field

The surface term vanishes, since we require that the variation is zero on the boundary 0f).
Thus the Lagrange equations for the fields ¢, are

0.%¢ 0.%¢
6. (8(@%) ) - (-4

If the Lagrange density % is changed by a four-dimensional divergence, 6.2 = 9,K*, and
surface terms can be dropped, the same equations of motion result. Note also that it is
often more efficient to perform directly the variation d¢, in the action S[¢,] than to use the
Lagrange equations.

The path integral becomes now a functional integral over the k fields ¢g,

K= /D¢1...D¢k eiS[da] _ /D¢1---D¢k ol Jo d't Z(¢a,0uda) (3.5)

A major problem we have to address later is that the k fields ¢, are often not independent:
For instance, in electrodynamics all potentials A* connected by a gauge transformation de-
scribe the same physics. This redundancy makes the path integral (3.5) ill-defined. We start
therefore with the simplest case of a single, real scalar field ¢ where such problems are absent.
Moreover, we restrict ourselves in this chapter to a free field without interactions.

3.2. Generating functional for a scalar field

Lagrangian The (free) Schrodinger equation i0y1) = Hy1) can be obtained substituting w —
i0; and k — —iV, into the non-relativistic energy-momentum relation w = k?/(2m). With
the same replacements, the relativistic w? = m? + k2 becomes the Klein-Gordon equation

O+m?¢=0  with O=n,0"0 =0,0". (3.6)

The relativistic energy-momentum relation implies that the solutions to the free Klein-Gordon
equation consist of plane-waves with positive and negative energies +v/k> +m2. For the
stability of a quantum system it is however essential that its energy eigenvalues are bounded
from below. Otherwise, we could generate e.g. in a scattering process ¢+¢@ — n¢ an arbitrarily
high number of ¢ particles with sufficiently low energy, and no stable form of matter could
exist. Interpreting the Klein-Gordon equation as a relativistic wave equation for a single
particle can be therefore not fully satisfactory, since the energy of its solutions is not bounded
from below.

How do we guess the correct Lagrange density £ 7 Plane waves can be seen as a collection
of coupled harmonic oscillators at each space-time point. The correspondence ¢ — 0,¢
means that the kinetic field energy is quadratic in the field derivatives. Relativistic invariance
implies that the Lagrange density is a scalar, leaving as the only two possible terms containing
derivatives

N (0" $)(0"¢) and  ¢0¢.
Using the action principle to derive the equation of motions, we can however drop boundary
terms performing partial integrations. Thus these two terms are equivalent, up to a minus
sign. The Klein-Gordon equation (¢ = —m?¢ suggests that the mass term is also quadratic
in the field ¢. Therefore we try as Lagrange density

L = 5 (09) (0°9) = 5P = G060 6 = 5w, B
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3.2. Generating functional for a scalar field

From now, we will drop the parenthesis around 9*¢ and it should be understood from the
context that the derivative 0" acts only on the first field ¢. Even shorter alternative notations
are (0,¢)? and the concise (9¢)%. Swapping the indices in the the Lagrangian (3.7)), we obtain
for the second part of the Lagrange equation

0
S 1 ud0) = (009 + 80u9) = 0up 0 0up = 20°. (3
Hence the Lagrange equation becomes
0L 0L _ 9 o
8—¢_ a(m>— m ¢ — 0,0% =0, (3.9)

and the Lagrange density (8.7)) leads indeed to the Klein-Gordon equation. We can understand
the relative sign in the Lagrangian splitting the relativistic kinetic energy into the “proper”
kinetic energy (9;¢)%/2 and the gradient energy density (V¢)2/2,
L = 1432 - 1(V</))2 - 1m2¢2. (3.10)
2 2 2
The last two terms correspond to a potential energy and carry therefore the opposite sign of
the first one.

Instead of guessing, we can derive the correct Lagrangian . as follows: We multiply the
free field equation for ¢ by a variation d¢ that vanishes on 9€2. Then we integrate over (2,
perform a partial integration of the kinetic term, use 0,0 = ¢9,, the Leibniz rule and ask
that the variation vanishes,

A/ d*z ¢ (O +m?)p = A/ d'z [~6(0,4)0" ¢ + dppm?] = (3.11a)
Q Q
1 1
:A/Qd‘*m [—5(6ﬂ¢)2+§¢2m2 =0. (3.11b)

The term in the square brackets agrees with our guess ([B.7)), taking into account that the
source-free field equation fixes the Lagrangian only up to the overall factor A. In analogy
with a quantum mechanical oscillator, we want that the coefficients of the two terms are +1/2
and thus we set |A| = 1.

We can determine the correct overall sign of . by calculating the energy density p of the
scalar field and requiring that it is bounded from below and stable against small perturbations.
We identify the energy density p of the scalar field with its Hamiltonian density .7, and use
the connection between the Lagrangian and the Hamiltonian known from classical mechanics.
The transition from a system with a finite number of degrees of freedom to one with an infinite
number of degrees of freedom proceeds as follows,

oL 07
— . —

i = A Mg = ——, 3.12a
p 8q2 8¢a ( )
H=pi-L = A=) Tapa—2. (3.12b)
a
The canonically conjugated momentum 7 of a real scalar field is
oz .
T=——=2¢. (3.13)
d¢
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3. Free scalar field

Thus the Hamilton density is
i 2 Ly 1 2 1 9.9
H=np—L = —$:§¢ +§(V¢) -I—Emgzﬁ >0 (3.14)

and thus obviously positive definite. Moreover, generating fluctuations d¢ costs energy and
thus the system is stable against small perturbations. Hence the transition from a single
particle interpretation of the Klein-Gordon equation to a field theory has been sufficient to
cure the problem of the negative energy solutions.

Note that we could subtract a constant py from the Lagrangian which would drop out
of the equation of motion. From Eq. (8I4]) we see that such a constant corresponds to a
uniform energy density of empty space. Such a term would act as an additional source of the
gravitational field, but would be otherwise unobservable. Next we generalise the Lagrangian
by subtracting a polynomial in the fields, V(¢), subject to the stability constraint discussed
above. Hence the potential V' should be bounded from below, and we can expand it around
its minimum at ¢ = v,

dv d?v

— =0, — =m?>0. 3.15
dqs(b:’u d¢2¢:,u ( )

The term V" (v) acts as mass term the field ¢. We will see soon that terms ¢" with n > 3
generate interactions between n particles, as expected from the analogy of a quantum field to
coupled quantum mechanical oscillators. The field ¢ has the non-zero value ¢ = v everywhere,
if the minimum v of V(¢) is not at zero, v # 0. If the value of V(¢) at the minimum v is
not zero, V(v) # 0, then the non-zero potential implies a non-zero uniform energy density

p=V(v).

Generating functional Now we move on to the quantum theory of a scalar field, which we
define by the path-integral over expiS[¢]. The Green functions which encode all information
about this theory can be obtained from the generating functional

ZIJ =(0+10-), = N/Dqsexpi/d‘lx (%aﬂqsaﬂqs - %m2¢2 + J¢> : (3.16)

where we appended to the action a linear coupling between the field and an external source.
To ensure the convergence of the integral, we add an infinitesimal small imaginary part to
the squared mass of the particle, m? — m? — ie. Next we perform an integration by part of
the first term, exploiting the fact that the boundary term vanishes,

Z[J] :N/D¢expi/d4:1: (—%¢(D+m2)¢+J¢> : (3.17)

The first two terms, A = —(O + m?), are quadratic and symmetric in the field ¢,

1

! / d'z (z)(0, + m)(z) = =

2

> / d'zdis’ p(z)A(n,a)0(z — 2)p(x) . (3.18)

Note that the operator A is local, A(z) o< A(z,z')d(z — z'): Since special relativity forbids
action at a distance, non-local terms like ¢(z') A(z, z")p(x) should not appear in a relativistic
Lagrangian.
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3.2. Generating functional for a scalar field

If we discretise continuous space-time z* into a lattice, we can use Eq. (2.22]) to perform
the path integral,

mi)N 12
ZIJ =N (Efa[lx]) exp <—%iJA1J> = NZ[0] exp(iW[J]). (3.19)

The prefactor of the exponential function does not depend on J and is thus given by N Z[0] =
(0 + |0=). The vacuum should be stable and normalised to one in the absence of sources,
(04 |0—) = 1. Therefore the proper normalisation of Z[.J] implies that N'~! = Z[0]. Thus we
can omit the normalisation factor, if we normalise the path integral measure D¢ such that
the Gaussian integral over a free field is one. In the last step of Eq. (8.19]), we defined a
new functional W[.J] that depends only quadratically on the source .J; therefore it should be
easier to handle than Z[J]. Going for N — oo back to continuous space-time, the matrix
multiplications become integrations,

Z[J] = exp(iW[J]) = exp (—% /d4$d4$,J($)A_1($,$I)J(£B,)> (3.20)

and

W] = —% / Aed's J(2) A (2, 2') T (). (3.21)

Propagator In order to evaluate the functional W[.J] we have to find the inverse A(z,z') =
A~Y(z,1") of the differential operator A, defined by

— (O 4+ m?)A(z,z') = 6(z — 2'). (3.22)
Because of translation invariance, the Green function A(z,z') can depend only on the differ-

ence z — z’'. Therefore it is advantageous to perform a Fourier transformation and to go to
momentum space,

d*k Cik(z—1' d*k —ik(z—12'
—/W(D+m2)A(k)e K ):/(27r)4e Kaa') (3.23)

or

1

Arth) =

(3.24)
where the pole at k? = m? is avoided by the ic. Thus the m? — m?—ie prescription introduced
to ensure the convergence of the path integral tells us also how to handle the poles of the
Green function. The index F' specifies that the propagator Ap is the Green function obtained
with the m? — ie prescription proposed by Feynman. (Some authors use instead Dp for the
propagator of massive bosons and Ag for the propagator of massless bosons.)

Note that the four momentum components k* are independent. Therefore Ap(k) describes
the propagation of a virtual particle that has—in contrast to a real or external particle—mnot
to be on “mass-shell:” in general

ko # fwp = £V EZ +m?2.
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3. Free scalar field
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Figure 3.1.: Poles and contours in the complex k° plane used for the integration of the Feyn-
man propagator.

We can evaluate the kg integral in the coordinate representation of Ap(z — ') explicitly,

d4k e—ik(z—a")
A —2) = 3.25
r(z =) / (2m)4 k%—k2—m2—|—i€ (3:25a)
3 —iko(t—t") nik(z—2')
:/ 4k /% e — (3.25b)
2m)3 | 27 (ko — wi + ie) (ko + wg — i€)

using Cauchy’s theore. The integrand has two simple poles at +wy — ie and —wy, + ie,
cf. Fig. Bl For negative 7 = ¢t — t/, we can close the integration contour Cy on the upper
half-plane, including the pole at —wy,

e—iko’l‘ eiwkT
/ 0 (ko — won + 12) (ko + wop — i2) mires_, i o or 7<0 (3.26)

For positive 7, we have to choose the contour C_ in the lower plane, picking up
271 e *7 /(2wy) and an additional minus sign since the contour is clockwise. Combining
both results, we obtain

iAp(z) = / (2:)73/;% [e“rty(20) + “kl9(—20)] ek (3.27)

or after shifting the integration variable k — —k in the second term

: d3k —i(wgt— i(wpt—
iAp(z) :/M [orilont—k2)(g0) 4 eilent—kohg(_g0)] . (3.28)

Comparing this expression to our guess (2.79) at the end of the last chapter, we see that our
intuitive arguments about the structure of a Lorentz invariant propagator in a quantum theory

!'Since ¢ is infinitesimal and wy, > 0, we can set 2iwpe + &2 — ie.
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3.2. Generating functional for a scalar field

were correct. We stress once again the salient features of the Feynman propagator: First,
the propagator contains positive and negative frequencies, as expected from the existence of
solutions to the Klein-Gordon equation with positive and negative energies. Second, positive
frequencies propagate forward in time, while negative frequencies propagate backward. This
implies the existence of antiparticles. Third, the relativistic normalisation of (on-shell) plane
waves includes a factor 1//2wy, or

(kK'Y = 2wy (27)26 (k — K') (3.29)

while the non-relativistic normalisation uses (k|k') = §(k — k').

Remark 3.1: Other Green functions are obtained, if we choose different prescriptions for the
handling of the poles. For positive 7 = t — ¢/, we have to close the circle on the lower half-plane.
Shifting both poles to the lower half-plane, +wy, — ie, gives thus the retarded propagator A,.:(z)
vanishing for all 7 < 0. In the opposite case, we shift both poles to the upper half-plane, twy + ie,
and obtain the advanced propagator A,4,(z). Both propagators are real-valued, propagating a real
solution of the wave equation into another real one at a different time, as required in classical physics.
Moreover, both Green functions have support inside the light-cone, the retarded in the forward and
the advanced in the backward part of the light cone. This behaviour should be contrasted with the
Feynman propagator Ap which is complex-valued and non-zero in R(1, 3).

Another way to handle the singularities is to use Cauchy’s Principal value prescription, obtaining
A(z) = 1[Aaav(®) + Arer(z)]. This choice corresponds to an action-at-distance which seems to have
no relevance in physics. Finally, we can shift one pole up and the other one down. The choice
+(wg — ie) used in the Feynman propagator allows us to rotate the integration contour anti-clockwise
to —ico : +ioco avoiding both poles in the complex kg plane. Since kg = i0;, this transformation
is consistent with the clockwise rotation in coordinate space required to obtain an Euclidean action
bounded from below. Thus the Feynman prescription is the only one in which the physics in Minkowski
and Euclidean space are analytically connected, cf. with the remark 2[11

We are now in the position to evaluate the generating functional
1
W = — / d'zd's’ J(z)Ap(z — ') (2') (3.30)

in Fourier space. Inserting the Fourier transformations for the propagator as well as for the
sources J gives

1 d'k d'% d%k ke € K@) !
1774 __ d4 d4 / E)* ikz _ L' —ik'z . 31
7] 2 / v / (2m)* (2m)4 (2m)4 J(k)"e k? —m? + ie Tk )e (3.31)

Exchanging the integration order and performing the space-time integrations leads to the
conservation of the four-momenta entering and leaving the two interaction points, (27)86(k —
k)8(k — k'): The source J(k)* produce a scalar particle with momentum k, and thus only the
Fourier component k of the scalar propagator contributes. This is a very general behaviour,
based solely on the translation invariance of the free particle states we are using. In the
final step, we cancel two of the three momentum integrations with the two momentum delta
functions and are left with

4
Wi = / %J(/ﬂ)* m (k). (3.32)
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3. Free scalar field

The functional W[.J] has the same structure as the one for the harmonic oscillator found in
the last chapter. We will see that it contains, as in the one-dimensional case, all information
about a free scalar field, not only about its ground state. Note that the contribution of Fourier
modes to W[J] increases, the closer they are on-shell, k> — m?2. For k2 = m?2, the propagator
diverges finally. In order to interpret this unphysical result, we can compare it to a classical
harmonic oscillator: If an external source is applied in resonance with the eigen-frequency w of
the oscillator, the oscillation amplitude will increase until friction cannot be longer neglected.
In our case at hand, the non-zero life-time of unstable particles plays the role of friction:
Including in our formalism that the exchanged particle is unstable, the infinitesimal ¢ would
be replaced by half its decay-width, ¢ — iI"/2.

Attractive Yukawa potential by scalar exchange From our macroscopic experience, we
know the two cases of electromagnetism, where equal electric charges repel each other, and of
gravity where two masses attract each other. The first physics question we want to answer with
our newly developed formalism is if the scalar field falls into the category of a fundamentally
attractive or repulsive interaction.

In order to address this question, we consider two static point charges as external sources,
J = Ji(z1) + Jo(z2) with J; = 6(x — x;), in W[J]. Multiplying out the terms in J(z)Ap(z —
z')J(z") gives four contributions, W;; o J;J;: The terms Wi[.J] and Wao[J] correspond to
the emission and re-absorption of the particle by the same source J;. They are examples
for self-interactions that we neglect for the moment. The interaction between two different
charges is given by

1 4o d4k e—ik:(x—ac’) ,
4 ﬂko t—t') oik(z1—22)
- ——/dtdt’/ d k © S (3.34)
—m* +1e

Performing one of the two time integrals, e.g. the one over t', gives 2wd(kg). Hence our
assumption of static sources implies that the virtual particle carries zero energy and is space-
like, k2 = —k? < 0. Eliminating then the kg integral with the help of the delta function, we

obtain next .
WialJ / / kQ o (3.35)

with » = 1 — 5. The denominator is always p0s1t1ve, and we can therefore omit the ie.
Before we can go on, we have to make sense out of the infinite time integral: Looking at

Z[J] = (0| exp(—iH[J]7)|0) = exp(iW[.]]), (3.36)
we see that W[J] = —E7 with 7 = ¢t — ' as the considered time interval. Hence the potential
energy V of two static point charges separated by the distance » is

elkr e—mr

d*k
V= —(Wiy + W- =_ = — 0. 3.37

Thus the potential energy of two equal charges is reduced by the exchange of a scalar particle,
which means that the scalar force between them is attractive. If the exchanged particle is
massive, the range of the force is of order 1/m. These two observations were the basic
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3.3. Green functions for a free scalar field

motivation for Yukawa to suggest in 1935 the exchange of scalar particles as model for the
nuclear force. Note also that we obtain in the limit m — 0 a 1/r potential as in Newton’s and
Coulomb’s law. Thus we learnt the important fact that the only two known forces of infinite
range, the electromagnetic and the gravitational force, are transmitted by massless particles,
the photon and the graviton, respectively. The result V' o 1/r for m = 0 and n = 4 space-time
dimensions, or more generally V oc 1/r" 3 for n > 4, follows from simple dimensional analysis:
For m = 0, the only remaining dimensionfull parameter after the integration over k is the
distance r. From Eq. (337, we read off that the potential energy V' has the dimension [V] =
k™=3. Thus the potential energy due to the exchange of a massless particle scales as 713,
Finally, note that the amplitude Wio + Way or J(2)Ap(z — 2')J(2") = J(2")Ap(2' — z)J(x)
is symmetric against the exchange 1 <+ 2 or x; <> x9, reflecting that the scalar propagator is
an even function. Thus scalar particles are bosons and follow Bose-Einstein statistics.

3.3. Green functions for a free scalar field

In the last section, we obtained the scalar Feynman propagator or two-point Green function
as the inverse of the Klein-Gordon operator. As next step, we want to derive n-point Green
functions from the their generating functional. Moreover, we will introduce two types of
Green functions, namely disconnected n-point functions G(z1,...,z,) and connected n-point
functions G(z1,...,z,). Consider the expansion of the exponential in Eq. (3:19)),

oo n o0 n
. i i
21 =W =S D 502 /d4:c1 e dn G (s )T (@) e T(wn), (3.38)
n! n!
n=0 n=0
where we assume that Z[J] is normalised so that Z[0] = 1. The RHS serves as definition
of the disconnected n-point Greens function G(zi,--- ,z,). They can be calculated as the

functional derivatives of Z[.J],

1 o"
g(Ilv y L ) in 6J($1)6J($n) [‘]] o (3 39)
For n = 2 we should re-derive the Feynman propagator. Starting from
16Z[J] 1 ¢ i 4 4
- - _ - A _
T57(2) 570) exp< 2/d r1d zoJ (1) Ap(z1 — x9)J(22)
= —/d4$1AF($ —z1)J(z1) exp(iW[J]), (3.40)
we obtain
1§ 1 6

157G 157 21 =ibr(e — y) exp(WLI)

+ </ d*z Ap(z — xl)J(x1)> (/ d*zi Ap(y — xl)J(x1)> exp(iW[J]) . (3.41)
Setting J = 0 gives the desired result for the 2-point function,

G(z,y) =iAp(x —y). (3.42)
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3. Free scalar field

It is straightforward to continue: Another functional derivative gives the 3-point function,

0 0 4]
Z[J) = - [ d*sAp(z —z)J
10J(z1) 10J(z2) 16J(x3) L] </ wAp(r =) (I)>
X (/d rAp(xy — I)J(I)) (/ d*zAp(zs — x)J(:z:)) exp(iW[J))
LiAp(ms — m3) / A s Az — 5)J(z) exp(iW]J])
—iAp(zy — xl)/d4xAF($3 —z)J () exp(iW[J])
—iAp(z3 — 71) / d*zAp(zy — z)J(z) exp(iW[J]). (3.43)
For n odd, we obtain always a source J in the prefactor because W{[J] is an even polynomial
in J. Hence all odd n-point functions are zero. We continue with the 4-point function: Taking

another derivative and setting J = 0, only terms linear in J in Eq. ([8.43]) contribute and thus
we obtain

G(71,72,73,74) = — [Ap(71 — T2) Ap (73 — 74)
+ AF(x1 — xg)AF(xQ — 174)
+ AF(a:1 — x4)AF(x2 — 173)] . (3.44)

We see that the 4-point function is the sum of all permutations of products of two 2-point
functions. For instance, the first term Ap(x1—29)Ap(x3—14) in the 4-point function describes
the independent propagation of a scalar particle from z; to x5 and of another one from zj
to x4. Thus our approach leads indeed to a many-particle theory. Since we did not include
interactions, particles are propagating independently and the n-point function factorises into
products of two-point functions. Thus the functional Z[J] generates disconnected Green
functions. The statement that the n-point function is the sum of all permutations of the
product of the n/2 two-point functions holds for all n and is called “Wick’s theorem”.

We introduce next the connected n-point functions G(z1,...,z,). Their generating func-
tional is W[.J],

1 5n _
i_”éj(:m)"-cSJ(:l:n)lW[J] o (3.45)

For a free theory, W is quadratic in the sources J. Hence, all connected n-point functions
G(z1,...,x,) with n > 2 vanish and the only non-zero one is the two-point function with

G(z1,...,2p) =

G(z,y) =iAp(z —y) = G(z,y) . (3.46)

To summarise: There exists only one non-zero connected m-point function in a free the-
ory which is determined by the Feynman propagator, G(z,y) = iAp(x — y). All non-zero
disconnected n-point functions can be obtained by permuting the product of n/2 two-point
functions (“Wick’s theorem”). Hence any higher-order Green function can be constructed out
of a single building block, the Feynman propagator. In perturbation theory, we will recast the
interacting theory—loosely speaking—in “interaction vertices times free propagators”. This
enables us to derive simple Feynman rules that tell us how one constructs an arbitrary Green
function out of vertices and propagators.
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3.3. Green functions for a free scalar field

Causality and the Feynman propagator We already discussed in section that any valid
relativistic theory should implement the requirement of causality: No signal using ¢ particles
as carrier should travel with a speed larger than the one of light. We also saw that the Feyn-
man prescription leads to a relativistic consistent interpretation of the propagator, although
the propagator does not vanish outside the light-cone but goes only exponentially to zero,
cf. problem [?7?. One may therefore wonder, if this means that the uncertainty principle
makes the light-cone ”fuzzy” and thus the axiom of special relativity that no signal can be
transmitted with v > ¢ is violated on scales smaller < 1/m.

We can address this question considering the field ¢(z) as operator ¢(z) and asking then
when a measurement of gz@(:z:) influences &(m’ ). Recall first that the Feynman propagator equals
the 2-point Green function which in turn corresponds to the vacuum expectation value of the
time-ordered product of field operators,

G(z1,22) = (0|T{p(z1)h(z2) }0) = iAp(z1 — 22). (3.47)

The property Ap(z — 2) = Ap(zs — z1) implies that the field operators ¢(z1) and ¢(z2)
commute,
(OIT{d(x1)d(2)}|0) = (0|¢ (1) d(2)[0)I(t1 — t2)

T (3.48)
+ (0l (22)(x1)]0)I (2 — t1) .

Using the analogy of a free quantum field to an infinite set of oscillators, we try to express the
field operator ¢(x) through annihilation and creation operators. Comparing to the expansion
(Z62) of an oscillator in d = 1, e.g. to ¢(t) = (2w)~"/2(ae™ ! + atel??), suggests the ansatz

~ 4k
v (27)3 2wy,

with k% = wy, a(k) and af(k) as annihilation and creation operators that satisfy

(z) [a(k)e_”“’ + af(k)e“kx] : (3.49)

a(k)[0) =0, af(k)10) =|k) and [a(k),a’ (K] =6k —K'). (3.50)

Hence the vacuum state |0) is defined by a(k)|0) = 0 for all k.

If this ansatz is correct, then we should be able to reproduce the known form of the Feynman
propagator: Inserting our ansatz for the field into (0|¢(,)$(0)|0) for ¢ > 0, we obtain four
terms containing the products aa, aa’, a'a, afal. Only aa' survives, resulting into

3 31./ ) 3 .
(0] / (%;13 k;iwl;wkla(k)e—lkxaT(k/)ﬁ(tﬂO) = / (2:)73];%(3—1%@)_ (3.51)

In the second step, we used the commutation rule [a(k),af(k’)] = §(k — k'). Performing the
same exercise for t < 0, we see that we reproduce also in this case the corresponding term of
the Feynman propagator. Thus we conclude that our ansatz for the field and commutation
rules for the annihilation and creation operators are consistent. Note that we could create in
Eq. (351) alternatively one-particle states, (0|a(k)a’(k')|0) = (k|k'), and consistency requires
thus that the states |k) are non-relativistically normalised, (k|k’) = §(k — k'). This should
come as no surprise, since we started from the analogy to the non-relativistic oscillator. If
one prefers states satisfying the relativistic normalisation, one can rescale the creation and
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3. Free scalar field

annihilation operators such that [a(k),af(k')] = (27)%2wid(k — k') and the field-operator
becomes

~ 3 . .
i = | (2:)73’;% [a(k)e e + at (k)eite] (3.52)

Both normalisations lead to canonical commutation relations between the field & and its
canonically conjugated momentum density @ = ¢ at equal times,

), (', 1)]
, )]

id(x —'). (3.53a)

[b(x, ¢
t [#(z,t), 7 (', )] = 0. (3.53b)

/
x,t

/
x,t

We come back to the question if the commutator of two fields vanishes for space-like sepa-
ration. We evaluate first

. - A3k A3k Cikz 4 atike o ik'E |tk D
#0460 = | oo 2R ™ +al (et alk)e ™ - al (et ]
3 . , . .
_ / % (eflk(zfx) _ e+1k(:rfx )) = D(x _ l‘,) ) (354)
)3 2wy,

For equal times, ¢t = ¢/, exchanging the dummy variable k — —k in the second term shows that
the contribution from positive and negative energies cancel. Thus the equal-time commutator
of two fields is zero, as claimed in (3.53B). For space-like distances, (z — 2')? < 0, we can
find a Lorentz boost which changes the ordering of the space-time events, z —z' — —(z — ).
Since the function D(z — z') is the sum of two Lorentz invariant expressions, its value has to
be the same in all inertial frames. But for space-like distances, we can transform D(z) into
—D(z), and therefore D(z) has to vanish, if z is outside the light-cone of 2’ and vice versa.
Thus we have shown that also the commutator of two space-like separated fields vanishes,

[b(x), (=] =0  for (z—2")? <0, (3.55)

which is the condition for causality: The transmission of a signal corresponds not only to
the propagation of a virtual particle, but includes its measurement. Thus the fact that the
Feynman propagator does not vanish outside the light-cone does not contradict causality by
itself.

There are two main differences between the Feynman propagator and the commutator of two
fields: First, [¢(z), d(z')] is an operator, while iA(z; —x2) is a vacuum expectation value. The
quantum vacuum fluctuates, and these fluctuations are correlated also on space-like distances,
similar to the ERP correlations in quantum mechanics. The Feynman propagator iAp(z1—x2)
is designed to describe not only the propagation of time-like particles, but includes also the
space-like propagation of virtual particles: The most “extreme” case is the instantaneous
exchange of particles transmitting the Coulomb or Yukawa force between static sources, cf.
Eq. 335). Second, in [$(z), $(z')] we subtract the contribution of positive and negative
frequencies, while we add them in the Feynman propagator. As a result, the contributions
from a particle travelling the distance & and from an antiparticle travelling the distance —x
cancel in the commutator, while they add up in the Feynman propagator. Since causality
relies on the cancellation between positive and negative energy modes in [¢(z), d(z')], we
conclude that a relativistic quantum theory has to incorporate antiparticles.
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3.4. Vacuum energy and the Casimir effect

3.4. Vacuum energy and the Casimir effect

Vacuum energy We now aim at calculating the energy of the vacuum state of a free scalar
quantum field. The energy density p of the field ¢ is given by the vacuum expectation value
of its Hamiltonian density 57,

p = (OLA10) = po + 50l + (V6)? +m*¢?/0) = po + 1. (3.56)

Here we added the constant energy density pp to (8I4]) and used that the vacuum is nor-
malised, (0|0) = 1. For the calculation of p;, we can recycle our result for the propagator of
a scalar field by considering ¢?(z) as the limit of two fields at nearby points,

43k
o~ / (2m)3 2wy - (337

We perform first the differentiation in (72) = (¢2) and ((V$)2) and send then 2’ \, 2. Thus
72 and (V¢)? add a w? and k? term, respectively,

A3k [1 &Pk 1

m 5(@% + k2 + m2)] =po+ / Wﬁwk. (3.58)

d3k o
<0|¢($,)¢($)|0>x/\$ = /Melk(x —x)

p= 0110} =p+ [

If we insert A and ¢ into this expression, we see that py as a classical contribution to the energy
density of the vacuum is o< A°, while the second term p; o hwy/V as a quantum correction
is linear in A. The total energy density p of the vacuum state of a free scalar field has a
very intuitive interpretation: Additionally to the classical energy density pyp, it sums up the
zero-point energies of all individual modes k of a free field. Despite its simplicity, we cannot
make sense out of this result: Since both the density of modes and their energy increases with
|k|, the integral diverges. This is the first example that momentum integrals in quantum field
theories are often ill-defined and require some care and cure. One calls momentum integrals
which are divergent for £ — 0 infrared (IR) divergent, while one calls integrals which diverge
for k — oo ultraviolet (UV) divergent.

Let us now consider the case that the Hamiltonian (B.14]) describes physics correctly only
up to the energy scale A, while the modes with |k| > A do not contribute to p;. Such a
possibility exists e.g. in supersymmetric theories where the contributions of different particle
types cancel each other above the scale Agygy where supersymmetry is broken. Integrating
the contribution to the vacuum energy density by field modes up to the cutoff scale A, we

find N )
dk k2 1
pL = / —wy, ~ A* (3.59)
0 T

in the limit A > m. Since only the total energy density p is observable, the unknown py can be
always chosen such that pg+ p; agrees with observations, even if |pgl, |p1| > |p|. Nevertheless,
the strong sensitivity of p; on the value of the cutoff scale A is puzzling for two reasons: First,
cosmological observations determine the total vacuum energy density pp to which all types
of fields contribute as pn ~ (meV)*. On the other hand, accelerator experiments give no
indications that a cancellation mechanism as supersymmetry works at energy below few TeV.
Thus we expect naively at least pp ~ (Aspsy)* 2 (fewTeV ), which is 60 orders of magnitude
larger than observed, if no strong cancellation of the various contributions to py takes place.
Second, the behaviour p; ~ A% implies that all scalar particles with mass m < A contribute
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3. Free scalar field

equally to p. This poses the question, if we have to know the physics at energy scales much
larger than those we probe experimentally in order to make predictions using QFT. Such a
behaviour would be in contradiction of developing successfully chemistry, atomic or nuclear
physics using only the experimental data and models of the corresponding relevant energy
scale E. Something similar should happen in QFT too and we will study later the conditions
that heavy particles with mas m “decouple” at energies FF < m: In this case, their effects
are either suppressed by factors E/m, or are hidden in unobservable quantities like p;.

Casimir effect Although we cannot calculate unambiguously the vacuum energy, we can
determine the energy difference of different vacua. As a concrete example, we consider the
suggestion by Casimir that the vacuum between two conducting plates is disturbed. As a
result, the vacuum energy density between the plates becomes a function of their distance d.
The difference of the vacuum energy density inside and outside the plates is finite and leads
to a measurable force between them.

Let us consider two parallel, uncharged, perfectly conducting plates at distance d. Standing
waves between them have the form sin(nrz/d) with discrete energies w, = nm/d. The vacuum
fluctuations of a photon have the same form as the one of massless scalar field, except that
there is an additional factor two due to its two spin degrees of freedom. Thus the vacuum
energy inside the box of volume dL, L, per single polarisation mode is given by

. [ dk,dk, 1 [/nm\2
E=1L,L, Y Z—\/— k2 4+ k2. )
v ;/ (2m)2 2 (d) Tyt (3.60)

To simplify the calculations, we consider a 1+ 1 dimensional system of two plates separated
by the distance d. Then the energy density p = E/d of a massless field per polarisation mode
inside the plates is

p(d) = % Y n. (3.61)
n=1

Next we introduce a cutoff function f(a) = exp(—ann/d) which suppresses the high-energy
modes,

i — —anm
pld) = pla,d) = 5 > mement/d, (3.62)
n=1

This procedure is called reqularisation: For a > 0, we obtain a well-defined mathematical sum
which we can manipulate following the usual rules of analysis, while we recover for a — 0 the
original divergent sum. We have chosen as argument of the exponential anm/d, because the
physically relevant quantities are the energy levels w,, = nm/d of the system. Now we can
evaluate the regularised sum, rewriting it as a geometrical sum,

T — 1 0 &
pla,d) = 52 Z ne~ /4 — ~53%a Z e—onm/d (3.63a)
n=1 =
10 1 ™ ear/d

T32d0a1—com/d 2 (1 —eon/d)? (3.63b)

Then we use e®(1 —e™%)? = 4sinh?(x/2) and expand p(a, d) for small a in a Laurent series,

T 1 1 4 2,4
- - d—). 64
8d? sinhQ(mr/Qd) 2mra? 242 +O(a ) (3.64)

pla,d) =
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3.4. Vacuum energy and the Casimir effect

Note that we isolated thereby the divergence into a term which does not depend on the
distance d of the plates. Thus the divergence cancels in the difference of the vacuum energy
with and without plates,

™

IR (3.65)

PCas (d) = lim [p(a’ad) - ,O(Cl, d— OO)] =
a—0
This final step in order to obtain a finite result is called renormalisation. One can verify
that the result is not only independent of the cutoff parameter a, but also of the shape of
a reasonabldd cutoff function f(a). In contrast, the a dependent terms in Eq. (3.64]) may
depend on the form of f(a).
The quantity measured in actual experiments is the force F' with which the plates attract
(or repel) each other. This force is given by

_ 8_E _ a(deas) .
o od ad 24d?

—F (3.66)
Thus two parallel plates attract each other. The experimentally relevant case of electromag-
netic waves between two parallel plates in 341 dimensions can be calculated analogously. The
experimental confirmation of the Casimir effect has been achieved only in the 1990s, with a
precision on the 1% level.

How can we understand that the Casimir force is independent on the details of the regu-
larisation procedure? Let us compare the impact of the two plates on modes with different
wave-number k = 27 /X: In a typical experimental set-up, the plates are separated by a dis-
tance of the order d ~ 1 mm and thus kg = 27/d ~meV. The plates eliminate all low-energy
modes with & < kg between them, while the modes with k > kg attain a discrete spectrum.
However, for k, > kg, the spacing between the modes becomes negligible and experimentally
one cannot distinguish the discrete spectrum from a continuous one. In particular, we can
approximate the sum over the discrete energies by an integral and the contributions of modes
with k& > k¢ with and without plates cancel calculating the energy difference. Since the main
contribution to the Casimir energy comes from cutting off modes with £ < 27/d ~meV, we
conclude that the Casimir energy is an IR effect. Therefore the details of the UV regular-
isation should not influence the result and any reasonable cutoff function that makes the
mathematical manipulations (3.63al3.64) well-defined should lead to the same result.

Summary

The exchange of time-like quanta with zero energy between two static sources leads to the
Yukawa potential. The corresponding force mediated by a scalar field is attractive. The Feyn-
man propagator obtained by the m? — ie prescription is the unique Green function which can
be analytically continued to an Euclidean Green function. It propagates particles (with pos-
itive frequencies) forward in time, while anti-particles (with negative frequencies) propagate
backward in time. While these two contributions add up in the scalar Feynman propaga-
tor, they cancel in the commutator of field-operators at space-like distances, as required by
causality. Disconnected n-point Green functions are generated by the functional Z[.J], while

2Reasonable means that f(a) is normalised, f(0) = 1, and that all its derivatives vanish for large a,
limg 00 £ (a) = 0.
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3. Free scalar field

iW[J] = InZ[J] generates connected Green functions. Wick’s theorem says that a n-point
function can be obtained as the permutation of products of 2-point functions. The Casimir
effect shows that the zero-point energies of quantum fields have real, measurable consequences.

Further reading

The quantisation of free fields using both canonical quantisation and the path integral ap-
proach is discussed extensively by [GROS].
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4. Scalar field with A¢* interaction

We know from quantum mechanics that adding an anharmonic term to an oscillator forces
us to use either perturbative or numerical methods. The same happens in field theory: No
analytic solution for a realistic interacting theory is at present known in n = 4 space-time
dimensions. Therefore we develop in this chapter a perturbative method to evaluate the
generating functionals Z[J] and W[J]. We continue to work with the simplest case of a
single real scalar field and choose as interaction a A¢* term. Then the coupling constant X is
dimensionless in the for us interesting case n = 4. If X is small enough, we may hope that a
perturbative series expansion in A provides a useful approximation scheme. As motivation, we
note that a scalar field with A¢* interaction can not only model a wide range of phenomena
in statistical physics but describes also the Higgs field of the SM and its self-interactions.

4.1. Perturbation theory for interacting fields

General formalism The Lagrange density . in the functional Z[J] for the scalar field con-
sidered up to now was at most quadratic in the fields and its derivatives. On one hand, this
allowed us to evaluate the path integral, while on the other hand this means that the field
has no interactions: Two wave packets described by the free propagator just pass each other
without interaction, as the superposition principle prescribes. As next step we add therefore
an interaction term % to the free Lagrangian %, i.e. we set . = % + 4. Then the
generating functional Z[J] for an interacting real scalar field ¢ becomes

Z[J] = /D¢expi/d4:1: (L + L+ ), (4.1)

while we denote the free functionals we considered so far from now on as Zy[J] and Wy[J].
Starting from the full generating functional Z[.J] we can define ezact Green functions which
we denote by boldface letters: For instance, the exact 2-point function or propagator is given

analogous to Eq. (8.45) by

1 8227

G(z1,12) = i26J(71)0J(z2)

- / D p(a1)(wa)e! [ 7 A+, (4.2)
J=0
In general, we are not able to calculate these exact Green functions, and we will apply therefore
perturbation theory. We assume that the interaction term .Z is a polynomial P(¢) of degree
> 3 in the field ¢ and contains an expansion parameter A which is small in the considered
kinematic regime, %5 = AP(¢) with A < 1. This suggests to expand the interaction term,

112
expi / o Z(4) = 1 +iA / A2 P(b(x)) + % / A1 d e P (1)) P(S(2)) + ... (4.3)

Since 5
plage e o 8ot ()
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4. Scalar field with A¢* interaction

we can perform the replacement

Z(0(x) > (1%) . (4.5)

Then the interaction .%; does not depend longer on ¢ and can be pulled out of the functional
integral,

ZLﬂ::exp{/}#xiﬁ-<%gf%5>l/iD¢exp{/}ﬁx(i%-+J¢) (4.6a)

The solution of the free functionals Zy and Wy was given in Eq. (3.19) as

ZU[J] = Z[)[O] exp <—% /d4xd4I’J($)AF(I — I’)J(II)> = ZO[O] Z ;L—n'Wal . (47)
n=0

Perturbation theory consists in a double expansion of the two exponentials in Z[J]: One in
the coupling constant A and one in the number of external sources J. The latter is fixed by
the number of external particles in a scattering process, while the former is chosen according
to the desired precision of the calculation.

Choosing the interaction term Let us recall from our discussion of the free Lagrangian the
physical requirements we should impose on the Lagrangian: Each term should be a Lorentz
scalar which is local in the fields. The corresponding Hamiltonian has to be bounded from
below, stable against small perturbations and real. These conditions assure that the vacuum
in the absence of external sources is stable.

Additional restrictions follow from a surprisingly simple argument employing dimensional
analysis: Using natural units, A = ¢ = 1, the dimension of all physical quantities can be
expressed as powers of one basic unit which we choose as mass m. Then we use that the
action has dimension zero, [S] = m°, and thus the Lagrangian [£] = m* in four space-time
dimensions. We consider next the free Lagrangian: From the kinetic term, we conclude that
the dimension of a scalar field is [¢] = m!. Thus simple dimensional analysis shows that the
term m? in front of ¢? has the interpretation of a mass squared. Furthermore, we can order
possible self-couplings of a scalar field according to their dimension as

‘ﬁ:%Mﬁ+m&+%f+”w (4.8)

where the coupling constants g; are dimensionless and we introduced the mass scale M to
ensure [.Z] = m*. We call ¢¢ an operator of dimension d. Similar as in the case of the Fermi
constant, Gp = v/2¢%/(8m%;), the scale M could be connected to the exchange of a heavy
particle.

Let us now estimate by dimensional analysis which energy scaling of the interaction prob-
ability we expect for the different coupling terms in .Z7. At lowest order perturbation the-
ory, the interaction probability is dW oc |.Z;|2. Hence the interaction probability scales as
o (gq4/M%*)2. Now we consider the ultra-relativistic limit, so that we can neglect the mass
m of the scalar particle compared to the center-of-mass (cms) energy /s. A probability has
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4.2. Green functions for the A¢* theory

to be dimensionless, and for s > m? the only remaining dimensionfull variable that can enter
the total interaction probability W is s. Thus W has to scale as g5(s/M?)%=* in the limit
s > m?. Let us now distinguish the two ranges m? < s < M? and s > M?. In the latter
case, the interaction terms with d > 4 contain the large factors (v/s/M))?* > 1 and pertur-
bation theory becomes thus unreliable. In contrast, these terms are smaller than one below
the scale M and thus suppressed relative to the operators with dimension d < 4. Therefore
we neglect in a first approach all operators with dimension d > 5. Simplifying further .Z7, we
want to include only one interaction term. In this case, a ¢ term would lead to an unstable
vacuum. Therefore our choice for the scalar self-interaction is .27 = —A¢?/4!, where the
factor 1/4! was added for later convenience. If this choice of interaction is realised in Nature
for a specific particle has to be decided by experiment.

4.2. Green functions for the \¢* theory

We start now with the perturbative evaluation of Eq. (£8a)) for a A¢*/4! interaction. From

1 4 i 4
Z[J] = <1—4—>!‘/d4x%(;w+...> Zo[J] = Zo[J] —4—)!\/d4x ZJZ&[;] N
= Zo[J) (1 + X1 [J] + N22[J] +...) (4.9)

we see that we will generate a series of the type free Green functions plus higher order
corrections in X\. The calculation of the first-order correction is very similar to the calculation
of the free four-point function, with the difference that now the four sources sit at the same
point. You should find in problem ?? as result

(%):miwom) = |3(1Ax(0))* + 6iAx(0) </ d*yAp(z - y)J(y)>2

4
¥ ( [ ayart- y>J<y>) ] exp(iTVLT]) . (4.10)

Next we introduce a graphical representation for the various terms in Eq. (£I0). Each
Feynman propagator Ap(xz — y) is represented by
Ap(z—y)== o—e Y (4.11)
a source term J(z) by
i / dz J(z) = o—— (4.12)
and an interaction vertex by

— iA/d% = (4.13)

Each source and vertex has its own coordinates and an integration over all coordinates is
implied. In the case of the ¢* interaction, a vertex connects four lines. Using this notatio,

!This graphical notation first introduced by Stiickelberg was made popular by Feynman. The graphs are
therefore often called Feynman diagrams or Feynman graphs.
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4. Scalar field with A¢* interaction

we can express i as

Zl[J]zi 3O 1 Q +>< exp(%o—o). (4.14)

A graph consists of lines and dots, where the latter may be vertices or sources. We distinguish
internal and external lines: A line which ends on both sides at a dot with at least two lines
attached is called internal; otherwise it is an external line. The three graphs contained in
Z1[J] differ by the number of loops, i.e. by the number L of closed lines. A graph with
loop number L = 0 (as the third one in Z;[J]) is called a tree graph, otherwise it is a loop
graph. An inspection of the three graphs shows their loop number L is connected to the
number n of lines and d of dots as L = n — d + 1. Expressing L via the number of vertices
and sources, d = V + S, and the number of internal and external lines, n = I + E, we have
L =I1+F—-V —S8+1. Since each external line comes with one source, we can express therefore
the loop number also as L = I — V + 1, a formula which is valid for all types of interactions.
Note also that the first and the second graph contained in Z;[J] can be obtained from the
third one by joining two and one lines, respectively. There are six ways to join one line, and
three ways to join two lines. Thus the prefactors of the various graphs can be derived by
simple symmetry arguments.

Knowing Z;[J], we can derive disconnected Green functions valid at O(A) by performing
functional derivatives,

! o~ ZolJ] (14 )| (4.15)

(n) S
g (:l?l,..-,xn) 1”5J(I1)5J($ﬂ) J=0

In the graphical notation, differentiating with respect to J(z) amounts to replace the open
dot denoting the source i [ d*y.J(y) by its position z,

1 4
idJ(x)

o— = g (4.16)

Vacuum diagrams We call terms in the perturbative evaluation of Z[.J] which contain no
source vacuum diagrams. Since setting J = 0 eliminates all graphs containing at least one
source, the vacuum diagrams correspond to loops without external lines. The corresponding
Green functions are the “zero-point” Green functions G (0),

Let us assume that the path integral measure D¢ is chosen such that the free vacuum
is normalised, Zy[0] = 1. Switching on interactions will change the free vacuum into the
true vacuum of the interacting theory. Therefore the true vacuum and thus Z[J] are not
normalised. As example, we obtain setting J = 0 in our result (L.I4) for Z[J] at lowest order
perturbation theory,

GO =z]=1- % d*z(iAp(0))2 # 1. (4.17)
Because of N' = expIn(N), a normalisation different from one is equivalent to adding a
constant term to the Lagrangian,

L= ZL+IN)/(VT) =% —p, (4.18)
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4.2. Green functions for the A¢* theory

where VT is the four-dimensional integration volume in the action.

Since vacuum diagrams only change the vacuum energy density p but do not contribute to
scattering processes, one often prefers to eliminate these diagrams multiplying Z[.J] with the
normalisation constant

N7t =270 = /D¢eis. (4.19)

Thus one uses the normalised generating functional Z[J] = N'Z[J] = Z[J]/Z[0] which cor-
responds to a vacuum with zero energy density p. We now show that this normalisation
eliminates all vacuum graphs. Expanding the numerator and denominator of Z[.J] up to
O()), we have at lowest order perturbation theory

~ Z[J] 14+ XAn[J]+O0(\?)

)= 2 = T o0 21 = (14 MG = 10D} 7]+ 00%). (4.20)

Thus dividing Z[J] by the source-free functional subtracts indeed the vacuum graph O(X\).
It becomes obvious that this procedure works at any order perturbation theory, if we look at
the generating functional for connected graphs, W[J]. As dividing Z[.J] by the source-free
functional Z[0] corresponds to

iW[J] =InZ[J] = In Z[J] — In Z[0], (4.21)

it is clear that this procedure eliminates indeed all vacuum graphs.

2-point functions We start by taking one derivative of the normalised generating functional,

%M?xl) [1+% (GO_O_O 4 >< >]exp (% o—o> _ (4.22a)
:[%<6-2 _O_°+4><>+(1+%<60_Q_0+>< )) —o]

X exp G o—o> _ (4.22D)
=[—o+%(12 _Q_o+4c>< +6 —

X ot

Every term in this expression contains at least one source J, and the one-point function
G (z) vanishes therefore. If we proceed to the two-point function G (z, ), we have to
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4. Scalar field with A¢* interaction

differentiate only those terms with one source,

ELZ[J] _

120J(x1)0J (z2) -
) 1 vanishing 1

== 12 1
idJ(z2) —o + 1 < Qo-l- i:;eltn(s) for | | exp <2 o—o>

= ( — +% _Q_) exp (%o—o) . (4.23)

Setting then the sources J to zero, the exponential factor becomes one. Converting the
graphical formula back into standard notation, we find the 2-point function G (z1, z5) at

order O()\) as the sum of the free 2-point function QSQ) (z1,x2) and a correction term,

G (21, 30) = G2 (w1, m9) — % / d*2 iAp (21 — 2)iAp(z — T)iAF(z — 22) . (4.24)

This correction is called the self-energy (1, z2) of the scalar particle. Note that the prefac-
tors combine to 6 x 2/4! = 1/2, so that there appears an extra factor 1/2. Such factors are
called symmetry factors. They appear because we included a factor 1/4! in .Z; to compensate
for the 4! permutations of four sources. This cancellation works in most diagrams however
only partially, and a non-zero prefactor is left over.

Example 4.1: Let us illustrate how one can determine the symmetry factor of more complicated
diagrams. As first step, we express the Green function that corresponds to a given Feynman diagram
as the time-ordered product of fields. Consider e.g. the so-called “sunrise diagram”, which is a second
order diagram, corresponding to the term

71 m ol <_i)\> /d4y1d4y2<0|T[¢(a:1)¢(x2)¢4(y1)¢4(y2)]|0)+(y1<—>?J2)

2\

in the perturbative expansion. The exchange graph y; ¢ y- is identical to the original one, cancelling
the factor 1/2! from the Taylor expansion. This cancellation takes place in general: The 1/n! factor
from the Taylor expansion of a n.th order contains n interaction points which leads to n! permutations.
Next consider how the fields ¢ are combined in T'[- - - ]: The internal points y; and y» denote interaction
points, which have four fields attached. In contrast, the external points 1 and z» carry each only one
field. We have to count the number of possible ways to combine the fields in the time-ordered product
into the five propagators of the graph. As shorthand notation, we mark a possible combination as

é(z1)d(y1). We have four possibilities to combine ¢(z1) with ¢(y1), ¢(z1)¢(y1). Similarly, there are
L L
four possibilities for ¢(z2)p(y2). The remaining six fields can be combined in 3! ways into pairs, as
L

e.g. in d(y1)d(y1)d(y1)d(y2)d(y2)P(y2). Thus the symmetry factor of this diagram is given by
T |

S:(%xQ!) <%>2(4x4x3!)=%.
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1 Z2 1 T3 T T4
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Figure 4.1.: Graphs contributing to the disconnected four-point function G(x1,z2, 3, z4).

4-point functions The disconnected 4-point function G(x1,x9,x3,x4) is shown graphically
in Fig. @Il The first three graphs correspond to the free 4-point function from (B.44]), the
next six graphs are the corresponding O()) corrections. Finally, the last diagram corresponds
to the connected 4-point function G(z1, z2, 3, 74). Next we want to derive G(z1, 9,3, z4)
from its generating functional W[J] We insert Z[J] = exp(iW[J]) into

iW[J] = Inexp (%o—o> +1In [1+% (GO_Q_O + >-< )] +0O(\?)
:%o—o+%<60_0_0 + >< >+O(>\2),

where we expanded the logarithm, In(1 4+ x) ~ z. Taking four derivatives with respect to J,
only the last term survives and we obtain as connected Green function

(4.25)

G(z1, 12,13, 24) = —i)\/d4x iAp(z1 — 2)iAp(ze — 2)iAp(zs — 2)iAp(zy — ).  (4.26)

Feynman rules for the A¢* theory We can summarise our results in a few simple rules
which allow us to write down Green functions directly, without the need to derive them from
their generating functional. The Feynman rules for connected Green functions G(z1,...,zy)
in coordinate space are as follows:

1. Draw all topologically different diagrams for the chosen order O(A\") and number of
external coordinates or particles.

2. To each line connecting the points z and z’ we associate a propagator iAp(z — z').

3. Each vertex has a factor —iX\ and connects n lines for a A¢™ interaction.
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4. Scalar field with A¢* interaction

4. Integrate over all intermediate points.
5. Determine and add the symmetry factor.

Translation invariance of Minkowski space implies that the propagators depend like
exp(£ikz) on the position of the interaction point. Therefore the space-time integrations
result in four-momentum conservation at each vertex, [d*z e 12X ki = (27)45 (>2;kj)- In
the case of tree-level diagrams, all the four-momentum integrals of the I = V — 1 propaga-
tors will be eliminated by delta functions, leaving over one delta function expressing overall
momentum conservation. In contrast, L integrations over loop momenta [ d*k/(2m)? remain
in the case of loop diagrams. Accounting for the result of the space-time integrations, we
can give the Feynman rules directly in momentum space. Defining the Fourier transformed
n-point function as

Glky,. .. ky) = /Hd‘ixi exp (iZkixi)G(m,...,xn), (4.27)
i—=1 i

the Feynman rules for these Green functions have the following changes:
2. To each line associate a propagator iAp(k) =i/(k%? — m? + ie).
3. Fix the external momenta and impose 4-momentum conservation at each vertex.

4. Integrate over all unconstrained momenta k with [ d*k/(27)*. The number of indepen-
dent momenta we have to integrate over equals the loop number L of the graph.

We will see in the next section for G2 (p) as example how these rules work out.

4.3. Loop diagrams

In the Fourier transformed Green functions G(ki,...,k,) of tree-level graphs all integrals
about the propagator momenta have been cancelled by delta functions, and G(ki,..., ky)
is a mathematically well-defined distribution. In contrast, the integration over momenta in
loop graphs are often divergent, requiring to regularise and to renormalise these expressions.
Aim of this section is to illustrate this procedure. We concentrate first on the technicalities
involved in the evaluation of these loop diagrams, before we interpret the results. We will have
time to digest these examples, before we will come back to the problem of renormalisation in
chapter [[1l The basic steps in the evaluation of simple Feynman integrals are summarised in
the appendix [4.Al

4.3.1. Self-energy

We consider first the only one-loop diagram contained in Z;[J], the 2-point function of a
scalar particle at O(\),

G (z1,129) = iAp(z) — 29) — %AF(O) / d*zAp(z) — 2)Ap(z — x9) . (4.28)

The calculation of G2 (z1,x9) consists of three steps: First, we have to combine its two
pieces into a single, modified propagator: As it stands, the expression seems to describes
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the propagation of two modes, a free one plus one consisting of the O()) correction, while
G (1, x2) should describe the propagation of a single particle with properties modified by
the self-interactions. Second, we have to calculate the loop diagram iAr(0) which will turn
out to be infinite. Thus the final task is the question how we should interpret this result.
We start concentrating on the correction term, which we call the self-energy 3 (z1, z2) of the
scalar particle, and insert the Fourier representation of the two propagators into the integral,

d4p d4p/ o~ ip(z1-7) e~ ip' (z—a22)
(2m)* (2m)* p2 —m?2 +ic p'2 —m? +ie’

(w1, 39) = —%AF(O) / s (4.29)

The d*z integration results in (27)*6(p — p'), then one of the momentum integrations can be
performed. Together this gives

A d4p efip(xlfzg)
(a1 — =—=Apr(0 . 4.30
(1 = r2) = =5 &l )/ @m)T (p2 — m? + ie)? (4:30)
Inserting also for the free Green function its Fourier representation, we arrive at
dlp i 3AR(0)
GO (21 — ) = / ~ip(@1—22) _ 2 4.31
(1 =) (2m)* ¢ p?—m2+ie  (p? —m? +ie)? (4.31)

The Green function G (p) in momentum space is thus given by the expression in the square
bracket, which we could have written down immediately using the Feynman rules in momen-
tum space. Next we factor out one propagator,

B2 AR(0)
p2 —m? +ie

G2 (p) (4.32)

=p2—m2+ie

Assuming that perturbation theory is justified, the second term in the parenthesis should be

small. Thus [1 + Xa] = [1 — Aa]~! + O()\?), and we obtain

G (p) = | .
p? —m? — %AF(O) +ie

(4.33)

The residue of the free propagator i/(p? —m? +ie) defines the “bare” particle mass m at zero
order in A. Switching on interactions, we continue to define the physical (or renormalised)
mass myppys of the scalar particle by the residue of G (p). Thus at order X,
2 2 2 2 | 1A

Mphys = M° +0m” =m” + EAF(O) . (4.34)
Hence interactions shift or “renormalise” the “bare” mass m used initially in the classical
Lagrangian .Z. It is important to realise that such a renormalisation does not appertain to
QFTs but happens in any interacting theory. A familiar example in a classical context is the

Debye screening of the electric charge in a plasma. As next step, we have to calculate (and
to interpret properly)

iAp(0) = / (d4k i (4.35)

2m)* k2 —m?2 +ie

Since the mass correction is dm? = iAAr(0)/2, the Feynman propagator at coincident points
Ar(0) has to be purely imaginary. Otherwise the A¢* theory would contain no stable particles.
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4. Scalar field with A¢* interaction

Wick rotation The integrals appearing in loop graphs can be easier integrated, if one per-
forms a Wick rotation from Minkowski to Euclidean space: Rotating the integration contour
anti-clockwise to —ioo : +i00 avoids both poles in the complex &k plane and is thus admissible.
Introducing as new integration variable iky = kg, it follows

dkp ————— = dkg——— =i [ dky—o——. 4.36
/Oo %2 —m? +ie /ioo %2 —m? +ie l/oo YK m? e (4.36)

We next combine k and k4 into a new four-vector kg = (k, k4). Since
K =—(k]” + k) = —k% (4.37)

we work now (apart from the overall sign) in an Euclidean space. In particular, the denom-
inator never vanishes and we can omit the ie. Moreover, the integrand is now spherically

symmetric. Thus we have
iAR(0) = / e 1 (4.38)
P emt kg +m? '

As required by our interpretation dm? = iAr(0), the propagator Ap(0) is imaginary. Because
the relative sign of the momenta and the mass term indicates if we work in the Fuclidean
or Minkowski space, we will omit the index F in the following. Introducing furthermore
spherical coordinates, we see that Ap(0) diverges quadratically for large k,

A
1
MAR(0) o / dk k3 x A2, (4.39)

0 k2 + m2
Dimensional regularisation Using the integral representation

b / " ds e k+m?) (4.40)
k2 + m2 - 0 '

and interchanging the integrals, we can reduce the momentum integral to a Gaussian integral.
Manipulations like interchanging the order of integrations or a change of integration variables
in divergent expressions as Eq. (£39) are however ambiguous. Before we can proceed, we
have to “regularise” therefore the integral, similar as we did introducing a cutoff function into
the expression of the zero-point energy.

We will use dimensional regularisation (DR), i.e. we will calculate integrals in d = 4 — 2¢
dimensions where they are finite. Then we find

o0 ddk 2 2 ]. o0 2
A (0) — —s(k2+m?) _ 7/ —d/2q—sm? 4.41
iAr(0) /0 ds/ @n) e )i |, ds s~ %*e (4.41)

The substitution 2 = sm? transforms the integral into one of the standard representations of
the Gamma function (see the appendix Al for some useful formula),

d
Ar(0)=——=T(1—-—=) . 4.42
This expression diverges for d = 2,4, 6, ..., but is as announced finite for d = 4 — 2¢ and small

€. In the next step, we would like to expand the expression in a Laurent series, separating
pole terms in ¢ and a finite remainder.
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4.3. Loop diagrams

Appearance of a dimensionfull scale As the expression stands, we can not expand the
prefactor of the Gamma function, because it is dimensionfull. In order to make the factor
m%=2 dimensionless, we should supply a new mass scale. More physically, we can understand
the need for an additional dimensionfull scale by the requirement that the action S = [ dlz.z
remains dimensionless if we deviate from d = 4 dimensions. From the kinetic term, we deduce
that the scalar field has the mass dimension [¢] = d/2 — 1. The interaction term implies then
that X\ acquires the dimension [A\] = 4—d. In order to retain a dimensionless coupling constant,
we introduce therefore a mass p called the renormalisation scale as follows,

Sr = / d*z.4 = — / d%%& — —ptd / d%%&. (4.43)

Adding the factor ;=% to our previous result, we obtain

2

m N
AT HAR(0) = A T <4m’; > T(1—d/2). (4.44)

Now we expand the dimensionless last two factors in this expression around d = 4 using
Eq. (A.42) for the Gamma function,

I‘(l—d/2):I‘(—l-l-e):—%—l-l-v-l-(’)(e) (4.45)

and
af =M =1 4elna+ O(?). (4.46)

Note that we require the expansion of the prefactor of the Gamma function up to O(g?)
because of the pole term in (£45]). Thus the mass correction is given by

4—d : o 1 Amp? 2
A TY1AR(0) occm . 1+v4+0()| |1+¢eln - + 0| - (4.47)
or ) )
2_ 1A 4 _Aam 11 m
Im* = 5 M Ar(0) = > an)? [ . I+v+In (47TM2> + 0(8)] . (4.48)

This expansion has allowed us to separate the correction into a divergent term o 1/¢ and a
finite remainder. The latter contains an analytic part, —1 4+, and an non-analytic piece that
depends on the renormalisation scale, In(m?/4mpu?). This result is typical for DR: First, all
divergences appear in the limit d — 4 as poles of the Gamma function. Second, the renor-
malisation scale u enters always via Eq. (£46]) in a logarithm. Thus the only dimensionfull
parameter which can set the scale of the mass correction dm? is the mass of the particle in
the loop. In the case of a theory with a single particle, the correction must have therefore
2 using DR. You should contrast this behaviour with the one using as
regularisation scheme an Euclidean cutoff A: Integrating up to momenta A > m, the particle
mass m can be neglected, and the correction diverges as a power-law dm? oc A2.

Let us now discuss in turn the three different kind of terms present in Eq. (£48]). First, the
form of the divergent terms depends on the regularisation scheme applied. However, in any
scheme we can eliminate them using Eq. (4.34]), requiring that the unobservable bare mass m?
contains the same divergent terms with the opposite sign. Second, the finite analytic terms
depend also on the scheme, since we can always shift a finite part from m? to ém?. In order

the form dm? o m
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4. Scalar field with A¢* interaction

to specify precisely 6m? we have to fix therefore a renormalisation scheme , i.e. a set of rules
resolving these ambiguities. Finally, the finite, non-analytic terms are important predictions,
which are independent of the regularisation scheme (apart from a rescaling of the arbitrary
parameter u). As we will see in chapter [ such non-analytic terms are necessary that the
S-matrix is unitary, or in other words that the theory preserves probability.

4.3.2. Vacuum energy density

We can generate out of the self-energy diagram new one-loop graphs by adding or subtractin,
two external lines. Subtracting two lines generates an one-loop graph without external lineﬂg,
the “zero-point” Green function G(©) at order A°. One way to calculate this quantity is to
evaluate directly Zp[0] using

DetA = expInDetA = exp Trln A (4.49)

what gives

Z[0] = exp [—%Tr In(0d — mQ)] : (4.50)

We postpone the question how such an expression can be evaluated and use instead another
approach, recycling our result for the self-energy. Vacuum diagrams are generated by the
functional Z[J] setting J = 0,

(04 10—) = Zy[0] = /D¢expi/d4x (%aﬂqsauqs— %m2¢2> : (4.51)

We saw in Eq. (3.57) that the zero-point energy is related to the propagator at coincident
points. Since we suspect a connection between vacuum diagrams and the zero-point energy,
we try to relate Z[0] and Ag(0). Taking a derivative with respect to m? gives

0

52 (0+10-) = —%/d‘lx 0+ |p(z)?]0-) = —%/d‘lx iAF(0)(0 4 [0—). (4.52)

The additional factor (0 + |0—) = A'~! on the RHS takes into account that we defined the
Feynman propagator with respect to a normalised vacuum. Translation invariance implies
that (04 |0—) does not depend on z. Thus we obtain

9 o P
2 im0 +]0-) = — /d 2ifR(0) = —3 VTiAR(0) (4.53)

with VT as the four-dimensional integration volume. Integrating and exponentiating the
resulting formal solution, we obtain

(0+10-) :exp{—%VT/de iAF(O)} . (4.54)
Comparing this result to

(04 10—) = (0 + |exp (—iHT) |0—) = exp (—-ipVT) , (4.55)

2 Although G is often represented as a closed loop, it has also no internal line; this is in agreement with
our general formulal=n—-V + 1.
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4.3. Loop diagrams

we see that we should associate

p= L / dm?iAr(0) (4.56)

2

with the energy density of the vacuum. On the other hand, we can connect p to the source-free
generating functionals as
ilnZ[0] —-WI0]

v VT’
Thus the contribution of quantum fluctuations to the energy density of the vacuum is given
by the sum of connected vacuum graphs, in accordance with (Z.2T]).

Next we evaluate (£56) which gives the contribution of a free scalar field to the vacuum

(4.57)

energy density. Using our result (£42) for the propagator, iAp(0) = C(m?)%?~', we can
perform the integration over m?,
d d
m m d
o™ r(1_-%)_ 4.58

where we introduced the integration constant pg.
The energy density given by Eq. (£58]) diverges for d = 2,4,6... as 1/e. We can make p
finite and equal to the observed value py, if we choose pg as

1 m* 1
d—4
- - _ . 4.59
po=H [4 (4m)? € pA] ( )

The prefactor u%* ensures again that the action remains dimensionless also for d # 4.

Note that this implies that we should start off with £ — pg instead of .Z. FEven if we
dismiss a non-zero vacuum energy in the classical Lagrangian, it will appear automatically by
quantum corrections. More generally, every possible term that is not forbidden by a symmetry
in .Z will show up calculating loop corrections. We have seen that we can absorb the vacuum
energy density p into the normalisation of the path integral,

/D¢efd4zp:./\/'/2)¢.

Therefore, one may wonder if p has a real physical meaning or could be eliminated by a
simple redefinition of the integration measure. The answer is no: First, we used our freedom
to define the path integral measure setting Zy[0] = 1. Second, p depends on the parameters
(masses, coupling constants) of the considered theory, but the path integral measure should
be independent of the details of the Lagrangian we integrate.

Remark 4.1: Equivalence to the zero-point energy:
Performing the k° integral in Eq. (£35) or using (3.28)

, I &
250) = [ e = | /e o0

and integrating then with respect to m?,

1 1 [ d°k
p= i/dm2iAF(0) = /—\/m2 +E?, (4.61)

2/ (27)3
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4. Scalar field with A¢* interaction

shows that the present expression for the vacuum energy agrees with the sum over zero-point energy
evaluated in Eq. (858). However, the results for the unrenormalised p differ: While Eq. (8.59)) shows
that p oc A* using a cutoff, we have obtained p oc m* in the case of dimensional regularisation. Thus
in this scheme a massless particle as the photon would give a zero contribution to the cosmological
constant. We will come back to this difference in chapter

4.3.3. Vertex correction

Feynman amplitude For our last example we add two external lines to the self-energy dia-
gram. The corresponding Green function can be used to describe 2 — 2 scattering at O(\2).
A scattering process corresponds however to a transition between an initial state at t = —oo
and a final state at ¢ = oo which contain both real, on-shell particles. In order to obtain
scattering amplitudes, we should therefore replace the propagators of external lines—which
describe virtual particles—by on-shell wave functions. This rule will be derived later in chap-
ter For the moment, we simply anticipate that we obtain the Feynman amplitude i.A
describing a scattering process using the Feynman rules for momentum space, but writing for
scalar external particles simply the prefactor of a plane-wave without normalisation factor, i.e.
simply “1”. Moreover, we omit the delta function expressing the conservation of the external
momenta. Thus we add to the Feynman rules in momentum space:

6. The Feynman amplitude i4 describing scattering processes is obtained omitting the
factor (2m)46(3 2, ki — > 1 kf) expressing the conservation of the external momenta, and
the propagators on external lines.

Determining the Feynman amplitude Instead of calculating the order A% term in the per-
turbative expansion of the generating functional Z[J] we use directly the Feynman rules to
obtain the Feynman amplitude for this process. According to these rules, the first steps in
the calculation of the Feynman amplitude are to draw all Feynman diagrams, to find the
symmetry factor and to associate then the corresponding mathematical expressions to the
graphical symbols.

We determine first the symmetry factor, following the same procedure as in example 4[11
In coordinate space, we have to connect four external points (say z1,...,z4) with the help of
two vertices (say at x and y) which combine each four lines. An example is shown here

T2 Y T4

Two additional diagrams are obtained connecting z; with x5 or z4. In order to determine
the symmetry factor, we consider the expression for the four-point function corresponding to
the graph shown above,

2
5 (i) [ oAt Ha a0 D IO + (o ), (462
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4.3. Loop diagrams

ko k3 ko k4 ko ks

ki1 k4 k‘l k‘s ]ﬁ k4

iAs iA, iAy,
Figure 4.2.: Three graphs contributing to ¢(k1)p(ka) — ¢(k3)@(ks) at order A2.

and count the number of possible contractions: We can connect ¢(x;) with each one of the
four ¢(x), and then ¢(z3) with one of the three remaining ¢(z). This gives 4 x 3 possibilities.
Another 4 x 3 possibilities come by the same reasoning from the upper part of the graph. The
remaining pairs ¢2(z) and ¢2(y) can be combined in two possibilities. Finally, the factor 1/2!
from the Taylor expansion is cancelled by the exchange graph. Thus the symmetry factor is

S =L (4X3>2 1 (4.63)

Next we associate mathematical expressions to the symbols of the graphs in momentum
space: We replace internal propagators by iA(k), external lines by 1 and vertices by —i\.
Imposing four-momentum conservation at the two vertices leaves one free loop momentum,
which we call p. The momentum of the other propagator is then fixed to p — q, where
@ =s5=(pL+p2)?% ¢®=t=(p1 —p3)? and ¢*> = u = (p1 — p4)? for the three graphs shown
in Fig. Thus the Feynman amplitudes in n = 4 are at order O(\?)

1 d4 1 1
iA(2) — 22 p
T / (2m)* [p? —m? +ie] [(p — q)* —m? +ie] (4.64)

The squared cms energy s and the two variables describing the momentum transfer £ and «
are called Mandelstam variables. For 2 — 2 scattering, they are connected by s +¢ + u =
m? +m3 + m3 + m3, see problem 4.7?. According to the value of ¢ one calls the diagrams
the s, t and u channel.

Performing again a simple counting of the powers of loop momenta, we find that the
amplitude is logarithmically divergent,

4
AR o / %f’ o In(A). (4.65)

If we consider the infinite number of one-loop graphs characterised by n = V > 0, then we
see that adding two external lines increases the number of propagators in the loop by one.
As a result, the convergence of the loop integral improves from a quartic divergence (vacuum
energy), over a quadratic divergence (self-energy energy) to a logarithmic divergence for the
vertex correction. Adding two or more external lines to the vertex correction would therefore
produce a finite diagram. At one-loop, the A¢* theory contains thus only three divergent
Feynman graphs.

99



4. Scalar field with A¢* interaction

Calculating the loop integral The path to be followed in the evaluation of simple loop
integrals as (4.64) can be sketched schematically as follows: Regularise the integral (and
add a mass scale if you use DR). Combine then the denominators, and shift the integration
variable to eliminate linear terms in the denominator by completing the square. Performing
the same shift of variables in the numerator, linear terms can be dropped as they vanish after
integration. Finally, Wick rotate the integrand, and reduce the integral to a known one by a
suitable variable substitution. We do the last steps once in the appendix [£.Al where we derive
a list of useful Feynman integrals which we simply look up in the future.
We start by rewriting the integral for d = 4 — 2¢ dimensions as

. 1 _ d% 1
1./4((12) = §A2(p2)4 d/ 2n)i D’ (4.66)

where we introduced also the short-cut D for the denominator in the integrand. Next we use

1 ! dz
ab /0 [az +b(1 — 2)]? (467

to combine the two denominators, setting a = p?> — m? and b = (p — q)? — m?,

D=az+b(1 —2)=p>—m?—2pq(1 —2) +¢*(1 — 2). (4.68)
Then we eliminate the term linear in p substituting p”2 = [p — ¢(1 — 2)]?,
D=p?—m?+¢2(1-2). (4.69)

Since d%p = d%’, we can drop the primes and find

A? = Loy Mg, [ 4P . 4.70
TR A L P e £ (70

Performing a Wick rotation requires that ¢?z(1 — z) < m? for all z € [0 : 1], or ¢> < 4m?.
The integral is of the type I(w,2) calculated in the appendix and equals

1 D2-w) 1
I(w,2) =i : 4.71
D= e TR e - e - AP )
Inserting the result into the Feynman amplitude gives

1 4r2-d/2) [t _
AP = 5%(“2)4 dW /0 dz[m? — ¢?2(1 — 2)]%/?72 (4.72a)

d

z? 2\2—d/2 ! m? — ¢*z(1 — z) i
= re-—dz2) | d . 4.72b
oz U e =) [ e | (1.720)
i

In the last step, we made the function f dimensionless. Now we take the limit e = 2—d/2 — 0,
expanding both the Gamma function, I'(2 — d/2) =T'(¢) = 1/e — v+ O(e), and f~°. From

A e (1 - 0(5)> [1 - 5/01 dzInf+ 0(52)] (4.73)

60



4.3. Loop diagrams

we see that all diagrams give the same divergent part, while we have to replace ¢> by the
value {s,t,u} appropriate for the three diagrams,

A=AD 4 A L AP L AP L 0N (4.74a)
. 3)\2,&28 >‘2H’26
- _>‘:u + 32712¢ - 3272 [37 + F(37 m, M) + F(ta m, :u) + F(Ua m, :u)] ’ (474b)

with
m? — ¢®z(1 — 2)

1
F(¢*,m,p) = / dz In [ (4.75)
0

Note that ¢ and u are in the physical region negative and thus the condition ¢?> < 4m? is
always satisfied for these two diagrams, cf. with problem 4.??. By contrast, for the s channel
diagram the relation ¢> = s > 4m? holds: In this case, we have to continue analytically the
result (£75)) into the physical region. We will postpone this task to chapter [@ and note for the
moment only that thereby the argument of the logarithm in (4.75]) changes sign. Additionally,
an imaginary part of the scattering amplitude is generated.

42

4.3.4. Basic idea of renormalisation

The regularisation of loop integrals has introduced as a new parameter the renormalisation
scale p. As we perform perturbation theory at order A", we have to connect the parameters
{mn, An,pn} of the truncated theory with the physical ones of the full theory. This pro-
cess is called renormalisation and will replace the undetermined parameter p by a physical
momentum scale relevant for the considered process.

Renormalisation of the coupling Let us try to connect the amplitude iA to a physical
measurement. We assume that experimentalists measured ¢¢ — $¢ scattering. It is sufficient
that they provide us with a single value, e.g. with the value of the differential cross section
do/dQ) at zero-momentum transfer close to threshold s = 4m?2. Then the function F(s,m, 1)
is given by

4m?
F(4m?,m,p) = CA%1In [7] + const, (4.76)
while it becomes for s > m?
F(s,m,p) = CX1n [%] + const. (4.77)

Subtracting the infinite parts (and the constant term) from A, we obtain for s,#,u > m?,
A=—X=CN[In(s/p?) + In(t/p?) + In(u/p?)] + ON*) = =X — CN’L(s/p?),  (4.78)

where we introduced also the sloppy notation L for the three log terms in the square bracket.
This expression for A is finite but still arbitrary since it contains pu.
We use now the experimental measurement at the scale s = 4m? to connect via

A=—X—CNL(4m?/u?) (4.79)
the measured value Appy, of the coupling to our calculation,

— Aphys = —A — CXNEL(4m? [/p?) + O(\3). (4.80)
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4. Scalar field with A¢* interaction

Here we indicated also that our perturbative calculation is only valid up to O(\?) terms. Now
we solve for A,

—A = —Aphys + CNL(4m? /1i®) + O(N?) (4.81a)
= —Aphys T C Aoy L(Am> /%) + O (A y,4) - (4.81b)

In the second line, we could replace A\? by )‘ghysv because their difference is of O(A3). Next
2

we insert A back into the matrix element A for general s and replace then again A% by X

phys’
A= -X—CNL(s/u?) + O(\?) (4.82a)
= —Xphys + CXpy s L(4m? [p?) — CX2y 0 (L(s/1?) + O(ADhys) (4.82b)
= —Xphys — OXpy o L(s/4m?) + O(X2, ) . (4.82¢)
Combining the log’s, the scale yu has cancelled and we find
A= —Dphys — Aot [In(s/4m?) + In(t/4m?) + In(u/4m?)] + O(X2,, ) - (4.83)
3272 Py

Thus the amplitude is finite and depends only on the measured value Ay, of the coupling
constant and the kinematical variables s, ¢ and w.

Running coupling We look now from a somewhat different point of view at the problem of
the apparent p dependence of physical observables. Assume again that we have subtracted
the infinite parts (and the constant term) of the amplitude A, obtaining Eq. (£78)). We
now demand that the scattering amplitude A as a physical observable is independent of the
arbitrary scale p, dA/dp = 0. If we did a perturbative calculation up to @(A™), the condition
dA/dp = 0 can hold only up to terms O(A\"*1). The explicit ;1 dependence of the amplitude,
0A/Ou # 0, can be only cancelled by a corresponding change of the parameters m and A
contained in the classical Lagrangian, converting them into “running” parameters m(u) and
A(p). Then the condition] dA/du = 0 becomes

(8 om? 9 ox 0

The only explicit ;1 dependence of A is contained in the F(g?, m, i) functions, giving in the
limit ¢ — 0
DG R 32

o
2 As, t A - 32 ZF = :
8,/4(8’ ym(p), Alp), ) = =3 50— o (g7, m, ) Ton2:

(4.85)

Since the change of m(u) and A(p) is given by loop diagrams, it includes at least an additional
factor A. Therefore the action of the derivatives d,,> and 8y on the 1-loop contribution A
leads to a term of @(A\3) which can be neglected. Thus the only remaining term will be given
by 0, acting on the tree-level term AWM Note that this holds also at higher orders and ensures
that 9,\ at O(A\"™!) is determined by the parameters calculated at O(A\"). Combining the
two contributions we find

oN  3)\?

M@ = W + O()\?’) . (4.86)

3Equations of the type (@34)) that describe the change of observables as function of the scale p are called
renormalisation group equations (RGE).
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4.A. Appendix: Evaluation of Feynman integrals

Thus the scattering amplitude A is independent of the scale u, if we transform the cou-
pling constant A into a scale dependent “running” coupling A(x) whose evolution is given by
Eq. (4380). Since we truncate the perturbation series at a finite order, the cancellation of the
scale dependence is incomplete and a residual dependence of physical quantities on p remains.
Separating variables in Eq. (4.86]), we find

1 —3X/1672 In(/ o)
with A\g = A(po) as initial condition. Thus the running coupling A(u) increases logarithmically

for increasing  in the A¢* theory.
Comparing (4387) to our result for the scattering amplitude (£383]),

Ap) (4.87)

A=-X (1 + 3;% [In(s/4m?) + In(t/4m?) + ln(u/4m2)]> + 0\, (4.88)

we see that we can rewrite the amplitude using a symmetric point ¢> = s = t = u and
2 _ 4 2
pg = 4m” as

A= =0 (1 i) ) = -\e?). (489)

This shows that the ¢ dependence of the amplitude A in the limit ¢ > m? is determined
completely by the scale dependence of the running coupling A(x). Therefore, we should set the
renormalisation scale p in general equal to the physical momentum scale ¢ that characterises
the considered process. We will come back to this topic in chapter [[2] giving a formal
definition of the running coupling.

4.A. Appendix: Evaluation of Feynman integrals
Combination of propagators The standard strategy in the evolution of loop integrals is the com-

bination of the n propagator denominators into a single propagator-like denominator of higher power.
One uses either Schwinger’s proper-time representation

# = /Oo ds eis(pz_m2+i8) (4.90)
p°—m* +1e 0

or the Feynman parameter integral

1 : ! -
s :F(n)/o dal.../o day, 5(1—;%) [a1 21 - 0]

=T(n) /0 daj - -/0%2 da, [a1(1 —21) + az(z1 — 22) - - apzn_1] " . (4.91)

In order to derive this formula for n = 2, consider

1 e _ 1 (1_1>:i (4.92)

b—aaﬁ b—al\a b

for a,b € C. Setting z = az + b(1 — 2) and changing the integration variable, we obtain

1 ! dz
ab /0 [az +b(1 —2)]> (495

63



4. Scalar field with A¢* interaction

The cases n > 2 can be derived by induction, rewriting e.g. 1/(abc) as 1/(aB) with B = be, and using
the result for n — 1. In particular, for n = 3 it follows

L—z/ldx/lm dy (4.94)
abe " J, o [az + by +c(1—z—y)3~ '

Finally, we can generalise these formulae to expressions like 1/(a”b™) by taking derivatives with respect
to a and b.

Evaluation of Feynman integrals We want to calculate integrals of the type

Io(w,a):/ &k ! : (4.95)

(2m)?@ [k2 —m? +ie]@

defined in Minkowski space. Performing a Wick rotation to Euclidean space and introducing spherical
coordinates results in

. o d2wk 1 . (_l)a [ee} k2w71
Iy(w,a) =i(-1) / = e 1(271_)% ng/o dk T+ ma (4.96)

where we denoted the volume vol(S?~1) of a unit sphere in 2w dimensiond] by Q2,. You are asked
in problem 4.?7 to show that Q, = 27%/T'(w) and thus Q4 = 27%. Substituting k¥ = m\/z and using
the integral representation (A28) for Euler’s Beta function allows us to express the k integral as a
product of Gamma functions,

k2w 1 1 5 5 e s} mw—l
- _ w—2x - = 4.
/ dk —v e = 2" /0 dx[l-l-ac]“ (4.97a)
I'w)I'(a—
m2w 20B(w,a —w) = 1m2wf2aM . (4.97Db)

2 2 I(«)

Combining this result with Qs, = 27%/T'(w) we obtain

_ d2wk 1 s (_l)a F(a — LU) 2 _ s w—a
Iy(w,a) = / @m0 2 —m? 13 =i n)  T(a) [m* —ig] . (4.98)

Note that m? can denote any function of the external momenta and masses, since we required only
that it is independent of the loop momentum. We can generate additional formulae by adding first a
dependence on a external momentum p*, shifting then the integration variable k — &k + p,

_ d>k 1 =D Ma—w) oo _ele—a
T, @) = / = BTk —mE T @ L) TP TERTT o (499)

Taking then derivatives with respect to the external momentum p* results in

d*k ky,
= = —p,[ 4.1
I, (w,a) /(27T)2w T T pul(w, a) (4.100)

and

42k Kk,
. — = 4.101
T (w,00) = / (2m)2= k2 + 2pk — m? + ie]® (4.101)

_; (—m)* T(a—w—1) pypp(@ —w —1) — %nw(m2 +p?)
@)=~ T() T i -

(4.102)

*A n—1-dimensional sphere S® ! (R) encloses the n-dimensional volume z?+. . .+z2 < R?, while its own n—1-
dimensional volume is given by z} +...4+z2 = R%. The volume of a unit 1-sphere is a length, vol(S') = 2,
of a unit 2-sphere an area, vol(S?) = 4, and of a unit 3-sphere a volume, vol(S*) = 272, If we say that
the volume of a sphere is 4TR*/3, we mean in fact the volume of the 3-ball B*(R), 2} + #3 + 23 < R?
which is enclosed by the 2-sphere S?(R).
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4.A. Appendix: Evaluation of Feynman integrals

Contracting both sides with k,k, and using n*"n,, = 2w gives

_ d>*k k2 (=Y Tla-—w-1) (a — 2w —1)p* —wm?
fafw, @) = / = IR T ok —mE vile L @n® T i igee o (410

Special cases often needed are

i

I(w,2) = T2 —w)(m?+p* —ie)“ 2, (4.104)
(4m)~
L(w,2) = — (4;)w wl(1 = w) (m? +p* —ie)* (4.105)
and .
1(2,3) = —— ! (4.106)
3202 m2 4 p2 —ie '
Summary

Disconnected n-point Green functions are generated by the functional Z[J], while iW[J] =
In Z[J] generates connected Green functions. The three loop diagrams we calculated in the
A¢* theory were infinite and had to be regularised. Renormalising the three parameters con-
tained in the classical Lagrangian of the A\¢* theory, pg, m?, and A, eliminated the divergences
and converted them into “running” quantities.

Further reading

The derivation of the Feynman rules using the graphical approach is discussed extensively in
[GROS|. [Sre07] treats the A¢> theory which resembles more QED than the A¢?* theory we
discussed.
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5. Global symmetries and Noether’s theorem

Emmy Noether showed 1917 that any global continuous symmetry of a classical system de-
scribed by a Lagrangian leads to a locally conserved current. We can divide such symmetries
into two classes: Symmetries of space-time and internal symmetries of a group of fields. Promi-
nent examples for the latter are the global symmetries that lead to the conservation laws of
electric charge or baryon number, respectively. For a quantum system, we have to study the
impact of symmetries on its generating functional. If this functional remains invariant, the
symmetry holds also at the quantum level. Then conserved charges exists which commute
with the Hamiltonian. Analysing space-time symmetries, we restrict ourselves in this chapter
to the case when we can neglect gravity. Then space-time is the familiar Minkowski space
characterised by the Poincaré symmetry group, i.e. the product of the translation and the
Lorentz group, with its corresponding conservation laws.

5.1. Internal symmetries

We have used up-to now mainly space-time symmetry of Minkowski space, namely the re-
quirement of Lorentz invariance, to deduce possible terms in the action. If we allow for more
than one field, e.g. several scalar fields, the new possibility of internal symmetries arise. For
instance, we can look at a theory of two massive scalar fields with quartic interactions,

1 1 1 1 1 1 1
L = 3 (Ouir)? — Emffﬁf - Z>\1¢L11 + 5(3/@2)2 - §m§¢§ - Z>\2¢% - §>\3¢%¢%- (5.1)

In order to maintain the discrete Zo symmetry ¢; — —¢; of the individual Lagrangians for
the fields ¢; and ¢, we have omitted odd terms like ¢1¢3. Then the theory contains five
arbitrary parameters, two masses m,; and three coupling constants A;. For arbitrary values
of these parameters, no new additional symmetry results. In nature, we find however often
a set of particles with nearly the same mass and (partly) similar couplings. One of the first
examples was suggested by Heisenberg after the discovery of the neutron, which has a mass
very close to the one of the proton, m, ~ m,: With respect to strong interactions, it is useful
to view the proton and neutron as two different “isospin” states of the nucleon, similar as
an electron has two spin states. An example of an exact symmetry are particles and their
antiparticles, as e.g. the charged pions 7% which can be combined into one complex scalar
field.

If we set in our case m; = mo and Ay = Ay, the Lagrangian becomes invariant under the
exchange ¢ <> ¢2. Adding the further condition that A3 = A; = Ay, we arrive at

2 =5 [0 + (Bu2)?] - (B + )~ J6+ B (5.2

DN | =

Now any orthogonal transformation O € O(2) in the two-dimensional field space {¢1, p2}
leads to the same Lagrangian .Z. In particular, the Lagrangian is invariant under a rotation
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5.2. Noether’s theorem

R(a) € SO(2) which mixes {¢1, 2} as

#\ ([ cosa sina b1
(¢é>_(—8ina cosa>(¢2>' (5.3)

The fields transform as a vector ¢ = {¢1, P2}, and a rotation leaves the length of this vector
invariant. Generalising this to n scalar fields, ¢ = {¢1,...,¢dn}, we can write down immedi-
ately a theory that is invariant under transformations ¢, — Rg¢p where R is an element of

0, | | A
Z = 5(3;@)2 - §m2¢2 - Z(¢2)2' (5.4)

Note that the Lagrangian is only invariant under global, i.e. space-time independent rotations,
since the term 0,[R(x)¢] would breaking the invariance for R = R(z).

The free Lagrangian .2y, i.e. the part quadratic in the fields, is diagonal, £y = % (é1)+. . .+
Z(¢pn)- Thus the propagator Dy,(z — z') is diagonal too, Dyy(z — ') o< d4p. An interaction
vertex at x connects four propagators Dgy(z — z;). As a result of the Zy symmetry, an even
number of ¢; and ¢, particles are connected at each vertex which has therefore the form
_i>‘(5ab50d + 5a05bd + 5ad5bc)-

5.2. Noether’s theorem

From our experience in classical and quantum mechanics, we expect that global continuous
symmetries lead also in field theory to conservation laws for the generators of the symmetry.
In order to derive such a conservation law, we consider an infinitesimal change d¢, of the
fields that keeps by assumption .2 (¢, 0,¢,) invariant,

0.7 0.2
0=0L =" 0¢+ 5 0040 - 5.5
Now we exchange 00, = 0,0 in the second term and use then the Lagrange equations,

0L [6¢pa = 0,(6.L/60u¢a), in the first one. Then we can combine the two terms using
the product rule,

0L 0L 0.2
0=0%=0,| =—— ) d¢a + —=—— 0,0 =0 <—6 > 5.6
M <68M¢a> ¢a 68M¢a i ¢a 1 68M¢a ¢a ( )
Hence the invariance of . under the change §¢, implies the existence of a conserved current,
Oug* = 0, with
0.Z

j# = 58#(;5& 5¢a . (57)

If the transformation d¢, leads to change in .# that is a total four-divergence, .2 = 0, K*,
and boundary terms can be dropped, then the equations of motion remain invariant too. The
conserved current j#, also called Noether current, is then changed to
0.Z
U K — K", 5.8
.7 (56,“}5,1 ¢a ( )
In Minkowski space, we can convert this differential form of a conservation law into a global
one using Gauss’ theorem: Recall that this theorem allows us to convert a n dimensional
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5. Global symmetries and Noether’s theorem

volume integral over the divergence of a tensor field into a n — 1 dimensional surface integral
of the tensor field,

/ d'z 9, XM = / ds, xm . (5.9)
Q o0

Applied to the Noether current j#, we obtain assuming |j| — 0 for || — oo

/d4x auj“:/ d3xj0—/ Bz =0. (5.10)
Q V(tg) V(tl)

Thus the volume integral Q) = fV d3z 50 over the charge density j° remains constant. Often
(but not always) this charge has a profound physical meaning. Finally, we note that the
conserved current j# is not unique, since we can add the four-divergence 0, K" = §.Z.

Internal symmetries As an example, we can use the n scalar fields invariant under the
grou SO(n). We need the infinitesimal generators 7; of rotations,

O = Rapdy = (1 + oTi + O()) apbp - (5.11)

SO(n) has an antisymmetric Lie algebra with n(n — 1)/2 generators. Thus a theory invariant
under SO(n) has n(n — 1)/2 conserved currents. The special case n = 2 has as important
application e.g. the charged pions 7. We combine the two real fields ¢; and ¢, into the
complex field ¢ = (¢; + ig2)/+/2, then the Lagrangian becomes

L= 0,470 —m’¢Tp — (g1 )* . (5.12)

Now the Lagrangian . is invariant under the combined phase transformations ¢ — e™?¢
and ¢f — eV¢f: Using complex fields, the SO(2) symmetry has become an U(1) symmetry.
With ¢ = —i¢p, 0" = igt, the conserved current follows as

i =ilgt0mg - (@"9h)] (5.13)

The conserved charge Q = [ d3z 5 can be also negative and thus we cannot interpret 5°
as the probability density to observe a ¢ particle. Instead, we should associate ) with a
conserved additive quantum number as e.g. the electric charge.

Note that Noethers theorem requires only the existence of a global symmetry. In the cases
of the conservation of electric and colour charge, the global symmetry is a consequence of an
underlying local gauge symmetry which we will study later in chapter [[0] in detail. In most
other cases however, as e.g. the conservation of baryon or lepton number, the global symmetry
can not be generalised to a local one, and one speaks therefore of accidental symmetries. Such
symmetries are not protected against quantum corrections and there is no reason to expect
them to hold exactly. We will see later that baryon and lepton number are indeed broken.

! Although the Lagrangian is invariant under the larger group O(n), we consider only the subgroup SO(n)
which is continuously connected to the identity. The additional discrete transformations contained in O(n)
can be used to classify solutions of the Lagrangian, but do not lead to additional conservation laws.
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5.2. Noether’s theorem

Space-time symmetries of Minkowski space The Poincaré group as symmetry group of
Minkowski space has ten generator. If the Lagrangian does not depend explicitly on space-
time coordinates, i.e. .Z = Z(¢q,0,¢,), ten conservation laws for the fields ¢, follow.
We consider first the behaviour of the fields ¢, and the Lagrangian under an infinitesimal
translation z# — z#* + ¢£#. As in the case of internal symmetries, we consider only global
transformations and thus € does not depend on z. From

Ga(r!) = da(z + e€t) = P (z*) + £V 0y da (") (5.14)
we find the change
da(z) = §“8M¢a(x) = au[éﬂ(lsa(x)] .
Since the Lagrange density .Z contains by assumption no explicit space-time dependence, it
will change simply as 2 (z#) — Z(z* + e€*) or
5L (x) = €0, % (z) = Du[¢" 2 ()] . (5.15)
Thus K* = ¢#.%(x) and inserting both in the Noether current gives

j# = % [Syallqsa] - 5“3 =& [ﬂ Oba

0(0uba) 0(0ua) Oz,

where the square bracket defines the (energy-momentum) stress tensor TH” of the fields ¢,.
The corresponding four conserved Noether charges are the components of the four-momentum

- =¢,TH, (5.16)

p’ = /d3x T . (5.17)

The conserved tensor defined by Eq. (5.16)) is called the canonical stress tensor. The definition
(5I6) does not guarantee that TH” is symmetric. A symmetric stress tensor, TH” = T"* | is
however the condition for the conservation of the total angular momentum, as we will show
in the next paragraph. Another reason to require a symmetric stress tensor TH” is that it
serves as source term for the symmetric gravitational field. Since the Lagrange density is only
determined up to a four-divergence, we can symmetrize always T+ adding an appropriate
divergence of an antisymmetric tensor. Thus in general, the canonical stress tensor has to be
symmetrised by hand.

Example 5.1: The general expression (B.I6) for the canonical stress tensor becomes for a free

complex scalar field
T = 2019107 — v L . (5.18)

Thus the canonical stress tensor of a scalar field is already symmetric. Its 00 component,
T = p=st =24 — £ = 9" + |Vo" + m*|of, (5.19)

agrees with twice the result (3.I4) for the energy-density p of a single real scalar field. We consider
now plane-wave solutions to the Klein-Gordon equation, ¢ = N exp(ikz). If we insert 9,,¢ = ik, ¢ into
£, we find £ = 0 and thus

T = 2N?kk°. (5.20)

Changing from the continuum normalisation to a box of size V' = L3 amounts to replace (2m)® by L3.
Thus the normalisation constant N~2 = (27)32w becomes for a finite volume N2 = 2wV. Thence

2If this sound unfamiliar, read first the appendices [B.3] and [B.4] before continuing
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5. Global symmetries and Noether’s theorem

the energy-density 7°° = w/V agrees with the expectation for one particle with energy w per volume
V. The remaining components of T#¥ are fixed by its tensor structure,

k*EY

TW = IN2EPEY = .
wV

(5.21)
Since the stress tensor T#¥ is symmetric, we can find a frame in which 7" is diagonal with T
diag(w, vy ks, vyky, v-k.)/V. The spatial part of the stress tensor agrees with the pressure tensor of an
ideal fluid, cf. problem 5.7?7. Thus a scalar field can be viewed as an ideal fluid with energy density p
and pressure P, or T*" = diag(p, Py, Py, P-).

Angular momentum If the tensor T*" is symmetric, we can construct six more conserved
quantities. If we define
MM = gV TH — 2 TH (5.22)

then M is conserved with respect to the index s,
OuMH = g THY — SATH =T — TV =0, (5.23)
provided that 7%* = T?¥. In this case,

JH — /d3$ MO;U/ — /d3$ [I#TOV—IVTU#] ’ (524)

is a globally conserved tensor. The antisymmetry of J# implies that there exist six conserved
charges. The three charges

JI = /d3x [xiTUj —a:jTOi] (5.25)

correspond to the conservation of total angular momentum, since 7% is the momentum
density. The remaining three charges J% express the fact that the center-of-mass moves with
constant velocity.

While J#* transforms as expected for a tensor under Lorentz transformations, it is not
invariant under translations z# — z# + ¢#. Instead, the angular momentum changes as

JHY s JHV gl gVph (5.26)

Clearly, this is a consequence of the definition of the orbital angular momentum with respect
to the center of rotation. We want therefore to split the total angular momentum J*" into
the orbital angular momentum L*” and an intrinsic part connected to a non-zero spin of the
field. The latter we require to be invariant under translations. We set

1
S, = igawjﬁmé, (5.27)

where u® is the four-velocity of the center-of-mass system (cms). Because of the antisymmetry
in By of £43y5, the change in (B.26) induced by a translation drops out in S,. In the cms,
u® = (1,0,0,0) and thus Sy = 0 and S,u® = 0. The other components are S; = J?3, Sy = .J31,
and Ss = J'2. Thus the vector S, describes as desired the intrinsic angular momentum of a
field. It is called the Pauli-Lubanski spin vector.
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5.3. Quantum symmetries

Remark 5.1: To see that the contraction of a symmetric tensor S, with an antisymmetric tensor
A, gives zero, consider

Sy AW = —G,, AV = —G, A" = —§,, A (5.28)

Here we used first the antisymmetry of A*, then the symmetry of S,,, and finally exchanged the
dummy summation indices. Clearly, this remains true if the tensor expression contains additional
indices. Applied to the Pauli-Lubanski spin vector and recalling p¥ = mu”, its change contains terms
as £q,6&Pu"u’ which are zero.

5.3. Quantum symmetries

Conserved currents We have seen that Noether’s theorem guaranties on the classical level
the conservation of currents generated by global continuous symmetries. In the corresponding
quantum theory, we have to study the impact of this symmetry on the generating functional Z.
Since we used the equations of motion to derive Noether’s theorem, current conservation holds
only for classically allowed paths in field space, or in other words for on-shell fields. Thus the
action evaluated for off-shell fields is not invariant under global symmetry transformations. In
the path integral, the fields are however only integration variables. The generating functional
is therefore invariant, if we can find a field transformation ¢; — éz which eliminates the change
of the action for off-shell fields and keeps the integration measure invariant, D¢; = De;.

Let us assume that our theory has a global symmetry under which the classical solutions
transform as ¢, — ¢, = ¢o + en,. Here, € takes the same value at all space-time points and
ne is a function of the original fields, n, = 74 (¢q(2z)). The classically forbidden solutions will
be transformed into &a # ¢l. We can express &a always as

ba = ba = ba + ()00 » (5.29)

promoting thereby e¢(z) to a space-time dependent function. To be concrete, we consider
again a global U(1) symmetry for a complex scalar field. Since the transformation (5.29) is
local, kinetic terms breaks the symmetry: Direct calculation shows that the Lagrangian (5.12])
changes as

5.8 =i["0"p — 0" §| Oue = j* Dye (5.30)

where j# is the classical Noether current, cf. problem 5.77. The final result 0.2 = j* 0,¢
holds in general.

Next we have to generalise the generating functional for a single, real scalar field given
in Eq. (1)) to a complex scalar field. We treat ¢ and ¢* as the two independent degrees
of freedom, and add therefore also two independent sources J and J*. Coupling them as
X = Jo* + J*¢ to the fields keeps the Lagrangian real. We denote the total Lagrangian as
Losr = L + %, with £y = £ + L as the Lagrangian used to derive to the classical
equation of motions. Thus the generating functional is

Z[J,J*] = / D¢D* expi / d'z (L + Jo* +T%¢) . (5.31)

We want to calculate matrix elements of the operator representing the classical Noether
current (0.8). Using the path integral formalism, we can derive the time-ordered vacuum
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5. Global symmetries and Noether’s theorem

expectation value of a product of fields ¢ and the current operator j* by adding a classical
external source v, coupled to j*,

Z1J, T v, = /D¢D¢* expi/d4:1: (Lo + T+ T b+ vu5”) (5.32)

Then we obtain the vacuum expectation value of the current as

o
(@) = (04 (2)[0) = 2—" W], J*, v . 5.3
G = O 0 = W (533

Inverting this relation we find
SWIT,J* 0] = / e (7 (2))5v,(x) (5.34)

We are interested how W and Z change under a transformation of the external source v,.
To deduce their transformation properties, it is sufficient to consider them for zero external
sources J and J*. Setting Z[0,0,v,] = Z[v,] and choosing év,(z) = —0,e(x), it follows

Wlv,] = Wlv, — 0pe(x)] — Wlv,] = —/d4$ (7" (x))0ue(z) = /d4x Ou(g" (x))e(z). (5.35)

Thus 0Wv,] = 0 guarantees current conservation in the quantum theory, d,(j#) = 0. The
corresponding change of Z[v,] under the same transformation is

Zv, — 0ue(z)] = /D¢D¢* expi/d4x {Z + v, — Oue(x)]g"} . (5.36)

We now assume that the substitution ¢, — &a = ¢o + €(x)n, keeps the integration measure
invariant, D¢pD¢* = DpD¢*. Recalling then that 0.2 = j* J,¢, we find that the generating
functional is invariant,

2, — Oe(x)] = / DIDF" expi / d's (2($.0,8) +v,3") = ZIn,). (5.37)
In the case of the U(1) transformation, the two phases cancel in the integration measure

D¢DG* = [ [ dp(«)dd* (z) = [ [ db(z)dg*(x). (5.38)

As a result, the vacuum expectation value of the electromagnetic current is conserved,
o (3#) = 0.

Anomalies The substitution ¢, — &a = ¢q + (z)n, shifts the center of the integration at
each space-time point by the value e(x)n,. Such a linear shift seems harmless. Therefore
it was taken for granted that the path integral remains invariant under this change and,
consequently, that this approach predicts that all classical global symmetries hold also on
the quantum level. It was only realised by Fujikawa in 1979 that the integration measure in
the path integral may transform non-trivially under a symmetry transformation: Since the
path integral is divergent, we have to regularise it and this procedure may break the classical
symimetry.
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If the classical symmetry is broken, one speaks of an “anomaly”. The three most important
examples are the trace anomaly, the chiral anomaly, and the breaking of conformal invariance
in string theory. We will discuss the first two cases later in some detail. The anomalous term
breaking conformal invariance in string theory vanishes for a definite number of space-time
dimensions, D = 10 or 26, what is the reason for the predictions of extra-dimensions in string
theory.

Summary

Noether’s theorem shows that continuous global symmetries lead classically to conservation
laws. Such symmetries can be divided into space-time and internal symmetries. Minkowski
space-time is invariant under global Poincaré transformations. The corresponding ten Noether
charges are the four-momentum p* and the total angular momentum J*”. Examples for
conserved charges due to internal symmetries are electric and colour charge, as well as baryon
or lepton number. In a quantum theory, the vacuum expectation value of a Noether current
is conserved, if the symmetry transformation keeps the path integral measure invariant.

Further reading
A more complete discussion of Noether’s theorem can be found in [GRO8|] and [Hil51].
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6. Space-time symmetries

In the previous chapter, we discussed the symmetries of Minkowski space. In this case, we
could view the Poincaré group as the group generating global symmetry transformations
on Minkowski space and find the resulting conservation laws. Aim of the present chapter
is to extend this discussion to the case of a Riemannian manifold, i.e. to a curved space
which looks only locally Euclidean. We will show how one can find the symmetries of such
manifolds and how they determine conservation laws. Riemannian manifolds arise naturally
in classical mechanics using generalised coordinates ¢, since the kinetic energy T = a;¢'¢"
defines a quadratic form a;; which we can view as metric tensor on the configuration space
{¢'}. However, the for us more important appearance of a (pseudo-) Riemannian manifold is
in Einstein’s theory of general relativity which replaces Minkowski space by a curved space-
time. Most of the mathematical structures we will introduce have also a close analogue in
gauge theories which we will use later on to describe the electroweak and strong interactions.

Equivalence principle As a start, we motivate why one can replace the gravitational force
by the curvature of space-time discussing the equivalence principle. The idea underlying this
principle emerged in the 16th century, when among others Galileo Galilei found experimen-
tally that the acceleration g of a test mass in a gravitational field is universal. Because of
this universality, the gravitating mass m, and the inertial mass m; are identical in classical
mechanics. While m; = m, can be achieved for one material always by a convenient choice
of units, there should be in general deviations for test bodies with differing compositions.
Current limits for departures from universal gravitational attraction for different materials
are however very tight, |[Ag/g| < 1072

As a result, gravity has compared to the three other known fundamental interactions the
unique property that it can be switched-off locally: Inside a freely falling elevator, one does
not feel any gravitational effects except tidal forces. The latter arise if the gravitational field is
non-uniform and tries to deform the elevator. Inside a sufficiently small freely falling system,
also tidal effects plays no role. Einstein promoted the equivalence of inertial and gravitating
mass to the postulate of the “strong equivalence principle”: In a small enough region around
the center of a freely falling coordinate system all physics is described by the laws of special
relativity.

In general relativity, the gravitational force of Newton’s theory that accelerates particles
in an Euclidean space is replaced by a curved space-time in which particles move force-free
along geodesic lines. In particular, photons move still as in special relativity along curves
satisfying ds? = 0, while all effects of gravity are now encoded in the non-Euclidean geometry
of space-time which is determined by the line-element ds or the metric tensor g,

ds® = g, dztdz” . (6.1)

Switching on a gravitational field, the metric tensor g, can be transformed only locally by a
coordinate change into the form 7, = diag(1, —1,—1,—1). Thus we should develop the tools
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6.1. Manifolds and tensor fields

necessary to do analysis on a curved manifold .# which geometry is described by the metric
tensor g, .

6.1. Manifolds and tensor fields

Manifolds A manifold .# is any set that can be continuously parametrised. The number of
independent parameters needed to specify uniquely any point of .# is its dimension n, the
parameters = {z!,..., 2"} are called coordinates. Locally, a manifold with dimension n
can be approximated by R™. Examples for manifolds are Lie groups, the configuration space
q" or the phase space (¢, p;) of classical mechanics, and space-time in general relativity. We
require the manifold to be smooth: The transitions from one set of coordinates to another
one, z' = f(#%,...,2"), should be C*. In general, it is impossible to cover all .# with one
coordinate system that is well-defined on all .#. An example are spherical coordinate (19, ¢)
on a sphere S?, where ¢ is ill-defined at the poles. Instead one has to cover the manifold with
patches of different coordinates that partially overlap.

Vector fields A vector field V(z%) on (a subset . of) M is a set of vectors associating
to each space-time point z% € . exactly one vector. The paradigm for such a vector field
is the four-velocity w(7) = da/dr which is the tangent vector to the world-line z(7) of a
particle. Since the differential equation dz/do = X (o) has locally always a solution, we can
find for any given X a curve z(o) which has X as tangent vector. Although the definition
u(7) = da/dr coincides with the one familiar from Minkowski space, there an important

difference: In a general manifold, we can not imagine a vector V' as an “arrow” PP’ pointing
from a certain point P to another point P’ of the manifold. Instead, the vectors V generated
by all smooth curves through P span a n-dimensional vector space at the point P called
tangent space Tp. We can visualise the tangent space for the case of a two-dimensional
manifold embedded in R®: At any point P, the tangent vectors lie in a plane R? which we
can associate with Tp. In general, Tp # Tp: and we cannot simply move a vector V' (z*)
to another point ##. This implies in particular that we cannot add the vectors V' (z#) and
V (z"), if the points z# and z# differ. Therefore we cannot differentiate a vector field without
introducing an additional mathematical structure which allows us to transport a vector from
one tangent space to another.

If we want to decompose the vector V(z*) into components V”(z*), we have to introduce
a basis e, in the tangent space. There are two natural choices for such a basis: First, we
could use Cartesian basis vectors as in a Cartesian inertial system in Minkowski space. We
will follow this approach later, when we discuss gravity as a gauge theory in chapter I8 Now,
we will use the more conventional approach and use as basis vectors the tangential vectors
along the coordinate lines z# in .#,

0
e# = ﬁ = (9” . (62)
Here the index p with value ¢ in e, denotes the i.th basis vector e, = (0,...,1,...0), with

an one at the i.th position, not a component. Using this basis, a vector can be decomposed
as

V = Vte, = V", . (6.3)
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A coordinate change
ot = f(&, ..., 8", (6.4)

or more briefly z# = z#(z"), changes the basis vectors as

o 0 0 0

€n = ozl Ozk 0F¥  Oxh

Therefore the vector V' will be invariant under general coordinate transformations,

& . (6.5)

V =VHtd, =Vr), =V, (6.6)
if its components transform opposite to the basis vectors e, = 9,,, or

ozt ~
= 5 VY. (6.7)

If z# and Z# are two inertial frames in Minkowski space, we came back to Lorentz transfor-
mations dz# /97" = A", as a special case of general coordinate transformations.

Ve

Covectors or one-forms In quantum mechanics, we use Dirac’s bracket notation to associate
to each vector |a) a dual vector (a| and to introduce a scalar product (a|b). If the vectors |n)
form a basis, then the dual basis (n| is defined by (n|n’) = d,,. Similarly, we define a basis
et dual to the basis e, in Tp by

e'(e,) =04 (6.8)

This basis can be used to form a new vector space T called the cotangent space which is
dual to Tp. Tts elements w are called covectors or one-forms,
w = wye. (6.9)
Combining a vector and an one-form, we obtain a map into the real numbers,
w(V)=w,V"e"(e)) = w,V". (6.10)

The last equality shows that we can calculate w(V') in component form without reference to
the basis vectors. In order to simplify notation, we will use therefore in the future simply
w,V*#; we also write e”e, instead of e"(e,).

Using a coordinate basis, the duality condition (6.8) is obviously satisfied, if we choose
e’ = dz". Then the one-form becomes

w = wydz” . (6.11)

Thus the familiar “infinitesimals” dz* are actually the finite basis vectors of the cotangent

space Tp. We require again that the transformation of the components w, of a covector
cancels the transformation of the basis vectors,

_01”

Yi T G

This condition guarantees that the covector itself is an invariant object, since

oz . oxt

=5, Wwa=—~

oxt " 0%°

W, . (6.12)
w = w,dz

di” = @,dit = @ . (6.13)
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6.1. Manifolds and tensor fields

Covariant and contravariant tensors Next we generalise the concept of vectors and covec-
tors. We call a vector X also a contravariant tensor of rank one, while we call a covector
also a covariant vector or covariant tensor of rank one. A general tensor of rank (n,m) is a
multilinear map

T=T)"70,®..00, d*®...0d" (6.14)

~
n m

which components transforms as

~ oT# or” o0x7 9z
LhyeensV [ ~N DyernsT
Ta,...,,B (%) _\8:139 907 D (%BJ T%___’é (x) (6.15)

n m

under a coordinate change.

Metric tensor A (pseudo-) Riemannian manifold is a differentiable manifold containing as
additional structure a symmetric tensor field g,, which allows us to measure distances and
angles. We define the scalar product of two vectors a(z) and b(z) which have the coordinates
a’ and b* in a certain basis e, as

a-b= (a“eu) - (byey) = (eM . ey)al‘bl’ — guua#by . (616)

Thus we can evaluate the scalar product between any two vectors, if we know the symmetric
matrix g,,, composed out of the N 2 products of the basis vectors,

g (z) = eu(z) - ey (), (6.17)

at any point z of the manifold. This symmetric matrix g,, is called metric tensor. The
manifold is called Riemannian, if all eigenvalues of g,, are positive, and thus the scalar
product defined by g, is positive-definite. If the scalar product is indefinite, as in the case
of general relativity, one calls the manifold pseudo-Riemannian.

In the same way, we define for the dual basis e” the metric g"¥ via

g =et-e”. (6.18)

A comparison with Eq. (6I0) shows that the metric g"” maps covariant vectors X,, into
contravariant vectors X*, while g,,, provides a map into the opposite direction. Similarly, we
can use the metric tensor to raise and lower indices of any tensor.
Next we want to determine the relation of g with g,,. We multiply e” with e, = g,,,€",
obtaining
on=e’-e,=e’ ge" =g"gu (6.19)
or

oy = guwg"”’ . (6.20)

Thus the components of the covariant and the contravariant metric tensors, g, and g"”, are
inverse matrices of each other. Moreover, the mixed metric tensor of rank (1,1) is given by
the Kronecker delta, g;, = d,;. Note that the trace of the metric tensor is therefore not —2,
but

t?“(g#,,) = glmguu = 55 =4, (6.21)

because we have to contract an upper and a lower index.
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6. Space-time symmetries

6.2. Covariant derivative and the geodesic equation

Covariant derivative In an inertial system in Minkowski space, taking the partial derivative
0, maps a tensor of rank (n,m) into a tensor of rank (n+1,m). Additionally, this map obeys
linearity and the Leibniz product rule. We will see that in general the partial derivative in
a curved space does not satisfy these rules. We therefore introduce a new derivative called
covariant derivative modified such that it fulfils these rules.

We start by considering the gradient J,¢ of a scalar ¢. By definition, a scalar quantity
does not depend on the coordinate system, ¢(z) = ¢(). Therefore its gradient transforms as

14
06— Du = 90 00 (6.22)

Thus the gradient is a covariant vector. Similarly, the derivative of a vector V' transforms as
a tensor,
ox”
Ok
because V is an invariant quantity. If we consider however its components V# = e -V, then
the moving coordinate basis in curved space-time, J,e” # 0, leads to an additional term in
the derivative,

OV =9,V =-0,V, (6.23)

0.V =€ (9,V)+V - (9.e"). (6.24)

The term e” - (0, V') transforms as a tensor, since both e” and 9,V are tensors. This implies
that the combination of the two remaining terms has to transform as tensor too, which we
define as covariant derivative

V.V =€ (0,V) =0,V -V - (0,€"). (6.25)

The first equality tells us that we can view the covariant derivative V,V" as the projection
of 9,V onto the direction e”.
We expand now the partial derivatives of the basis vectors as a linear combination of the
basis vectors,
opel' = —T"  e”. (6.26)
The n® numbers I'* ), are called (affine) connection coefficients or symbols, in order to stress
that they are not the components of a tensor. You are asked to derive their transformation

properties in problem 6.?7?. Introducing this expansion into (6.25]) we can rewrite the covariant
derivative of a vector field as

v,V =0,V" +T", V7. (6.27)
Using V¢ = 0,¢ and requiring that the usual Leibniz rule is valid for ¢ = X, X* leads to
VoXy=0,X, —T7,, X, (6.28)
and to
pe, =T17,,e;. (6.29)
For a general tensor, the covariant derivative is defined by the same reasoning as
Vol =0T +TH T+ ... =T, Th — ... (6.30)

Note that it is the last index of the connection coefficients that is the same as the index of
the covariant derivative. The plus sign goes together with upper (superscripts), the minus
with lower indices.
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6.2. Covariant derivative and the geodesic equation

Parallel transport We say a tensor T is parallel transported along the curve z(o), if its
components T} stay constant. In flat space, this means simply

d dz®

—Th = —0,TF =0. 6.31

do_ V... do_ atypy... ( )
In curved space, we have to replace the normal derivative by a covariant one. We define the

directional covariant derivative along z(o) as

D dz®

Then a tensor is parallel transported along the curve z (o), if

D dz®
e — 7 aTu... -0. ]
g = ST = 0 (633)

Metric compatibility Relations like ds? = g, dz*dz” or g,,p"p” = m? become invariant
under parallel transport only, if the metric tensor is covariantly constant,

Veguw = V9" =0. (6.34)

A connection satisfying Eq. (6.34) is called metric compatible and leaves lengths and angles
invariant under parallel transport. This requirement guarantees that we can introduce lo-
cally in the whole space-time Cartesian inertial coordinate systems where the laws of special
relativity are valid. Moreover, these local inertial systems can be consistently connected by
parallel transport using an affine connection satisfying the constraint (6:34]).

Note that we have already built in this constraint into our definition of the covariant
derivative: If the length of a vector would not be conserved under parallel transport, then we
should differentiate in (6.24]) also the scalar product in V# = e - V', leading to an additional

term in Eq. (6.25]).

Geodesic equation The requirement that the affine connection is metric compatible fixes
the connection not uniquely, and thus the question arises which connection describes physics
on a general space-time? Ultimately, the combined action for gravity and matter should select
the correct connection—an approach we resume in Chapter [[8 For the moment, we use a
simple workaround which does not require the knowledge of the action of gravity: In flat
space, we know that the solution to the equation of motions of a free particle is a straight
line. Such a path is characterised by two properties: It is the shortest curve between the
considered initial and final point, and it is the curve whose tangent vectors remains constant
if they are parallel transported along it. Both conditions can be generalised to curved space
and the curves satisfying either one of them are called geodesics. Using the definition of a
geodesics as the “straightest” line on a manifold requires as mathematical structure only the
possibility to parallel transport a tensor and thus the existence of an affine connection. In
contrast, the concept of an “extremal” (shortest or longest) line between two points on a
manifold relies on the existence of a metric. Requiring that these two definitions agree fixes
uniquely the connection to be used in the covariant derivative.

We start by defining geodesics as the “straightest” line or an autoparallel curve on a
manifold—the case which is almost trivial: The tangent vector along the path z(7) is
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6. Space-time symmetries

u# = dz#/dr. Then the requirement ([6.33]) of parallel transport for u* becomes

D dzt* d2zH p  da? dz?

=z _ == - =0. 6.35
dr dr dr? T 0 dr dr ( )

Introducing #* = dz*/dr, we obtain the geodesic equation in its standard form,
it + T 2Pz7 = 0. (6.36)

Note that a possible antisymmetric part of the connection T'*,, drops out of the geodesic
equation, because £z is symmetric.

Next we derive the defining equation for a geodesics as the extremal curve between two
points on a manifold. The Lagrangian of a free particle in Minkowski space, Eq. (L53)), is
generalised to a curved space-time manifold with the metric tensor g,, by replacing 7, with
guv (we set also m = —1),

L =guiti”. (6.37)

The Lagrange equations are
d oL OL

Only the metric tensor g, depends on z* and thus 0L/ ozt = g 2*z”. Here we introduced
also the short-hand notation gy, » = dxg, for partial derivatives. Now we use 93/ /i = 6},
and apply the chain rule for g, (z(c)), obtaining first

gm,,,\:'v“:i:” =2 P (gw\j:“) = 2(gu>\,,,:i:“:1':" + gu)\ff#) (6.39)
and then .
gu,\i“ + 5(2gu,\,y — gMV’A)j:#I‘V =0. (640)
Next we rewrite the second term as
29/\%,,I'”I'V = (g,\ﬂ,,, + g)\,,,ﬂ)a'c“i:”, (6.41)

multiply everything by ¢"# and arrive at our desired result,

B+ 20" (G + Gurw — Gup) B3 = i+ {f, }ala" = 0. (6.42)

Here we defined in the last step the Christoffel symbols

1
I,j)\} = §glm(allgn/\ + O\Guk — 3ngux) . (6.43)

They are also called Levi-Civita or Riemannian connection. A comparison with Eq. (6.36])
shows that our two geodesic equations agree, if we choose as connection the Christoffel sym-
bols. Moreover, the Christoffel symbols are symmetric in their two lower indices and, as we
will show next, compatible to the metric tensor. Following standard practise, we will denote
them also with I‘AW. In the remainder of this section, we will use always as affine connection
the Christoffel symbols.
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6.2. Covariant derivative and the geodesic equation

We defind]

Cuox = 9ucl™ (6.44)
Thus I, is symmetric in the last two indices. Then it follows
1
Fuu)\ = 5(8119#)\ + 8/\91/“ - 8ugu)\) . (6'45)

Adding 2I',,\ and 2T, gives

2(Fullz\ + Fuuz\) = 8bgu)\ + a)\guu - 8ugu)\

(6.46)
+ 8ugu)\ + a)\g;w - augu/\ = 28/\9;w
or
G = Lpr +Topn - (6.47)
Applying the general rule for covariant derivatives, Eq. (6.30), to the metric,
V/\g;w = 8/\g;w - Fnucgmx - FHV)\QILH = 8/\g;w - Fu)\u - Fu)\ua (6-48)
and inserting Eq. (6.47) shows that
Vagu = Vg’ =0. (6.49)
Hence V) commutes with contracting indices,
VAXHXy) = Valgu XHXY) = g VA(XHXY) (6.50)

and conserves the norm of vectors as announced. Thus the Christoffel symbols are symmetric
and compatible with the metric. These two properties specify uniquely the connection.

Example 6.1: Calculate the Christoffel symbols of the two-dimensional unit sphere S2.

The line-element of the two-dimensional unit sphere S? is given by ds? = d9? + sin” 9d¢?. A faster
alternative to the definition (6.43) of the Christoffel coefficients is the use of the geodesic equation:
From the Lagrange function L = gqp@%? = 92 + sin? 94> we find

oL d oL d

gr _ €4 _ D200y o a2 0 F .o
59 0, m 6¢'> dt(2 sin” ¥¢) = 2sin” ¥¢ + 4 cos ¥ sin 9¢
oL i doL d . .
%—QCOSﬁsmi%) , T a0 dt(219)—219

and thus the Lagrange equations are

<5+2c0t1919¢'5=0 and ﬁ—cosﬂsinﬁquo.

Comparing with the geodesic equation " +I'" ,,##&" = 0, we can read off the non-vanishing Christoffel
symbols as F¢ﬂ¢ = F¢¢ﬁ = cot ¥ and Fﬁaﬁaﬁ = —cos¥dsind. (Note that 2cotd = F¢ﬂ¢ + F‘pw.)

We can use also the Hamiltonian formulation for a relativistic particle. From the Lagrangian
L= %guyd:“jc” we determine first the conjugated momenta p, = 0L/0i* = &, and perform
then a Legendre transformation,

1
H(fﬂ,pu,T) :puj;# - L(l’#,x.ﬂ,T) = §gwjpup1/' (651)

!We showed that the metric tensor can be used to raise or to lower tensor indices, but the connection T is
not a tensor.
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6. Space-time symmetries

Since the Lagrangian of a free particle does not depend explicitly on the evolution parameter
o, there exists at least one conserved quantity. This conservation law, H = 1/2, expresses
the fact that the tangent vector £* has a constant norm. Hamilton equations give then

) O0H
1
and 5
) O0H 1 0g®
Pu= "G = 3 g PaPs- (6.53)

This is a useful alternative to the standard geodesic equation: First, it makes clear that the
momentum component p, is conserved, if the metric tensor is independent of the coordi-
nate z#. Second, we can calculate p, directly from the metric tensor, without knowing the

Christoffel symbols. Combining the Eqgs. (6.52) and (653) one can re-derive the standard
form of the geodesic equation, cf. problem 6.77.

6.3. Integration and Gauss’ theorem

Having defined the covariant derivative of an arbitrary tensor field, it is natural to ask how
the inverse, the integral over a tensor field, can be defined. The short answer is that this is
in general impossible: Integrating a tensor field requires to sum tensors at different points
in an invariant way, which is only possible for scalars. Restricting ourselves to scalar fields,
we should generalise an integral like I = [ d*z ¢(z) valid in an Cartesian inertial frame z#
in Minkowski space to a general space-time with coordinates Z. For a general coordinate
transformation z# — Z#, we have to take into account that the Jacobi determinant J =
det(0z#/0zP) of the transformation can deviate from one. We can express this Jacobian by
the determinant g = det(g,,) of the metric tensor as follows: Applying the transformation

law of the metric tensor,
_03* 01"

g (T) = — P 6.54

(@) = oo () (6:54)
to the case where the z* are inertial coordinates, we obtain with g = det(n,,) = —1 that

det(§) = J? det(g) = —J? (6.55)

or J = /|g]. Thus I = [d'z\/|g| ¢ is an invariant definition of an integral over a scalar
field which agrees for inertial coordinates with the one known from special relativity. Now we
choose as scalar ¢ the divergence of a vector field, ¢ = V,X#, or

I= /d% lg| V, XH = /d% lg] (auXMrF“MXA) : (6.56)

Our aim is to generalise Gauss’ theorem (5.9). The only way how this theorem may be recon-
ciled with (G586) is to hope that we can express the covariant divergence as 1/1/]g[0,(1/]g] X*).
In order to check this possibility, we determine first the partial derivative of the metric de-
terminant g. As preparation, we consider the variation of a general matrix M with elements
m;;(z) under an infinitesimal change of the coordinates, dz* = ez#. It is convenient to look
at the change of Indet M,

SIndet M = Indet(M + M) — Indet(M) (6.57a)
= Indet[M (M + 6M)] = Indet[l + M L6M] = (6.57b)
= In[1 + tr(M~'6M)] + O(e?) = tr(M~'6M) + O(<?). (6.57c)
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6.4. Symmetries of a general space-time

In the last step, we used In(1 4 ¢) = € + O(e?). Expressing now both the LHS and the RHS
as OM = 0, Mdz" and comparing then the coefficients of dz* gives

Oy Indet M = tr(M '9,M). (6.58)

Applied to derivatives of 1/|g|, we obtain
L Ong = Sn1 NN (6.59)
59 AGuvy = 50\ 1INg = ——=0) . .
A T

This expression coincides with contracted Christoffel symbols,

1 1 1 1
FMMU = igl“i(augm/ + al/g;m - ang;w) = —g’m&/g;m = 581/ Ing=—=0,(\/]9]) - (6.60)

2 Vldl

Now we can express the divergence of a vector field as

1 1
VXM =9, X0+ T X = 0, X" + ——(0,V/]g) X* = —=0u(\/]gI X").  (6.61)

Vlal Vlal

Gauss’ theorem for the divergence of a vector field follows directly,

/ d'a/lg] VX" = / d'z 9,(v/]glx*) = / dS,/lgl X" (6.62)
Q Q o0

This implies in particular that we can drop terms like V,X* in the action, if the vector
field X*# vanishes on the boundary. Similarly, Gauss’ theorem allows us to derive global
conservation laws from V,X*# = 0 in the same way as in Minkowski space.

Next we consider the divergence of an antisymmetric tensor of rank 2,

1
VAR = 9, AW I‘“)\ﬂAA” +TY,, A = ——0,(V/]g]AM) . (6.63)

Vgl

Because of the antisymmetry of A#* the term I'” A\ [LAMA vanishes, and we can combine the first
two terms as in the vector case. This generalises to completely antisymmetric tensors of all
orders. In contrast, we find for a symmetric tensor of rank 2,

L
Vgl

Hence the divergence of a symmetric tensor of rank two contains an additional term
(0,9,)S* which prohibits the use of Gauss’ theorem.

V8" = 9,8" + I‘"AMSA” +T,,5" = Iu(\/1glS") +T7,,5". (6.64)

6.4. Symmetries of a general space-time

In the case of a Riemannian space-time manifold (.#,g), we say the space-time possess a
symmetry if it looks the same as one moves from a point P along a vector field &* to a
different point P. More precisely, we mean with “looking the same” that the metric tensor
transported along ¢* remains the same.

Such symmetries may be obvious, if one uses coordinates adapted to these symmetries: For
instance, the metric may be independent from one or several coordinates. Let us assume that
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6. Space-time symmetries

the metric is e.g. independent from the time coordinate z°. Then z° is a cyclic coordinate,

OL/0z° = 0, of the Lagrangian L = dr/do of a free test particle moving in .#. With
L = d7/do, the resulting conserved quantity dL/0i° = const. can be written as

B B
%=905%=905%=£-u (6.65)
with € = ep and wu as the four-velocity. Hence the quantity &€ - u = p’/m is conserved along
the solutions z%*(o) of the Lagrange equation of a free particle on .Z, i.e. along geodesics: In
other words, the motion of all test particles in the corresponding space-time conserve energy.
The vector field £ that points in the direction in which the metric does not change is called
Killing vector field.

Since we allow arbitrary coordinate systems, space-time symmetries are however in general
not evident by a simple inspection of the metric tensor. We say the metric is invariant
moving along the Killing vector field £#, when the resulting change dg"” of the metric is zero.
In order to use this condition, we have to be able to calculate how the tensor g"” changes
as we transport it along a vector field £#. Clearly, it is sufficient to consider an infinitesimal
distance. Then we can work in the approximation

P =k et (z”) + 0%,  ex1, (6.66)

and neglect all terms quadratic in €.
We recall first the transformation law for a rank two tensor as the metric under an arbitrary

coordinate transformation,
oz* oY
i (%) = ————= g™ (). 6.67
§() = oo g (@) (6.67)

Applied to the transport along & defined in (6.66]), we obtain

oz* 0z¥
§"(8) = 555 97 () = (0% + £€%) (8 + 2€5)9" () (6.682)
= g"(2) + (" + ) + O(). (6.68D)

In order to be able to compare the new ¢*”(z) with ¢"”(z), we have to express '’ (Z) as
function of z. A Taylor expansion gives

g (E) = g ( + £€) = g (x) + e€*0ag" (x) + O(<?). (6.69)
Setting equal Eqgs. (6.68D) and (6.69), we obtain
g () + e(" + &) = g (x) + e§"0ug" (z). (6.70)
Thus the metric is kept invariant, g"(xz) = g*¥(z), if the condition
EY 4 €01 — £POpgh" =0 (6.71)

or
g 0,E" + g"P 0, — €P0pg" =0 (6.72)
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6.4. Symmetries of a general space-time

is satisfied. Expressing partial derivatives as covariant onesg, the terms containing connection
coefficients cancel and we obtain the Killing equation

V#f,, + vusu =0. (6.73)

Its solutions & are the Killing vectors of the metric.
We now check that Eq. (6.73]) leads indeed to a conservation law, as required by our initial
definition of a Killing vector field. We multiply the equation for geodesic motion,

Du*
dr

=0, (6.74)

by the Killing vector &, and use Leibniz’s product rule together with the definition of the
absolute derivative (6.32]),

Du* d y
S”d— = E(SMUﬂ) -V, éutu” =0. (6.75)

T

The second term vanishes for a Killing vector field £, because the Killing equation implies
the antisymmetry of V,§,. Hence the quantity §,u" is indeed conserved along any geodesics.

Example 6.2: Find all ten Killing vector fields of Minkowski space and specify the corresponding
symmetries and conserved quantities.
The Killing equation V,§, + V, &, = 0 simplifies in Minkowski space to

& + 0,6, =0. (6.76)
Taking one more derivative and using the symmetry of partial derivatives, we arrive at
0,0u&0 + 0,0,€, = 20,0,6, =0. (6.77)
Integrating this equation twice, we find
& =w " +a*. (6.78)

The matrix w*” has to be antisymmetric in order to satisfy Eq. (G.76). Thus the Killing vector fields
are determined by ten integration constants. They agree with the infinitesimal generators of Lorentz
transformations, cf. appendix [B.3l

The four parameters a* generate translations, z# — z# + a*, described by four Killing vector fields
which can be chosen as the Cartesian basis vectors of Minkowski space,

T():ata Tl :az, T2:6y7 T3:az-

For a particle with momentum p* = mu* moving along z*()), the existence of a Killing vector T*
implies
d d
—(T" -u) = —(T* -p) =0
T w = SR T =0,

i.e. the conservation of the four-momentum component p,,.
Consider next the ij (=spatial) components of the Killing equation. Three additional Killing vectors
are

Ji =y0, — 20y, and cyclic permutations. (6.79)

2Since Eq. ([6.73) is tensor equation, the previous Eq. (B.72) is also invariant under arbitrary coordinate
transformations, although it contains only partial derivatives. This suggests that one can introduce the
derivative of an arbitrary tensor along a vector field, called Lie derivative, without the need for a connection.
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6. Space-time symmetries

The existence of Killing vectors J; implies that J; - p is conserved along a geodesics of particle. But
Jip=yp. —z2py, = J,

and thus the angular momentum around the origin of the coordinate system is conserved.

The other three components satisfy the 0o component of the Killing equations (w” = w,'),

K, =10, + 20, and cyclic permutations. (6.80)

The conserved quantity tp, — zE = const. now depends on time and is therefore not as popular as
the previous ones. Its conservation implies that the center of mass of a system of particles moves with
constant velocity v, = po/E.

Global conservation laws An immediate consequence of Eq. (6.61]) is a covariant form of
Gauss’ theorem for vector fields. In particular, we can conclude from local current conser-
vation, V,j# = 0, the existence of a globally conserved charge. If the conserved current j#
vanishes at infinity, then we obtain also in a general space-time

/d4:1: lg] v#j“:/d‘lxa#( |g|j“):/ dS,/lg| j* =0. (6.81)
Q Q o0

Thus the conservation of Noether charges of internal symmetries as the electric charge, baryon
number, etc., continues to hold in a curved space-time.

Next we consider the energy-momentum stress tensor as an example for a locally conserved
symmetric tensors of rank two. Now, the second term in Eq. (6.64) prevents us to convert
the local conservation law into a global one. If the space-time admits however a Killing field
&, then we can form the vector field P* = TH¢, with

V,P' =V, (T"E,) = &V, T" + TH'V 46, = 0. (6.82)

Here, the first term vanishes since T*" is conserved and the second because TH" is symmet-
ric, while V¢, is antisymmetric. Therefore the vector field P#* = T#"¢, is also conserved,
V,P* =0, and we obtain thus the conservation of the component of the energy-momentum
vector in direction &.

Global energy conservation requires thus the existence of a time-like Killing vector field. If
the metric is time-dependent, as e.g. in the case of the expanding Universe, a time-like Killing
vector field does not exist and the energy contained in a “comoving” volume changes with
time.

Summary

In a curved space-time M we require a connection to compare vectors at different points.
The unique connection which is symmetric and compatible with the metric are the Christoffel
symbols. The symmetries of a space-time M are determined by its Killing vector fields &#.
The momentum component parallel to £ of test particles moving in M is conserved. Locally
conserved currents lead in general only for vector currents to globally conserved charges. In the
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6.4. Symmetries of a general space-time

case of locally conserved tensors (as V, T*” = 0), the global conservation of the corresponding
charges requires the existence of Killing vector fields.

Further reading

[LL80] introduces classical field theory including general relativity. [Car03] presents a clear
introduction to differential geometry on a level accessible for physicists.
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7. Spin-1 and spin-2 fields

We introduced fields transforming as tensors under coordinate general transformations. Such
fields have integer spin and obey Bose-Einstein statistics. Therefore they can exist as macro-
scopic fields and are thus candidates to describe the electric and the gravitational force. Since
both the electric and the gravitational potential V(r) follow a 1/r law, we expect from our
discussion of the Yukawa potential that the two forces are mediated by massless particles.
We will find later that no interacting theory of massless particles with spin s > 2 exists.
Therefore it is sufficient to consider the two cases s =1 and s = 2.

7.1. Tensor fields
The momentum modes x e *% of massive fields can be boosted to their rest-frame, where
k* = (m,0). In this frame, the total angular momentum reduces to spin, and nonrelativistic
quantum mechanics is valid. Thus a field with spin s has 2s + 1 spin or polarisation states.
On the other hand, we can determine the spirﬁj s of a field calculating the angle sa it is
turned by a rotation R;j(c). If we consider the transformation law of a tensor field of rank
n, THU Hn — APt o AP, TV Ve for the special case of rotations, we see that the n factors
A(a) rotate some components of 71" by the angle na. Therefore a tensor field of rank n
has spin s = n. This implies that fields with spin s > 1 contain unphysical degrees of freedom:
For instance, a massive spin-1 field has three and a massive spin-2 field has five polarisation
states. On the other hand, a vector field A* has four components, and a symmetric tensor
field A*¥ of rank two has ten components in d = 4 space-time dimensions. The purpose of a
relativistic wave equation is thus to impose the correct relativistic dispersion relation and to
select the correct physical polarisation states in the chosen frame.

The first requirement is fulfilled if each component of a free field ¢, satisfies the Klein-
Gordon equation. Additionally, we have to impose constraints f; which eliminate the redun-
dant components,

(O+m?) dale) =0,  and fi(¢a(z)) =0. (7.1)

The reason for this mismatch in the number of degrees of freedom is that in general a tensor
of rank n is reducible, i.e. it contains components of rank < n. For instance, the trace hf, of a
second rank tensor transforms clearly as a scalar. Therefore we should choose the constraints
for massive fields with spin s such that all components with spin < s are eliminated.

Example 7.1: An object which contains invariant subgroups with respect to a symmetry operation
is called reducible. As example, consider the reducible subgroups of a symmetric tensor h*¥ of rank
two with respect to spatial rotations. Since one can boost a massive particle into its rest frame, this
the relevant decomposition to find its spin states. We split h*" into a scalar h°, a vector h” and a

reducible tensor A%/,
. hOO hOi
A = < BiO  pid > :

'See the appendices B3l and [B4l for a brief discussion.
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7.2. Vector fields

Then we decompose h*/ again into its trace h* and its traceless part h% — hd%/(d —1). The latter has
6 — 1 = 5 degrees of freedom in d = 4, as required for a massive spin-2 field.

This problem is more severe for massless fields: We know from classical electrodynamics
that the photon has only two polarisation states, and in appendix [B.4] it is shown that this
holds for massless fields with any spin s > 0. The redundant degrees of freedom of massless
fields can be consistently eliminated only, if some redundancy of the field variables exists which
in turn leads to a local symmetry of the field. In this chapter, we discuss the consequences of
this redundancy called gauge symmetry on the level of the wave equations and their solutions
for the photon and the graviton.

Tensor structure of the propagator We can gain some insight into the general tensor struc-
ture of the Feynman propagator for fields with spin s > 0 using the definition of the 2-point
Green function as the time-ordered vacuum expectation values of fields. In general, we can
express an arbitrary solutions of a free spin s = 0,1 and 2 field by its Fourier components as

x) =/\/%2wk [a(k)e*i(“’kt*"m) —i—h.c.} , (7.2)

Z / \/m [ k)ek (k)™ (Wrt=ke) +h.c.] : (7.3)

W (2 Z / \/W [ (k)eh (k)e~i(wrt—ke) +h.c.] : (7.4)
)3 2wy,

where the momentum is on-shell, k* = (wg, k) and r labels the spin or polarisation states.
The constraints f; = 0 are now conditions on the polarisation vector and tensor, respectively,
which depend on k. Proceeding as in the scalar case, we expect that e.g. the propagator for
a vector field is given by

DI (2) = (O[T{ A" (z) A (0)}|0) = (7.5)
3 . .
- | G [ ) () + b e (o=t (76)

~ / d'h P (k) e~k
) @2t E2 —m? i’

(7.7)

The expression (7.6)) is in line with the interpretation of the propagator as the probability
for the creation of a particle at £ with any momentum k and polarisation r, its propagation
to z’ followed by its annihilation. In the last step, we introduced the tensor P*”(k) which
corresponds to the sum over the polarisation states e/ (k)e*(k). We will show that the
polarisation tensors are polynomials in the momentum £k, and thus Eq. (6] shows that
PH” (k) is even in the momentum. As a result, our discussion of causality in the scalar
case applies for all tensor field, implying that these fields seen as quantum fields commute.

Therefore the particles described by these fields satisfy Bose-Einstein statistics.

7.2. Vector fields
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Proca and Maxwell equations A massive vector field A# has four components in d = 4
space-time dimensions, while it has only 2s + 1 = 3 independent spin components. Corre-
spondingly, a four-vector A* transforms under a rotation as (A°, A), i.e. it contains a scalar
and a three-vector. Therefore we have to add to the four Klein-Gordon equations for A* one
constraint which eliminates A%: The only linear, Lorentz invariant possibility is

(O+m?) A*(z) =0  and 9,4* =0. (7.8)

In momentum space, this translates into (k> — m?)A#(k) = 0 and k,A*(k) = 0. In the
rest frame of the particle, k* = (m,0), and the constraint becomes A° = 0. Hence a field
satisfying (7.8]) has only three space-like components as required for a massive s = 1 field.
We can choose the three polarisation vectors which label the three degrees of freedom in the
rest frame e.g. as the Cartesian unit vectors, €; o e;.

The two equations can be combined into one equation called Proca equation,

(n*'0 — ") A, + m?AF = 0. (7.9)
To show the equivalence of this equation with (Z8]), we act with 9, on it,
(V0 —00") A, + m?9, A" = m?9, A" = 0. (7.10)

Hence, a solution of the Proca equation fulfils automatically the constraint 0,A4* = 0 for
m?2 > 0. On the other hand, we can neglect the second term in (7.9) for 9, A” = 0 and obtain
the Klein-Gordon equation.

We now go over to the case of a massless spin-1 field which is described by the Maxwell
equations. In classical electrodynamics, the field-strength tensor F),, is an observable quantity,
while the potential A, is merely a convenient auxiliary quantity. From the definition

Fu. =0,A, — 0,A, (7.11)
it is clear that F),, is invariant under the transformations
Ay(x) = Al (x) = Ay(z) — O, (z). (7.12)

Thus A}, (z) is for any A(x) physically equivalent to A,(z), leading to the same field-strength
tensor and thus e.g. to the same Lorentz force on a particle. The transformations (Z.12]) are
called gauge transformations. Note that the mass term m2A* in the Proca equation breaks
gauge invariance.

If we insert into the Maxwell equation the definition of the potential,

OuFH = 9,(0" A — 9" AM) = DAY - §,0" A" = j (7.13)

we see that this expression equals the m = 0 limit of the Proca equation. Gauge invariance
allows us to choose a potential A* such that 9, A" = 0. Such a choice is called fixing the
gauge, and the particular case 9,A" = 0 is denoted as Lorenz gauge. In the Lorenz gauge,

the wave equation simplifies to
OA* = g+, (7.14)

Additionally, we can add to the potential A* any function 9"y satisfying Oy = 0. We can
use this freedom to set A® = 0. Inserting then a plane-wave A" o e”el** into the free wave
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equation, JA” = 0, we find that £ is a null-vector and that ek, = —e -k = 0. Thus the
photon propagates with the speed of light, is transversely polarised and has two polarisation
states as expected for a massless particle.

Closely connected to the gauge invariance of electrodynamics is the fact that its source, the
electromagnetic current, is conserved. The antisymmetry of F*¥, which is the basis for the
symmetry (ZI2), leads also to 0,0, F* = 0. Thus the Maxwell equation 9, F* = j¥ implies
the conservation of the electromagnetic current j#,

0,0,F" = 9,5" =0. (7.15)

Propagator for massive spin-1 fields The propagator D, for a massive spin-1 field is
determined by
[ (0 +m?) — 8"0"] Dya(z) = 64 d(x). (7.16)

Inserting the Fourier transformation of the propagator and of the delta function gives
[(=k% +m?) " + kFEY] Dy (k) = o5 . (7.17)

We will apply the tensor method to solve this equation: In this approach, we use first all
tensors available in the problem to construct the required tensor of rank 2. In the case at
hand, we have at our disposal only the momentum £, of the particle—which we can combine
to k,k,—and the metric tensor 7,,. Thus the tensor structure of D,, (k) has to be of the
form

Dy (k) = Ay, + Bk,k, (7.18)

with two unknown scalar functions A(k?) and B(k?). Inserting this ansatz into (ZI7) and
multiplying out, we obtain

(=& + m?*)n" + k"] [Anys + Bkyky] = 64, (7.19a)
—AK?6% + Am?6f + AkMky + Bm’kFky = oY, (7.19b)
—A(K* —m?)8) + (A + Bm?)k"ky = 0 . (7.19c¢)
In the last step, we regrouped the LHS into the two tensor structures 0§ and k*ky. A
comparison of their coefficients gives then A = —1/(k* — m?) and
p=-A_ 1

m2 ~ m2(k? — m?)’
Thus the massive spin-1 propagator follows as

” _nuu 4 kuku/mQ
Dy’ (k) = k2 —m?2+ie

(7.20)

Note that there is a sign ambiguity, since we could have added a minus sign to the Proca
equation.

Next we check this sign and our claim that the propagator D%b(k) of spin s > 0 fields can
be obtained as sum over their polarisation states g&’") times the scalar propagator A(k). As
the theory is Lorentz invariant, we can choose the frame most convenient for this comparison
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7. Spin-1 and spin-2 fields

which is the rest-frame of the massive particle. Then k* = (m,0) and the three polarisation
vectors can be chosen as the Cartesian basis vectors. Comparing then

0 00O
_ nltl/ + k#kl//m2 — 8 [1) ? 8 — Z 6#(7‘)61/(1") ’ (721)
0001 '

shows that both methods agree and can be used to derive the Feynman propagator. In the
latter approach, working from the RHS to the LHS of Eq. (7.21]), we derive first the expression
valid for the Feynman propagator in a specific frame. Then we have to rewrite the expression
in an invariant way using the relevant tensors, here n** and k*k". Moreover, Eq. [[.21] shows
that we have chosen the right sign for the propagator (7.20).

Propagator for massless spin-1 fields As we have seen, we can set m = 0 in the Proca
equation and obtain the Maxwell equation. The corresponding limit of the propagator (7.20))
leads however to an ill-defined result. As we know that the number of degrees of freedom
differs between the massive and the massless case, this is not too surprising. If we try next
the limit m — 0 in Eq. (Z19c), then we find

— AK?0) + AkMEy = 6. (7.22)

This equation has for arbitrary k& with A = —1/k? and A = 0 no solution. Moreover, the
function B is undetermined. We can understand this physically, since for a massless field
current conservation holds. But d,J#(z) = 0 implies k,J"(k) = 0 and thus the £*k" term
does not influence physical quantities: In physical measurable quantities, as e.g. W[J], the
propagator is always matched between conserved currents, and the longitudinal part k*k"
drops out.

We now try to construct the photon propagator from its sum over polarisation states.

First we consider a linearly polarised photon with polarisation vectors 52") lying in the plane

(1)

perpendicular to its momentum vector k. If we perform a Lorentz boost on ¢;,’, we will find
g) = A¥ (D = aleg) + ageg) + asky, , (7.23)

where the coefficients a; depend on the direction 8 of the boost. Thus, in general the po-
larisation vector will not be anymore perpendicular to k. Similarly, if we perform a gauge
transformation

Ay(r) = Al (z) = Au(x) — O, (z) (7.24)

with
A(z) = —idexp(—ikz) + h.c., (7.25)

then
Al (z) = (g4 + Mky) exp(—ikz) + h.c. = &), exp(—ikz) + h.c. (7.26)

Choosing e.g. a photon propagating in z direction, k* = (w,0,0,w), we see that the gauge
transformation does not affect the transverse components k, and k,. Thus only the compo-
nents of ¢/ transverse to k can have physical significance. On the other hand, the time-like
and longitudinal components depend on the arbitrary parameter A and are therefore unphys-
ical. In particular, they can be set to zero by a gauge transformation: First, &‘Lklﬂ = 0 implies
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(again for a photon propagating in z direction) e = —e5. From e} = €3 + A\w, we see that
A = e3/w sets e = —e{, = 0. Thus the transformation law (7.23)) for the polarisation vector
of a massless spin-1 particles requires the existence of the gauge symmetry (7.24]). The gauge
symmetry in turn implies that the massless spin-1 particle couples only to conserved currents.

We can exploit the transformation law 82L = €, + Ak, as follows: Since the dependence on £,
is nonphysical, any Feynman amplitude A = £, A* has to vanish, if we replace the polarisation
vector ¢, of an external photon by its four-momentum, £k, A* = 0. This quantum analogue of
classical current conservation k,J*(k) = 0 is called “Ward identity.” As an example for its
application, we derive a convenient expression for the propagator of a massless vector particle.
The two polarisation vectors of a photon should satisfy the normalisation 5&1)*5“(”) = §9b,
For a linearly polarised photon propagating in z direction, k* = (w,0,0,w), the polarisation

vectors are 65}) = 5; and 6&2) = 52. If we perform the sum over the two polarisation states,
we find
> el*el) = diag{0,1,1,0}. (7.27)
r

If we try to rewrite this expression in an invariant way using 7, and k,k,/ k%, we fail: We
cannot cancel at the same time 799 = +1 and 733 = —1 by k,k,/ k2. We introduce therefore
additionally the momentum vector k¥ = (w,0,0, —w) obtained by a spatial reflection from
k. This allows us to write the polarisation sum as an invariant tensor expression,

bk + ks

Zeg)*el(f) =+ =2 =1, (7.28)
" kEk

Current conservation, k,J" (k) = 0, implies that the second term in the polarisation sum does

not contribute to physical observables. For the same reason, we can add an arbitrary term

£k,k,. We use this freedom to eliminate the k& dependence and to set

Kk,
JH <Z ggﬂ*g(p) JV = Jh* (—mw +(1-9)=5 ) Jv. (7.29)

Now we can read off the photon propagator as

_ _nﬂu + (1 _ f)k”k”/k2

Dllgl(k) k? +ie

(7.30)

A specific choice of the parameter ¢ called gauge fixing parameter corresponds to the choice
of a gauge in Eq. (.I3]). In particular, the Feynman gauge £ = 1, which leads to a form
of the propagator often most convenient in calculations, correspond to the Lorenz gauge
in Eq. (CI3). In this gauge, Zi:o q(f)*eg) = diag{-1,1,1,1}: the propagator contains
nonphysical degrees of freedom, time-like and longitudinal photons, which contributions cancel
however in physical observables. Similarly, for all other values ¢ the propagator is explicitly
Lorentz invariant but contains unphysical degrees of freedom. We will see later that it is
a general feature of gauge theories as electrodynamics that we have to choose between a
covariant gauge which introduces unphysical degrees of freedom and a gauge which contains
only the transverse degree of freedom but selects a specific frame.
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Repulsive Coulomb potential by vector exchange We consider as in the scalar case two
static point charges as external sources, but use now a vector current J* = Ji'(z1) + J4' (z2).
Since J# = (p, 7), only the zero component, J!' = §§d(x — x;), contributes for a static source
to W[J]. Moreover, we can neglect the longitudinal part k*k”/m? of the propagator. This
is justified, since the concept of a potential energy makes only sense in the non-relativistic
limit, i.e. for V< m or equivalently r > 1/m. Hence

1 dk n Uefik:(xfz’) ,
Wiol[J] = ——/d4$d45‘7’/ 2 i (z )k;——i—ie Iy (2') (7.31)

d4k —ik(z—1')
= / dedt’ / z S (7.32)

Comparing with our earlier result for scalar exchange in Eq. (337, it becomes clear without
further calculation that spin-1 exchange between equal charges is repulsive. In the limit m —
0, we obtain the Coulomb potential with the correct sign for electromagnetic interactions.

7.3. Gravity

Wave equation From Newton’s law we know that gravity is fundamentally attractive and
of long range. Thus the gravitational force has to be mediated by a massless particle which
can not be a spin s = 1 particle. Analog to the electric field E = —V ¢ we can introduce a
classical gravitational field g as the gradient of the gravitational potential, g = —V¢. We
obtain then V - g(x) = —4wGp(x) and as Poisson equation

A¢(z) = 4nGp(x), (7.33)

where p is the mass density, p = dm/d?z.

Special relativity gives us two hints how we should transfer this equation into a relativis-
tic framework: First, the Laplace operator A on the LHS is the ¢ — oo limit of minus the
d’Alembert operator [J. Second, the RHS should be the v/¢c — 0 limit of something incor-
porating not only the mass density but all types of energy densities. To proceed, consider
first how the mass density p transforms under a Lorentz transformation: An observer moving
with the speed S relative to the rest frame of the matter distribution p measures the energy
density p' = ydm/(y 'dV) = 4?p, with v = 1/4/1 — B2. This is the transformation law of
the 00 component of a tensor of rank two and p as 00 component, alas the energy-momentum
stress tensor THY.

Thus the field equation for a purely scalar theory of gravity would be

O¢ = —4nGTL. (7.34)

Such a theory predicts no coupling between photons and gravitation, because the trace of the
stress tensor of the electromagnetic field vanishes, T}y = 0, and is therefore in contradiction
to the observed gravitational lensing of light. A purely vector theory for gravity fails too,
since it predicts not attraction but repulsion of two masses. Hence we are forced to consider
a symmetric spin-2 field Bw/ as mediator of the gravitational force; its source is the energy-
momentum stress tensor

Oh* = —2kTH. (7.35)
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The normalisation constant x o< Gy has to be determined such that in the non-relativistic
limit the Poisson equation (Z.33]) holds.

Let us consider as a warm-up first the case of a massive particle: A symmetric, massive
spin-2 field has ten independent components, but only 2s + 1 = 5 physical spin degrees of
freedom. Thus we have to impose five constraints additional to the source-free equation

(O+m?)hH = 0. (7.36)

Proceeding as in the s = 1 case, (.8), we use as constraint 8,]#“’ = 0 which provides now
four conditions. We can use them to set h°%* = 0. We obtain the missing fifth constraint
subtracting the trace h* which transforms as a scalar from h%.

We move now to the massless case considering a plane wave hy, = e, exp(—ikz). In
analogy to the photon case, we expect that also the graviton has only two, transverse degrees
of freedom. If we choose the plane wave propagating in the z direction, k = ke,, then we
expect that the polarisation tensor can be expressed as

0 O 0 0
0 ern €12 O
w _
€ 0 e —e 0 (7.37)
0 O 0 0

Here we used that the polarisation tensor has to be symmetric and traceless. The choice
([T37) is called the transverse traceless (T'T) gauge.

Metric perturbations as a tensor field In the case of the photon, we could reduce the de-
grees of freedom from four to two, because of the redundancy implied by the gauge symmetry
of electromagnetism. Moreover, the gauge symmetry lead to the conservation of the electro-
magnetic current. The two obvious questions to address next are which symmetry and which
conservation law are connected to gravitation.

The second question is the simpler one, since we know already that in flat space 0,T"" = 0
holds. Thus for gravity energy-momentum conservation will play the role of current conserva-
tion, implying that a gravitational wave is transverse, k,T*”(k) = 0. In order to answer the
first question, we have to consider the properties of h*¥. The equivalence principle implies
that all test-particles move along the same world-line, if they are released at the same initial
point and move only under the influence of the gravitational force. This universality moti-
vated Einstein to describe the effect of gravity by the curvature of space-time. We associate
therefore the symmetric tensor ﬁeld@ hy, with small perturbations around the Minkowski
metric 7,

guu = nuu + €hp,1/ , eK 1. (738)

We choose a Cartesian coordinate system z* and ask ourselves which transformations are com-
patible with the splitting (7.38]) of the metric. If we consider global Lorentz transformations
AY,, then ' = A x ", and the metric tensor transforms as

gla,g = ApaAo—,ngo— = ApaAo—B(npo' + hpo‘) = naﬁ + ApaAo-,Bh,po- = 77,06,3 + ApaAUBhpa . (739)

2We drop the bar, anticipating that "’ may differ from h** in Eq. (Z35). We will derive their relation,
By = huy — 2nu0hS, in section I3
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Since h:lﬂ = A’ aA”ﬁhpg, we see that global Lorentz transformations respect the splitting
(Z38). Thus hy,, transforms as a rank-2 tensor under global Lorentz transformations. We can
view therefore the perturbation h,, as a symmetric rank-2 tensor field defined on Minkowski
space that satisfies the wave equation (Z.35)), similar as the photon field is a rank-1 tensor
field fulfilling Maxwell’s equations.

The splitting (.38]) is however clearly not invariant under general coordinate transforma-
tions, as they allow e.g. the finite rescaling g,, — €1g,,. We restrict therefore ourselves to
infinitesimal coordinate transformations,

=t + e (2) (7.40)
with e < 1. Then the Killing equation (6.72)) simplifies to
W = huw + 0ubs + 0,6, (7.41)

because the term ¢P0,h,, is quadratic in the small quantities eh,, and £, and can be
neglected. Recall that the {”0,h,, term appeared, because we compared the metric tensor at
different points. In its absence, it is more fruitful to view Eq. (Z4I)) not as a coordinate but as
a gauge transformation analogous to (Z.I2)): In this interpretation, we stay in Minkowski space
and the fields h:w and h,, describe the same physics, since the gravitational field equations
do not fix uniquely h,,, for a given source. In momentum space, Eq. (.41]) specifies how the
polarisation tensor transforms under gauge transformations,

6;11/ =€ + gﬂkll + guku- (7.42)

We can use this gauge freedom to eliminate four components of €,,. After that, we can
perform another gauge transformation (Z42]) using any four functions x, satisfying the wave
equation [y, = 0, eliminating thereby four additional components. This justifies the use of
the TT gauge.

Graviton propagator We follow the same approach as in the derivation of the photon prop-
agator. For a graviton propagating in z direction, k* = (w,0,0,w), we choose as the two po-
larisation states 58,,) setting e1; = 1/v/2 and £15 = 0 and 5&2,,) setting e1; = 0 and £15 = 1/V/2,
respectively. They satisfy the normalisation 5,(3,)5“” (b) = 595 Now we should perform the sum
over the two polarisation states, ) 6,(;,) 5537;—), and express the result as a linear combination of
N and kﬂ/;,, -I-éﬂk,,. A straightforward way to do this is to combine first the ten independent
quantities of the symmetric tensors in ten-dimensional vectors, €,, — E,, n,, — Ny, and
kﬂ/;,, + %ﬂk,, — K, to calculate the tensor products of these vectors and to compare then
the resulting 10 ® 10 matrices. An alternative, shorter way is to use the requirement that
the propagator is transverse in all indices, k* Er 8,(};,) EE,C,) =...=k° Zr 5,(2,) 85)72 = (, because
of energy-momentum conservation, d,T*"(x) = 0. This implies that the graviton propagator
should be composed of the projection operators m,, used for the photon (cf. Eq. (Z.28))) as

follows
Z 6%})55}? = AT Tpe + B [TppTue + Tpuau,| - (7.43)
r

The last two terms have a common coefficient, since the LHS is invariant under exchanges
of u <> v or p < 0. We fix A and B by evaluating this expression for two sets of indices.
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Since the only non-zero elements of 7, are mj; = mp2 = —1, we obtain choosing e.g. {1212}
as indices

1
> eiely = 5 = Bruma
and thus B = 1/2. Similarly, it follows A = —1/2 choosing e.g. as indices {1111}. Thus we

found—with surprising ease—the polarisation sum required for the graviton propagator,

1 1
Zgwf Epo = __”W”pcr T 5 TupTve + 5T uoTup - (7.44)

We continue to proceed in the same way as for the photon. Energy-momentum conservation,
k, 7" (k) = 0, implies that the &, k, + k k, term in X,, does not contribute to physical
observables. We drop therefore again all terms proportional to the graviton momentum &,

. . 1 1 1
T (Z e ) TP — Y (_577#1177/70 + §ﬂup77ua + 577#077,/,)) TPo (7.45)

Thus the graviton propagator in the Feynman gauge is given by

5 (=n"'nP7 + Pt Ty P)
k2 +1ie '

DEP (k) = (7.46)
Other gauges are obtained by the replacement n*¥ — n"v — (1 — ¢)k*k" /k%. In the case of
gravity, the Feynman gauge & = 1 is most often called harmonic gauge, but also the names
Hilbert, Loren(t)z, de Donder and confusingly many others are in use.

Attractive potential by spin-2 exchange We consider now the potential energy created by
two point masses as external sources interacting via a tensor current T* = T (z1)+T4" (z2).
Specialising to static sources, only the zero-zero component, TZ.“ Y = 664 6(x —x;), contributes
to W[J]. Hence

1 dk N
WialJ] = =3 / d*zd*s’ / (27r)4T1 (z) D oos00 (k) e #@=2) 1904y (7.47)

Looking at the numerator of the graviton propagator, we find —14+14+1 =1 > 0. Thus
spin-2 exchange is attractive, as required for the force mediating gravity. Comparing
Eq. (C47) to Newton’s gravitational potential, we see that the graviton couples with the
strength (87G)Y/2 = k1/2 to the stress tensor T of matter, cf. problem 7.77.

Helicity We determine now how a metric perturbation b, transforms under a rotation with
the angle a. We choose the wave propagating in z direction, k = ke, the TT gauge, and the
rotation in the ry plane. Then the general Lorentz transformation A} becomes

1 0 0 0

v _ | 0 cosa sina 0
A = 0 —sina cosa 0 (7.48)

0 0 0 1
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Since k = ke, and thus AJk, = k;,, the rotation affects only the polarisation tensor. We
rewrite ), = AfAJe,, in matrix notation, ' = AeAT. Tt is sufficient to perform the
calculation for the zy sub-matrices. The result after introducing circular polarisation states
€4 = €11 Lie1g is

e = exp(F2ia)e” . (7.49)

The same calculation for a circularly polarised photon gives 6;‘; = exp(Fia)e!,. Any plane
wave 9 which is transformed into ¢/ = e **4 by a rotation of an angle a around its prop-
agation axis is said to have helicity h. Thus if we say that a photon has spin 1 and a
graviton has spin 2, we mean more precisely that electromagnetic and gravitational plan
waves have helicity one and two, respectively. Doing the same calculation in an arbitrary
gauge, one finds that the remaining, unphysical degrees of freedom transform as helicity one
and zero (problem 7.?7). In general, a tensor field of rank (n, m) contains states with helicity
h =0,...,n+m. Thus we can rephrase the statement that tensor fields follow Bose-Einstein
statistics as fields with integer helicity (or spin) are bosons.

7.4. Source of gravity

The dynamical energy-momentum tensor If we compare the wave equation for a photon
and a graviton, then there is an important difference: The former is in the classical limit exact.
The photon carries no charge and does not contribute to its source term. As a result, the
wave equation is linear. In contrast, a gravitational wave carries energy-momentum and acts
thus as its own source. The LHS of (7.35)) should be therefore the limit of a more complicated
equation, which we write symbolically as G, = —kT},,. The tensor G, should be given as
the variation of an appropriate action of gravity, called the Einstein-Hilbert action Sgzr, with
respect to the metric tensor g,,. Even without knowing the action Sgp, we can derive an
important conclusion: If the total action is the sum of Sgx and the action Sy, including all
relevant matter fields,
S = 1 Ser + Sm,
2K

then the variation of the matter action Sy, should give the stress tensor as the source of the
gravitational field,

2 0Sm

\/H 0w

Here we included a factor \/m because T"” is a density, while the factor 2 is required to
obtain agreement with the usual definition of T*. Since the presence of gravity implies a
curved space-time, the replacements {9, nuw,d*z} = {V,, 9w, d‘%ﬂ/@} have to performed
in Sy, before the variation is performed. The tensor T*” defined by this equation is called
dynamical energy-momentum stress tensor. In order to show that this definition makes sense,
we have to prove that the tensor is locally conserved, V,T"” = 0, and we have to convince
ourselves that this definition reproduces the standard results we know already.

—TH (7.50)

Conservation of the stress tensor We start by proving that the dynamical energy-
momentum tensor defined by Eq. (Z50) is locally conserved. We consider the change of
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7.A. Appendix: Large extra dimensions and massive gravity

the matter action under a variation of the metric@,

1 1
58, = _5/ d*z/|g] T 69, = 5/ d*z+/|g] Tp dg"” . (7.51)
Q Q

We allow infinitesimal but otherwise arbitrary coordinate transformations,
=zt + ¢ (x). (7.52)
For the resulting change in the metric dg,, we can use Egs. (6.68b]) and (6.69),
0guw = Vuly + Vil (7.53)

We use that T*” is symmetric and that general covariance guarantees that 4.5, = 0 for a
coordinate transformation,

68m = — / d*z/|g| TV .6, = 0. (7.54)
Q

Next we apply the product rule,

08m = — / d'z/|g] (V. T")é, + / d'z/lg] V,u(T"€,) = 0. (7.55)
Q Q

The second term is a four-divergence and thus a boundary term that we can neglect. The
remaining first term vanishes for arbitrary £, only, if the energy-momentum tensor is con-
served,

vV, T =0. (7.56)

Hence the local conservation of energy-momentum is a consequence of the general covariance of
the gravitational field equations, in the same way as current conservation follows from gauge
invariance in electromagnetism. You should convince yourself that the dynamical energy-
momentum stress tensor evaluated for the examples of the Klein-Gordon and the Maxwell
field agrees with the symmetrised canonical stress tensor, cf. problem 7.77.

7.A. Appendix: Large extra dimensions and massive gravity

Large extra dimensions As mentioned in chapter Bl quantum corrections break the conformal
invariance of string theory except we live in a world with d = 10 or 26 space-time dimensions. There
are two obvious answers to this result: First, one may conclude that string theory is disproven by
nature or, second, one may adjust reality. Consistency of the second approach with experimental data
could be achieved, if the d — 4 dimensions are compactified with a sufficiently small radius R, such
that they are not visible in experiments sensible to wave-lengths A > R.

Let us check what happens to a scalar particle with mass m, if we add a fifth compact dimension
y. The Klein-Gordon equation for a scalar field ¢(z*,y) becomes

(05 + m?)p(a*,y) =0 (7.57)

3We should view g,, (and not g"*) as “the” gravitational field: In the Lagrangian of a point particle or the
line-element, the coordinates z* are contracted with g,,. Having understood this point, we use simply the
second relation in (C5I) in the future.
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7. Spin-1 and spin-2 fields

with the five-dimensional d’Alembert operator (5 = D—@Z. The equation can be separated, ¢(z*,y) =
¢(z*) f(y), and since the fifth dimension is compact, the spectrum of f is discrete. Assuming periodic
boundary conditions, f(z) = f(z + R), gives

¢(z",y) = o(a") cos(ny/R) . (7.58)

The energy eigenvalues of these solutions are wi,n = k?+m?+(nm/R)>. From a four-dimensional point
of view, the term (nm/R)? appears as a mass term, m2 = m? + (nw/R)2. Since we usually consider
states with different masses as different particles, we see the five-dimensional particle as a tower of
particles with mass m,, but otherwise identical quantum numbers. Such theories are called Kaluza-
Klein theories, and the tower of particles Kaluza-Klein particles. If R < A, where A is the length-scale
experimentally probed, only the n = 0 particle is visible and physics appears to be four-dimensional.

Since string theory includes gravity, one often assumes that the radius R of the extra-dimensions is
determined by the Planck length, R = 1/Mp; = (87Gn)'/? ~ 10=3* cm. In this case it is difficult to
imagine any observational consequences of the additional dimensions. More interesting is the possibility
that some of the extra dimensions are large,

Ri.. 5> Rsy1,..6 =1/Mp;.

Since the 1/r? behaviour of the gravitational force is not tested below d. ~mm scales, one can
imagine that large extra dimensions exists that are only visible to gravity: Relating the d = 4 and
d > 4 Newton’s law F' ~ "3 at the intermediate scale 7 = R, we can derive the “true” value of the
Planck scale in this model: Matching of Newton’s law in 4 and 4 + ¢ dimensions at r = R gives

mimes 1 mimeso
F(T = R) = GN R2 = M§+5 R2+5 . (759)

This equation relates the size R of the large extra dimensions to the true fundamental scale Mp of
gravity in this model,
GN' =8tM32, = RPMY™, (7.60)

while Newton’s constant Gy becomes just an auxiliary quantity useful to describe physics at r > R.
(You may compare this to the case of weak interactions where Fermi’s constant Gr oc g>/m3;, is
determined by the weak coupling constant ¢ and the mass my of the W-boson).

Next we ask, if Mp ~ TeV is possible, i.e. if one may test such theories at accelerators as LHC?
Inserting the measured value of Gy and Mp = 1TeV in Eq. (Z.60) we find the required value for the
size R of the large extra dimension as 10'® cm and 0.1 cm for § = 1 and 2, respectively, Thus the case
6 = 11is excluded by the agreement of the dynamics of the solar system with 4-dimensional Newtonian
physics. The cases 6 > 2 are possible, because Newton’s law is experimentally tested only for scales
r 2 1lmm.

Massive gravity Theories with extra dimensions contain often from our 4-dimensional point of view
a Kaluza-Klein tower of massive gravitons. Such modified theories of gravity have found large interest
since one may hope to find an alternative explanation for the accelerated expansion of the Universe.

A striking difference between the spin-2 and the spin-0 and 1 cases is that the limit m — 0 of the
massive spin-2 propagator and thus of the potential energy Vs is not smooth: In problem 7.7, you
are asked to derive the massive spin-2 propagator. As result, you should find

B 1 _%GHVGPU + GHPQVT 4+ GHIGVP

DHViPY (.
w () 2 k2 —m2 +ie

, (7.61)

where
G* (k) = - + k“k”/mQ (7.62)

is the polarisation tensor for a massive spin-1 particle. Thus the nominator in the massive spin-
2 propagator is as in the massless case a linear combination of the tensor products of two spin-1

100



7.A. Appendix: Large extra dimensions and massive gravity

polarisation tensors. However, the coefficients of the first term differ and thus the m — 0 limit of
the massive propagator does not agree with the massless case. In particular, the difference cannot be
compensated by a rescaling of the coupling constant, G v, because it is not an overall factor: Imagine for
instance that we determine the value of Gy by calculating the potential energy of two non-relativistic
sources like the Sun and the Earth. This requires in massive gravity—for an arbitrarily small graviton
mass—a gravitational coupling constant G'x a factor 3/4 smaller than in the massless case. Having
fixed G, we can predict the deflection of light by the Sun. Since the first term in the propagator
couples the traces T} of two sources, it does not contribute to the deflection of light. As a result of
the reduced coupling strength, the deflection angle of light by the Sun decreases by the same factor
and any non-zero graviton mass would be in conflict with observations.

When this result was first derived in 1970, its authors explained this discontinuity by the different
number of degrees of freedom in the two theories: Even if the Compton wave-length of a massive
graviton is larger than the observable size of the Universe, and thus the Yukawa factor exp(—mr)
indistinguishable from one, the additional spin states of a massive graviton may change physics. Two
years later, Vainshtein realised that perturbation theory may break down in massive gravity and thus
a calculation using one-graviton exchange is not reliable. More precisely, a theory of massive gravity
contains an additional length scale Ry = (GM/m*)'/® and for distances r < Ry the theory has to
be solved exactly.

Summary

Tensor fields satisfy second-order differential equations; their propagators are quadratic in p
and thus even functions of z. As a result, tensor fields describe bosons, i.e. their field operators
are commuting operators. Massless fields have only two, transverse degrees of freedom. A
Lorentz invariant description for such fields is only possible, if the remaining number of non-
physical degrees of freedom is redundant. This redundancy implies that fields connected by
a gauge transformation are equivalent and describe the same physical system. In the case of
photons, the gauge symmetry implies that they couple to a conserved current, in the case of
gravitons that they couple to the conserved energy-momentum conservation tensor.

Further reading

[Mag07] discusses in detail (massive) gravity as a spin-2 field in Minkowski space. The history
of the gauge principle is reviewed by [JOOT].
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8. Fermions and the Dirac equation

Up to now we have discussed fields which transform as tensors under Lorentz transformations.
Such particles have integer spin or helicity. Since we can boost massive particles into their
rest-frame, we can use our knowledge of non-relativistic quantum mechanics to anticipate
that additional representations of the rotation group SO(3) and thus also of the Lorentz
group SO(1,3) exist which correspond to particles with half-integer spin. Such particles are
described by anti-commuting variables what is the fundamental reason for the Pauli principle
and thus the stability of matter.

8.1. Spinor representation of the Lorentz group

In order to introduce spinors we have to find the corresponding representation of the Lorentz
group. As always it is simpler to work at linear order, which is in this case the Lie algebra.
The Lie algebra of the Poincaré grou contains ten generators, the three generators J of
rotations, the three generators K of Lorentz boosts and the four generators T of translations.

The Killing vector fields V' of Minkowski space generate these symmetries, and therefore the
generators are given by the Killing vector fields. Thus we can use Eqs. (6.79) and (6.80) to
calculate their commutation relations as (problem 8.77)

[Ji, Jj] = ieiijk s (8.1&)
[Ji, K] = igiju Ky (8.1b)
[Ki, Kj] = _igijkjk . (8.1C)

Here we followed physicist’s convention and identified iV as the generators, so that they are
Hermitian. Moreover, we restrict our attention to the Lorentz group which is sufficient to
derive the concept of a Weyl spinor. Note that the algebra of the boost generators K is not
closed. Thus in contrast to rotations, boosts do not form a subgroup of the Lorentz group.

The structure constants in all these commutation relations are 4¢;;;, suggesting that we
can rewrite the Lorentz group as a product of two SU(2) factors. We try to decouple the two
sets of generators J and K by introducing two non-Hermitian ladder operators

1
JE = 5(J £iK). (8.2)
Their commutations relations are
[T T = deigr ) (8.3a)
[Ji ;] = leijid), (8.3b)
[T, T 1=0 i,j=1,2,3. (8.3¢)

J

!See the Appendices[B.3l and [B.4] for a brief review of the Poincaré group.
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8.1. Spinor representation of the Lorentz group

Thus J~ and J* commute with each other and generate each a SU(2) group. The Lorentz
group i therefore ~ SU(2) ® SU(2), and states transforming in a well-defined way are la-
belled by a pair of angular momenta, (7,5 "), corresponding to the eigenvalues of J, and
J, respectively. From our knowledge of the angular momentum algebra in nonrelativis-
tic quantum mechanics, we conclude that the dimension of the representation (57,57) is
(25~ +1)(25F +1). Because of J = J~ + J, the representation (5, 5%) contains all possi-
ble spins j in integer steps from |j~ — 5| to 57 + 5.

The representation (0,0) has dimension one, transforms trivially, J = K = 0, and corre-
sponds therefore to the scalar representation. The two smallest non-trivial representations are
JT =0, ie (5,0) with JV/?2 = —iK1/2) and J~ =0, i.e. (0,51) with J/? = iK(1/2),
Both representations have spin 1/2 and dimension two. We define therefore two types of
two-component spinors,

dr: (1/2,0), JU2D =¢g/2, K = tig/2, (8.4a)
dr: (0,1/2), JY? =g/2, KU/ =_ig/2, (8.4b)

which we call left-chiral and right-chiral Weyl spinors. These Weyl spinors form the fun-
damental representation of the Lorentz group: All higher spin states can be obtained as
tensor products involving them. Their transformation properties under an (active) finite
Lorentz transformation with parameters a and n follow by exponentiating their generators
as exp(—iJa + iKn) (compare to appendix [B.3] for our choice of signs),

¢r, — P, = exp [_iaTa - 0'777] ¢r. = Sror, (8.5a)
¢r — PR = exp [—iUTa + %] ¢r = SrOR - (8.5b)

While the transformation matrices St and S agree for rotations, the terms describing Lorentz
boosts have opposite signs. Note also that only rotations are described by a unitary trans-
formation, while Lorentz boosts lead to a non-unitary transformation of the Weyl spinors.

We ask now if we can convert a left- into a right-chiral spinor and vice versa. Thus we
should find a spinor &L constructed out of ¢;, which transforms as S RéL. Changing S, into
Sr requires reversing the relative sign between the rotation and the boost term, which we
achieve by complex conjugating ¢y,

: * *
ic*ae  o*n
!
=1+ — +...| o1 (8.6)
2 2
Because of 0] = 01, 05 = —09, 05 = 03, and 0109 = —0201, 0203 = —0302, we obtain the

desired transformation property multiplying ¢}’ with o,

i(o1, —092,03)x o1,—09,0 N
02¢;g':a2[1+(1 22 a _ (o 22 3)”+...]¢L (8.7a)
ica o
=|:1—T+Tn+ O’Q(ﬁz:SRO'Q(]S*L (87b)

ZMore precisely, they have the same Lie algebra and are thus locally isomorphic but differ globally.
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8. Fermions and the Dirac equation

Thus ¢;, and ¢r are connected by a non-unitary transformation, and therefore ¢; and ¢p
describe different physics. Obviously, we can add to o2¢] an arbitrary phase el without
changing the transformation properties. We define

QZS% = _i02¢z and ¢% = io’2¢}<{7 ) (88)

which ensures (¢9)¢ = ¢r and (¢%)¢ = ¢r. When we discuss later the coupling of a fermion
to an external field, we will see that ¢¢ is the charge conjugated spinor of ¢r,.

For the construction of a Lagrangian we need for the mass term scalars and for the kinetic
energy vectors built out of the Weyl fields. Both the kinetic and the mass terms should be
real to provide a real Lagrangian. In contrast to the real Lorentz transformation A*, acting
on tensor fields, the matrices S,/ are however complex and thus the Weyl fields are complex
too. This suggests together with the fact that a measurement device should be the same after
a rotation by 27 that observables are bilinear quantities in the fermion fields, such that they
transform tensorial and their eigenvalues are real.

Out of the two Weyl spinors, we can form four different products QSE / r®r/r leading to the

combinations S;SL, SLSR, S;SR, and S};SL. The rotation ioa/2 cancels in all four products,
since it enters with the same sign in S7, and Sg, and the Pauli matrices are Hermitian, o' = o.
By contrast, the cancellation of the boost on/2 requires a combination of a left- and right-
chiral field,

on

1-iZ2 4204 | gr = ¢l on, (8.9)

oca o7 }[
2 2

T = ¢ iz ==+

and similarly for QS%QSL. Thus ¢TL¢R and QZS}[{QSL transform as Lorentz scalars, but not ¢E¢L

and ¢§2¢ Rr- So what are the transformation properties of the latter two products? Performing
an infinitesimal boost along the z axis, we find

L = b, [1 + % +.. } [1 + % +.. ] OR = PRdR + NPRTIOR . (8.10)

This looks like an infinitesimal Lorentz transformation of the time-like component 5% = (}STRQS R
of a four-vector j#. If this interpretation is correct, we should be able to associate the spatial
part j with QSTRUQSR. Checking thus how j transforms, we find using o*c?/ = 6% + ic¥*o* that
4! and j? are invariant, while j3 transforms as

$Rosdh = ol [1 + % + .. ] o3 [1 + % +..| br=ndhbr + dhosdR (8.11)
Thus ﬂza“qﬁ}g with o# = (1, o) transforms as a four-vector, 5° — 5% 4753 and 53 — 5%+ 53.
Performing the same calculation for the left-chiral fields reproduces the same result except
for an opposite sign of 7. We account for this sign change setting now * = (1, —0o), so that
a four-vector bilinear in ¢y, is given by ¢TL&“¢L.

The transformations Sz, and Sg that belong to the restricted Lorentz group do not mix the
left- and right-chiral Weyl spinors. Consider however the effect of a parity transformation,
Px = —x, on the generators K and J. The velocity changes sign, v — —v, i.e. transforms as
a polar vector, while the angular momentum J as axial vector remains invariant. Thus parity
interchanges (1/2,0) and (0,1/2) and hence ¢1, and ¢g, as one would expect from a left- and
right-chiral object. If parity is a symmetry of the theory examined, one can therefore not
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8.2. Dirac equation

consider separately the two spinors ¢;, and ¢r. Instead, it proves useful to combine them
into a four-spinor called Dirac (or bi-spinor)

P = ( z; > : (8.12)

Another reason to consider Dirac spinors is that the scalar terms QSE ¢r and QZS}[%QS 1, that qualify
as mass terms combine a left- and a right-chiral field: Thus the description of a particle with
such a mass term seems to require the use of both left- and right-chiral Weyl spinors. Next
we will derive a field equation for this type of spinor and discuss its properties.

8.2. Dirac equation

From Weyl spinors to the Dirac equation We can obtain the spinor describing a particle
with momentum p by boosting the one describing a particle at rest,

#r(p) = exp | ZL] ¢r(0) = exp [T22] gr(0) = [cosh(n/2) + onsinh(n/2)] gr(0) . (8.13)

If we replace the boost parameter n by the Lorentz factorﬁ v = coshn and use the identities
cosh(n/2) = y/(coshn + 1)/2 and sinh(n/2) = /(coshn — 1)/2, we can express the spinor as

(%“) "o (%) 1/2] #r(0). (8.14)

Here p = p/|p| is the unit vector in direction of p. Inserting v = E/m and combining the
two terms in the angular bracket, we arrive at

¢r(p) =

_ E+m+op

Similarly, we find
E+m—-op
= ——7—"=¢1(0). 8.16

¢L(p) TIRERD ¢1.(0) (8.16)
Thus ¢, and ¢p differ only by the sign of the operator op which measures the projection of
the spin o on the momentum p of the particle. For a particle at rest, this difference disappears
and we set therefore ¢7,(0) = ¢r(0). This allows us to eliminate the zero momentum spinors,
giving
_E+op
om

1 (p) $u(p) - (8.17)

In matrix form, these two equations correspond to

(o P (o) = (o o) () =0 sy

We introduce the 4 x 4 matrices
0 ot
= < 50 > . (8.19)

3Recall the relations E = mcoshn and p = msinh 7 connecting E, p, and the rapidity 7.
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8. Fermions and the Dirac equation

Then we arrive with v#p,, = v°E — ~4p at the compact expression

(Ypu — m)(p) = 0. (8.20)

Setting p, = 10, we obtain the Dirac equation (i9,y* — m)¢(z) = 0 in coordinate space.
The representation used for the Dirac spinor and the gamma matrices is called chiral or Weyl
representation. Other representations can be obtained performing a unitary transformation,
UFUT = y# and Uyp = 1.

We can apply the tensor method to derive a definition of the gamma matrices and their
properties which is independent of the considered representation. The only invariant tensor at
our disposal is the metric tensor n*” and thus the gamma matrices have to satisfy {v*,v"} =
An* . Considering {7°,7°} shows that A =2, or

{" "} =2 (8.21)
These anti-commutation relations define a Clifford algebra, implying
()" =1, (V) ==1  and 'y ==y (8.22)

for p # v. The last condition shows that the Clifford algebra cannot be satisfied by normal
numbers.

The definition (82]]) implies that we can apply in the usual way the metric tensor to raise
or to lower the indices of the gamma matrices, vy, = 7,,7”. Thus we can write v”0, = 7,0".
Since the contraction of the gamma matrices v* with a four-vector A* will appear frequently,
we introduce the so-called Feynman slash,

A=A, (8.23)

as useful shortcut. This notation also stresses that the gamma matrices v* allow us to map
a four-vector A" onto an element A of the Clifford algebra which then can be applied on a
spinor ¢. Although we suppress the spinor indices, you should keep in mind that the matrices
(7Yap)* carry both tensor and spinor indices.

Dirac’s way towards the Dirac equation The Klein-Gordon equation was historically the
first wave equation derived in relativistic quantum mechanics. Applied to the hydrogen atom,
it failed to reproduce the correct energy spectrum. Dirac tried to derive as an alternative
an equation linear in the derivatives d,,. Since Lorentz invariance requires that 9, has to be
contracted with another object carrying the Lorentz index pu, a first order equation has the
form

(iv"0, — m)y(z) =0. (8.24)
Main task for Dirac was to uncover the nature of the quantities v* in this equation. They
cannot be normal numbers, since then they would form a four-vector, specify one direction in
space-time and thus break Lorentz invariance. Multiplying the Dirac equation with —(iy*0,,+
m) and comparing the result to the Klein-Gordon equation, we find

— (iY"0u + m)(iv" 0y, — m)p = (v'+" 0,0, + m?)p = (04 m?)yp =0. (8.25)
Using the symmetry of partial derivatives, we can rewrite
v 1 v
Y00, = 5{7",7 10,0, . (8.26)

Remembering next the definition of the d’Alembert operator, (0 = n*”0,0,, we re-derive that
the v* form a Clifford algebra.
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8.2. Dirac equation

Lagrange density For a complex scalar field, we could rewrite after a partial integration the
Lagrange density as . = —¢'(0 + m?)¢. This expression corresponds to the Klein-Gordon
operator — (0 + m?) sandwiched between the quadratic form ¢f¢, as the correspondence of
the propagator and a two-point Green function requires. This suggests to try for the Dirac
field as Lagrangian

L = Al 9, — m)p = F(v" 9, — m)y (8.27)

where we have used as quadratic from ¢TA¢_ with a matrix A yet to be determined. In the
second step, we defined the adjoint spinor ¢ = ¢t A. Varying then the action S [, ], we
obtain

58 = /d4 {660y — m)y - By S, + m)dp} (8.28)

Here we made a partial integration of the 9,09 term, and thus the derivative gﬂ acts to
the left. Since we treat v and 1 as two independent variables, we obtain from 45 = 0 two
equations of motion,

Py S, +m) =0 and (iy"8, —m)p = 0. (8.29)

Next we determine the unknown matrix A: Taking the Hermitian conjugate of the RHS of

(8:29) results in
W(—ify“*zi —m)=0. (8.30)

This agrees with the LHS of (8:29)), if A satisfies
ATy A = 41 (8.31)

One can readily check that the v* matrices in the Weyl representation fulfil this relation, if
we set A =+°. With (v°)2 =1 and (4°) ! = ()T = 4°, we can express this condition as

0Y2,.,0 0
Y=y { (402 = (8.32)
Thus the action principle implies that 4" is Hermitian, while the *yi are anti-Hermitian ma-
trices.

Using the gamma matrices and the Dirac spinor in the chiral representation it is straight-

forward to express the Dirac Lagrangian (8.27) by Weyl fields,

L = ighot0upr +ipl 5" 0,1, — m(dldr + dhor). (8.33)

This implies that the Dirac Lagrangian and the Dirac equation are invariant under Lorentz
transformations, because we have already checked that all ingredients of (8.33)) are invariant.
Note also that out of the two possible combinations of the two Lorentz scalars we found, only
the one invariant under parity entered the mass term. Moreover, P(c#0,) = 60, and thus
the combination of the kinetic energies of ¢, and ¢g is also invariant under parity.

Hamiltonian form The Dirac equation can be transformed into Hamiltonian form by mul-

tiplying with 0, .
10 = Hptp = (=in°y' 0 ++"'m)y. (8.34)
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8. Fermions and the Dirac equation

Looking back at the (anti-) Hermiticity properties (8.32) of the v matrices, we see that they
correspond to the one required to make the Dirac Hamiltonian Hermitian. By tradition, one
re-writes Hp often with f =4 and of = 7% as

i0p = Hpyp = (- p+ fm)p. (8.35)

Considering the semi-classical limit, one sees that the matrix a has the meaning of a velocity
operator, see problem 8.77.

Clifford algebra and bilinear quantities We now determine the minimal matrix represen-
tation for the Clifford algebra defined by Eq. (82I). We find first the maximal number of
independent products that we can form out of the four gamma matrices. Five obvious ele-
ments are the unit matrix 1 = (y°)? and the four gamma matrices v* themselves. Because of
(v*)? = +£1, the remaining products should consist of y* matrices with different indices. Thus
the only product of four v# matrices that we have to consider is v%y'y2~3. This combination
will appear very often and deserves therefore a special name. Including the imaginary unit
to make it Hermitian, we define

5 —:.0.1.2.3
YEp=ivray. (8.36)
Because the four gamma matrices in 4° anti-commute, we can rewrite its definition introducing
the completely anti-symmetric tensor €444 in four dimensions as

5

i
Y= ﬂ EapBys ’Ya’Yﬁ

0
vy (8.37)
This suggests that bilinear quantities containing one v° matrix transform as pseudo-tensors,
i.e. change sign under a parity transformation & — —2. Two important properties of the >
matrix are (v°)2 = 1 and {y*,~y°} = 0.
Next we consider products of three y# matrices. For instance,

vty =" vy = ity (8.38)
—~—
1
Hence these products are equivalent to y#+°, giving us four more basis elements.

Finally, we are left with products of two different v* matrices. We can associate these six
products with the commutator [y*,+”]. Adding again for later convenience a factor i/2, we
define the anti-symmetric tensor o*¥ as

:
ot = Shr" "] (8.39)
The six matrices o*” are the remaining independent elements we choose as basis for our
matrix representation of the Clifford algebra. All together, the basis has dimension 16,

T = {1,9°, 4", 9, 0"}, (8.40)

as the 4 x 4 matrices. Hence an arbitrary 4 x 4 matrix can be decomposed into a linear
combination of these basis elements. Moreover, the smallest matrix representation of the
Clifford algebra is given by 4 x 4 matrices. Some useful properties of gamma matrices are
collected in the Appendix
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8.2. Dirac equation

Knowing the dimension of the v matrices, we can count the number of degrees of freedom
represented by a Dirac spinor 1. As the 4 matrices and the Lorentz transformation acting
on spinors are complex, the field 7 is complex too and has thus four complex degrees of
freedom. We know already that the Dirac equation describes spin 1/2 particles, which come
with 2s + 1 = 2 spin degrees of freedom for a particle plus 2 for its anti-particle. Thus in
this case the number of physical states matches the four components of the fields ¥. Note
also the difference to the case of a complex scalar or vector field: There we introduced two
complex fields ¢+ = (41 & ig2)/V/2, which are connected by (¢*)* = ¢T. The real fields ¢,
and ¢o are not mixed by Lorentz transformations and thus we count them as two real degrees
of freedom.

We come now to the construction of bilinear quantities out of the Dirac spinors. Since the
Lagrangian is a scalar, we know already that 1) transforms as a scalar while j* = ¢y is
vector. In general, bilinear quantities are constructed as

1Ty = YTy, (8.41)

where 1) = )14 is the adjoint spinor and T is any of the 16 basis elements given in Eq. (8.40).
In this way, the complex conjugated of a bilinear becomes

(YTy')* = (YIy')t = /1Ty 0% = 41409 OT Ty 0y = 4Ty (8.42)

with
T =440, (8.43)

For ¢ = 4/, these bilinears are real as desired. The analogue %) to the probabil-
ity density 9*y of the Schrodinger equation is thus the zero-component of a four-current,
Pip = pTy040% = 40 = j°, as one should expect in a relativistic theory.

Finally, we note that 4° and 4° are involutory matrices, i.e. they satisfy the relation A% = 1.
Because of (1 4+ A)? = 2(1 £+ A), we can construct the projection operators Py = (1 + A)/2,
satisfying

P? =Py, P Pz =0, and P, +P_=1.
Thus we should be able to classify the four independent solutions of the Dirac equation with

the help of (1 4++°)/2 and (1 4++%)/2, or their suitable covariant generalisations.

Lorentz transformations Our derivation of the Weyl spinors as the fundamental represen-
tation of the Lorentz group provided automatically their transformation properties under a
finite Lorentz transformation. Using the Weyl representation, the transformation law for a
Dirac spinor follows as

v o) = s = (00 ) = (5 2 (). s

We want to express the transformation matrix S(A) by gamma matrices, such that it is
representation independent and manifestly Lorentz invariant. We set

S(A) = exp (—iwu, J* /2) , (8.45)

where the antisymmetric matrix w,, parametrises the Lorentz transformation and the six
generators (Jgp), have to be determined. Since the generators are the covariant generalisation
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8. Fermions and the Dirac equation

of o, we suspect that they are connected to o,,. Using Eq. (819]), we obtain as explicit
expression for the o#” matrices in the Weyl representation

. g N k
(7 ) (T 8)
We split J# into boosts and rotations,

1 .
5T = wiod™ + w1 + wig " + wo I (8.47)

Identifying 7; = wio and o; = (1/2)e;j,wjk, we obtain J* = ¢#” /2. In contrast to (844, the
expression S(A) = exp (—io,,w” /4) is valid for any representation of the gamma matrices.
Solutions We search for plane wave solutions ue ?* and vetP* of the Dirac equation with
m > 0 and E = p° = |p| > 0. The algebra is simplified, if we construct the solutions first in
the rest frame of the particle. Then p = m~°, and thus the use of the Dirac representation,

70=1®73=<(1) _01>, and /‘)/1’:0'1’®i7'2:( 0 %), (8.48)

where 7° is diagonal is most convenient. Here o; and 7; are the Pauli matrices, ® denotes
the tensor product, 0 and 1 are 2 x 2 matrices. In the Dirac representation, the ¥> matrix is
off-diagonal,

0 1
75:1®n:(1 0). (8.49)
The Dirac equation becomes
(p—m)u=mH’—1)u=0 (8.50a)
p+mv=m(*+1)v=0. (8.50b)

The RHS shows that (1 +£+")/2 project a general spinor at rest on the subspaces of solutions
with positive or negative energy. Inserting the explicit form of 4¥ into (850), the four solutions
in the rest frame of the particle follow as

u(m,+) u(m, —) o v(m, —) oc ,  v(m,+) x

O O = O
o o o

o O O
O = O O

(8.51)
The additional + label should be the quantum number of a suitable operator labelling the
two spin states of a Dirac particle. Note the opposite order of the spin label in the v spinor
compared to u. We will see later that this choice is required by the structure of the relativistic
spin operator s¥. As an intuitive argument, we add that this labelling corresponds to our
interpretation of antiparticles as particles moving backwards in time: The spinor v describes
two states with negative energy, negative 3-momentum p and negative spin s relative to u.

The solutions are orthogonal,

a(p, s)u(p,s') = N?059 and  5(p,s)v(p,s') = —N?3s.4, (8.52)
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8.2. Dirac equation

but not normalised to one. Note also the minus sign introduced in vv by the corresponding
minus in the (3,4) corner of 4°. Since we know that /11 is the zero component of a four-vector,
the normalisation of the corresponding spinor products is

E E
UT(pa S)U(p, SI) = NQEP(SS,S’ and /UT(pa S)U(pa SI) = _NQEP(SS,S’ . (853)

Summing over spins, we obtain in the rest frame

ab

S ualm st = (0 ) A= 500+ DA, (8.54)

Zva(m,s)ﬂb(m,s) = < 8 _01 > N?Z = %(*yo — DN, (8.55)

ab

We saw that 4* 4+ 1 corresponds in an arbitrary frame to ( & m)/m. Thus in general these
relations become

A= St =47 (FE) (850

2m
S

A =— Zva(p,s)ﬁb(p,s) = N? (M>ab , (8.57)

2m
S

where we defined AL as the projection operator on states with positive and negative energy,
respectively.

The two most common normalisation conventions for the Dirac spinors are A" = v/2m and
N = 1. We will use the former, N' = /2m, which has three advantages: First, the expressions
for AL which appear frequently become more compact. Second, spurious singularities in the
limit m — 0 disappear. Finally, the normalisation of fermion states and thus also the phase
space volume becomes identical to the one of bosons.

The solutions of the Dirac equation for an arbitrary frame can be simplest obtained re-
membering (p — m)(p +m) = p?> — m? =0, i.e.

_7ﬁ+m u an v _7_¢+mv
u(p,+) = N (0, %) d v(p,£)= Ny (0,£). (8.58)

Here, the normalisation was fixed using (8.52)).

Spin  We have seen that the Dirac equation describes a particle with helicity one-half. Thus
the £ degeneracy of the u and v spinors should correspond to the different helicity or spin
states of a Dirac particle. We introduce the spin operator

2:(‘5 2) (8.59)

as an obvious generalisation of the non-relativistic spin matrices. This operator has the
eigenvalues ¥,u(m,+) = +u(m, £) and ¥,v(m,+) = Fv(m,+) and can therefore be used to
classify the spin states of a Dirac particle in the rest frame, where [Hp,¥,] oc [¥?,%,] = 0.
Note however that [Hp,Y,] # 0 for p? # m?, and thus the eigenvalue of ¥, is not conserved
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8. Fermions and the Dirac equation

for a moving particle. This comes not as a surprise, because the total angular momentum
L + s and not only the spin s should be conserved.

We are looking now for the relativistic generalisation of the three-dimensional spin operator
3. It should be a product of gamma matrices which contains in the rest frame of the particle
o in the diagonal. We note first that vy = (9§)( % ¢ ) has the required structure. Then

—o 0
we define the spin vector s# with the properties s> = —1, s# = (0, 8)|p=m and thus s-p = 0.
Since
5 _ 5 _ g8 0
YV hlp=m = =7 87 = ( 0 —os > : (8.60)

we see that y°# measures in the rest frame the projection of the spin along the chosen axis
s. Moreover, v°# commutes with the Dirac Hamiltonian, [y°#,p] = 0, and has because of
(v5#)%2 = 1 as eigenvalues 1. If we apply 7°# on the spinor v(p, s)—what is easiest done in
the rest frame—

ma= (7 2)(4)-(a) (1)

we see that y; has the eigenvalue s; = —1, while x2 has the eigenvalue so = +1. This
explains the “wrong” order of the two spin states of v(p, s) in (851). Finally, we can define
a projection operator on a definite spin state by

Ay == (1+7°4). (8.62)

DN =

Thus we can obtain from an arbitrary Dirac spinor ¢ a state with definite sign of the energy
and spin by applying the two projection operators Ay and Aj.

Helicity An important special case of the spin operator ¢ is the helicity operator h =
sp/|p| which measures the projection of the spin 8 = ¥ /2 on the momentum p of a particle,

-p _

S V= (8.63)

The helicity operator and the Dirac Hamiltonian commute, [Hp, Xp] = 0, because there is
no orbital angular momentum in the direction of p. Therefore common eigenfunctions of Hp
and h called helicity states can be constructed, cf. problem 8.77. Positive helicity particles are
called right-handed, negative helicity particles left-handed. For a massive particle, helicity is
a frame-dependent quantity: If we choose e.g. a frame with 3||p and S > p, then the particles
moves in the opposite direction and h changes sign. Since we cannot “overtake” a massless
particle, helicity becomes in this case a Lorentz invariant quantity.

Axial and vector U(1) symmetries Out of the 16 bilinear forms, two transform as vectors
under proper Lorentz transformations, j# = ¢y"4 and gt = Py°yHep. We now want to check
if these two currents are conserved. Inspection of the Lagrange density shows immediately
that global U(1) transformations,

P(z) = ¢ (z) =ePP(z)  and  P(z) = P (z) = e P(z), (8.64)
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8.2. Dirac equation

keep the Lagrangian invariant, 6.2” = 0. Noether’s theorem leads then to the conserved vector
current j* = ¢py*ep. In the second case, the underlying symmetry is using {7°, v*} =0,

W (z) = 9 P(z) and P(z) = P (2) = (€97 (x)) 1" = P(x)el??” . (8.65)
The resulting (infinitesimal) change is
6.2 = 2miySip . (8.66)

Thus the axial or chiral symmetry Ua (1) is broken by the mass term, leading to the non-
conservation of the axial current j£ for a massive fermion.

Chirality To understand this better we re-express the Dirac Lagrangian using eigenfunctions
of v5. We can split any solution v of the Dirac equation into

1 1
Yr=5(1-V)W=Pp and Yr=3(1+7") = Pry. (8.67)
Since y’¢;, = —¢r and Y¢Yr = Yg, r,r are eigenfunctions of v° with eigenvalue +1.
Expressing the mass term through these fields as
Y =4 (PL + P) 4 = ¢' (Pry"PL+ Py Pr) ¥ = Yry + YR (8.68)

and similarly for the kinetic term,

by = (P} + Pp) P = 9" (Pry°y* Pr + Py Pr) Optp = Y1001, + Prdr,  (8.69)

the Dirac Lagrange density becomes

L =prPyr + iprPpr — m(brYr + YrYL) - (8.70)

Comparing this expression to (8.33), we see that we can identify the Dirac fields ¢,/ in the
chiral representation with the Weyl fields ¢,/ as follows,

P, = ( %L > and 1p = < ¢0R > . (8.71)

Thus the projection operators (8.67) allows us to define the left- and right-chiral components
of a Dirac field in an arbitrary representation. If the mass or interaction terms treat 17 and
1r not symmetrically, one calls them chiral fermions.

The two kinetic terms which are invariant under chiral transformations connect left- to left-
chiral and right- to right-chiral fields, while the mass term mixes left- and right-chiral fields.
Such a mass term is called Dirac mass. The distinction between left- and right-chiral fields is
Lorentz invariant: In terms of Weyl spinors, we saw that the Lorentz transformations Sy, and
Sk do not mix ¢y, and ¢p—which qualified them to form the irreducible representation of the
Lorentz group. In terms of Dirac spinors, the relation [y, 0#¥] = 0 guarantees that left and
right chiral fields transform separately under a Lorentz transformation, ¢ IR = S(A)Yr/r-
However, the mass term of a massive Dirac particle will mix left- and right-chiral fields as
they evolve in time.

Helicity and chirality eigenstates can be seen as complimentary states. The former one is
a conserved, frame-dependent quantum number, while the latter is frame-independent, but
not conserved. Thus helicity states are e.g. useful to describe scattering processes where
the detector measures spin in a definite frame. If on the other hand the interactions of a
fermion are spin-dependent, then one should choose chiral fields, since the Lagrangian should
be Lorentz invariant.
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8. Fermions and the Dirac equation

Charge conjugation From . = 1(iy*d, — m)y and [£] = m? in four dimensions, we see
that the dimension of a fermion field in four dimension is [¢)] = m3/2. Thus we can order
possible couplings of a fermion to spin-1 particles according to their dimension as

_ _ 15 _
L1 =1 Ayt + czAﬂz/ryE’y“qﬁ + Mngﬂﬁa‘“’z/J + ..., (8.72)

where the coupling constants ¢; are dimensionless and we introduced the mass scale M. The
only coupling to the photon field with a dimensionless coupling that also respects parity is
L1 = —qj* A, = —qpy*pA,. Solving the Lagrange equations for % + £ gives the Dirac
equation including a coupling to the electromagnetic field as

(17" (0 + igAy) — mlip(z) = 0. (8.73)

This corresponds to the “minimal coupling” prescription known from quantum mechanics.

Having defined the coupling to an external electromagnetic field, we can ask ourselves how
the Dirac equation for a charged conjugated field 1. should look like. In the case of a scalar
particle, complex conjugation transformed a positively charged particle into a negative one
and vice versa. We try the same for the Dirac equation,

(i7" (3 — igA,) — mhp* () = 0. (8.74)

The matrix y#* satisfies also the Clifford algebra. Hence we should find the unitary transfor-
mation U~ 'y#U = —y** or setting U = C°

(Cy) IO = =y (8.75)
If it exists, then the charge-conjugated field ¢ = Cy%¢* satisfies the Dirac equation with —g,
[17(9, — iqA,) — m]CA** () = 0. (8.76)

Explicit calculation shows that we may choose C' = iy?7?, see problem 8.2?. In the chiral
representation, ¢ = Cy%)* = iy?¢* becomes

o 0 io? or \ _ [ io%¢;
= (0 ) - (8.

which is in agreement with ¢ = 102¢’}} and ¢% = —ioQQSz found earlier.

Example 8.1: Since the y? matrix has the same form in the Dirac and the chiral representation,
we find applying C on the spinors u(p, +) and v(p, £) immediately that

u’(p,s) = C7°u"(p,s) = v(p,s) and v°(p,s) =CY"v"(p,s) = ulp,s).

Inserted into Eq. (885) this implies that ST (z) = CSp(—2)C~!.
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8.2. Dirac equation

Feynman propagator The Green functions of the free Dirac equation are defined by
(ip — m)S(z,2') = §(x — '), (8.78)

where we omit on the RHS a unit matrix in spinor space. Translation invariance implies
S(z,z") = S(z — 2') and, performing a Fourier transformation, the Fourier components S(p)
have to obey

(F—m)S(p) = 1. (8.79)
After multiplication with p + m and use of ¢* = (7", }aya, = a®, we can solve for the
propagator in momentum space,

p+m i
p2—m24ie  p—m+tic’

iSp(p) =i (8.80)

where the last step is only meant as a symbolical short-cut. Here, we chose again with the
—ie prescription the causal or Stiickelberg-Feynman propagator for the electron and, more
generally, for spin 1/2 particles. Note also the connection to the scalar propagator Ap,

iSp(z) = — (i@ + m)iAp(z) . (8.81)

Example 8.2: Express the Feynman propagator as sum over the solutions u(p, s) and v(p,s): We
follow the steps from ([B.25a) to (B.28)) in the scalar case, finding now

dp dpo (P + m)e~iPotelpe

S = — 8.82
r(@) / (2m)3 / 21 (po — Ep +i€)(po + Ep — i€) (8:82)

EPp [ p+m g, —Ep’ —py+m :

— _ iEpt9 0 : 4 1Ept19 _ .0 ipr .
/(27r)3 [ i 3F, e (") +1 Yo e ( x)}e (8.83)
Next we change as in the bosonic case the integration variable as p — —p in the second term,
iSp(z) = / _Pp [(p+ m)e {(Fot=P2)y () 4+ (—p + m)ei(EPt_p“’)ﬂ(—t)] . (8.84)
2E,(2m)?

Using finally (B56]), we arrive at
d3p . .
i = —_— i —i(Ept—pz) 0y _ 5 i(Ept—px),9(_ .0
iSe(o) = [ TR [u(p, 5)(p, 5)e 9(a°) = v(p, 5)0(p, 5)e d(=a")] . (8.:85)

Thus the phase space volume of fermionic states is the same as the one of bosons for the normalisation
of the Dirac spinors chosen by us. The minus sign between the positive energy solution propagating
forward in time and the negative energy solution propagating backward in time is a direct consequence
of our —ie prescription. It implies that fermionic fields anti-commute,

iSp.ap(x) = (01T {ta () (0) }0) = (Oltpa(2)ehy (0)[0)I(t) — (0l4p(0)¢ba()|0)I(—1) , (8.86)

(we have added for clarity the spinor indices) and explains thereby the Pauli exclusion principle and
thus the stability of matter.

Let us have a look back to understand why the sign appears. To simplify the discussion, we neglect
the inessential mass term. In the positive frequency term (p°y° — pv)elP?, we pick up an additional
minus relative to the bosonic case from the variable change p — —p, resulting in p - —p and

Sp(z) o< pe PTH(t) — pePTI(—t).
Thus the relative minus sign has its origin in the fact that the fermion propagator Sg(p) is odd in

the momentum, while a bosonic propagator is even. In turn, the fermion propagator is linear in the
momentum, because the fermion wave equation is a first-order equation.
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8. Fermions and the Dirac equation

8.3. Quantizing Dirac fermions

Spin-statistic connection We have noted that fermionic fields should anti-commute exam-
ining the Feynman propagator in example 821 In a relativistic quantum field theory the spin
and the statistics of a field is connected:

e The wave equations of bosons are second-order differential equations. Therefore the
propagators of bosonic fields are even in the momentum p. As a result, bosonic fields
commute and satisfy Bose-Einstein statistics.

e In contrast, fermions satisfy first-order differential equations and therefore the fermion
propagator Sg(p) is odd in p. This implies that fermions are described by anticommuting
classical spinors or operators, and satisfy Fermi-Dirac statistics.

This leads to a practical and a principal question: First, the practical one: How do we
implement that classical functions which enter the path integral do anti-commute? And
second, does the anticommutation of fermionic variables lead to a consistent picture? In
particular is the Hamiltonian of such a theory bounded from below?

We will start to address the latter question calculating the energy density p = 57 of the
Dirac field assuming that the classical spinors 4 and v do commute. We determine first the
canonically conjugated momenta as

T = % = ipy" = iy’ (8.87)
and 7 = 0. Thus the Hamilton density is
H == L = o — P(iy" 9 — m)ip = i o, (8.88)

where we used the Dirac equation in the last step. To make this expression more explicit, we
express now ¥ by plane wave solutions,

b P)us(pe 7 + di (p)os(p)et 7] | (8-89)

_ d’p
Vi) = Z/ V/(@2m)32E,

Bl ()t + dy(p)ol (p)e 77 . (8.89b)

T d’p
Vi) zs:/ V (27)32E,

Inserting these expressions into (8:88) gives schematically (bf + d)(b — d'), where the relative
minus sign comes from 9, acting on 1. Since the spinors u and v are orthonormal, cf. (8.53]),
only the diagonal terms survive, (b + d)(b — d!) — b'b — dd!. Hence the energy of a Dirac
field is given by

1= [ @ =Y [ @B, [l - dm)dm)] (8.90)

If d and df would be normal Fourier coefficients of an expansion into plan waves, the second
term would be negative and the energy density of a fermion field could be made arbitrarily
negative.
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This conclusion is avoided if the fermion fields anticommute: In canonical quantisation, one
promotes the Fourier coefficients to operators. Requiring then anti-commutation relations
between the creation and annihilation operators for particles and anti-particles,

{bs(p), bl (p)} = 8s,50(p — p') and {ds(p),d},(P)} = 0s0d(p — '), (8.91)

compensates the sign in the second term. Repeating the discussion in section [3.3]one can show
that these anti-commutation relations implement also correctly causality for fermionic fields.
If we restore units, then we have to add a factor A on the RHS of the anti-commutation rela-
tions (897]). Since the RHS vanishes in the classical limit  — 0, classical spinors should anti-
commute. Thus we should perform the path integral of fermionic fields over anti-commuting
numbers which are called Grafimann numbers.

GraBmann variables We now proceed to the question how we can implement the analogue
of the anticommutation relations for operators into the path integral formalism. We define a
Grafimann algebra G requiring that for a,b € G the anticommutation rules

{a,a} = {a,b} = {b,b} =0 (8.92)

and thus a? = b?> = 0 are valid. Then any smooth function f of a and b can be expanded into
a power-series as

fla,b) = fo+ fra+ fib+ foab

- (8.93)
= fo+ fia+ fib— faba.
Defining the derivative as acting to the right, 0 55, we find
of _ of _ z
9 = 1+ 2b, 2 =17 e, (8.94)
and 5 5
dadh ~ dboa ~ 1% (8.95)

As integration rules for GraBmann variables, we require linearity and that the infinitesimals
da, db are also Grafimann variables,

{a,da} = {b,db} = {a,db} = {da, b} = {da,db} =0. (8.96)

Multiple integrals are iterated,

/dadbf(a, b) = /da </ dbf(a,b)) . (8.97)

We have to determine the value of [da and [ daa. For the first, we write

(/da>2: </da> </db> :/dadb:—/dbda:— (/da>2 (8.98)

and find thus [da = 0. We are left with [ daa: Since there is no intrinsic scale—states are
empty or occupied—we are free to set

/ daa = 1. (8.99)
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This implies also that there is no difference between definite and indefinite integrals for
Graflmann variables. Moreover, differentiation and integration are equivalent for Graflimann
variables.

Assume now that n; and 7, are real GraBmann variables and A € R. Then

/dmdng 677214771 = /dmdng (1 + 7]2A7]1) = /dnldng 'r}QAm = /dnl Anl =A. (8.100)

Next we consider a two-dimensional integral with an anti-symmetric matrix A and n = (11, n2).

Then
0 a
A= ( 4 0 > (8.101)

and nT Ap = 2ann,. Using an arbitrary matrix would lead to the same result, since its
symmetric part cancels. Expanding again the exponential gives

/ a2y exp GnTAn) — 4 = (det(4))'2. (8.102)

An arbitrary antisymmetric matrix can be transformed into block diagonal form, where the
diagonal is composed of matrices of the type (8I01]). Thus the last formula holds for arbitrary
n.

Finally, we introduce complex Grafimann variables n = (71,...,n,) and their complex
conjugates n* = (ny,...,n;). For any complex matrix A,
n
/d”nd”n* exp (nTAn) = H a; = det(A). (8.103)
i=1

We can compare this to the result over commuting complex variables, z; = (z; +1iy;)/ V2 and
Z; = (z; — iy;) /2, with dzdy = dzdz* and

/dnzd"z* exp (—zTAz> = d(jt?z:) . (8.104)

Thus for Grafimann variables the determinant appearing in the evaluation of a Gaussian
integral is in the numerator, while it is in the denominator for real or complex valued functions.

Path integral for fermions In the bosonic case, the action S[¢, 7] is quadratic in the canon-
ically conjugated momenta m. The path integral over the momenta can thus be performed
and we started directly with the path integral in configuration space. For a fermion, 7 = iy)f,
and thus the path integral in phase space is

Z[0] = / DYy oS0 = / DYDy ¢ [ S i-my (8.105)

where we changed to ¢ as integration variable. For its evaluation, we use (8I03) in the limit
n — oco. Since the action is quadratic in the fields, we can perform the path integral formally,

Z[0] = Det(ip — m) = exp Trin(ig — m). (8.106)
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Using the cyclic property of the trace, we write
Trin(ip — m) = Triny®(id — m)y® = Trin(—id — m) = (8.107a)
1 1
= §[Tr In(i — m) + Trin(—ig — m)] = §[Tr In(00 + m?)]. (8.107Db)
Thus Z[0] = exp[+TrIn(0 + m?)/2]: We have found the remarkable result that the zero-
point energy of fermions has the opposite sign compared to the one of bosons. We arrive at

the same conclusion, using anti-commutation relations {ds(p), d];, (')} =05,90(p — p') in the
Hamiltonian (8.90),

H = Z/d?’p E, [bTb +dfd—63)(0)] . (8.108)

With 63)(0) = [ d3z/(27)® we see that the last term corresponds to the negative zero-point
energies of a fermion.

Note that this opens the possibility that the zero-point energies of (groups of) bosons and
fermions cancel exactly, provided that the degrees of freedom of fermions and bosons agree.
For instance, the trace in Eq. (8.107h]) includes the trace over the 4 x 4 matrix in spinor space,
leading to a factor four larger results than for a single scalar. Moreover, their masses have
to be the same, my = my. And finally their interactions have to match, so that also higher-
order corrections are identical for fermions and bosons. The corresponding symmetry that
guarantees automatically that the conditions i)-iii) are satisfied is called “supersymmetry”.
As result, the vacuum energy would be zero in an unbroken supersymmetric theory, Clearly,
the second condition is most problematic, since e.g. no bosonic partner of the electron has
been found (yet). Hence supersymmetry must be a broken symmetry, but as long as the mass
spitting m?c — mz between fermions and bosons is not too large, it might be still “useful”.

Feynman rules Next we add Grafmannian sources 1 and 7 to the action, S[t, 1] 479 + 1.
Then we complete the square,

YAY + 7+ = (P + 7AT)A(Y + A ) — ANy, (8.109)
obtaining
Zn,q) = /Dlm)q/_, ol [ d*zPAY+ap+Pn _ Z[0] e 1A (8.110a)
= Z[0] exp (—i/d4:1: d*z’ 7(x)Sp(z — x')n(x')) . (8.110Db)
Here, A !(z,2') = Sp(z — 2') = —SL(2' — z) which corresponds to the fact that the matrix

A is antisymmetric.

The propagator of a Dirac fermion is a line with an arrow representing the flow of the
conserved charge which distinguishes particles and antiparticles. Thus a fermion line cannot
split, and the arrow cannot change direction,

i
— =iS = .
P r(p) p—m+ie
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Next we look at possible interaction terms of a Dirac fermion with scalars and photons,
restricting ourselves to dimensionless coupling constants,

Lt = =45 SPP — g PPV ) — ey A, . (8.111)

Both interaction terms of the fermion with the scalars respect parity, if the field S is a
true scalar and the field P a pseudo-scalar. Analogous to the —i\ coupling in the case of a
scalar self-interactions, we read off from the Lagrangian the following interaction vertices in
momentum space,

-- - —ig; - —igyY’ —igy*

Fermion loops A closed fermion loop with n propagators corresponds to

P(z1)(21)P(w2)P(32) - - - Plan)p(zy) -

I

In order to combine 1 (z;) and 1 (z,) into T{+(x,)¢(x1)}, we have to anticommute 1) (z1)
with the 2n—1 fields ¢(z1) - - - 9 (z,,), generating a minus sign. Thus we have to add to our set
of Feynman rules that each fermion loop generates a minus sign. Another way to understand
the minus sign of fermion loops is to look at the generating functional for connected graphs
setting the sources to zero, iW[0] = In Z[0] = Indet A. The generated graphs are single-closed
loops with n Feynman propagators. The change from 1/det A in Z for bosonic fields to det A
in Z for fermionic fields implies an additional minus sign for closed fermion loops. Similarly,
diagrams contributing to the same process which differ only by the exchange of two identical
external fermion lines carry a relative minus sign. This applies also the exchange of a particle
and anti-particle in the initial and final state (cf. also the discussion of crossing symmetry in

section 0.3.1)).

Furry’s theorem What is the relation between diagrams containing fermion loops with op-
posite orientation in QED? A fermion loop with n external photons attached corresponds to
a trace over n fermion propagators separated by gamma matrices,

Gl = t,rh/ltl SF(yla yTL)’YﬂnSF(yTLa ynfl) T 7#2SF(y27 yl)] . (8112)

If we insert CC~' = 1 between all factors in the trace, use Cy*C~' = —~4*T and
CSp(—z)C~! = ST(z), then we find

Gr = (=1)"tr[ve, SEWns y1) Y, SEWn—1,Un) - Vo SE(y1,52)] (8.113)

= (=1)"tr[yu SF(y1,y2) - - Y SE(Yn, y1)] = (=1)"Ga. (8.114)

Here we used BT AT = (AB)” in the last step. Except for the factor (—1)", the last ex-
pression corresponds to the loop G with opposite orientation. Hence for an odd number
of propagators, the two contributions cancel, while they are equal for an even number of
propagators.
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8.3. Quantizing Dirac fermions

X1 X4 I I3 X1 X4
€2 €3 T2 Ty €3 €2
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€3 T4 Ty T2 T4 €3

Figure 8.1.: The six topologically distinct diagrams contributing to the photon four-point
function.

Symmetry factors in QED The last issue we want to address in this section is the question
if the interactions in (BIII)) lead to symmetry factors. We recall that drawing Feynman
diagrams we should include only diagrams which are topologically distinct after the integration
over internal coordinates. For instance, the two diagrams

xlfv\A-Qle’g IlA/v-QMIEQ

are not topologically distinct, because a rotation around the z;—z9 axis interchanges them.
Therefore, the corresponding two-point function G(z1,z2) has to be invariant under a change
of the orientation of the fermion loop — as it is guarantied by the Furry theorem. The two-point
function G(z1,x2) consists of two identical diagrams obtained by exchanging the integration
variables y; and y,. Thus the factor 2! compensates the 1/2! from the Taylor expansion of
exp(i-Lnt), if we draw only one diagram, and its symmetry factor is one.

Next we consider the four-point function G(z1,z2, 3, z4) which describes photon-photon
scattering. The four-point function G(x1,z2,z3,1z4) contains 4! x 3! diagrams, obtained by
permutating y1, y2, y3, ¥4 and x9, T3, z4. After integration over the free y; variables, the factor
4! compensates the 1/4! from the Taylor expansion of exp(i.-Z,;). In configuration space, the
3! = 6 topologically distinct diagrams shown in Fig. B.I] remain which carry no additional
symmetry factor. Thus the resulting rule for QED is very simple: We do not need symmetry
factors, if we draw all diagrams which are topologically distinct after the integration over
internal coordinates. Fermion loops with an odd number of fermions are zero and can be
omitted. Independent of the type of interaction, any fermion loop leads to an additional
minus sign.
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8. Fermions and the Dirac equation

8.4. Weyl and Majorana fermions

Up to now we have discussed the Dirac equation, having in mind a massive particle carrying a
conserved U(1) charge that allows us to distinguish particles and anti-particles. We call such
particles Dirac fermions. In the SM, all particles except neutrinos carry a non-zero electric
charge, are massive and are therefore Dirac fermions. In this section, we consider the case
where one of these two conditions is not fulfilled.

Weyl fermions, ¢ 7 0 and m = 0: The Dirac equation (8.I8)) in the chiral representation
decouples for m = 0 into two equations called Weyl equations,

(E+op)¢r(p) =0 and (E—op)gr(p) =0. (8.115)

A fermion described by the Weyl equations is called a Weyl fermion. The correct dispersion
relation, F = |p|, requires that ¢, is an eigenstate of the helicity operator h = op/(2|p|)
with eigenvalue h = —1/2, while ¢ has the eigenvalue h = +1/2. Recall also that helicity
is frame independent for a massless particle; in this case positive helicity agrees with right
chirality@. Until the 1990’s, the experimental data on neutrino masses were consistent with
zero and neutrinos were incorporated into the SM as Weyl fermions. Since only left-chiral
particles and right-chiral antiparticles participate in weak interactions, one set v = (¢0L ),
while antineutrinos were described by the CP transformed state. The lepton number L, of
the three flavours o = {e, u, 7} of leptons played the role of the conserved U(1) charge that
distinguishes neutrinos and antineutrinos. As result, the difference in the number of leptons
and antileptons of each individual flavour was conserved. Neutrino oscillations that occur
if neutrinos are massive conserve the total lepton number L = ) L, but interchange the
individual neutrino flavours L,. Thus the observation of neutrino oscillations showed that
neutrinos are not Weyl fermions.

Majorana fermions, m > 0 and ¢ = 0: The Dirac field ¥p has to be complex, because
it transforms under the complex representation S(A) of the Lorentz group. In the case of
a neutral fermion, where we cannot distinguish particles and antiparticles, we should have
only half of the degrees of freedom of a charged Dirac field. By analogy with the scalar
case, we expect that we can halve the number of degrees of the complex Dirac field by
imposing a reality condition, 13; = 1},. But this condition can be Lorentz invariant only in
a special representation of the gamma matrices where o}, = —0,,, and thus S(A) is real. This
condition defines the Majorana representation of the v matrices in which all v# and thus o,
are imaginary, and the charge conjugation matrix C' is the unity matrix, C' = 1. Then also the
Dirac equation becomes real and thus the time-evolution preserves the reality condition. Since
the spinors are real in this representation, no phase invariance 9 (z) — 9'(z) = exp(i)y(z)
as in (8.64)) can be implemented for a Majorana fermiond and thus they cannot carry any
conserved U(1) charge.

4Most authors call ¢, /r and ¢,/ g not left and right-chiral but left and right-handed, although this identifi-
cation holds only for massless particles.

’This argument does not forbid that a Majorana fermion carries conserved charges which transform under a
real representation of a symmetry group: An example are gluinos, the suggested supersymmetric partners
of the gluons, which are Majorana fermions and transform under the adjoint representation of SU(3).
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8.4. Weyl and Majorana fermions

We can halve the number of degrees of freedom of a Dirac fermion in a representation
independent way by using a self-conjugated field ¢ = 1. A fermion described by a self-
conjugated field v,/ is called a Majorana fermion and the corresponding spinor a Majorana
spinor. The field operator of a Majorana field contains only one type of annihilation and
creation operators,

- d3p —ipz t +ipx
@) =3 [ e [ ] @119

Using then

3 . .
i) = 0100 = T [ e [l IO 0+ astr)r i e )

(8.117)
we confirm immediately the Majorana property 9$,(z) = 9 (z). Expressed by Weyl spinors,
a Majorana spinor becomes

e _ . o1 _ [ i0%¢;
(U —w—(_ia%z)_( ¢RR> : (8.118)

Thus a Majorana fermion (m > 0, ¢ = 0) contains two degrees of freedom, which we may
choose either as a left-chiral or or a right-chiral two-spinor with both helicities.
We can replace any Dirac field 9p by a pair of self-conjugated fields,

L

Para = 7 (YD +9D) , (8.119a)
Yu2 = % (¥ —p) - (8.119b)

and vice versa inverting these relations. Thus it is only a question of taste, if one describes
fermions by Dirac, Weyl or Majorana spinors.

Dirac versus Majorana mass terms Charge conjugated Dirac spinors were defined by
Yo=Y =P, gt =yiC.

We define also

= (1) = 50497 = ), (5.120)

which is consistent with our previous definition for Weyl spinors. As we saw, a Dirac mass
term connects the left- and right-chiral components of the same field and ¢ = ¢p + g is a
mass eigenstate. We now use the observation that (¢1)¢ = (¢°)r allows us to obtain new
mass terms@ called Majorana mass terms,

%1, =mp (i + Pri) (8.121)
—Zr =mr(WYr + VrRVER) (8.122)
5Note that terms like ¢)$ 1. = ¥% Ctr. vanish because of CT = —C, if one does not already assumes on the

classical level that fields are anticommuting Gramann variables.

123



8. Fermions and the Dirac equation

which connect the left- and right-chiral components of charge-conjugated fields. The corre-
sponding mass eigenstates are the self-conjugated fields

X=Yr+9%7 =X and w=1p+Pf=w" (8.123)
with 47 = —mpxx and £r = —mpgww. In the general case, both Dirac and Majorana mass
terms may be present,

~ Loy = mpPryr +mp§r + le,Z%'L/JR + h.c. (8.124a)
= %mD(Xw-l-d)x) +mrxx + mpww , (8.124b)

or in matrix form

— Pou = (x,a;)( mi - mp/2 ) < X ) : (8.125)

mp/2 mpg w

Physical states have a definite mass and thus we have to diagonalise the mass matrix. Its
eigenvalues are

1

Mg = 5{(mL+mR)ﬂ:\/(mL—mR)2+m%} (8.126)

and its eigenvectors

n = cos ¥y — sindw (8.127a)
12 = sinx + cos Yw (8.127h)

with tan 29 = mp/(mg —mpg). Thus the most general mass term .Zpys for a four-component
fermion spinor corresponds to two Majorana particles with different masses. Therefore we
can view a Dirac particle as a special case of two Majorana particles with identical masses
and interactions.

The seesaw model tries to explain why neutrinos have much smaller masses than all other
particles in the standard model. Let us assume that there exist both left- and right-chiral
neutrinos and that they obtain Dirac masses as the other fermions, say of order mp ~
100 GeV. The right-chiral vg does not participate in any SM interaction and suffers the same
fate as a scalar particle: Its mass will be driven by quantum corrections to a value close to
the cutoff scale used, and so we expect mpr > mp. Moreover, in many models it is my, = 0.

Expanding then
1
mio & §{mRimR\/1+m%/m%} , (8.128)

the two eigenvalues are m; ~ m%/(4mp) and my ~ mg. For mp ~ 10 GeV, the light
neutrino mass is in the eV or sub-eV range as required by experimental data.

Summary

The fundamental representation of the proper Lorentz group for massive particles is given
by left and right-chiral Weyl spinors. These two-spinors are mixed by parity and thus one
combines them into a Dirac four-spinor for parity conserving theories like electromagnetic
and strong interactions.
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8.4. Weyl and Majorana fermions

Fermions satisfy first-order differential equations and have mass dimension 3/2. Therefore
the fermion propagator Sg(p) is linear in p and thus Sp(x) is an antisymmetric function in z.
As a result, fermions satisfy Fermion-Dirac statistics and are described either by Grafimann
variables or by anticommuting operators.

A Weyl fermion has m = 0 and g # 0 and satisfies the Weyl equation; its solution has
two degrees of freedom, a left-chiral field with negative helicity and a right-chiral field with
positive helicity. A Majorana fermion is a self-conjugated field with m # 0 and ¢ = 0 which
has therefore also only two degrees of freedom. It is described either by a left-chiral or a
right-chiral 2-spinor with both helicities. In the Majorana representation, this spinor can be
chosen to be real.

Further reading

The symmetries of the Dirac equation as well as of other relativistic wave equations are
extensively discussed by [Gre00]. More details on two-component Weyl and Majorana spinor

can be found e.g. in [Sre07].
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9. Scattering processes

Most information about the properties of fundamental interactions and particles is obtained
from scattering experiments. In a scattering process, the initial and final state contain widely
separated particles which can be approximated as free, real particles which are on mass-
shell. By contrast, n-point Green functions describe the propagation of virtual particles. In
order to make contact with experiments, we have to find therefore the link between Green
functions and experimental results from scattering experiments. The latter can be predicted
knowing the scattering matrix S which is an unitary operator mapping an initial state at
t = —oo on a final state at ¢ = +00. We introduce first the S-matrix and show then that
its unitarity restricts the analytic structure of Feynman amplitudes; in particular it implies
the optical theorem. Then we derive the connection between n-point Green functions and
scattering amplitudes, before we perform some explicit calculations of few tree-level processes.
Finally, we consider the special case when in a scattering event additional soft particles are
emitted. The relation between Feynman amplitudes and cross sections or decay widths which
is essentially the same as in non-relativistic quantum mechanics is reviewed in the appendix
of this chapter.

9.1. Unitarity of the S-matrix and its consequences
A scattering process is fully described in the Schrodinger picture by the knowledge how initial

states |i,t) at ¢ = —oo are transformed into final states |f, %) at ¢ — oo. This knowledge is
encoded in the S-matrix elements

|f,t=o00) =Sy li,t = —00) . (9.1)

An intuitive, but mathematically delicate definition of the scattering operator S is the t — oo
limit of the time-evolution operator U (¢, —t),

=1 —1). 2

S Jim U(t,—t) (9.2)

Thus the scattering operator S evolves an eigenstate |n,t) of the Hamiltonian from ¢ = —oo
to t = 400,

S|n,—o00) = |n,o0) . (9.3)

The unitarity of the scattering operator, STS = SSt = 1, expresses the fact that we (should)
use a complete set of states for the initial and final states in a scattering process,

1= Z|n +00) (n, +oo| = ZS|n —o0) (n, —o0| ST = §ST. (9.4)
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9.1. Unitarity of the S-matrix and its consequences

Optical theorem We split the scattering operator S into a diagonal part and the transition
operator 7', S = 1 +iT', and thus

1=0Q+iT)1-iTH =14+i{(T -T"H +1T" (9.5)

or
irTt =T - TT. (9.6)

Note that in perturbation theory the LHS is O(g?"), while the RHS is O(¢g"). Hence this
equation implies a non-linear relation between the transition operator evaluated at different
orders. At lowest order perturbation theory, the LHS vanishes and T is real, T = T'.

We consider now matrix elements between the initial and final state,

(1T = THi) = Tpi = Ty = L (fITTT i) =13 Ty Ty, - (9.7)

If we set |i) = |f), we obtain a connection between the forward scattering amplitude Tj; and
the total cross section oy, called the optical theorem,

23T;i = ) |Tonl* (98)

The optical theorem relates the attenuation of a beam of particles in the state 7, dN;
—|ST3|?N;, to the probability that they scatter into all possible states n. Its RHS is given
by the total cross section o, up to a factor depending on the flux of initial particles and
possible symmetry factors. For the case of two particles in the initial state, comparison with

Egs. (@1429) and (@I53) from the appendix shows that
SAi; = 2pcms\/g Otot - (9.9)

Note also that the forward scattering amplitude T;; means scattering without change in any
conserved quantum number, since we extracted already the identity part, Tj; = (S; — 1) /1.

Imaginary part of the amplitude Let us consider the Feynman amplitude A as a complex
function of the squared center-of-mass (c.m.) energy s. The threshold energy ,/s¢ in the c.m.
system equals the minimal energy for which the reaction is kinematically allowed. The optical
theorem implies that A is real for s < sp and s € R. Thence s = s* and A(s) = [A(s)]* and
therefore

A(s) = [A(s™)]" for s<sg. (9.10)

If A(s) is an analytic function, then also [A(s*)]* is analytic and we can continue this relation
into the complex s plane. In particular, along the real axis we have for s > sg

RA(s +ic) = RA(s —ie) and SA(s+1ie) = —SA(s —ie) . (9.11)

Thus starting from sy, the amplitude A has a discontinuity along the real s axis. Since the
amplitude A should be single-valued, it has to contain a branch cut along the real s axis
starting at sg. Feynman’s m? — ie prescription tells us then which side of the cut we should
pick out as the “physical” one.
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9. Scattering processes

The second relation in (O.11]) allows us to obtain the imaginary part of a Feynman amplitude
from its discontinuity,

disc(A) = A(s +ie) — A(s — ie) = 2iSA(s + ie) . (9.12)

The prototype of a function having a discontinuity and a branch cut (along R™) is the loga-
rithm, . .
Ln(z) = La(re”) = In(re'”) 4 2kxi = In(r) 4 (9 + 2kn)i (9.13)

with S In(z +ie) = 7. How does an imaginary part in a Feynman diagram arise? Comparing
the relation

L _»p (1> T ind(z) (9.14)

x +1ie T

with the propagator of a virtual particle, we see that virtual particles which propagate on-shell
lead to poles and to imaginary terms in the amplitude.

Example 9.1: Verify the optical theorem for ¢¢ — ¢¢ scattering in the A¢* theory at O(A\?):
The logarithmic terms in the scattering amplitude (@74D) for ¢¢ — ¢ scattering at one-loop have
the form

F(¢*,m) = /0 dz In [m? — ¢*2(1 — 2)] (9.15)

with ¢ = {s,t,u}. In the physical region, the relation ¢> > 4m? holds only for the s channel diagram.
The argument of the logarithm becomes negative for

1 1
Yy = = [1 +/1- 4m2/s2] = ;%38 (9.16)

2

N | =

with 8 = /1 —4m?2/s? as the velocity of the ¢ particles in the center of mass system. Using now

Q(ln(—¢? — ie)] = —, the imaginary part follows as
A2 3+38 A2
S(A) =1— dz=-—@. 1
S =g /%_%B 2= 550 (0.17)

The optical theorem implies thus that the total cross section oot (dp — all) at O(A\?) equals

SAu A2
o e /s 32ms

(9.18)

where we used 2pems = +/$8. On the other hand, the Feynman amplitude at tree level is simply
A = —X\ and thus the elastic cross section for ¢p¢ — ¢¢ scattering follows as gy = A\?/(327s). At
O()\2?), the only reaction contributing to the total cross section is elastic scattering, and thus the
two cross sections agree. Note also the treatment of the symmetry factors: In the loop diagram, the
symmetry factor S = 1/2! is already included, while the corresponding factor for the two identical
particles in the final state is added only integrating the cross section.

0.2. LSZ reduction formula

We defined the generating functional Z[.J] = (0, 00|0, —00) s as the vacuum-vacuum transition
amplitude in the presence of a classical source J. Thus the generating functional contains the
boundary condition ¢(z) — 0 for £ — +oo. We have two options to find a bridge between
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9.2. LSZ reduction formula

S-matrix elements and the formalism we have derived up to now: One possibility is to find the
connection between the Green functions derived from Z[J] and S-matrix elements. Another
one is to define first a new functional Z'[J] with the correct boundary conditions, and to
establish then the connection between Z[J] and Z'[J]. We choose the first way, restricting
ourselves for simplicity to the case of a real scalar field.

Let us start with the case of a 2 — 2 scattering process. We can generate a free two—particl
state composed of plane-waves by applying two creation operators on the vacuum,

k1, ko) = al(k1)a (k2) |0) . (9.19)

We obtain localised wave packets defining new creation operators

al = /d3k filk)al (k) (9.20)

where f;(k) is e.g. a Gaussian centered around k;,
filk) oc exp[—(k — k:)*/(20°)]. (9.21)
We assume that the initial state of the scattering process at ¢ = —oo can be described by

freely propagating wave packets,
i) = lim_af(H)a(t)|0) = |1, k2; —o0) , (9:22)
and similarly the final state as

) = lim al, (t)a}, (¢) |0) = [, ky; +00) . (923)

Here we changed to the Heisenberg picture, since our Green functions are time-dependent.
Our task is to connect this transition amplitude (f |7) to the corresponding four-point Green
function. The latter is the time-ordered vacuum expectation value of field operators. The first
property, time-ordering, is automatically satisfied for the transition amplitude (f |7), since we

can write
(f i) = lim (0] ay (t)ax (t)a](~t)a}(~1) [0) (9.24a)
= lim (0| T{av (t)ax (t)a} (~t)ab(~1)} |0) . (9.24b)

Thus we only have to re-express the creation and annihilation operators as (projected) field
operators. We define a scalar product for solutions of the Klein-Gordon equation as follows,

@00 =i [ 2 s @Txe) =i [ @ |pr@ 20D - @] o)

Comparing this definition to Eq. (5.13]), we see that the scalar product is the zero component
of the conserved current j#. Thus the value of the scalar product (¢, x) is time-independent
and corresponds to the number of particles minus the number of anti-particles.

'To reduce clutter, we assume ki # ko.
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9. Scattering processes

For plane-wave components with definite momentum,

1

(1) = W o kT — N ok (9.26)

the scalar product is given by
(b1os bir) = iNE Ny / &P [eik’f(—iwk)e*i“ — jwy ek Teik (9.27a)
= NZ(2m)30(k — k') 2wge’ @R 1)t = 5(k — k). (9.27b)

Similarly it follows (¢, ¢r) = —d(k — k'), while the two terms in the scalar product cancel
otherwise,

(¢k> br) = (B drr) = 0.

Thus we can invert the free field operator

3 . .
o) = [ @k [a)0(@) 40! 0030 = [ o ot al et 029

to obtain
ol (k) = (85 9) = ~is [ & &5 p(0). (9.29)

Next we want to rewrite this expression in a way that shows explicitly its Lorentz invariance.
Using the identity

o0

aT(k,oo)—aT(k,—oo):/_ dt%aT(k,t) (9.30)

we insert first (@.29) assuming a wave-package localised around k; and perform then the time
differentiation,

ot (k1 00) — af(ky, —00) = —i / &PEf (k) / d'a 9, (73, p(a)) (9.31)
- / Bk (k) / dte (e MR p(a) - glr)0fe )

where the two terms linear in 0; cancelled. Then we use that the field is on-shell, k%2 = m?,
for the replacement

age—ikx — (VQ _ m2)e—ikx.
Since the field is localised in space, we can perform two partial integrations moving thereby
V? to the left, obtaining

al(ky,00) —al(k;, —o0) = —i/d3kf1(k) /d%« e 7 (O 4+ m?) ¢(z) . (9.32)

In a free theory, ¢(z) satisfies the Klein-Gordon equation and the RHS would vanish.
In an interacting theory with e.g. % = —\¢*/4!, the RHS is however proportional to

(O 4+ m?) ¢(z) = Ap®/3! # 0.
Having performed the partial integrations, we can forget the wave-packets, ¢ — 0, and
write simply

al(k, —00) = al(k,00) + Ny / d*z e (O + m?) (). (9.33)
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Taking the Hermitian conjugate, we obtain for the annihilation operator
a(k, ) = a(k, —00) + iNg / d'z e (O 4+ m?) ¢(z) . (9.34)

When we insert these expressions into (f |i), we obtain a four-point function combining the
second terms from the RHS of (@.33) and (@.34). Including the terms af(k, o0) and a(k, —o0)
generates particles propagating from ¢ = —oo to ¢ = +o0o0 with momenta unchanged, i.e.
to terms corresponding to disconnected graphs. Hence we do not need to consider these
contributions, restricting ourselves to connected Green functions. For n particles in the initial
and m particles in the final state, we obtain

n
(kK0 g —00) = 4 [ [ s Ny o7 (0,4 m?)
. = (9.35)
< IT [ dtys M, @59 (@, -+ m2) O To(1) - 40 [0)
j=1

This is the reduction formula of Lehmann, Symanzik and Zimmermann (LSZ): For each
external particle we obtained the corresponding plan wave component and a Klein-Gordon
operator. Since the latter is the inverse of the free 2-point function, we can rephrase the
content of the LZS formula simply as follows: Replace the 2-point functions of external lines
by appropriate wave functions, e.g. ¢x(x) for scalar particles in the initial state and ¢y, () for
scalar particles in the final state.

Since we started from field operators in the Heisenberg picture, the matrix element is in
the Heisenberg picture, too. In the Schrodinger picture, it is

< Il,,k;n|lT|k1,,kn> Ele“

where we used also S = 14 iT and the fact that we neglected disconnected parts. Finally, we
define the Fourier transformed n-point function as

G(xl,...,xn):/ilill

Then we obtain the LSZ reduction formula in momentum space,

4.
((;:)14 exp <—1ka> Gki,- -, kn). (9.36)

iTfi = 14Ny, -+ Nig, Nig - Ng, (8 = m?) -+ (2 = m?) (2 = m) - (k2 = m?)

X Gk, k=KL, —kL ). (9.37)
The Green function G(ki,--- ,kn,—k|,...,—k},) is multiplied by zeros, since the exter-
nal particles satisfy k> = m?. Thus Ty; vanishes, except when poles 1/(k* — m?) of
G(ki,-- ,kn,—k},...,—k],) cancel these zeros. In the case of external scalar particles, only

their normalisation factors are left. As they are not essential for the calculation of the tran-
sition amplitudes, one include these normalisation factors into the phase space of final state
particle and in the flux factor of initial particles. This explains our Feynman rule to replace
the scalar propagator by one for amplitudes in momentum space.

The derivation of the LSZ formula for particles with spin s > 0 proceeds in the same
way. Their wave-functions contain additionally polarisation vectors e*(k), tensors e*” (k), or
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9. Scattering processes

spinors u(p) and @(p) and their charge conjugated states. In the case of a photon (graviton),
we have to add £*(k) (¢ (k)) in the initial state and the complex conjugated £*#(k) (¢**¥(k))
in the final state. In the case of Dirac fermions, we have to assign four different spinors to the
four possible combinations of particle and anti-particles in the initial and final state. Having
chosen u(p) as particle state with an arrow along the direction of time, the simple rule that a
fermion line corresponds to a complex number 1) - - - 9 fixes the designation of the other spinors
as shown in Fig. Connecting the upper fermion lines, u(p') - - - u(p), corresponds to the
scattering e (p) + X — e (p') + X', while %(q) - -- u(p) describes the annihilation process
e"(q)+e~(p) = X + X'. Connecting the lower fermion lines, v(q) - - - v(g), corresponds to the
scattering e (q) + X — et (¢') + X', while u(p’) ---v(q) describes the pair creation process
X + X' — e (q) + e (p'). Recall that the Feynman amplitude A is defined omitting the
normalisation factor N, = [2w,(27)3]7/2 from all wave-functions—the splitting of S-matrix
elements into Feynman amplitudes and phase space is discussed in appendix [9.Al

u(p) u(p')

et (k) e*M (k)

v(q) v(q)

Figure 9.1.: Feynman rules for external particles in momentum space; initial state on the left,
final state on the right.

Wave function renormalisation Up to now we have pretended that we can describe the fields
in the initial and final state as free particles. Although e.g. Yukawa interactions between two,
by assumption, widely separated particles at ¢ = oo are negligibly small, self-interactions
persist. These interactions lead to a renormalisation of the external wave-functions.

We can rephrase the problem as follows: If the creation operator corresponds to the one
of a free theory, a:g(k:, —00), then it can only connect one-particle states with the vacuum.
In contrast, the interacting field can also connect many-particle states to the vacuum and
therefore its overlap with single-particle states is reduced,

a'(k,—00) |0) =VZ |k) +V1—Z{|K,K" k") +...} (9.38a)
= VZal(k1)|0) + V1 — Z {|k/, K" E") + ...} .. (9.38b)

Therefore the free and the interacting fields are connected by
d(z) — VZo(x) (9.39)

for t — +o00, where we call the factor Z the wave-function (or the field-strength) renormal-
isation constant. We will show in section [11.4.2] that this factor can be extracted from the

132



9.3. Specific processes

self-energy diagrams of the corresponding field. More precisely, including a factor \/Z;, for
each external line of type k takes into account self-energy corrections in the external lines.
Therefore it is enough to calculate the self-energy and to extract v/Z; once; after that we can
omit self-energy corrections in the external lines adding simply factors /Zj. Finally, note
that we can set Z = 1 in tree-level processes, since in perturbation theory Z = 1+ O(g) holds.

9.3. Specific processes

We consider now in detail a few specific processes. First, we derive the Klein-Nishina for-
mula for the Compton scattering cross section using the standard “trace method”. Then we
calculate polarised eTe™ — pTp~ and eTe™ — 7y scattering applying helicity methods.

9.3.1. Trace method and Compton scattering

Matrix element The Feynman amplitude A of Compton scattering e~ (p) +v(k) — e~ (p') +
v(K') at O(e?) consists of the two diagrams shown in Fig. and is given by

p+E+m

P Pk rm ] ). (9.40)

iA = —ie’a(p’) ¢! —(p e

f+¢

Since the denominator is a non-zero light-like vector, we have omitted the ic. Note that
the two amplitudes can be transformed into each other replacing € <+ ¢ and k < —k'.
This symmetry called crossing symmetry relates processes where a particle is replaced by an
anti-particle with negative momentum on the other side of the reaction.

k K k D

p+k
p p/ p k‘/

Figure 9.2.: The two Feynman diagrams contributing to Compton scattering at O(e?).

We evaluate the process in the rest-frame of the initial electron. Then p* = (m,0) and
choosing e = (0,¢) as well as e’ = (0,€’), it follows

p-e=p-e =0. (9.41)
Moreover, the photons are transversely polarised,
k-e=kK-&=0, (9.42)

and we choose real polarisation vectors. We anti-commute p in the numerator to the right,
Pt =2p-e' — #'p= —¢p and use the Dirac equation, pu(p) = mu(p). Then we simplify also
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9. Scattering processes

the denominator using p?> = m? and obtain

A= —eau(p)) [% + Y ] u(p) . (9.43)

2p-k  2p-K

Typically the electron target is not polarised, and the spin of the final electron is not
measured. Thus we sum the squared matrix element over the final and average over the

initial electron spin,
A7 = 1514 = 5 |ag (£H . i
A = 5 P =5 3 o) (L5 + 255 ) o)

s,s’ 5,8’

(9.44)

Calculating |A|> = AA* requires the knowledge of A* = A'. Recall that we defined ¢) = ¢)f+°
such that a general amplitude A composed of spinors,

A= 4E"Tp(p) =4 (") Ty (p) (9.45)

with T' denoting a product of the basis elements given in Eq. (840), becomes
A" = () T (") = d(p)TY (). (9.46)
Important special cases worth to memorise are 7% = y#, 45 = —~° and d¢f---£ = £--- pé.

We now write out the spinor indices,

—2_et—_ [ FH _ the | FEY ’
‘A‘ =3 Zua(p) [2;0—k + 2 k']ab up(p) e (p) [210—]? + 2 k,]CdUd(p ). (9.47)

8,8’

Using the property (8.56) of the Dirac spinors, Y u.(p, s)as(p, s') = (p + m),,, we obtain

. ! ) / 1l / IPE
-y [ ] s [0 £ o

Since p+m combines one spinor in A and one in A*, the result is a trace over gamma matrices,

[4* = %tT{(ﬁ’+ m) [i b, ﬂé 2 ] (b +m) [% Wi } . (9.49)

pk  p-k]

Working out some more examples of this type (e.g. in problem 9.?7?), you should convince
yourself that each fermion line in A is converted into a trace in |A|?. Useful identities for the
evaluation of such traces are given in the appendix

We simplify this trace by anti-commuting identical variables, such that they become neigh-
bours. Then we can use ¢¢ = a? and reduce thereby the number of gamma matrices in each
step by two. Multiplying out the terms in the trace, we obtain three contributions that we

denote by
St So 253

ri 3= w2 R DR R)
We consider only the first term S; in detail. Starting from
Sp=tr {(#' +m) 'k (p+m) ket } = tr{p'¢'s Jr kt'} +m*er{f'¢ JE fe'} =
Qkp—]ﬁk k2:0
=2(k-p)tr {p'F ¢k} —tr {PF #EELE} (9.51)

(9.50)
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9.3. Specific processes

we arrive at an expression with only six gamma matrices. We continue the work,

Si =20k -p)tr {FEHH'Y = ~2(k-p)tr {F ¢ RHH} = (9.52a)
=2(k-p)tr {p'¢'h¢'} =2(k-p) [2(k- ) tr () —tr {F¥¢H}] = (9.52b)
=8 (k- p)[ (k-¢) (0-&) + (0 F)] - (9.52c)

where we have used ¢¢ = ¢'# = —1. We want to eliminate as next step the two scalar products

that include p’. Four-momentum conservation implies (p' — k)% = (p — k')* and thus
pk=p-k. (9.53)
Multiplying the four-momentum conservation equation by &', it follows moreover

p+k=p+k = .prd k= p+ k. (9.54)
0 0

Thus our final result for Sy is
S1=8(k-p)[2 (k)" + K -p]. (9.55)

So can be obtained observing the crossing symmetry of the amplitude by the replacements
e +> & and k <> —k'. The cross term S3 has to be calculated and we give here only the final
result for the combination of the three terms, where some terms cancel
— Wwoow
A" = ¢ [— +— +4(e- ) - 2] . (9.56)
W  w

Cross section To obtain the cross section, we have to calculate the flux factor and to perform
the integration over the phase space of the final state,

1 d3 p 1
_ (P — P Al H I 2 ap™

with the final state phase space d®(™. The flux factor I in the rest system of the electron is
simply

I =0 p1-p2=mw. (9.58)
Using Eq. (?7),
d3p, _ d4 15(4) 12 2 9 / 9.59
g = P07 (7 —m)d(p), (9.59)
the phase space integration becomes
1 |k,|2dkl d3pl
@(2):_/9, / @) (1) _
d )2 dQy, | | 2m s (p' +K —p—k) (9.60)
1 2
=52 /ko/|k: |dk' & ((p+k—k’) —m2) : (9.61)

The argument of the delta function is

(p+k—k')2—m2=m2+2p-k—2p-k'—2k-k'—m2 (9.62a)
=2m (w— ') — 2ww' (1 — cos9) = f(w'). (9.62b)
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9. Scattering processes

In order to evaluate the delta function we have to determine the derivative f’(w'),
f(W') =-=2m — 2w (1 — cos®) , (9.63)

and the zeros of f(«'),
0=2m (w—w') —2ww (1 —cos?) . (9.64)
Solving for w' gives w' [w (1 — cos¥) + m] = mw and

' w

v :1+%(1—cos19)'

(9.65)

This is the famous relation for the frequency shift of a photon found first experimentally
in the scattering of X-rays on electrons by Compton 1921. The observed energy change of
photons was crucial in accepting the quantum nature (“particle-wave duality”) of photons.
Combining everything, we obtain

1
4o = ) / dQy |w'|dw’ § (2m (w — ') — 2ww' (1 — cos V) (9.66a)
T
1 w' 1
= [ Ay = dQp w' 9.66b
87r2/ ¥ om [1+ £ (1—cos?)] 167r2mw/ b @ ( )
and thus as differential Klein-Nishina cross section
do 1 w'? —9 a? W? W w
R SR Y S S o S SRY PP D :
dQ  4dmw 1672 mw ‘ ‘ 4m? w? [w + w' +4(e-€) ] (9.67)

with o = e2/(4r). For scatterings in the forward direction, ¥ — 0 and thus o' — w,
the scattered photon retains (in the lab frame) its energy even in the ultra-relativistic limit
w > m. The same holds in the classical limit, w < m, but now for all directions. Thus we
obtain as classical limit of the Klein-Nishina formula the polarised Thomson cross section

dU a2 2 2 2
0~ 2 (e-') =rg(e-€)", (9.68)
with 7o = a/m as the classical electron radius.
Averaging and summing over the photon polarisation vectors is simplest, if we choose the
angle between € and &' as 9. Then

Z (e 6')2 =1+cos’4. (9.69)

r,r!

The integration over the scattering angle ¢} can be done analytically. We use z = cos ¢ and
set @ = w/m,

ra? ! 1 1 1 — 22
= — [ A& - 9.70
o= [ rraa—ap * traioa - e o (9:702)
ma? (1+a [20(1 +@) In(1 + 2@) 1+ 3w
= —In(1 + 26 - . 9.70b
2m? { e [ (1o —n+20))+——7 1 +2w)2} (9.70D)
Since in the electron rest frame s = (p + k)2 = m? + 2mw = m?(1 + 20), we can use

@ = (s/m? —1)/2 to express o in an explicit Lorentz invariant form.
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9.3. Specific processes

Approximations for the non-relativistic and the ultra-relativistic limit are

1—20+ O(&? for o < 1
U:aThx{ @+ 0(@) orw<t, (9.71)

o (In(2@) + §) + O(@™?%) for@>1,

where the Thomson cross section is given by or, = 87a?/(3m?). These approximations are
shown together with the exact result in the left panel of Fig. In the ultra-relativistic
limit s > m?, the total cross section for Compton scattering decreases as o o 1/s. On the
other hand, the differential cross section in the forward direction is constant. As a result, the
relative importance of the forward region ¢ ~ 0 increases for increasing s: While do/dz is
symmetric around z = 0 in the classical limit w — 0, it becomes more and more asymmetric
with a a shrinking peak around the forward region at ¢ ~ 0, cf. the right panel of Fig.

1 8
7 L
0.8
6 L
0.6 3 5}
< 5]
\6_ o4t
°© &
0.4 S 3}
2 L
0.2
1
0 0
0.001 0.01 0.1 1 10 100 1000 -1 -0.5 0 0.5 1
wm X

Figure 9.3.: Left: The total cross section o/or, as function of @ together with the classical
and ultra-relativistic limits given in Eq. (Q.71]). Right: The normalised differential
cross section a;i do/dz as function of x = cos ¥ for @ = 0.01, 0.1, 1, and 10 (from
top to down).

Crossing symmetry We noticed that the two amplitudes in Compton scattering can be
transformed into each other replacing € <+ €* and k <+ —k’. This is an example of a general
symmetry of relativistic quantum field theories called crossing symmetry. Using the Feynman
rules for in and out particles, it follows that matrix elements where an in-going particle is
replaced by an out-going anti-particle or vice versa are related by the following substitutions,

e exchange the momentum k <> —k&;

e exchange particle and anti-particle wave functions; thus in momentum space, 1 <> 1 for
spinless particles, € <+ ¢*' for spin-1 and u <+ v for fermions.

e multiply by —1 for each exchanged fermion pair.

The additional minus for fermions is required, because the spin sums of fermions and an-
tifermions are related by

Y ulp.s)a(p,s) = (p+m) =~ (f —m) ==Y v, 5)5(', ). (9.72)

S S
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9. Scattering processes

Note that this symmetry allows us to obtain the matrix elements of different processes: For
instance, we can relate the processes e"et — p~put withe"p™ — e"p~ and p~pt — e”e™.

Using a more formal approach, one can derive the crossing symmetry not relying on per-
turbation theory and the Feynman rules, but using the analytical properties of S-matrix
elements: The LSZ reduction formula distinguishes in and out particles only by the sign of
the momenta used in the Fourier transformation. If one can analytically continue the residue
of a pole in an S-matrix element from p° to —p°, then one converts the S-matrix for a parti-
cle with ¢(p) into the one for an anti-particle with ¢*(—p). Remarkably, the basic properties
of a relativistic quantum field theory, locality and causality, are sufficient to proof that this
analytical continuation is possible.

Finally, note that the factor —1 for each exchanged external fermion pair implies a relative
minus sign for diagrams connected by crossing which contribute to the same process. Thus
there is a relative minus sign between e.g. the ¢ and the u channel diagrams for e"e™ — e7e™
scattering.

9.3.2. Helicity method and polarised QED processes

Using the trace method, the number of terms that have to be calculated grows as ~ n? with
the number n of diagrams. For large n, it should be therefore favourable to calculate the
amplitude A(si,...,ss) for fixed polarisations s; of the external particles: The amplitude
is a complex number and can be trivially squared. An efficient way to calculate polarised
amplitudes uses helicity spinors, an approach used also in most modern computer programs
for the calculation of scattering processes.

Massless fermions We restrict our short introduction into helicity methods to massless
particles. In the case of fermions, we know that then the use of Weyl spinors in the chiral
representation is most convenient,

ur(p) = ( orp) ) and up(p) = ( il ) - (9.73)

We do not need to consider vy, r(p), since they correspond to particle spinors of opposite
helicity, ug,r.(p). Moreover, two out of the fours possible scalar products involving uy, r are
zero for massless fermions,

ur(p)ur(q) = ur(p)ur(q) = 0. (9.74)

This motivates us to introduce a bracket notation for the helicity spinors as follows

ar(p) =(p, ar()=I[p, urlp) =p., urp) =p). (9.75)

We call the quantities on the RHS angle and square brackets. The only non-zero Lorentz-
invariant spinor products are given by a pair of brackets of the same type,

ur(p)ur(q) = (pg) and  upr(p)ur(q) = [pq]- (9.76)

Next we consider the tensor product of the spinors,

p)lp = ur(p)ar(p) = Prp , and pl(p =ur(p)ar(p) = Prp. (9.77)
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P b3

P2 2

Figure 9.4.: Feynman diagrams for the process e”e™ — utpu~.

These identities connect the massless spinors p) and [p to the light-like four-vector p*.
We are now in position to derive some basic properties of the brackets. First, we can
connect the two types of spinor products as

(pq) = ur(p)ur(q) = [ur(q)uL(p)]” = lgp]* - (9.78)

Multiplying then p)[p and ¢](q and taking the trace gives

(pa)lap] = tr{PrdPrp} = tr{Prdp} =2p-q, (9.79)
so that
(pg)|* = |lap]|” =2p-q . (9.80)
Next, we express the spinor products through Weyl spinors and use ug(p) = io%u} (p),
(pa) = &1 (P)Pr(0) = $1a(P)(10”) b1 (4) - (9.81)

Then the antisymmetry of (i02),, = €45 implies

(pg) = —(gp) and [pq] = —[gp]. (9.82)

Thus the brackets are square roots of the corresponding Lorentz vector products which are
antisymmetric in their two arguments. Finally, we note that the Fierz identity applied to the
sigma matrices (cf. with problem 8.77),

(6#)ab(5’u)cd = 2(i02)ac(ig2)bda (983)
allows the simplification of contracted spinor expressions,
(py"al(kvul] = 2(pk)[eq],  (py"allkvul) = 2(pt)[kq] . (9.84)

e"et — p~ut scattering It is now time to apply this new “bracket” formalism. We
consider the tree-level amplitude for, e.g., ey (1)e}(2) — p; (3)u5(4) in QED, given by the
single diagram shown in Fig. As it is standard using this formalism, we consider all
momenta as outgoing. Then the amplitude is

—i

iAd= (—16)2? ar(3)y ur (4) ur (2)y,ur (1) (9.85a)
ie? ie?
= ?<37"4]<27u1] = 2(1—2(32>[14], (9.85b)
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9. Scattering processes

where we have employed the Fierz identity (9.83]) in the last step. Since (32) and [14] are
both square roots of
u=(ky +ks)> = (k1 + ka)?, (9.86)

we can replace them by the Mandelstam invariant u. We consider the process in the cm frame
of the ete™ pair. With u = —2E%(1 + cos4), and ¢*> = s = 4E?, the amplitude becomes

A2 = e*(1 + cos¥9)?. (9.87)

You should re-derive this result using the more familiar trace formalism and compare the
amount of algebra required in the two approaches (problem 9.77).

Massless gauge bosons In the next step, we incorporate massless gauge bosons as the

photon into this framework. We claim that the polarisation vectors of a massless vector
boson in the final-state can be represented as

1 (ry"k] 1 [ryHk)

en(k)=—72——, €'k)=-—

V2 (rk) V2 [rk]

Here, k is the momentum of the vector boson, and r is a fixed light-like 4-vector, called the
reference vector, which is assumed to be not collinear with k.

Now we show that this definition makes sense: First, we note that the vectors satisfy
(€5 (k)] = €7 (k). One can also check that the polarisation vectors are correctly normalised.
Moreover, the Dirac equation, §k] = 0, guaranties that the polarisation vectors (9.88]) are
transverse,

(9.88)

kel (k) = 0. (9.89)

Finally, we have to show that a change from one reference vector r to another light-like vector
s corresponds to a gauge transformation and thus does not affect physics. The change of a
polarisation vector under a change of reference vector r — s is

ep (kir) —ep (k;s) = % (%Z;k] — <8<ZZ;€]> (9.90a)
- % m{ ey R (ks) + sy R (k) ) (9.90b)

Now we use first the tensor products (Q.77), and then the antisymmetry of the brackets,

1
2 W{ = (ry"ks) + (s7"¥r)} (9.91a)

— s T L £ (9.911)
1

e (ksr) — el (ks s) =

Sl

= 7 m(sr) 2kH . (9.91¢)

In the last line, we have applied the Clifford algebra of Dirac matrices. Thus the difference of
the polarisation vectors induced by a change of the reference vector is a function proportional
to the photon momentum,

ep (kyr) —ep'(kss) = f(r,s)k". (9.92)

Contracted into an on-shell amplitude, A = ¢"A,, current conservation implies that this
expression vanishes. Thus we can use the most convenient reference vector s which can be
chosen differently in any gauge-invariant subset of Feynman diagrams.
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D2 P4 p2 P3

P p3 J4! yz:

Figure 9.5.: Feynman diagrams for the process e " e™ — 7.

e"et — ~~ scattering As second example, we consider now a scattering process with
photons as external particles, e”et — ~+, as illustration for the use of the polarisation
vectors. We label the momenta as in Fig. [0.5] taking all momenta as outgoing. Then the
amplitude for this process is

: : iZ+4) i(Z2+3)

iA = (—ie)*(2 <¢(4)7¢(3) +{B)——£4) ) 1], (9.93)

524 523
where we use the shorthand 2 + 4 for f, + ¥, and define s;; = (i + 5)°.
There are four possible choices for the photon polarisations. Exchanging the momenta

3 and 4 relates the cases yryr and vyrvyg, while parity connects yryr and vyryr. We start
showing that the latter two amplitudes are zero in the massless limit we consider. Considering
YRYR, We choose as reference vector r = 2 for both polarisation vectors,
1 [2y*3) 1 [2y#4)

=Gy YA

Inserting the polarisation vectors into Eq. (Q.93]), we obtain using the Fierz identity (9.83])
(2772 ,,(4) oc (297[27,4) = 2(22)[4 = 0. (9.95)

(9.94)

In the last step, we used the antisymmetry of the brackets, (22) = 0. A similar cancellation

occurs with €(3) and hence the entire matrix element vanishes. Parity implies then that the

amplitude A(vyz,yz,)vanishes too. Alternatively, we can show the same cancellation using r = 1

in both polarisation vectors.

Next we compute the amplitude for the case yrvyr,, choosing

1 [29#3

6#(3) _ _[ Y )
V2 (23)

Then the second diagram in Fig. vanishes because of (@.95]). Using the Fierz identity, the

first diagram results in

and e'(4) = ———= . (9.96)

o —ie? 2.9
M= ena 2@+ A2 (9.97)

Now we use the Dirac equation, 22) = 0, and replace the vector 4, by an angle bracket,

_ g2 (20
RENGIEE) (24)(42)[31] = 2 23)?

_ 2ie? 2ie?
iAd= m(24>[14]<42>[31] =

(9.98)

141



9. Scattering processes

Finally, we introduce Mandelstam variables, sa3 = u, s13 = s94 = t, reproducing the standard
result
AP = det L — get L= 0080
u 1+ cosd
This short introduction into helicity methods convinced you hopefully of their efficiency.
The advantage of this method over the traditional trace method increases with the number of
diagrams involved, since the step A — |A|? is trivial in this approach. Massive fermions can
be treated using the helicity states (A7), and efficient extensions to massive gauge bosons
exist.

(9.99)

9.4. Soft photons and gravitons

The addition of a vertex introduces typically a factor a/m ~ 0.2% into a QED cross section.
Thus one may hope that perturbation theory in QED converges, at least initially, reasonably
fast. An exception to this rule is the emission of an additional soft or collinear photon from
an external line shown in Fig. The denominator of the additional propagator goes for

k — 0 to
1 1 1

@t R2Z—m2  2p-k " 2Bw(l—cos0)’
where we assumed |p| > m in the last step. Hence the denominator can blow up in two
different limits: Firstly, in case of emission of soft photons, w — 0. Secondly, in case of
collinear emission of photons, ¢ — 0, if the mass of the emitting particle can be neglected.
We have seen in the example of Compton scattering that both soft and collinear emission
correspond to the classical limit.

(9.100)

k

p+k A/f”rﬂ
P

Figure 9.6.: Emission of an additional soft or collinear photon from an external line in the
final state.

Universality and factorisation The fact that a photon sees in the soft limit £ — 0 a classical
current should lead to considerable simplifications: In particular, interference effects should
disappear and the amplitude A, 11 for the emission of an additional soft photon should fac-
tories into an universal factor ¢#S,, and the amplitude A,, for the original process.

Let us start considering the emission of a soft photon by a spinless particle. If a scalar in
the final state with momentum p and charge ¢ emits a photon with momentum %k — 0, the

eu(2p* + kM) €-p
n =g ———
—k)2—m2+i6A qp-k—le

Ant1=¢ > A . (9.101)

2We use the Feynman rule for a ¢ppA* vertex derived in problem 7.27?.
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9.4. Soft photons and gravitons

For the emission of a soft photon from an initial state particle, the corresponding factor is
+qe-p/(p-k+ic). In the case of an internal line, in general no factor (p - k)~' appears for
k — 0, since the virtual particle is off-shell.

For a spin-1/2 particle in the initial state, the emission of a soft photon adds the factor

(p—Fk)2—m?2+ie —2p-k+ie
to the amplitude A,,. Now we replace p + m by the spin sum ) u(p, s)u(p, s), and use

1t
a(p, s)y"'u(p,s') = 2E, %55,51 =2p"05 . (9.103)

This relation can be checked by direct calculation, or by noting that the current j# =
@(p, s)y"u(p, s) should become j# = (p, pv) in the classical limit & — 0. Thus we obtain
the same universal factor describing the emission of a soft photon,

pl‘

St =—q—nr,
qp-k—ie

(9.104)

as in the case of a scalar. Moreover, we confirmed that the amplitude indeed factorises,
Any1 = e,SPA, = 5ﬂAg 41~ If we allow for the emission of m soft photons from external
particles with charge ¢;, then

fi1++ fhm, TN Siq i |
An-i—m - ; p- L + isie An ) (9. 05)

where the signs are s; = —1 for an initial and s; = +1 for a final state particle.

We have seen that the polarisation vector e, (k) of a photon does not transform as a four-
vector, cf. Eq. (T23), but acquires a term proportional to k#. As we exploited already at
various places, amplitudes containing polarisation vectors ¢,(k) of external photons have to
vanish therefore when contracted with k*. Thus Eq. (TI05) implies in the limit & — 0

m
ki AL N " sigi Ap = 0. (9.106)
i=1

The prefactor of A, is the total charge in the final state minus the total charge in the initial
state. In order to obtain a Lorentz invariant matrix element for the soft emission of massless
spin-1 particles, we have therefore to require that such particles couple to a conserved charge,

>a=> a.
i 7

Thus Lorentz invariance is sufficient to guaranty the conservation of the electromagnetic
current in the low-energy limit. While this argument does not rely on gauge invariance, it
tells us nothing about the behaviour of “hard” photons.
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Spin s > 1 We can apply the same line of arguments to the emission of massless particles
with spin s > 1. In the case of gravitons, s = 2, one finds that the universal factor becomes

pp”
SW = —f ——— 9.107
! p-k—ise’ ( )
where f denotes the coupling to the graviton. Requiring again that an amplitude containing
the polarisation tensor €,,(k) of external gravitons vanishes when contracted with k# gives
the constraint

m
ki ARyl =N " si fipl An = 0. (9.108)
i=1
Now the sum ), fip¥ is conserved. For f; # f;, a linear combination of the individual
four-momenta other than the total four-momentum would be conserved in the scattering
process—a, condition which is not possible to satisfy in a non-trivial scattering process. Thus
we have to conclude that any massless s = 2 particle has a universal coupling to all types
of particle. Recalling from (5.2I) the form of the stress tensor, TH = 2N?2ptp¥, we see
moreover that a massless spin-2 particles couples with universal strength to the stress tensor,
S oc TH. This result can be viewed as the basis of the weak equivalence principle. Going
further to s = 3, the universal factor becomes S***  p*p”p*, requiring that sums quadratic
in the momenta, ), ﬁp;’ p!', are conserved. This is not possible for any scattering angles
except ¥ = 0 and 180°, and thus no consistent theory of interacting massless particles with
spin s > 2 is possible.

Bremsstrahlung We discuss now as a concrete example the case of bremsstrahlung, i.e.
the emission of a real photon in the scattering of a charged particle in the Coulomb field
A% = —Ze/(4m|z|) of a static nuclei with charge Ze. The S-matrix element of this process is

—ze, b0y, (9.109)

u
q|?

iS; = 270(E' +w — E')

where 1/|q|? is the Fourier transform of A°. Note that the external field breaks translation
invariance and the momentum is not conserved. We commute now p and g/,

2e-p' — (P —m)f +}¢ 2 -p— ¢(p—m) + ff
2p" - k 7+ —2p -k

2

iSp; o e*au(p') ] u(p) (9.110)
such that we can use in the next step the Dirac equation. Neglecting additionally in the soft

limit the § term in the numerator, we find

!/

£-p 5-p]

T F ok (9.111)

iSgi oc e*u(p')y u(p) [
As we have shown in the previous paragraph in general, the amplitude factorises into the
amplitude describing the “hard” process and the universal correction term. The latter consists
of the two terms expected for the emission of a soft photon from an initial line with momentum
p and a final line with momentum p’. The probability P for the emission of an additional soft
photon is given integrating the square bracket over the phase space,

dopi1r [6-;0’ 6-p:|2 d3k dwy,
a (

dPni1 = — .
o1 do,, p ok p-k| (2m)32wg > Wy,

(9.112)
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9.A. Appendix: Decay rates and cross sections

This probability diverges for w — 0 and therefore the process is called infrared (IR) divergent.

The resolution to this IR problem lies in the fact that soft photons with energy below the
energy resolution Fj, of the used detector are not detectable. Therefore the emission of n real
soft photons with ¥ < FEij is indistinguishable from the scattering process including virtual
photons and thus these cross sections should be added. The IR divergences in the real and
virtual corrections cancel, leading to a finite result for the combined cross section. We will
discuss a detailed example for how this cancellation works in chapter 7.3l

9.A. Appendix: Decay rates and cross sections

We establish first the connection between the normalised transition matrix element M and the Feyn-
man amplitude A, where the normalisation factors of external particles are omitted. Then we derive
decay rates and cross sections describing 1 — n and 2 — n processes.

Normalisation We have split the scattering operator S into a diagonal part and the transition
operator T\, S = 1 4+ iT. Taking matrix elements, we obtain

Spi = 0pi + (2m)1 6 (P, — Pp)iMy, (9.113)

where we set also Ty; = (2m)* 6 (P; — Pp) M.

The Feynman amplitude A neglects all normalisation factors of external particles, while the matrix
element Ty; defined by (@.37) and thus My; contains a factor Nj for each external particle. Thus
the transition between the matrix element My¢; and the Feynman amplitude A for a process with n
particles in the initial and m in the final states is given by

Myi=[[@EV)™'? I QE V)2 Ay (9.114)

i=1 =1

Here we changed also to a finite normalisation volume, 2E,(27)® — 2E,V what makes defining decay
rates and cross sections easier.

9.A.1. Decay rate

We consider the decay of a particle into n particles in the final state. Squaring the scattering amplitude
Sp; for i # f using (2m)* 6V (0) = VT gives as differential transition probability

AW;: = (2m)* 69 (P, — P)VTIM m?ff[l ‘E;;;’Bf . (9.115)
The decay rate or decay width dI" is the transition probability per time,
dry; = lim AWri _ (amyt 50 (P, — Pf)V|/\/lfi|2ff[1 Y;;;’Sf . (9.116)
Going over to the Feynman amplitude A eliminates the volume factors V/,
ATy = (205D (P, — Pp) —— | Ayl ﬁ _ Loy (9.117)
2E; = 2B (2m)?
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9. Scattering processes

Moreover, the phase space integrals in the final state are now Lorentz invariant, d®ps/(2E;). Intro-
ducing the n-particle phase space volume

n d3p
da™ = 2 s (P, - Pp) [] s 11
( 7T) ( f) i 2Ef(27r)3 ’ (9 8)
the decay rate becomes
1
dly; = 2 de™ 11
1i = 5, Ml (9.119)

Since both |Af;|> and the phase space d®(™ are Lorentz invariant, the decay rate I' oc 1/E; = 1/(7ysm;)
shows explicitly the time dilation effect for a moving particle. Finally, we note that a symmetry factor
S = 1/n! has to be added to the total decay width or cross section, if there are n identical particles in
the final state.

Two-particle decays We evaluate the two particle phase space d®®) in the rest frame of the
decaying particle,

d®p d®p,

9F, (21)° 2E,(2m)? (9.120)

dd®) = (21)" 6(M — By — E») 6 (p, + py)

We perform the integration over d*p; using the momentum delta function. In the resulting expression,

1 1
2 3
de® @n)? 15,5, §(M — E; — E») d°ps (9.121)

Ej; is now a function of py, E? = p2 + m?. Introducing spherical coordinates, d*p, = dQp3dps,

1 00 2d
4> = Wdﬂ/o §(M — Ey — Ey) i’éf; , (9.122)

and evaluating the delta function with M — Ey — Ey = M — x and dp2/dz = pax/(E1 Es) gives

!
as® = sl o (9.123)
472
where .
A(s,m7,m 1
Pems = : 4; 2) A2 [M? = (m1 +m2)?] [M? = (m1 —m2)?] (9.124)

is the cms momentum of the two final state particles. The Kibble function A\(z,y, z) satisfies
Nz, y,2) = [(2% +y* + 2°) — 22y — 2yz — 222] e (9.125a)

= [ - (Vi+ v 22 - (Vi - v (9.125b)

Three-particle decays The three particle phase space d®®) is in the rest-frame of the decaying
particle given by

48 = (2m)! (M — By — By — Eg) 69 (p, +py +py) b A7 _dpo (9.126)
s VR T899 (27)3 2E,(21)3 2FE5(2m)3 '
We can use again the momentum delta function to perform the integration over d>ps,
1 d3p;d?
4e® = S(M — By — By — Ey) S 2102 (9.127)

(2m)5 SE, By Fs’
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9.A. Appendix: Decay rates and cross sections

To proceed we have to know the dependence of the matrix element on the integration variables. If
there is no preferred direction (either for scalar particles or after averaging over spins), we obtain

1 4xap?dp; 27d cos ¥dpy

(3) — _ _ _
do 8(27T)5 E1E2E3 (5(M E1 E2 E3) (9128&)
1 pidpi (pipadcosd)(p2dps)
= M — FE, — Ey — E5). 12
3973 E,E>E5 o( 1 y — E3) (9.128b)

We rewrite next the momentum integrals as energy integrals. The energy-momentum relation E? =
m? + p? gives E;dF; = p;dp; for i = 1,2. Furthermore,

Ej = (p, +py)> +mj =p; + ps + 2p1p2 cos Y + mj3 (9.129)

and thus E3dE3 = p;p2dcosd for fixed p,,p,. Performing the angular integral, we obtain

1
de®) = 355 B dE>dFsd(M — Ey — B> — Fs), (9.130)
and finally
1
de®) = 353 AELdEs . (9.131)

The last step is only valid, if the argument of the delta function is non-zero. Thus the remaining task
is to determine the boundary of the integration domain. Let us choose F; as the outer integration
variable. Then we have to determine the allowed range of Fs for a given value of F;. Inserting energy
and momentum conservation into EZ = p3 + m3, we obtain

(M — By — E)? = mj + pi +p5 +2p; D, - (9.132)

The extrema correspond to

PPy = £lpilIps] = £/ (B2 —m3)(B} —m3). (9.133)

Inserting them into Eq. (@132), we obtain the curve defining the boundary of the integration area as
function of E; and Es,

M? = 2M (B, + Ey) + 2B, By +m} +m3 —m3 = £,/ (B} — m3)(E} —m3). (9.134)

In order to visualise the integration area easier, we set first my1 = mo = 0. Then the equation with
the plus sign becomes Fy = M/2+m2/(4E; —2M), while the equation with the minus sign simplifies
to a straight line Fy = —E; + M /(2 — 2m3/M?). The resulting integration area is shown in Fig.
for ms/M = 0.1. Setting also m3 = 0, the integration area is a triangle in the E;—FE- plane.

If one prefers Lorentz invariant integration variables, one can introduce the invariant mass of the

pair (i, j)

mis = (p—p1)> = (p2 + p3)” = M* —2MEy +m] (9.135a)
mis = (p—p2)® = (p1 +ps3)> = M> —2M E; + mj3 (9.135h)
miy = (p—p3)® = (p1 + p2)° = M* —2ME5 +m3, (9.135c¢)

Because of m3; + mi; + m}, = M? +m3 + m3, only two out of the three variables are independent.
They can be used to to replace E; and E in Eq. ([@I3T).
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Figure 9.7.: Phase-space boundary for ms/M = 0.1 (left). and mg = 0 (right); in both cases
we set m; = mg = 0.

0.A.2. Cross sections

We consider now the interaction of two particles in the rest system of either particle 1 or 2. For
simplicity, we consider two uniform beams. They may produce n final state particles. The total

number of such scatterings is
AN o vpgninadVde (9.136)

where n; is the density of particle type ¢ = 1,2. The Mgller velocity vmg is a quantity which coincides
in the rest frame of particle 1 or 2 with |vs| and |v1[, respectively. Therefore it is often denoted simply
as relative velocity vye;. The proportionality constant in ([@.I36) has the dimension of an area and is
called cross section 0. We define in the rest system of either particle 1 or 2

dN

ouMg N1 AV dE, (9.137)

while we set in an arbitrary frame
dN = Anyno.dVdt. (9.138)

We determine now A. Since both dN and dVdt = d*z are Lorentz invariant, the expression Anins
has to be Lorentz invariant too. The densities transform as

B
n; = ni70'y = ni70—l 5 (9139)
m;
and thus the expression
E\E
A2 (9.140)
p1-Dp2
is also Lorentz invariant. In the rest system of particle 1, it becomes
E\E,
—————— = A = oMy - 9.141
E\E> —p,p,y Mot ( )
Thus we found that A in an arbitrary frame is given by
P1-p2
A= —_—=. 9.142
VMol (9.142)
We still have to determine vyg: In the rest frame 1, we have
m
P1 P2 = ’ITL1E2 =m1 72 . (9143)
1 — v}y
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9.A. Appendix: Decay rates and cross sections

Thus the Mgller velocity is given in general by
mim3

m . (9.144)

UMgl = 1-—

Since this expression is Lorentz invariant, we see that the notion of the Mpgller velocity as relative
velocity is misleading.
Next, we define the flux factor

I'=vmgp1-p2 = \/(p1 “p2)? —mim3. (9.145)
Inserting ([@.142) for A together with the definition of I into (@.I38), we obtain
I
AN =0 —— dV)dt. 14
T (n, V) (n2dV) (9.146)

Here, we re-grouped the terms to make clear that after integration the total number N of scattering
events is proportional to the number Ny = n;V and No = [nodV of particles of type 1 and 2,
respectively. The number N of scattering events per time and per particles 1 and 2 is however simply
the transition probability per time,

AWy dN T

T S MNT BBV (9.147)
Inserting the expression (@II6) for dWy;, we find
E\E,V? n Vd3p
do = ——— (2m)" (P, — Pp) Myl [] (%)J : (9.148)
F=1

Changing from the normalised matrix element M to the Feynman amplitude A introduces a factor
(2E1 V)~ (2E,V)~" for the initial state and [];(2E;V)~" for the final state. Thus the arbitrary
normalisation volume V cancels and we obtain

dSpf

1 a 1
do = — 2m)* W (P, - P PT — = — |42 de™ 14
7= a7 Om* 0P P I s = 3y s (9.149)

with the final state phase space d®("). The three pieces composing the differential cross section, the
flux factor I, the Feynman amplitude A, and the final state phase space d®( are each Lorentz
invariant.

2-2 scattering For a 1+2 — 3+4 scattering process, it is useful to introduce Mandelstam variables
s,t, and u as

s = (p1 +p2)? = (p2 +p4)°, (9.150)
t=(pr—ps3)* = (P2 —ps)*, (9.151)
u=(p1 —ps)® = (p2 —p3)*. (9.152)

Since s+t +u = Z?:l m?, the scattering amplitude A depends only on two variables, e.g A(s,t). In

the cms, the flux factor becomes
I? = (p1 - p2)* — mim3 = pZ,(Br + E2)? = pems/s - (9.153)

Adding the expression for the 2-particle phase space gives

do 1 pl N
— = ms | .154
dQ 64725 pems [Aril (9.154)
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9. Scattering processes

Here the cm momentum of the initial state is p2,,, = A(s,m?,m3)/(4s), while p2,,. = X(s,m3,m?)/(4s)
is the one of the final state. Using as variable the momentum transfer ¢, the differential cross section

becomes
do 1

dat ~ 64msp2,...
where the allowed range of ¢ has to be determined from Eq. (@I5])) and —1 < cosd < 1.

The optical theorem connects the imaginary part of the forward amplitude IT;; with the total cross
section as

[ Asil? (9.155)

STy

_ _ 9.156
7ot = XT3 ) (9.1

Summary

The LSZ reduction formula shows that S-matrix elements are obtained from connected Green
functions by a replacement of the propagators on external lines with the corresponding wave-
functions times the wavefunction renormalisation constant v/Z. Cross sections are calculated
from the squared Feynman amplitude A, the final state phase space d®™ and the flux factor
I, which are all three Lorentz-invariant. Squared Feynman amplitudes can be obtained using
“Casimir’s trick”. If the number of diagrams increases, it is more convenient to calculate
directly the amplitude using helicity methods.

The amplitude for the emission of additional soft particles factorises in the amplitude of
the hard process and an universal factor. Lorentz invariance requires that a massless spin-1
particle couples in the low-energy limit to a conserved charge, while a massless spin-2 particle
has to couples with universal strength to the energy-momentum stress tensor.

Further reading

[Ste93] discusses the optical theorem and its connection to cut diagrams in more detail. The
LSZ formula for particles with spin s > 0 is presented e.g. in [GRO8], while derive
S-matrix elements defining a new functional Z'[J] with the correct boundary conditions.
For additional information about the helicity formalisms see [Hab94] and [Pes11] from which
our examples are taken. provide a tutorial for several software tools useful for the
calculation of scattering processes. The discussion of soft photon emission follows closely the
original discussion of [Wei65], for an introduction see [Whil5].
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10. Gauge theories

We discuss in this chapter field theories in which the Lagrangian is invariant under a con-
tinuous group of local transformations in internal field space. The symmetry group of these
transformations is called the gauge group and the vector fields associated to the generators of
the group the gauge fields. We introduce as a first step unbroken gauge theories, i.e. theories
with massless gauge bosons, and defer the more complex case of broken gauge symmetries to
the chapters[I3land ??. The Standard Model (SM) of particle physics contains with quantum
electrodynamics (QED) and quantum chromodynamics (QCD) two examples for unbroken
gauge theories. While QED is an abelian gauge theory based on the gauge group U(1), QCD
which describes the strong interactions is an non-abelian gauge theory with group SU(3).
Non-abelian gauge theories were first studied by Yang and Mills and are therefore also often
called Yang-Mills theories. The structure of Yang-Mills theories has many similarities with
gravity. We use this property to introduce the curvature of a space-time as the analogue of
the field-strength in the Yang-Mills case.

10.1. Electrodynamics as abelian gauge theory

In classical electrodynamics, the field-strength tensor Fj,, = d,A4, — 0,4, is an observable
quantity, while the potential A, is merely a convenient auxiliary quantity. From its definition
as an antisymmetric tensor, it is clear that F},, is invariant under local gauge transformations

Ay(z) — AL(a:) = A,(z) — 0,A(z) (10.1)

of the potentials. Thus Aj, () is for any smooth A(z) physically equivalent to A,(z), leading
to the same field-strength tensor and thus e.g. to the same Lorentz force on a particle.

Consider now e.g. a free Dirac field ¢ (z) with electric charge q. We saw already that this
field is invariant under global phase transformations exp[igA] € U(1), implying a conserved
current j* = tpy*4) via Noether’s theorem. Can we promote this global U(1) symmetry to a
local one,

() = ' (z) = U(z)y(z) = expligh(z)]4(z) , (10.2)

by making the phase U space-time dependent as in (I0.I)? The partial derivatives in the
Dirac Lagrangian will lead to an additional term o 0,U(z), destroying the invariance of the
free Lagrangian. However, if we add a field A, (z) which transforms as defined in (I0.I]) and
couples to the Noether current j# of the complex field as £ = —qj*A,, the two gauge-
dependent terms will cancel. Thus local U(1) gauge invariance of the Dirac field requires the
existence of a massless gauge boson and fixes its interaction with matter: The coupling of
matter to photons is obtained by replacing the normal derivative by the covariant derivative,

8, — Dy = 0, +iqA, (10.3)

151



10. Gauge theories

which transforms as the matter fields,

Dypla) = D! (2) = {0 + gl Au(@) — BuA(@)]} expligh(@)p(e) = (10.4)
= expligh (2)}{8, + igA, (@)} () = U() Duth(c) (10.5)

We can rewrite the gauge transformation of A, as
i
A,(z) = (@) = 4(@) = 0uA@) = 4(@) ~ U@,V (@), (10.6)

expressing the change dA,(x) through the group elements U(z). Finally, we note that we can
connect the field-strength tensor to the commutator of covariant derivatives,

[D;ta Dl/]’(/) = iQ([aﬂa All] - [8,,, Aﬂ])¢ = iq¢(aﬂAV - 8VA;L) = iQ¢FuV . (107)

To summarise: The invariance of complex (scalar or Dirac) fields under global phase transfor-
mations exp[igA] € U(1) implies a conserved current, promoting it to a local U(1) symmetry
requires the existence of a massless U(1) gauge boson coupled via gauge-invariant derivatives
to these fields.

10.2. Non-abelian gauge theories

10.2.1. Gauge invariant interactions

We want to generalise now electrodynamics, using as symmetry group instead of the abelian
group U(1) larger groups like SO(n) or SU(n). A group like SU(n) will describe the interac-
tions of n? — 1 gauge bosons with matter, using as a single parameter the gauge coupling g.
The gauge transformations will moreover mix fermions living in the same representation of
the group, requiring that these fermions have the same interactions and the same mass if the
symmetry is unbroken. In this way, non-abelian gauge theories lead to a partial unification of
matter fields and interactions. Note the difference to an abelian symmetry: The emission of a
photon does not change any quantum number (apart from the momentum) and thus does not
“mix” different particles. Therefore there is also no connection between the electric charge of
different particles.

The two non-abelian groups used in the SM are SU(2) for weak and SU(3) for strong inter-
actions. A matrix representation for the fundamental representation of these two groups are
the Pauli matrices, T* = 0%/2, and the Gell-Mann matrices, T% = \*/2, respectively. Un-
der the fundamental representation the fermions transform as doublets for SU(2), as triplets
for SU(3), etc. Since the number of generators is m = n? — 1 for SU(n), the groups SU(2)
contains three gauge bosons, while SU(3) contains eight bosons carrying strong interactions.
The most important difference of these non-abelian groups compared to U(1) is that the gen-
erators 7% = TZ‘; of such groups do not commute with each other. As a result, we may expect
that both the expression for the field-strength tensor, Eq. (Z.11), and the transformation law
for the gauge field, Eq. (ZI2]), becomes more complicated. In contrast, we postulate that
the replacement J,, — D,, and the interaction law j, A" of gauge bosons with matter remain
valid, with the sole difference that now A, = AjT®. Thus A, is a Lorentz vector with values
in the Lie algebra of the gauge group.
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We derive now the transformation laws and structure of the gauge sector, requiring that the
transformation of the fermions and their interaction with the gauge field are locally invariant.
A local gauge transformation

U(z) = explig)y 09 (2)T%) = expligd(z)] (10.8)
changes a vector of fermion fields ¢ with components {11, ...,9,} ad|

() = () = Ula)h(x) (10.9)

Already global gauge invariance of the fermion mass term requires m; = mo = ... = my,
and for simplicity we set m; = 0. We can implement local gauge invariance, if derivatives
transform in the same way as 1. Hence we define a new covariant derivative D, requiring

Dup(z) = [Dpp(z)] = U(z)[Dyih ()] (10.10)

The gauge field should compensate the difference between the normal and the covariant
derivative,

Dyp(a) = [0, + ig Au(@)]h(a). (10.11)
In the non-abelian case, the gauge field A, is a matrix that is connected to its component

fields by
A, = AT (10.12)

We now determine the transformation properties of D, and A, demanding that (I0.J) and
(I0.10) hold. Combining both requirements gives

Dyip(z) = [Dup] =UD,p =UD, U 'Up =UD, U, (10.13)

and thus the covariant derivative transforms as D/, = UD,U~". Using its definition (T0.IT),
we find

(D) = [0 +ig AU = UDptp = Uldy +igAulip . (10.14)

We compare now the second and the fourth term, after having performed the differentiation
0, (U%). The result

[(0,U) +igA, Ul = igU A9 (10.15)

should be valid for arbitrary ¢ and hence we arrive after multiplying from the right with U~!
at

i

A, = AL =UAU + E(B#U)U_l —UA, U - éUaﬂU—l. (10.16)

Here we used also d,(UU ') = 0. In most cases, the gauge transformation U is an unitary
transformation and one sets U~! = UT. A term changing as U(z)D,(z)U'(z) is called to
transform homogeneously, while the potential A, is said to transforms inhomogeneously.

'We suppress in the following most indices; writing them out gives e.g. ¥}(x) = Uj;(x)v; () with U;;(z) =
explig Y7 | 0 (x)TF].
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Example 10.1: We can determine the transformation properties of A, also by demanding that
(IOIT) defines the interaction term in a gauge invariant way. Replacing 9, — D,, in the free Lagrange
density of fermions and inserting then U~1U = 1 gives

Ly + L1 =Wy Dyt = iy 9,0 — gPyt A =
= iU U0, U U — gpU U A, U U . (10.17)

Using then ¢’ = U1, we obtain
Ly + Lp = WU U — gP' " UA U
= i)'y, — g’y {UAMU_l - éU(auU‘l)} i (10.18)

The Lagrange density £y + .7 is thus invariant, if the gauge field transforms as in Eq. (I0.16)).

Specialising to infinitesimal transformations,
U(s) = expligh*()T*) = 1 +igh(z) + O(9?), (10.19)

it follows
Au(@) = A(e) = Au(a) - iglA, (), ()] - 9,9(a). (10.20)

In the abelian U(1) case, the commutator term is not present and the transformation law
reduces to the known A, — A, — d,9. For a (semi-simple) Lie group one defines

[T, T" = if*°T° (10.21)

with structure constants f®° that can be chosen to be completely antisymmetric. Thus

Al(z) — AZ’(x) = Aj(z) + gf“bcAZ(a:)ﬂc(x) — 0,9 (x) (10.22a)
= Al (z) — [6"0) — gf“bCAZ(m)]ﬁc(x) (10.22Db)
= A (z) — D 9°(x), (10.22¢)

where the last line defines how the covariant derivative acts on the gauge fields: Comparing
this expression to the general definition D), = 9, +igAj;T", we see that the gauge fields live
in the adjoint representation of the gauge group@, cf. problem ??. The infinitesimal change
of the gauge fields Aj, is given by the covariant derivative acting on the parameters 9% of the
gauge transformation.

Finally, we have to derive the field strength tensor F),, = Fjj, T and the Lagrange density
Par of the gauge field. The quantity F? requires now additionally a summation over the
group index a,

1 1
Lost = =7 Ff W = —= tr F B (10.23)

where we assumed in the second step that the standard normalisation tr T°T® = §%°/2 for
the group generators T® holds. The last equation shows that it is sufficient for the gauge
invariance of the action that the field-strength tensor transforms homogeneously,

Fu(z) = Fp,(z) = U(z)F (z)UT(z) . (10.24)

>The n complex fermion and n? — 1 real gauge fields of SU(n) live in different representations of the group,
as already the mismatch of their number indicates, see also Appendix[Bl Note also that the gauge trans-
formations of the gauge fields have to be real, in contrast to the ones of the fermion fields.
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There are several ways to derive the relation between Fj,, and A,,. The field-strength tensor
should be antisymmetric. Thus we should construct it out of the commutator of gauge
invariant quantities that in turn should contain A,. An obvious try is igF},, = [D,, D,] that
worked in the abelian case. Now, additionally the non-zero commutator of the gauge fields
contributes,

1
ig
In components, this equation reads explicitly

Fu = F,,T" = —[Dy,Dy)] = 0,A, — 0, A, +ig[Ayu, A]. (10.25)

Ff, = 0,A5 — 0,A% — gf* Ab A7 (10.26)

Remark 10.1: Antisymmetric tensors of rank n can also be seen as differential forms. We know
already functions as forms of order n = 0 and co-vectors as forms of order n = 1. Since differentials
df = 0;f dz’ of functions are forms of order n = 1, the dz’ form a basis, and one can write in general
A = A;dx’. For n > 1, the basis has to be antisymmetrised. Hence, a two-form as the field-strength
tensor is given by

1
F= 3 F,,dz" A dx” (10.27)
with dz# Adz” = —dz¥ Adz*. Looking at df suggestions to define the differentiation of a form w with

coefficients w and degree n as an operation that increases its degree by one to n + 1,

1
dw = — (D5Wa ..o, )d2® Adz® AL A d2o (10.28)

Thus we have F = dA. Moreover, it follows d?w = 0 for all forms. Hence we can write an abelian
gauge transformation as F' = d(A —dA) = F.

10.2.2. Gauge fields as connection

There is a close analogy between the covariant derivative V, introduced for a space-time
containing a gravitational field and the gauge invariant derivative D, required for a space-
time containing a gauge field. In the former case, the moving coordinate basis in curved
space-time, J,e” # 0, introduces an additional term in the derivative of vector components
VH = et -V. Analogously, a non-zero gauge field A* leads to a rotation of the basis vectors e;
in group space which in turn produces an additional term ) - (9, ;) performing the derivative
of ay; = -e;.

Let us rewrite our formulas such that the analogy between the covariant gauge derivative
D,, and the covariant space-time derivative V, becomes obvious. The vector 1 of fermion
fields with components {1, ...,%,} transforming under a representation of a gauge group
can be written as

Y(z) = i(z)ei(z) . (10.29)
We can pick out the component ¢; by multiplying with the corresponding basis vector e;,
by =1 ej(x). (10.30)

If the coordinate basis in group space depends on z*, then the partial derivative of 1); acquires
a second term,

Oupi = (0u%) - e; + 1 - (O,€;) - (10.31)
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r+dy x+dr+dy
3
dy 4 2
1
T dr T+ dr

Figure 10.1.: Parallelogram used to calculate the rotation of a test field 1; moved along a
closed loop in the presence of a non-zero gauge field A*.

We can argue as in section that (0,%) - e; is an invariant quantity, defining therefore as
gauge invariant derivative

Dypi = (0uth) - €i = Opthi — - (Ou€i) - (10.32)
The change J,e; of the basis vector in group space should be proportional to gA,. Setting
oue; = —ig(A,)ije; (10.33)

we are back to our old notation.

Gauge loops The correspondence between the derivatives V,, and D, suggests that we can
use the gauge field A, to transport fields along a curve z#(o). In empty space, we can use
the partial derivative d,,4(x) to compare fields at different points,

Outp(z) o p(x + dat') —9p(z). (10.34)

If there is an external gauge field present, the field 7 is additionally rotated in group space
moving it from z to = 4 dz,

P(x 4+ dz) = (r + dz) + igA,(x)y(z)dz? (10.35a)
= (x) + Outp(x)dzt 4 igA,(x)p(z)dzt . (10.35Db)

Then the total change is

Pz +dr) — () = [0y +igAu(@)]y(2)dz” = Dygp(z)dz” . (10.36)

Thus we can view@
Py (z) =1 —igA,(z)dz” (10.37)

as an operator which allows us to transport a gauge-dependent field the infinitesimal distance
from z to x + dz.

We ask now what happens to a field v;(z), if we transport it along an infinitesimal paral-
lelogram, as shown in Fig. [[0.Il Calculating the path 2, we find

Pay(x +dz) = 1 —igA, (z + dr)dy”

10.38
=1—igA,(z)dy"” —ig9, A, (z)dz"dy" , ( )

3Note the sign change compared to the covariant derivative: there we pull-back the field from z + dz to .
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10.2. Non-abelian gauge theories

where we Taylor expanded A, (z + dz). Combining the paths 1 and 2, we arrive at

Pyy(x + dz) Py (z) = [1 —igA,(z)dy” —ig0, A, (x)dz"dy”][1 — igA, (z)dzH]
=1—igA,(z)dz" —igA,(z)dy” —igd, A, (z)dz"dy” (10.39)
— ¢? A, (x) A, (z)dy” dz” + O(dz?) .
Instead of performing the calculation for a round trip 1 —2— 3 — 4, we evaluate next 4 —3

which we then subtract from 1 — 2. In this way, we can re-use our result for 1 — 2 after
exchanging labels, A,dz" < A,dy", obtaining

Py (x + dy) Pyy(z) = 1 —igA, (z)dy” —igA,(z)dz" —igd, A, (x)dxtdy”

— g?A,(z) Ay (z)dztdy” + O(dz?) . (10-40)

The first three terms on the RHS’s of (I0.39)) and (I0.40) cancel in the result P(CJ) for the
round-trip, leaving us with
P(0) = Pyy(z + dz) Pyy(z) — Pag(z + dy) Pay(z) =

10.41
—ig{0,A, — 0, A, +ig[A,, A} dxtdy” . ( )

Maxwell’s equations inform us that the line integral of the vector potential equals the enclosed
flux: The area of the parallelogram corresponds to dz#dy”, and the prefactor has to be
therefore the field-strength tensor. If the enclosed flux is non-zero, then P(O); # 1; and
thus the field is rotated.

10.2.3. Curvature of space-time

Curvature and the Riemann tensor We continue to work out the analogy between Yang-
Mills theories and gravity. Both the gauge field A, and the connection T'*y, transform ho-
mogeneously. Therefore we can not use them to judge if a gauge or gravitational field is
present. In the gauge case, we introduced therefore the field-strength Fj,,: It transforms
homogeneously and thus the statement F,,(z) = 0 holds in any gauge. This suggests to
transform (I0.25]) into a definition for a tensor measuring a non-zero curvature of space-time,

(VaVg = VgVo)T) = [Va, VaIT): #0. (10.42)

Thus the curvature of space-time should be proportional to the area of a loop and the amount
a tensor is rotated.
For the special case of a vector V¢ we obtain with

V, V= 09,V*+T% V7’ (10.43)
first
VoV V= 0,(0,V* + 1%, V) + T (9,V" +T7,VP) = T*", (0.V* +T%,V’). (10.44)
The second part of the commutator follows from the simple relabelling o <+ p as

VooV = 0,04V + T, VF) + T (0, V" + T%,,VF) —T%, (0,V* +T%,VP). (10.45)
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Now we subtract the two equations using that 0,0, = 9,0, and Faﬁp = Fo‘pﬂ,
[V, VoV = [0,0%, — 0,T%, + T, T, — T, T% |V’ =RV’ (10.46)

The tensor Raﬁ P is called Riemann or curvature tensor. In problem ?7?, you are asked to
show that the tensor R,g,, = ga7R76 . is antisymmetric in the indices p <+ o, antisymmetric
in a <>  and symmetric against an exchange of the index pairs (af) <> (po). Therefore, we
can construct out of the Riemann tensor only one non-zero tensor of rank two, contracting «
either with the third or fourth index, R’ apf = -R’ aBp: We define the Ricci tensor by

Rag =R’ 5= —R\, =017 5 — 0317, + 17,17, —~T7 7, . (10.47)

A further contraction gives the curvature scalar,

R = R,39°". (10.48)

Example 10.2: Calculate the Ricci tensor Ry, and the scalar curvature R of the two-dimensional
unit sphere S2.
We have already determined the non-vanishing Christoffel symbols of the sphere S? as I‘% 6= r? o0 =

cotd and F”d)d) = —cos?¥sind. We will show later that the Ricci tensor of a maximally symmetric
space as a sphere satisfies Ry, = K gqp. Since the metric is diagonal, the non-diagonal elements of the
Ricci tensor are zero too, Rg9 = Ryy = 0. We calculate with

Rap = Rcacb = aCl—‘cab - abl—‘cac + 1—‘Cadecd - decrcad
the ¥ component, obtaining

Rpg =0—09(T%,, +T%55) +0 =TTy =040y cot) — %, T,
=0—9gcotd —cot?d =1.

From R, = Kgaup, we find Ryy = Kggy and thus K = 1. Hence Ryp = gg¢ = sin? ¥.
The scalar curvature is (diagonal metric with g?¢ = 1/sin*9 and g”% = 1)

sind+1x1=2.

R:gabRab:g¢¢R¢¢+gﬂﬂRﬁﬁ: —
sin® 9

We can push the analogy further by remembering that the field-strength defined in
Eq. (I025) is a matrix. Writing out the implicit matrix indices of F),, in Eq. (I0.25]) gives

(F#V)ij = a#(AV)ij - au(Au)ij + ig{(Aﬂ)ik(Au)kj - (Au)ik(Au)kj} : (10.49)
Comparing this expression to

R%,, = 0%, — 9,0%, +T°,,I";, — I‘O‘pl,I‘”m (10.50)

we see that the first two indices of the Riemann tensor, o and f, correspond to the group
indices 47 in the field-strength tensor. This is in line with the relation of the potential (A4,);;
and the connection T'*4, implied by (I0.33)).
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10.3. Quantisation of gauge theories

10.3. Quantisation of gauge theories

10.3.1. Abelian case

We discussed already in Sec. [[.2]that we can derive the photon propagator only fixing a gauge.
Now we reconsider this problem, and ask how we should modify the Lagrange density in order
to be able to obtain the photon propagator. The Lagrange density that leads to the Maxwell
equation is

1 14 14
—3 (0uA 0" AY — 0, A,0" AV)

1 14 14 1 14 14 1 - 14
=5 (A,0,0"AY — A,0,0"AF) = §Au [0 — 010" A, = 3 A“DWIA ,

1
& =7 FuF" =
(10.51)

where we made a partial integration dropping as usual the surface term. Deriving the photon
propagator requires to invert the term in the square bracket. Performing a Fourier transfor-
mation, we see that we should find the inverse of the operator

D) (k) = K*PRY (k) = k> (" — K"KV [K?) (10.52)
We have already seen that this operator projects any four-vector on the three-dimensional
subspace orthogonal to k. More formally, we see that Py” (k) is a projection operator,

PP = PP (10.53)

and has thus as only eigenvalues 0 and 1. Since PL”(k) is not the unit operator, it has at
least one zero eigenvalue and is thus not invertible. More precisely, its trace is

Pp, =mnuPp" =0 —1=3, (10.54)

and thus three eigenvalues are one and one eigenvalue is zero. The latter eigenvalue corre-
sponds to kMPJ’fU = 0, as required for a projection operator on the three-dimensional subspace
orthogonal to k. The orthogonal part 6 — P, " is given by the longitudinal projection
operator Pr” = kPEY [K2.

We can invert Dljul, if we choose a gauge such that the subspace parallel to k is included.
The simplest choice is the Lorenz gauge. Imposing this gauge on the level of the Lagrangian

means adding

1
»2”—>D%ff=$+$gf=$—§(amu)2. (10.55)
More generally, we can add the term
1
Lyr = _E(auAu)Q (10.56)

that depends on the arbitrary parameter ¢. This group of gauges is employed in the proof
of the renormalisability of gauge theories and is therefore called R; gauge. The combined
effective Lagrange density is thus

1 1

Zefy = =3 Fw I 2

1 (0" A,)? = %A,, [n’“’D - <1 — %) aﬂa”] A, (10.57)
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Fourier transforming the term in the square brackets, we obtain
PH o= P 4 (1 — & HEPEY . (10.58)

Now we split this expression into its transverse and longitudinal parts,

P (g B ) - e (10.599)
T L2 '
=—E*Py — KPP (10.59b)

Since Pr” and P! project on orthogonal subspaces, we obtain the inverse Pljul simply by
inverting their prefactors, cf. problem 8.77. Thus the photon propagator in R¢ gauge is given
by

—iP® P k”k”]

D (K?) = " — (1 — 5)7 :

— — 10.60
k241 Kk2+ie  Kk?24ie ( )

Special cases are the Feynman gauge ¢ = 1, the Landau gauge ¢ = 0, while ¢ — oo corresponds
to the unitary gauge. The arbitrary, £ dependent part of the photon propagator vanishes
in physical quantities, where it is matched between conserved currents with 9,J*(z) = 0 or
k,J*(k) = 0.

o

10.3.2. Non-abelian case

An important conceptional difference between abelian and non-abelian theories is that in the
latter case the conserved Noether current is not gauge invariant, cf. problem 10.??. Moreover,
the non-abelian gauge transformation (I0.22c) adds not only a term 9,9 but mixes also the
fields via the term fabcAZW. Therefore it is in general not guaranteed that the gauge-
dependent unphysical degrees of freedom contained e.g. in the propagator (I0.60) decouple
and the quantisation of non-abelian theories becomes more challenging.

We consider first as a toy model for the generating functional of a Yang-Mills theory the
two-dimensional integral

7 /dxdy @) (10.61)

Since the integration extends from —oo to oo, the y integration does not merely change the
normalisation of Z but makes the integral ill-defined. We can eliminate the dangerous y
integration by introducing a delta function,

7 / dzdy 6(y)eS®) (10.62)

Since the value of y in the delta function plays no role, we can replace d(y) by d(y — f(z))
with an arbitrary function f(z). If y = f(x) is the solution of g(z,y) = 0, we obtain with

oy — f(x
assuming that dg/dy > 0 5
7 /d:z:dy a—gé(g)eis(”) . (10.64)
Yy
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Generalising this to n dimensions, we need n delta functions and have to include the Jacobian,
dg; .
7 x /d”xdny det <8—gl> Hé(gi)els(‘”). (10.65)
Yi) =

We now translate this toy example to the Yang-Mills case. The functions g are the gauge
fixing conditions that we choose as

g“(z) = 0" A (7) — w(z), (10.66)

where the w®(z) are arbitrary functions. The discrete index i corresponds to {z,a}, explaining
why the gauge freedom results in an infinity: Although the integration measure of a compact
gauge group is finite, the summation over R* gives an infinite answer. Finally, we see that
from the transformation law Af(z) — Af/(z) = Af(z) — Dj*9°(z) that the parameters 9¢
correspond to the redundant coordinates ;.

The generating functional for a Yang-Mills theory is thus with DA = szo | DA, as
short-cut given by

og” @\ .iS
Z[0] oc/DA Det <m> E(S(g JoiSvar (10.67)

where we set for the moment the sources to zero. Our task is to evaluate first dg®/d9”
and then to transform the determinant into the Lagrangian of new, auxiliary fields such
that we can use the language of Feynman diagrams to perform perturbative calculations
in the usual way. Inserting into the gauge fixing condition (I0.66]) the infinitesimal gauge
transformation (I0.22c)), we obtain as change

09" (z) = =" D" (). (10.68)
Thus the required functional derivative is

69°(z)
09° (y)

= —0"DW(z —y). (10.69)

We can eliminate the determinant remembering [ dndn €71 = det A from Eq. (8I03), ex-
pressing the Jacobian as a path integral over Grafimann variables ¢* and ¢%,

Det [gg;g; ] x / DeDE elSv7 (10.70)

The corresponding Lagrangian is
Lop = =" 0" D" = (01" (DE ") = 0" Dy + gf PO AL (10.71)

where we made a partial integration and inserted the definition of the covariant derivatives
acting on the gauge field, Eq. (I0:22c). As a result, we have recast the determinant as the
kinetic energy of complex scalar fields ¢® that interact with the gauge fields. Since we had to
use for the scalar fields GrafBimann variables ¢, their statistics is fermionic. Clearly, such fields
should be seen as a purely mathematical construct and they are therefore called Faddeev-
Popov ghosts. In an abelian theory as U(1), the interaction term in Eq. (I0.71)) is absent and
ghost fields decouple. Since they change then only the normalisation of the path integral,
they can be omitted in QED.
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Next we have to eliminate the §(¢%(z)). They contain the arbitrary functions w®(z), but
the path integral does not dependent on them. Thus we have the freedom to multiply with a
chosen function f(w®), thereby changing only the normalisation. Our aim is to generate after
integrating over the delta functions a term exp(iSgy), as in the case of QED. Choosing

i

Z — exp (—2— dtz w“(:z:)wa(x)> Z, (10.72)

integrating [T, , (9%) exp (_2_15 [dz w“(x)w“(x)) with the help of d(¢g”) and (I0.66), we
obtain as gauge-fixing term the desired

Ly = —2—156"A38”A3. (10.73)

The complete Lagrange density .4, of a non-abelian gauge theory consists thus of four
parts,
Lopp = Lym + Lyp + Lop + L (10.74)

where the last one couples sources linearly to the fields,
L =J"'A, +nc+en. (10.75)

We break both Ay and Zrp into a piece of O(g") defining the free propagator, and pieces
of O(g) corresponding to a three gluon and a two ghost-gluon vertex, respectively, and a four
gluon vertex of O(g?). After a partial integration of the free part, we obtain

]‘ a 14 14 a aoc a cv 92 aove pcae a C, 4
Lo + Lep = §A,, (n*' 0 — 0"9”) Al — gf ™" AL ALOF A — T/ bepede A A At A
—2*0c" + g f**°0te" P A, (10.76)

The Feynman rules can now be read off after Fourier transforming into momentum space,
cf. problem 10.??. Combining the resulting expression with .Z, ¢, we see that the gluon
propagator is diagonal in the group indices and otherwise identical to the photon propagator
in R¢ gauge. The ghost propagator is the one of a massless scalar particle,

5ab

Aa(k) = 574

(10.77)

Being a fermion, a closed ghost loop introduces however a minus sign.

Non-covariant gauges The introduction of ghost fields can be avoided, if one uses non-
covariant gauges which depend on an arbitrary vector n#. An example used often in QED is
the Coulomb or radiation gauge,

O A — (n,0")?% =0 (10.78)
with n, = (1,0,0,0). In QCD, one employs often the set of gauges

n,Ah =0, a=1,...,8 (10.79)
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10.A. Appendix: Feynman rules for an unbroken gauge theory

with the constant vector n*. More specifically, one calls the case n? = 0 light-cone, n? < 0
axial and n? > 0 temporal gauge. They have in common that the Faddeev-Popov determi-
nant does not depend on A%, and can be absorbed in the normalisation of the path integral,
exercise 10.??7. While non-covariant gauges thus bypass the introduction of unphysical parti-
cles in loop graphs, the resulting propagators are unhandy. Moreover, they contain spurious
singularities which require care. Therefore in practical all applications the use of the R, gauge
is advantageous.

Let us finally comment on the case of external gluons. In the case of photons, we can
sum their polarisation states using 21?1:0 88")*8;(/7‘) = —Nuw, since the nonphysical degrees of
freedom cancel in physical observables. In the non-abelian case, we can use this ”trick” only
in the case of a single external gluon. For two or more external gluons, we have to employ
the polarisation sum derived in problem 7.??, since the non-abelian vertices mix physical and
non-physical degrees of freedom. As a result, the conserved Noether current is not gauge
invariant, and we cannot use the argument of section Alternatively, we can use the Re-
gauge if we include Faddeev-Popov ghosts also as external particles. In order to subtract
correctly the unphysical contributions to the squared matrix elements, one has to add the
factor (—1)" to a term A; A} with 2n Faddeev-Popov ghosts [Nac90].

10.A. Appendix: Feynman rules for an unbroken gauge theory

The Feynman rules for a non-broken Yang-Mills theory as QCD are given in the R, gauge;
for the abelian case of QED set the structure constants fu,. = 0, T' = 1 and replace g, — eqy,
where ¢y is the electric charge of the fermion in units of the elementary charge e > 0. The
momentum flow is indicated by the thin arrow: For instance, all momenta are chosen as
in-going in the triple gauge vertex (10.82)).

Propagators
A . Nuv kuky
— 10, — — (1 - 10.80
[tsa NANNANAN Vb e 5)(k2)2 (10.80)
c i
T dab e (10.81)
Triple Gauge Interactions
pic —gsf™[ 0" (p1 — p2)? +1"° (p2 — p3)*
Ips +nP#(p3 — p1)"] (10.82)
b2
b D p1+p2+p3=0
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Quartic Gauge Interactions

o, d p,c _lgg [ feabfecd(nupnua - nuanup)
p} 493 + feacSfedb (nuo'npll - nuunpa)
(10.83)
p}« \pQ +feadfebc(77uu77pa - nupnua)]
K, a v,b
pr+p2+p3s+ps=0
Fermion Gauge Interactions
u, a
Tp3
N —i1gsY"T}; (10.84)
“hr ,
[ J
Ghost Interactions
u,c
Tpg gS fabcpllt
(10.85)

p1 +p2+p3=0

gy

Summary

Requiring local symmetry under a gauge group as SU(n) or SO(n) specifies the self-
interactions of massless gauge boson as well as their couplings to fermions and scalars. The
presence of self-interactions implies that a pure Yang-Mills theory is non-linear. The gauge
invariant derivative D, is the analogon to the covariant derivative V, of gravity, while the
field-strength corresponds to the Riemann tensor: Both measure the rotation of a vector
which is parallel-transported along a closed loop. The quantisation of Yang-Mills theories
in the covariant R gauge leads to ghost particles: These fermionic scalars compensate the
unphysical degrees of freedom still contained in the gauge fields A, using a covariant gauge
fixing condition as d,A* = 0.

Note also the interplay between local and global symmetries: A global symmetry trans-
formation U maps a physical state onto a different physical state with the same properties,
implying via Noether’s theorem a conserved current. A local symmetry transformation U(x)
maps a physical state on itself, implying a redundancy in our description of the system. Since
local symmetries contain global transformations as a subgroup, they imply always also the
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conservation of global charges via Noether’s theorem.

Further reading

The Feynman rules in the appendix are taken from [RS12]. This article contains all Feynman
rules for the SM in a convention independent notation which allows an easy comparison of
references with differing conventions. Current conservation in non-abelian theories is discussed
e.g. in [LP13]. The extension of the helicity formalism to QCD, where it leads to both
phenomenological useful and theoretically interesting results, is discussed by [Pes11], [Sch13],

and [Weil6].
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11. Renormalisation |: Perturbation theory

We encountered three examples of divergent loop integrals discussing the A¢* theory. In
these cases, it was possible to subtract the infinities in such a way that we obtained finite
observables which depend only on the experimentally measured values of m, A and p. The aim
of this and the following chapter is to obtain a better understanding of this renormalisation
procedure. We will see that the A¢* theory as well as the electroweak and strong interactions
of the SM are examples for renormalisable theories: For such theories, the renormalisation of
the finite number of parameters contained in the classical Lagrangian is sufficient to make all
observables finite at any order perturbation theory.

11.1. Overview

Why renormalisation at all? We are using perturbation theory with the free, non-interacting
Lagrangian as starting point to evaluate non-linear quantum field theories. Interactions
change however the parameters of the free theory, as we know already both from classi-
cal electrodynamics and quantum mechanics. In the former case, Lorentz studied 1904 the
connection between the measured electron mass m,,,, its mechanical or inertial mass mg and
its electromagnetic self-energy mg; in a toy model. He described the electron as a spherically
symmetric uniform charge distribution with radius re, obtaining

4e?

Mphy = Mo + Mej = Mo + ——. (11.1)

Ore
Special relativity forces us to describe the electron as a point particle: Taking thus the limit
re — 0, classical electrodynamics implies an infinite “renormalisation” of the “bare” electron
mass myg by its electromagnetic self-energy my;.

Another familiar example for renormalisation appears in quantum mechanics. Perturbation
theory is possible, if the Hamilton operator H can be split into a solvable part H ©) and an
interaction AV,

H=HO £ )\v, (11.2)

and the parameter X is small. Using then as starting point the normalised solutions |n(?)) of
HO),
HOn©y = 5On©)y (11.3)

we can find the eigenstates |n) of the complete Hamiltonian H as a power-series in A,
In) = [n©@) + Aln™M) + A2|n?)) + ... (11.4)

Since we started with normalised states, (n(?|n(®)) = 1, the new states |n) are not longer
correctly normalised. Thus going from free (or “bare”) to interacting states requires to renor-
malise the states,

rnlnyr=1 = |n)p=2"2|n). (11.5)
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11.1. Overview

A very similar problem we encountered introducing the LSZ formalism. In the parlance of
field theory, we continue often to call this procedure wave-function renormalisation, although
Z renormalises field operators.

Why regularisation at all? The familiar process of renormalisation becomes more obscure
by the fact that the renormalisation constants are infinite in most quantum field theories.
Mathematical manipulations as shifting the integration variable in a divergent loop integral
are only well-defined, if we convert first these integrals into convergent ones. Thus we have to
regularise as first step, i.e. employing a method which makes our expressions finite, so that our
mathematical manipulations are well-defined and we can perform the renormalisation. You
should keep in mind that the two operations, regularisation and renormalisation, are logically
independent: Renormalisation of the parameters in the free theory is necessary because they
are changed by interactions. This change may be finite, as the change of the photon mass in
a plasma, and no regularisation is necessary.

The second question to ask is why the renormalisation constants are infinite, or in other
words why do we have regularise at all? There are (at least) two possible answers to this
question: Either we use a bad theory as starting point, i.e. the full quantum theory de-
fined non-perturbatively by its generating functional Z[J] is ill-defined. Or we employ a bad
expansion scheme evaluating Z[.J] in perturbation theory.

Example 11.1: An example for a bad expansion is the following toy model for the A¢* interaction,

> 2 4 ° 4)2 1,2
Z(X) =/ dpe=3% A 7:/ dz [1—/\a:4+ (MQ’",) —] e 2. (11.6)

The LHS is well-defined for A > 0. Doing perturbation theory and summing up the first N terms of
the expansion on the RHS results in an alternating series,

S TR

NOEDY —|/ dza'"e ™ /7 =" a,\"
n=0 n: - n=0

with

1"
an = % 22712 (20 +1/2) .
n.

The coefficients a,, of this series grow like a factorial and thus the convergence radius of the expansion
is zero. Plotting Zn(X\)/Z(0) for the first few N as function of A, problem 11.?7, you see firstly that
adding more terms makes the expansion worse beyond at certain value Amax (), and secondly that
Amax(N) = 0 for N — oo, see [FHS12] for more details.

It should be not too surprising that the expansion (IL.6) has a zero convergence radius:
Moving from A > 0 to A < 0 changes fundamentally physics, since the vacuum is unstable for
arbitrarily small negative A\. An interesting consequence of the failure of perturbation theory
is that the complete theory may contain additional non-perturbative physics. Next we look
at an example where we start from a bad theory.

Example 11.2: We discussed in problem 2.?7 the scattering on a short-range potential in d = 1,
and found that no consistent solution exists for an odd potential. We rephrase this problem now in
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11. Renormalisation I: Perturbation theory

a language close to the one used in QFT. The perturbative expansion of the S-matrix in quantum
mechanics is given by

(5] S |ps) = 278(E: — ) [<pf| Vi) + [ dooslV ) WV ps) + -

i
E—p?/2+ie
for p; # py. Recoiling on the infinitely heavy static source, the (virtual) particle in the intermediate
states can have any momentum p while its energy is conserved. With Vp(z) = cod(x), it follows
(pr| Vo Ip) = co/(27) and then the momentum integral in the 2.nd order correction becomes

(5) [ vr—ppre
or PE ot
Thus this momentum integral, and similarly those at higher orders, are well-defined. Next we set
co = 0. Using then 6'f = —0f’, we obtain (ps|Vi|p) = ici(py — p)/(27) and thus the momentum

integral

(2)2 / ap = PP ~py)

27 E—p%/2+ie

is linearly divergent. The divergence means that the scattering probability is sensitive to arbitrarily
high momentum modes. We can understand this behaviour looking at the wave-function ¢(z): Because
the potential is odd, also ¥(x) is odd and thence has to change rapidly within |z| < a. As result, its
Fourier transform (k) necessarily contains also high-frequency modes.
In this simple toy-model, the natural way to solve the UV divergence problem is to replace the
mathematical idealisation of a delta-function like potential by the true, smooth potential. If we either
do not know the “true” potential or if we insist that a delta-function like potential captures all the
physics contained in a scattering process at a short-range potential, then we have to regularise the
potential, replacing V (z) = ¢16'(z) e.g. by

5(ac-|-a)—6(x—a).

Viz)=c 5

In this way, we eliminate high-frequency modes with p > 1/a. Repeating the computation of the
transmission amplitude, we find T' ~ iap/c?. Hence cg = i /a plays the role of an effective coupling
constant in the regularised theory. Physical observables like the transmission amplitude depend only

/2 Thus this simple example from quantum

on the single parameter cg, if we rescale ¢;(a) o< a~
mechanics exhibits the key features of a UV divergent QFT: We regularise the theory, cutting off UV
modes. Requiring the independence of physical observables from the cutoff scale, we obtain running

parameters.

It is very likely that our favourite A¢* interaction suffers from both diseases: First, the
expansion in A is not convergent but results in an asymptotic series. Second, the full theory
contains only the trivial A = 0 case as consistent solution. Even if the interacting theory
may be mathematically inconsistent, it can however be used as an effective model describing
physics up to a finite energy scale.

Regularisation methods We have already seen that the regularisation of divergent loop
integrals can be done in various ways. In general, one reparametrises the integral in terms of
a parameter A (or ¢) called regulator such that the integral becomes finite for a finite value
of the regulator, while the limit A — oo (or € — 0) returns the original integral.

e We can avoid UV divergences evaluating loop-integrals introducing an (Euclidean) mo-
mentum cutoff A. Somewhat more sophisticated, we could introduce instead of a hard
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11.1. Overview

cutoff a smooth function which suppresses large momenta. Using Schwinger’s proper-
time representation (A.90) we can cut-off large momenta setting

1 o= (P*+m?)/A? 00

2 3 2 2 /
pe+m p°+m
Although conceptual easy, both regularisation schemes violate generically all symmetries
of our theory. This is not a principal flaw, since we should be able to recover these
symmetries in the limit A — co. However, this “recovery process” may be non-trivial
to perform. Moreover, intermediate calculations become much more transparent if we
can use the symmetries of the theory, and therefore these schemes are in practise not
used except for the simplest cases.

ds e s> +m?) (11.7)

A—2

Pauli-Villars regularisation is a scheme where one adds heavy particles having the same
quantum numbers and couplings as the originals ones. Thus the propagator of a massless
scalar particle is changed to

1 1 a;

Prie Kt +2i:k2—Mz?+ie'
For k? <« MZ?, physics is unchanged, while for k% >> Mf and a; < 0 the combined
propagator scales as Mi2 /k* and the convergence of loop integrals improves. Since the
heavy particles enter with the wrong sign, they are unphysical ghosts and serve only as
a mathematical tool to regularise loop diagrams. Pauli-Villars regularisation respects
the gauge invariance of QED, if the heavy particles are coupled gauge invariantly to the
photon.

Lattice regularisation replaces the continuous space-time by a discrete lattice. The fi-
nite lattice spacing a introduces a momentum cutoff, eliminating all UV divergences.
Moreover the (Euclidean) path-integral becomes well-defined and can be calculated nu-
merically without the need to do perturbation theory. Thus this approach is particularly
useful in the strong-coupling regime of QCD where it has been used to calculate static
quantities as e.g. the hadron mass spectrum. Note that lattice regularisation for finite
a respects gauge symmetries, but spoils the translation and Lorentz symmetry of the
underlying QFT. Nevertheless, one recovers in the limit ¢ — 0 a relativistic QFT. A
longstanding problem of lattice theory was how to implement correctly chiral fermions.
This question was solved around the year 2000 and thus the SM can be defined now in
a mathematically consistent, non-perturbative way as a lattice theory.

Dimensional regularisation (DR) is the method we applied in the calculations of the
one-loop diagrams of the A¢* theory. While DR has the important virtue of preserving
Lorentz and gauge invariance, it is one of the least intuitive regularisation methods. We
will show later that an integral without mass scale is zero in DR, e.g. [ d?k=2 = 0. This
example shows that the integration measure we implement using physical requirements
with DR is not positive—as a mathematician would require. In problem 11.?7, we
examine how DR modifies the range of momentum values contributing to Feynman
integrals.

Using DR with fermions, we have to extend the Clifford algebra to d dimensions. A
natural choice is tr(y#v") = dp*” and tr(1) = 4. Problematic is however the treatment

of v% = iy%y14243 relying heavily on d = 4.
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11. Renormalisation I: Perturbation theory

e Various other regularisation methods as e.g. zeta function regularisation or point split-
ting methods exists.

Even fixing a regularisation method as e.g. DR, we can choose various renormalisation
schemes. Four popular choices are

e on-shell renormalisation. In this scheme, we choose the subtraction such that the on-
shell masses and couplings coincide with the corresponding values measured in processes
with zero momentum transfer ¢q. For instance, we define the renormalised electric charge
via the Thomson limit of the Compton scattering amplitude. While this choice is very
intuitive, it is not practical for QCD: We will see soon that in this theory scattering
amplitudes calculated in perturbation theory become ill-defined in the limit ¢> — 0.

e The momentum subtraction (MoM) scheme is a generalisation of the on-shell scheme
which can be applied also to QCD. Here we subtract from the Green functions counter-
terms such that the corrections are zero at a fixed space-like four-momentum p? = — 2.

In this way, divergences in the limit g2 — 0 are avoided.
¢ In the minimal subtraction (MS) scheme, we subtract only the divergent 1/e poles.

e In the modified minimal subtraction MS (read em-es-bar) scheme, we subtract also the
In(47) — term appearing frequently. This scheme gives more compact expressions than
the others and is most often used in theoretical calculations.

The main advantage of the MS and MS schemes is that they are mass independent, i.e. that
the subtraction terms do not depend on the particle masses. This independence simplifies
the derivation of “running couplings” (cf. with the calculation of A(x) in section [A.3.4]). As
a drawback of the MS and MS schemes, quantities like the electron mass calculated in these
schemes, mg/IS or méw 9 have to be translated into the physical mass m..

At a fixed order perturbation theory, predictions and reliability of different schemes vary
for given external parameters: A simple example is the change from the MS to the M.S scheme
which are connected by i2 = 47pu?e™7. Thus this transition is equivalent to a change of the
renormalisation scale, altering thereby the size of the In(;?) term and thus the strength of the
running coupling. More drastic changes result moving from a mass independent to a mass
dependent scheme, or comparing DR with other schemes. As a result, running couplings
which are small enough to allow perturbation theory in one scheme may be prohibitive large
in other schemes.

11.2. Anomalous magnetic moment of the electron

After this overview, let us move on to the calculation of the magnetic moment of the electron
which is shifted by loop corrections from the tree-level value g = 2 you derived in problem 8.77.
Apart from being the first successful loop calculation in the history of QFT, this process
illustrates also several generic properties of loop graphs in renormalisable theories like QED.

Vertex function The tree-level interaction %, = —elﬁﬁy’%ﬁAu between an electron and a
photon corresponds in momentum space to eu(p’)y*u(p)e,(g). Since loop integrals depend
generally on the external momenta, the tree-level vertex «* is modified by loop graphs as
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11.2. Anomalous magnetic moment of the electron

Figure 11.1.: The general vertex for the interaction of a fermion with a photon and its per-
turbative expansion within QED, corrections in external lines are omitted.

the one shown in Fig. [T.1] and becomes a function of the momenta, A*(p,p’,q). We want
to write down the most general form of the vertex function A* for the coupling between an
external electromagnetic field and an on-shell Dirac fermion, consistent with the symmetries
of the problem. It is as usually convenient to apply the tensor method, i.e. to express A* as
a sum of linearly independent rank-1 tensors multiplied by scalar functions.

Translation invariance implies ¢ = p’ — p and thus A* is only a function of two momenta
which we choose as p and p'. Since p? = p”? = m?, the only non-trivial scalar variable in the
problem is p - p’. We choose to use the equivalent quantity ¢> = (p’ — p)? as the variable on
which the arbitrary scalar functions in our ansatz for A* depend. Next we have to form all
possible vectors out of the momenta p,, and PL and the 16 basis elements (8.40) of the Clifford
algebra. Restricting ourselves to QED, we have to impose additionally parity conservation
what forbids the use of v°. Hence the most general ansatz compatible with Poincaré invariance
and parity is

A (p,p") = A(@®)V" + B(a®)p" + C(a*)p" + D(¢*)o" py + E(g*)o"p), . (11.8)
Current conservation requires g,A*(p,p’) =0 and leads to C' = B and E = —D. Hence
A (p,p') = A(@®*)7" + B(¢*) (0" + ") + D(¢*) o™ g, . (11.9)

Hermiticity finally implies that A, B are real and D is purely imaginary.

Gordon decomposition We derive now an identity that allows us to eliminate one of the
three terms in Eq. (ITJ9), if we sandwich A* between two spinors which are on-shell. We
evaluate

F* = a(p') [py" + "] ulp) (11.10)
first using the Dirac equation for the two on-shell spinors, finding
F* = 2mi(p")y u(p) . (11.11)
Secondly, we can use y#v¥ = nt¥ — ig"”, obtaining
Ft=a(p) [(p' +p)* + 10" (p' — p)u] u(p). (11.12)
1
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11. Renormalisation I: Perturbation theory

Equating (ITITI) and (IT.I12]) gives the Gordon identity: It allows us to separate the Dirac
current into a part proportional to (p + p’)#, i.e. with the same structure as a scalar current,
and a part vanishing for ¢ = p’ — p — 0 which couples to the spin of the fermion,

(' +p)* n ich (p' — p)y

o - u(p) . (11.13)

a(p')y"u(p) = a(p)
Using the results from problem 8.77, we can identify in the non-relativistic limit the second
term as contribution to the magnetic moment of the fermion.
The Gordon identity shows that the three terms in Eq. (IT9) are not independent. De-
pending on the context, we can eliminate therefore the most annoying term in the vertex
function. We follow conventions and introduce the (real) form-factors F;(¢?) and Fy(¢?) by

0" qy

A (p,p) = Fi(¢")7" + Folg") == = (11.14a)
—F (qQ)(pl;pr +[Fi(q®) + Fg(qQ)]iU;;q” (11.14D)

The form-factor F; is the coefficient of the electric charge, eFy(¢?)y*, and should thus go to
one for small momentum transfer, F;(0) = 1. Therefore the magnetic moment of an electron
is shifted by 1 + F»(0) from the tree-level value g = 2. The deviation a = (g — 2)/2 is called
anomalous magnetic moment, the two form-factors are often called electric and magnetic
form-factors.

Note the usefulness of the procedure to express the vertex function using only general
symmetry requirements but not a specific theory for the interaction: Equation (IT.IZal) allows
experimentalists to present their measurements using only two scalar functions which in turn
can be easily compared to predictions of specific theories.

Anomalous magnetic moment After having discussed the general structure of the electro-
magnetic vertex function, we turn now to its calculation in perturbation theory for the case
of QED. The Feynman diagrams contributing to the matrix element at O(e3) with wave-
functions as external lines are shown in Fig. [1.1] where we omit self-energy corrections in
the external lines: As we will see soon, the later do not contribute to the anomalous magnetic
moment. We separate the matrix element into the tree-level part and the one-loop correction,
—iet(p’) [y* + T#] u(p). Using the Feynman gauge for the photon propagator, we obtain

i i
m
F+f—m+ic’ ptf-mtic

o i
I (p, p') = / Th 1 (Ciey) (ciew).  (1L15)

(2m)* k2 + ie

This integral is logarithmically divergent for large k,

A k3

Before we perform the explicit calculation, we want to understand if this divergence is con-
nected to a specific kinematical configuration of the momenta. We split therefore the vertex
correction into an on-shell and an off-shell part,

T(p,p') =T"(p,p) + [["(p,p") = T*(p,p)] = T"(p,p) + T4 (p.p") - (11.17)
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11.2. Anomalous magnetic moment of the electron

Next we rewrite the first fermion propagator using the identity (A + B) ! = B! —
B 'AB™' 4+ ... forsmall A=p' —p as

1 1

Prk—m p+f-—m+@ -9

1 1

S ptE-m ptE-m ﬁﬂé m
The first term of this expansion leads to the logarithmic divergence of the loop integral for
large k. In contrast, the remainder of the expansion that vanishes for p’ —p = ¢ — 0 contains
additional powers of 1/k and is thus convergent. Hence the UV divergence is contained solely
in the on-shell part of the vertex correction, while the function T’ ff(p p') =TH(p,p")—TH(p,p)
is well-behaved. Moreover, we learn from Eq. (IT.14al) that the divergence is confined to F(0),
while F5(0) is finite. This is good news: The divergence is only connected to a quantity
already present in the classical Lagrangian, the electric charge. Thus we can predict the
function T'*(p,p’) for all values p’ # p, after we have renormalised the electric charge in the

limit of zero momentum transfer.
We now calculate the vertex function (ITI5]) explicitly. We set

[ % N ()
0(0) = ~ie* | S T e TR (11.19)

(11.18a)

R (11.18b)

with
NE =5+ F+m)y" P+ K +m)y . (11.20)

Then we combine the propagators introducing as Feynman parameter integrals

1 1 j e 1 1 e 1
I—yzz2/0da/0 dﬁ[z+a(I_Z)+ﬁ(y_z)]3:2/0da/o g (121

Setting z = k2, we obtain

D= {2+ of(p + k)2 —m? — K] + B(p + k)* — m® — K]} (11.22)

The complete calculation of the vertex function (IT.I5) for arbitrary off-shell momenta is
already quite cumbersome. In order to shorten the calculation, we restrict ourselves therefore
to the part contributing to the magnetic form factor F5(0). Because of

2)(p’ +p)*

A (p,p) = [Fi(¢®) + Fao(¢*) ] v* — Fa(q o

(11.23)

we can simplify the calculation of N#(k), throwing away all terms proportional to y* which
do not contribute to the magnetic moment. This justifies also why we can neglect diagrams
with self-energy corrections in the external lines. Moreover, we can consider the limit that
the electrons are on-shell and the momentum transfer to the photon vanishes.

Using the on-shell condition, p? = p”? = m?, the two square brackets in D simplify to 2p’ -k
and 2p - k, respectively,

D={k+2k (ap/ +Bp)}" . (11.24)
Next we eliminate the term linear in k£ completing the square,
= {(k-l—ap' + Bp)? — (ap’ + Bp) } = { (a?m? + B*m? + 2a8p’ - p)} . (11.25)
l
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Since the momentum transfer to the photon vanishes, ¢> = 2m? — 2p' - p — 0, we can replace
p' - p — m? and obtain as final result for the denominator

D={—(a+8)’m*}" . (11.26)

Now we move on to the evaluation of the numerator N'#(k). Performing the change of our
integration variable from k = £ — (ap’ 4+ Bp) to £, the numerator becomes

NEO) =77 (P"+ £ +m)y" (P + +m)y (11.27)

with P’ = (1 — a)p' — Bp and P = (1 — B)p — af. Multiplying out the two brackets and
ordering the result according to powers of m, we observe first that the term o m? leads to
o y* and thus does not contribute to F5(0). Next we split further the term linear in m
according to powers of £: The term linear in £ vanishes after integration, while the term mlo
results in

m(Y Py + 9V ) = 4m(P + PY) = 4m[(1 - 2a)p™ + (1 = 28)p"].  (11.28)
Using the symmetry in the integration variables o and 3, we can rewrite this expression as
— 4m[(1 —a = B) (™ +p")]. (11.29)

We split the m° term in the same way according to the powers of f. The m0l2 term gives a
~# term, the m®f vanishes after integration, and the m?° gives after some work

Y Py P = 2mla(l — a) + AL - B +p)" (11.30)
Finally, the m® term contributes to the anomalous magnetic moment
= —2m(p’ +p) 21 — a)(1 = B)]. (11.31)
Combining all terms, we find

NE =4m(1 —a = B)(p' +p)* + 2mla(l — a) + B(1 = B)](p" + p)*
—4m(l - a)(1 - B)(p' +p)" =

—2m[(1 —a— f)(a+ AW +p)" (11.32)
Thus 290 A
T4 (0) = —2ie? /dadﬁ/ 1% 12— (o + BY2mZP (11.33)

where the subscript 2 indicates that we account only for the contribution to the anomalous
magnetic moment. We expressed also the loop integral in 2w dimensions, such that we can
apply the general formula derived in the appendix {.Al Using Eq. (£I06) for I(w,a) with
w=2and a =3,

i 1
3272 (a+ B)?m? +ie’

1(2,3) = — (11.34)

we obtain as expected a finite result. As last step, we perform the integrals over the Feynman

parameters « and 3,
e gloa—p _1
d == 11.
/ a/ =3 (11.35)
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11.2. Anomalous magnetic moment of the electron

and find thus

62

[0 =~ % ' +p)*. (11.36)
Recalling Eq. (TT.23)), we can identify the factor e?/(872) with the magnetic form factor F(0).
We have thus reproduced the result of the first successful calculation of a loop correction in
a QFT, performed by Schwinger, and independently by Feynman and Tomonaga, in 1948,
F5(0) = a/(2m). Together with Bethe’s previous estimate of the Lamb shift in the hydro-
gen energy spectrum, this stimulated the view that a consistent renormalisation of QED is
possible.
The currently most precise experimental value for the electron anomalous magnetic moment
ae = F»(0) is
al™ = (.001 15965218073 + 2.4 x 10717 (11.37)

The calculation of the universal (i.e. common to all charged leptons) QED contribution has
been completed up to fourth order. There exists also an estimate of the dominant fifth order
contribution,

(0%

. 2
af" =05 (£) — 0328478965579 19378 ()
™ ™

a3 a\4 a\®
+1.181241 456 587 ... (E) —1.9144(35) (;) +0.0(4.6) (;)
— 0.001 159652 176 30(43)(10)(31) - - - (11.38)

The three errors given in round brackets are the error from the uncertainty in «, the nu-
merical uncertainty of the a* coefficient and the error estimated for the missing higher order
terms [Jeg07]. Comparing the measured value and the prediction using QED, we find an ex-
tremely good agreement. First of all, this is strong support that the methods of perturbative
QFT we developed so far can be successfully applied to weakly coupled theories as QED.
Second, it means that additional contributions to the anomalous magnetic moment of the
electron have to be tiny.

Electroweak and other corrections The lowest order electroweak corrections to the anoma-

lous magnetic moment contain in the loop virtual gauge bosons (W*, Z) or a Higgs boson A

and are shown in Fig. We will consider the electroweak theory describing these diagrams

only later; for the present discussion it is sufficient to know that the weak coupling constant is

g ~ 0.6 and that the scalar and weak gauge bosons are much heavier than leptons, M > m.
The first diagram corresponds schematically to the expression

d*k 1 A(m?2,k
~ g2/ (2m)* k2 — M2 [(p — ;)2 _ Zn2]2 : (11.39)

As in QED, this integral has to be finite and we expect that it is dominated by momenta
up to the mass M of the gauge bosons, k& < M. Therefore its value should be proportional
to g?m?/M? (times a possible logarithm In(M?2/m?)) and electroweak corrections to the
anomalous magnetic moment of the electron are suppressed by a factor (m/M)? ~ 1010
compared to the QED contribution. The property that the contribution of virtual heavy
particles to loop processes is suppressed in the limit |¢?| < M? is called “decoupling”. Note
the difference to the case of the mass of a scalar particle or the cosmological constant: In
these examples, the loop corrections are infinite and we cannot predict these quantities. In

175



11. Renormalisation I: Perturbation theory

Figure 11.2.: Lowest order electroweak corrections to the anomalous magnetic moment of
fermions.

contrast, the anomalous magnetic moment is finite but, as we include loop momenta up
to infinity, depends in principal on all particles coupling to the electron, even if they are
arbitrarily heavy. Only if these heavy particles “decouple”, we can calculate a, without
knowing e.g. the physics at the Planck scale. Thus the decoupling property is a necessary
ingredient of any reasonable theory of physics, otherwise no predictions would be possible
before knowing the “theory of everything”.

Clearly, the contribution of heavy particles (either electroweak gauge and Higgs bosons
or other not yet discovered particles) is more visible in the anomalous magnetic moment
of the muon than of the electron. Moreover, a relativistic muon lives long enough that a
measurement of its magnetic moment is feasible. This is one example how radiative corrections
(here evaluated at ¢®> = 0) are sensitive to physics at higher scales M: If an observable can
be measured and calculated with high enough precision, one can be sensitive to suppressed
corrections of order g?m?/M?. Other examples are rare processes like 4 — e 4+ or B, —
pT ™ These processes are suppressed by a specific property of the SM which one does not
expect to hold in general. The achieved precision in measuring and calculating such processes
is high enough to probe generically scales of M ~ 100 TeV, i.e. much higher than the mass
scales that can be probed directly at current accelerators as LHC.

Finite versus divergent parts of loop corrections We found that the vertex correction could
be split into two parts
ic"”q,

A (p,p) = Fi(¢* )" + Fa(q?) oy

(11.40)

where the form factor Fy(q?) is finite for all ¢2, while the form factor Fy(q?) diverges for
¢®> — 0. The important observation is that F5(g?) corresponds to a Lorentz structure that
is not present in the original Lagrangian of QED. This suggests that we can require from a
“nice” theory that

e all UV divergences are connected to structures contained in the original Lagrangian,
all new structures are finite. The basic divergent structures are also called “primitive
divergent graphs”.

e If there are no anomalies, then loop corrections respect the original (classical) symme-
tries. Thus, e.g., the photon propagator should be at all orders transverse, respecting
gauge invariance. We will see that as consequence the high-energy behaviour of the
theory improves.
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In such a case, we are able to hide all UV divergences in a renormalisation of the original
parameters of the Lagrange density.

11.3. Power counting and renormalisability

We try to make the requirements on a “nice” theory a bit more precise. Let us consider the
set of A@"™ theories in d = 4 space-time dimensions and check which graphs are divergent.
We define the superficial degree D of divergence of a Feynman graph as the difference be-
tween the number of loop momenta in the numerator and denominator of a Feynman graph.
We can restrict our analysis to those diagrams called 1P irreducible (1PI) which cannot be
disconnected by cutting an internal line: All 1P reducible diagrams can be decomposed into
1PI diagrams which do not contain common loop integrals and can be therefore analysed
separately. Moreover, we are only interested in the loop integration and define therefore the
1PI Green function as graphs where the propagators on the external lines were stripped
off. In d = 4 space-time dimensions, the superficial degree D of divergence of a 1PI Feynman
graph is thus

D =4L - 2I, (11.41)

where L is the number of independent loop momenta and I the number of internal lines.
The former contributes a factor d*p, while the latter corresponds to a scalar propagator with
1/(p? — m?) ~ 1/p? for p — oo.

Momentum conservation at each vertex leads for an 1PI-diagram to

L=1-(V-1), (11.42)

where V is the number of vertices and the —1 takes into account the delta function leading
to overall momentum conservation: The latter constrains only the external not the loop
momenta. Thus

D=2 —4V +4. (11.43)

Each vertex connects n lines and any internal line reduces the number of external lines by
two. Therefore the number E of external lines is given by

E=nV —2I. (11.44)

As result, we can express the superficial degree D by the order of perturbation theory (V),
the number of external lines F and the degree n of the interaction polynomial ¢",

D=(n—-4)V+4-E. (11.45)
From this expression, we see that

e for n < 4, the coefficient of V' is negative. Therefore only a finite number of terms in
the perturbative expansion are infinite. Such a theory is called super-renormalisable,
the corresponding terms in the Hamiltonian are also called relevant.

!Similar to their relatives, the (dis-) connected Green functions, also the 1PT Green functions can be derived
from a generating functional which we will introduce in the next chapter.

177



11. Renormalisation I: Perturbation theory

o s P XX

Figure 11.3.: Primitive divergent diagrams in QED (without vacuum diagrams).

e For n =4, we find D = 4— E. Thus the degree of divergence is independent of the order
of perturbation theory being only determined by the number of external lines. Such
theories contain an infinite number of divergent graphs, but they all correspond to a
finite number of divergent structures—the so-called primitive divergent graphs. These
interactions are also called marginal and are candidates for a renormalisable theory.

e Finally, for n > 4 the degree of divergence increases with the order of perturbation the-
ory. As result, there exists an infinite number of divergent structures, and increasing the
order of perturbation theory requires more and more input parameter to be determined
experimentally. Such a theory is called non-renormalisable, the interaction irrelevant.

In particular, the \¢* theory as an example for a renormalisable theory has only three
divergent structures: i) the case £ = 0 and D = 4 contributes to the vacuum energy, ii) the
case E =2 and D = 2 corresponding to the self-energy, and iii) the case E = 4 and D = 0,
i.e. logarithmically divergence, to the four-point function. As we saw in chapter [ the three
primitive divergent diagrams of the A¢* theory correspond to the following physical effects:
Vacuum bubbles renormalise the cosmological constant. The effect of self-energy insertions
is twofold: Inserted in external lines it renormalises the field, while self-energy corrections
in internal propagators lead to a renormalisation of its mass. The vertex correction finally
renormalises the coupling strength .

Let us move to the case of QED. Repeating the discussion, we obtain the analogue to
Eq. (IT.45]), but accounting now for the different dimension of fermionic and bosonic fields,

3

D:4—B—§F, (11.46)
where B and F' count the number of external bosonic and fermionic lines, respectively. There
are six different superficially divergent primitive graphs in QED shown in Fig. [T.3t The
photon and the fermionic contribution to the cosmological constant (D = 4), the vacuum
polarisation (D = 2), the fermion self-energy (D = 1), the vertex correction (D = 0) and
light-by-light scattering (D = 0). Recall that Furry’s theorem implies that loops with a an
odd number of fermion propagator vanish in QED. Therefore we have not included in our
list of primitive divergent graphs of QED the tadpole (B = 1 and D = 3) and the “photon
splitting” graph (B =3 and D = 1).

In a theory with symmetries such as a gauge theory, the true degree of divergence can
be smaller than the superficial one. For instance, light-by-light scattering corresponds to a
term .2 ~ A* that violates gauge invariance. Thus either the gauge symmetry is violated by
quantum corrections or such a term is finite.

Because of the correspondence of the dimension of a field and the power of its propagator,
we can connect the superficial degree of divergence of a graph to the dimension of the coupling
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11.4. Renormalisation of the A¢* theory

constants at its vertices. The superficial degree D(G) of divergence of a graph is connected
to the one of its vertices D, by

D(G) -4 =) (D, —4) (11.47)

v
which in turn depends as

Dy = 6, + gf,, by = 4= [gu] (11.48)

on the dimension of the coupling constant g at the vertex v. Here, f, and b, are the number
of fermion and boson fields at the vertex, while d, counts the number of derivatives. Thus the
dimension of the coupling constant plays a crucial role deciding if a certain theory is “nice”
in the naive sense defined above. Clearly D = 0 or [g] = m? is the border-line case:

e If at least one coupling constant has a negative mass dimension, [g] < 0 and D, > 4,
the theory is non-renormalisable. Examples are the Fermi theory of weak interactions,
[Gr] = m 2, and gravitation, [Gx] = m 2.

e If all coupling constants have positive mass dimension, [g] > 0 and D, < 4, the theory
is super-renormalisable. An example is the A¢> theory in D = 4 with [\] = m".

e The remaining cases, with all [g;] = 0, are candidates for renormalisable theories. Ex-
amples are Yukawa interactions, A\¢*, Yang-Mills theories that are unbroken (QED and
QCD) or broken by the Higgs mechanism (electroweak interactions).

Theories with massive bosons We have assumed that bosonic propagators behave as oc 1/k?
for large (Euclidean) momenta k. This is true both for massive and massless scalars, while it
holds only for massless particles with spin s > 1: As we have seen, the massless spin-1 and
spin-2 propagators in the R, gauge decrease like oc 1/ k? for large k. In contrast, the massive
spin-1 propagator behaves as D%’ (k) oc const. Thus the divergences in loop diagrams are more
severe for massive vector particles than for massless ones. For a massive bosonic field of spin
s, the polarisation tensors contains s tensor products of k,k, and therefore its propagator
scales as Dy, ... yowy,ws(k) o< k**72. This implies that the divergences of loop diagrams
aggravate for higher spin fields. In particular, inserting additional massive propagators into a
loop graph does not improve its convergence and thus a theory with massive s > 0 particles
contains an infinite number of divergent diagrams at each loop order. Including an explicit
mass term for gauge bosons leads therefore to a non-renormalisable theory. A solution to this
problem is the introduction of gauge boson masses via the Higgs mechanism, which we will
introduce in chapter [3.3] Combined with our finding that interacting theories of massless
bosons are only possible for s < 2, we can conclude that elementary particles should have
spin s < 2.

11.4. Renormalisation of the \¢* theory

We have argued that a theory with dimensionless coupling constant is renormalisable. In this
case a multiplicative shift of the parameters contained in the classical Lagrangian is sufficient
to obtain finite Green functions. The simplest theory of this type in d = 4 is the A¢* theory
for which we will discuss now the renormalisation procedure at one loop level. As starter, we
examine the general structure of the UV divergences.
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11. Renormalisation I: Perturbation theory

11.4.1. Structure of the divergences

We learnt that the degree of divergence decreases increasing the number of external lines, since
the number of propagators increases. The same effect has taking derivatives w.r.t. external
momenta p,

0 d*k 1 d*k 1
3_15/ @m)t f+p—m _/ @2m)* (F+p—m)*
This means that

1. we can Taylor expand loop integrals, confining the divergences in the lowest order terms.
Choosing e.g. p = 0 as expansion point in the fermion self-energy,
9 ) 1o
YX(p) = Ao+ A1p+ Asp” + ... with A, = ——5=%(p),
n! Op
we know that Ay is (superficially) linear divergent. Thus A; can be maximally loga-
rithmically divergent, while all other coefficients A,, are finite.

2. We could choose a different expansion point, leading to different renormalisation con-
ditions (within the same regularisation scheme).

3. The divergences can be subtracted by local operators, i.e. by polynomials of the fields
and their derivatives. These terms called counter-terms have for a renormalisable theory
the same structure as the terms present in the classical Lagrangian. For instance,
the linear divergent term Ay can be associated to a counter-term dAgp, while Ajp
corresponds to the counter-term dA;y@Py.

It is easy to show that the counter-terms are local operators at the one-loop level, where
diagrams contain only one integration variable. Any loop integral I(p) with superficial degree
of divergence n — 1 becomes finite after taking n derivatives w.r.t. an external momentum p.
Using a cutoff A as regulator, this implies that in

871,

%I(p) = f(p) + O(p/A) (11.49)

the function f(p) is finite and independent of A, while the remainder vanishes in the limit
A — co. Integrating this expression n times, we obtain

I(p) = F(p) + Pu(p) + O(p/A), (11.50)

where F(p) is also finite and independent of A. The function P, (p) is a n.th order polynomial
containing the integration constants. Since F'(p) is finite, P,(p) comprises all divergences.
They are therefore the coefficients of polynomials in the external momentum p and can be
subtracted by local operators, as we claimed. This argument shows also that all non-trivial
analytical structures like cuts have to be contained in F(p). Moreover, choosing a different
regularisation scheme or point leads to the same f(p) in (IL49]), and thus all the scheme
dependence is contained in the polynomial P,(p). As a result, the differences caused by
different schemes reside only in local terms which are absorbed in the renormalisation of the
parameters.

Going to higher loop orders, non-local terms as e.g. In(p?/u?) can be generated by sub-
divergences. These are divergences connected to integration regions where one or more loop
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11.4. Renormalisation of the A¢* theory

momenta are finite, while the remaining ones are send to infinity. Such terms are cancelled by
counter-terms determined at lower order. A sketch why this should be true goes as follows:

Green functions become singular for coinciding points, i.e. when the convergence factor e %% in the
Euclidean Green function becomes one. In the simplest cases as (0|¢(z')$(x)|0)4— 2, the infinities are
eliminated by normal ordering, i.e. by rewriting all creation operators on the left of the annihilation
operators, cf. problem 3.77. More complicated are overlapping divergences where two or more divergent
loops share a propagator. Wilson suggested to expand the product of two fields as the sum of local
operators O; times coefficient functions C;(z —y) as

P(x)e(y) = Z Ci(z —y)Oi(z),

where the dependence on the relative distance is carried by the coefficients and the local operators O;
are of the type O;(z) = ¢(x)0,, ---0"¢(x). For a massless scalar field, dimensional analysis dictates
that Cj(x) oc 272+ | if the local operator O; has dimension d;. Note that only the unity operator has
a singular coefficient function 1/x? corresponding to the massless scalar propagator. Similarly we can
expand products of operators,

On(2)Om(y) = Z Crm (@ =) Oi()

where now C! (r) oc 279 ~dm+di Thus we can use this operator product expansion (or briefly
“OPE”) to rewrite the overlapping divergences in terms of (singular) coefficient functions and local
operators. Moreover, the sub-divergence occurring at order k, when p < k points coincide, are
eliminated by the counter-terms found at order p.

Elaborating this argument in detail, one can conclude that non-local terms due to overlapping
divergences are cancelled by the counter-terms found at lower order. We will see how this
works in practice in the next section, when we calculate the vacuum energy at two-loop.

11.4.2. The \¢* theory at O()\)

There are two equivalent ways to perform perturbative renormalisation. In the one called
often “conventional” perturbation theory we use the “bare” (unrenormalised) parameters in
the Lagrangian,

1 1 A
L= Lo+ Ly = §(aﬂ¢0)2 - §m§¢§ - 4—? oh. (11.51)

Then we introduce a renormalised field ¢p = Z(;l/ 2(;50 and choose the parameters Z;, mg and
Ao as function of the regularisation parameter (e, A,...) such that the field ¢r has finite
Green functions. In the following, we discuss the renormalisation procedure at the one-loop
level for the Green functions of the A¢* theory in this scheme. Since any 1P reducible diagram
can be decomposed into 1PI diagrams which do not contain common loop integrals, we can
restrict our analysis again to 1PI Green functions.

Mass and wave-function renormalisation We defined the exact or full propagator
iAp(z1,29) in Eq. (£2) as the path integral average of the two fields ¢(x1)d(z2). Now
we want to find a definition which is useful for calculations in perturbation theory: We claim
that

[(Arp)] =[iAr@) " - Z(p) =p* —m® - B(p) —ie (11.52)
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11. Renormalisation I: Perturbation theory

is the exact propagator, where the exact self-energy 3(p) represents the 1PI corrections to
the scalar mass, m%hys = m2 + 3. Multiplying this definition from the right with iAz(p) and
from the left with 1A p(p), the so-called Dyson equation follows,

iAFR(p) =1Ar(p) +i1Ar(p)Z(p)iAr(p) = iAr(p) [1 + Z(p)iAr(p)] . (11.53)

Graphically, we can express this equation as

_ . 9)—
o ), — L

where the second line follows by iteration. Hence, iA g (p) sums up the amplitudes to propa-
gate at momentum p with zero, one,. ..self-energy ¥ insertions, and corresponds therefore to
the full propagator. At O(\), we see that this relation holds comparing it to Eq. (433)).

Next we have to show that the self-energy (p?) is finite after renormalisation. The one-loop
expression

, —io [ d% i
—i2(p?) = — 11.54
=) 2 / (2m)* k2 —m3 +ie (11.54)

is quadratically divergent. As a particularity of the ¢* theory, the p? dependence of the
self-energy ¥ shows up only at the two-loop level. We perform a Taylor expansion of X(p?)
around the arbitrary point p,

2(p?) = 2(?) + (0 — pHE (1?) + (%), (11.55)

where X(4?) o« A%, ¥'(4?) o InA and B(p?) is the finite remainder. A term linear in A is
absent, since we cannot construct a Lorentz scalar out of p#. Note also 3(u?) = 0.

Now we insert (I1.55) into (IT.52)),

i i
- . _ (11.56)
P -mi =S ie g —md - B(u) — (0 — 1) (i) - S() +ie

p2_ﬂ2

where we see that we can identify p with the renormalised mass given by the pole of the
propagator.

We aim at rewriting the remaining effect for p> — pu? = m? of the self-energy insertion,
¥'(m?), as a multiplicative rescaling. In this way, we could remove the divergence from the
propagator by a rescaling of the field. At leading order in A, we can write

S(p?) = [1 = %'(m?)] B(p%) + 0(A) (11.57)
and thus
_ 1 i N iZ,
1Y) p2—m? —S(p?) +ie p*—m?—N(p?) +ie

iAr(p) (11.58)
with the wave-function renormalisation constant
1

=TTl - 1+ %' (m?). (11.59)

Zg
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11.4. Renormalisation of the A¢* theory

Close to the pole, the propagator is the one of a free particle with mass m,
iZ4

A _ %y
iAr(p) p? —m?2 +ie

+O(p* —m?). (11.60)
Thus the renormalisation constant Z4 equals the wave-function renormalisation constant Z
we had to introduce into the LSZ formalism to obtain correctly normalised states.

We define the renormalised field ¢ = Z(;l/ 2(;50 such that the renormalised propagator
i

iAr(p) = /d4m " (0| T{p(z)$(0)} 10) = Z, " iA(p) = P TP (11.61)

is finite. Similarly, we define renormalised n-point functions by
GW(x1,... w0) = (O] T{$(x1) -+ $ulwa) }10) = Z, "> G5 (w1, 2m). (11.62)

Since the 1PI n-point Green functions miss n field renormalisation constants compared to
connected n-point Green functions, the connection between renormalised and bare 1PI n-
point functions is given by

F%)(xl,...,xn) =ZZ/2 F(()n)(xl,...,xn). (11.63)

Coupling constant renormalisation We can choose an arbitrary point inside the kinematical
region, s+t +u = 4u? and s > 442, to connect the coupling to a physical measurement at
this point. For our convenience and less writing work, we choose instead the symmetric point

_
-

The bare four-point 1PI Green function is (see section [£.3.3))

80=t0=U0

T (s,t,u) = —idg + T(s) + T(¢) + T'(u), (11.64)
the renormalised four-point function at (s, to, ug) is
T (50, t, ug) = —iX. (11.65)
Next we expand the bare 4-point function around sg, tg, ug,
T (s,t,u) = —ido + 3T(s) + I'(s) + I'(¢) + I'(w) (11.66)

where the I'(z) are finite and zero at zp. Now we define a vertex (or coupling constant)
renormalisation constant by

—iZ, " Xg = —iXo + 3T (s0) (11.67)
Inserting this definition in (IT.66]) we obtain

T (s, t,u) = =125 Ao + T(s) + T(¢) + T'(u) (11.68)
what simplifies at the renormalisation point to

F(()4) (307 t07 UO) = _iZ;1A0 . (1169)
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We use now the connection between renormalised and bare Green functions,

T4 (s,t,u) = Zil“é‘”(s,t,u) : (11.70)
and thus
—iA=Z37Z, (i) . (11.71)
The relation between the renormalised and bare coupling in the A¢? theory is thus
A=2737"X. (11.72)

Now we have to show that F%)(s,t,u) is finite. Inserting (IT.68)) into (IT.70), we find
Ty (s,t,u) = —1Z22, o + Z2[F(s) + D(t) + T'(w)]
= —iA+ Z2[[(s) + T(t) + T'(u)] (11.73)
Since Zy = 1+ O(X?) and T = O()?), this is equivalent to
T (s, 4,u) = —ix+ [[(s) + T() + T(w)] + O(A3) (11.74)

consisting only of finite expressions. This completes the proof that at one-loop order all
Green functions in the A\¢* theory are finite, renormalising the field ¢, its mass and coupling
constant. as

Renormalised perturbation theory In this approach, we rescale first the bare field in the
classical Lagrangian by ¢q = Z 1/2 ¢, obtaining

A
$=—z¢(au¢> Z¢ 00° — 57 Ze9" (11.75)

Next we introduce the renormalised mass and coupling by m0 Z 1Z,.m?and \g = Z 220,

obtaining
1 1
£ = §Z¢(8ﬂ¢)2 — §me2¢2 —
The renormalisation constants Z; vanish at tree-level and allow for a perturbative expansion.

Setting Z; = 1 + §;, we can split the Lagrangian into

1 1 A
Z = §(au¢)2 - §m2¢2 T a ¢*

1 1
+ 306(0u0)° -

A 4
§5mm2¢2 — e
where the first line contains only renormalised quantities. The terms in the second line contain
the divergent renormalisation constants, and this part is called the counter-term Lagrangian
Z.t. An advantage of renormalised perturbation theory is that now the expansmn parameter

(n)

A
a A (11.76)

(11.77)

is the renormalised coupling A. Treating .%; as a perturbation, Z; = 1+ " | §;"’, we obtain
in momentum space as additional Feynman vertices
—— = i[dyp* — Gypm?] (11.78)

and

>< = —i0y\. (11.79)

Applying renormalised perturbation theory consists of the following steps:
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11.4. Renormalisation of the A¢* theory

1. Starting from (TL76] ) with n =0, i.e. 62(0) = 0, one derives propagator and vertices.

2. One calculates 1-loop 1PI diagrams and finds the divergent parts which determine the
)

counter-terms J; ' at order O(X). Then all other one-loop diagrams can be calculated.

3. Moving to two-loops, one generates two-loop 1PI diagrams using the Lagrangian with

(1)

the one-loop counter-terms 52.1 .
order O(\?).

They are used to extract the counter-terms 51(2) at

4. The procedure is iterated moving to higher orders.

We illustrate the use of renormalised perturbation theory with the calculation of the remain-
ing loop diagram at O()), the vacuum energy density. This example for a two-loop diagram
shows also how sub-divergences are cancelled by counter-terms found at lower loop order.
Including the vacuum energy density, the Lagrangian (IT.76) becomes .2 — 2 + p + 0,p.
This example shows also that the correct expansion parameter is the number of loops, not
the power of the coupling constant.

Example 11.3: Vacuum energy density at two-loop:

According to step 2., we should determine first the counter-terms in .Zc(tl) from the already calculated
one-loop 1PI diagrams. We start collecting the relevant results derived in chapter [

m* 1 1 Al

1 1
1 2 2 1 1

where we use the MS scheme and re-scaled p? — 4mpu?exp(—v). Inserting the one-loop self-energy
into the two-loop expression p((f) = \/8 A%(0) results in

A A om?t 1 2 2 2
) —2A20) =2 | i () w2 ()] 11.81
Pa 8 r(0) 8 (4m)* L? + € n <m2> o m?2 (11.81)

Here a mixed term, combining a pole term 1 /¢ and a logarithm with argument u? /m?, has appeared. In
general, the logarithm will depend both on the masses of the loop particles and the external momenta
p, In[f(u?/m?, u?/p*)]. Such terms cannot be subtracted by local polynomials in the momenta p
as counter-terms. In a renormalisable theory, they have to be therefore cancelled by counter-terms
determined at lower loop order.

In our concrete case, we have to add only the Feynman diagram generated by the counter-term
—%5,(71)m2¢2, since &5 contributes only from the two-loop level on. This interaction generates at O(\)
the following contribution to the vacuum energy density

(2) _ _ L, 2 __Amt 21 2 /2
o @ 30 mPAR(0) = ¢ oy = |2 G /m?)| (11.82)

Combining the two contributions, the mixed terms disappear as expected and the remaining 1/¢>
pole can be subtracted by the counter-term

A1 1
62 == . 11.83
p 8 (4m)* &2 ( )
Thus the two-loop contribution to the vacuum energy density is
4 I
@ M oo (M) 11.84
o = s gy = (2 (11.84)
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Summary

Using a power counting argument for the asymptotic behaviour of the free Green functions,
we singled out theories with dimensionless coupling constants: Such theories with marginal
interactions are renormalisable, i.e. are theories with a finite number of primitive divergent
diagrams. In this case, the multiplicative renormalisation of the finite number of parameters
contained in the classical (effective) Lagrangian is sufficient to obtain finite Green functions
at any order perturbation theory.

Further reading

The renormalisation of the A¢* theory at the two-loop level is performed e.g. by [Pok87]. Non-
renormalisable theories are discussed by [Sch13]. [Jeg07] reviews the status of electroweak
precision calculations.
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We continue our discussion of renormalisation, introducing first the quantum action as the
generating functional of 1PI Green functions. Then we apply the developed formalism to
derive the Ward identities which imply e.g. that the exact photon propagator is transverse
and that the renormalisation of the electric charge is universal. Next we introduce the renor-
malisation group equations which describe the evolution of n-point Green functions under a
change of scale. These equations suggest to convert the parameters contained in the classical
Lagrangian into “running parameter”, summing up thereby the most important corrections
of an infinite set of diagrams. Finally, we introduce in the last section a non-perturbative
approach based on ideas developed in solid-state physics and the renormalisation group.

12.1. Quantum action

In the classical limit, the equation of motion §S[¢]/d¢ = —.J allows us to determine the
source J(z) which produces a given field ¢(z). Our aim is to find the quantum analogue of
this classical equation. Let us recall first the definition for the generating functionals of a real
scalar field,

210 = /D¢ei{s[¢}+fd4m(:r)¢>(r)} — oW, (12.1)

Then we define the classical field ¢.(z) as ¢.(z) = W[J]/6J(z). Performing the functional
derivative in its definition, we see immediately why this definition makes sense,

felz) = ‘Z,V(E;] - izgf([ﬂ =5 [ Do exvi [ 'y + 19) (12.2)
@0,
= L = 6@ (12.2b)

Thus the classical field ¢.(z) is the vacuum expectation value of the quantum field ¢(z) in
the presence of the source J(z). Now we define the quantu action I'[¢.] as the Legendre
transform of W[.J],

Pigd = W) = [ d'e J(@)gels) = WU - (), (12.3)

where ¢.(xz) = 6W[.J]/d.J(z) should be used to replace J(z) by ¢.(z) on the RHS. We compute
the functional derivative w.r.t. ¢, of this new quantity,

OT[ge] _ / i W 8J(@) / i, 9J()

de(y) §J () d¢e(y) de(y)

"Many authors call T'[¢.] the effective or quantum effective action.

pe(z) — J(y).
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Using the definition 6W/dJ(x) = ¢.(x), the first and second term cancels and we end up as
desired with
oT[¢c]

de(y)

The analogy to the classical equation of motion suggests that I'[¢.] is the quantum version of
the classical action. We will show next that its tree-level diagrams contain all loop corrections
induced by the usual action S[¢]. It is this feature that justifies the name quantum action
for T'[¢.].

=—J(y). (12.4)

Expansion in 7 as a loop expansion In order to proceed, we perform a saddle-point expan-
sion around the classical solution ¢q, given by the solution to

i{S[¢] + (Jo)}

=0 12.5
7 N (12.5)

or

Ogo + V' (¢o) = J (). (12.6)

We write the field as ¢ = ¢g + é, i.e. as a classical solution with quantum fluctuations on top.
Then we can approximate the path integral Z = exp{iW/h} as

7 ~ ei[5[¢0}+(J¢0>}/h/D$exp {% /d4I% [(B#QZ)Z . V”(¢[])Q;2i|} ] (127)

We have restored Planck’s constant A to indicate that this saddle point expansion can be
viewed as an expansion in A. Next we want to show that the expansion in A corresponds to
a loop expansion. We introduce artificially a parameter a into our Lagrangian so that

L (¢, 0utp,a) = a"' L ($,0.0). (12.8)

Let us determine the power P of a in an arbitrary 1PI Feynman graph, a”: A propagator
is the inverse of the quadratic form in .Z and contributes thus a positive power a, while
each vertex o %y, adds a factor a~'. The number of loops in an 1PI diagram is given by
L=1-V +1,cf. Eq. (IT.42)), where I is the number of internal lines and V" is the number

of vertices. Putting this together we see that
P=I-V=L-1 (12.9)

and thus@ the power of a gives us the number of loops. We should stress that using a loop
expansion does not imply a semi-classical limit, S > h: Our fictitious parameter a is not
small; in fact, it is one.

Quantum action as generating functional for 1Pl Green functions We have now all the
necessary ingredients in order to show that the tree-level graphs generated by the quantum

2We assume here that particle masses which carry a factor A~' can be neglected. In few applications, as
e.g. calculating quantum corrections to the Newtonian potential between two masses mi: and msz, this
assumption is not valid.
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action I'[¢] correspond to the complete scattering amplitudes of the corresponding action
S[¢]. We compare the “true” generating functional

Z[J] = /DQS exp{iS + (J¢)} = "] (12.10)

with the functional V,[J] of a fictitious field theory whose classical action S is the quantum
action I'[¢] of the theory (I2.I0]) we are interested in,

Vild = [ Dg exp {g{rm T <J¢>}} = ol (12.11)

Additionally, we introduced the parameter a with the same purpose as in (I2.8)): In the limit
a — 0, we can perform a saddle-point expansion and the path integral is dominated by the
classical path. From (IZ7]), we find thus

lim al,[.J] = T¢] + (J¢) = W[J], (12.12)
where we used the definition of the quantum action, Eq. (I2.3]), in the last step. The RHS
is the sum of all connected Green functions of our original theory. The LHS is the classical
limit of the fictitious theory V,[.J], i.e. it is the sum of all connected tree graphs generated
using ['[¢] as action. But a connected graph which is one-particle reducible is composed
of one-particle irreducible subgraphs connected by simple propagators. Hence a connected
graph corresponds to a tree-level graph with 1PI subgraphs I (zy,....z,) as (non-local)
vertices. This shows that the quantum action I'[¢] is the generating functional for the 1PI
Green functions. Expanding I'[¢] in ¢, gives us thus

Tlge] =Y % /d4x1 Aty T (21, oy ) Pe(21) - - Beln) (12.13)

with T(™) as the one-particle-irreducible Green functions. In the following, we will need only
the two- and three-point functions which we construct now explicitly.

Example 12.1: Show that I'® is equal to the inverse propagator or inverse 2-point function, and
derive the connection of T to the connected 3-point function.

We write first 5ée(ar) Sour) $7(z)
_ o e\ZT1) 4 c (L1 x
S22 = 5oy = [ 155 e
using the chain rule. Next we insert ¢.(xz) = dW/4.J(z) and J(x) = —T'/dp.(z) to obtain

52W 52T
— e 4
Oz1 =) / 4z 3J(2)0T(21) 060(2)00e(z2)
Setting J = ¢. = 0, it follows

/d4;r iG(z,21) T (2, 29) = —6(z1 — 22) (12.14)

or T®(zy,25) = iG~'(x1,22). Thus the 1PI 2-point function is the inverse propagator. Taking a
further derivative §/8.J(z3) of this relation, we have

0°W 5 5°T -
6J(21)0J (22)00 (x3)  6J(x3) <5¢c(9:1)5¢c(x2)> : (12.15)
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Differentiating MM ~! = 1, we find dM~! = —M~'dM M =" for a matrix M. Applied to (I2Z15)), we
obtain

BW 5°r
6J(21)0J (22)0. (x5) 5 (w1)0pc(22)0 (3)
Using the chain rule, inserting ¢.(x3) = 6W/d.J(x3) and setting J = ¢, = 0 gives

- / ity d GO (g1, 20) G (g, 2) (12.16)

G(3)(=T1ax2,933) = /d4y1d4y2d4y3G(2)(y1,xl)G(2) (y2a1'2)G(2)(y3,$3)F(3)(1'1,1'2,1'3). (12.17)

Thus the connected 3-point function G'*) (z1,%2,x3) is obtained by appending propagators to the
irreducible 3-point vertex function I'®) (1, 5, x3), one for each external leg. This generalises to all
n # 2 and therefore one calls the '™ also amputated Green functions.

12.2. Ward-Takahashi identities

We now turn to QED, the simplest case of a gauge theory. Discussing the quantum version
of Noether’s theorem, we have already shown that the vev of the electromagnetic current
is conserved, 0,(j*) = 0. Hence loop corrections respect the classical gauge symmetry and
therefore we expect also that the photon remains massless. The redundancy implied by local
gauge invariance leads to interrelations of Green functions. In turn, such dependencies are a
necessary ingredient for the quantisation of a gauge symmetry, as we can see as follows: In
QED, we define wave-function renormalisation constants for the electron and photon as

do= 7"y and Al = Z37Ar. (12.18)
Analogous to Eq. (IT.72), the electric coupling is renormalised by
e(1) = 2,73 77 e, (12.19)

where Z; is the charge renormalisation constant, and Z5 and Z:,}/ ? take into account that two
electron fields and one photon field enter the three-point function.

As it stands, the renormalisation condition (I2:I9) creates two major problems: First, the
factor Z9 will vary from fermion to fermion. For instance, the wave-function renormalisation
constant of a proton includes the effects of strong interactions while the one of the electron
does not. As a result, it is difficult to understand why the electric charge of an electron and
an proton are renormalised such that they have the same value at ¢> = 0. Second, we see
that the renormalised covariant derivative

Z
D, = 9, + i e(n)A, (12.20)
Zo
remains only gauge-invariant, if 73 = Z,. Clearly, this condition would also ensure the

universality of the electric charge. Thus it is essential that we are able to show that Z; = Z»
holds in suitable renormalisation schemes. In a non-abelian theory as QCD, where we have
to ensure that the gauge coupling in all terms of Eq. (I0.76) remains after renormalisation
the same, several constraints of the type Z; = Z» arise.

We will proceed in two steps: First, we will show that the photon remains massless or, more
technically, that the exact photon vacuum polarisation is transverse. Then we will derive the
Ward-Takahashi identities using the quantum action which imply in particular the relation
7z = Zo.
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12.2. Ward-Takahashi identities

Photon propagator Consider the generating functional of QED,

AL N = /DADqZDq/; exp{i/d4x9%ff}, (12.21)

where J* is a four-vector source, n and 7 are Grafimannian sources and the effective La-
grangian Z s is composed of a classical term .7, a gauge fixing term %,y and a source term

Zss

1 - _
Loy = = Fu P + )y Dyp — mafp, (12.22a)
1 i
Lt + L = _E(a“AM)Q + JEA, 4+ 7 (12.22b)

We consider now the renormalised version of the Lagrangian .Z.;s, where the renormalised
covariant derivative D, is given by Eq. (IZ20) with Z; # Z, in general. This implies that an
infinitesimal gauge transformation has the form

A, — Al = A, +9,A (12.23a)

W — o =1p —ieAy with e= —e. (12.23b)
2

As %, is gauge invariant by construction, the variation of .Z; ;s under an infinitesimal gauge
transformation consists only of

5/(143: (Lo + %) = /d%: [—%(aﬂAﬂ)DA + JHO, A + ieA(yn — W)] . (12.24)

Now we integrate by parts the first term twice and the second term once, to factor out the
arbitrary function A,

1 _
0Sers = (5/d4:c-5feff = /d4:c [—ED((?MA“) — 0, J" +ie(yn — ﬁw)] A. (12.25)
Thus the variation of the generating functional Z[J#*, n, 7] is
SZLI*,n,q) = / DADPDY exp <i / d%feff) i / d'e sy (12.26)

The fields A, 1 and 1) are however only integration variables in the generating functional.
The gauge transformation (I2.23)) is thus merely a change of variables which does not affect
the functional Z[J*, n,n], since the Jacobian of this transformation is one. Thus this variation
has to vanish, 6Z[J*,n, 7] = 0.

If we substitute fields by functional derivatives of their sources, the change §S¢f; can be
moved outside the functional integral. Since the function A(xz) is arbitrary, we can drop the
integration and arrive at

1 ) ) )

— =208, —— — 9, J* +ie [ n— — 7— 1%
0 [ £ o 5, o J" +ie (n577 n5n>] exp{iW'}
1 4% 4% 4%
——20(a, ) =9, " +ie [ = — 522 ) .

3 <aﬂ 5Ju> Ol" 418 <77 on K o1 >
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Differentiating this equation with respect to Jy,(y) and setting then the sources J*, n and 7
to zero gives us our first result,

1 (8 W

~ PO )

The second derivative of W w.r.t. to the vector sources J, is the full photon propagator
D" (z —y). If we go to momentum space, we have

ot o(z —y). (12.27)

%k%#D’“’(k) = k. (12.28)

Splitting the propagator into a transverse part and a longitudinal part as in (I0.60]), the
transverse part immediately drops out and we find

%kaVDL(Ic?) = k. (12.29)

Thus the longitudinal part of the exact propagator agrees with the longitudinal part of the
tree level propagator,

. . £

iDr(k*) =iDr(k*) = 5 (12.30)
This implies that higher order corrections do not affect Dy (k?). In other words, the loop
correction II,, to the photon propagator is transverse. Since we can expand all relations as

power series in the coupling constant e, this holds also at any order in perturbation theory.

Ward identity Z; = Z> Let us go back to the constraint for the variation of the generating
functional Z under gauge transformations, Eq. (I2.27)). We aim to derive identities between
1PI Green functions and want therefore to transform it into a constraint for the quantum
action I'. If we Legendre transform W[J,7,7] into T'[A, 1, v],

Tl B, Ay] = Win,a, 7] — / A (T A + i+ 79) (12.31)

we can replace the functional derivatives of W with classical fields, and the sources with
functional derivatives of ', i.e.

ow oW - O0W

_ = Au’ _— = _— =

or or or

_— = —JM —_— = — — = —n.
JA, B 7 TR

This transforms Eq. (I2Z.27) into

1 or . or N
ZD(auA“(x)) - 8Mm +ie <¢5¢(:1:) - w(;@;(l‘)) =0, (12.32)

a master equation from which we can derive relations between different types of Green func-
tions. Differentiating with respect to 1 (z1) and 9 (z2) and setting then the fields to zero
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12.3. Vacuum polarisation

gives us the most important one of the Ward-Takahashi identities, relating the 1PI 3-point
function T3) (z, 1, z5) to the 2-point function I'®)(z1, z5) of fermions,

TP (@, 21,29) = 18 (D) (2, 21)6(w — 23) = D) (2, m)d(2 — 21)) (12.33)
or, after Fourier transforming
KT (p,k,p+ k) = eSS (p+ k) — St (p). (12.34)

Taking the limit k* — 0, the identity F,(f’) (p,0,p) = €9,S5"(p) found originally by Ward
follows. The Green functions in this equation are finite, renormalised quantities and thus
Z1/Z> has to be finite in any consistent renormalisation scheme too. In all schemes where
we identify directly e(0) with the measured electric charge, also the finite parts of Z; and Zs
agree, i.e. the measured electric charge is universal.

12.3. Vacuum polarisation

The Ward identities guaranty that the gauge couplings in QED and QCD are determined
solely by the loop corrections II,, to the photon and gluon propagator, respectively. These
corrections convert the classical coupling constants into running couplings. How the running
coupling change as function of the scale is one of the most characteristic properties of a
quantum field theory. The aim of this section is therefore to derive the one-loop corrections
to the gauge boson propagator. An interpretation of these results will then be performed in
the next section.

12.3.1. Vacuum polarisation in QED

We calculate next the one-loop correction to the photon propagator, the so called vacuum
polarisation tensor II,,,. In QED, only the first diagram of Fig. [[2.1] contributes. Using the
Feynman rules, we obtain for the contribution of one fermion species with mass m

Ak triytik 4 my i g+ m)] 2/ Al NP 19 35)

il (q) = —(_16)2/ @m)* (k2 —m2)[(k + q)2 — m?] (2m)4 D

As a warm-up, we want to confirm that the vacuum polarisation tensor respects at the one-
loop level gauge invariance, as we know already from Eq. (I2Z30). Gauge invariance implies
quI1"(q) = 0 and thus the tensor structure of the vacuum polarisation tensor has to be
" (q) = (¢*>n"" — q*¢")II(q?). Hence we have to calculate only the simpler scalar function
1(¢?) knowing that TI#¥(q) is gauge invariant.

In order to show that ¢,I1"(q) = 0, we write first

q=(q+k—m)—(k—m) (12.36)

and obtain
quN* = tr{[(d + k —m) — (f —m)](f + m)y"(F + ¢ +m)} (12.37a)
= [(q + k)*> = m2Jtr{(} + m)¥*} — (K> = m*)tr{y" (} + 4 +m)} (12.37b)

193



12. Renormalisation II: Improving perturbation theory

where we used the cyclic property of the trace. Employing dimensional regularisation (DR)
with d = 4 — 2¢ in order to obtain well-defined integrals,

d r m)y” rly” m
q”iHIW(q) — _62M25/ d?k {t [(%4_ )7 ] t [7 (%—i_d—i_ )]} , (1238)

e U (@ —m?)  (k+ P —m?

we are allowed to shift the integration variable in one of the two terms. Thus ¢,I1""(gq) = 0
and hence the vacuum polarisation tensor at order O(e?) is transverse as required by gauge
invariance.

Let us pause a moment and summarise what we know already, before we start with the
evaluation of TI(¢?): In our power-counting analysis we found as superficial degree of diver-
gence D = 2. This result was based on the assumption that the numerator N behaves as a
constant. But the only constant available is m? which would lead to a mass term of the pho-
ton, e2A,TT" A, o e*m?A,n*” A,. Thus the transversality of I implies that the m? term
in the numerator will disappear at some step of our calculation. Thereby the convergence of
the polarisation tensor improves, becoming a “mild logarithmic” one.

We proceed with the explicit evaluation of II*. Taking the trace of (I2Z.35]) and using its
transversality, we find in d = 2w dimensions

1% (q) = (¢°6! — ¢*)(¢*) = (d — 1)¢°II(¢?)

and

ooy _ o o [ A%k YA m) g +m)] 5 o [ A% N
=0 = e [ o s ~ | i
(12.39
We combine the two propagators introducing the Feynman parameter integral 1/(AB) =
fol dz [Az 4+ B(1 — 2)]7? with A = (k4 ¢)2 — m? and B = k2 — m2. Thus the denominator
becomes

D= Az + B(1 —z) = k* + 2kqz + >z —m? = (k + qz)*> + ¢x(1 — z) —m?. (12.40)
Next we introduce as new integration variable K = k + gz,
D=K?>+¢z(1—z)-m?>=K?—a, (12.41)

and a = m? — ¢?z(1 — z) > 0 as short-cut.

Evaluating the trace in the denominator using DR, we have to extend the Clifford algebra
to d = 2w dimensions. A natural choice is tr(y*v") = dn"”, giving with y#v, = d and
Yy, = (2 — d)¢ as result for the trace

N =N =d[2—-dk-(k+q) +dm*] =d{(2—d)[K* — ¢’z(1 — z)] + dm’}.  (12.42)

In the last step, we performed the shift & — K = k + gz omitting linear terms in K that
vanish after integration. Combining our results for A" and D we arrive at

1 d _ 2 m2 — _ 20(1 — 1
(d— 1)q2i1—[(q2) — —62M28d/0 dI/ ((;WI)(; (2 d)K + d(K2 _(z)g d)q (1 )] . (1243)

Finally, we use our results for the Feynman integrals Iy(w,a) and Iy(w,a) which were
obtained performing a Wick rotation. The latter is possible as long as we do not pass a
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12.3. Vacuum polarisation

singularity. Since the prefactor z(1 — z) of ¢? has as maximum 1/4, this requires ¢> < 4m?.
We start to look for the first two terms where we expect a cancellation of the m? term in the
numerator,

d _ 2 m2
/ (O;WI){! 2 (;l()zK_ ;r)2d =2 - d)b(w,2) + dn’I(w,2) (12.44a)
- m [—2w(1 — w)T(1 — w) e~ + 20m’T (2 — w) a“~?] (12.44b)
B (47ir)w 20D(2 = w)(—a+m?)a* (12.44c)
A e (=)
- (4n)? T(e) (4m) m? — ?z(1 —2)]F (12.444)

Hence the m? term dropped indeed out of the numerator and the whole expression is propor-
tional to ¢2, as required by the LHS of (IZ43). Evaluating the third term in the same way
we obtain

d - 21’ o
i 20(1 — o
- ;)Q () () L qg;(l jx)]a | (12.45b)

Adding the two contributions, we arrive at

62 1 T 2 €
H(q2)=—(ir)2 r(e)/o dzz(1 — z) [m2_‘;25(1_x)] : (12.46)

where the factor ig? cancelled. We included also the factor (47u?)¢ into the last term, which
becomes thereby dimensionless. Now we expand the Gamma function, I'(¢) = 1/e — v+ O(e),
around d = 4 — 2e and because of the resulting 1/¢ term all other £ dependent quantities,

2 (1

(¢?) = —%WQ {g — 4+ In(4r) — 6/01d.rx(1 —1)In [mQ - qiﬁ(l - x)]} . (1247

The prefactor z(1—z) has its maximum 1/4 for z = 1/2. Thus the branch cut of the logarithm
starts at ¢> = 4m?, i.e. when the virtuality of the photon is large enough that it can decay into
a fermion pair of mass 2m. This is a nice illustration of the optical theorem: The polarisation
tensor is real below the pair creation threshold, and acquires an imaginary part above (which
equals the pair creation cross section of a photon with mass m? = ¢2, cf. problem 12.77).

The z integral can be integrated by elementary functions, but we display the result only
for the two limiting cases of small and large virtualities, ¢>/m? — 0 and |¢|?/m? — oco. In
the first case, we obtain with In(1 — z) ~ —x

e? 1 q2
(¢} = ———= |- —vy+1n(4 In(p?/m?) + — + ... 12.4
(¢%) 52 [e v+ In(47) + In(p”/m*) + - + ] ; (12.48)
while the opposite limit gives
I(¢?) = _e i + In(4n) — In(|¢?|/p?) + (12.49)
q°) = a2 |z 04 q’|/ R I .
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Figure 12.1.: Feynman diagrams describing vacuum polarisation in QCD at one-loop.

In the MS scheme, we obtain the renormalisation constant Z3 for the photon field as the

coefficient of the pole term,

62

C12n2e”
More often the on-shell renormalisation scheme is used in QED. Here we require that quantum
corrections to the electric charge vanish for g2 = 0, i.e. we choose Z3 such that II°%(¢> = 0) =
0. This is obviously achieved setting

Z3 =1

(12.50)

62 q2

o7 (¢%) = TI(g?) = TI(0) = — o5 L5+ ..,

(12.51)
for |¢?| < m2. This ¢ dependence leads to a modification of the Coulomb potential, which
can be measured e.g. in the Lamb shift.

12.3.2. Vacuum polarisation in QCD

We only sketch the calculations in QCD, stressing the new or different points compared
to QED. In Fig. [21] we show the various 1-loop diagrams contributing to the vacuum
polarisation tensor in a non-abelian theory as QCD. Most importantly, the three- and four-
gluon vertices allow in addition to the quark loop now also gluon loops. Since a fermion loop
has an additional minus sign, we expect that the gluon loop gives a negative contribution to
the beta function. This opens the possibility that non-abelian gauge theories are in contrast
to QED asymptotically free, if the number of fermion species is small enough.

Quark loop The vertex changes from —iey* in QED to —igsT%y* in QCD. Since the quark
propagator is diagonal in the group index, a quark loop contains for each flavor additionally

the factor .

tr{T*T"} = 55‘“ =4. (12.52)
Thus we have only to replace e — 4nsg, in the QED result, where ny counts the number of
quark flavors. For the three light quarks, u, d and s, it is an excellent approximation to use
m = 0. In contrast, the masses of the other three quarks (c, b and t) can not be neglected
when 4m% < 12, The effect of particle masses can be approximated including in the loop only

particles with mass 4m?c < 2, making n ;7 scale dependent.
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Loop with three-gluon vertex Since the three-gluon vertex connects identical particles, we
have to take into account symmetry factors similar as in the case of the A\¢* theory. We
learnt that the imaginary part of a Feynman diagram corresponds to the propagation of real
particles. Thus the imaginary part of the gluon vacuum polarisation can be connected to the
total cross section of g — gg scattering. This cross section contains a symmetry factor 1/2!
to account for two identical particles in the final state. Therefore the same symmetry factor
should be associated to the vacuum polarisation with a gluon loopﬁ. Applying the Feynman
rule for the three-gluon vertex and using the Feynman-t’Hooft gauge, we find

1 d*k N
i1, (¢%) = =(—i 2'2/ ab 12.53
My, (0) = 5 (=10 [ 5 &2+ ie)[(k + q)% + i] (12.53)
with
N = focdl=0"" (¢ + k)7 + 0" (2k — )" + 1" (2q — k)"] (12.54)
X facal=1"y(q + K)o + npo (¢ — 2K)" + 0", (k — 2q),] .
Evaluating the colour trace,
facdfcdb — Nc(sab (1255)
and extracting in the usual way the pole part using DR one obtains for d =4 — 2¢
N.g? (u2\7? (11 19
o, (%) = — =< = —gtq’ — =" ¢? 0y, 12.
ab2(47) = —55 5= 7 5d"d" = n"a” | +O(e) (12.56)

Thus the contribution from the three-gluon vertex alone is not transverse—demonstrating
again that a covariant gauge requires the introduction of ghost particles.

Ghost loop This diagram has the same dependence on the structure constants as the pre-
vious one,

'k foae(k — @) facak
i . (¢%) = —(—i 2'2/ < oot ¥ 12.57
Mana @) =~ [ oyt @ ie)[(k + 07+ (1250
and can thus be combined with the three-gluon loop. Note the extra minus sign due to the
fermionic nature of the ghost particle. Evaluating the integral results in

N g2 /-1‘2 /2 1 1
v 2\ _ c [l ZoMtaV o S 2 O 0 12.58
ab,3(07) = 35 5- 7 g0"d" +en™a ) +O(€) (12.58)
and summing the three-gluon and ghost loops gives the expected gauge-invariant expression.
Moreover, the sum has the opposite sign as the quark loop and can thus lead to the opposite
behaviour of the beta function as in QED.

Four-gluon loop and tadpole diagrams The loop with the four-gluon vertex contains a
massless propagator and does not depend on external momenta,

d
i, (¢%) oc/i. (12.59)
ab,4 k2 + ie

3This argument does not apply to the quark loop, since cutting leads in this case to a distinguishable gq state
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Our general experience with DR tells us that this graph is zero, as gluons are massless.
However, this loop integral is also in DR ambiguous: For any space-time dimension d, the
integral is either UV or IR divergent. To proceed, we split therefore the integrand introducing
the arbitrary mass M as

I 1 B M?
k2 +ie  k2—M2+ie (K2 +ie)(k? — M2 +ie)

(12.60)

Now the TR and UV divergences are separated, and we can use d < 2 in the first term and
2 < d < 4 in the second. By dimensional analysis, both terms have to be proportional to a
power of the arbitrary mass M. As the LHS is independent of M, the only option is that
the two terms on the RHS cancel, as an explicit calculation confirms. The remaining tadpole
diagrams (5 and 6 of Fig. [[2.1]) vanish by the same argument. We will come back to the
combined result for the coupling gs(Q?) in QCD, after having introduced running couplings
and discussing their behaviour in general.

12.4. Renormalisation group

Renormalisation group equations Let us consider two renormalisation schemes R and R’.
In the two schemes, the renormalised field will in general differ, being ¢ = Z(;l/ 2(R)ngO and

o = Z 5 L 2(R’ Yo, respectively. Hence the connection between the two renormalised fields
is

b =Ly bn = 2, Y2(R'R) ¢ . (12.61)
Zy "(R)
As both ¢r and ¢p are finite, also Z4(R', R) is finite. The transformations Z(;l/Q(R',R)

form a group, called the renormalisation group. If we consider

G (@, xn) = 2477 GY (1, . wn) (12.62)
we know that the bare Green function is independent of the renormalisation scale p. Taking a
derivative with respect to u, the LHS thus vanishes. To avoid clutter, we restrict ourselves to
the simplest case of a massless theory with a single coupling g. Then the renormalised Green
functions can depend (in a mass independent scheme) only on the renormalised coupling g(u),
and we find thus

_ 4 12w

0= dlnp [Z¢> Gr (fﬂla---,xn)] (12.63a)
= 9 99 3 n OInZs| (n)
B [alnu dlnp dg ' 2 dlnp ] Gr'(T1,...,2p) (12.63b)
- [alnu+'83_g+§7] G’ (z1,...,7n). (12.63c)

Here we introduced in the last step the anomalous dimension

V() =p 81*5(/0 (12.64)
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of the field ¢ and the beta function

9g(p)

Blg) = p o (12.65)
which determines the logarithmic change of the coupling constant. The beta function is often
re-expressed as

Y

Bla") =n 5 = 9B(9) (12.66)

1

or as (a?) with a = ¢g?/(4w). Equations of the type ([ZG3c) are called generically renor-
malisation group equations or briefly RGE. They come in various flavors, carrying the name
of their inventors: Stiickelberg—Petermann, Callan—-Symanzik, Gell-Mann—Low, ... We can
use (IL63) to derive a similar RGE for the 1PI Green functions. Note that the sign differ-
ence between (I1.63]) and (I1.62]) in the power of the wave-function renormalisation constant
induces a corresponding sign change in the RGE for 1PI Green functions.

Remark 12.1: In order to understand the term “anomalous dimensions,” we look first at the
canonical dimension of fields under a change of units. Note that in contrast to the scale transformations
x — ez discussed in problem 5.77, we now change all parameters including couplings and masses.
The classical action is then invariant, and a n-point Green function G(pi,...,p,) can be expressed as

G(py,...,pn) = mg"pit - pir
though the parameters of the classical Lagrangian. Dimensional analysis constrains the exponents as
a—ci —...—cp =mn, and the n-point Green function scales classically as G — e"**(.
The renormalised Green function depends however also on the scale u, i.e. the subtraction point of
our renormalisation scheme which we keep fixed,

a b, c1

G(pi,---spn) =mog'pi* - prrp” .

Hence the renormalised n-point Green function scales as G — e 2@ and satisfies therefore
wdG/dp = ~G.

Knowing the two universal functions S(A) and (x), we can calculate the change of any Green
function under a change of the renormalisation scale . The general solution of (I2.63c) can
be found by the method of characteristics or by the analogy of d/dInu with a convective
derivative, cf. problem 12.77. Here we consider only the simplest case of a dimensionless
observable R in a renormalisable theory which depends on a single physical momentum scale
@. Thus we assume that the coupling constant is dimensionless, and consider the limit that
all masses can be neglected, |@?| > m?. An important example is the eTe~ annihilation
cross section into hadrons which can be made dimensionless dividing by o(ete™ — ptpu™) as
reference cross section. Then R can be only a function of the ratio Q?/u? and of a(u?). A

physical observable like R should be independent of the scale pu, or

dR 0 0 0 0
_ 24 [ o O o 2/ 2 2 [ 9 9 2
0= 5% = (s + Bla) g ) RQ () = (= 5L+ Bla) - ) Rl ).
(12.67)
where we introduced 7 = In(Q?/u?). The two differential operators compensate each other
setting
a(Q?)
= / dr (12.68)
a(p?) /B(x)
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The coupling a(Q?) = a(7, a(u?)) defined by (I2.68)) as function of the physical momentum
Q? is called the “running coupling”. Setting the renormalisation scale equal to the physical
scale, u? = Q?, results in

R(Q*/1?, a(i?)) = R(L,a(Q%)). (12.69)
Hence all scale dependence in R can be absorbed into the running of a(Q?). We have seen
already an example for this behaviour, discussing ¢¢ — ¢¢ scattering in section[d.3.4] compare

especially with Eq. (489)).

Example 12.2: Any function of the running coupling, and thus in particular the running coupling
itself, solves the homogeneous RGE. To show the latter claim, we differentiate first the definition

Eq. (IZ68) w.r.t. 7, obtaining

3 2 a(Q?) dr B 1 6(1(Q2)
e ar l/a(uz) B(ﬂf)] - Ba(Q?)  or (12.70)
or 9-a(Q?) = B(a(Q?)). Next we differentiate (IZ68) w.r.t. a(u?), obtaining
_ 0 a(Q?) dz 3 1 aa(QQ) B 1
" Oa(p?) [/a(;ﬁ) 5(93)] T B(a(@Q?)) da(u?)  B(al(Q?)) (12.71)

or
9a(@?) _ Ba(@?)
da(p?)  Bla(p?))
Evaluating the differential operator of the homogeneous RGE (i.e. for v = 0) for the coupling, we see
that the two terms cancel as required,

9, sty 2 )= e .y Ba(@)
(52 + 8ot 50 ) alralt) = ~5(a(@) + Bla () S

(12.72)

=0. (12.73)

Working through problem 11.2?, you found that the beta-function of the A¢* theory at one
loop is given by

3\2
_ 7312 3 _ 9" 3
BA) =i A+ b\ + ... = 16,2 + O\, (12.74)
so that the running coupling at leading order satisfies
A
AQ) (1) (12.75)

T 1-3A(u)/1672 n(Q/p)

Thus our new definitions (I2.68]) and (I2.65) reproduce the result of our more intuitive ap-
proach in section 3.4l As a bonus, we know now what we should choose as the argument of
the coupling, at least in the simple case considered with a single physical scale ). Expanding
the running coupling,

MQ) = A(p) + b1 In(Q/p) — [br In(Q/w))* + ... . (12.76)

we see that A(Q) contains arbitrary powers of [biA(uIn(Q/p)]", although we derived the
beta function only at one-loop: The RGE ensures that the running coupling sums up the
largest terms in each order perturbation theory, cf. problem 12.7?. In general, the running
coupling calculated at n-loop precision contains the leading In"(Q/u) terms of loop diagrams
of any order. Accordingly, one speaks of LL (leading logarithmic), NLL (next-to-leading
logarithmic), NNLL, . ..approximations.
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Figure 12.2.: Left: Example of a beta function with a perturbative IR and an UV fixed point.
Right: General classification of UV and IR stable fixed points of the RGE flow.

Asymptotic behaviour of the beta-function The behaviour of the beta-function S(x) in the
limit p — 0 and g — oo provides a useful classification of quantum field theories. Consider
e.g. the example shown in the left panel of Fig. This beta function has a trivial zero at
zero coupling, as we expect it in any perturbative theory, and an additional zero at g.. How
does the beta-function S(u) evolve in the UV limit y — oo?

e Starting in the range 0 < g(u) < g. implies § > 0 and thus dg/dy > 0. Therefore g
grows with increasing p and the coupling is driven towards g..

e Starting with g(u) > g, implies § < 0 and thus dg/du < 0. Therefore g decreases for
increasing p and we are driven again towards g..

Fixed points g. approached in the limit y — oo are called UV fixed points, while IR fixed
points are reached for decreasing p. The range of values [¢g : g2] which is mapped by the
RGE flow on the fixed point is called its basin of attraction.

To see what happens for  — 0, we have only to reverse the RGE flow, du — —du, and
are thus driven away from g.: If we started in 0 < g(u) < g, we are driven to zero, while
the coupling goes to infinity for g(y) > g.. Thus g = 0 is an IR fixed point. The distinction
between IR and UV fixed points is sketched in the right panel of Fig. If the beta function
has several zeros, the theory consists of different phases which are not connected by the RG
flow.

Looking back at our one-loop result for the beta-function of the A\¢* theory, we see that
the theory has A = 0 as an IR fixed point. Thus the free states we use as asymptotic initial
and final states have a direct physical meaning. On the other hand, the coupling increases
for p — oo formally as A — oo. Clearly, we cannot trust the behaviour of A(x) based on the
on-loop result in the strong-coupling limit, because perturbation theory breaks down. The
solution (I2.75]) suggests however that the coupling explodes already for a finite value of u:
The beta function has a pole for a finite value of i called Landau pole where the denominator

of (IZ75) becomes zero.

Beta function of QED We can derive the scale dependence of the renormalised electric
charge from
ey = ,u‘EZ:,)_l/2 e, (12.77)
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where we used Z; = Z5. Then the beta function is given as

_ de _ i —err1/2
ple) = ng- =g (#7223%0) - (12.78)

Since the bare charge eq is independent of y, we have to differentiate only p and Zjs,

de 12 112073 p 0Z3
13(6) lu‘alu Ep 3 €0 ‘I‘/J;,U, 9 3 8/.1« €0 ge + 2Z3 a/J; € ( )
Inserting Z3 = 1 — €2/(1272%¢) and thus
073 1 2e0e
- 12.80
o 1272 O ( )
gives
m Oe 2 _ 1 2
= — —ce — ——— . 12.81
Ble) = —ce = mez an &~ % T Tamrez; PO € (12:81)

Note that Z3 is scheme-dependent, while the beta-function remains scheme independent up
to two loops for all mass-independent schemes (problem 12.?7?). Solving for 5 and neglecting
higher order terms in €2, we find in the limit £ — 0

2 3
Be) = —ce <1 - 126—7r25> +0(e!) = # . (12.82)

Thus the beta function is determined by the coefficient of the pole term of Z3. Its solution,

e*(po)
e’ (u) = (12.83)
1 - 6(”2) In (Mo)

shows not only explicitly the increase of e? with x, but that the electric coupling has a Landau
pole too. However, the scale of the Landau pole corresponds to

1= o exp(6m2/e? (o)) = me exp(37/2a(m,)) ~ 10°° GeV > Mp, (12.84)

and has therefore no direct physical relevance.
Alternatively, we could derive the beta function from the renormalised vacuum polarisation,
using

B0) = Gz (), (12.85)

where in the on-shell scheme the derivative d1n u? should be replaced with J1n ¢2.

Beta function of QCD and asymptotic freedom Deriving the beta function in QCD, we

should evaluate

Zy 73"
Z

where Z; is the charge renormalisation constant, and Zs and Z3 are quark and gluon renor-

malisation constants, respectively. Without proof, we note that the generalisation of the

Ward-Takahashi identities to the non-abelian case, the Slavnov-Taylor identities, ensure that

glp) = 23 —go = 73 g (12.86)
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12.4. Renormalisation group

Z1 = Zy. Combining all contributions to the 1/e poles as 1-loop contribution b; to the beta
function of QCD gives (cf. problem 12.77)

5 00

Blas) =p o2 = —a? (b + boas + bga? +...) (12.87)
with ay = g2/(47),
11 2

and n; as number of quark flavors. For ny < 17, the beta function is negative and the
running coupling decreases as u — o0o0. Asymptotic freedom of QCD explains the apparent
paradox that protons are interacting strongly at small @, while they can be described in
deep-inelastic scattering as a collection of independently moving quarks and gluons.

Let us consider now the opposite limit, g — 0. The solution of (IZ.87) at one loop,

1 1 w?
= + by 1In <—> 12.89
)~ ) 2 (12.89)

shows that the QCD coupling constant becomes formally infinite for a finite value of u.
We define Agcp as the energy scale where the running coupling constant of QCD diverges,
a;l(AéC p) = 0. Experimentally, the best measurement of the strong coupling constant has
been performed at the Z resonance at LEP, giving as(mQZ) ~ 0.1184. Thus at one-loop level,

1
AQCD = Mz exp <W> . (1290)
5 A

Aqcp depends on the renormalisation scheme and, numerically more importantly, on the
number of flavours used in by: For instance, Agg p = 220MeV for ny = 3. The fact that the
running coupling provides a characteristic energy scale is called dimensional transmutation:
Quantum corrections lead to the break-down of scale-invariance of classical QCD with massless
quarks and to the appearance of massive bound-states, the mesons and baryons with masses of
order Aqcp. Note also that we are able to link exponentially separated scales by dimensional

transmutation.

Coupling constant unification While the strong coupling a; = a3 decreases with increasing
Q?, the electromagnetic coupling e, = o increases. Since two lines in a plane meet at
one point, there is a point with a1 (Q.) = a3(Q.) and one may speculate that at this point a
transition to a “Grand unified theory” (GUT) happens. Since the running is only logarithmic,
unification happens at exponentially high scales, @, ~ 10'6 GeV, but interestingly still below
the Planck scale Mp;. The problems becomes more challenging, if we add to the game the
third, the weak coupling ais. The situation in 1991 assuming the validity of the SM is shown
in the left panel of Fig.[12.3] The width of the lines indicates the experimental and theoretical
error, and the three couplings clearly do not meet within these errors. The right panel of
the same figure assume the existence of supersymmetric partners to all SM particles with
an “average mass” of around Mgygsy ~ 200 GeV. As a result, the running changes above
Q = 1TeV, and now the three couplings meet at 2 x 1016 GeV.
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Figure 12.3.: The gauge couplings measured at low energies do not evolve towards a unified
value in the SM (left), but meet assuming low-scale supersymmetry at ~ 2 x
10'6 GeV (right), from |[Kaz00] based on [AdBF91].

12.5. Renormalisation, critical phenomena and effective theories

Overview The behaviour thermodynamical systems exhibit close to the critical points in
their phase diagram are characterised as “critical phenomenon.” For a fixed number of par-
ticles, we can characterise thermodynamical systems using the free energy F' = U — T'S.
Ehrenfest introduced the classification of phase transitions according to the order of the first
discontinuous derivative of F' with respect to any thermodynamical variable ¢. Hence a phase
transition where at least one derivative 9" F/9¢" is discontinuous while all 9" 'F/9¢" ! are
continuous is called a n.th order phase transition.
Critical phenomena are for a particle physicist interesting by at least three reasons:

e We can learn about symmetry breaking: We should look out for ideas how we can
generate mass terms without violating gauge invariance. Systems like ferromagnets
show that symmetries as rotation symmetry can be broken at low energies although the
Hamiltonian governing the interactions is rotation symmetric.

Another example is a plasma: Here the screening of electric charges modifies the
Coulomb potential to a Yukawa potential; the photon has three massive degrees of
freedom, still satisfying gauge invariance, k,IT* (w, k) = 0, but with w? — k2 #0.

e Experimentally one finds that close to a critical point, T" — T, the correlation length
¢ diverges, while otherwise correlations are exponentially suppressed. If we consider a
statistical system on a lattice, then the 2-point function of a certain order parameter ¢
scales as

(ndo) ox exp(—n/§),

where £ is measured in multiples of the lattice spacing a. Comparing this with |z| = na
to the 2-point function of an Euclidean scalar field ¢,

($(2)$(0) = =

|I|2 exp(—m|x|)
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12.5. Renormalisation, critical phenomena and effective theories

in the limit m|z| > 1, we find the correspondence £ = 1/(ma). Therefore the continuum
limit @ — 0 is only possible for finite m, if £ — oco.

Thus the correlation functions of a statistical system correspond for non-zero a to bare
Green functions and a finite value of the regulator of the corresponding quantum field
theory. The connection to renormalised Green functions (e — 0 or A — o0) is only
possible when the statistical system is at a critical point.

e Near a critical point, 7' — T, thermodynamical systems show a universal behaviour.
More precisely, they fall in different universality classes which unify systems with very
different microscopic behaviour. The various universality classes can be characterised by
critical exponents, i.e. by the exponents y; with which characteristic thermodynamical
quantities X; diverge approaching T¢, i.e. X; = [b(T — T¢)] 7.

This phenomenon is similar to our realisation that e.g. two A¢* theories, one with
A = 0.1 and another one with A = 0.2, are not fundamentally different but connected
by a RGE transformation.

Landau’s mean field theory Landau suggested that the free energy F' of a thermodynamical
system can be expanded close to a second-order phase transition as an even series in its order
parameter. Considering e.g. the magnetisation M, we can write for zero external field H the
free energy as

F = A(T) + B(T)M?* + C(T)M* + ... (12.91)

We can find the possible value of the magnetisation M by minimising the free energy,

F
0_8

= ouf| =2B(T)M + AC(T)M? . (12.92)

T

The variable C(T') has to be positive in order that F' is bounded from below. If also B(T)
is positive, only the trivial solution M = 0 exists. If however B(T') is negative, two solutions
with non-zero magnetisation appear. Let us use a linear approximation, B(T') =~ b(T — T,),
and C(T) = ¢ valid close to T,. Then

0 for T > T,
M= (12.93)

[T -1)]"? for T<T.
Note also that the ground-state breaks the M — —M symmetry of the free energy for T < T..
Representing the thermodynamical quantity M as integral of the local spin density,

M = /d3x s(x), (12.94)

we can rewrite the free energy in a way resembling the Hamiltonian of a stationary scalar
field,

F = /d3:1: [(Vs)2+b(T —T.)s* +cs* —H -s] . (12.95)

Here, (V)2 is the simplest ansatz leading to an alignment of spins in the continuous language.
Minimising F' will give us the ground-state of the system for a prescribed external field H (x)
and temperature 7. For small s, we can ignore the s* term. The spin correlation function
(s(x)s(0)) is found as response to a delta function-like disturbance Hyd(z). Using the
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Figure 12.4.: One block spin transformation a — 2a for an one-dimensional lattice model.

analogy with the Yukawa potential after the substitution m? — b(T — T,), the correlation
function follows immediately as

3 eik-m
(s(@)s(0)) = / (gn];3 w2 JZ?(T T fT(;« e/t (12.96)
with
€= (T -1T.) /2. (12.97)

Hence Landau’s theory reproduces the experimentally observed behaviour £ — oo for T' — T.
Moreover, the theory predicts as critical exponent 1/2 for the magnetisation. Notice that the
value of the exponent depends only on the polynomial assumed in the free energy, not on
the underlying micro-physics. Thus another prediction of Landau’s theory is an universal
behaviour of thermodynamical systems close to their critical points in the dependence on
T — T,. Experiments show that this prediction is too strong: Thermodynamical systems fall
into different universality classes, and we should try to include some micro-physics into the
description of critical phenomena.

Kadanoff’s block spin transformation Close to a critical point, collective effects play a
decisive role even in case of short-range interactions. In d dimension, a particle is coupled by
collective effects to (¢/a)? particles and standard perturbative methods will certainly fail for
¢ — oo. Kadanoff suggested to remove the short wave-length fluctuations by the following
procedure: Each step of a block spin transformation consists of i) dividing the lattice into
cells of size (2a)¢, ii) assigning a common spin variable to the cell, and iii) of a rescaling
2a = a.

At each step, the number of strongly correlated spins is reduced. After n transformations,
the correlation length decreases as &, = £/(2"). When the correlation length becomes of
the order of the lattice spacing, collective effects play no role: All the physics can be read
off from the Hamiltonian. If the procedure is not trivial, this implies that in each step the
Hamiltonian changes. In particular, the coupling constant K is changed as

Ky =f(K),  Ks=[f(Ky)=[f(f(K)),... (12.98)

One-dimensional Ising model We illustrate the idea behind Kadanoff’s block spin transfor-
mation using the example of the one-dimensional Ising model. This model consists of spins
with value s; = +1 on a line with spacing a, interacting via nearest neighbour interactions.
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12.5. Renormalisation, critical phenomena and effective theories

We consider only the piece of six spins shown in Fig. [2.4l The corresponding partition
function is

Zg = Z exp [K(sny—180 + Sos1 + - - - $354)] (12.99a)

SN —1550551y--+354

= Z Z exp [K(sn_15) + 8081 + ... 8354)] , (12.99b)

/ ! /
50818y SN—1,51,83

where the summation is over the two spin values £1 and K = J/T is a dimensionless coupling
constant. The step a — 2a requires to perform the sums over the unprimed spins. Expanding

the exponentials using (s;s;)?" = 1 gives terms like
! ! K2 ? !
exp[K (sps1)] = 1+ Ksps1 + o + 3 5051 +... (12.100a)
= cosh(K) + sgs1 sinh(K) = cosh(K)[1 + sjs; tanh(K)]. (12.100b)

The terms linear in s; cancel in the sum and we obtain

Z exp[K sys1] exp[Ks1s)] = 2cosh?(K)[1 + tanh?(K) s)s] . (12.101)
s1==+1

Thus the summation over the unprimed spins changes the strength of the nearest neighbour-
hood interaction and generates additionally a new spin-independent interaction term. We try
now to rewrite the last expression in a form similar to the original one,

2 cosh?(K)[1 + tanh?(K) s4s;] = exp[g(K) + K's(sh)] . (12.102)
Using (I2.100D) to replace exp(K's)s!) and setting g(K) = Inh(K), we find
2 cosh?(K)[1 + tanh?(K) s{s}] = h(K) cosh(K')[1 4 tanh(K") sys})] . (12.103)
This determines the function g = Inh(K) as

2 cosh?(K)

h(K) = ~cosh(K7) (12.104)
while the couplings are related by

tanh(K’) = tanh?(K). (12.105)
The summation over the other spins ss, ss5,... can be performed in the same way. Thus

the partition function on a lattice of size 2a has the same nearest-neighbour interactions
with a new coupling K’ = K; determined by (I2.I05). Iterating this procedure generates a
renormalisation flow with

tanh(K,,) = tanh?"(K). (12.106)

Additionally, the RGE flow generates all couplings compatible with the symmetries of the
fundamental Hamiltonian: Since any operator O" for n € Z satisfies these symmetries if O
does, there is an infinite number of them.
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Fixed point behaviour In general, we will not be able to calculate the transformation func-
tion f(K). But even without the knowledge of f(K), we can draw some important insight
from general considerations. First, the RGE equations are of the type of a heat or diffusion
equatiorH. Its flow is therefore a gradient flow which has only two possible asymptotics: a
runaway solution to infinity and the approach to a fixed point defined by K. = f(K.). With
€nt+1 = &n/2 and labeling the n dependence implicitly via &, = f(K,,) we can write

§(/(K) = 2 (5. (12.107)
At a fixed point K. = f(K,.) only two solutions exist,
E(Ke) =0 and &(K.) — oo. (12.108)

The second possibility corresponds to the approach of a critical point, allowing the limit a — 0
and thus the continuum limit necessary for the transition to a QFT. This point is called a
critical fixed point, while the fixed point with zero correlation length is called trivial.

We can now generalise our previous discussion of the fixed point behaviour for the beta
function from one to n dimensions. The general behaviour of the RGE flow can be understood
from the two-dimensional example shown in Fig. The dashed lines show surfaces of
constant correlation length, including a critical surface £ = oo. Also shown are three critical
fixed points (A, B, C) and a trivial one (D). In each RGE step the correlation length decreases.
Thus the trivial fixed point is an attractor, i.e. inside a small enough neighbourhood all points
will flow towards it. Moreover, critical lines have at least one unstable direction, the one
orthogonal to their surface: Even points infinitesimal close to the surface will flow away and
eventually end in a trivial fixed point. Finally, also inside the critical surface stable and
unstable directions exist: For instance, the fixed point B will attract all points in-between A
and C (“its basin of attraction”). Universality classes of QFTs can be identified with stable
critical fixed points and their basin of attraction.

Wilsonian action Let us now return to QFTs in the continuum limit. Wilson suggested
to transfer the idea of integrating out fluctuations on small scales by including in the path
integral only modes up to the cutoff scale A ~ 1/a. This defines an effective field theory which
is by construction UV finite. The corresponding effective or Wilsonian action depends on the
assumed value of the cutoff scale A, and we can generate a RGE flow by changing A.

Let us start from the Euclidean generating functional in momentum space restricted to
wave-numbers below a cutoff, & < A. Then we split the field modes into slow modes o and
fast modes v,

Z = /D¢e—5[¢] = /Dapqse—s[mf’], (12.109)
with
¢ = o + ¢ and { ;zg ETIZZSS Kﬁ'/fé‘{]g <A (12.110)
Next we want to integrate out the fast modes 1,
e~ Sl = /D¢ e~ Slotvl (12.111)

*An example is given later in remark 13[I]
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Figure 12.5.: A two-dimensional illustration of the RGE flow: A, B and C are three fixed
points on the critical surface ¢ = co. The fixed points A and C have a stable
direction along the critical surface, while B has two unstable directions. The
trivial fixed point D is a stable fixed point, attracting all points starting not on
the critical surface.

lowering thereby the cutoff, A — A/f. In general, we will not be able to perform this path
integral. Using perturbation theory, we expand e °l?t%] and exponentiate then again the
result. As illustrated with a toy model in problem 12.?7?, this procedure will renormalise the
values of the parameters contained in the original Lagrangian and introduce an infinite set of
irrelevant operator Oy ; with dimension d > 5.

Having integrated out v, we relabel o as ¢. Next we have to recover the canonical normal-
isation for its kinetic energy. If we rescale distances by x — 2’ = z/f, the functional integral
is again over modes ¢(z') with z > a, complying with step iii) of the Kadanoff-Wilson pre-
scription. Keeping then the kinetic term invariant,

/d%; (0u0)* = /d%’ (0,¢')° :%/d‘lx (0u0)?, (12.112)

requires a rescaling of the field as ¢’ = f¢. Let us consider now an irrelevant interaction, e.g.
6
gs®°. Then

gﬁ/d% @5 = %/d%’ ¢'0 (12.113)

shows that the new coupling g is rescaled as g; = g6/ f 2. As f grows and the cutoff scale A
decreases, the value of an irrelevant coupling is driven to zero. Clearly, a relevant operator as
the cosmological constant p or a mass term m?¢$? shows the opposite behaviour and grows. As
result, irrelevant couplings are in our low-energy world suppressed and as first approximation
a renormalisable theory emerges at low energies. Note that both directions of the RGE flow—
towards the UV or the TR—are useful discussing QFTs. The point of view of a RGE flow
towards the IR is useful, if we want to connect a theory at high energy scales to a theory
valid at lower scales. An example for this approach is chiral perturbation theory where one

209



12. Renormalisation II: Improving perturbation theory

connects QCD to an effective theory of mesons and baryons at low energies. In the opposite
view, we may look e.g. at the SM as an effective theory known to be valid up to scales around
TeV and ask what happens if we increase the cutoff.

We can generalise now our earlier discussion of the two-dimensional RGE flow sketched in
Fig. The RGE flow stops at fixed points on critical surfaces of low dimension. All initial
values on the critical surface inside the basin of attraction flow to the critical fixed point.
Directions perpendicular to the critical surface are controlled by the irrelevant interactions;
flows beginning off the surface are driven to the trivial fixed point. On the way towards
¢ — oo only the relevant and marginal interactions survive. Insisting not on £ — oo and
keeping a finite cutoff (somewhere between TeV and Mp;, depending on the limit of validity
of the theory we assume) we can keep irrelevant interactions which are however suppressed.

Effective theories While integrating out momentum shells in the path integral, as required
in Eq. (IZI11), is useful to demonstrate the concept of effective theories, it is not the method
applied by practitioners. Instead, either functional RGE methods are used for which we will
give later an example in remark 13[Il Or one evaluates effective theories using the same
apparatus as we have developed for renormalisable ones. In the following, we want first to
illustrate how this is done and, second, to show that effective theories are predictive, despite
of being non-renormalisable.

We note first that the fact that divergences are polynomial in the external momenta guar-
antees also for non-renormalisable theories that all divergences can be subtracted by local
counter-terms. In contrast to renormalisable theories, the number of counter-terms and thus
of a priori required measurements is infinite. Thus it is important to show that a truncation
scheme for effective theories including loop correction exists which makes them predictive.
As usually, we use as an example a real scalar field in d = 4 space-time dimensions. Then an
operator Oy, ,, consisting of n fields and m derivatives contributes to the action

E n+m—4
S n Jnm /d% Onm & Cnm <—> , (12.114)

~ Ap+a—14 A

where the g, ,, are dimensionless couplings to be determined by experiment. We see again
that irrelevant operators, n+m > 4, are suppressed at energies £ < A. Clearly, an increase of
the mass dimension n 4 m results in a stronger suppression of the operator Oy, ,,. This allows
us to truncate the effective theory at some chosen dimension D = n + m. The truncated
theory contains only a finite number of operators with unknown couplings g, which have to
be determined from experiment. The predictions of the truncated theory become exact in the
limit £ — 0. For finite ¥ < A, we can increase the precision including higher dimensional
operators, at the expense of more calculational work and additional experimental input with
sufficient precision. In contrast, for £ > A an infinite number of operators contribute a priori
equally and the effective theory approach breaks down. Finally, note that in contrast to the
Wilsonian action the value of the cutoff scale A is determined experimentally: For instance,
calculating weak processes using a four-fermion interaction fixes the scale A% through the
Fermi constant Gp.

Our estimate (I2ZI114) holds at tree-level, and we should consider next the effect of loop
corrections. To be specific, we estimate the order of the one-loop corrections induced by
the operators gg®/A?, gsp*(0¢)? /A%, ..., to the basic \p* vertex. Cutting the momentum
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integrals at A results in

A g4
de d*k 1 Ce 9o
R —— s~ —A 12.11
S A2/ i e e (12.115)
A q4 2
gs d*k k C8 4
oA~ — — = —A ... 12.11
A* / (2m)t k2 —m2 At ( 6)

Thus all one-loop corrections are of O(1), since the factor 1/AP~* contained in O, , is com-

pensated by a factor AP~ generated in the momentum integrations. Going to higher loops
makes things even worse. The solution to this problem is to use a mass independent regulator
as the MS or M.S schemes in DR. Then the factors A originating from the momentum inte-
gration are replaces by m”. With E > m, the loop corrections preserve thus the expansion
scheme (E/A)"t™=* found at tree-level. As a result, the truncation of an effective theories
at a chosen order D leads to a predictive theory including loop corrections at energies below
the cutoff scale.

Summary

Interactions can be characterised by the asymptotic behaviour of their coupling constants.
Gauge theories with a sufficiently small number of fermions are the only renormalisable in-
teractions which are asymptotically free, i.e. their running coupling constant goes to zero
for 4 — o0o. The scale dependence of renormalised Green functions can be interpreted as
a running of coupling constants and masses. The use of a running coupling sums up the
leading logarithms of type In"(12/u3), and a suitable choice of the renormalisation scale in a
specific problems reduces the remaining scale dependence of perturbative results. The non-
perturbative approach of Wilson provides an argument why the SM as description of our
low-energy world is renormalisable: Integrating out high-energy degrees of freedom, irrele-
vant couplings are driven to zero and thus it is natural that a renormalisable theory emerges
at low energies.

Further reading

Our discussion of the renormalisation of gauge theories left out most details. I recommend
those interested to fill the gaps to start with [Ram94] and [Pok87]. A useful text-book to
learn about critical phenomena is [LB92].
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13. Symmetries and symmetry breaking

The analogy of Landau’s mean field model for a ferromagnet with a scalar A¢* theory suggests
that we can hide its ¢ — —¢ symmetry at low temperatures, if we choose a negative mass
term in the Lagrangian. Although such a choice seems at first sight unnatural, we will
investigate this case in the following in detail. Our main motivation is the expectation that
hiding a symmetry by choosing a non-invariant ground-state retains the “good” properties of
the symmetric Lagrangian. Coupling then such a scalar theory to a gauge theory, we hope
to break gauge invariance in a “gentle” way which allows e.g. gauge boson masses without
spoiling the renormalisability of the unbroken theory. As an additional motivation we recall
that couplings and masses are not constants but depend on the scale considered. Thus it might
be that the parameters determining the Lagrangian of the Standard Model at low energies
originate from a more complete theory at high scales, where the squared mass parameter 2
is originally positive. In such a scenario, ;2(Q?) becomes negative only after running it down
to the electroweak scale Q = my.

13.1. Symmetry breaking and Goldstone’s theorem

We consider in the following systems where the Lagrangian contains an exact symmetry which
is not shared by its ground-state. Since particle masses in a field theory are determined by
the ground-state, the symmetry of the Lagrangian is thus not visible in the mass spectrum of
physical particles. This opens the possibility of having a gauge invariant Lagrangian despite
of massive gauge bosons. If the ground-state breaks the original symmetry because one or
several scalar fields acquire a non-zero vacuum expectation value, one calls this spontaneous
symmetry breaking (SSB). As the symmetry is not really broken on the Lagrangian level, a
perhaps more appropriate name would be “hidden symmetry”.

In this and the following chapter, we discuss the case of SSB, first in general and then
applied to the electroweak sector of the SM. Since the breaking of an internal symmetry
should leave Poincaré symmetry intact, we can give only scalar quantities ¢ a non-zero vacuum
expectation value. This excludes non-zero expectation values for fields with spin, which would
single out a specific direction. On the other hand, we can construct scalar expectation values
as (0]$|0) = (0[1p4|0) # 0 out of the product of multiple fields. In the following, we will
always treat ¢ as an elementary field, but we should keep in mind the possibility that ¢ is
a composite object, e.g. a condensate of fermion fields, (¢) = (i¢), similar to the case of
superconductivity.

Spontaneous breaking of discrete symmetries We start with the simplest example of a
theory with a broken symmetry: A single scalar field with a discrete reflection symmetry.
Consider the familiar A\¢* Lagrangian, but with a negative mass term which we include into
the potential V (o),

_1 2 1 2 2_5 4_1 2
L = S0P + S — 56 = S(0u)? ~V($). (13.1)
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13.1. Symmetry breaking and Goldstone’s theorem

The Lagrangian is for both signs of ;2 invariant under the discrete Z, symmetry, ¢ — —¢.
The field configuration with the smallest energy is a constant field ¢, chosen to minimise the
potential
1 A
V(¢) = —§M2¢2 + Z¢47 (13.2)
which has the two minima

bo = v =+ p?/X. (13.3)

In quantum mechanics, we learnt that the wave-function of the ground state for the potential
V(z) = —1p%2? + Az* will be a symmetric state, ¥(z) = ¢(—z), since the particle can tunnel
through the potential barrier. In field theory, such a tunnelling can happen in principle too.
However, the tunnelling probability is inversely proportional to the volume L3 occupied by the
system, and vanishes in the limit L — oo: In order to transform ¢(z) = —v into ¢(z) = +v
we have to switch an infinite number of oscillators, which clearly costs an infinite amount
of energy. Thus in quantum field theory, the system has to choose between the two vacua
+v and the symmetry of the Lagrangian is broken in the ground state. Had we used the ¢*
Lagrangian with a positive mass term, the vacuum expectation value of the field would have
been zero, and the ground state would respect the symmetry.

Quantising the theory (I3.1I)) with the negative mass around the usual vacuum, |[0) with
(0]¢]0) = ¢, = 0, we find modes behaving as

br x exp(—iwt) = exp(—iy/—p? + |k|? 1), (13.4)

which can grow exponentially for |k|?> < p?. More generally, exponentially growing modes
exist, if the potential is concave at the position of ¢, i.e. for

mesp(pe) = V" (pe) = —p* + 302 < 0 (13.5)

or gl < /u2J(3N).
Clearly, the problem arises because we should expand the field around the ground-state v.
This requires that we shift the field as

d(z) =v+&(x), (13.6)

splitting it into a classical part (¢) = v and quantum fluctuations £(x) on top of it. Then we
express the Lagrangian as function of the field &,
4

2 =1 @087 - S R - et (13.7)
In the new variable £, the Lagrangian describes a scalar field with positive mass mg = V2 >
0. The original symmetry is no longer apparent: Since we had to select one out of the
two possible ground states, a ¢ term appeared and the ¢ — —¢ symmetry is broken. The
new cubic interaction term rises now the question, if our scalar A\¢* theory becomes non-
renormalisable after SSB: As we have no corresponding counter-term at our disposal, the
renormalisation of  and X has to cure also the divergences of the ¢? interaction.

Finally, we note that the contribution px*/(4)\) to the energy density of the vacuum is, in
contrast to the vacuum loop diagrams generated by Z[0], classical and finite. We see later
that symmetries will be restored at high temperatures or at early times in the evolution of
the Universe. Even if we take the freedom to shift the vacuum energy density, we have either
before or after SSB an unacceptable large contribution to the vacuum energy (problem 13[]).
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13. Symmetries and symmetry breaking

Spontaneous breaking of continuous symmetries Our main aim is to understand the SSB
of the electroweak gauge symmetry. As next step we look therefore at a system with a global
continuous symmetry. We discussed already in section [5.1] the case of N real scalar fields
described by the Lagrangian

2= L [0, + 1207] ~ 3 (677 (13.8)

Since ¢ = {$1,...,¢n} transforms as a vector under rotations in field space, ¢; — Rj;j¢;
with R;; € O(n), the Lagrangian is invariant under orthogonal transformations. Before we
consider the general case of arbitrary IV, we look at the case N = 2 for which the potential is
shown in Fig. I3l Without loss of generality, we choose the vacuum pointing in the direction
of ¢1: Thus v = (1) = /p?/ X and (¢2) = 0. Shifting the field as in the discrete case gives

u“ 1
4)\
i.e. the two degrees of freedom of the field ¢ split after SSB into one massive and one massless
mode.

Since the mass matrix consists of the coefficients of the terms quadratic in the fields, the
general procedure for the determination of physical masses is the following: Find first the
minimum of the potential V(¢). Expand then the potential up to quadratic terms,

82
7 0¢i0;

——

Z = ( 9,8)* — _(Q,U )& + Lt (13.9)

V($) = V(o) + 36— do)i(p— do); moa+ (13.10)

The second derivatives form a symmetric matrix with elements M;; > 0, because we evaluate
the mass matrix by assumption at the minimum of V. Diagonalising M;; gives as eigenvalues
the squared masses of the fields. The eigenvectors of M;; are called the mass eigenstates or
physical states. Propagators and Green functions describe the evolution of fields with definite
masses and should be therefore build up on these states. If the potential has n > 0 flat
directions, the vacuum is degenerated and n massless modes appear.

Looking at Fig. [[3.1] suggests to use polar instead of Cartesian coordinates in field space.
In this way, the rotation symmetry of the potential and the periodicity of the flat direction
is reflected in the variables describing the scalar fields. Introducing first the complex field
¢ = (¢ +1ip2)/V2, the Lagrangian becomes

L =0,d'0"p+ 1’¢Tp — A(o'9)”. (13.11)
Next we set .
$(x) = p(x)el’™) (13.12)
and use 0,¢ = [0,p + ipd,9]e” to express the Lagrangian in the new variables,
L = (0up)* + 07 (0u09)* + p°p” = Ao (13.13)
Shifting finally again the fields as p = v + £ with v = /p?/2), we find
4
H 2 2,2 3 4
L = _+_(3 9)? + (0u8)* — 2u7E” — 2uV20E* — X¢
AN 2) g (13.14)

+ [v2ur e + €] (9,0

214



13.1. Symmetry breaking and Goldstone’s theorem

Figure 13.1.: Scalar potential with “Mexican hat” shape symmetric under O(2).

The phase ¢ which parametrises the flat direction of the potential V' (¢, ¢) remained massless.
This mode is called Goldstone (or Nambu-Goldstone) boson and has derivative couplings to
the massive field £, given by the last term in Eq. (I3.14]). This is a general result, implying
that static Goldstone bosons do not interact. Another general property of Goldstone bosons
is that they carry the quantum number of the corresponding symmetry generator. They are
therefore (pseudo-) scalar particles, if an internal symmetry is broken,

Let us now discuss briefly the case of general N for the Lagrangian (I3.8]). The lowest
energy configuration is again a constant field. The potential is minimised for any set of fields
¢, that satisfies ¢3 = p?/\. This equation only determines the length of the vector, but
not its direction. It is convenient to choose a vacuum such that ¢, points along one of the
components of the field vector. Aligning ¢, with its Nth component,

o= (0,0, ViZ/X) . (13.15)

we now follow the same procedure as in the previous example. First we define a new set of
fields, with the Nth field expanded around the vacuum

¢(z) = (" (x),0 +£&(2)), (13.16)

where k£ now runs from 1 to N — 1. Then we insert this, and the value v = \/pu?/X for the
vacuum expectation value into the Lagrangian, and obtain

2 = SO0 + 308 - S2)E +
— Vg — Vg (¢4)” - £(¢’“ -

This Lagrangian describes N — 1 massless fields and a single massive field &, with cubic and
quartic interactions. The O(N) symmetry is no longer apparent, leaving as symmetry group
the subgroup O(N-1), which rotates the ¢* fields among themselves. This rotation describes
movements along directions where the potential has a vanishing second derivative, while the
massive field corresponds to oscillations in the radial direction of V.

A (13.17)
[(¢*

4
A A,
ZLoh - 3¢
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13. Symmetries and symmetry breaking

Goldstone’s theorem The observation that massless particles appear in theories with spon-
taneously broken continuous symmetries is a general result, known as Goldstone’s theorem.
The first example for such particles was suggested by Nambu in 1960: He showed that a mass-
less quasi-particle appears in a magnetised solid, because the magnetic field breaks rotation
invariance. Goldstone applied soon after that this idea to relativistic QFTs and showed that
massless scalar elementary particles appear in theories with SSB. Since no massless scalar
particles are known to exist, this theorem appeared to be a dead end for the application of
SSB to particle physics. So our task is two-fold: First we should derive Goldstone’s theorem
and then we should find out how we can bypass the theorem applying it to our case of interest,
gauge theories.

The theorem is obvious at the classical level: Consider a Lagrangian with a symmetry G
and a vacuum state invariant under a subgroup H of G. For instance, choosing a Lagrangian
invariant under G = O(3) and picking out a vacuum along ¢3, the subgroup H = O(2) of
rotation around ¢3 keeps the vacuum invariant. Let us denote with U(g) a representation
of G acting on the fields ¢ and with U(h) a representation of H, respectively. Since we
consider constant fields, derivative terms in the fields vanish and the potential V alone has
to be symmetric under G, i.e.

V(Ul(9)¢) =V(e). (13.18)
Moreover, we know that the vacuum is kept invariant for all h, ¢y = U(h)¢,, but changes
for some g, ¢y # U(g)dy. Using the invariance of the potential and expanding V (U(g)e,)
for an infinitesimal group transformation gives
1 oV
2 0409 |,

where d¢; denotes the resulting variation of the field. Equation (I3:19]) implies that

Vigy) =V(Ul(g9)o) = V(o) + 0i0pj + .., (13.19)

M;j6didd; = 0. (13.20)

The variation d¢; depends on whether the transformation belong to U(h) or not: In the
former case, the vacuum ¢, is unchanged, d¢; = 0 and (I3:20)) is automatically satisfied.
If on the other hand g does not belong to H, i.e. is a member of the left coset G/H, then
d¢; # 0, implying that the mass matrix M;; has a zero eigenvalue. It is now clear that the
number of massless particles is simply determined by the dimensions of the two groups G and
H: The number of Goldstone bosons equals dim(G) — dim(H), or the dimension dim(G/H)
of the left coset.

Quantum case The previous discussion was based on the classical potential. Thus we
should address the question if this picture survives quantum corrections. Noether’s theorem
tells us that every continuous symmetry has associated to its generators g; conserved charges
Q;. On the quantum level this means the operators (); commute with the Hamiltonian,
[H,Q;] = 0. Subtracting the vacuum energy, we have H |0) = 0. If the vacuum is invariant
under the symmetry @, then exp(i9Q) |0) = |0). For the infinitesimal form of the symmetry
transformation, exp(i¥Q) ~ 1 + i9Q, we conclude that the charge annihilates the vacuum,

Qo) =0. (13.21)

Or, in simpler words, the vacuum has the charge 0.
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13.2. Renormalisation of theories with SSB

Now we came to the case we are interested in, namely that the symmetry is spontaneously
broken and thus @ |0) # 0. We first determine the energy of the state @ ]0). From

HQ0) = (HQ - QH)|0) = [H,Q][0) =0, (13.22)

H[0)=0

we see that at least another state ]0) exists which has as the vacuum |0) zero energy.
We represent the charge operator as the volume integral of the time-like component of the
corresponding current operator,

Q= /d3xJ0(t,m). (13.23)

The state
1s) = /d% P 101 2)|0) =+ Q[0)  for p—0 (13.24)

becomes in the zero-momentum limit equal to the state @ |0) we are searching for. Moreover,
applying the momentum operator P on |s) gives (problem 13[5])

Pls)=pls). (13.25)

Thus the SSB of the vacuum, @ |0) # 0, implies excitations of the system with a frequency
that vanishes in the limit of long wavelengths. In the relativistic case, Goldstone’s theorem
predicts massless states, while in the non-relativistic case relevant for solid states the theorem
predicts collective excitations with zero energy gap.

13.2. Renormalisation of theories with SSB

When we went through the SSB of the scalar field, we saw that new ¢ interactions were
introduced. The question then arises, are new renormalisation constants needed when a
symmetry is spontaneously broken? This would make these theories non-renormalisable. We
can address this questions in two ways. One possibility is to repeat our analysis of the
renormalisability of the scalar theory in section [[1.4.2] but now for the broken case with a
negative mass term. Then we would find that the ¢3 term becomes finite, renormalising fields,
mass and coupling as in the unbroken case. This is not unexpected, because shifting the field,
which is an integration variable in the generating functional, by ¢ — gz~5 = ¢ — v should not
affect physics. On the other hand, such a shift reshuffles the splitting . = % + %y in our
standard perturbative expansion in the coupling constant. To avoid this problem, we will
use the quantum action employing a loop expansion. Additionally of being not affected by a
shift of the fields, this formalism allows us to calculate the potential including all quantum
corrections in the limit of constant fields.

Effective potential Let us start recalling the definition of the quantum action]

Plge] = W] — / AV I () be(a') = W] — (J6). (13.26)

We will suppress the subscript ¢ on the classical field from now on and use brackets (J¢) to indicate
integration.
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13. Symmetries and symmetry breaking

In general we will not be able to solve the quantum action. Studying SSB, we can how-
ever make use of a considerable simplification: The fields we are interested in are constant.
Performing then a gradient expansion of the quantum action I'[¢],

Il = [ ' | ~Vigs0) + 5RO@07 + .| (13.27)

only the zeroth order term Vs ¢(¢) of the expansion in (8,¢)? survives. If we now choose the
source J(z) to be constant, the field ¢(z) has to be uniform too, ¢(z) = ¢, by translation
invariance. Together this implies that

_ T[] _ () OVers(9)
o op

where ) denotes the space-time volume. In the absence of external sources, J = 0, Eq. (I3.28))
simplifies to V] If (¢) = 0. This is the quantum version of our old approach where we minimised
the classical potential V(¢) in order to find the vacuum expectation value of ¢. Therefore
Verr(¢) is called the effective potential, which includes all quantum corrections to the classical
potential in the limit of zero gradients.

['=—-QVep, and —.J (13.28)

In order to proceed, we use that we know the classical potential and we assume that
quantum fluctuations are small. Then we can perform a saddle-point expansion around the
classical solution ¢y, given by the solution to O¢g + V'(¢g) = J(z). We split the field as
¢ = ¢o + & and approximate the path integral as

7 =" = expilSlnl + ()} [ DG exp {i [ @l (@67 - v"(00)#] } (1329)

The neglected terms are of order 0(7}2) and correspond thus to two- and higher loop contribu-
tions. The functional integral over ¢ is quadratic and is formally given by Det(0 + V")~ 1/2,
Using then the identity InDetA = Trln A, we find

W = S[¢o] + (Jo) + %Tr In[0 4 V" (¢o)] + O(h?) . (13.30)

The trace implies a summation over all discrete and an integration over the continuous quan-
tum numbers. In the case of a scalar particle, no discrete quantum numbers exist and we have
to integrate the matrix element (z| In[d+V"]|z) only over space-time. To find the eigenvalues
of the operator, we insert a complete sets of plane waves,

4
Trin[0+ V"] = / d*z(z| In[0 + V")|z) = / d*z (;1 ];4 (z| In[O + V"|k) (k|z) =
s
4k d'k
= [d* In[—k? + V"] (z|k)(k|z) = Q In[—k*> +V"]. 13.31
[ dte gl VN alk) ) = @ [ G =k V7] (13.31)
Performing the Legendre transformation and using S[¢g] = —QV (o), we obtain for the

effective potential Vi rs(¢o) including the first quantum corrections

i 4
Vers(¢o) = V(go) — 5/ (;17:;4 In [—k* + V" ()] + O(R?). (13.32)
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13.2. Renormalisation of theories with SSB

As an example we can use the A¢* theory: From
1
V" (o) = 1’ + 5265 (13.33)

we see that V”(¢p) can be interpreted as an effective mass, consisting of ;2 and the con-
tribution A¢2/2 due to the constant background field ¢y. The total effective potential at
order O(h?) consists of the classical potential V' (¢), i.e. the classical energy density of a scalar
field with vacuum expectation value ¢, while the first quantum correction is given by the
zero-points energies@ of a scalar particle with effective mass V" (¢y).

Not surprisingly, the effective potential is divergent and we have to introduce counter-terms
that eliminate the divergent parts. Our effective potential is then

4 2 n

Vossn) = V() + 5 [ G tn (B ) ma v g0 (13
(27) kz,

Here, we Wick rotated the integral to Euclidean space and subtracted an infinite constant in

order to make the logarithm dimensionless. (Equivalently we could have added an additional

constant counter-term A renormalising the vacuum energy density.) The integral can be

evaluated in different regularisation schemes. Here we will expand the logarithm,

V' =1 (V"
In <1 + —) =y - (—) , (13.35)

and cutoff the integral at some large momentum A. The first two terms of the sum will
depend on the cutoff, being proportional to A? and In(A%/V"), respectively. Performing the
integral and neglecting terms that vanish for large A, we obtain

A2 v 2 v
Vass () = V(go) + 555V (n) + g (500 (13.36)

Now we see that if we start out with a massless A¢* theory, our cutoff-dependent terms are

1 A2
V" = §A¢3, and (V") = qug, (13.37)

which both can be absorbed into the counter-terms B and C by imposing appropriate renor-
malisation conditions.

Let us stress the important point in this result: The renormalisation of the A¢* theory
using the effective potential approach is not affected by a shift of the field: We are free to
use both signs of ;2 and any value of the classical field ¢y in Eq. (I3.36). Independently of
the sign of 12, we need only symmetric counter-terms, as a cubic term does not appear. We
can rephrase this point as follows: If we renormalise before we shift the fields, we know that
we obtain finite renormalised Green functions. But shifting the fields does not change the
total Lagrangian. Thus the quantum action and the effective potential are unchanged too.
Consequently the theory has to stay renormalisable after SSB.

Let us now discuss what happens with a non-renormalisable theory in the effective potential
approach. Including e.g. a ¢% term leads to (V)2 o ¢® which requires an additional counter-
term D¢®, generating in turn even higher order terms and so forth. Thus in this case an

Integrating iAr(0) w.r.t. m? reproduces the one-loop term.
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13. Symmetries and symmetry breaking

O )OO XX

Figure 13.2.: Perturbative expansion of the one-loop effective potential V;(fl} for the A¢* the-

ory; all external legs have zero momentum.

(1)

infinite number of counter-terms is needed for the calculation of V_ ;. The reason for this
behaviour becomes clear, if we look again at the series expansion of the logarithm in the one

(1)
i L ]

loop contribution V, s

This contribution is an infinite sum of single loops with progressively more external legs with
zero-momentum attached, see Fig. for the case of V" (¢y) = $A¢3. (We added the factor
i, because we returned to Minkowski space; the symmetry factor 2n appearing automatically
in this approach accounts for the symmetry of a graph with n vertices under rotations and
reflection.) As we saw, the superficial degree of divergence increases with the number of
external particles for a A¢™ theory and n > 4. Hence every single diagram in the infinite sum
contained in Ve(l) diverges for n > 4 and requires a counter-term of higher order. As discussed
in section [[2.5] we should treat non-renormalisable theories as effective theories only valid
below a physical cutoff A. Calculating then loop corrections as in Ve(l), we have to us a mass
independent renormalisation scheme instead of a dimensionfull cutoff. An alternative is the

functional RGE approach, for which we give next a brief example:

Remark 13.1: A RGE flow equation for the effective potential:

Let us define V}, as the effective potential cutting off the loop integrals at the scale k. We can repeat
the saddle point expansion, splitting ¢ as ¢ = ¢¢ + 1, where now ¢o contains the modes k < p and
1) the modes p < k < A. For simplicity, we assume that the minimum of the potential is at zero and
treat the slow field ¢ as uniform. Integrating out the field ), we obtain then

ho(* Ak (kL + V" (o)
= — In(-Z ) 13.
Vk ((b()) VA((bU) + 9 A (27T)4 n < k‘% + V”(O) ) ( 3 39)
Next we differentiate w.r.t. k and obtain
hk* k2 4+ V" (¢o)
— 1 £ 13.4
k Vk(¢0) ].671'2 n ( k%_i_v,,(o) > ) ( 3 0)

i.e. a differential equation describing how the effective potential changes integrating out UV modes
with momentum k. Similar equations, called RGE flow equations, can be derived also for the quantum
action. If we consider now an asymptotically free theory, then for sufficiently high scales, I'[¢] ~ S[¢].
Then also V}, can be approximated by the classical potential, fixing our initial condition.
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13.2. Renormalisation of theories with SSB

Finally, we note that the result for a single, real scalar generalises as

1 1
‘/e(fj)" = (_1)Sgi‘/;(j"})‘,scalar

to a particle with spin s and g; internal degrees of freedom. This should come as now surprise,
since the one-loop expression of the effective potential sums up the logarithm of the zero-point

(13.41)

energies.

Another proof of the Goldstone theorem With the help of the effective potential we can
give another simple proof of the Goldstone theorem. We know that the zero of the inverse
propagator determines the mass of a particle. From Eq. (I2.14]), the exact inverse propagator
in momentum space for a set of scalar fields is given by

§°T
0¢i(7)d; (")
Massless particles correspond to zero eigenvalues of this matrix equation for p? = m?. If we
set p = 0, the fields are constant. But differentiating the quantum action w.r.t. to constant
fields is equivalent to differentiating simply the effective potential,

0*Vers
0¢i(x)0¢; (')
Thus our previous analysis of Goldstone’s theorem using the classical potential holds also in
the quantum case, if we replace the classical by the effective potential.

A% = / dlz e P@=) (13.42)

=0. (13.43)

Coleman-Weinberg Problem We can use the effective potential to investigate if quantum
fluctuations can trigger SSB in an initially massless theory. Rewriting the effective potential
(and going back to our normalisation A\¢/4!) we have

Var () = A B ¢ + AL XN P e ¢ (13.44)
S0 | ban? 4l (16m)2 A2 ' '
Now we impose the renormalising conditions, first
d*Vey s ‘
=0, 13.45
which implies that
AA?

B= ~6dn? (13.46)

Renormalising the coupling constant, we have to pick a different point than ¢ = 0, because
the logarithm is ill-defined there. This means that we have to introduce a scale y. Taking
the fourth derivative and ignoring terms that are independent of ¢, we find

d4‘/eff )\2 H’Q
=A=24——In—. 13.47
|, (16m)2 " AZ (1347)
We can convince ourselves that this expression gives the correct beta function,
o\ 3
=p— = A2+ 0(N). 13.48
Bu) Hop = Tom2 T (A%) (13.48)
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13. Symmetries and symmetry breaking

Using the complete expression for Eq. (I3.47), we can determine C' and obtain for the
renormalised effective potential (problem 13[6))

Alp) A2 (1)
41 (167)2

z—z - %] O(\?). (13.49)

Vags () = 42"+ o [
This potential has two minima outside of the origin, so it seems that SSB does indeed happen.
These minima lie however outside the expected range of validity of the one loop approximation:
Rewriting the potential as Vorr(¢) = Ag*/41(1 + aXIn(¢?/u?) + ... suggest that we can trust

the one-loop approximation only as long as (3/3272) A\ 1In(¢?/pu?) < 1.

13.3. Abelian Higgs model

After we have shown that the renormalisability is not affected by SSB, we now try to apply
this idea to a the case of a gauge symmetry. First of all, because we aim to explain the
masses of the W and Z bosons as consequence of SSB. Secondly, we saw that SSB of global
symmetries leads to massless scalars which are however not observed. As SSB cannot change
the number of physical degrees of freedom, we hope that each of the two diseases is the cure of
the other: The Goldstone bosons which would remain massless in a global symmetry hopefully
disappear becoming the required additional longitudinal degrees of freedom of massive gauge
bosons in case of a spontaneously broken gauge symmetry.

The Abelian Higgs model, which is the simplest example for this mechanism, is obtained
by gauging a complex scalar field theory. Introducing in the Lagrangian (I3.IT]) the covariant
derivative

0y =+ D, =0, +ieA, (13.50)
and adding the free Lagrangian of an U(1) gauge field gives

P = 1P 4+ (D) (D) + 12616 ~ A($'9)°. (13.51)

The symmetry breaking and Higgs mechanism is best discussed changing to polar coordinates
in field-space, ¢ = pexp{id}. Then we insert

D¢ = [0up +ip(0,0 + eA,)] e (13.52)
into the Lagrangian, obtaining
1 14
L == B " + P2(0,9 + eAL)? + (0up)? + p2p* — Mot (13.53)

The only difference to the ungauged model is the appearance of the gauge field in the prospec-
tive mass term p®(0,9 + eA,)%. This allows us to eliminate the angular mode ¥ which shows
up nowhere else by performing a gauge transformation on the field A,: The action of a U(1)
gauge transformation A, — AL = A, — 0, on the original field ¢ is just a phase shift, hence
p is unchanged and 9 is shifted by a constant, 9 — 9" = 9 + eA. This means that if we
consider the gauge invariant combination

1
Bu= A+ 00 (13.54)
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13.3. Abelian Higgs model

as new variable, we eliminate ¥ completely, as F),, (A,) = F,,(B,) is gauge invariant,
1
L = _ZFWFW +e2p?(B)? 4 (0up)? + p2p? — Mot (13.55)

It is now evident that the Goldstone mode ¢ has disappeared. Eliminating the field p in
favour of fluctuations y around the vacuum v = \/p?/, i.e. shifting as usually the field as

p=—w+x), (13.56)

Sl

we find as new Lagrangian

1 1 1
L == Fu P+ 5MQ(B#)2 + ux(Bu)® + 5¢°x*(By)?
0 (13.57)
+ o5 T 0w0)” - (fu)x—fux—zx

As in the ungauged model we obtain a x? self-interaction and a contribution to the vacuum
energy density. The gauge field B, acquired the mass M = ev, therefore having now three
spin degrees of freedom. The additional longitudinal one has been delivered by the Goldstone
boson which in turn disappeared: The gauge field has “eaten” the Goldstone boson. We also
see that the number of degrees of freedom before SSB (2 + 2) matches the number afterwards
(3 + 1). The phenomenon that breaking spontaneously a gauge symmetry does not lead to
massless Goldstone bosons because they become the longitudinal degree of freedom of massive
gauge bosons is called the Higgs effect.

The gauge transformation we used to eliminate the 4 field corresponds to the Higgs model
in the unitary gauge, where only physical particles appear in the Lagrangian. The massive
gauge boson is described by the Procca Lagrangian and we know that the resulting propagator
becomes constant for large momenta. Hence, this gauge is convenient for illustrating the
concept of the Higgs mechanism, but not suited for loop calculations. For several reasons
we expect that the renormalisability of this model is only hidden in the unitary gauge: The
model before shifting the fields is renormalisable, and our discussion of SSB using the effective
potential has taught us that such a shift has no impact. Moreover, we should be able to neglect
v in a scattering process like B* + B* — B* + B* for s > v?. Thus the broken theory should
have the same UV behaviour as the unbroken one.

We should therefore explore alternative gauges of the same model. Avoiding the unitary
gauge, we re-start using Cartesian fields ¢ = (¢1 + i¢2)/V/2 for the complex scalar. Then the
Lagrangian is

1 1
L == JFuF" + 3 [(Bud1 — eAuda)® + (Oud2 + eAy)’]

22 N (13.58)
+ 5 (67 + ¢3) — (1 +43)°
Performing the shift due to the SSB, ¢ = v + ¢; and ¢o = ¢o, the Lagrangian becomes
1 v 1 242 i
L= ZFWFM + S M7A; + evAt 0,2
LR (13.59)
+ 5 [(8”451)2 — 2M2¢% + 5(8#@)2 +... s
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13. Symmetries and symmetry breaking

where we have omitted interaction and vacuum terms not relevant to the discussion. As we
see, the Goldstone boson gz~52 does not disappear and it couples to the gauge field A,. On the
other hand, the mass spectrum of the physical particles is the same as in the unitary gauge.
The degrees of freedom before and after breaking the symmetry do not match, hence there is
an unphysical degree of freedom in the theory, namely that corresponding to &2.

Gauge fixing and gauge boson propagator In order to make the generating functional
Z[J#, J, J*] of the abelian Higgs model well-defined, we have to remove the gauge freedom
of the classical Lagrangian. Using the Faddeev-Popov trick to achieve this implies to add a
gauge-fixing and a Faddeev-Popov ghost term to the classical Lagrangian,

Lot = Lo+ Lag + Lop = L — G + e (13.60)

Here G(A*,$) = 0 is a suitable gauge condition, ¢ is the generator of the gauge symmetry
and ¢, ¢ are Gramannian ghost fields.

In the unbroken abelian case we used as gauge condition G = 9,A%. With the gauge
transformation A* — A* — 0" the ghost term becomes simply Zrp = ¢(—0O)e. Thus
the ghost fields completely decouple from any physical particles, and the ghost term can be
absorbed in the normalisation. In the present case of a theory with SSB, we want to use the
Faddeev-Popov term to cancel the mixed A#9,¢2 term. Therefore we include the Goldstone
boson ¢s in the gauge condition,

G = 0,A" —Levgp =0, (13.61)

what defines the R¢ gauge. From ¢ = 0, A" /(£ev) we see that the unitary gauge corresponds
to & — oo, while we come back to G = 9, A* for v — 0. We calculate first G?,

G? = (0,A)(0,AY) — 2Levdad, AF + 20?93, (13.62)

integrate by parts the cross term and insert the result into %,

1 1
L =——G* = ——
Now we see that the second term cancels the unwanted mixed term in .%;, while a £ dependent
mass term £M? for ¢o appeared.
If we write out the terms in %, ;s quadratic in A, and ¢»,

(0, AM)? — ev A, 0y — %g(ev)%g. (13.63)

1 1
Lofro = —ZFWF’“’ + §M2A§

1
2€
we can find the boson propagator. Using the antisymmetry of F},, and a partial integration,

we transform F?/4 into standard form, A, (n**0 — 9"8”)A, /2. The part of the Lagrangian
quadratic in A, then reads

A+ S(Oubn)? — LM, (1360

1 1 1
La =G Au[n"D — 0"0"] A + iAunWMQAV + EA,ﬁ“a”Au (13.65a)

_ %AM [ (O + M?) — (1 — €19 A, | (13.65b)
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13.3. Abelian Higgs model

To find the propagator we want to invert the term in the bracket, which we denote by PH.
If we go to momentum space, then

PP (K = —(k* — M2 + (1 — & HEHEY . (13.66)

Next we split P*(k?) into a transverse and a longitudinal part by factoring out terms
proportional to PR’ = nt — kMkY [k?,

v 14 kM v — 14
P = —(k* — M?) <Pg + 0 >+ (1—¢& HErk (13.67a)
= —(k* = M*)PR — ¢ 1 (k* — eM?) Py, (13.67b)

with the longitudinal part given by P/ = k*k” /k*. We can invert the two parts separately
and obtain

—iphv —ie Pt
DY (E2) = WUr L 13.
Dy ) = e TR i (13.68a)
:; wo_ (1 — _ K'RT 13.68b
k2—M2+i6[n ( 6)k2—§M2-|-i5]' (13.68b)

The transverse part propagates with mass M?, while the longitudinal part propagates with
mass EM?. The limit ¢ — oo corresponds again to the unitary gauge and & = 1 corresponds
to the easier Feynman-"t Hooft gauge. For finite ¢, the propagator is proportional to 1/k? as
in the massless case. The Goldstone boson ¢ has the usual propagator of a scalar particle,
however with gauge-dependent mass ¢M?2. As usual in a covariant gauge, the unphysical
gauge-dependent modes have to be cancelled by ghosts which we discuss next.

Ghosts Using the Faddeev-Popov ansatz introduces ghosts field through the term Zrp =
¢(0G/69) ¢ into the Lagrangian. To calculate 0G/d¥, we have to find out how the gauge
fixing condition G changes under an infinitesimal gauge transformation. Looking first at the
change of the complex field,

b= § = d+icdp— ¢+ieﬁ%(v+¢1 Tida), (13.69)

we see that the fields ¢; and ¢9 are mixed under the gauge transformation.

Ay — A, = A, — 0,0 (13.70a)
$1 = d1 = p1 — edepo (13.70b)
b2 — do = o+ ed(v + ¢1). (13.70c)

Inserting this into the gauge fixing condition (I3.61]) and differentiating with respect to the
generator, we obtain
oG 0
59 00
Thus after spontaneous symmetry breaking the ghost particles receive a £-dependent mass

and interact with the Higgs field ¢1. To see this explicitly we insert dG /9 into the ghost
Lagrangian,

(8,“21“ — §evq~32) = —0O—¢&ev(w+¢1). (13.71)

Lep =—C[O+?v(v+ ¢1)] ¢ = (0"¢)(9uc) — EM?ec — E’vréc. (13.72)
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13. Symmetries and symmetry breaking

The second term on the RHS corresponds to the mass £e?v? = ¢ M? for the ghost field, while
the third one describes the ghost-ghost-Higgs interaction.

In summary, we have the following propagators in the R, gauge, where we denote with h
the physical Higgs with mass M = ev, with ¢ the Goldstone boson and with ¢ the ghost:

AHF . bk
1 wky
VAVAVAVAVAV A T a5 | M 1-¢&)5—"—5 13.73
p v e | w9 ap (13.73)
h i
---------- P oM tie (13.74)
i
----- e Pt ie (13.75)
¢ i
---------- P T ie (13.76)

Before closing this chapter, we should answer why the Goldstone theorem does not apply to
the case of the Higgs model. The characteristic property of gauge theories that no manifestly
covariant gauge exists which eliminates all gauge freedom is also responsible for the failure
of the Goldstone theorem: In the first version of our proof, we may either choose a gauge as
the Coulomb gauge. Then only physical degrees of freedom of the photon propagate, but the
potential A%(z) drops only as 1/|x| and the charge @Q defined in (I3Z3) becomes ill-defined.
Alternatively, we can use a covariant gauge as the Lorentz gauge. Then the charge is well-
defined, but unphysical scalar and longitudinal photons exist. The Goldstone theorem does
apply, but the massless Goldstone bosons do not couple to physical modes. In the second
version of our proof, the effective potential for the scalar and for the gauge sector do not
decouple and mix by the same reason after SSB. This invalidates our analysis including only
scalar fields.

Summary

Examining spontaneous symmetry breaking of internal symmetries, we found three qualita-
tively different types of behaviours: For a broken global continuous symmetry, Goldstone’s
theorem predicts the existence of massless scalars. In the case of broken approximate sym-
metries, this can explain the existence of light scalar particles—an example are pions. The
case of broken global continuous symmetry which are exact seems to be not realised in na-
ture, since no massless scalar particles are observed. If we gauge the broken symmetry, the
would-be massless Goldstone bosons become the longitudinal degrees of freedom required for
massive spin-1 bosons. Finally, neither Noether’s nor Goldstone’s theorems apply to the case
of discrete symmetries; therefore the breaking of discrete symmetries does not change the
mass spectrum of the theory.

The effective potential is a convenient tool to study the renormalisability of spontaneously
broken theories: This approach allows the calculation of all quantum corrections to the clas-
sical potential in the limit of constant fields and is invariant under a shift of fields. Thereby
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13.3. Abelian Higgs model

we could establish that renormalisability is not affected by SSB.

Further reading

Our discussion of the effective potential is based on the 1966 Erice lecture “Secret Symmetry”

of Coleman198802.

Problems

13.1 Contribution to the vacuum energy
density from SSB.

Calculate the difference in the vacuum energy
density before and after SSB in the SM using
v = 256 GeV and m} = 2u® = (125)? GeV2. Com-
pare this to the observed value of the cosmological
constant.

13.2 Scalar Lagrangian after SSB.

Derive Eq. (I3.9) and write down the explicit form
of Lt

13.3 Quantum corrections to (¢).

We implicitly assumed that quantum corrections
are small enough that the field stays at the chosen
classical minimum. Calculate (¢(0)2) for d space-
time dimensions and show that this assumption is

violated for d < 2.

13.4 Instability of (¢).

Calculate the imaginary part of the self-energy for
a scalar field with the Lagrangian (I3.1)), i.e. with
a negative squared mass ;2 < 0. Discuss the phys-
ical interpretation.

13.5 Goldstone mode as zero mode.
Show that the state |s) defined in Eq. (I3:224) has
zero energy for k — 0.

13.6 Coleman-Weinberg problem.

Derive Eq. (I3:49), find the minima of the poten-
tial and discuss the validity of the one-loop ap-
proximation.

13.7 Effective potential in DR.
Repeat the calculation of the effective potential
using DR.
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14. Thermal field theory

The Green functions we have considered so far were defined as the expectation value of field
operators in a pure state, the vacuum |0) in the absence of real particles. Out of these Green
functions, we could built up our quantities of prime interest, decay or scattering amplitudes
for 1 — n and 2 — n particles via the LSZ formalism. In this chapter, we discuss how Green
functions should be calculated for a system which is not in its ground state but described by a
density matrix p. Examples for such systems are the early Universe or the dense, hot interior
of a star. The simplest and at the same time most important cases of thermal systems
are those in equilibrium. The appendix of this chapter collects a few basic formulas from
statistical physics we will need later.

14.1. Overview

In equilibrium statistical physics, the partition function Z is of central importance as all
thermodynamic quantities can be derived from it. In the grand canonical ensemble (where
both particles and energy may be exchanged between the system and the reservoir) the
partition function takes the form

Z(V,T, 1 o) = 3 (| e P —0iN: |y — =02 (14.1)

n

where f = 1/T is the inverse temperature of the system, n denotes a complete set of quantum
numbers, u; the chemical potential and N; the number of particles of type ¢. The Landau or
grand canonical free energy

QV,T, ;) = -TnZ=U—TS — y;N; = —PV (14.2)

connects the microscopic partition function to thermodynamics: While the partition function
is closely related to the generating functional of the corresponding field theory in Euclidean
space, we can derive from €2 all relevant thermodynamical quantities. For instance, we ob-
tain the pressure P from Q as P = 0Q/0V|r,,. In addition, the expectation value of any
observable O is given as

(0) = Z~\Tr [e*ﬂH*ﬂiNi 0] . (14.3)

In the following, we will always set u; = 0. Then the partition function Z (N, V,T) determines
the free (Helmholtz) energy F as F = —T'In Z.

Calculational approaches Two main approaches to calculations are used in thermal field
theory:
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e In the real-time formalism, one applies the formula (I43]) valid for any observable
directly to Green functions, that is one evaluates

G(w1,. -y zn) = (T(d(z1) - b(70)))
— 77Ty [eBH T(¢(x1)---¢(:1:n))] .

The main advantage of this method is that it can be extended to the non-equilibrium
case. In particular, one can investigate the time evolution of a system towards thermal
equilibrium. The proper definition of the propagators becomes, however, more involved

(14.4)

than in the vacuum.

¢ In the imaginary time formalism, we perform a Wick rotation from Minkowski to Eu-
clidean space, t — tg = it, so that the transition amplitude from an initial state, |q(¢;)),
to a final state, |q(tf)), is given by

tp—t;)H alty) S

(atep)le M ) = [*pge s, (145)
q(ti)

where S is now the Euclidean action. If we set the evolution time, £y — #;, equal to the

inverse temperature S and integrate over all periodic paths ¢(t7) = q(¢; + (), we obtain

= q(t+5) s
7 = Zq| —BH ) = / Dge™>. (14.6)

We now see that we have formally connected the path integral formulation of quantum
mechanics (in Euclidean space) to the partition function of statistical mechanics. In
contrast to field theories at zero temperature, the partition function in the Euclidean
and the resulting Euclidean Green functions are not merely a mathematical tool but our
main objects of interest. Since the Euclidean Green functions depend on temperature
instead of time, we are not able to describe time-dependent phenomena in this approach.

Thermal Green functions The trace in the partition function of statistical physics implies
that we have to sum over configurations connecting the same physical state at ¢ and ¢ + 5.
In the path integral corresponding to statistical mechanics, the periodicity condition ¢(t) =
q(t + ) for the real coordinate ¢ is clearly the only possible choice. In contrast, fields may
only be observable through bilinear quantities, as e.g. 9"y for a fermion field. This raises
the question, if we should require periodic or anti-periodic boundary conditions.

We start by considering thermal Green functions Gg for a free scalar field. We split
the Feynman propagator into two piece