Magnetic fields in and beyond clusters of galaxies

Klaus Dolag

Introduction

Borgani, Murante, Springel, Diaferio, Dolag et al. 2004 🔫

The cosmic web today (z = 0) is mainly accessible through simulations (warm, thin). Model predictions for \vec{B} are important for propagation of ultra high energetic cosmic rays (UHECRs).

Introduction

Clusters form at the nodes of the cosmic web and can be used as a tool to understand the physical state of diffuse baryons.

Introduction

Observations (\Rightarrow), Simulations (\Leftarrow) and the role of \vec{B} :

Galaxies (optical, radio):

- \Rightarrow Interaction with the ICM
- Galaxies in dense environment (stripping, distribution of metals)
- Magnetic field seeding (outflows)

ICM (X-ray, thermal bremsstrahlung):

- \Rightarrow Dynamical state of ICM
- **Turbulence**, viscosity, shocks

ICM (radio, synchrotron radiation): \Rightarrow Distribution of \vec{B} , CRs (diffuse + RM) \leftarrow Evolution and buildup of \vec{B} \leftarrow Acceleration and propagation of CRs

Faraday Rotation (RM)

High quality Rotation Measure maps across the lobes of the central radio source in 3C449 (left) and Hydra (right).

- Cool core versus cluster wide turbulence / fields structure ?
- Origin of cosmological magnetic fields ?
- Extension, structure and evolution of magnetic fields ?

Faraday Rotation (RM) $B(r) = B_0 \left(1 + (r/r_c)^2\right)^{-1.5\mu}, \ |B_k|^2 \propto k^{-n}$

 $\Rightarrow B_0 = 5\mu \mathbf{G}$ n = 2 $\mu = 0.5$

Faraday Rotation (RM)

17/06/2009 – р. 3

Radio Halos (synchrotron)

Cluster wide **diffuse synchrotron emission** connected to **merger** events, **periferal** emission directly connected to **shocks**.

- Radio halo: Turbulence, shocks, secondary ?
- **Relics:** Primary from shocks or compressed radio plasma?

Simulation Network

MHD with SPH

Why SPH ?

- Perfect self gravity ⇒ excellent to capture structure formation
- Lagrangian \Rightarrow excellent advection
- Highly adaptive \Rightarrow large dynamical range
- Low dissipation \Rightarrow no numerical mixing
- Efficient \Rightarrow large simulations
- Simple \Rightarrow allows to include various physical processes
- Ideal MHD: + Induction equation + Lorenz force
 ⇒ Many details to obtain stable and reliable implementation

MHD with SPH Code verification in 1D shock tube tests (Ryu & Johns 1995)

(Dolag et al. 1999, 2001, 2005) ... Code verification in various 2D tests

Magnetic field in the vortex (Orszag & Tang 1979) and the rotor (Balsare & Spicer 1999) test problem. Results for Anthena (top left) and SPH-MHD runs (Dolag & Stasyszyn 2008).

Origin

- Primordial
- Battery
- Dynamo (Turbulence)
- Stars
- Supernova
- Galactic Winds
- AGN, Jets
- Shocks

Rees 1994

- + further amplification by structure formation
- dissipation ?

First cluster MHD simulations (Dolag et al. 1999/2002)

- Simulations reproduce the radial shape of the RM signal \Rightarrow Magnetic power spectrum of clusters $n \approx 2.3 3.1$
- Magnetic field configuration driven by cluster dynamics
 ⇒ Initial magnetic field structure not important
- Initial fields of $\approx (0.2 1) \times 10^{-11}$ G are sufficient \Rightarrow in range for many models for magnetic seed fields

"Zoomed" cluster simulations (Dolag & Stasyszyn 2008)

⇒ Several times confirmed since early work
 ⇒ Generic feature from structure formation

But: Central part steepens strongly with resolution. \Rightarrow Resolution is important

Attention: Also depends strongly on dissipation \Rightarrow Numerical dissipation is important

Observed and simulated RM maps up to highest resolution simulation: MHD, 20 Million particles within R_{vir} , $m_{DM} = 10^7 M_{\odot}/h$, $\epsilon_{Grav} = 1$ kpc/h (work in progress).

Structure function derived from observed and simulated RM maps up to highest resolution simulation: Indication for need of magnetic dissiation (work in progress).

Origin of Magnetic Fields

Seeding from galactic outflows (Donnert, Dolag et al. 2008)

Origin of Magnetic Fields

Different wind parameters (Donnert, Dolag et al. 2008)

Trajectories of Cosmic Rays diffusing through the cluster core (Rordorf, Grasso & Dolag 2004)

Full sky deflection signal for 4×10^{19} eV Cosmic Rays without losses, using a sphere of 110 Mpc radius and $B_0 = 10^{-5} \mu$ G (Dolag, Grasso, Springel & Tkachev 2004)

Full sky deflection signal for 4×10^{19} eV Cosmic Rays without losses, using a sphere of 110 Mpc radius $B_0 = 0.2 \times 10^{-5} \mu$ G (Dolag, Grasso, Springel & Tkachev 2005)

Full sky deflection signal for 4×10^{19} eV Cosmic Rays without losses, using a sphere of 110 Mpc radius from galactic outflows (Just for you !)

Sky coverage of deflection signal for 4×10^{19} eV Cosmic Rays without losses, using a sphere of 110 Mpc radius for all models (Also just for you !)

Sky maps of UHECRs emitted uniformly from M87 with 1000 (upper right), 100, 10 and 1 EeV (lower left) (Dolag, Kachelriess, Semikoz 2008), see talk by Dimitri Semikoz.

Investigating magnetic fields

Rotation Measure:

$$\mathrm{RM} \propto \int n_{\mathrm{e}} B_{\parallel} \,\mathrm{d}l$$

⇒ additional proportionality to density
⇒ not very good for low density regions
Also background/foreground subtraction not trivial for next generation of instruments like LOFAR, SKA or EVLA !
Other methods:

- Propagation of UHECRs (this talk)
- Blazar halos (Dolag, Kachelriess, Ostapchenko & Tomas 2009) (see talk by Dimitri Semikoz)
- Dynamics in structure formation !

Investigating magnetic fields

Galaxy formation studies with RAMSES:

Teyssier 2009

Investigating magnetic fields

Cosmological simulation with Gadget:

 $B_{ini} = 10^{-5} \mu$ G, work in progress, (Stasyszyn & Dolag 2009)

Conclusions

- Predicted magnetic field structure reflects formation of galaxy clusters
- Galactic outflows are valid sources for cluster fields
- Predicted (complex) field structure in galaxy clusters is compatible with RM measures
- Filaments might host remaining signatures of magnetic field origin
- UHECR propagation very promising

 ⇒ Pointing back to sources might be possible
 ⇒ Complications from propagation in nearby clusters
 ⇒ non defection of UHECRs measure small *B*-fields
- Blazar halos allow to probe even lower \vec{B} -fields \Rightarrow see talk by Dimitri Semikoz

17/06/2009 – р. 13

17/06/2009 – p. 14

Turbulence in Clusters

Old viscosity scheme

New viscosity scheme

- Instabilities less damped (e.g. Kelvin-Helmholtz).
- \Rightarrow Inset of turbulence
- \Rightarrow Enlarged energy-fraction in gas velocity

Dolag, Vazza, Brunetti, Tormen & Springel 2004

Turbulence in Clusters

Standard (left) and reduced (right) Viscosity, Compton-y map