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Abstract: I give a concise introduction into high energy cosmic ray physics,
including also few related aspects of high energy gamma-ray and neutrino as-
trophysics. The main emphasis is placed on astrophysical questions, and the
level of the presentation is kept basic.
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1 Introduction

1.1 Preludes

What do we want to discuss?

The term cosmic rays may be defined either as all radiation consisting of relativistic particles
impinging on the Earth’s atmosphere from outer space or, more narrowly, including only
charged particles. We shall follow generally the latter definition, but discuss also high energy
gamma rays and neutrinos, since (i) they can be created as secondaries of high energy cosmic
rays and (ii) they may help us to learn more about the charged component and their sources
(“multi-messenger approach”). The qualification high energy (or relativistic) means that we
do not consider cosmic rays below a few GeV that may be produced or are influenced by the
Sun and its wind. The cosmic ray spectrum, a nearly featureless power-law extending over
eleven decades in energy up to a few × 1020 eV, is shown in Fig. 1.1.
We cover mainly astrophysical aspects (What are the sources? How do they accelerate

cosmic rays? What happens during the journey of cosmic rays to the Earth?), but discuss
also briefly their interactions in the atmosphere and the experimental methods used to detect
them. In the final chapter we review connections between cosmic ray physics and searches
for physics beyond the standard model.
The level of the presentation is as basic as possible, preferring “back on the envelope

calculations”, and the material covered corresponds roughly to 20 hours of lectures.

Where are we?

Our standard length unit is the parsec, the distance from the Earth to a star that has a
parallax1 of one arcsecond. Since one arcsecond is 1/(360 × 60 × 60) = 1/206265 fraction of
2π, a parsec corresponds to 206, 265AU = 3.086× 1018 cm = 3.26 lyr = 1 pc.
A schematic picture of our home galaxy, the Milky Way, is shown in Fig. 1.2. Most stars

are concentrated in the galactic disc of height h ≈ 300pc in the form of spiral arms. The disc
is filled with warm atomic gas that consists to 90% of H and to 10% of He and has an average
density n ∼ 1/cm3. It contains also an ordered magnetic field with strength B ∼ 3µG. The
energy when the Larmor radius

RL =
cp

ZeB
≈ 100 pc

3µG

B

E

Z × 1018eV
(1.1)

of a particle with charge Ze and momentum p equals the height of the Galactic disc marks
approximately the transition between diffusive and rectilinear propagation of cosmic rays. We
can hope to perform “charged-particle astronomy” only for energies well above this transition.

1Relatively nearby stars are seen at slightly different positions on the celestial sphere (i.e. the background of
stars that are “infinitely” far away) as the Earth moves around the Sun. Half of this angular difference is
called the parallax angle or simply the parallax p. Thus p ≈ tan p = AU/d, where 1 AU denotes the mean
distance between the Earth and the Sun.
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Figure 1.1: The cosmic ray spectrum I(E) as function of kinetic energy E, compiled using
results from the LEAP, proton, Akeno, and HiRes experiments [1]. The energy
region influenced by the Sun is marked yellow and an 1/E2.7 power-law is also
shown.

This is one of the reasons why we are especially interested in cosmic rays of the highest
energies.

A halo extends with n ∼ 0.01/cm3 and a turbulent magnetic field probably up to distances
∼ (10 − 15) kpc above the disc. The average strength of this turbulent magnetic field is
not well restricted and may reach up to B <∼ 10µG. The whole visible part of the galaxy
is embedded in a much larger dark matter halo, which comprises 90% of the total mass of
the Milky Way. The center of the Milky Way contains, as probably most other galaxies, a
supermassive black hole (SMBH) with mass ∼ 106M⊙.

The Milky Way is a member of the Local Group, a rather small cluster of galaxies with the
Andromeda galaxy as the other prominent member. Its diameter is ∼ 2Mpc. The distance
to the nearest galaxy cluster, the Virgo cluster, is 18Mpc, i.e. approximately equal to the
mean free path of cosmic rays with the highest observed energies, E ∼ 1020 eV.

A naive estimate for the size R of the observable Universe can be obtained from the observed
recession velocity v = H0d of galaxies at the distance d. Using for the Hubble parameter
H0 = 70 km s−1Mpc−1, it follows R = c/H0 ∼ 4300Mpc. For comparison, the cosmic ray
horizon reaches Gpc scale at E = 1019 eV.

We shall use mostly natural units with ~ = c = kB = 1, but keep often explicitly the speed
of light c in formulas within a more astrophysical context.
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Figure 1.2: Schematic picture of the Milky Way with a gas and dust disc, an extended halo
of gas and cosmic rays, surrounded by globular clusters. Everything is immersed
in a halo of dark matter.

1.2 Historical remarks

1912: Victor Hess discovered on a balloon flight that ionizing radiation increases with altitude.
As he wrote “The results of the present observations are most easily explained by the
assumption that radiation with very high penetrating power enters the atmosphere from
above; even in its lower layers, this radiation produces part of the ionization observed
in closed vessels. . . Since there was neither a decrease at night or during solar eclipse,
the Sun can hardly be considered as the source. . . ” [2].

1929: Skobelzyn observed first cosmic rays with a cloud chamber. Bothe and Kolhörster
showed that the tracks are curved by a magnetic field. This proved that the observed
cosmic rays on ground are charged particles—now we know that these are mainly muons
produced as secondaries in cosmic ray interactions in the higher atmosphere.

28/29: Clay observed the “latitude effect”: The cosmic ray intensity depends on the (geomag-
netic) latitude. Bothe and Kolhörster provided first the correct interpretation of this
effect as an anisotropy induced by the magnetic field of the Earth, providing in turn
evidence that (the primary) cosmic rays are charged.

1932: Anderson discovered the positron in cosmic rays. This was just the start for a series
of new particles detected in cosmic rays: The muon 1936 again by Andersen, charged
pions in 1947, and strange particles 1947–50.

1932: Raged debate in the US about sources and primary type of the new radiation. Millikan
and Compton favored gamma rays and coined therefore the name ”cosmic rays.”

1934: The sign of the east-west asymmetry showed that the cosmic ray primaries are positively
charged particles.

34/38: Rossi and independently Auger discovered through coincidence measurements ”exten-
sive air showers,” showers of secondary particles caused by the collision of high energy
cosmic rays with air nuclei.
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1934: Bethe and Heitler developed the electromagnetic cascade theory; the observed particles
on ground are secondaries.

1947: Zatsepin discovered the scaling of hadronic interactions studying the evolution of ex-
tensive air showers.

1949: Fermi proposed that cosmic rays are accelerated by bouncing off moving magnetic clouds
in the Galaxy.

52-54: The first human accelerators reaching p >∼ 1 GeV were built. As a consequence, cosmic
ray and high energy physics started to decouple, and cosmic ray physicists focused with
time more on astrophysical questions.

1954: First measurements of high energy cosmic rays via sampling of extensive air showers
done at the Harvard College Observatory.

1972: The launch of the SAS-2 satellite marked the start of high energy gamma astronomy.

1976: Start of the first prototype of a large-scale underwater detector for high energy neutrino
astronomy, DUMAND in Hawaii.

1998: The Superkamiokande experiment found the first convincing evidence that neutrinos
are massive observing flavor oscillations of atmospheric neutrinos.

2007: Completion of the Pierre Auger Observatory in Argentina, the first combination of
a ground array and fluorescence telescopes in the same experiment. With its size of
A ≈ 3000 km2, it is a factor 30 larger than previous experiments.

2013: Completion of the IceCube neutrino telescope at the South Pole. Announcement of two
events that might the first high energy neutrinos detected from an astrophysical source.

8



2 Basic notations of particle physics

2.1 Relativistic kinematic and cross sections

2.1.1 Kinematics

The description of scattering reactions is simplified, if Lorentz invariant quantities are used.
Consider for instance the squared center-of-mass energy s = (pa + pb)

2 = (pc + pd)
2 with

four-momenta pi = (Ei,pi) in the 2 → 2 scattering a+ b→ c+ d,

s = (pa + pb)
2 = m2

a +m2
b + 2(EaEb − papb) = m2

a +m2
b + 2EaEb(1− βaβb cosϑ) , (2.1)

where βi = vi = pi/Ei. We are interested often in the threshold energy s
1/2
min of a certain

process. An important example for cosmic ray physics is the reaction p + γ → p + π0. If in
this process the proton is at rest, then

s = m2
p + 2Eγmp ≥ (mp +mπ)

2 = m2
p + 2mpmπ +m2

π (2.2)

or

Eγ ≥ mπ +
m2

π

2mp
≈ 145 MeV . (2.3)

Thus the photo-production of pions on protons at rest is only possible for Eγ ≥ 145 MeV.
Photons with lower energy do not interact via this reaction, while higher energetic ones do.
We will consider this process later again, but then as the scattering of ultrahigh energy protons
on low energy photons, that is an important example for the transition from a transparent
Universe at low energies to an opaque one at high energies.

Ex.: Calculate the minimal energy of a proton able to produce anti-protons scattering on another

proton at rest.

Because of baryon number conservation, anti-proton production is first possible in pp → pppp̄ with

s = 2m2

p
+ 2Epmp ≥ 16m2

p
or Ep ≥ 7mp. Furthermore, the cross section of this reaction is small

close to the threshold. Hence the anti-proton flux at small energies should be strongly suppressed, if

anti-protons are only produced as secondaries in cosmic ray interactions.

The second important quantity characterizing a scattering process is the four-momentum
transfer t = (pa − pc)

2 = (pb − pd)
2. As an example, we consider electron-proton scattering

e− + p→ e− + p. Then

t = (pe − p′e)
2 = 2m2

e − 2EeE
′
e(1− βeβ

′
e cosϑ) . (2.4)

For high energies, βe, β
′
e → 1, and

t ≈ −2EeE
′
e(1− cosϑ) = −4EeE

′
e sin

2 ϑ/2 . (2.5)

Because of four-momentum conservation, the variable t corresponds to the squared momentum
Q of the exchanged virtual photon, t = Q2 = (pe − p′e)

2 < 0. Thus a virtual particle does

9



2 Basic notations of particle physics

not fulfill the relativistic energy-momentum relation. The energy-time uncertainty relation
∆E∆t >∼ 1 allows such a violation, if the virtual particle is exchanged only during a short
enough time. Note also that the angular dependence of Rutherford scattering, dσ/dΩ ∝
1/ sin4 ϑ/2 is obtained if dσ/dΩ ∝ 1/t2.

In the reaction e− + p → e− + p the scattering happens most likely at small angles ϑ and
small four-momentum transfer t. (Note that this does not imply small energy transfer in the
lab system.) In a collider experiment, this kinematical region is difficult to observe because
of the beam pipe. Moreover, the search for physics beyond the standard model as one of
the most important problems in high energy physics is often performed as search for new,
heavy particles. The production of particles with mass M requires typically |t| >∼M2 and
is therefore rare. On the other hand, for the description of cosmic ray interactions in the
atmosphere we are interested mainly in the most common interactions. This is one of the
reasons why high energy particle physics with accelerators and with cosmic rays are focusing
partly on different aspects of high energy interactions.

2.1.2 Cross section, interaction depth, and slant depth

Consider a cylinder of length l and area A filled with N scattering centers each with cross
section σ. Their number density n is n = N/(Al). Let us assume first that Nσ ≪ A. Then
the fraction of incoming particles absorbed in the cylinder is simply

Nσ

A
= nlσ ≡ τ (2.6)

and defines the optical or interaction depth τ ≡ nlσ. Our assumption Nσ ≪ A corresponds
to τ ≪ 1, an “(optical) thin” or transparent source in contrast to an “(optical) thick” source
with τ ≫ 1. In general, we have to calculate how much radiation is absorbed passing the
infinitesimal distance dl,

dI = −Idτ = −Inσdl . (2.7)

Integrating gives

I = I0 exp(−τ) or I(l) = I0 exp

(

−
∫ l

0
dl nσ

)

. (2.8)

In cosmic ray physics, one introduces often the interaction length λi = m/σi measured in
g/cm2 and replaces the path length l by the slant depth X,

X(l) =

∫ l

0
dl ρ(l′) or X(h) =

∫ ∞

h
dh ρ(h′) . (2.9)

Hence, X measures the weight per area of the material crossed. The version on the RHS of
Eq. (2.9) is appropriate in the case of the Earth atmosphere, where X = 0 corresponds to
h → ∞, while X measured from the zenith is numerically equal to 1030 g/cm2 at sea level.
The advantage of X is obviously to hide the integration in X,

τ =

∫ X

0

dX ′

λ
=
X

λ
. (2.10)
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2.2 Particles and interactions

particle main decay mode life-time t1/2 range ct1/2

γ – ∞ ∞
e− – ∞ ∞
p – ∞ ∞
n n→ p+ e− + ν̄e 886s 2.65× 1013 cm
µ− µ− → e− + ν̄e + νµ t1/2 ∼ 2.20× 10−6s 659 m

π− π− → µ− + ν̄µ t1/2 ∼ 2.60× 10−8 s 780 cm

π0 π0 → 2γ t1/2 ∼ 8.4× 10−17 s 25.1 nm

ν – ∞ ∞

Table 2.1: The known particles around 1950 together with their main decay mode, their
life-time and range.

2.2 Particles and interactions

2.2.1 Our particle inventory

The particles known around 1950 are shown in Table 2.1 together with their main decay mode
and their life-time t1/2 and range ct1/2. Some immediate consequences of the life-times given
are:

• Neutrons with Γ = E/mn >∼ 109 or E >∼ 1018 eV are stable on galactic scales (∼ 10 kpc).
A source of neutrons with E >∼ 1018 eV in our galaxy would provide neutral, strong
interacting primaries, while at lower energies it would be visible as a ν̄e source from
neutron decay on the flight.

• In the atmosphere, only low energy charged pions will decay and produce neutrinos,
whilst at high energies charged pions mainly scatter. Similarly, most high energy muons
do not decay within the extension of the atmosphere, ∼ 15 km. Thus the neutrino flux
produced by cosmic rays in the atmosphere should be a steeper function of energy
than the cosmic ray flux. This opens the possibility to perform high energy neutrino
astronomy at energies E ≫ TeV, for which the background of atmospheric neutrinos
becomes negligible.

• The long muon range can be used to enlarge the effective volume of a neutrino detector,
observing also muons produced outside the proper detector volume.

2.2.2 Comparison of electromagnetic, weak and strong interactions

The energy-time uncertainty relation ∆E∆t >∼ 1 restricts the emission of a heavy particle
with mass M by a lighter one to times ∆t <∼ 1/M . Thus the range ∆t of an interaction over
which a massive particle can be exchanged should be limited by 1/M .
This idea leads to the generalization of the Coulomb potential to the Yukawa potential,

V (r) = g2
exp(−Mr)

r
→ g2

r
for M → 0 . (2.11)

In non-relativistic quantum mechanics, the connection between the cross section σ and the
potential V is given via the scattering amplitude f(ϑ),

σ =

∫

dΩ
dσ

dΩ
=

∫

dΩ |f(ϑ)|2 . (2.12)
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2 Basic notations of particle physics

In the so-called Born approximation, this scattering amplitude f(ϑ) is the Fourier transform
of the potential,

f(q) = − m

2q~2

∫

d3q exp(−iqr)V (r) , (2.13)

where q = p− p′ or q = 2p sinϑ/2.
Performing the integral for the Yukawa potential one obtains

dσ

dΩ
∝ g4

(q2 +M2)2
. (2.14)

This result explains the difference in strength between electromagnetic and weak interactions,
although their coupling constants have roughly the same size, g ≈ e. Photons are massless
and thus

dσ

dΩ
∝ e4

q4
, (2.15)

while the bosons exchanged in weak interactions are heavy. If s ≪ M2, then also |t| ≪ M2

and q2 ≪M2, and thus the exchange of massive gauge bosons results in

dσ

dΩ
∝ g4

M4
∝ G2

F , with GF ≡
√
2g2

8M2
W

. (2.16)

The masses of the W and Z bosons that intermediate weak interactions have been measured
at accelerators as MZ = 91.2GeV and MW = 80.4GeV.
The total cross section σ is obtained by integrating over dΩ ∝ d(cosϑ) ∝ dt. We expect

from dimensional analysis that σ ∼ G2
F (energy)

2 and often the result can be estimated. For
instance, for the scattering of a high-energy neutrino on a nucleon at rest the integration gives
an additional factor s ≈ 2mNEν , and the cross section is numerically for s≪ m2

W

σνN ∼ G2
F s ≈ 10−37cm2

(
Eν

100 GeV

)

. (2.17)

Finally, we consider strong interactions. The largest contribution to the proton-proton
cross section should result from the exchange of the lightest, strongly interacting particle, the
pion. Integrating gives

σ ∼ g4π
(4π)2

∫ 0

−s

dt

(t−m2
π)

2
= α2

π

s

m2
π(s−m2

π)
→ α2

π

m2
π

≈ 20α2
s mbarn (2.18)

compared to the measured value σ ≈ 50mbarn. Hence the proton-pion coupling απ = g2π/(4π)
is of order one and perturbation theory for strong interactions seems to make no sense.
However, coupling constants are—despite the name—in generally not constant but depend
on the scale Q2 probed. In the case of strong interactions, the coupling becomes smaller
for large Q2, a phenomenon called “asymptotic freedom.” As a consequence, perturbation
theory can be used in QCD, however only in a restricted kinematical range, Q2 >∼ few×GeV2.
Unfortunately, for cosmic ray interactions most important is the regime of small momentum-
transfer that is not (yet) accessible to predictions from first principles and requires therefore
the use of phenomenological models.
We have argued that the exchange of the lightest (relevant) particle dominates the total

cross section. But what happens, when an infinite number of particles can be transmitted,
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2.3 Exercises

hadron valence quarks hadron valence quarks

p uud Λ uds
n udd K+ us̄
π+ ud̄ K0 ds̄

π0 (uū+ dd̄)/
√
2

Table 2.2: Valence quark content of hadrons

with increasing multiplicity for increasing mass? This is the case of hadrons for which a zoo
of resonances exists, cf. the Chew-Frautschi plot in Fig. 2.1. For instance, the vector mesons
A2, ρ3, . . . can be viewed as J = 2, 3, . . . excitations of the ρ meson with spin J = 1. After
summing up the infinite number of exchanged hadrons per trajectory, one can replace them
by a single “effective particle” (called “reggeons”). The high energy behavior of hadronic
cross sections is modeled as an exchange of these reggeons, with their properties read off from
Chew-Frautschi plots as in Fig. 2.1.

Quark model and hadronization For q >∼ 1/mp, the scattering amplitude for e.g. electron-
proton scattering should reflect the proton size 10−13 cm. However, a form factor typical for
scattering on point-like particles was found experimentally. This led to the parton model:
Protons (as all hadrons) consist of point-like constituents, quarks and gluons. The valence
quark content of some hadrons is given in Tab. 2.2. At high momentum transfer, a probe
scatters on partons independently (“spectator model”). Hence, the parton model predicts
e.g. for the ratio of pion-proton and proton-proton cross sections

σπp
σpp

=
2

3
, (2.19)

in good agreement with experiment.
Which kind of hadrons are mainly produced in the process e+e− → qq̄ → hadrons? Mainly

mesons (qq̄) with only ∼ 5% of nucleons (qqq), because it is easier to combine two quarks into
a colorless, light meson than three quarks into a colorless, rather heavy baryon. Out of the
mesons, 90% are pions while the remaining ones are mainly kaons. While 1/3 of pions are
neutral ones and produce photons, the other 2/3 are charged and produce neutrinos. Hence
photon and neutrino fluxes produced by hadronization are closely connected.

2.3 Exercises

1. Derive the connection between dσ/dΩ and dσ/dt and the integration limits in t for a
general 2 → 2 scattering process.

2. Find the minimal energy Eth of a proton scattering on a photon with the typical energy
of the cosmic microwave background (T ≈ 2.7K) for the process p+ γ → p+π0. Guess
the cross section of this reaction, check it against the curve at http://pdg.lbl.gov,
and estimate the mean free path of a proton with E ≫ Eth.

3. Consider the 2-particle decay π0 → 2γ. What are the minimal and maximal photon
energies, if the pion moves with velocity v? What is the shape of the photon spectrum
dN/dE?
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2 Basic notations of particle physics
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Figure 2.1: Chew-Frautschi plot, i.e. the spin against the squared mass, for the trajectories
of the ω, ρ, f2, and a2 mesons, from Ref. [3].
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3 Galactic cosmic rays

3.1 Basic observations

3.1.1 Cosmic ray intensity and composition

The integral intensity I(> E) of cosmic rays is defined as the number of particles with
energy > E crossing an unit area per unit time and unit solid angle. Thus its units are
[I] = cm−2s−1sr−1. The (differential) intensity I(E) and the integral intensity are connected
by

I(> E) =

∫ ∞

E
dE′ I(E′) . (3.1)

The particle flux F from one hemisphere through a planar detector is

F(E) =

∫

dΩ I(E) cosϑ = I(E)

∫ 2π

0
dφ

∫ π/2

0
dϑ sinϑ cosϑ = πI(E)

∫ π/2

0
dϑ sin 2ϑ = πI(E) ,

(3.2)
where we have assumed that the intensity is isotropic. The (differential) number density of
cosmic rays with velocity v is

n(E) =
4π

v
I(E) . (3.3)
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Figure 3.1: Cosmic rays intensity for sev-
eral elements, from Ref. [4].

More generally, the intensity I may depend both
on the position x of the detector and on its ori-
entation φ, ϑ. We can connect I to the phase
space distribution f(x,p) of cosmic rays by com-
paring dN = f(x,p)d3xd3p with the definition
I = dN/(dA dt dΩ dE),

I(x, p, ϑ, φ) = vp2
dp

dE
f(x,p) = p2f(x,p) . (3.4)

Figure 3.1 shows I(E) separately for some im-
portant elements. First, one recognizes that the
main component of cosmic rays are protons, with
additionally around 10% of helium and an even
smaller admixture of heavier elements.
The relative abundance of elements measured

in cosmic rays (dark, filled circles) is compared
to the one in solar system (blue, open circles) in
Fig. 3.2. Both curves show the odd even effect,
i.e. the tighter bound nuclei with an even numbers
of protons and neutrons are more abundant. The
main difference of the two curves is that the Li-
Be-B group (Z = 3 − 5) and the Sc-Ti-V-Cr-Mn
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3 Galactic cosmic rays

(Z = 21− 25) group are much more abundant in
cosmic rays than in the solar system. We explain
this later as a propagation effect: The elements from the Li-Be-B group are produced as
secondaries in cosmic rays interactions in the Galaxy.

Figure 3.2: Abundance of elements mea-
sured in cosmic rays compared
to the solar system abun-
dance, from Ref. [5].

Second, the spectra shown in Fig. 3.1 are above
a few GeV power-laws, practically without any
spectral features. The total cosmic ray spectrum
is

I(E) ∼ 1.8E−α particles

cm2 s st GeV
(3.5)

in the energy range from a few GeV to 100 TeV
with α ≈ 2.7. Around 1015 eV (the “knee”), the
slope steepens from α ≈ 2.7 to α ≈ 3.0. The spec-
trum above 1018 eV will be discussed in Chap-
ter 6.
The power-law form of the cosmic ray spec-

trum indicates that they are produced via non-
thermal processes, in contrast to all other radi-
ation sources like e.g. stars or (super-) novae
known until the 1950’s.
Third, small differences in the exponent α of

the power-law for different elements are visible:
The relative contribution of heavy elements increases with energy.
The kinetic energy density of cosmic rays is

ρCR =

∫

dE Ekn(E) = 4π

∫

dE
Ek

v
I(E) . (3.6)

Extrapolated outside the reach of the solar wind, it is

ρCR ≈ 0.8 eV/cm3 (3.7)

compared to the average energy density ρb ≈ 100 eV/cm3 of baryons in the Universe, of star
light ρlight ≈ 5 eV/cm3 in the disc, and in magnetic fields ρmag = 0.5 eV/cm3 for B = 6µG.
If the local value of ρCR would be representative for the Universe, 1% of the energy of all
baryons would be in the form of relativistic particles. This is rather unlikely and suggests
that cosmic rays are accumulated in the Galaxy.

Solar modulations When cosmic rays enter our Solar System, they must overcome the
outward-flowing solar wind. This wind impedes and slows the incoming cosmic rays, reducing
their energy and preventing the lowest energy ones from reaching the Earth. This effect is
known as solar modulation. The Sun has an 11-year activity cycle which is reflected in the
ability of the solar wind to modulate cosmic rays. As a result, the cosmic ray intensity at
Earth is anti-correlated with the level of solar activity, i.e., when solar activity is high and
there are lots of sunspots, the cosmic ray intensity at Earth is low, and vice versa.
Since the number of cosmic rays increases with decreasing energy, most cosmic rays are not

visible to us. This suppression effect at energies below a few GeV is clearly visible in Fig. 3.3,
where the intensity of oxygen is shown for three different periods.
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3.1 Basic observations

Figure 3.3: Oxygen cosmic ray intensity during three different periods: Sept. 1997 (squares),
Feb 2000 (circles), Jan. 2001 (diamonds), from Ref. [6].

3.1.2 Anisotropies and deflections in regular magnetic fields
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Figure 3.4: Experimental limits on the
anisotropy of cosmic rays,
from Ref. [7].

Experimental results on dipole anisotropies
Above 100GeV, when the influence of the Sun
becomes negligible, the cosmic ray flux is consis-
tent with isotropy. At higher energies, when cos-
mic rays drift slowly out the galaxy, one expects
to detect first anisotropies on large angular scales.
Such anisotropies can be characterized in first ap-
proximation by a pure dipole, I = I0 + I1 cosϑ,

δ =
Imax − Imin

Imax + Imin
=
I1
I0
. (3.8)

Most experimental detections or limits for δ
at energies E <∼ 1015 eV are in the range
10−4 <∼ δ <∼ 10−3, cf. Fig. 3.4. Many experimen-
tal searches are using that the experimental ex-
posure of a cosmic ray experiment taking contin-
uously data is uniform in right ascension1. Then
one performs an one-dimensional harmonic anal-
ysis: One sums

ak =
2

n

n∑

a=1

cos(kφi) and bk =
2

n

n∑

a=1

sin(kφi) (3.9)

1In the equatorial coordinate system one projects the usual geographical latitude and longitude on the celestial
sphere. The right ascension measures the angle east from the vernal equinox point to an object projected
on the celestial equator.
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3 Galactic cosmic rays

over the n data points. The amplitude rk and and phase φk of the k.th harmonic are given
by

rk =
√

a2k + b2k and φk = arctan(bk/ak) (3.10)

with the chance probability
pch = exp

(
−nr2k/4

)
(3.11)

to observe a larger value of rk in an isotropic distribution.

Generalized Liouville theorem We measure cosmic rays after they traversed the magnetic
field of the Earth and of the Milky Way, and possibly extragalactic magnetic fields. It is
therefore important to separate between genuine anisotropies and those eventually induced
by the cosmic ray propagation in magnetic fields.
We want to show now that the intensity I is constant along any possible cosmic ray tra-

jectory. Let us consider the evolution of the phase space distribution f(x,p) from the time t
to t+ dt. The number dN of particles around the point x′,p′ at t′ = t+ dt is

f(x′,p′)d3x′d3p′ . (3.12)

This number remains constant, if the Jacobian of the transformation x,p → x′,p′ is one,

J =
∂(x′,p′)

∂(x,p)
= 1 . (3.13)

It is sufficient to show that the time-derivative dJ/dt = 0, i.e. that in the expansion of J the
first-order terms dt vanish. From x′ = x+vdt and p′ = p+Fdt, the diagonal of J follows as

1, 1, 1, 1 +
∂Fx

∂px
dt, 1 +

∂Fy

∂py
dt, 1 +

∂Fz

∂pz
dt , (3.14)

while the off-diagonal elements are of order O(dt). The expansion of dJ to first-order in dt
is thus

J = 1 +

(
∂Fx

∂px
+
∂Fy

∂py
+
∂Fz

∂pz

)

dt+ . . . (3.15)

Thus the phase space distribution f(x,p) is constant along a trajectory, if ∇pF = 0, which
is fulfilled in an electromagnetic field. Moreover, p = |p| is constant in a pure magnetic field
and hence also p2f(x, p). With Eq. (3.4) it follows that also the intensity I is constant along
any possible cosmic ray trajectory.
Finally, we remark that the Liouville theorem does not imply that magnetic fields can

not enhance existing anisotropies. In fact, they can act as magnetic lenses, enhancing or
decreasing the flux received from point sources similar as gravitational lenses.

Latitude and east-west effect An isotropic cosmic ray flux remains isotropic propagating
through a magnetic field as long as the phase space is simply connected. In other words, a
necessary condition is that all trajectories starting from the point considered on Earth (after
reversing the charge of the particle) reach r = ∞. At low enough energies, this condition
may be violated, because trajectories can be deflected back to the Earth or stay within a
finite distance r, cf. Fig. 3.5. In this case, the magnetic field does induce anisotropies in the
observed flux.
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3.1 Basic observations

Figure 3.5: A sketch of the east-west effect [8].

Consider a particle of charge Ze with orbit in the equatorial plane of a dipole with magnetic
moment M (as a good model for the geomagnetic field). Equating the centrifugal and the
Lorentz force gives

Ze|v ×B| = mv2

r
(3.16)

with B = µ0/(4π)M/r3. The radius of the orbit is

r =

(
µ0
4π

ZeM

p

)1/2

. (3.17)

Setting r = R⊕ and using M = 8× 1022Am as magnetic moment of the Earth, it follows

p

Z
=
µ0
4π

eM

R2
⊕

≈ 59.6 GeV . (3.18)

This is the minimal momentum of a proton able to reach the Earth from the east, if its orbit
is exactly in the (magnetic) equatorial plane. The sign of this east-west asymmetry was used
by Rossi and others to show that the cosmic ray primaries are positively charged. Towards
the poles, the influence of the dipole field becomes weaker (v×B), and the cutoff momentum
becomes thus smaller. Thus the integrated cosmic ray intensity increases with latitude for
charged particles (“latitude effect”).

Compton-Getting effect Compton and Getting first discussed that a relative motion of
observer and cosmic ray sources results in an anisotropic cosmic ray flux, using this effect as
signature for the Galactic origin of cosmic rays with E >∼ 0.1 GeV.
Lorentz invariance2 requires that the phase space distribution function f in the frame of

the observer, f ′(r′,p′), equals the one in the frame in which the cosmic ray flux is isotropic,

2The differentials d3x and d3p transform opposite under Lorentz transformations, while the particle number
dN is obviously a scalar.
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3 Galactic cosmic rays

f(r,p). Expanding in the small parameter p− p′ ≈ −pu, it follows

f ′(p′) = f(p′)− pu · ∂f(p
′)

∂p′
+O(u2) = f(p′)

(

1− u · p
p

d ln f

d ln p′

)

. (3.19)

Since u ≡ |u| ≪ 1, the anisotropy induced by the Compton-Getting effect is dominated by the
lowest moment, i.e. its dipole moment. Changing to the differential intensity I(E) = p2f(p),
one obtains

I ′(E′) ≃ I(E)

[

1 +

(

2− d ln I

d lnE′

)
u · p
p

]

. (3.20)

Thus the dipole anisotropy due to the Compton-Getting effect has the amplitude

δCG ≡ Imax − Imin

Imax + Imin
=

(

2− d ln I

d lnE

)

u . (3.21)

The Sun moves with u⊙ = 220 km/s around the center of the Milky Way. Most likely, the
local “cosmic ray rest frame” is co-rotating with the nearby stars and the relevant velocity
u for the CG effect is therefore much smaller. Taking into account the observed spectrum
I(E) ∝ E−2.7 of cosmic rays below the knee, the Compton-Getting effect should results in a
dipole anisotropy which amplitude is bounded by δCG = (2 + 2.7)u <∼ 0.4%.

3.2 Propagation of Galactic cosmic rays

Cascade equation We want to explain the large over-abundance of the group Li-Be-B in
cosmic rays compared to the Solar system. We consider two species, primaries with number
density np and secondaries with number density ns. If the two species are coupled by the
spallation process p→ s+X, then

dnp
dX

= −np
λp

, (3.22a)

dns
dX

= −ns
λs

+
pspnp
λp

, (3.22b)

where X =
∫
dl ρ(l) measures the amount of traversed matter, λi = m/σi are the interaction

lengths (in gr/cm2), and psp = σsp/σtot is the spallation probability.
The system Eqs. (3.22) can be easily solved (Exercise 3.1) and using as initial condition

ns(0) = 0 we obtain as ratio

ns
np

=
pspλs
λs − λp

[

exp

(
X

λp
− X

λs

)

− 1

]

. (3.23)

If we consider as secondaries a group like Li-Be-B that has a much smaller abundance in
the solar system than in cosmic rays, most of them have to be produced by spallation from
heavier elements like the C-N-O group. With λCNO ≈ 6.7 g/cm2, λLiBeB ≈ 10 g/cm2, and
psp ≈ 0.35 measured at accelerators, the observed ratio 0.25 is reproduced for X ≈ 4.3 g/cm2,
see Fig. 3.6.
With h = 300 pc ≈ 1021 cm as thickness of the Galactic disc, nH ≈ 1/cm3 as density of

the interstellar medium, a cosmic ray following a straight line perpendicular the disc crosses
only X = mHnHh ≈ 10−3g/cm2. The residence time of cosmic rays in the galaxy follows
as t ∼ (4.3/10−3)(h/c) ∼ 1.4 × 1014s ∼ 5 × 106 yr. This result can only be explained, if the
propagation of cosmic rays resembles a random-walk. Moreover, it suggests that acceleration
and propagation can be treated separately.
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Figure 3.6: The ratio ns/np as function of the traversed amount of matter X.

Random walks After N steps li of the same size |li| = l a particle that started at zero is at
the position d =

∑N
i=1 li. We assume that the direction of each step li is chosen randomly.

Then the scalar product of d with itself is

d · d =
N∑

i=1

N∑

j=1

li · lj , (3.24)

and splitting the sum into the diagonal and the off-diagonal terms, we obtain

d2 = Nl2 + 2l2
N∑

i=1

N∑

j<i

cosϑij ≈ Nl2 . (3.25)

By assumption, the angles ϑij between li and lj are chosen randomly and thus the off-diagonal
terms cancel against each other.

One might think of two different reasons behind the random walk: Scattering with isotropic
re-emission as in the case of photons in the Sun or diffusion in turbulent magnetic fields. The
first possibility is excluded by the small scattering probability τ = hσnH ∼ 1021×10−25×1 ≈
10−4 and by the fact that at high energies scattered particle are concentrated in the forward
direction within a cone of opening angle ϑ ∼ 1/Γ. Hence we are lead to examine the second
possibility, the scattering of cosmic rays on turbulent magnetic fields in the Galactic disc.

Diffusion equation The continuity equation for the number density n and its current j (that
corresponds to F in our usual notation),

∇ · j +
∂n

∂t
= 0 , (3.26)

leads together with Fick’s law for an isotropic medium,

j = −D∇n , (3.27)

to the diffusion equation
∂n

∂t
−∇ · (D∇n) = Q , (3.28)

21



3 Galactic cosmic rays

where we added additionally a source term Q = Q(E,x, t). Note that the diffusion equa-
tion can be transformed for a diffusion coefficient D that is independent on x into the free
Schrödinger equation substituting D ↔ ~

2/(2m) and t↔ −it. Hence we can borrow the free
propagator for a non-relativistic particle as Green’s function G(r) for the diffusion equation
with D = const. and obtain with the mentioned substitutions,

G(r) =
1

(4πDt)3/2
exp[−r2/(4Dt)] . (3.29)

Thus the mean distance traveled outward is ∝
√
Dt, as in a random walk with 〈r2〉 ∼ Nl20.

Connecting the two pictures, we obtain D ∼ Nl20/t ∼ vl0 with v = Nl0/t. Therefore, the
diffusion coefficient D can be estimated as the product of the cosmic ray velocity v ≈ c and
its mean free path l0. A more precise analysis gives D = l0v/3, where the factor three reflects
the number of spatial dimensions.

Diffusion coefficient We estimate now the energy-dependence of D(E) and its numerical
value for a cosmic ray propagating in the Galactic disc. We start picturing its propagation as
a random-walk caused by scatterings on magnetic clouds of size r0. Then one can distinguish
two different regimes:

• At low energies, i.e. when the Larmor radius RL = p/(ZeB) is smaller than the size r0 of
magnetic clouds with density n, the angles between the entrance and the exit directions
are isotropically distributed. Since the direction is on average changed considerably in
each scattering process, the mean free path l0 is simply the distance between clouds,
l0 = 1/(σn) ∼ 1/(r20n) and thus

D0 =
1

3
l0v ∼ 1

3

c

r20n
∼ const. (3.30)

• At high energies, cosmic rays are deflected in each cloud only by a small angle δ ∼ r0/RL.
The directions are uncorrelated and thus the mean deflection is zero, 〈δ〉 = 0, and the
variance 〈δ2〉 is given again by the result for a random-walk, 〈δ2〉 ∼ N(r0/RL)

2. The
effective free mean path l0 is the distance after which 〈δ2〉 ∼ 1. Hence the energy-
dependence of the diffusion coefficient is

D(E) =

(
RL

r0

)2

D0 ∝ E2 . (3.31)

• The transition between these two regimes happens when RL(Ecr) = r0. Numerically,
this energy is given by Ecr ≈ 1015eV(B/µG)(r0/pc).

Obviously, the picture of magnetic clouds or domains with an unique size r0 is an oversim-
plification. In a more realistic picture, there is a distribution of magnetic field fluctuations
that can be easiest characterized by the spectrum of its Fourier components, 〈B2(k)〉 ∝ k−α.
Charged particles scatter mainly at field fluctuations which wave numbers k matches their
Larmor radius, k ∼ 1/RL. If the amplitude of this resonant magnetic field fluctuation is δBres,
then D ≈ (δBres/B)−2vRL/3 instead of our over-simplified estimate (3.30). Thus the energy
dependence of D below Ecr is determined by the power-spectrum of magnetic field fluctu-
ations. The size r0 of magnetic field domains is in this picture replaced by the correlation
length lc, i.e. the length scale below the field is smooth.
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3.2 Propagation of Galactic cosmic rays

Diffusion and cosmic ray anisotropies In the diffusion picture, the resulting net cosmic ray
flux is connected via Fick’s law with the diffusion tensor. We assume a small, pure dipole
anisotropy, I = I0 + I1 cosϑ and I1 ≪ I0, and choose the z axis along the dipole axis. Only
the dipole term contributes integrating I(E, ϑ),

Fz(E) = 2π

∫ π

0
dϑ sinϑ I(E, ϑ) cosϑ =

4π

3
I1(E) . (3.32)

On the other hand, for diffusion Fick’s law is valid,

Fz(E) = −Dzz∂n(E)/∂z . (3.33)

Comparing the two equations we obtain

I1 = − 3

4π
Dzz

∂n

∂z
. (3.34)

Then the anisotropy δ is

δ =
Imax − Imin

Imax + Imin
=
I1
I0

=
3Fz

4πI0
= −3Dzz

1

cn

∂n

∂z
. (3.35)

In the last step, we replaced n ≈ n0 assuming a small anisotropy.
The experimental results for δ provide thus information on D. For an estimate we set

∂n/∂z ≈ n/h where h is the characteristic scale on which n changes. With h ∼ 500 pc and
using δ ∼ 3× 10−4, it follows

D ≈ 1

3
δch ≈ 5× 1027 cm2/s . (3.36)

Next we can estimate the mean free path of cosmic rays from D = cl0/3 and obtain l0 ∼
5× 1017cm or 0.15 pc. Finally, we estimate the residence time of cosmic rays in the disc as

τ =
h2

2D
≈ 8× 106yr . (3.37)

This means that the prediction for the residence time in our simple diffusion picture agrees
in magnitude with observations. Since cosmic rays are confined in the Galactic plane, and
the Sun is located somewhat above the plane, this diffusion flux should be directed towards
the northern Galactic hemisphere.

Complete cascade equation A rather general set of equations describes the evolution of N
species coupled by interactions k ↔ i are the following transport or cascade equations,

∂ni(E,x, t)

∂t
−∇(D∇ni(E,x, t)) = Q(E,x, t)

−
(

cρλ−1
i,inel(E) + λ−1

d

)

ni(E,x, t)

− ∂

∂E
(βini(E,x, t))

+
∑

k

∫ ∞

E
dE′ dσki(E

′, E)

dE
nk(E

′,x, t) . (3.38)
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The first line describes diffusion, while the second line accounts for the loss of particles in the
energy interval [E : E + dE] because of interactions or decays with λd = Γτ1/2. The third
line describes continuous energy losses β = dE/dt of a particle i: Two important examples
are synchrotron radiation and adiabatic redshift losses due to the expansion of the Universe.
Since βn is the particle flux in energy space (with “velocity” dE/dt), ∂/∂E(βini(E,x) is the
divergence of this flux. Hence it is the analogue in energy space to ∇xj in coordinate space.

Leaky box model This model assumes that cosmic rays inside a confinement volume (e.g.
the disc) have a constant escape probability per time, τesc ≫ c/h. Neglecting all other effects,

∂ni(E,x)

∂t
= −ni(E,x)

τesc
= D∆ni(E,x) , (3.39)

and the distribution of cosmic ray path lengths in the disc is ni = n0 exp(−t/τesc) =
n0 exp(−z/λesc). Hence one can replace

D∆ni(E,x) → −ni(E,x)
τesc

(3.40)

in this model. Physically, the diffusion coefficient is a function of the distance to the disc,
D = D(z), and the escape probability increases and the cosmic ray density decreases for
increasing |z|, while in the leaky box model both are constant inside the confinement volume.
Therefore, the leaky box model can describe only average values of observables that depend in
general on z and care has to be taken comparing quantities calculated within the two different
models.

If we consider now the steady-state solution, ∂ni/∂t = 0, and replace the diffusion term by
ni/τesc, then

ni(E)

τesc
= Qi −

(
cρ

λi
+

1

Γτ1/2

)

ni(E) +
∑

k

∫ ∞

E
dE′ dσki(E

′, E)

dE
nk(E

′) . (3.41)

For primary types like protons or iron, the decay term vanishes and production via fragmen-
tation can be neglected. Introducing λesc = βcρτesc as the amount of matter traversed by a
particle with velocity βc before escaping, we obtain

ni =
Qiτesc

1 + λesc/λi
. (3.42)

The escape time τesc in the leaky-box model should be, similar to D in the diffusion model,
energy dependent. For the simplest hypothesis that τesc(E) of different elements depends only
on Z, one obtains from a fit to data

λesc ≈ 11
g

cm2

(
4ZGeV

p

)δ

for p ≥ 4ZGeV (3.43)

with δ ≈ 0.6 and λesc = const. at lower energies.

For protons, λp = 55 g/cm2 ≫ λesc for all energies, and thus

np = Qpτesc ∝ QpE
−δ . (3.44)
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3.3 Exercises

Hence the generation spectrum of protons should be steeper than the one observed, Qp ∝
E−2.7+δ = E−2.1.
For the other extreme case, iron, the interaction length is λFe = 2.6 g/cm2. Hence at

low energies, iron nuclei are destroyed by interactions before they escape, λFe ≪ λesc, and
therefore the iron spectrum reflects the generation spectrum, nFe ∝ QFe. Starting from
the energy where λFe ∼ λesc, the iron spectrum should become steeper. The observed iron
spectrum is indeed flatter at low energies and steepens in the TeV range.
A main test for propagation models are radioactive isotopes with life-time τ1/2 ∼ τesc. The

abundance of such isotopes, e.g. 10Be with τ1/2 = 3.9×106 yr, can be used to deduce separately
τesc and the density of gas. One finds as mean density of the traversed gas n ∼ 0.3/cm3, i.e.
just one third of the value in the disc, supporting the idea that cosmic rays are confined not
only within the disc but in an extended halo.

Knee The knee marks a break in the cosmic ray spectrum at E ∼ 3 × 1015 eV. There are
three classes of explanations: (i) a break in the diffusion coefficient as function of energy,
(ii) a signature of the Emax distribution of sources, (iii) a change in the interactions of
cosmic rays in the atmosphere at

√
s ∼ few TeV. The possibilities (i) and (ii) produce both a

rigidity-dependent knee, i.e. the position of the knee for different nuclei should be connected
by EZ = ZEp, while for (iii) the position of the knee depends on A.
Experimentally, a rigidity-dependent knee is favored as it is visible from Fig. 3.8. The

energy of the knee agrees roughly with the critical energy, when the Larmor radius of a
proton becomes equal to the maximal length of magnetic field domains. Thus the knee might
correspond to a transition from D ∝ E to D ∝ E2, or more generally to an increased leakage
of cosmic rays out of the galaxy.

3.3 Exercises

1. Derive the solution of Eqs. (3.22) and that the observed ratio 0.25 is reproduced for
X ≈ 4.3 g/cm2.

2. Show that the diffusion equation with a point source at r = 0 and a space-independent
diffusion coefficient has the solution n(E, r) = 1/(4πr)[Q(E)/D(E)].
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4 Sources and acceleration of high energy
cosmic rays

4.1 Sources of high energy cosmic rays

The changes in the slope of the energy spectrum and in the composition from protons to iron
in the knee region suggest that there are at least two different kinds of cosmic ray sources. It
is natural to associate the bulk of cosmic rays with Galactic sources, while the highest energy
cosmic rays have an extragalactic origin, produced by more powerful galaxies than ours. A
further argument favoring an extragalactic origin of cosmic rays with the highest energies is
the observed isotropy of their arrival directions on large scales that suggests a cosmological
distribution of their sources.

4.1.1 General arguments

Energy argument favoring supernova remnants (SNR) The luminosity LCR of Galactic
cosmic ray sources has to fit the observed energy density ρCR ∼ 1 eV/cm3 of cosmic rays,
taking into account their residence time τesc ∼ 6 × 106 yr in the Galactic disk. With VD =
πR2h ∼ 4 × 1066 cm3 for R = 15 kpc and h = 200 pc as volume of the Galactic disc, the
required luminosity is LCR = VDρCR/τesc ∼ 5× 1040 erg/s.

In a successful core-collapse supernova (SN) around 10M⊙ are ejected with v ∼ 5×108 cm/s.
Assuming 1/(30 yr) as SN rate in the Milky Way, the average output in kinetic energy of
Galactic SNe is LSN,kin ∼ 3×1042 erg/s. Hence, if the remnants of SNe can accelerate particle
with efficiency O(0.01), they could explain all galactic cosmic rays as it was suggested first
by Ginzburg and Syrovatskii in the early 1960s.

Hillas argument The Larmor orbit RL = E/(ZeB) of accelerated particles has to fit inside
the accelerator of size Rs, RL = E/(ZeB) ≤ Rs. For known magnetic fields and source sizes,
one can constrain thus the maximal achievable energy as Emax = ΓZeBRs, as it is done in
Fig. 4.1 for a compilation of potential cosmic ray sources. The Lorentz factor Γ introduced
in Emax accounts for a possible relativistic bulk motion of the source and is probably only
for gamma ray bursts a significant correction. In Fig. 4.1, a so-called “Hillas plot,” sources
able to accelerate protons to E > 1021 eV should lie above the solid red line, while sources
above the green line can accelerate iron up to 1020 eV. Few candidate sources for acceleration
to E = 1021 eV seem to be compatible with Hillas’ argument.

On one hand, this constraint looks like a solid upper limit, because energy losses are ne-
glected, the maximal acceleration time is finite and no accelerator is 100% efficient. On the
other hand, nonlinear processes may lead to an amplification of magnetic fields inside the
source. In general, sources neither too small (minimizing energy losses) nor too big (avoiding
too long acceleration times) are favored.
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Figure 4.1: Magnetic field strength versus size of various suggested cosmic ray sources.

Blandford argument The acceleration of a proton to the energy E = 1020 eV by regular
electromagnetic fields requires the potential difference U = 1020V. What is the minimal power
P dissipated by such an accelerator? In order to use the basic equation P = UI = U2/R
known from high-school physics, we have to know the appropriate value of the resistance R.
Since the acceleration region is in most cases nearly empty, we use R ∼ 1000 Ω (lead by the
“impedance of the vacuum”, R = 4πk0/c = 1/(ǫ0c) ≈ 377Ω). Hence a source able to produce
protons with E = 1020 eV by regular acceleration in electromagnetic fields has the minimal
luminosity [12]

L = U2/R >∼ 1037W = 1044 erg/s . (4.1)

This can be transformed into an upper limit on the density ns of ultrahigh energy cosmic
rays (UHECR) sources, since the observed UHECR intensity fixes the required emissivity L,
i.e. the energy input per volume and time, as L ∼ 3× 1046erg/(Mpc3yr). Hence, the density
of UHECR sources able to accelerate protons to E = 1020 eV should be smaller than ns =
L/L ∼ 10−5/Mpc3, if the acceleration is by regular electromagnetic fields. For comparison, the
density of normal galaxies is ns ≈ 10−2/Mpc3, while the most common type of active galactic
nuclei in the nearby Universe, Seyfert galaxies, has the density ns ≈ (1 − 5) × 10−5/Mpc3

within redshift z <∼ 0.02.

4.1.2 Specific sources

Most galactic astrophysical sources are connected with type II (or core-collapse) supernovae
(SN) and their remnants (SNR): Examples are the direct acceleration in the magnetosphere of
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4.1 Sources of high energy cosmic rays

young pulsars and shock acceleration in SNRs. Above E >∼ 1018 eV, the signature of galactic
sources would be an enhanced flux towards the galactic plane. Practically all extragalactic
sources except gamma ray bursts are associated with active galactic nuclei (AGNs).

SNe II Type II or core collapse supernovae occur at the end of the fusion process in very
massive stars,M >∼ (5−8)M⊙. Theses stars develop an onion-like structure with a degenerate
Fe core. After the core is completely fused to iron, no further processes releasing energy are
possible. Instead, photo-disintegration destroys the heavy nuclei, e.g. via γ+56Fe → 4He+4n,
and removes the thermal energy necessary to provide pressure support. In the following
collapse of the star, the density increases and the free electrons are forced together with
protons to form neutrons via inverse beta decay, e− + p → n + νe: A proto-neutron star
forms. When the core density reaches nuclear density, the equation of state of nuclear matter
stiffens and infalling material is “reflected,” a shock wave propagates outwards heated by
neutrino emission from the proto-neutron star. If the SN is successful, a neutron star is left
over; otherwise a black hole remains.

The released gravitational binding energy,

∆E =

[

−−GM2

R

]

star

−
[

−−GM2

R

]

NS

∼ 5× 1053erg

(
10km

R

)(
MNS

1.4M⊙

)

(4.2)

is emitted mainly via neutrinos (99%). Only 1% is transferred into kinetic energy of the
exploding star and only 0.01% goes into photons.

Pulsars are the left-over of the former iron core, now transformed into a neutron star with
RNS/R⊙ ∼ 10−5. They may be born fast rotating with a strong magnetic field, because of
conservation of

• angular momentum, L = Iω = const., with I ∼ MR2: A star like the sun, rotating
once per month, P ≈ 106 s, would rotate with a ms period when contracted down to 10
km in size.

• magnetic flux, φB = BA = const., for an ideal conductor, where magnetic field lines
are frozen in the plasma. As the core collapses, the magnetic field lines are pulled
more closely together, intensifying the magnetic field by a factor (R⊙/RNS)

2 ∼ 1010.
Magnetic A stars have surface fields up to 104G, while the maximal observed field
strengths of neutron stars are of the order B ≈ 1012G.

Rotating dipole model The energy of a rotating sphere is E = Iω2/2 and the energy change
is

Ė = Iωω̇ . (4.3)

The rotational kinetic energy of the Crab nebula, the remnant of a SN observed by Chinese
astronomers in 1054, is E = 1

2Iω
2 ≈ 3 × 1049 erg with I = aMR2 and a ≈ 2/5 for a

homogeneous sphere; its energy-loss per time is the time-derivative Ė = Iωω̇ ≈ 7×1038 erg/s,
with I = 1.5× 1045 g cm2 and ω̇ = 4× 10−4 yrω.

If the energy is lost as electromagnetic dipole radiation, then

Ė = −B
2R6ω4 sin2 α

6c3
(4.4)
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4 Sources and acceleration of high energy cosmic rays

where α denotes the angle between rotation and dipole axis, and we obtain an estimate for
Crab’s magnetic field, B ≈ 7×1012G for sinα = 1. Thus pulsars have indeed extremely strong
magnetic fields that, if they are fast rotating, may accelerate particles to high energies.

Direct acceleration of particles by pulsars The light-cylinder around a pulsar is the surface
at Rc = c/ω. If the magnetic field lines would rotate rigidly with the pulsar, then the linear
velocity reaches the speed of light, v = c, at Rc.
If the magnetosphere is filled sufficiently with plasma, the electric conductivity σ → ∞,

and Ohm’s law J = σ(E + vB/c) implies

E = −v ×B/c , (4.5)

where v = ω × r.
For a magnetic dipole field pointing along ϑ = 0,

B(r) =
B0R

3

r3
(2er cosϑ+ eϑ sinϑ) , (4.6)

the potential difference between the polar cap and infinity follows as

∆φ =

∫

E · ds = −1

c

∫

v ×B · ds =
B0R

2ω

c
sin2 ϑ . (4.7)

Open field lines that extend beyond the light cylinder c/ω start near the polar cap, within
the cone ϑ0 ∼

√

ωR/c. Inserting ϑ0 into Eq. (4.7) we obtain as maximal acceleration energy
achievable by a pulsar

Emax ≈ ZB0R
2ω sin2 ϑ0
c

≈ ZB0R
3ω2

c2
≈ 8× 1020 eV

Z B

1013 G

(
Ω

3000 s−1

)2

. (4.8)

Thus a young, fast rotating pulsar appears to be a very good particle accelerator. The
main problems are that in realistic models the potential difference ∆φ that can be used for
particle acceleration is much smaller and the extreme energy losses due to, e.g. curvature
radiation. The magnetosphere of a pulsar may be also filled by γ → e+e− with a plasma.
Finally, pulsars as main source of UHECRs would predict a strong anisotropy of the UHECR
intensity, because neutron stars are concentrated in the Galactic plane.

Shock acceleration in SN remnants is the standard paradigm for cosmic ray acceleration
up to E ∼ 1015 − 1017eV in our galaxy and is discussed in the next section.

Active galaxies is a common name for all galaxies with unusual emission that is not asso-
ciated with stars. In contrast to normal galaxies whose total luminosity is the sum of the
thermal emission from each of the stars found in the galaxy, a large fraction of the total
luminosity of an active galaxy is non-thermal and is emitted by the nuclei of the galaxy.
The modern view is that the common mechanism behind the energy generation in AGNs is
accretion on the SMBH in their center.
Main reason for this view is the fast variability of their spectra, from time-scales of months

for quasar spectra down to daily variations for blazars. Causality limits then the size of
the emission region as ct <∼ 200AU. Secondly, the enormous energy output of AGNs requires
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4.1 Sources of high energy cosmic rays

Figure 4.2: The unified scheme of AGN.

an extremely efficient energy generation mechanism. For accretion on a BH, the maximal
energy gain is Emax ∼ GmM/RS , where the Schwarzschild radius is RS = 2GM/c2, and thus
Emax = mc2/2. A large part of this energy will be lost in the BH, while the remainder heats
up via friction an accretion disc around the black hole. Modeling the accretion process gives
an efficiency of ǫ = 10%–20%. Thus the luminosity from accretion is

L =
ǫc2dm

2dt
. (4.9)

For a rather modest mass consumption of the BH, dm/dt = 1M⊙/yr, one obtains 6×1045erg/s
or L ∼ 1012L⊙.
The unified picture of AGNs is illustrated in Fig. 4.2. The different AGN types are only

facets of the same phenomenon–accretion on a SMBH—viewed from different angles, at differ-
ent stages of activity (small or large dm/dt) and evolution in time (e.g. from a quasar phase
at redshift z ∼ 1–4 towards a Seyfert galaxy at present). Blazars are AGN with a relativistic
jet that is pointing in the direction of the Earth and are therefore often ranked among the
most promising sources of ultrahigh energy cosmic rays. According Fig. 4.2, blazars are either
Flat Spectrum Radio Quasars (FSRQ) or BL Lac objects.

Gamma Ray Bursts come in two (main) sub-varieties, depending on their duration that
varies from fraction of a second to many minutes. While short duration GRBs are most likely
the result of binary collisions between e.g. neutron stars, long duration GRBs which make
up about 2/3 of all GRBs are associated with supernova events in extremely massive stars.
GRBs are highly beamed sources of gamma-rays and perhaps also of high energy neutrinos
and cosmic rays. A distinctive feature is the high Lorentz factor of shocks in GRBs.
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E1,p1

V →

ϑ1

ϑ2

E2,p2

Figure 4.3: A cosmic ray “scattering” elastically at a magnetic cloud moving with velocity
V .

4.2 Acceleration of cosmic rays

4.2.1 Second order Fermi acceleration

We consider a cosmic ray with initial energy E1 “scattering” elastically on a magnetic cloud
that moves with velocity V ≪ c. We want to derive the energy gain ξ ≡ (E2 − E1)/E1 per
scattering. The variables (E1, ϑ1) and (E2, ϑ2) are shown in Fig. 4.3, which we label with a
prime in the cloud system and without a prime in the lab system.
With a first Lorentz transformation between the lab and cloud system we connect the

variables characterizing the cosmic ray entering the cloud,

E′
1 = γE1(1− β cosϑ1) where β = V/c and γ = 1/

√

1− β2 , (4.10)

and with a second Lorentz transformation the exit variables,

E2 = γE′
2(1 + β cosϑ′2) . (4.11)

Since the scattering off magnetic irregularities is collisionless and the cloud is very massive,
energy is conserved, E′

2 = E′
1. Hence we can eliminate E′

2 and obtain as relative energy gain

ξ =
E2 − E1

E1
=

1− β cosϑ1 + β cosϑ′2 − β2 cosϑ1 cosϑ
′
2

1− β2
− 1 . (4.12)

To proceed, we need average values of cosϑ1 and cosϑ′2. Since the cosmic ray scatters off
magnetic irregularities many times in the cloud, its exit direction is randomized, 〈cosϑ′2〉 = 0.
The collision rate of the cosmic ray with the cloud is proportional to their relative velocity
(v − V cosϑ1). For ultrarelativistic particles, v → c, and the collision rate is

dn

dΩ1
∝ (1− β cosϑ1) . (4.13)

We obtain 〈cosϑ1〉 averaging cosϑ1 weighted by dn/dΩ1 over all angles,

〈cosϑ1〉 =
∫

cosϑ1
dn

dΩ1
dΩ1/

∫
dn

dΩ1
dΩ1 = −β

3
. (4.14)
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4.2 Acceleration of cosmic rays

Plugging 〈cosϑ′2〉 = 0 and 〈cosϑ1〉 = −β/3 into Eq. (4.12) and taking into account that β ≪ 1
gives as average gain

〈ξ〉 = 1 + β2/3

1− β2
− 1 ≃ 4

3
β2 . (4.15)

Thus 〈ξ〉 ∝ β2 > 0 and we have shown that on average a cosmic ray gains energy scattering
on “magnetic clouds” with an ordered bulk velocity V . The energy gain per scattering is
however only of second order in the small parameter β, and acceleration is therefore rather
inefficient. Moreover, one can show that the resulting energy spectrum would depend strongly
on the cloud parameters, making thereby the observed feature-less power spectrum of cos-
mic rays difficult to understand. Acceleration at shocks that we consider next avoids both
disadvantages.

4.2.2 Shock or first order Fermi acceleration

Ideal fluids and shocks As first step in gaining some understanding of shocks we recall the
the ideal fluid equations. The three basic equations are the conservation equation for mass,
for momentum, and the Poisson equation,

∂tρ+∇ · (ρv) = 0 , (4.16a)

ρ
dv

dt
= ρ

∂v

∂t
+ ρv ·∇v = F −∇P , (4.16b)

∆φ = 4πGρ . (4.16c)

The LHS of (4.16b), the Euler equation, measures the velocity change dv/dt of a fluid element,
summing up the change at a fixed coordinate, ∂tv, and the change (v · ∇)v due to the
movement of the element, while the RHS consists of an external force F and a force due
to a pressure gradient ∇P . The Poisson equation connects the mass density ρ with the
gravitational potential φ.
We consider now small perturbations x1 around a static background, ρ0 = const., P0 =

const. and v0 = 0. Restricting us to small perturbations, x1 ≪ x0, allows us to neglect
all quantities quadratic in the perturbations. Sound waves propagate in most circumstances
adiabatically, i.e. without production of entropy, dS = 0. Thus changes in P and ρ are
connected via

P = P0 +

(
∂P

∂ρ

)

S

dρ+

(
∂P

∂S

)

P

dS = P0 + c2sdρ . (4.17)

Inserting x = x0 + x1 into the fluid equations and neglecting quadratic term gives

∂tρ1 + ρ0∇ · v1 = 0 , (4.18a)

∆φ1 = 4πGρ1 , (4.18b)

∂tv1 +
c2s
ρ0

∇ρ1 +∇φ1 = 0 , (4.18c)

where we used also ∂xP = ∂ρ1
∂x

∂
∂ρ1

P1 = ∂ρ1
∂x c

2
s. These three equations can be combined into

one second-order differential equation for ρ1. We multiply Eq. (4.18c) by ρ0 and apply ∇ on
it,

c2s∆ρ1 = −ρ0(∂t∇ · v1 +∆φ1) . (4.19)
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Then we insert (4.18b) for ∆φ1 and (4.18a) for ∇ · v1, and obtain a linear, inhomogeneous
wave equation

∂2t ρ1 − c2s∆ρ1
︸ ︷︷ ︸

pressure

= 4πGρ1ρ0
︸ ︷︷ ︸

grav.force

(4.20)

for the density perturbation ρ1. The dispersion relation of plane waves exp(−i(ωt− kx)),

ω2 = c2sk
2 − 4πGρ0 , (4.21)

confirms that cs = (∂P/∂ρ1)
1/2 is the sound speed.

For a mono-atomic gas, the equation of state is P = Kργ with γ = 5/3. Thus, the sound
speed is cs = (γP/ρ)1/2 and if an adiabatic compression with density ρ2 = ερ1 propagates,
then cs ∝ ε(γ−1)/2. Hence the sound speed increases for a compression, the dense region over-
runs uncompressed regions and becomes even denser: A discontinuity (=”shock”) develops
in some hydrodynamical variables like the density.

Mach number of a (strong) shock Our main aim is to derive the Mach number M = v/cs
of a shock that as we will see determines the slope of the energy spectrum of accelerated
particles. We will consider only the properties of an one-dimensional, steady shock in its rest
frame and assume that magnetic or gravitational fields can be neglected. Then the continuity
equation for mass, ∂tρ+∇ · (ρv) = 0, becomes simply

d

dx
(ρv) = 0 . (4.22)

The Euler equation simplifies using the same assumptions and taking into account Eq. (4.22)
to

d

dx

(
P + ρv2

)
= 0 . (4.23)

Additionally to the conservation laws for mass (4.22) and momentum (4.23) we need the
conservation law for energy,

∂

∂t

(
ρv2

2
+ ρU + ρΦ

)

+∇ ·
[

ρv

(
v2

2
+ U +

P

ρ
+Φ

)]

= 0 . (4.24)

Here, the first bracket accounts for the change of kinetic, internal and potential energy with
time which has to be balanced by the energy flux through the boundary of the considered
volume. Specializing again to the case of an one-dimensional, stationary flow with Φ = 0
gives

d

dx

(
ρv3

2
+ (U + P )v

)

= 0 . (4.25)

Integrating these equations over the discontinuity of the shock results in the “Rankine-
Hugoniot” jump conditions,

[ρv]21 = 0 , (4.26a)
[
P + ρv2

]2

1
= 0 , (4.26b)

[
ρv2

2
+

γ

γ − 1
Pv

]2

1

= 0 , (4.26c)
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vs v1 = 0, ρ1v2, ρ2

v1 = −vs, ρ1

v2 = vs/R, ρ2

Figure 4.4: Conditions on the down-stream (left) and the up-stream (right) side of a shock
in the lab system (top) and in the shock rest frame with v1 = −vs (bottom).

where we used also U = P/(γ − 1). Since we assumed a steady flow, these jump conditions
have to be evaluated in the shock rest frame, cf. Fig 4.4 – otherwise time-derivatives should
be included.
Inserting first ρ2 = (v1/v2)ρ1 into (4.26b) gives P2 = P1+ ρ1v1(v1− v2). Next we use these

two expressions to eliminate ρ2 and P2 from Eq. (4.26c). Reordering the resulting equation
according to powers of v2,

(
γ + 1

γ − 1

)

v22 +
2γ

γ − 1

(
P1 + ρ1v

2
1

ρ1v1

)

v2 + v21
2γ

γ − 1

P1

ρ1
= 0 , (4.27)

replacing P1 by the sound speed and dividing by v21, we obtain finally a quadratic equation
for t = v2/v1, (

γ + 1

γ − 1

)

t2 +
2γ

γ − 1

(
c21
v21

+ γ

)

t+

(

1 +
2

γ − 1

c21
v21

)

= 0 . (4.28)

Now we recognize v1/c1 as the Mach numberM. Since we are interested in fast flows, v1 ≫ c1,
we can neglect the two 1/M2 terms and obtain as approximate solutions

t = 1 or v1 = v2 , (4.29a)

t =
γ − 1

γ + 1
≡ R or Rv2 = v1 . (4.29b)

The first solution is obviously trivial, while the second one is the strong shock solution. The
compression ratio R indicates how strong the density and the velocity in the up- and down
stream regions differ. Since we are using as reference frame the shock frame, we have vs = v1
and thus for γ = 5/3 and R = 4,

v2 = vs/R = vs/4 , (4.30a)

ρ2 = Rρ1 = 4ρ1 , (4.30b)

P2 = 3ρ1v
2
s/4 . (4.30c)

35



4 Sources and acceleration of high energy cosmic rays

Hence no matter how strong a shock is, it can compress a mono-atomic gas only by a factor
four. The same factor relates the velocity of the shock and of the matter after the passage
of the shock. It is this universal ratio of the up- and down-stream velocities for any strong
shock that results in the generic prediction of an 1/E2 spectrum produced by acceleration at
shocks.

Acceleration at shocks We consider again a cosmic ray with initial energy E1 “scattering”
at magnetic irregularities that are now separated by a planar shock moving with velocity vs.
The only change to the previous discussion are the resulting different angular averages. The
(normalized) crossing rate is given by the projection of an isotropic flux on the planar shock,

dn

d cosϑ1
=

{
2 cosϑ1 cosϑ1 < 0
0 cosϑ1 > 0

. (4.31)

while the crossing rate dn/d cosϑ2 is non-zero for cosϑ2 > 0. Thus 〈cosϑ1〉 = −2
3 and

〈cosϑ′2〉 = 2
3 and hence

〈ξ〉 ≈ 4

3
β =

4

3

v1 − v2
c

. (4.32)

The average gain 〈ξ〉 is now linear in β and justifies the name “first-order” Fermi (or shock)
acceleration.

Energy spectrum produced by Fermi acceleration The energy En of a cosmic ray after n
acceleration cycles is

En = E0(1 + ξ)n (4.33)

and the number of cycles needed to reach En is thus

n = ln

(
En

E0

)

/ ln (1 + ξ) . (4.34)

If the escape probability pesc per encounter is constant, then the probability to stay in the
acceleration region after n encounters is (1−pesc)n. We obtain the fraction f of particles with
energy > En as

f(> E) =
∞∑

m=n

(1− pesc)
m =

(1− pesc)
n

pesc
∝ 1

pesc

(
E

E0

)−γ

, (4.35)

where

γ = ln

(
1

1− pesc

)

/ ln(1 + ξ) ≈ pesc/ξ (4.36)

with ξ ≪ 1 and pesc ≪ 1. Hence, both first and second order Fermi acceleration produces a
power-law energy spectrum.

The maximal energy achievable by a specific source is determined by several factors. First,
the finite life-time limits the number of cycles n and thus En. Second, the escape probability
is energy dependent and increases generally for increasing energy. Third, energy losses like
synchrotron radiation increase with energy and balance at a certain point the energy gain.
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4.2 Acceleration of cosmic rays

Exponent γ for shock acceleration Since we know already that ξ ≈ 4
3β = 4

3
v1−v2

c , we have
to determine only the escape probability pesc in order to estimate the exponent γ ≈ pesc/ξ
of the integral spectrum produced by shock acceleration. The particle flux F through an
infinite, planar shock front is (cf. Eq.(3.2))

F(E) = πI(E) =
cn(E)

4
, (4.37)

assuming vs ≪ c and an efficient isotropization of cosmic rays up-stream.
In the shock rest frame, there is a particle flow Fesc(E) = v2n(E) downstream away from

the shock front that will be lost for the acceleration process. Thus the escape probability pesc
as the ratio of the loss and the crossing flux is

pesc =
Fesc

F =
v2n

cn/4
=

4v2
c

(4.38)

and the spectral index of the integral energy spectrum follows as

γ ≈ pesc/ξ ≈
3

v1/v2 − 1
. (4.39)

Typical values for the sound speed in the interstellar medium around a SNR are c1 ∼ 10 km/s,
while the shock velocities are v1 ∼ 104 km/s. Thus the Mach number M = v1/c1 ≫ 1 and
we can use the result v1 = 4v2 in the strong shock limit. The exponent predicted by Fermi
acceleration at non-relativistic shock is therefore independent of the shock parameters and
agrees with the value needed to explain the spectrum of Galactic cosmic rays. These are the
two main reasons for the popularity of shock acceleration.
We can check that possible corrections are small by solving Eq. (4.28) for arbitrary M.

Then we obtain R = 4M2/(3 +M2) and thus

γ ≈ 3 +M2

M2 − 1
≈ 1 +

1

4M2
+O(M−4) . (4.40)

Clearly, other effects like energy losses or an energy dependence of pesc will have a larger
impact on the resulting spectrum than the O(M−2) corrections. Moreover, we worked within
an extremely simplified picture and should expect therefore deviations from a power-law with
γ ∼ 1. For instance, we used the test particle approach that neglects the influence of cosmic
rays on the plasma.
Finally we remark that the observed flux from extragalactic sources might require a steeper

injection spectrum than γ ∼ 1, and that the acceleration mechanism responsible for cosmic
rays beyond ∼ 1018 eV is still open. A discussion of more recent developments in the under-
standing of cosmic ray acceleration can be found in Ref. [13].
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5 Gamma-ray astronomy

5.1 Experiments and detection methods

The Earth’s atmosphere is opaque to photons with energy above 10 eV, meaning that to
observe gamma rays directly requires placement of a detector above the earth atmosphere. A
major turning point in gamma-ray astronomy was therefore the launch of the first satellite-
borne telescope, SAS-2, in 1972.

The heretofore most successful gamma-ray satellite was the Compton Gamma Ray Observa-
tory, taking data from 1991–2000 with its four different experiments. Some of the main results
were the proof that a large fraction of gamma ray bursts are isotropically distributed and thus
extragalactic in origin, the detection of discrete sources of extragalactic γ-ray emission, and
an upper limit on the diffuse extragalactic γ-ray background. A new satellite experiment,
GLAST, will be launched 2008.

Main limitation of satellite experiments is their small collection area, which limits their use
to energies <∼ 100GeV. On the other hand, 100GeV is the limit where the electromagnetic
cascade in the earth’s atmosphere from the initial photon can be detected. While the cascade
dies out high in the atmosphere below 10TeV, showers are still detectable via the Cherenkov
emission of relativistic electrons and muons. The main difficulty in ground-based gamma-ray
astronomy is the presence of an almost overwhelming background of charged cosmic rays.

Discrimination The image of an air shower in an atmospheric Cherenkov telescope can be
modeled as a two-dimensional ellipse. The two main parameters that distinguish an air
shower initiated by a photon and a proton are the length and the width of this ellipse: While
a photon shower is narrow with a long elongation, a proton shower of comparable energy
is much wider and shorter, cf. Fig. 5.1. The resulting discrimination power would be not
sufficient to separate photons from the cosmic ray background, if photon sources like e.g.
blazars would not appear point-like.

5.2 Electromagnetic processes

5.2.1 Synchrotron radiation

The power P of emitted synchrotron radiation by a particle with mass m, charge e and
momentum p⊥ perpendicular to the magnetic field is in the classical limit

Pcl =
2

3
αm2

(
p⊥
m

eB

m2

)2

=
2

3
αm2

(
p⊥
m

B

Bcr

)2

. (5.1)

The energy loss per time is β = dE/dt = −P ∝ m−4 and hence is most severe for the
lightest charged particle, the electron. The typical length-scale lsyn of synchrotron losses
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5.2 Electromagnetic processes

Figure 5.1: The longitudinal development (top) and the projection (bottom) of a shower
initiated by a photon (left) and by a proton (right) [11].
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(Bcr = m2
e/e = 4.41× 1013G is the critical field strength for an electron)

lsyn =

(
1

E

dE

dt

)−1

=
3

2αm

1

γ

(
Bcr

B

)2

. (5.2)

For electrons with E = 1015 eV in the Galactic disc, B ∼ 3µG, we have lsyn ∼ 100 pc. Thus
one of the reasons why we have not discussed electrons as a major component of cosmic
rays is that their energy losses are too severe. On the other side, synchrotron radiation of
relativistic electrons is in the radio range and explains the strong radio emission of many
AGNs: Synchrotron radiation peaks at 0.29ωc with

ωc =
3γ2B

2Bcr
m. (5.3)

For B ∼ 0.1 G close to a source and γ = 109, the peak of synchrotron radiation is at
10−10me ∼ 100 GHz. Synchrotron radiation is the explanation of the first peak visible in
Fig. 5.2, showing the observed spectrum from a Blazar.

5.2.2 (Inverse) Compton scattering

The cross section for Compton scattering e− + γ → e− + γ is with σTh = 8πα2/(3m2
e)

σ = σTh

(
1− s/m2 + . . .

)
for s/m2 ≪ 1 (5.4)

σ =
3m2

4s
σTh

(

ln s/m2 +
1

2
+ . . .

)

for s/m2 ≫ 1 (5.5)

i.e. Compton scattering is suppressed for s≫ m2.

While in the classical Compton experiment an energetic photon hits an electron at rest and
transfers part of its energy, in astrophysics “Inverse Compton scattering” is more important:
A fast electron hitting a low-energy photon transfers a large fraction y of its energy to the
photon,

y ≈ 1/ ln(s/m2
e) . (5.6)

This is the explanation of the second peak visible in Fig. 5.2, showing the observed spectrum
from a blazar.

5.3 Hadronic processes

Neutral pion decay π0 → 2γ In the rest system of the π0, the two photons are emitted
back-to-back, p1 = −p2 and E1 = E2 = mπ/2. How are the photon energies distributed, if
the pion was moving with velocity v?

Let us use the Lorentz transformation between energies in the rest and the lab system. In
the lab system,

E = γ(E′ + βp′ cosϑ) (5.7)

where ϑ is the angle between the velocity β of the pion and the emitted photon. The maxi-
mal/minimal values of E follow directly as E = γ(E′±βp′) for cosϑ = ±1, i.e. if the photons
are emitted parallel and anti-parallel to the direction of flight of the pion.
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Inserting E′ = p′ = mπ/2 gives

Emax
min =

1

2
(γmπ ± βγmπ) =

1

2
Eπ(1± β) (5.8)

or Emax → Eπ and Emin → 0 in the ultra-relativistic limit β → 1.

What is the distribution of the emitted photons? Since the pion is a scalar particle, the
photon distribution is isotropic in the lab system,

dN =
1

4π
dΩ =

1

2
d| cosϑ| . (5.9)

Using (5.7), one can express dE as γβp′d| cosϑ| and thus

dN =
1

4π
dΩ =

dE

2γp′
. (5.10)

Hence dN/dE = const., and the photon spectrum produced by a pion beam with uniform
velocity is a box between Emin and Emax from Eq. (5.8). If we use log(E) as x coordinate,
the boxes are symmetric with respect to mπ/2.

Photon spectrum from “ many pion decays” Consider now the photon spectrum not from a
single pion, but from a beam of pions with arbitrary energy spectrum. Each photon spectrum
from a single decay is as we saw a box centered atmπ/2. Hence also the total photon spectrum
from pions with an arbitrary energy distribution is symmetric with respect to mπ/2.

5.4 Source models

The energy spectrum observed from blazars, i.e. AGN which jets are pointing towards us,
covers all the electromagnetic spectrum from radio frequencies up to TeV energies. It is char-
acterized by two bumps, cf. Fig. 5.2, one peaking between the IR and the X-ray band, another
one at gamma-ray energies. The first peak can be explained as synchrotron radiation from
relativistic electron, while the second one is presumably due to inverse Compton scattering –
between the same electrons and either soft photons or synchrotron photons.

Although sources like blazars should accelerate not only electrons but also protons, syn-
chrotron radiation and inverse Compton scattering of electrons are sufficient to explain in
most cases the observed spectra. There are only few exceptions where an additional photon
component from pion decay at the highest energies might be needed.

The proof that a source accelerates indeed protons might be easier for Galactic sources,
where the source region can be resolved by modern atmospheric Cherenkov telescopes. An
example is the recent observation of the SNR RX J1713.7-3946 by the HESS array that
has been interpreted as the first direct evidence that SNRs accelerate cosmic rays up to
TeVs [14]. The image of this source shows an increase of TeV photons in the directions of
known molecular clouds. This is in line with the expectation that, if photons are produced
as secondaries in pp collisions, their flux is correlated with the matter density in the SNR.
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Figure 5.2: Spectrum from the blazar Markarian 421 in a flaring and a quiet state [15].

5.5 Electromagnetic cascades

A high energy particle interacts at the top of the atmosphere and initiates a cascade. In
the 1930’s, it was recognized that the observed cosmic rays on ground are only the secon-
daries produced in this cascade. Heitler introduced the following simple toy model of an
electromagnetic cascade:

• In each interaction characterized by the constant interaction length λ, a parent particle
splits into two daughter particles. Each particle takes half of the energy.

• After n = X/λ generations, the cascade consists of N(X) = 2X/λ particles.

• The energy per particle is E(X) = E0/N , where E0 is the energy of the primary.

• Particle production stops, when E(X) < Ecr ∼ 0.1GeV. Below this energy, photons
loose energy mainly by ionization losses. Unstable particles decay and the number of
particles in the shower decreases.

The number of particles at the shower maximum Xmax is

N(Xmax) =
E0

Ecr
with Xmax =

λ

ln 2
ln
E0

Ecr
. (5.11)

Thus the energy E0 of the primary particle is connected via

N(Xmax) ∝ E0 and Xmax ∝ lnE0 (5.12)

to measurable quantities. Note that Ecr—the quantity that mainly controls N(Xmax)—is
determined by well-known low energy processes.
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5.5 Electromagnetic cascades

Cascade equations and scaling The cascade equation for electron (= e+, e−) and photons
are

∂Ni(E, r)

∂r
= −nσi,tot(E)Ni(E, r) + n

∫ ∞

E
dE′ dσki(E

′, E)

dE
Nk(E

′, r) (5.13)

where i = e, γ. Two possible boundary conditions are

Ni(E, 0) = δ(E − E0) , (5.14a)

Ni(E, 0) = KE−α , (5.14b)

i.e. the study of a single shower or the general properties of electromagnetic cascades. We
consider next only one species (i.e. we are not interested which particles are produced in the
interactions) and the simpler second case for the boundary condition. Under which conditions
may we hope for an analytical solution? The energy and depth dependence should factorize,
N(E, r) = g(E)f(r), i.e. the shower should have at each depth the same energy dependence.
This happens, if (i) the cross sections are not energy dependent, and (ii) the differential cross
sections scale,

f(z) =
1

σ

dσ

dz
=
E′

σ

dσ(E′, E)

dE
(5.15)

with z = E/E′. Then, we can rewrite N(E′, r) = KE′−α = KzαE−α for boundary condition
(b) and it follows

N(E, r) = N(E, 0) exp[−nσr(1− Z(α)] (5.16)

with the spectrally averaged energy loss fraction

Z(α) =

∫ 1

0
dz zα−1f(z) . (5.17)

Equation (5.16) is straightforward to interpret: For z → 0, one obtains the limiting case of
full absorption, while interactions without energy transfer do not change N(E, r) at all. In
the intermediate case, Eq. (5.17) weights the energy loss z properly not only with f(z) but
also with the spectral shape N(E) ∝ E−α.

For a steeply falling spectra, α > 1, the region z → 1 gives the dominating contribution to
the integral defining Z(α). This illustrates that for the modeling of air shower the knowledge
of cross sections in the “forward” region z → 1 is crucial.

5.5.1 Cascades in the atmosphere

Probabilities The differential probability P (z) for an electron with energy E scattering on
an atomic nucleus to emit a photon with energy zE traversing the depth dt = dX/X0 is in
the high energy limit

Peγ(z) = z +
1− z

z

(
4

3
+ 2b

)

, (5.18)

where b = b(Z) ≈ 0.012 depends on the average charge Ze of air. This process is infrared-
divergent, i.e. the probability to emit a soft photon diverges, Peγ(z) → ∞ for z → 0. Only if
we consider the energy loss rate,

dE

dX
= − 1

X0

∫ 1

0
dz zE Peγ(z) = −E(1 + b)

X0
≈ − E

X0
, (5.19)
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we obtain a finite result. By contrast, the probability for the pair production of a massive
e+e− pair in the Coulomb field of a nucleus is infrared-finite,

Pγe(z) =
2

3
− 1

2
b+

(
4

3
+ 2b

)(

z − 1

2

)2

, (5.20)

and can be integrated to

1

Λpair
=

∫ 1

0
dz Pγe(z) =

7

9
− b

3
≈ 7

9
. (5.21)

Both electrons and photons lose their energy exponentially, E(X) = E0 exp(−X/X0), with
the radiation length X0 ≈ 37.2g/cm2 (in air) and 7X0/9 as scales, respectively. Below the
critical energy Ecr ≈ 84.2 MeV, ionization losses become more important than pair production
and the growth of the cascade stops.

Shower profile in the atmosphere The solution of the coupled cascade equations for elec-
trons and photons in the high-energy limit, i.e. using Eq. (5.18) and (5.20) as splitting
probabilities, and for a power-law boundary condition (5.14b) at the top of the atmosphere
is lengthy but straightforward. Here we mention only the two essential steps, for details see
the classic paper of Rossi and Greisen [16]: First, one obtains an infrared-finite expression
writing the divergent total bremsstrahlung probability as an integral and combining it with
the gain term. Second, in the scaling limit the functions Z are for a fixed α simple numbers
and one has to solve therefore only two coupled first-order differential equations. Hence, the
solutions are of the type A exp(λ1(X)) +B exp(λ2(X)).

The number of electrons Ne(X) in an electromagnetic shower initiated by a photon as
function of the shower age

s =
3t

t+ 2β
(5.22)

is approximately

Ne =
0.31√
β

exp

[

t

(

1− 3

2
ln s

)]

, (5.23)

where t = X/X0 and β = ln(E/Ecr). This approximation takes into account also low-energy
processes; Ne(X) is shown for several shower energies in Fig. 5.3. A shower initiated by a
primary with energy E = 1020 eV requires about one atmospheric depth to develop fully and
contains around 1011 particles at its maximum.

5.5.2 Cascades on diffuse photon backgrounds

A high energy photon scattering on a low energy background photon (e.g. from the cosmic
microwave or infra-red background) can start an electromagnetic cascade, via the two main
processes

γ + γb → e+ + e− (5.24)

e+ γb → e+γ . (5.25)

Pair production stops for s = 4Eγεγ < 4m2
e, where εγ is the typical energy of the background

photons. Electrons continue to scatter on cosmic microwave photons in the Thompson regime,

44



5.6 Exercises

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0  200  400  600  800  1000  1200  1400  1600

N
e(

X
)

X [g/cm2]

s=0.4

s=0.6

s=0.8 s=1.0 s=1.2

1011

1020

Figure 5.3: Number of electrons Ne(X) in an electromagnetic shower initiated by a photon
as function of the depth X for primary energies 1011, 1012, . . . , 1020 eV; the shower
age s is also indicated.

producing photons with average energy

Eγ =
4

3

εγE
2
e

m2
e

≈ 100 MeV

(
Ee

1TeV

)2

. (5.26)

Hence the Universe acts as a calorimeter for electromagnetic radiation, accumulating it in the
MeV-GeV range. Moreover, it means that the Universe is opaque for high energy photons.
Figure 5.4 show the absorption length of photons on various sources of background photons.
Starting from energies in the TeV range, high-energy photon astronomy can study only the
local (and therefore also recent) Universe. This is one of the main motivations to explore also
high energy neutrinos, despite of the experimental challenges in neutrino detection.

5.6 Exercises

1. Show that Pcl for synchrotron radiation has the correct Lorentz transformation proper-
ties by expressing it as function of Fµν and pµ.

2. Rewrite the energy losses due to synchrotron radiation and Compton scattering as
function of the energy density of the magnetic field and real photons and show that the
two expressions agree in the classical limit.

3. Find the number of particles in the shower maximum, the corresponding shower age s
and depth Xmax from Eq. (5.23).
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6 Extragalactic cosmic rays

6.1 Propagation of extragalactic particles

6.1.1 Energy losses of protons and nuclei

There are three main energy loss processes for protons propagating over cosmological dis-
tances: Adiabatic energy losses due to the expansion of the universe, −(dE/dt)/E = H0,
e+e− pair-, and pion-production on photons of the cosmic microwave background (CMB).

The relative energy loss per time of a particle (due to interactions with the CMB) can be
estimated as

1

E

dE

dt
= 〈yσnγ〉 (6.1)

where y = (E−E′)/E is the energy fraction lost per interaction, nγ ≈ 410/cm3 is the density
of CMB photons with temperature T ≈ 2.7K and the brackets 〈. . .〉 remind us that we should
perform an average of the differential cross section with the momentum distribution n(p) of
photons. In our estimates, we avoid this complication considering only reactions well above
the threshold energy when essentially all photons participate in the reaction.

Electron-positron pair-production Since the produced e+e− pair in the process p + γ →
p+ e++ e− is light, this energy loss process has a low threshold energy but leads in turn only
to a small energy loss1 per interaction, y = 2me/mp ≈ 10−3. The threshold energy on CMB
photons follows from (kp + kγ)

2 ≥ (mp + 2me)
2 as Ep ≥ memp/Eγ ∼ 2× 1018 eV. The cross

section of the reaction is σ = α/32σThf(s), i.e. is a factor ∼ 2× 10−4 smaller than Compton
scattering.

Pion-production and the GZK effect Greisen and Zatsepin and Kuzmin noticed that pion-
production should introduce a “cutoff” in the cosmic ray spectrum. Since y ≈ mπ/mp ≈ 0.2
close to threshold, but the cross-section is of similar size as the one of pair-production, the
energy losses of protons suddenly increase around 5× 1019 eV.

For an estimate of the cross section for pion production we use the Breit-Wigner formula
with the lowest lying nucleon resonance ∆+ as intermediate state,

σBW(E) =
(2J + 1)

(2s1 + 1)(2s2 + 1)

π

p2cms

binboutΓ
2

(E −MR)2 + Γ2/4
, (6.2)

where p2cms = (s − m2
N )2/(4s), MR = m∆ = 1.230GeV, J = 3/2, Γtot = 0.118GeV, bin =

0.55%. At resonance, we obtain σBW ∼ 0.4mbarn in good agreement with experimental data,
cf. Fig. 6.1. We estimate the energy loss length well above threshold Eth ∼ 4× 1019 eV with

1Close to the threshold, the energy fraction lost can be obtained considering the “decay” of the intermediate
state at rest.
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Figure 6.1: Left: Experimental data for the photo-nucleon cross-section together with a
theoretical prediction for the contributions of various subprocesses, from Ref. [17].
Right: Comparison of the different contributions to the energy losses of a proton.

σ ∼ 0.1mbarn and y = 0.5 as

l−1
GZK =

1

E

dE

dt
≈ 0.5× 400/cm3 × 10−28 cm2 ≈ 2× 10−26 cm−1 (6.3)

or lGZK ∼ 17 Mpc. Thus the energy loss length of a proton with E >∼ 1020 eV is comparable
to the distance of the closest galaxy clusters and we should see only local sources at these
energies. Note that it is this smallness of the “horizon scale” that makes the identification of
UHECR sources feasible, despite the rather poor angular resolution of UHECR experiments,
δϑ ∼ 1◦, and deflections of charged particles in magnetic fields.
The right panel of Fig. 6.1 compares the relative energy losses of a proton due to redshift,

e+e− pair- and pion-production on CMB photons. One clearly recognizes the increase of the
energy losses by two orders of magnitude around 5 × 1019 eV and expects therefore a cor-
responding suppression (not a cutoff) of the cosmic ray flux above this energy. (Remember
that each shell of thickness ∆r contributes the same fraction to the total intensity, if energy
losses and general relativistic effects can be neglected.) Thus the name GZK cutoff is some-
what misleading, and the exact strength of the suppression depends on various details as the
number density of the sources.
The AGASA experiment detecteded in the 90’ies an excess of events above 1020 eV com-

pared to predictions. There had been extensive discussions, if this result requires some kind
of “new physics”, but meanwhile new data of the Hires and Pierre Auger Observatory (PAO)
confirmed the UHECR flux expected in the presence of the GZK effect.

Attenuation of nuclei The dominant loss process for nuclei of energy E >∼ 1019 eV is pho-
todisintegration A + γ → (A − 1) + N in the CMB and the infrared background due to the
giant dipole resonance. The threshold for this reaction follows from the binding energy per
nucleon, ∼ 10MeV. Photodisintegration leads to a suppression of the flux of nuclei above an
energy that varies between 3× 1019 eV for He and 8× 1019 eV for Fe.

6.1.2 Galactic and extragalactic magnetic fields

Magnetic fields affect the propagation of charged particles deflecting them, leading in turn
to synchrotron radiation. While even for ultrahigh energy protons synchrotron losses are
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Figure 6.2: Deflection map of the GMF for a rigidity of 4× 1019 V from Ref. [18]; The deflec-
tion scale at the top is in degree.

negligible except in the relatively strong magnetic fields close to sources, the magnitude of
deflections limits the possibility to perform charged particle astronomy. The deflection angle
in a regular magnetic field after the distance d is

ϑ ≃ d

RL
≃ 0.52◦Z

( p⊥
1020 eV

)−1
(

d

1 kpc

)(
B

µG

)

(6.4)

for a particle with momentum p⊥ perpendicular to B.

Figure 6.2 shows a deflection map for a specific model for the Galactic magnetic field and
a rigidity of 4 × 1019 V; for details of the model see Ref. [18]. The map uses a Hammer-
Aitoff projection of galactic coordinates with the Galactic center in the middle. The expected
deflections depend strongly on the direction, but typically trajectories passing the Galactic
center or plane suffer larger deflections.

Magnetic fields beyond the Galactic disk are poorly known and include possibly an extended
regular and a turbulent field in the halo of our Galaxy and a large scale extragalactic magnetic
field (EGMF). In the latter two cases, the magnetic field is simplest characterized by an r.m.s.
strength B and a correlation length lc, i.e. it is assumed that the field is smooth on scales
below lc in real space. If we neglect energy loss processes, then the r.m.s. deflection angle
δrms = 〈δ2〉1/2 over the distance d≫ lc is

δrms ≃
(2dlc/9)

1/2

RL
≃ 0.8◦ Z

(
E

1020 eV

)−1( d

10Mpc

)1/2( lc
1Mpc

)1/2( B

10−9G

)

. (6.5)

For a calculation of δrms one needs either observational data or reliable theoretical predic-
tions both for the magnitude and the structure of EGMFs. At present, no single theory for the
generation of magnetic field has become widely accepted. Observational evidence for EGMFs
has been found only in a few galaxy clusters observing their synchrotron radiation halos or
performing Faraday rotation measurements. The two methods give somewhat different results
for the field strength in clusters, with B ∼ 0.1–1 µG and B ∼ 1–10 µG, respectively. Outside
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Figure 6.3: Left: Proton spectrum for different generation spectra [19]. Right: Modification
factor for the proton spectrum from uniformly distributed sources [20].

of clusters only upper limits exist for the EGMF. The combination of poor observational data
and of a missing consistent theoretical picture prevents at present a reliable estimate of the
influence of EGMFs on the propagation of UHECRs. It is likely that future UHECR data
will provide the first information about EGMF outside the core of galaxy clusters.

Deflections also imply an average time delay of

τ ≃ δ2rmsd/4 ≃ 1.5× 103 Z2

(
E

1020 eV

)−2( d

10Mpc

)2( lc
1Mpc

)(
B

10−9G

)2

yr (6.6)

relative to the rectilinear propagation of cosmic rays with the speed of light. As a result, even
a bursting extragalactic source like a gamma ray burst is seen over time-scales that exceed
vastly possible observation times.

6.2 The dip and the Galactic–extragalactic transition

Transition energy The traditional point of view of the transition between Galactic and
extragalactic sources assumes that the generation spectrum of both Galactic and extragalactic
cosmic rays is dN/dEg ∝ 1/Eα with α = 2.0–2.2 as predicted by Fermi acceleration. In this
picture, extragalactic sources dominate only above E ∼ 3 × 1019 eV the cosmic ray flux, cf.
the green line in the left panel of Fig. 6.3. This scenario requires therefore the existence of
new, isotropically distributed Galactic sources able to accelerate to E ∼ 1019 eV. In a more
recent view, one uses as generation spectrum of extragalactic cosmic rays dN/dEg ∝ 1/Eα

with α = 2.6–2.7 and can then explain the shape of the cosmic ray spectrum down to a
few×1017 eV with extragalactic sources [20]. How well the shape is described becomes clearer
plotting the “modification factor η”, i.e. the ratio of the diffuse fluxes calculated taking into
account all losses and including only redshift losses. In the right panel of Fig. 6.3, experimental
data from the HiRes experiment are compared to the theoretically predicted modulation
factor assuming a simple power-law as generation spectrum. Galactic sources dominate the
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6.3 Extensive air showers initiated by hadrons

spectrum, when η > 1: In this case, the observed cosmic ray intensity is larger than expected
from extragalactic sources alone. Hence Fig. 6.3 motivates the view that Galactic sources
dominate the spectrum only below a (few×1017 –1018) eV.

There exist at least two different explanations for the steep generation spectrum with
α = 2.6–2.7: Either it indicates that the acceleration to energies above E >∼ 1017 eV is not
mainly based on Fermi shock acceleration, or that the diffuse and the source spectra differ
not only by propagation effects. In the latter case, it is sufficient that there is a distribution
of maximal source energies as dn/dEmax ∝ 1/E1.6. This assumption is plausible, since the
number of sources able to accelerate to higher and higher maximal energies Emax should
decrease with Emax.

Magnetic Horizon The transition between Galactic and extragalactic dominance in the
cosmic ray spectrum may be caused by a magnetic horizon hiding extragalactic sources below
E <∼ 1018 eV. The maximal distance a cosmic ray can travel is in the diffusion picture given
by

r2hor =

∫ t0

0
dt D(E(t)) =

∫ E

E0

dE′

β
D(E′(t)) , (6.7)

where t0 is the age of the Universe. If we consider cosmic rays with energy below E0 <∼ 1018eV,
the energy losses are mainly due to the expansion of the Universe, β = dE/dt = −H. We use
a “quasi-static” Universe, H(t) = H0 and t0H0 = 1. Then E(t) = E0 exp(−H0t) and

r2hor =
clc
6H0

(
E

Ecr

)2

(exp(2)− 1) , (6.8)

usingD(E) = clc/3(E/Ecr)
2 valid for RL >∼ lc. (Remember that Ecr was defined by RL(Ecr) =

lc.)

If we assume that a magnetic field with coherence length lc ∼Mpc and strength B ∼ 0.1 nG
exists in a significant fraction of the Universe, then the size of the magnetic horizon at
E = 1018 eV is rhor ∼ 100Mpc. Hence, similar to the GZK suppression above 6 × 1019 eV,
we see a smaller and smaller fraction of the Universe for lower and lower energies. As a
consequence, the spectrum of extragalactic cosmic rays visible to us steepens below 1018 eV
and the extragalactic component becomes sub-dominant.

Energetic reasons suggest that not only the observed diffuse spectrum but also the intrinsic
spectrum of extragalactic UHECR steepens not far below 1017 eV: The total luminosity of a
source depends on its minimal energy as L ∝ E2−α

min . The combination of large α and small
Emin cuts across the energy budget of even as powerful and numerous sources as AGNs. This
problem is softened if there is a transition to an 1/E2 generation spectrum at low energies.

6.3 Extensive air showers initiated by hadrons

A proton or a nuclei interacting at the top of the atmosphere produces an air shower consisting
of a core of high energy hadrons that transfer continuously part of their energy to new
electromagnetic sub-cascades, mainly by the process π0 → 2γ. A smaller fraction of the
energy is transferred by decays of charged pions to muons and neutrinos. We will not discuss
these processes in detail, but refer instead only to the results of the simple model discussed
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Figure 6.4: Electron number Ne and muon number Nµ (in arbitrary units) for two proton
and iron showers as function of the depth X.

in Sec. 5.5: The primary energy E0, the depth of the shower maximum Xmax and the number
N(Xmax) of particles at the shower maximum are connected by

N(Xmax) ∝ E0 and Xmax ∝ lnE0 . (6.9)

Differentiating between primaries According to the superposition model, a nuclei of mass
number A and with energy E0 interacts as A independent nucleons with energy E0/A. Thus
the number of particles at the shower maximum is unchanged but its position Xmax ∝ lnE0/A
depends on A. As it is schematically shown in Fig. 6.4, an iron shower develops faster and
reaches is maximum earlier than a proton shower. Moreover, the shower-to-shower fluctua-
tions in the case of heavy nuclei as primaries are smaller compared to the ones for primary
protons. This is very intuitive in the simple superposition picture where a shower initiated
by a nuclei is described as a superposition of A independent showers. However, the simple
superposition picture fails to describe quantitatively EAS fluctuations, because of the large
fluctuations of elementary nucleus-nucleus interactions.

Figure 6.4 shows also the muon number Nµ for a proton and iron shower. First, because
muons do not multiply through electromagnetic processes (for example, the cross section for
the process γ +A→ A+ µ+ + µ− is strongly suppressed by the muon mass), their number is
much smaller than the one of electrons and photons. As a result of the slower increase of Nµ

and the large attenuation length, the muon number has a much weaker dependence on the
depth. This reduces fluctuations and makes, at least in principle, the muon number a better
estimator for the primary energy. However, this advantage is counterbalanced by the larger
theoretical uncertainty of Nµ and the smaller number of muons. Figure 6.4 illustrates also
that observing both Ne and Nµ at a fixed depth X provides information about the chemical
composition of cosmic rays.
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6.4 Astronomy with charged particles

Experimental techniques Present experiments use mainly two different techniques to detect
ultrahigh energy cosmic rays. The traditional one uses an array of detectors on the ground
to sample secondaries. Two commonly used detector types are scintillation detectors mainly
sensitive to electrons and water tanks where the Cerenkov light emitted manly by muons is
recorded by photomultipliers. The array of detectors is built as sparse as possible, to achieve
a large aperture within fixed time and money constraints. Therefore only a tiny fraction of all
particles is measured. Timing information allows one to reconstruct the arrival direction and
the core of the shower. Then a theoretical formula for the number density ρ(r) of particles
as function of the distance to the shower core and of the primary energy is fitted to the
measurements. Empirically, it is found that ρ(r) at rather large distance from the core is
least sensitive to the primary type (i.e. the mass number A of nuclei) and has the smallest
fluctuation from shower to shower. Depending on the detector type and the spacing of the
array, this optimal distance varies and amounts e.g. to 1000m in the case of the PAO. The
conversion factor between, say ρ(1000), and the primary energy has to be found either from
Monte Carlo simulations or using different experimental techniques.

An example for a method that is calorimetric and therefore, at least in principle, allows one
a model-independent determination of the primary energy is the fluorescence light method. As
the shower passes through the air, electrons excite nitrogen molecules that emit isotropically
fluorescence light. Optical cameras on the ground can trace therefore the shower evolution.
If the excitation probability of nitrogen by a beam of electrons is known, the emitted light
integrated over the shower trajectory can be used as a measure for the energy of the primary
particle. Disadvantages of this method are the restriction to moonless nights, the need for a
careful control of the atmospheric conditions, and the more difficult calculation of the aperture
of the experiment.

6.4 Astronomy with charged particles

Possible anisotropies expected for extragalactic cosmic rays can be classified into four sub-
classes:

• At such high energies that deflections in the Galactic and extragalactic magnetic fields
are sufficiently small, point sources may reveal themselves as small-scale clusters of
UHECR arrival directions. This requires additionally a rather low density of UHECR
sources so that the probability to observe several events of at least a subset of especially
bright sources is large enough.
Even if one observes from most sources only one event, a correlation analysis with
specific sources types may reveal the UHECR sources. This requires however to choose
a very special class of astronomical sources and/or a high threshold energy, in order to
keep the number of potential sources within the horizon sufficiently small.

• Moving to lower energies, the energy-loss horizon of UHECRs and thereby the num-
ber of sources visible increases. Moreover, deflections in magnetic fields become more
important. As a result, the identification of single sources is not possible anymore. In-
stead, anisotropies on medium scales should reflect the inhomogeneous distribution of
UHECR sources that is induced by the observed large-scale structure (LSS) of matter,
cf. Fig. 6.5. Since different source types have different clustering properties, this offers
an alternative way to identify the sources of UHECRs.
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6 Extragalactic cosmic rays

Figure 6.5: The distribution of normal galaxies color coded according their redshift, in galactic
coordinates. The empty band along the Galactic plane is caused by extinction
and does not reflect an intrinsic lack of objects [24].

• At even lower energies, also the LSS of sources disappears, both because the inhomo-
geneities in the source distribution will be averaged out due to the increased energy-loss
horizon of UHECRs and because of deflections in the EGMF. Thus the cosmic ray sky
would appear isotropic, if the Earth would be at rest with respect to the cosmological
rest frame. As the observation of the CMB dipole shows, this is not case, and a dipole
anisotropy is expected if the cosmic ray flux is dominated by sources at cosmological
distance. This is the “cosmological variant” of the Compton-Getting effect discussed
earlier.

Since the Sun moves with u = 368± 2 km/s towards the great attractor, the predicted
anisotropy is δCG = (2 + 2.7)u ≃ 0.6% taking into account the observed spectrum
I(E) ∝ E−2.7 of cosmic rays above the ankle. Deflections of UHECRs in the Galactic
magnetic field should only displace the dipole axis, but not affect the magnitude of this
effect. For instance, at energies (2–3)×1019 eV and for proton primaries, the dipole
position should be aligned to the one observed in the CMB within about 10◦. Ob-
serving the Compton-Getting effect at only one energy provides combined information
on the intervening Galactic magnetic field and the charge of the cosmic ray primaries.
However, observations at two or more energies break this degeneracy. For example, the
determination of the average primary charge is straightforward as long as cosmic rays
propagate in the quasi-ballistic regime and given by the relative shift of the cosmic ray
and CMB dipole axis at two different energies.

• Finally, analogous to the latitude effect in the geomagnetic field, the Galactic magnetic
field (GMF) can induce anisotropies in the observed flux of extragalactic UHECRs,
for rigidities low enough that blind regions exist. Anisotropies of this kind should be
expected in models that invoke a dominating extragalactic proton component already
at E ≃ 4× 1017 eV or extragalactic iron nuclei at E <∼ 1019 eV [18].

It is not guaranteed that all these four anisotropies can be observed. If EGMFs are large,
UHECR primaries are nuclei and/or the source density is large, the integrated flux above
the energy where point sources become visible may be for the present generation of UHECR
experiments too small. Similarly, a transition from galactic to extragalactic sources at a rel-
atively high energy reduces the chances to observe the cosmological Compton-Getting effect.
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Figure 6.6: Chance probability P (δ) to observe a larger value of the autocorrelation function
as function of the angular scale δ for different combinations of all publicly available
experimental data; from Ref. [22].

6.4.1 Clustering on medium and small scales

The cosmological Compton-Getting effect requires that inhomogeneities in the source dis-
tribution of cosmic rays are averaged out. As the free mean path of cosmic rays decreases
for increasing energy, anisotropies connected to the large-scale structure (LSS) of cosmic ray
sources become more prominent and replace the cosmological Compton-Getting effect. The
exact value of this transition energy E∗ depends both on the amount of clustering in the
source distribution and the free mean path λCR of cosmic rays, i.e. also the primary type.
For the specific case of proton primaries and a source distribution proportional to the density
of baryons, Ref. [21] found E∗ ≈ 5 × 1019 eV and a minimal number of order 100 events for
a detection.
The first strong evidence for medium-scale clustering was found combining all available

data sets of UHECR events with energy E ≥ 5 × 1019 eV and published arrival directions
until 2005 in [22]. The most convenient tool to search for deviations from anisotropy is in
this case the cumulative auto-correlation function,

W (ϑ) =
N(< ϑ)

N ′(< ϑ)
− 1 , (6.10)

where N and N ′ denote the number of pairs with separation angle < ϑ in the observed data
and in a randomly generated data set, respectively. Figure 6.6 shows the chance probability
Pch to observe a larger number of pairs the random data than in the observed data. Clearly,
the observed arrival directions show a surplus of clustering that is most significant on a typical
scale of ∼ 25◦. Similar findings have emerged recently from an analysis of the preliminary
data from the Pierre Auger Observatory (PAO) [23]. For 64 events with E > 4 × 1019 eV
the data presented in Ref. [23] show a surplus of clustering in the broad range from 7 to
30 degrees. Thus the LSS of matter, probably modified by extragalactic magnetic field, is
reflected in the arrival directions of UHECRs. The obvious question is how one can extract
the information contained in a plot like Figure 6.6.
In order to address this issue, we compare the non-cumulative auto-correlation w(ϑ), i.e.

considering the number of pairs N and N ′ per bin [ϑ−∆ϑ : ϑ+∆ϑ], of galaxies and AGNs in
Fig. 6.7. By construction, w(ϑ) > 0 indicates overdense regions and one recognizes that the
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6 Extragalactic cosmic rays

Figure 6.7: The auto-correlation function w(ϑ) for galaxies (black), galaxies with M < 24
(magenta), and AGNs (blue) as function of ϑ with 1σ error bars, from Ref. [24].

clustering at smaller angular scales increases for normal galaxies much slower than for AGNs.
Tightening the cut in absolute magnitude to M < 24 makes the clustering of normal galaxies
on the smallest scales comparable in strength to the one of AGNs. Both effects are easily
understandable: More massive objects are stronger clustered, and the overlap of the brightest
(optical) galaxies and AGN is large so that these two sets should have quite similar properties.
A comparison of the auto-correlation function of UHECR arrival directions with the one from
proposed source catalogues seems to be most promising on intermediate angular scales: First,
the statistical errors both in cases of sources and cosmic rays become sufficiently small above
∼ 10◦. Second, the effect of systematic errors like experimental errors and deflections in
magnetic fields decreases on larger scales. Turning the second argument around, one can
use the scale below which deviations between the measured and the expected autocorrelation
functions appear as measure for the combined effect of deflections in extragalactic and Galactic
magnetic fields.

A study of the auto-correlation function of UHECR arrival directions should allow one with
a rather small event sample to distinguish between GRBs and AGNs as sources. Mainly long
duration GRBs are discussed as sites for the UHECR acceleration. They occur in star forming
galaxies that are less clustered as average galaxies. Thus GRBs should be distinguishable from
AGNs by their clustering properties.

The strong clustering of AGNs as the paradigm source of UHECRs requires a re-
interpretation of the traditional view of small-scale clustering. Often, one considered for
simplicity uniformly distributed sources and distinguished between chance coincidences and
true clusters, i.e. events from the same source. For clustered sources, the probability to ob-
serve multiplets from several sources in an overdense region is much increased and this might
be the main source of small-scale clusters.

6.4.2 Correlations with astrophysical sources

The angular resolution of modern cosmic ray experiments reaches ∼ 1 degree, and thus even
for the UHECRs with the highest energies observed, E ∼ 1020 eV, deflections in magnetic
fields are likely to be more important. In order to avoid a too large number of potential
sources per angular search bin, one has thus to choose either a very specific test sample, e.g.
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Figure 6.8: Skymap in galactic coordinates showing the arrival directions of the 27 highest
energy cosmic rays with E > 5.7× 1019 eV (black circles) detected by Auger and
472 AGN within 75Mpc (red stars). The blue region indicates the field of view of
Auger, from Ref. [25].

a small subset of all AGNs, or a very high energy cut such that the cosmic ray horizon scale
is sufficiently small, say of the order 100 Mpc. Thus we see that the GZK effect is a crucial
ingredient for a successful correlation analysis.
Until now, all claims for correlations of UHECR arrival directions with specific source

classes have remained controversial. It was anticipated that the increased aperture of the
PAO should improve this situation. The recent analysis of the Auger experiment [25] claims
indeed correlations between the arrival directions of the highest energy cosmic rays with
E > 5.7 × 1019 eV and nearby AGNs. The red stars in Fig. 6.8 mark the positions of AGNs
with distances ≤ 75Mpc, while the open circles show the search bin with opening angle 3.1◦

around the CR arrival directions used in this analysis. An overdense region of AGNs along
the supergalactic plane (dashed line) is clearly visible, where the angular distance between
AGNs is considerably smaller than the size of the search bin used. The observation of a
larger number of correlations between UHECR arrival directions and AGNs than expected
from a random distribution, as in Ref. [25], should be therefore interpreted only as evidence
that the UHECR sources have a similar distribution as AGNs. The differentiation among
different sources (e.g. AGNs vs. GRBs or among different subtypes of AGNs) would require
a comparison of the correlation (and/or auto-correlation) signal for different source types.
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7 High energy neutrino astrophysics

7.1 Connecting neutrino, γ-ray and cosmic ray fluxes

Neutrinos are copiously produced by nuclear reactions in stars and SNe, and as secondaries in
cosmic ray interactions. Because of the small distance to the production site, solar and atmo-
spheric neutrinos are experimentally easiest accessible and the only ones regularly detected
at present. The smallness of their interactions that makes neutrino detection experimen-
tally so challenging turns neutrinos into ideal messengers to study the interiors of stars, the
surroundings of supermassive black holes in AGNs or the edge of the universe.

As we noted in the introduction, any process involving hadronization, i.e. the formation of
colorless hadrons out of quarks and gluons, leads mainly to the production of pions. Isospin
symmetry fixes then the ratio of charged and neutral pions. For instance, close to the thresh-
old, the two possible channels of photo-meson production, p+γ → p+π0 and p+γ → n+π+

have a ratio that is close to 2:1. While the π0 decay produces two photons, the final state of the
second channel contains after the decays n→ p+e−+νe and π

+ → µ++νµ → e++νe+ν̄µ+νe
two electrons and four neutrinos. Clearly, the production of neutrinos is thus intimately tied
to the one of photons and electrons, and both depend in turn on the flux of primary cosmic
rays.

While photons and electrons start electromagnetic cascades, either on photons in the source
or from the CMB, neutrinos reach us suffering only from redshift losses. As a result, the
measurement of X- and γ-rays fluxes can be used to limit possible high energy neutrino
fluxes. The connection between the observed cosmic rays and neutrinos is more model-
dependent. A popular set of assumptions is the following one: Protons are accelerated in a
source region, confined by magnetic fields. They interact on background photons (say in the
UV range) in the source, neutrons from p+ γUV → n+ π+ escape and provide the observed
cosmic rays, while the π+ decays produce neutrinos. This argument does not exclude that
(a subset of) sources exists with sufficiently large interaction depth τ such that also neutrons
interact frequently inside the source. The cosmic ray flux from these sources would be strongly
suppressed and therefore this type of sources has been coined “hidden sources.” Before we
discuss the connection of neutrinos, cosmic rays, and γ-ray fluxes, we consider the yield of
neutrinos and photons for a single source.

Photon and neutrino yields at the source The yield Yi(E) of secondaries is defined as the
dimensionless ratio of the secondary flux φi(E), i = γ, ν, and the product of the initial proton
flux φp(E) and the interaction depth τ ,

Yi(E) =
φi(E)

τφp(E)
. (7.1)

We consider only in detail the simpler case of photons as secondaries. Generalizing Eq. (5.10),
the total photon flux from neutral pion decays that are in turn produced as secondaries in pp

58



7.1 Connecting neutrino, γ-ray and cosmic ray fluxes

or pγ scatterings is

φγ(Eγ) = 2

∫ ∞

Eγ

dEπ

Eπ

∫ ∞

Eπ

dEp Nπ0(Ep)
dσ(Ep, Eπ)

dEπ
τ(Ep)φp(Ep) , (7.2)

where Nπ0 denotes the multiplicity of neutral pions and τ the interaction depth. For the
same assumptions as used in the derivation of Eq. (5.17), we obtain as approximation for the
photon yields

Yγ(E) =
φγ(E)

τφp(E)
=

2

α
Zpπ0(α) , (7.3)

where now in the definition of Zpπ0(α) the neutral pion multiplicity is included. The calcula-
tion of the neutrino yields proceeds along the same lines. However, the resulting expressions
are rather lengthy, because the decays are non-isotropic, the decay chains are more complex
and the final-state particles massive. The relevant expressions can be found in Refs. [E1,E2].

In Fig. 7.1, the neutrino yields Yν(E) from various subprocesses (pion, kaon and charm
decays) are shown for a thermal distribution of photons with temperature T = 104K and
three different interaction depths. As long as τ <∼ 1, i.e. multiple scatterings can be neglected,
the yields are by construction independent from τ . The yields are also independent from T , if
one uses instead of the energy E the parameter x = Eω/m2

p, where ω = 1.6T is the maximum
of the Planck distribution, Therefore they are a convenient tool to estimate photon or neutrino
yields as long as τ <∼ 1. Tabulated values of Y for different α can be found in Ref. [E1,E2].

Figure 7.1: Neutrino yield Y as function of x = Eω/m2
p for T = 104 K from pion, charged

and neutral kaon, and charm decays for τ = 0.05, 0.5 and 50; from Ref. [26].

Cascade limit The general concept of electromagnetic cascades discussed in Sec. 5.5 has
several important applications. Firstly, we can use it to derive a simple bound on the UHE
neutrino flux. Using the branching ratio 2:1 for p + γ → p + π0 and p + γ → n + π+, the
approximation that the four leptons produced in muon decay share equally the energy as well
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as the fact that in neutron decay almost all energy is taken by the proton, the ratio of energy
transferred to neutrinos and the electromagnetic channel follows as 1:3, ων = 3ωγ .
If we approximate the neutrino intensity in the range [E,Emax] by a power-law, Iν(E) =

AE−α, then the integral neutrino intensity is connected to ων via

Iν(> E) =
α

α+ 1

[

1−
(
Emax

E

)−α
]−1

c

4π

ων

E
, (7.4)

where ων is the energy density in neutrinos in the same energy range [E,Emax]. The first
two terms are bounded by one, provided that the energy range considered is large enough,
α ln(E/Emax) > 1. With ων ≤ 3ωγ , we obtain thus as bound for the integrated neutrino flux

Iν(> E) ≤ c

12π

ωγ

E
. (7.5)

In order to apply this bound, we have to distinguish between different possible photon
backgrounds on which cascades can develop. The only universal one is the CMB leading
to a guaranteed flux1 of UHE neutrinos via the GZK reaction of UHECRs as well as to a
contribution to the diffuse photon flux in the 100MeV–10GeV range. This energy range
has been observed by the EGRET experiment and thus a bound on the diffuse extragalactic
gamma-ray flux can be derived. Integrating this maximal flux, the limit on ωγ follows as

ωγ ≤ 2× 10−6 eV/cm3 . (7.6)

If we assume that Iν(Eν) = AE−2
ν , we can combine Eqs. (7.5) and (7.6) into a limit on the

differential neutrino intensity,

E2
ν Iν(Eν) ≤ 2× 10−6GeV cm−2 s−1 sr−1 . (7.7)

Electromagnetic cascades may happen also inside many sources. Since the Thomson cross
section is a factor 3000 larger than the cross section for photo-meson production, σTh/σpγ ∼
3000, sources where photo-meson reactions are relevant are likely optically thick. To be
specific, let us assume that the source of opacity are UV photons, εγ ∼ 10 eV, as it is the case
for many AGNs. Hence the critical energy for pair production is reduced to Ecr ∼ 25GeV
compared to Ecr ∼ 400TeV for cascades on CMB photons. Thus the picture of the escaping
photon radiation is as follows:

• Photons with E ≫ Ecr escape from the source only from an outer layer of such a
thickness l that the interaction depth τγγ = lσγγnγ for pair-production is small, τγγ ∼ 1.

• The source is bright in the ∼ 10− 100GeV range, where the last generation of photons
generated in the cascade can escape.

• Electrons with energy below Ecr continue to scatter in the source in the Thomson
regime, producing photons in the X-ray range with average energy

Eγ =
4

3

εγE
2
e

m2
e

∼ 100 eV − 0.1MeV (7.8)

for Ee = 1GeV and 25GeV, respectively.

1If UHECRs are dominantly nuclei, a neutrino flux at lower energies from neutron decays (via A + γ3K →

(A− 1) + n) results.
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Cosmic ray limits The total energy density in neutrinos can be directly bounded by the
energy density injected in cosmic rays by extragalactic sources, if neutrinos are produced
only in transparent sources. If one assumes further that only neutrons can leave the sources,
this bound becomes a prediction. To proceed, one has to specify the generation spectrum of
extragalactic cosmic ray, i.e. one has to choose essentially between the traditional point of
view (injection spectrum dE/dN ∝ E−2 and transition energy around 3 × 1019 eV) or the
dip scenario [(effective) injection spectrum dE/dN ∝ E−2.6 and transition energy around
1018 eV). Using the first choice, several authors advocated bounds or expectations for the
neutrino flux of order

E2
ν Iν(Eν) ∼ few × 10−8GeV cm−2 s−1 sr−1 . (7.9)

Thus the cosmic ray limit is about a factor 100 stronger than the cascade limit. However, one
should be aware that even within the framework of transparent sources cosmic ray bounds
obtained for a fixed set of parameters can only be indicative, because the sensitivity of the
cosmic ray and the neutrino fluxes on several free parameters like the redshift evolution of
their sources differs strongly.

Figure 7.2: A collection of various bounds on neutrino fluxes: The solid line at the top cor-
responds to the cascade limit (7.7), the lower dashed horizontal line to the cosmic
ray limit (7.9), while the lines in-between correspond to varying assumptions used
for the cosmic ray limit, from Ref. [27].

7.2 Neutrino interactions, masses and mixing

One of the most surprising properties of the weak interactions is that only left-chiral fermions
(P−ψ) and right-chiral anti-fermions (ψP+) participate in charged-current (CC) weak inter-
actions,

LCC = − g√
2

∑

α

l̄L,αγ
µνL,αW

−
µ + h.c. . (7.10)
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Thus weak interaction violate parity P leading to a doublet/singlet structure of fermions,

(
νe
e−

)

L

,

(
νµ
µ−

)

L

,

(
ντ
τ−

)

L

eR, µR, τR . (7.11)

The current (7.10) defines what we mean with electron neutrino: It is the neutrino created
together with an electron in a CC interaction.

Since ordinary Dirac mass terms

mfψfψf = mf (ψ
L
fψ

R
f + ψR

f ψ
L
f ) (7.12)

are not gauge invariant, one introduces fermion masses in the standard model by gauge-
invariant Yukawa interactions. These interactions need not to know about weak interactions
and are thus not diagonal in flavor space,

Lmass = −
∑

α,β

ν̄L,αM
(ν)
αβ νR,β −

∑

α,β

l̄L,αM
(ch)
αβ lR,β + h.c., (7.13)

i.e. the mass matrices Mαβ are not hermitian or even diagonal in the basis of the weak eigen-
states. (We denote the weak eigenstates να = {νe, νµ, ντ} and lα = {e, µ, τ} by Greek indices
α, β . . ., and the mass eigenstates by Latin indices i, j, . . . Furthermore, we have assumed that
the neutrinos have only Dirac mass terms to simplify the formulas). Since the mass matrices
are not hermitian, they cannot be diagonalized by a simple unitary transformation. However,
arbitrary mass matrices can be diagonalized by a biunitary transformation,

M
(ν)
diag = U (ν)†M (ν)T (ν) , (7.14)

where U (ν)U (ν)† = T (ν)T (ν)† = 1. Then, the connection between weak and mass eigenstates
is given by

νR,α =
∑

i

T
(ν)
αi νR,i , νL,α =

∑

i

U
(ν)
αi νL,i , (7.15)

and similar equations hold for the charged leptons.

Inserting the transformations of Eq. (7.15) into the charged current Lagrangian (7.10) of
the SM, results in

LCC = − g√
2

∑

i,j

l̄L,iγ
µVijνL,jW

−
µ + h.c., (7.16)

where V = U (ch)†U (ν) is the analogue of the CKM matrix in the lepton sector. Since the
charged current interaction involves only left-chiral fields of both charged leptons and neu-
trinos, the product of the two mixing matrices of the right-handed leptons, T (ch)†T (ν), is
unobservable. The mixing V = U (ch)†U (ν) between charged leptons and neutrinos has two
different sources: It could be ascribed either completely to mixing in the neutrino (V = U (ν))
or in the charged lepton sector (V = U (ch)†), or most probably to some superposition of both.
Only the combination V is observable and, by convention, we set U (l) = 1.

In the case of massless neutrinos we can choose the neutrino mass eigenstates arbitrarily.
In particular, we can set U (ν) = U (ch) for any given U (ch), hereby rotating away the mixing.
This shows that neutrino masses are a necessary condition for non-trivial consequences of
mixing in the lepton sector.
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Figure 7.3: Production of a superposition of neutrino mass eigenstates νl in pion decay and
subsequent detection of the neutrino flavour via the secondary lepton l′m.

Neutrino oscillations in vacuum

Let us consider e.g. neutrinos produced in charged pion decay. The ratio R of π → eνe and
π → µνµ decay rates is

R =
Γ(π → eνe)

Γ(π → µνµ)
=
m2

e

m2
µ

(m2
π −m2

e)
2

(m2
π −m2

µ)
2
≈ 1.28× 10−4 , (7.17)

since angular momentum conservation in the pion rest frame requires a helicity flip of the
lepton. Similar, in neutron decay and in fusion reactions in stars only νe’s are emitted, because
of energetic reasons. Hence, in many occasions we start with a (nearly) pure flavor state.
The time-evolution between creation of an arbitrary state at t = 0 and detection at t

becomes simplest, if we decompose the weak interaction eigenstate να into mass eigenstates
νi,

|ν(t)〉 =
∑

i

U
(ν)
αi |νi〉e−iEt . (7.18)

Neutrinos are in all applications ultra-relativistic,

Ei = (p2 +m2
i )

1/2 ≈ p+m2
i /(2p) , (7.19)

where we have assigned also a definite momentum to the states |νi〉.

|ν(t)〉 = e−ipt
∑

i

U
(ν)
αi |νi〉e−im2

i /(2p)t . (7.20)

The probability for a transition from the flavor να to νβ after the distance L = ct is

Pα→β(t) =

∣
∣
∣
∣
∣

n∑

k=1

U∗
βk exp(−iEt)Uαk

∣
∣
∣
∣
∣

2

, (7.21)

where we introduced also ∆m2
ij = |m2

i −m2
j |.
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To be specific, we consider the simple case of two-flavor neutrino oscillations. Then the
survival probability is

Pνe→νe = 1− sin2
(

π
L

losc

)

sin2 2ϑ (7.22)

with the vacuum oscillation length

losc = 4π
E

∆m2
≈ 2.5 m

(
E

MeV

)(
eV2

∆m2

)

(7.23)

Thus the survival probability depends only on L/E, the mass squared difference of the two
neutrinos, and one mixing matrix element. Most strikingly, the smallness of the neutrino
masses makes it possible to observe the interference of quantum states on macroscopic length
scales.

7.3 Atmospheric neutrino oscillations

The principle production modes for neutrinos produced by comic rays in the atmosphere are
pion, kaon and muon decays. With π± → µ± + νµ(ν̄µ) and µ

± → e± + νe(ν̄e) + ν̄µ(νµ), one
expects the ratio

νe + ν̄e
ν̄µ + νµ

=
Ne

Nµ
∼ 1

2
, (7.24)

if all particles can decay. Muon decays become suppressed for E >∼ 2.5 GeV (λd > λatm)
and thus the ratio should decrease for higher energies. Since most neutrinos are produced
by low energy cosmic rays, geomagnetic effect must be included in the flux calculations. On
the experimental side, the connection of the visible energy and direction (of the secondary
electron or muon) to the one of the neutrino can be made only on a statistical basis and
requires good knowledge of detector response and acceptance.

Part of these problems can be avoided by looking at the double ratio

R =
(Ne/Nµ)data
(Ne/Nµ)MC

. (7.25)

If in the Monte Carlo no oscillations are included, one expect R ∼ 1 if neutrinos are massless.
The first conclusive deviation from R = 1 was found by the Superkamiokande experiment in
1998 with R = 0.69± 0.06.

Ratio of up- and down-going muons A decisive test for the oscillation hypothesis is the
ratio of up- and down-going muons: The oscillation length varies between 20km and 12800km,
and as function of the zenith angle the ratio should show the form predicted by the neutrino
oscillation formula. By fitting the experimental data to the free parameters ∆m2 and sin2 ϑ
of the neutrino oscillation formula, one derived ∆m2 ∼ 2.2× 10−3 eV2 and sin2 ϑ ∼ 1.

The atmospheric anomaly was later confirmed by sending a νµ beam from KEK to Kamioka.
The distance KEK-Kamioka is L = 250 km, while the mean neutrino energy was E ∼ 1.3 GeV.
The combined result of the two experiments is shown in Fig. 7.4, yielding the surprising result
that the atmospheric neutrino mixing angle is – in contrast to the quark sector – close to
maximal.
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7.4 High energy neutrino scattering

Figure 7.4: Overlay of the Superkamiokande and the K2K result.

7.4 High energy neutrino scattering

Parton model and scaling violation Neutrino-nucleon scattering can be described in the
parton model. This model assumes that a nucleon probed at sufficiently high Q2 >∼ Q2

min ∼
1 GeV2 behaves as a collection of independently interacting partons, i.e. quarks and gluons. If
the function fi(x) denotes the probability to find a parton of type i with momentum fraction
pi = xpN and σ(ŝ) the corresponding parton cross section, then the neutrino-nucleon cross
section follows as

σ(s) =
∑

i

∫ 1

xmin

dx fi(x)σ̂(ŝ) . (7.26)

In its original formulation, the parton model assumed that the parton distribution functions
fi(x) depend only on x. We can convince ourselves that fi(x) should depend also on Q2 by
looking at a Bremsstrahlung process. Consider a quark as an external line of a Feynman
diagram with momentum p and arbitrary mass m emitting a gluon of momentum q,

1

(p+ q)2 −m2
=

±1

2pq
=

±1

2ωE(1− cosϑ)
, (7.27)

where ω is the energy of the gluon, E and v the velocity of the parton and ϑ the emission
angle. There is a soft divergence for all m, if the energy of the emitted gluon goes to zero,
ω → 0. Additionally, there is a collinear singularity for light partons, v → 1, when ϑ→ 0.
These singularities generate logarithmic divergences integrating over the final phase space,

dσn+1 =
αs(Q

2)

2π
ln2(Q2/Q2

min)dσn , (7.28)

that can compensate the strong coupling although αs is small for large Q2. As a result, parton
cascades or jets develop in fragmentation processes. Similarly, the parton number inside a
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Figure 7.5: Cross sections for νN interactions at high energies: dotted line, σ(νN → ν +
anything); thin line, σ(νN → µ− + anything); thick line, total (charged-current
plus neutral-current) cross section, from Ref. [28].

nucleon increases with increasing Q2. Although the neutrino-quark cross section is constant
above s ≫ m2

W , the neutrino-nucleon cross section continues to grow as σ ∝ E0.4, because
the number of accessible partons with x ≥ xmin ∼ Q2

min/s increases as xq(x,Q2) ∼ x−0.33.

DGLAP equations The Q2-dependence of the parton distribution functions is described in
perturbative QCD by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

dqi(x,Q
2)

dt
=

αs(Q
2)

2π

∫ 1

x

dy

y

[

qi(y,Q
2)Pqq

(
x

y

)

+ g(y,Q2)Pqg

(
x

y

)]

(7.29)

dgi(x,Q
2)

dt
=

αs(Q
2)

2π

∫ 1

x

dy

y

[

qs(y,Q
2)]Pgq

(
x

y

)

+ g(y,Q2)Pgg

(
x

y

)]

. (7.30)

with t = ln(Q2/Q2
0) and qs =

∑nf

j=1[qj + q̄j ]. The splitting functions Pij

(
x
y

)
, with i, j = q, g

give the probability that parton j with momentum y radiates a quark or gluon and becomes
a parton of type i with fraction

(
x
y

)
of the momentum of parton j.

If we compare this equation to the production term of the transport equation for cosmic
rays, Eq. (3.38), we see that the structure of the two equations is the same. The reason for
this formal agreement (or the simplicity of the DGLAP equations) is that interference terms
can be neglected in the QCD cascade, since it corresponds to a semi-classical evolution.

7.5 Astrophysical sources of high energy neutrinos

Experiments and techniques Main problem of high energy neutrinos physics is the atmo-
spheric neutrino background and the expected low fluxes from astrophysical neutrino sources.
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Figure 7.6: Averaged shadow factor S(E) as function of the neutrino energy.

The search for neutrino sources is most promising at high energies, because the atmospheric
neutrino flux is very steep: At high energies, pions scatter and muons do not decay. Main
detection methods are at present Cherenkov light (in ice or water) emitted e.g. by a relativis-
tic muon produced in the reaction νµ + N → µ + X. In the future, the radio or acoustic
signal produced by a horizontal shower initiated by a neutrino reaction may allow one the
supervision of even larger detector volumes.

The event rate of muons with energy E > Emin in a detector of area A is

Rate = A

∫

dEdΩ Pµ(E;Emin
µ )S(E) Iν(Eν) . (7.31)

Here, the shadow factor S takes the attenuation in the Earth into account, and Pµ(E;Emin
µ )

is the probability that a muon is created and reaches the detector with > Emin.

Attenuation and Shadow factor The growth of the neutrino-nucleon cross section with
energy means that above Eν ∼ 40TeV the Earth becomes opaque even for neutrinos. If
we neglect any regeneration effects and assume that the flux is isotropic, this attenuation
can be represented by a shadow factor. The shadow factor averaged over the upward-going
hemisphere is

S(E) =
1

2π

∫ 0

−1
d cosϑ

∫

dφ exp[−X(ϑ)/λint(E)] (7.32)

and is shown in Fig. 7.6.

Average range of muons The second ingredient in the rate calculation is the probability
that the neutrino creates a muon that is energetic enough to arrive at the detector with an
energy Eµ larger than the detector’s threshold energy Emin

µ . The probability that a muon can
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Figure 7.7: Average ranges (in rock) for muons produced in charged-current interactions of
neutrinos with energy Eν , at threshold energies Emin

µ = 1and 10TeV.

be recorded in a detector depends on the average range 〈R〉 of a muon in rock

〈R(Eν ;E
min
µ )〉 = 1

σCC(Eν)

1−Emin
µ /Eν∫

0

dy R(Eµ, E
min
µ )

dσCC(Eν , y)

dy
, (7.33)

where the energy of muons produced in a charged-current interaction of neutrinos with matter
is Eµ = (1− y)Eν . After a high energy muon is produced, it undergoes a continuous energy
loss as it propagates. The range R of an energetic muon follows from the energy-loss relation

− dEµ/dX = α(Eµ) + β(Eµ)Eµ, (7.34)

where X is the thickness of matter traversed by the muon in g/cm2. The first term represents
ionization losses, while the second term represents bremsstrahlung, e+e− pair production and
nuclear interactions. If the coefficients α and β are independent of energy, we can approximate
their values to be α = 2.0× 10−3GeVcmwe−1 (cmwe = g/cm3) and β = 3.9× 10−6 cmwe−1.
Integrating Eq. (7.34), the muon range is

R(Eµ, E
min
µ ) ≡ X(Emin

µ )−X(Eµ) =
1

b
ln

a+ bEµ

a+ bEmin
µ

. (7.35)

The average range of muons from charged current neutrino interactions is shown in Fig. 7.7
for threshold energies 1 TeV and 10 TeV. A muon produced with Eµ = 10 TeV will travel on
average a few kilometers until its energy is degraded to 1 TeV.
The probability that a muon neutrino of energy E produces an observable muon is then

Pµ(E,E
min
µ ) = NA σ(E)〈R(E;Emin

µ 〉 (7.36)

and is shown in Fig. 7.8. A useful approximation for energies E >∼ TeV is Pµ(E,E
min
µ ) ∼

2× 10−6(Eν/TeV)0.8.
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Figure 7.8: Probability that a neutrino of energy Eν produces an observable muon with energy
exceeding Emin

µ = 1TeV and 10TeV.

Sensitivity and event rates We derive now a rough estimate of the event rate expected
in a neutrino telescope. We assume Emin = 106GeV as minimal energy in order to avoid
the background of atmospheric neutrinos and a neutrino intensity equal to the cascade limit
(7.7). Then we approximate the remaining ingredients of the integrand in Eq. (7.31) as
Pµ ∼ 10−3(E/Emin)

0.8 and S ∼ (E/Emin)
−0.2. Choosing as area A = (0.1 km)2, i.e. the

area covered by the current ICECUBE prototype AMANDA, we obtain of order 1 event/year.
Thus the sensitivity of this experiment corresponds roughly to the maximal flux allowed by
the cascade limit, while an 1 km3 neutrino telescope like ICECUBE will probe fluxes down to
the ones compatible with the cosmic ray limit.

7.6 Exercises

1. Derive from Fig. 6.3 the energy density of (extragalactic) cosmic rays above 1018 eV for
α = 2 and 2.7. Estimate from Fig. 6.1 the “life-time” of a cosmic ray and thus the
required emissivity L.

2. Derive for two neutrino the oscillation probability, Pνe→νµ , starting from the mixing
matrix

U =

(
cosϑ sinϑeiφ

− sinϑ cosϑeiφ

)

. (7.37)

Show that that the Majorana phase φ does not enter the oscillation probability. Con-
vince yourself that probability is conserved.
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8.1 Air shower and new particle physics

At present accelerator data from the Tevatron constrain new physics directly only up 1TeV,
while in the near future LHC extends this range up to 14TeV. Therefore one might wonder
if cosmic ray data can be used to constrain new particles physics at energy scales that are
not accessible to human accelerators. However we know from the discussion in Sec. 2.2 that a
significant change of hadronic cross sections requires the modification of scattering with small
four-momentum transfer t – while new physics is most often connected to the regime of large
masses and therefore large t. More promising is neutrino scattering where at high energies
the whole range 0 ≤ |t| <∼ m2

W contributes uniformly to the neutrino-nucleon cross section on
the parton level.

New resonances In secs. 2.2 and 7.5 we considered mainly the t-channel contribution to
cross sections. To complement this discussion, we assume now that a new particle with mass
m and decay width Γ acts as a s-channel resonance in νN scattering. (Concrete examples
are models containing lepto-quarks or a sneutrino in R-parity violating supersymmetry.) In
the narrow-width approximation, Γ ≪ m, for the Breit-Wigner denominator

1

(ŝ−m2)2 +m2Γ2
→ π

mΓ
δ(ŝ−m2) (8.1)

in the partonic cross section, the integration over x just picks out partons with ŝ = xs = m2.
The total cross section is

σνN (s) ∼
∑

i

g2

m2
xqi(x = m2/s,Q2 = s) , (8.2)

and hence is suppressed for large m. Experimental limits require either a small coupling g,
a large mass m, m2 >∼M2

W or a suitable combination. This simple example illustrates that
it is difficult to increase the interactions of neutrinos by a large factor. An exception may
be models with large extra dimensions. An important ingredient for the large increase of the
νN cross section in these models is that the neutrino couples not only to quarks but also to
gluons.
Neutrinos as the particles with the smallest cross section are the most sensitive tool to

search with cosmic ray data for deviations from the standard model predictions caused by
unknown physics. They produce mostly showers close above or below the horizon. Looking
at the zenith angle dependence of the event rate, one can disentangle the cross section and
flux, and thus test for deviations from the standard model prediction.

Understanding strong interactions We have seen that several aspects of strong interaction
cannot be calculated within QCD but are described by phenomenological models. Moreover,
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Figure 8.1: Experimental data (red, with errorbars) and model predictions for Xmax distri-
bution as function of energy, from Ref. [29].

even usual methods and results from perturbative QCD may become unreliable at ultrahigh
energies. A simple example are the DGLAP equation and the parton distribution functions:
In the standard picture, only splittings X → Y Z are taken into account, and for decreasing x
the number of partons in nucleons increases monotonically. As a result, the neutrino nucleon
cross section increase like a power, while for s → ∞ only a logarithmic growth is allowed.
Physically, the density of partons cannot become infinite and at some point recombinations,
Y Z → X, will balance splittings.

Although the physical picture seems to be rather simple, its formalization is highly non-
trivial and has led e.g. to ideas like the “color glass condensate.” A test of one of these
proposals against experimental cosmic ray data is shown in Fig. 8.1. The two red curves
are the prediction of an often used model for hadronic interaction in cosmic ray physics for
protons (upper) and iron (lower line). These two curves enclose the experimental data (red,
with errorbars) and thus this model predicts that the cosmic ray flux is a mixture of protons
and heavier nuclei. The other two lines are models where the growth of the parton density is
slower than in perturbative QCD. Both lines are for protons and the corresponding lines for
iron would be even lower. Hence the model producing the magenta line is already excluded
by cosmic ray data, while the other one predicts a pure proton flux.

In summary, cosmic ray data can be used at present only to exclude extreme model predic-
tions, since the chemical composition of cosmic rays is not independently fixed. The discovery
of cosmic ray sources and the subsequent study of cosmic ray deflections in magnetic fields of-
fers an alternative way to measure the chemical composition, providing in turn the possibility
to test QCD models more precisely at ultrahigh energies.

8.2 Relics from the early universe as cosmic rays sources

Evidence for dark matter comes from flat rotation curves of galaxies, the virial mass of
galaxy clusters, big-bang nucleosynthesis, structure formation and the CMB: Combining all
these pieces of evidence, one concludes that there exists around six times as much cold dark
matter (CDM) than baryons. Many well-motivated dark matter candidates that can have the

71



8 Cosmic rays as tool for particle physics

SHDM

SM neutrinos

gravitino

axion

axino

WIMP

−40

−35

−30

−25

−20

−15

−10

−5

0

−18−15−12−9 −6 −3 0 3 6 9 12 15 18

log(m/GeV)

lo
g(

σ
/p

b
ar

n
)

Figure 8.2: A selection of dark matter candidates in the plane cross section versus mass; blue
and black corresponds to thermal and non-thermal as main production channel.

correct abundance have been proposed, with a rather big variety in their properties as shown
in Fig. 8.2. Therefore most of them have to be searched for by some specialized methods. We
shall discuss only two candidates in more detail that can serve also a source of cosmic rays. One
of them are “WIMPs,” i.e. particles with masses and interactions similar to the weak scale.
The second one are superheavy DM particles (SHDM) with masses around 1013GeV. Before,
we comment briefly om the other candidates shown in Fig. 8.2: Neutrinos with interactions
as predicted by the standard model would have either with

∑3
i=1mi ≈ 10 eV or few GeV

the correct abundances as thermal relics. Both possibilities are excluded by various reasons.
Axions were proposed as solution to the strong CP problem. They are pseudo Goldstone
bosons that mix with pions, and therefore their masses and decay constants are connected
by ma = mπfπ/fa. Gravitinos and axinos are supersymmetric partners of the axion and the
graviton, respectively. They can be the lightest supersymmetric particle that is protected in
many models by a symmetry and thus stable. Last but not least, the lightest neutralino, a
mixture of the supersymmetric partners of higgses, Z and photon, is a typical example for a
WIMP.

8.2.1 WIMPs as thermal relics

When the number N = nV of a particle species is not changed by interactions, then the
expansion of the Universe dilutes their number density as n ∝ R−3. The corresponding
change in time is connected with the expansion rate of the universe, the Hubble parameter
H = Ṙ/R, as

dn

dt
=

dn

dR

dR

dt
= −3n

Ṙ

R
= −3Hn . (8.3)
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Figure 8.3: Illustration of the freeze-out process. The quantity Y = nX/s is nX divided by
the entropy density s ∝ R−3 to scale out the trivial effect of expansion.

Additionally, there might be production and annihilation processes. While the annihilation
rate βn2 = 〈σannv〉 n2 has to be proportional to n2, we allow for an arbitrary function as
production rate ψ,

dn

dt
= −3Hn− βn2 + ψ . (8.4)

In a static Universe, dn/dt = 0 defines equilibrium distributions neq. Moreover, detailed
balance requires βn2eq = ψ and thus we can eliminate the unknown function ψ,

dn

dt
= −3Hn− 〈σannv〉(n2 − n2eq) . (8.5)

This equation together with the initial condition n ≈ neq for T → ∞ determines n(t) for a
given annihilation cross section σann. The evolution of nX (divided by the entropy density
s ∝ 1/R3 to scale out the trivial effect of expansion) is shown schematically in Fig. 8.3: As the
universe expands and cools down, nX decreases at least as R−3. Therefore, the annihilation
rate ∝ n2 quenches and the abundance “freezes-out:” The reaction rates are not longer
sufficient to keep the particle in equilibrium and the ratio nX/s stays constant.
Numerically, one obtains for the relative abundance ΩX = ρX/ρcr of CDM

ΩXh
2 =

mXnX
ρcr

≈ 2× 10−28cm3/s

〈σannv〉
xf , (8.6)

where xf is the ratio of the mass and the freeze-out temperature, xf = M/Tf . Thus the
abundance ΩX is inverse proportionally to the thermally averaged annihilation cross section
〈σvann〉, since a more strongly interacting particle stays longer in equilibrium. The abundance
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depends only logarithmically on the mass m via the freeze-out temperature xf . Typical values
of xf found numerically are xf ∼ 20. From the observed value ΩCDM ≈ 0.20 one obtains
the annihilation cross section in the early universe—that controls also the annihilation rate
important for indirect searches today. The size of the cross section corresponds roughly to
weak interactions and has led to the paradigm of “WIMPs”, weakly interacting massive dark
matter.

Unitarity bounds each partial-wave l of the thermally averaged annihilation cross section
as 〈σannv〉(l) ≤ const./(vm2). Requiring Ω < 0.3 leads to m < (20–50)TeV. This bounds the
mass of any stable particle that was once in thermal equilibrium.

8.2.2 SHDM as inflationary relic

The energy density of non-relativistic particles decreases only as ρX ∝ 1/R3, while the one of
radiation decreases as ρ ∝ 1/R4. Therefore particles that never came in chemical equilibrium
with radiation should be created only in tiny amounts in the early universe. Already the
production by gravitational interactions at the end of inflation is sufficient to ensure an
abundance ΩX ∼ 1 for stable particles with masses mX ∼ 1013GeV.

As an illustration, we consider the Klein-Gordon equation for the field modes φk of a scalar
field in the Friedman-Robertson-Walker metric,

φ̈k(η) +m2
eff(η)φk(η) = 0 , (8.7)

where the effective mass depends on an unknown parameter ξ and is

m2
eff(η) = k2 +M2

XR
2 + (6ξ − 1)

R̈

R
. (8.8)

Since meff is time dependent, vacuum fluctuations will be transformed into real particles.
Thus, the expansion of the Universe leads to particle production.

The predicted abundance of X particles today from inflationary cosmology is

ΩXh
2 ∼

(
mX

1011GeV

)2 TRH

109GeV
, (8.9)

where TRH is the temperature at reheating. Since the production is gravitational, the result
is model-dependent only through the dependence on cosmological parameters like the value
of Hubble parameter at the end of inflation and the reheating temperature TRH .

8.3 Indirect detection of dark matter

8.3.1 Dark matter in the Galactic halo

The average density of DM in the Galaxy is strongly increased compared to the extragalactic
space, nMW/nex ∼ 105. Therefore the annihilation rate of DM can become again appreciable
inside the Milky Way, and in particular, in objects where DM is strongly accumulated.
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DM distribution and clumps Typical results from N -body simulations are for the smooth
DM mass density profile ρsm

ρsm(r) = ρ⊙

(r⊙
r

)(
r⊙ + a

r + a

)2

, (8.10)

with ρ⊙ = 0.3GeV/cm3 as the dark matter density at the solar distance from the Galactic
center, and a ∼ 25 kpc as the characteristic scale where the slope changes from r−3 to r−1

(“Navarro-Frenk-White profile”). At small radii r <∼ 1 kpc, the missing resolution of N -
body simulations, the influence of baryonic matter and of the galactic SMBH make a reliable
estimate of the DM density difficult.
According to the model of hierarchical structure formation, the first objects to form were

the smallest structures. For the case of WIMPs, 1015 Earth-mass DM halos about as large
as the Solar System might be in the Milky Way. An important contribution to the total
annihilation signal can be given by small clumps that have a denser core and may be at small
distance.

Photons, neutrinos and antiprotons from DM annihilation in the halo The secondaries of
DM annihilations will be the stable particle of the standard model, i.e. photons, neutrinos,
electrons and protons. For the latter two, only the anti-particles may provide some useful
information.
The differential flux of the final state i at the Earth from DM annihilations is

Ism(E,ψ) =
dNi

dE

〈σv〉
2m2

X

∫

l.o.s.
ds
ρ2sm[r(s, ψ)]

4π
, (8.11)

where r(s, ψ) = (r2⊙+s2−2 r⊙ s cosψ)
1/2, ψ is the angle between the direction in the sky and

the galactic center (GC), r⊙ ≈ 8.0 kpc is the solar distance from the GC, and s the distance
from the Sun along the line-of-sight (l.o.s.). In terms of galactic latitude b and longitude l,
one has cosψ = cos b cos l. The energy spectrum dNi/dE can be calculated only within a
specific model for the DM particle.

SHDM as UHECR source The original motivation to introduce SHDM was the “AGASA
excess”, i.e. a surprisingly large number of cosmic ray events with energy >∼ 1020 eV and
thus above the GZK cutoff. Since SHDM behaves by definition as CDM, its abundance in
the galactic halo is strongly enhanced. As a result the cosmic flux is dominated by the halo
component and the GZK cutoff is absent in this model.
The hadronization spectra of superheavy particles can be reliably calculated using standard

QCD methods. The predicted spectrum in the SHDM model, dN/dE ∝ E−1.9, cannot fit
the observed UHECR spectrum at energies E ≤ (6–8) × 1019 eV. Thus mainly events at
E ≥ (6–8)× 1019 eV, and most notably any excess at energies beyond the GZK cutoff, could
be produced by SHDM decays. As for all hadronization processes, the main component of the
UHE flux are neutrinos and photons from pion decay. As additional signature, one expects
a Galactic anisotropy, because the Sun is not in the center of the Galaxy. The degree of
this anisotropy depends on how strong the CDM is concentrated near the Galactic center
– a question under debate. First results from the PAO find neither the predicted Galactic
anisotropy nor the dominance of photon primaries at the highest energies. If confirmed,
SHDM can play only a sub-dominant role as source of UHECRs.
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8.3.2 Neutrinos from dark matter annihilations in the Sun and the Earth

Dark matter particles X scatter on matter in the Sun or Earth, lose energy, and may become
gravitationally bound. They continue to scatter, gaining or losing energy. If energy looses
dominate, they sink down to the center where they eventually annihilate. The directed signal
of high energy neutrino would provide a rather clear evidence of DM. In the following, we
illustrate the basic steps in the calculation of the resulting neutrino flux, following rather
closely Ref. [30].
The total number NX of dark matter particles in a celestial body is determined by three

processes: The capture rate RC , the evaporation rate RE , and the annihilation rate RA,

ṄX = RC −RENX −RAN
2
X = RC − ΓE − ΓA . (8.12)

If the DM particles are self-conjugated, X = X̄, each annihilation reduces their number by two
and thus one should replace RAN

2
X by 2RAN

2
X . The evaporation rate takes into account that

an already captured dark matter particle might be “kicked out” in a scattering process and is
only important for particles not much heavier than nucleons, say mX <∼ fewGeV. Therefore
we will set RE = 0 and obtain as solution of Eq. (8.12)

NX(t) = Neq tanh(t/τ) (8.13)

with τ = (RCRA)
−1/2 as time-scale to reach the equilibrium number Neq = (RC/RA)

1/2.
We estimate first the capture rate RC of WIMPs, using where needed the numerical values

appropriate for the Sun: The total number of interactions is proportional to the number Ni

of scatters of type i in the celestial body, to the elastic cross section σiX , the relative velocity
vrel and the density of WIMPS nX : Hence RC should be of the form RC ∝ nX

∑

iNiσXivrel.
Additionally, a factor f = f(vesc, vrel) should count if the scattering was successful, i.e. if
the WIMP velocity after the scattering is smaller than the escape velocity vesc from the Sun.
The function f should be dimensionless, increase for increasing vesc and can depend only on
the square of the velocities. Hence f = f(v2esc/v

2
rel), and a more careful analysis shows that

indeed f ∝ v2esc/v
2
rel. Combining all factors, the capture rate follows as

RC = AnX
v2esc
vrel

∑

i

NiσiX (8.14)

with A ≈ 2 for the Sun. To obtain a numerical estimate, we neglect helium and metals
and set N = M⊙/mH . Using the rotation velocity of the Sun around the Galactic center as
relative velocity vrel ≈ 220 km/h, vesc = (GM⊙/R⊙)

1/2 ≈ 617 km/s and nX = ρloc/mX with
ρloc ≈ 0.3GeV/cm3, it follows

RC ≈ 1021s−1
( σiX
10−42cm2

) (
100GeV

mX

)

. (8.15)

Next we estimate the annihilation rate ΓA. Generically, the assumption that the WIMP is
a thermal relic fixes also the annihilation cross section at present to 〈σannv〉 ∼ 3×10−26cm3/s.
(This could be avoided if s-wave annihilation is suppressed by symmetry reasons.) Since the
captured WIMPs orbit many times in-between interactions, they can be characterized by a
global temperature T and their density follows a barometric formula,

nX(r) = n0 exp(−mXφ(r)/T ) (8.16)
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determined by the local gravitational potential φ(r). Hence

ΓA = 〈σannv〉 4π
∫

dr r2n2X(r) . (8.17)

Determining first RA = ΓA/N
2
X , we see that this rate is fixed by 〈σannv〉 and the ratio V2/V

2
1

of “effective volumes” defined as

Vα = 4π

∫ R⊙

0
dr r2 exp(−αmXφ(r)/T ) . (8.18)

To obtain a numerical estimate, we use that WIMPs for mX ≫ mH are concentrated in the
center of the Sun. Thus we approximate the density by ρ(r) ≈ ρ(0) ≈ 150 g/cm3, set T equal
to the central temperature of the Sun, T = Tc ≈ 1.4 × 107K, and use R⊙ → ∞. Then the
integrals (8.18) can be performed and one obtains

Vα = 6.5× 1028cm3

(
100GeV

αmX

)3/2

(8.19)

and thus

RA = 〈σannv〉
V2
V 2
1

= 6.5× 1028
(
100GeV

mX

)3/2

. (8.20)

Now we can determine the equilibration time as τ = (RCRA)
−1/2 ≈ 1.4 × 1016 s. Since τ is

much smaller than the age of the Sun, we can use ΓA = RC . Denoting with fν the number
of neutrinos produced per annihilation, we obtain as our final result for the neutrino flux φν
from WIMP annihilations in the Sun

φ =
fνRC

4πd2
∼ 5× 10−8cm−2 s−1 sr−1 (8.21)

at the Earth distance d = 1AU. Comparing this flux with expected neutrino intensities and
the sensitivity of neutrino telescopes discussed in Sec. 5.5 makes it clear that the detection
of WIMP annihilations is as challenging as the one of astrophysical neutrinos. The chances
for success depend strongly on the WIMP mass and its annihilation spectrum. Only if the
energy of the neutrinos is sufficiently high, Eν >∼ 100GeV, the direction of the produced muon
provides a reasonable signature.

8.4 Summary of possible and suggested signals for DM

The different annihilation channels and the DM distribution offers several different possible
signals to detect DM annihilations:

• All particles from DM annihilations in the Sun or the Earth are absorbed except neu-
trinos. Apart from a small flux of neutrinos produced by cosmic ray interactions in the
solar atmosphere, no other neutrinos with energy E >∼ GeV are expected from the Sun.
The direction provides however only for Eν >∼ 100GeV a reasonable signature.

• Cold DM has small velocities and thus XX → 2γ produces a sharp photon line at
Eγ = mX . This is a smoking-gun for DM, but since the DM particle is most likely
electrically neutral, the lowest order contributions to these processes are box diagrams,
and the branching ratio is therefore very small.
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Figure 8.4: EGRET data on diffuse photon background together photons expected from CR
interactions (yellow) and a putative DM signal (red) according Ref. [31].

• The main production channel for photons are decays of neutral pions. The main problem
here is to separate a potential DM contribution from diffuse astrophysical Galactic and
extragalactic backgrounds, cf. Fig. 8.4. More promising might be to look at nearby
dwarf galaxies that have with a larger DM fraction.

• Antiprotons could become visible below ∼ 1 GeV, but without any specific signatures.
Thus the identification of DM as source of these antiprotons requires again a precise
modeling of antiproton flux produced by cosmic rays.

Various astrophysical observations have been suggested as signals for DM annihilations:

• The Integral satellite sees a strong positron annihilation line from the Galactic bulge.
An explanation by DM annihilations into electron-positron pairs, X̄X → e+e−, requires
that the electron-positron pair gets only little kinetic energy. Hence the DM particle
should be very light,me < mX <∼ 10MeV – which is not excluded but difficult to achieve.

• The “EGRET excess”, i.e. the red region in Fig. 8.4, is a possible surplus of diffuse
gamma-rays compared to the predictions in the simplest models for the propagation of
cosmic rays. This potential excess has been explained both by DM annihilations in the
Milky Way and as the sum of DM annihilation in other galaxies.

• The “WMAP haze”, a potential excess of synchrotron radiation from the Galactic center
in the WMAP data has been explained as synchrotron radiation of electron produced
in DM annihilations.

• HESS, an atmospheric Cherenkov telescope, has observed TeV γ-rays from the Galactic
center. The flux extends however power-law like up to the sensitivity limit (∼ 30 TeV)
and is thus difficult to combine with the upper limit on M for a thermal relic.

For references to the original literature and a brief critical review see Ref. [32].
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Epilogue

Congratulation to the readers who worked through these notes until the end. Certainly many
questions have been left unanswered and some new ones have popped up. Still I hope that
these notes could provide a first introduction into high energy cosmic ray physics. For further
studies I recommend the following two excellent references,

[E1] V. S. Berezinsky, S. V. Bulanov, V. A. Dogiel, V. L. Ginzburg, V. S. Ptuskin, Astro-
physics of Cosmic Rays (North-Holland, Amsterdam 1990),

[E2] T. K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cam-
bridge 1990).

As the titles indicate, the focus of the first book is on astrophysical aspects of cosmic rays,
while the second discusses additionally the interactions of cosmic rays in the atmosphere and
the formation of extensive air showers. The presentation of several topics I have given was
heavily influenced by these books. I omitted generally references to the original literature,
apart from references to the sources of the reproduced figures, and refer also in this respect
to the books of Berezinsky et al. and Gaisser. Additionally, the following review articles may
be helpful:

1. V. Berezinsky, “Ultra high energy neutrino astronomy,” Nucl. Phys. Proc. Suppl. 151,
260 (2006) [arXiv:astro-ph/0505220].

2. P. Lipari, “Perspectives of high energy neutrino astronomy,” Nucl. Instrum. Meth. A
567, 405 (2006) [arXiv:astro-ph/0605535].

3. V. Berezinsky, “Transition from galactic to extragalactic cosmic rays,” to appear in the
proceedings of 30th ICRC 2007, arXiv:0710.2750 [astro-ph].

4. M. Kachelrieß, “Status of particle physics solutions to the UHECR puzzle,” Comptes
Rendus Physique 5, 441 (2004) [arXiv:hep-ph/0406174].

5. G. Jungman, M. Kamionkowski and K. Griest, “Supersymmetric dark matter,” Phys.
Rept. 267, 195 (1996) [arXiv:hep-ph/9506380].

It is a pleasure to thank all my collaborators in the field of cosmic ray physics, but in
particular Roberto Aloisio, Venya Berezinsky, Sergey Ostapchenko, Dima Semikoz, Pasquale
Serpico, and Ricard Tomàs, as well as Günter Sigl for many illuminating discussions. I am
grateful to Sergey Ostapchenko and Pasquale Serpico for reading (parts of) the manuscript
and pointing out several errors and misunderstandings contained in the text.
Last but not least, I would like to thank Kimmo Kainulainen for inviting me to lecture at

the Jyväsklyä Summer School and for the excellent working conditions provided there.
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[17] A. Mücke et al., “Monte Carlo simulations of photohadronic processes in astrophysics,”
Comput. Phys. Commun. 124, 290 (2000) [astro-ph/9903478].

[18] M. Kachelrieß, P. D. Serpico and M. Teshima, “The galactic magnetic field as spectro-
graph for ultra-high energy cosmic rays,” Astropart. Phys. 26, 378 (2006) [arXiv:astro-
ph/0510444].

[19] M. Kachelrieß and D. V. Semikoz, “Reconciling the ultra-high energy cosmic ray spec-
trum with Fermi shock acceleration,” Phys. Lett. B 634, 143 (2006) [arXiv:astro-
ph/0510188].

[20] V. Berezinsky, A. Z. Gazizov and S. I. Grigorieva, “On astrophysical solution to ultra
high energy cosmic rays,” Phys. Rev. D 74, 043005 (2006) [arXiv:hep-ph/0204357].

[21] A. Cuoco et al., “The footprint of large scale cosmic structure on the ultrahigh energy
cosmic ray distribution,” JCAP 0601, 009 (2006) [arXiv:astro-ph/0510765].

[22] M. Kachelrieß and D. V. Semikoz, “Clustering of ultra-high energy cosmic ray arrival
directions on medium scales,” Astropart. Phys. 26, 10 (2006) [arXiv:astro-ph/0512498].

[23] S. Mollerach et al. [PAO Collaboration], “Studies of clustering in the arrival directions of
cosmic rays detected at the Pierre Auger Observatory above 10 EeV,” to appear in Proc.

“30th International Cosmic Ray Conference”, Mérida, Mexico, 2007 , arXiv:0706.1749
[astro-ph].

[24] A. Cuoco et al., ‘Clustering properties of ultrahigh energy cosmic rays and the search for
their astrophysical sources,” to appear in the Astrophys, J., arXiv:0709.2712 [astro-ph].

[25] J. Abraham et al. [PAO Collaboration], “Correlation of the highest energy cosmic rays
with nearby extragalactic objects,” Science 318, 939 (2007), arXiv:0711.2256 [astro-ph].
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