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Experimental anomalies:

@ WMAP haze: synchrotron radiation from the GC
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Experimental anomalies:

@ WMAP haze: synchrotron radiation from the GC
@ Integral: positron annihilation line from the Galactic bulge
@ EGRET excess, surplus of diffuse y-rays

@ PAMELA anomaly: positrons, but no anti-protons
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Experimental anomalies:

WMAP haze: synchrotron radiation from the GC
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Integral: positron annihilation line from the Galactic bulge
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EGRET excess, surplus of diffuse y-rays
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PAMELA anomaly: positrons, but no anti-protons

@ ATIC anomaly: positrons, but no anti-protons
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Experimental anomalies:

WMAP haze: synchrotron radiation from the GC
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Integral: positron annihilation line from the Galactic bulge

(]

EGRET excess, surplus of diffuse y-rays

©

PAMELA anomaly: positrons, but no anti-protons
@ ATIC anomaly: positrons, but no anti-protons
HESS: TeV y-rays from GC
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DAMA /Libra modulation signal
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Earlier indirect detection claims:

@ Signal from
extragalactic XX annihilations in the diffuse photon background:
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Earlier indirect detection claims:

@ Signal from extragalactic XX annihilations in the diffuse

photon background:
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Earlier indirect detection claims:

@ Signal from Galactic xx annihilations in the diffuse photon

flux:
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Earlier indirect detection claims:

@ Signal from Galactic XX annihilations in the diffuse photon

flux:
3| eeee= tot. background e EGRET
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PAMELA anomaly
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PAMELA anomaly: positron-proton identification via

dE/dx, topology
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ATIC anomaly
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ATIC anomaly

1,000

—y
o
o

HE, (M2 57151 GeV?)

CR induced background under control?

10[ 1 P | 1
10 100 1,000

Energy (GeV)

Michael KachelrieB Dark Matter: Candidates and their properties



PAMELA and ATIC anomaly
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Possible explanations for the PAMELA anomaly:

@ Dark matter

@ requires large boost factors
@ Sommerfeld enhancement
@ dense, cold clumps
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Possible explanations for the PAMELA anomaly:

@ Dark matter

& requires large boost factors
@ Sommerfeld enhancement
@ dense, cold clumps

@ ‘“exclusive” coupling to leptons

Michael KachelrieB Dark Matter: Candidates and their properties



Possible explanations for the PAMELA anomaly:

@ Dark matter

& requires large boost factors
@ Sommerfeld enhancement
@ dense, cold clumps

@ “exclusive” coupling to leptons
@ Astrophysics: as primaries from

@ pulsars

o supernova remanants (SNR)
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Astrophysical sources for anti-matter: CR secondaries

@ standard secenario for Galactic CRs:
o sources are SNRs:
kinetic energy output of SNe:
10M, ejected with v~ 5x 108 cm/s every 30 yr
= Lsnkin ~ 3 % 10*2 erg/s
o explains local energy density of CR gcr~ 1 eV/cm? for a
escape time from disc Tesc~ 6 x 10° yr
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Astrophysical sources for anti-matter: CR secondaries

@ standard secenario for Galactic CRs:

@ sources are SNRs:
kinetic energy output of SNe:
10M, ejected with v~ 5x 10 cm/s every 30 yr
= Lsnkin ~ 3 % 10*2 erg/s

o explains local energy density of CR gcr~ 1 eV/cm? for a
escape time from disc Tesc~ 6 x 10° yr

s l.order Fermi shock acceleration = dN/dE O E~Y with
y=20-22

o diffusion with D(E) O Tesd E) ~ E~® and & ~ 0.6 explains
observed spectrum E—26

Michael KachelrieB Dark Matter: Candidates and their properties



Astrophysical sources for anti-matter: CR secondaries

@ standard secenario for Galactic CRs:

@ sources are SNRs:
kinetic energy output of SNe:
10M, ejected with v~ 5x 10 cm/s every 30 yr
= Lsnkin ~ 3 % 10*2 erg/s

@ explains local energy density of CR ecr~ 1 eV/cm3 for a
escape time from disc Tesc~ 6 x 10° yr

s l.order Fermi shock acceleration = dN/dE O E~Y with
y=20-22

o diffusion with D(E) 0 Tesd E) ~ E~® and & ~ 0.6 explains
observed spectrum E—26

@ electrons, positrons: Tjoss << Tescand Tjoss[ 1/E
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Astrophysical sources for anti-matter: CR secondaries

@ standard secenario for Galactic CRs:
@ sources are SNRs:
kinetic energy output of SNe:
10M, ejected with v~ 5x 10 cm/s every 30 yr
= Lsnkin ~ 3 % 10*2 erg/s
@ explains local energy density of CR ecr~ 1 eV/cm3 for a
escape time from disc Tesc~ 6 x 10° yr
s l.order Fermi shock acceleration = dN/dE O E~Y with
y=20-22
o diffusion with D(E) 0 Tesd E) ~ E~® and & ~ 0.6 explains
observed spectrum E—26
@ electrons, positrons: Tjoss << Tesc and Tjoss[J 1/E
o electrons dN_ /dE O E~Y-1

@ positrons dN, /dE O E~Y-%1
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Astrophysical sources for anti-matter: CR secondaries

@ standard secenario for Galactic CRs:
@ sources are SNRs:
kinetic energy output of SNe:
10M, ejected with v~ 5x 10 cm/s every 30 yr
= Lsnkin ~ 3 % 10*2 erg/s
@ explains local energy density of CR ecr~ 1 eV/cm3 for a
escape time from disc Tesc~ 6 x 10° yr
s l.order Fermi shock acceleration = dN/dE O E~Y with
y=20-22
o diffusion with D(E) 0 Tesd E) ~ E~® and & ~ 0.6 explains
observed spectrum E—26
electrons, positrons: Tjpss < Tesc and Tjoss 1 1/E
electrons dN_ /dE O E~V-1
positrons dN /dE O E-Y-5-1

ratio

‘UOOO

n
—+noe?°
n

= secondaries cannot expalain increasing positron fraction
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Astrophysical explanations |: Pulsars

@ Pulsar: (fast) rotating, stronly magnetized neutron star

Q_ Radiation

— beamed along

Axis of rotation magnetic axis

Magnetic field
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Astrophysical explanations |: Pulsars

@ Pulsar: (fast) rotating, stronly magnetized neutron star

@ suggested as source of CRs up-to 107° eV
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N Magnetic field

@ suggested as source of CRs up-to 107° eV
@ produce hard spectrum, dN/dE ~ E~1°
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Astrophysical explanations |: Pulsars

@ Pulsar: (fast) rotating, stronly magnetized neutron star

N Magnetic field

@ suggested as source of CRs up-to 107° eV
@ produce hard spectrum, dN/dE ~ E~1°

@ old pulsars (>10°yr) lost nebula = positrons can escape
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Astrophysical explanations |: Pulsars

@ Pulsar: (fast) rotating, stronly magnetized neutron star

N Magnetic field

@ suggested as source of CRs up-to 107° eV

@ produce hard spectrum, dN/dE ~ E~1°

@ old pulsars (>10°yr) lost nebula = positrons can escape

o few sources (Geminga, B06556+14) may dominate HE part
°

anisotropy or peaks possible
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Astrophysical explanations |: Pulsars
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Astrophysical explanations |: Pulsars

0.20

0.10

0.05

q)e"/(Qe" +(I)e')

0.02

O‘Ol ||||| | 1 ||||||| | 1
5 10 20 50 100 200

E, (GeV)

Michael KachelrieB Dark Matter: Candidates and their properties



Astrophysical explanations: Pulsars -

Geminga+B06556+14
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Astrophysical explanations: Pulsars -

Geminga+B06556+14
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Astrophysical explanations: Pulsars

@ if Geminga and B06556+14 dominate HE part:
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Astrophysical explanations: Pulsars

@ if Geminga and B06556+14 dominate HE part:
@ implies anisotropy

@ from Fick's law
ffa(E) = fDabDbn(E,x)
@ anisotropy

"~ Imax+tImin  Nnoz
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Astrophysical explanations: Pulsars
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Astrophysical explanations: old SNRs

-
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Astrophysical explanations Il: SNR

@ Ncr(E) > Ne(E) for energies E > my, in acceleration region
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Astrophysical explanations Il: SNR

® Ncr(E) > Ne(E) for energies E > my, in acceleration region

@ significant €© production even for small Typ in source
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Astrophysical explanations Il: SNR

® Ncr(E) > Ne(E) for energies E > my, in acceleration region
o significant € production even for small Tpp in source

@ secondary €* are accelerated, spectra becomes harder
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Astrophysical explanations Il: SNR

® Ncr(E) > Ne(E) for energies E > my, in acceleration region
o significant € production even for small Tpp in source

@ secondary €F are accelerated, spectra becomes harder

=- several important implications for CR physics

@ predicts also increase of p/p
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Astrophysical explanations Il: SNR
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Dashed Lines — Bohm like
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Neutralino annihilations

o CDM velocitities V2 ~ V2 ~ 107°
= p-wave annihilations strongly suppressed
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Neutralino annihilations

o CDM velocitities V2 ~ V2 ~ 107°
= p-wave annihilations strongly suppressed

o for Majorana particles: s-wave o [I mfz
=- annihilations into b,t quarks and W,Z,h,H,A
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Neutralino annihilations

o CDM velocitities V2 ~ V2 ~ 107°
= p-wave annihilations strongly suppressed

o for Majorana particles: s-wave o [I mfz
= annihilations into b,t quarks and W,Z h,H A

@ typical hadronization spectra with

W (E)/2~ @(E) ~ 3¢e(E) ~ 100n(E)
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Neutralino annihilations

o CDM velocitities V2 ~ V2 ~ 107°
= p-wave annihilations strongly suppressed

o for Majorana particles: s-wave o [I mfz
= annihilations into b,t quarks and W,Z h,H A

@ typical hadronization spectra with
W (E)/2~ @(E) ~ 3¢e(E) ~ 100n(E)
@ photon signal
. 2
AN (ov) [ PPr(s W)

lsm(E, @) = dE 22 Jios T
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Neutralino annihilations

o CDM velocitities V2 ~ V2 ~ 107°
= p-wave annihilations strongly suppressed

o for Majorana particles: s-wave o [I mfz
= annihilations into b,t quarks and W,Z h,H A

@ typical hadronization spectra with

W (E)/2~ @(E) ~ 3¢e(E) ~ 100n(E)

@ photon signal

dN; ( )]
lom(E, W) = == 2m§ /| ,

@ main uncertainty: “boost factor” = enhancement compared
to (oV) = 3 x 10726cm3/s and p = psm
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DM annihilations and PAMELA /ATIC

DM with M = 150 GeV that annihilates into W*W~
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standard branching ratios and mass:

@ overproduction of anti-protons
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DM annihilations and PAMELA /ATIC

DM with M =1 TeV that annihilates into p™u~
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7 I
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non-standard branching ratios: only leptons

@ best-fit to ATIC
@ boost factor 1000 needed

@ but minimal y-ray flux from Bremsstrahlung, not seen
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DM annihilations and PAMELA /ATIC

DM with M = 10 TeV that annihilates into W*W~

30% T 107! -
30% £ ATIC 10
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Positron energy in GeV Energy in GeV 7 kinetic energy in GeV

standard branching ratios:

@ hide p above Enax of Pamela

@ happy with M =10 TeV?
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Boost factor

@ particle physics:
s (ov) O01/v allowed by unitarity
@ requires s-channel resonances or bound states
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Boost factor

@ particle physics:
s (ov) 0 1/v allowed by unitarity
@ requires s-channel resonances or bound states
@ Sommerfeld enhancement in Coulomb limit

™ g

P e B
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Boost factor

@ particle physics:
s (ov) 0 1/v allowed by unitarity
@ requires s-channel resonances or bound states
@ Sommerfeld enhancement in Coulomb limit

X o

S= 1—exp(—-Tx)’ B

@ for Coulomb limit, add new light boson
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Boost factor

@ particle physics:
s (ov) 0 1/v allowed by unitarity
@ requires s-channel resonances or bound states
@ Sommerfeld enhancement in Coulomb limit

X o

S= 1—exp(—-Tx)’ B

@ for Coulomb limit, add new light boson
@ astrophysics:

@ clumpy substructure of DM halo
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Boost factor

@ particle physics:
s (ov) 0 1/v allowed by unitarity
@ requires s-channel resonances or bound states
@ Sommerfeld enhancement in Coulomb limit

2
TX
¢

D= 1—exp(—Tx)’ B

@ for Coulomb limit, add new light boson
@ astrophysics:
@ clumpy substructure of DM halo
® Dm in clumps may be colder

= both effects magnify each other
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@ Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less
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@ Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less

@ various candidates with these properties:
neutralino, gravitino, axion, axino, SHDM, ...
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@ Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less

@ various candidates with these properties:
neutralino, gravitino, axion, axino, SHDM, ...

@ only a combination of accelerator, direct and/or indirect
searches can identify the DM particle
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@ Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less

@ various candidates with these properties:
neutralino, gravitino, axion, axino, SHDM, ...

@ only a combination of accelerator, direct and/or indirect
searches can identify the DM particle

@ even in the best-case scenario (SUSY at LHC), confirmation
of LSP as DM by (in-) direct searches necessary

@ all sorts of data are coming!
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