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Astrophysics—some introductory remarks

• Astronomy is with mathematics one of the oldest branches of science. It has served as
basis for calendars, navigation, has been an important input for religions and was for a
long time intertwined with astrology.

• Some of the most important steps in modern astronomy were:

– Galileo performed 1609 the first astronomical studies using a telescope. He discov-
ered among others four Saturn moons and sun spots.

– Kepler (1571-1630) developed his three laws of planetary motions, based on obser-
vations of Tycho Brahe.

– Newton established 1687 his laws of motion and gravitation.

– The measurement of the distance to Venus 1761 and 1769 during its transits of
the Sun with the help of the first global measurement campaign and to the nearest
stars 1838 by Bessel using trigonometric parallaxes established the first rungs in
the “cosmic distance ladder.”

– Fraunhofer discovered around 570 spectral lines in the solar light in 1814 and
catalogued them. This opened together with the spectral analysis of Kirchhoff
and Bunsen (1859) the way to study the physical properties of stars.

– Einstein’s general theory of relativity (1916) provided the first consistent basis to
study cosmology.

– The “Great Debate” in 1920 was concerned about the question “Does the Milky
Way represents the whole Universe or is it just one island among many others?”
Öpik, Shapley and Hubble showed that the latter is true.

– Hubble discovered 1926 that galaxies are recessing and that their velocity is increas-
ing with distance: The universe is expanding and, extrapolating this expansion
back in time led to the idea of the “Big Bang.”

– Nuclear fusion was suggested in 1920 by Eddington as source for stellar energy, the
main principles were worked out after the advent of quantum mechanics by Bethe
and v. Weizsäcker in the 1930s.

– The discovery of the cosmic 2.7 Kelvin background radiation 1964 by Penzias and
Wilson gave credit to the Big Bang theory.

• Few other examples for the interconnection of astrophysics and physics, where astro-
nomical observations were an important input for fundamental physics, are:

– Olaf C. Römer (1644-1710) showed 1676 that the speed of light is finite by obser-
vations of Jupiter moons: Light needs around 20 min to cross the Earth orbit.

– The 1919 solar eclipse was the first crucial test passed by the theory of General
Relativity of Einstein, while a binary system of two pulsars discovered by Hulse
and Taylor in 1974 became the first experimental evidence for the existence of
gravitational waves.
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– Observation of neutrinos from the Sun and produced by cosmic rays in the Earth’s
atmosphere gave in the 1990’s first firm evidence that neutrinos have non-zero
masses.

– The need for a new form of “dark matter” to describe correctly the formation and
dynamics of galaxies requires a yet unknown extension of the current standard
model of elementary particle physics. The same holds true for a new form of ”dark
energy” required for the explanation of the accelerated expansion of the universe.

• Astronomy as a purely observational science is unique among natural sciences; all others
are based on experiments. Since the observation time is much smaller than the typical
time scale for the evolution of astronomical objects, we see just a snapshot of the uni-
verse. Nevertheless it is possible to reconstruct, e.g., the evolution of stars by studying
large samples. On the extragalactic scales, we can use that looking far away means
looking into the past because of the finite speed of light, while on the cosmological scale
we can use relics formed soon after the Big Bang as testimonies for the state of the early
universe.

• The “cosmological principle” is based on the belief that the mankind and the Earth
have no special role. Thus physical laws derived on Earth are valid everywhere and at
all times.

• Astronomers and especially cosmologists are said to live these days in a “golden age”:
There has been a tremendous increase of knowledge in the last 15 years: Telescopes and
detectors on satellites explore new wavelength ranges, while new automatized ways to
analyse data allow astronomers the comparative study of e.g. millions of galaxies.

Astrophysics needs input of practically all sub-disciplines of physics and thus a course on
astrophysics cannot be self-contained. However, the course should be accessible to students
with just a general introduction to physics. Few sections of the text that are somewhat more
advanced and that can be omitted are marked by stars.

I will be glad to receive feedback from the readers of these notes. If you find errors or have
anysuggestions, send me an email!
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Stellar astrophysics
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1 Continuous radiation from stars

Practically all information we know about stars and galaxies comes from observing electro-
magnetic radiation, more precisely from two small windows where the Earth atmosphere is
(nearly) transparent: The first one is around the range of visible light (plus some windows
in the infra-red (IR)), while the second one is the radio window in the wave-length range
1 cm <∼ λ <∼ 30 m, cf. Fig. 1.1.

1.1 Brightness of stars

Hipparcos and Ptolemy (≈ 150 B.C.) divided stars into six classes of brightness, called (ap-
parent) magnitudes m: Stars with m = 6 were the faintest objects visible by eye, stars with
m = 1 the brightest stars on the sky. Thus the magnitude scale m increases for fainter objects,
a counter-intuitive fact that should be kept in mind.

The response of the human eye is not linear but close to logarithmic to ensure a large
dynamical range. With the use of photographic plates, the magnitude scale could be defined
quantitatively. Pogson found 1856 that the magnitude difference ∆m = 5 corresponds to a
ratio of energy fluxes of F2/F1 ≈ 100, where the energy flux F is defined as the energy E
going through the area A per time t, F = E/(At). This ratio was then used as definition,
together with m = 2.12 for the polar star as reference point. Thus the ratio of received energy
per time and area from two stars is connected to their magnitudes by

F2

F1
= 100(m1−m2)/5 = 10(m1−m2)/2.5 (1.1)

or1

m1 − m2 = −2.5 log
F1

F2
. (1.2)

The modern definition of the magnitude scale does not agree completely with the original
Greek one: For instance, the brightest star visible from the Earth, Sirius, has the magnitude
m = −1.5 instead of the Ptolemic m = 1. Note also that in particular astronomers use often
the equivalent name (apparent) brightness b for the energy flux received on Earth from a star
or a galaxy.

Ex.: The largest ground-based telescopes can detect stars or galaxies with magnitude m = 26. How
much fainter are they than a m = 1 star like Antares?

F1

F2

= 10−25/2.5 = 10−10 . (1.3)

Thus the number of photons received per time and frequency interval from such a faint object is a

factor 10−10 smaller than from Antares. Since the energy flux F scales with distance r approximately

1We denote logarithms to the base 10 with log, while we use ln for the natural logarithm.
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1 Continuous radiation from stars

Figure 1.1: Left: The electromagnetic spectrum. Right: Transmission of the Earth’s atmo-
sphere.

as ∝ 1/r2, one can say equivalently that with the help of such a telescope one would see a factor 105

further than with the bare human eye.

This magnitude scale corresponds to the energy flux at Earth, i.e. the scale is not corrected
for the different distance of stars. They are therefore called “apparent magnitudes.”

1.2 Color of stars

A look at Fig. 1.2 shows that the color of stars and galaxies varies considerably. A quantitative
way to measure the color of stars is to use filters which sensitivity is centered at different
wavelengths λi and compare their relative brightness,

mλ1
− mλ2

= −2.5 log
Fλ1

Fλ2

. (1.4)

Then mλ1
−mλ2

is called the color or the color index of the object. Often used are filters for
visible (V), ultraviolet (U), and blue (B) light. For instance, one denotes briefly with B-V
the difference in magnitudes measured with a filter for blue and visible light,

B − V ≡ mB − mV = −2.5 log
FB

FV
. (1.5)

It is intuitively clear that the color of a star is connected to its temperature—this connection
will be made more precise in the next section. The color magnitudes are normalized such
that their differences mλ1

−mλ2
are zero for a specific type of stars with surface temperature

T ≈ 10, 000 K (cf. Sec. 2.2).

1.3 Black-body radiation

A black body is the idealization of a medium that absorbs all incident radiation. This ideal-
ization is very useful, because many objects close to thermal equilibrium, in particular stars,
emit approximately blackbody radiation. In practise, black-body radiation can be approxi-
mated by radiation escaping a small hole in a cavity whose walls are in thermal equilibrium.
Inside such a cavity, a gas of photons in thermal equilibrium exists.

12



1.3 Black-body radiation

Figure 1.2: An excerpt from the Deep Field View taken by the Hubble Space Telescope.

1.3.1 Kirchhoff-Planck distribution

Planck found empirically 1900 the so-called Kirchhoff-Planck (or simply Planck) distribution

Bνdν =
2hν3

c2

1

exp( hν
kT ) − 1

dν (1.6)

describing the amount of energy emitted into the frequency interval [ν, ν + dν] and the solid
angle dΩ per unit time and area by a body in thermal equilibrium. The function Bν depends
only on the temperature T of the body (apart from the natural constants k, c and h) and is
shown in Fig. 1.4 for different temperature T . The dimension of Bν in the cgs system of units
is

[Bν ] =
erg

Hz cm2 s sr
. (1.7)

In general, the amount of energy per frequency interval [ν, ν +dν] and solid angle dΩ crossing
the perpendicular area A⊥ per time is called the (differential) intensity Iν , cf. Fig. 1.3,

Iν =
dE

dν dΩ dA⊥ dt
. (1.8)

For the special case of the blackbody radiation, the differential intensity is given by the
Kirchhoff-Planck distribution, Iν = Bν .

Equation (1.6) gives the spectral distribution of black-body radiation as function of the
frequency ν. In order to obtain the corresponding formula as function of the wavelength λ,
one has to re-express both Bν and dν: With λ = c/ν and thus dλ = −c/ν2dν, it follows

Bλdλ =
2hc2

λ5

1

exp( hc
λkT ) − 1

dλ . (1.9)
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1 Continuous radiation from stars

ϑ

dΩ

dA

cos ϑdA

ϑ

dΩ

dA

cos ϑdA

Figure 1.3: Left: A detector with surface element dA on Earth measuring radiation coming
from a direction with zenith angle ϑ. Right: An imaginary detector on the surface
of a star measuring radiation emitted in the direction ϑ.

The Kirchhoff-Planck distribution contains as its two limiting cases Wien’s law for high-
frequencies, hν ≫ kT , and the Rayleigh-Jeans law for low-frequencies hν ≪ kT . In the
former limit, x = hν/(kT ) ≫ 1, and we can neglect the −1 in the denominator of the Planck
function,

Bν ≈ 2hν3

c2
exp(−hν/kT ) . (1.10)

Thus the number of photons with energy hν much larger than kT is exponentially suppressed.
In the opposite limit, x = hν/(kT ) ≪ 1, and ex − 1 = (1 + x − . . .) − 1 ≈ x. Hence Planck’s
constant h disappears from the expression for Bν , if the energy hν of a single photon is small
compared to the thermal energy kT and one obtains,

Bν ≈ 2ν2kT

c2
. (1.11)

The Rayleigh-Jeans law shows up as straight lines left from the maxima of Bν in Fig. 1.4.

1.3.2 Wien’s displacement law

We note from Fig. 1.4 two important properties of Bν : Firstly, Bν as function of the frequency
ν has a single maximum. Secondly, Bν as function of the temperature T is a monotonically
increasing function for all frequencies: If T1 > T2, then Bν(T1) > Bν(T2) for all ν. Both
properties follow directly from taking the derivative with respect to ν and T . In the former
case, we look for the maximum of f(ν) = c2

2hBν as function of ν. Hence we have to find the
zeros of f ′(ν),

3(ex − 1) − x expx = 0 with x =
hν

kT
. (1.12)

The equation ex(3 − x) = 3 has to be solved numerically and has the solution x ≈ 2.821.
Thus the intensity of thermal radiation is maximal for xmax ≈ 2.821 = hνmax/(kT ) or

cT

νmax
≈ 0.50K cm or

νmax

T
≈ 5.9 × 1010Hz/K . (1.13)
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1.3 Black-body radiation
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Figure 1.4: The Planck distribution Bν as function of the frequency ν for three different
temperatures.

Similarly one derives, using the expression for Bλ, the value λmax where Bλ peaks as

λmaxT ≈ 0.29K cm . (1.14)

This equation is called Wien’s displacement law. Thus determining the color of a star tells
us its temperature: A hot star is bluish and a cool star reddish. In practise, the maximum of
the Planck distribution lies often outside the range of visible light and the measurement of a
color index like U − V is an easier method to determine the temperature T of a star.

Ex.: Surface temperature of the Sun:

We can obtain a first estimate of the surface temperature of the Sun from the know sensitivity of

the human eye to light in the range 400–700 nm. Assuming that the evolution worked well, i.e. that

the human eye uses optimal the light from the Sun, and that the atmosphere is for all frequencies

in the visible range similarly transparent, we identify the maximum in Wien’s law with the center

of the frequency range visible for the human eye. Thus we set λmax,⊙ ≈ 550 nm, and obtain T⊙ =

2.9 × 106 nmK/550 nm ≈ 5270K for the surface temperature of the Sun.

This simple estimate should be compared to the precise value of 5781 K for the “effective temperature”

of the solar photosphere defined in the next subsection.

1.3.3 Stefan-Boltzmann law

Integrating Eq. (1.6) over all frequencies and possible solid angles gives the energy flux F
emitted per surface area A by a black body. The angular integral consists of the solid angle
dΩ = dϑ sinϑdφ and the factor cosϑ taking into account that only the perpendicular area
A⊥ = A cos ϑ is visible,

∫

dΩ cos ϑ =

∫ 2π

0
dφ

∫ π/2

0
dϑ sin ϑ cos ϑ = π

∫ π/2

0
dϑ sin 2ϑ = π . (1.15)
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1 Continuous radiation from stars

ϑ

dl

dA

Figure 1.5: The connection between the contained energy density u and the intensity I of
radiation crossing the volume dV .

Next we perform the integral over dν substituting x = hν/(kT ),

F = π

∫ ∞

0
dνBν =

2π

c2h3
(kT )4

∫ ∞

0

x3dx

ex − 1
= σT 4 , (1.16)

where we used
∫ ∞
0

x3dx
ex−1 = π4/15 and introduced the Stefan-Boltzmann constant,

σ =
2π5k4

15c2h3
= 5.670 × 10−5 erg

cm2K4s
. (1.17)

If the Stefan-Boltzmann law is used to define the temperature of a body that is only approx-
imately in thermal equilibrium, T is called effective temperature Te.

1.3.4 Spectral energy density of a photon gas

A light ray crosses an infinitesimal cylinder with volume dV = dAdl in the time dt =
dl/(c cos ϑ), cf. Fig. 1.5. Hence the spectral energy density uν of photons, i.e. the number of
photons per volume and energy interval, in thermal black-body radiation is

uν =
dE

dV dν
=

dE

c cos ϑdtdAdν
=

1

c

∫

dΩBν =
4π

c
Bν . (1.18)

The (total) energy density of photons u follows as

u =
4π

c

∫ ∞

0
dνBν = aT 4 , (1.19)

where we introduced the radiation constant a. Comparing with Eqs. (1.16) and (1.17) shows
that a = 4σ/c.

Ex.: Calculate the density and the mean energy of the photons in thermal black-body radiation at
temperature T .
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1.4 Stellar distances
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Figure 1.6: Measurement of the trigonometric parallax. Left: The apparent movement of a
nearby star during a year: Half of this angular difference is called the parallax
angle or simply the parallax p. Right: Indirect determination of the Earth-Sun
distance.

The number density of black-body photons is connected to the energy density by the replacement
Bν → Bν/(hν),

n =
4π

c

∫ ∞

0

dν
Bν

hν
=

8π

c3

∫ ∞

0

dν
ν2

exp( hν
kT ) − 1

=
8π

c3
(kT/h)3

∫ ∞

0

dx
x2

ex − 1
=

2ζ(3)

π2

(
kT

~c

)3

,

where we looked up the result for the last integral in Table A.1. The mean energy of photons at
temperature T follows then as

〈E〉 = 〈hν〉 =
u

n
=

π4

30ζ(3)
kT ≈ 2.701kT .

1.4 Stellar distances

Relatively nearby stars are seen at slightly different positions on the celestial sphere (i.e. the
background of stars that are “infinitely” far away) as the Earth moves around the Sun. Half
of this angular difference is called the parallax angle or simply the parallax p. From Fig. 1.6,
one can relate the mean distance AU of the Earth to the Sun, the parallax p and the distance
d to the star by

tan p =
AU

d
. (1.20)

17



1 Continuous radiation from stars

With tan p ≈ p for p ≪ 1, one has d ∝ 1/p. Because of this simple and for observations
important relation, a new length unit is introduced: The parsec is defined to be the distance
from the Earth to a star that has a parallax of one arcsecond2. Thus

d[pc] =
1

p[′′]
(1.21)

i.e. a star with a parallax angle of n arcseconds has a distance of 1/n parsecs. Since one
arcsecond is 1/(360 × 60 × 60) = 1/206265 fraction of 2π, a parsec corresponds to 206 265
AU.

To express finally the unit pc in a known unit like cm, we have to determine first the Earth-
Sun distance, the astronomical unit AU. As first step one measures the distance d to an inner
planet at the time of its greatest elongation (i.e. the largest angular distance ϑ between the
Sun and the planet). Nowadays, one uses a radar signal to Venus. Then AU = d/ cos ϑ, cf.
the right panel of Fig. 1.6, and one finds 1AU = 1.496 × 1013 cm. As result, one determines
one parsec as 1 pc = 206, 265 AU = 3.086 × 1018 cm = 3.26 lyr.

1.5 Stellar luminosity and absolute magnitude scale

The total luminosity L of a star is given by the product of its surface A = 4πR2 and the
radiation emitted per area σT 4,

L = 4πR2σT 4 . (1.22)

Since the brightness or energy flux F was defined as F = E/(At) = L/A, we recover the
inverse-square law for the energy flux at the distance r > R outside of the star,

F =
L

4πr2
. (1.23)

The validity of the inverse-square law F(r) ∝ 1/r2 relies on the assumptions that no radiation
is absorbed and that relativistic effects can be neglected. The later condition requires in
particular that the relative velocity of observer and source is small compared to the velocity
of light.

Ex.: Luminosity and effective temperature of the Sun.
The energy flux received from the Sun at the distance of the Earth, d = 1 AU, is equal to F =
1365 W/m2. (This energy flux is also called “Solar Constant.”) The solar luminosity L⊙ follows then
as

L⊙ = 4πd2F = 4 × 1033erg/s

and serves as a convenient unit in stellar astrophysics. The Stefan-Boltzmann law can then be used

to define with R⊙ ≈ 7 × 1010 cm the effective temperature of the Sun, Te(Sun) ≡ T⊙ ≈ 5780 K.

The brightness discussed in Sec. 1.1 is based on the observed energy fluxes on Earth and does
not account for the different distance of stars. It is therefore called “apparent magnitude”.
To compare the intrinsic luminosities of stars, one defines the absolute magnitude M as the
one a star would have at the standard distance d = 10 pc.

2A degree, i.e. the 1/360 part of a circle is divided into 60 arcminutes and 60 × 60 arcseconds, 360◦ =

360 × 60′ = 360 × 60 × 60
′′

.
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1.5 Stellar luminosity and absolute magnitude scale

Using that F ∝ 1/d2, the relation between m and M is from Eq. (1.2)

m − M = 2.5 log

(
d

10pc

)2

= 5 log
d

10pc
. (1.24)

The quantity m − M is also called distance modulus.
Measuring the received energy flux F from a star with known absolute magnitude estab-

lishes also the conversion between M and usual cgs or SI units,

L = 3.02 × 1035 erg

s
× 10−0.4M = 3.02 × 1028W × 10−0.4M . (1.25)

Exercises

1. Show that the mean distance between black-body photons corresponds approximately to
the wave-length of photons from the maximum of the Planck distribution, nγ ≈ 1/λ3

max.

2. Derive Wien’s law both for frequency and wavelength. Hint: The equations ex(5−x) = 5
and ey(3−y) = 3 have the solutions x = 4.965 and y = 2.821. Show that λmax 6= c/νmax.

3. Show that Bν(T1) > Bν(T2) for all ν, if T1 > T2.

4. Derive the Earth-Sun distance D assuming that both are perfect blackbodies. Use
R⊙ = 7 × 1010 cm, T⊙ = 5780 K and T⊕ = 288 K.
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2 Spectral lines and their formation

Classical astronomy was mainly concerned with the determination of planetary orbits – an
understanding of the physical properties of the Sun or stars in general seemed to be impossible.
The breakthrough that paved the way to stellar astrophysics was the spectral analysis of
stellar light: Already Fraunhofer identified one prominent of the dark lines in the continuous
spectrum of the Sun with the one emitted by salt sprinkled in a flame.

The field of spectral analysis was then established by Kirchhoff and Bunsen in 1859: They
realized that each element produces its own pattern of spectral lines and can be thereby
identified. Thus one could show that the solar light contains strong absorption lines of calcium
and of previously unknown elements as helium. However, a proper understanding which
factors determine the strength of various spectral lines in the spectrum of the Sun and other
stars become only possible in the 1920s, after the advent of quantum mechanics. Thus we
start with a brief review of the simplest atom, the hydrogen atom, in a semi-classical picture.

2.1 Bohr-Sommerfeld model for hydrogen-like atoms

Bohr postulated the existence of discrete, stationary orbits for electrons in atoms. More
precisely, he required that the angular momentum J = mevr of an electron is a multiple of
Planck’s constant ~ ≡ h/(2π),

J = mevr = n~, n = 0, 1, 2, . . . (2.1)

If the electron is on a bound orbit, the electric force is balanced by the centrifugal force,

mev
2

r
=

e2

r2
(2.2)

and the quantization condition becomes

mev
2 =

n2
~

2

mer2
n

=
e2

rn
. (2.3)

Solving for rn gives the allowed electron orbits in the Bohr model,

rn =
n2

~
2

mee2
, n = 1, 2, . . . (2.4)

The total energy of an electron moving in the Coulomb field of an (infinitely heavy) nucleus
with electric charge e is the sum of its kinetic and potential energy,

E = Ekin + Epot =
1

2
mev

2 − e2

r
= − e2

2r
, (2.5)
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2.1 Bohr-Sommerfeld model for hydrogen-like atoms

n = ∞ E = 0

n = 3 E = −1.51 eV
Paschen, IR

n = 2 E = −3.40 eV
Balmer series

n = 1 E = −13.6 eV

Lyman series

UV

Figure 2.1: The energy levels of the hydrogen spectrum with some lines of the first three
spectral series.

where again Eq. (2.5) was used. Inserting rn gives the allowed stationary energy levels in a
hydrogen atom,

En = − mee
4

2n2~2
, n = 1, 2, . . . (2.6)

In transition between different levels, only photons with discrete energies

hν = |En − Em| (2.7)

can be absorbed or emitted. An empirical formula describing the wave-length of visible
hydrogen spectral lines was found by Balmer already in 1885,

1

λ
= R

(
1

4
− 1

n2

)

, (2.8)

where R is the Rydberg constant, 1/R ≈ 91.2 nm. Rewriting the general formula (2.6) for
wavelengths λ = c/ν and comparing it with the Balmer formula gives

hc

λ
= |En − Em| =

mee
4

2~2

∣
∣
∣
∣

1

n2
− 1

m2

∣
∣
∣
∣

(2.9)

with n = 2 and R = πmee
4/(c~3). Thus the Balmer series corresponds to the transitions

from a level m > 2 to n = 2. Transition to the ground level n = 1 are called Lyman series
and are in the UV, cf. also Fig. 2.1.

Apart from transition between two discrete levels, a free electron with E > 0 can become
bound or a bound electron can be emitted by an atom. These are called free-bound or bound-
free transition. In this case, the energy of the emitted or absorbed photon depends on the
kinetic energy of the free electron and can be arbitrary.
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2 Spectral lines and their formation

Ex.: Find the energy and radius of the ground state of a hydrogen atom.
Insert n = 1 in (2.6) and (2.4). Simplest in natural unit ( ~ = c = 1) with me = 512 keV and GeV−1 =
5.06 × 1013 cm (cf. Appendix B), and Sommerfeld’s fine structure constant α = e2/(~c) ≈ 1/137, [in
SI units α = e2/(4πε0~c) ≈ 1/137]

E1 = −me4

2~2
= −α2

2
mec

2 = − 512keV

2 × 1372
≈ 13.6eV ,

r1 =
~

2

me2
=

1

α

~

mec
=

137 cm

0.512 × 10−3 × 5.06 × 1013
≈ 5.3 × 10−9cm .

Kirchhoff’s laws Using Bohr’s model we can understand the laws deduced by Kirchhoff
empirically:

• A dense gas or a solid body emits continuous radiation without spectral lines. The atoms
and the radiation in the body are in thermal equilibrium, and the emitted radiation
follows the Planck distribution.

• A hot, diffuse gas produces emission lines. The lines correspond to the energy difference
of atomic levels n → m < n, photons are emitted.

• A cool, diffuse gas in front of a continuous sources produces absorption lines. Photons
which energy correspond to the the energy difference of an appropriate atomic level are
absorbed.

2.2 Formation of spectral lines

A prominent line in the solar spectrum corresponds to the n = 2 → n = 3 transition and is
called Balmer-α or Hα. The observation of this line means that a certain fraction of hydrogen
in the solar atmosphere must be in the second, excited state. How are the populations of the
different excited states governed?

For a classical gas in thermal equilibrium, the population ni of the state i with energy Ei

and degeneracy gi is given by a Boltzmann distribution, with

ni = Z−1gi exp(−Ei/kT ) , (2.10)

where Z can be thought of as a normalization constant. Excitations with energy E ≫ kT are
exponentially suppressed.

For the population of an excited stated n > 1 relative to the ground state n1 it follows

ni

n1
=

gi

g1
exp

(

−Ei − E1

kT

)

. (2.11)

Thus if (E2 − E1) ≫ kT , then the state n = 2 is only weakly populated and the Hα line
is faint. Increasing the temperature so that (E2 − E1) ∼ kT , the relative occupation of the
level n = 2 and the strength of the Hα line increases too. Increasing the temperature even
further, electrons populate higher and higher levels, reducing the relative population of the
n = 2 level and in turn the strength of the Hα line. Finally, hydrogen becomes ionized, when
the temperature is higher than its binding energy. Thus the following picture for the strength
of the Hα line emerges:
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2.3 Hertzsprung-Russel diagram

Spectral class Temperature Te/K main spectral feature

O 30000 hydrogen faint, ionized helium
B 20000 hydrogen moderate, neutral helium moderate
A 10000 hydrogen strong, neutral helium very faint
F 7000 hydrogen moderate, single ionized heavy elements
G 6000 hydrogen relatively faint, single ionized heavy elements
K 4000 hydrogen faint, single ionized heavy elements
M 3000 hydrogen very faint, neutral atoms, molecules

Table 2.1: Important spectral features of main-sequence stars.

• For a cold star, kT ≪ E1 − E2, most hydrogen is in the ground state; the Hα line is
very weak.

• Increasing the temperature, kT ≈ (E2 − E1), the n = 2 level becomes populated; the
Hα line becomes strong.

• Increasing further the temperature, kT >∼ (E2 − E1), higher levels become populated
and n = 2 level less; the Hα line becomes weaker.

• Increasing even further the temperature, kT >∼ E1, Hydrogen becomes ionized; the Hα
line disappears.

Stars were classified according to the strength of the Hα lines as A, B, F, G, K, M, O.
These classes are additionally subdivided into A0, A1, . . . A9, B0,. . . . Ordered by (decreasing)
temperature, the spectral classes form the sequence O, B, A, F, G, K, M, cf. also table 2.1.
(A mnemonic is “oh, be a fine girl/guy, kiss me”.)

For the visible n = 2 transitions, it follows

E2 − E1 = −(1/4 − 1) × 13.6 eV or (E2 − E1)/k ≈ 1.2 × 105 K.

Thus in the solar atmosphere with Te ≈ 5700 K only the tiny fraction 2/8 exp(−20.8) ≈ 10−10

of all hydrogen atoms is in the n = 2 level. Therefore the Balmer lines in the solar spectrum
are relatively faint, although the Sun consists mainly of hydrogen. On the other hand, the
ionization energy of calcium is 6.11 eV, and thus a factor 2 smaller than the one hydrogen.
Since the population of the different levels depends exponentially on the energy, already a
factor 2 leads to large differences: Practically all calcium atoms in the solar atmosphere are
single ionized and in the ground state, able to absorb a photon in the visible wave-length
range. More generally, the single ionized lines of relatively heavy elements as calcium are
prominent in F, G and K stars, cf. Table 2.1.

2.3 Hertzsprung-Russel diagram

Between 1905 and 1913, Hertzsprung and Russel examined the distribution of stellar luminosi-
ties for different spectral classes. The latter quantity characterizes the surface temperature
T , and since the luminosity is proportional to T 4 and the stellar surface ∝ R2, one expects
a wide distribution in this diagram. As shown in Fig. 2.2, this is not the case and stars
appear only in well-defined regions of the Hertzsprung-Russel (HR) diagram. Thus arbitrary
combinations of T and L, and thus of R and L are not allowed.
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2 Spectral lines and their formation

Most stars are found in a narrow band from the left-upper to the right-lower corner, the so-
called main sequence. Stars of the main sequence of the same temperature have approximately
the same luminosity and thus also radius. This correlation has to be explained by any theory
of stellar astrophysics.

Apart from the main sequence, there are two other star populations. Above the main
sequence, there are the giant and super giant stars: They are more luminous for the same
temperature as main sequence stars, hence their radius has to be larger. Much below the
main sequence stars (10 magnitudes fainter) and with roughly white spectral color, there are
the so called white dwarf stars.

There exists various variations of the original Hertzsprung-Russel diagram. For instance,
the color index can replace the temperature or the apparent magnitude can be used as measure
for the luminosity, if one discusses only stars from the same cluster.

The color indices in Eq. (1.4) are normalized so that their differences mλ1
−mλ2

are zero for
stars of the spectral class A0. Note also the colors U, B, V,. . . denote apparent magnitudes,
although astronomers use capital letters for them.

Exercises

1. Consider a gas of neutral hydrogen gas at temperature T , described by a Boltzmann
distribution ni = Z−1gi exp(−Ei/kT ) with gn = 2n2.
i) At what temperature T will equal number of atoms have electrons in the ground state
and in the second excited state (n = 3)?
ii) What predicts the Boltzmann distribution for T → ∞? What happens in reality?
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2.3 Hertzsprung-Russel diagram

Figure 2.2: A Hertzsprung-Russel diagram. The position of a star along the main-sequence
defines uniquely all important stellar parameters: Mass, radius, temperature, life-
time.
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3 Telescopes and other detectors

Progress in astronomy has been driven largely by the exploration of new wavelengths ranges
of the electromagnetic spectrum. The first discovery of an “extraterrestrial” signal beyond
the visible light was the observation of “cosmic rays” by Victor Hess 1912, whose origin is
still unresolved. In 1935, Karl Jansky discovered an extraterrestrial radio signal and could
associate it to the center and the plane of the Milky Way. After world war II, the radio band
has been studied systematically. Starting from the seventies, X- and gamma-ray astronomy
as well as the IR wave-lengths have been explored with satellites. Since the last decade,
high-energy air Cherenkov telescopes are detecting photons with energies E >∼ 100 GeV/c2.
This extension of the explored wave-length range made it also possible to study non-thermal
radiation.

At the same time there has been a continuous improvement of light receivers: The naked
eye was replaced first by photo plates and then by charge-coupled devices (CCD) similar to
those used in present days digital photo cameras. Another important improvement has been
the use of computers for data correction and analysis.

Further progress is expected by attempts to go beyond electromagnetic radiation: There
are large efforts underway to use charged particles (cosmic rays), neutrinos (from the Sun,
Galactic supernovae or other sources), and gravitational waves as new means to study the
Universe.

3.1 Optical telescopes

Optical telescopes can be divided into two principal classes: i) refracting telescopes using
lenses and ii) reflecting telescopes using mirrors (plus lenses). From the refracting telescopes
two principal subclasses exist: Kepler’s version with two concave lenses and Galileo’s version
with one concave and one convex lens.

3.1.1 Characteristics of telescopes

Magnification V : Many objects (binary stars, galaxies) that appear point-like to the naked
eye show structure viewed by a telescope. From the left panel of Fig. 3.1, it follows that the
magnification V depends on the ratio of the focal lengths fi and the apertures Di as

V =
φ2

φ1
=

f1

f2
=

D1

D2
. (3.1)

If an objects subtends the angle α to the unaided eye, a telescope magnifies this angle by the
factor V .

Resolution: The smallest angular distance at which two object can be separated in the image
is called resolving power or resolution of the telescope. A lower limit is set by diffraction, i.e.
the interference of light rays from different positions in the aperture plane of the telescope.
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3.1 Optical telescopes

Figure 3.1: Left: Schematic view of a refracting telescope (Keplerian version). Right: Diffrac-
tion pattern.

Consider for an one-dimensional example, when destructive interference happens: We divide
the aperture into 2n segments of length d = D/(2n) and pair light rays separated by d. The
phase difference between the pairs is l sinϑ = D/(2n) sinϑ and thus destructive interference
happens for

D

2n
sinα =

λ

2
or αn ≈ sin αn = n

λ

D
, n = 1, 2, . . . (3.2)

For a circular aperture D, the first diffraction minimum is at α1 ≈ 1.22λ/D. Two objects
can be resolved, if their angular distance is larger than α1 (“Rayleigh criteria”). For instance,
a 5 m optical telescope has a resolution of

α1 ≈ 1.22
λ

D
≈ 1.22

550 × 10−9m

5 m
≈ 1.34 × 10−7 602 × 180′′

π
≈ 0.03′′ , (3.3)

while the human eye resolves objects with 1′ angular distance.

Light gathering power The aperture or diameter D of the telescope determines the collecting
area for light that is then focused on the receptor surface. Compared to the human eye with
D ≈ 5mm, a 5 m telescope allows to see fainter objects with magnitude difference

m1 − m2 = 2.5 log

(
D2

1

D2
2

)

= 2.5 log

(
25

25 × 10−6

)

= 15 , (3.4)

i.e. with a 5 m telescope stars are visible down to m = 6 + 15 = 21. The light gathering
power is a measure of how strongly light is concentrated on the receptor surface and depends
on the kind of object considered. The apparent brightness b of the image of

• a point-like object scales as b ∝ D2: The amount of light gathered increases ∝ D2 and
is still collected on a single pixel of a CCD or on one nerve of the human eye.

• an extended objects is constant: The increase of collected light is compensated by the
larger picture of the object.
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3 Telescopes and other detectors

Exposure and quantum efficiency With photo plates or photoelectric detectors one can
collect light for hours, while the naked eye takes exposures of ∼ 1/20 seconds. Larger exposure
extend thus additionally the limiting magnitude of an telescope.

While the eye or a photo plate has a quantum efficiency of about 1%, i.e. 1% of all photons
are detected, modern detectors called charge-coupled devices (CCD) come close to a quantum
efficiency of about 100%. These are semiconducting detectors where a photon creates (similar
as in the photoelectric effect) electrons.

Spectrographs Simplest example is a prism that has typically a wave-length dependent
refractive index, n ∝ λ2. Positive interference occurs in a diffraction grating with grating
constant 1/D when the path length difference between neighboring rays is

D(sinφi + sinφf ) = mλ, m = ±1,±2, . . . (3.5)

3.1.2 Problems and limitations

Chromatic aberration Since the refractive index n of a lens (as any material) is wavelength
dependent, a picture of a refracting telescopes cannot be focused on a single common point
for different wavelengths. Together with the easier production and support of mirrors, this is
the main reason for the dominance of reflecting telescopes.

Surface quality: The surface of mirror or lenses has to be accurate generally to λ/20. For an
optical telescope, this corresponds to λ/20 ∼ 25 nm, i.e. around 250 atom layers. Similarly,
deviations of the various telescope parts due to thermal stress or gravity should be smaller
than λ/20.

Atmospheric seeing: For large ground-based telescopes, the resolution is limited by atmo-
spheric seeing: Turbulence in the air leads to time-dependent refractive index along different
lines-of-sight, n(x)+ δn(x, t), and causes the images of point-sources to break up into speckle
patterns, which change very rapidly with time. This limitation can be overcome partially by
placing telescopes at high-altitude observatories such as Mauna Kea or La Palma and using
adaptive optics or image correcting with the help of computers for ground-based telescopes.
Alternatively, one can go above the atmosphere, i.e. to space.

3.2 Other wave-length ranges

Radio telescopes The simplest realization would be a λ/2 antenna where electromagnetic
waves induces resonance currents in it. To increase the sensitivity, one builds large parabolic
antenna with the radio receiver in its focal point. Then the signal is electronically amplified.

Since the wavelengths is in the cm to meter range, the parabolic antenna can be made as a
simple metallic grid. This allows the construction of large dishes up to 100 m. On the other
hand, the resolution of a radio telescope is according to Rayleigh’s criteria ∝ λ and thus very
poor compared to optical telescopes. This problem can be partially overcome by combining
the information from telescopes distributed in an array or even on different continents (Very
Long Baseline interferometry).
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3.2 Other wave-length ranges

Figure 3.2: The MAGIC air Cherenkov telescope: lasers are used as control for the adaptive
optics.

Instruments for high-energy astronomy Extending observations to the UV and higher en-
ergies meets three main obstacles: First, the Earth’s atmosphere is opaque to photons with
energy above 10 eV, meaning that to observe photons in the UV and beyond directly requires
the placement of a detector above the Earth atmosphere. A major turning point in X-ray and
gamma-ray astronomy was therefore the launch of the first satellite-borne telescope, SAS-2,
in 1972. As an additional obstacle, geometrical optic ceases to work for photons in the X-ray
range (0.1 keV < E < 100 keV) and above. Finally, the flux of photons decreases with energy
strongly.

Small angle reflection is still possible for X-rays, if the incidence angle is very small, and
thus one uses a special type of grazing incidence mirror telescopes. Gamma-rays (E > MeV
and higher energies) can produce e+e− pairs in the field of a nucleus. These electrons and
positrons are either detected directly or, especially if E ≫MeV, produce secondary photons
forming thereby an electromagnetic cascade. Main limitation of satellite experiments is their
small collection area, which limits their use to energies <∼ 100 GeV. On the other hand,
100 GeV is the limit where the electromagnetic cascade in the earth’s atmosphere from the
initial photon can be detected. While the cascade dies out high in the atmosphere below
10 TeV, showers are still detectable via the Cherenkov1 emission of relativistic electrons and
muons. An example for such an atmospheric Cherenkov telescope is shown in Fig. 3.2.

1A charged particle that moves in a medium with refractive index n > 1 faster than the speed of light,
v > c/n, emits electromagnetic “Cherenkov radiation.”
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3 Telescopes and other detectors
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Figure 3.3: The differential intensity I(E) of cosmic rays measured by four different experi-
ments as function of kinetic energy E. The energy region influenced by the Sun
is marked yellow and an 1/E2.7 power-law is also shown as dashed line.

3.3 Going beyond electromagnetic radiation

In principle, all stable particle types may be used to obtain information about the universe:
Additionally to photons, these are the charged elementary particles (electrons e− and protons
p) and the stable nuclei. Moreover, the known stable neutral particles are neutrinos ν and
the graviton.

Charged particles—Cosmic rays Victor Hess discovered 1912 on a balloon flight that ion-
izing radiation increases with altitude. He performed observations also during a solar eclipse,
but found no decrease. Hence he concluded that the Sun can hardly be considered the source.
Later, the study of their deflections in the geomagnetic field showed that most cosmic rays
are protons.

The cosmic ray spectrum, a nearly featureless power-law extending over eleven decades in
energy up to a few × 1020 eV, is shown in Fig. 3.3. The power-law form of the cosmic ray
spectrum indicates that they are produced via non-thermal processes, in contrast to all other
radiation sources like e.g. stars or (super-) novae known until the 1950’s. Since our galaxy, the
Milky Way, contains a magnetic field with strength ∼ 3µG in the Galactic disc of thickness
d ∼ 100 pc, charged particles are deflected: In a homogeneous magnetic field, particle with
charge Ze gyrate with Larmor radius

RL =
cp

ZeB
=

µG

B

E

Z × 3 × 1015eV
pc . (3.6)

Thus one cannot associate sources to the observed arrival direction of cosmic rays, except
perhaps at the highest energies, E >∼ 1019 eV or the last energy decade shown in Fig. 3.3.
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3.3 Going beyond electromagnetic radiation

3.3.1 Neutrinos

The main advantage of neutrinos compared to photons is the extreme weakness of their
interactions. For instance, a neutrino produced inside the Sun interacts only with a probability
10−9 on its way out. Thus neutrinos can provide information about the interior of the stars,
while photons inform us only about their surface. Neutrinos are produced in weak interactions
like nuclear beta decay n → p+e−+ ν̄e that are part of the fusion processes in stars as we will
discuss later in detail. Therefore they are copiously in the interior of the Sun or a supernova
and are a key tool to test our theories of stellar structure and evolution.

The weakness of their interactions is also their main disadvantage compared to photons:
They are extremely difficult to detect. Solar neutrinos are observed since the mid-1960s, and
in 2002 Raymond Davis Jr. and Masatoshi Koshiba won the Nobel Prize in Physics ”for the
detection of cosmic neutrinos”.

3.3.2 Gravitational waves

Analogously as Maxwell’s equations predict electromagnetic waves, general relativity predicts
gravitational waves as a distortion of space-time. Passing of a gravitational wave leads (similar
to a Lorentz contraction) to a time-dependent change of length scales, h(t) = δL(t)/L. This
change h is proportional to the amplitude of the gravitational wave, and thus the distortion
is inversely proportional to the distance, h ∝ 1/d. Increasing the sensitivity of a gravitational
wave experiment by a factor ε increases the number of potential sources therefore as ε3, in
contrast to an increase as ε3/2 for photon or neutrino experiments.

Since gravity is very weak, the expected deviations are tiny, h <∼ 10−20. There are several
laser interferometer aiming at detecting gravitational waves.
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4 Basic ideas of special relativity

4.1 Time dilation – a Gedankenexperiment

Consider a light clock, i.e. a light pulse traveling between two mirrors separated by the
distance L. The time for a round trip is t0 = 2L/c. Now consider the clock, i.e. the two
mirrors, moving with velocity v, cf. Fig. 4.1. Then the light needs for bouncing once back
and forth the time t > t0,

t2 =
4

c2

[
L2 + (vt/2)2

]
=

4L2

c2
︸︷︷︸

t2
0

[

1 +
( vt

2L
︸︷︷︸

vt/ct0

)2
]

= t20 + (v/c)2t2 . (4.1)

Solving for t gives

t =
t0

[1 − (v/c)2]1/2
, (4.2)

i.e. the famous time dilation formula. Is this just a property of a badly constructed clock or
of fundamental importance? The answer given by experiments is that time for fast moving
observers indeed slows down.

4.2 Lorentz transformations and four-vectors

4.2.1 Galilean transformations

Newton’s gravitational law as well as the Coulomb law are examples for an instantaneous
action,

F(x) = K
∑

i

x − xi

|x − xi|3
. (4.3)

The force F(x, t) depends on the distance x(t) − xi(t) to all sources i (electric charges or
masses) at the same time t, i.e. the force needs no time to be transmitted from xi to x.

The force law is invariant under changes x′ = Rx + d, if |r′| = |r|. The translation d could
be time-dependent via d = vt. The condition that the norm of the vector r is invariant,
r = r′, restricts the possible transformation matrices R,

r′T r′ = rT RT Rr = rT r , (4.4)

as RT R = 1. (T denotes the transposed vector or matrix). Hence rotations R and translations
d keep a force law of type (4.3) invariant. In two dimensions, the rotation matrix R can be
chosen as

R =

(
cos α − sinα
sinα cos α

)

. (4.5)
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4.2 Lorentz transformations and four-vectors

L

← vt →

Figure 4.1: A clock consisting of a light pulse travelling between two mirrors; left at rest and
right moving with velocity v.

4.2.2 ∗∗∗ Lorentz transformations ∗∗∗
Comparing the non-relativistic Poisson equation ∆φ = 0 and Maxwell’s wave equation, (∆−
(1/c2)∂2

t )Aµ = 0 suggests that the latter are invariant under coordinate transformations that
keep the space-time interval

∆s2 ≡ x2 − c2t2 = x′ 2 − c2t′ 2 (4.6)

invariant. This means that both the time and the space difference between two events
measured in the coordinate system K and K ′ may be different, but that the difference
∆s2 ≡ x2 − c2t2 is the same for all inertial systems. Here we call “inertial system” all
coordinate systems that move force-free.

We want now to determine the equivalent to the rotation matrices R that are called Lorentz
transformations L. If we replace t by it in ∆s2, the difference between two space-time events
becomes the normal euclidean distance. Similarly, the identity cos2 α + sin2 α = 1 for an
imaginary angle ψ = iα becomes cosh2 ψ − sinh2 ψ = 1. Thus a close correspondence exists
between rotations R in euclidean space that leave ∆x2 invariant and Lorentz transformations
L that leave ∆s2 invariant. We try therefore as a guess

x = ct′ sinhψ + x′ cosh ψ , (4.7)

y = y′ , z = z′ , (4.8)

ct = ct′ cosh ψ + x′ sinhψ . (4.9)

Compared to normal coordinate rotation in euclidean space, the trigonometric functions are
replaced by hyperbolic ones.

Consider now in system K the origin of the system K ′. Then x′ = 0 and

x = ct′ sinhψ , (4.10)

ct = ct′ cosh ψ . (4.11)

Dividing the two equations gives
x

ct
= tanhψ . (4.12)
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4 Basic ideas of special relativity

Since x/t is the relative velocity of the two systems, we have identified the physical meaning
of the imaginary “rotation angle ψ” as

tanhψ =
v

c
≡ β . (4.13)

Using the following identities

sinhx =
tanh x

√

1 − tanh2 x
=

β
√

1 − β2
(4.14)

cosh x =
1

√

1 − tanh2 x
=

1
√

1 − β2
≡ γ (4.15)

together with (4.13) in (4.7) gives the standard form of the Lorentz transformations,

x =
x′ + vt′

√

1 − (v/c)2
= γ(x′ + βct′) (4.16)

ct =
ct′ + v/cx′

√

1 − (v/c)2
= γ(ct′ + βx′) . (4.17)

4.2.3 Energy and momentum

Another important example for a four-tupel consisting (from a non-relativistic point of view)
of a vector and a scalar and transforming like (ct,x) under Lorentz transformations, is (E, cp).
The Lorentz transformation written in this case is

E = γ(E′ + βcp′x) (4.18)

cpx = = γ(cp′x + βE′) . (4.19)

If we choose as system K ′ the rest system of the particle, then p′x = 0 and γ = 1. If we would
set the rest energy E′ ≡ E0 equal to zero, then the energy E would be zero for arbitrary γ.
The correct value of E0 can be obtained by considering the non-relativistic limit,

γ =
1

(1 − β2)1/2
≈ 1 +

β2

2
(4.20)

and

γE0 ≈ E0 +
E0v

2

2c2

!
= const. +

mv2

2
. (4.21)

Thus we obtain the correct non-relativistic limit, if a particle at rest has the energy E0 = mc2.

4.2.4 Doppler effect

We consider as last example how the wave-vector of a photon (ω/c,k) transforms under a
Lorentz transformation,

ω′

c
=

ω
c − V

c kx

[1 − (V/c)2]1/2
. (4.22)
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4.2 Lorentz transformations and four-vectors

Setting kx = k cos α = ω
c cos α, where α the angle between the wave vector and the direction

of the movement of the source, we obtain the relativistic Doppler formula

ω

ω′
=

[
1 − (V/c)2

]1/2

1 − (V/c) cos α
. (4.23)

For small relative velocities, v ≪ c, the quadratic term in the nominator can be neglected.
Thus one reproduces the non-relativistic Doppler formula where only the radial relative ve-
locity enters.

∗∗∗ Aberration and beaming ∗∗∗ Classical aberration was discovered 1725 by James Bradley:
He discovered and later explained an apparent motion1 of celestial objects caused by the finite
speed of light and the motion of the Earth in its orbit around the Sun. Assume e.g. to observe
a star at the moment when it is right in the zenith. Since the Earth moves, you have to point
the telescope a bit “ahead” and thus the position of stars changes in the course of one year.

To obtain the relativistically correct form for the aberration formula, we rewrite first the
Lorentz transformations for x and t in differential form,

dx = γ(dx′ + βcdt′) , (4.24)

dy = dy′ , dz = dz′ , (4.25)

cdt = γ(cdt′ + βdx′) . (4.26)

Then we obtain the transformation law for velocities u as

u‖ =
dx‖

dt
=

u′
‖ + v

1 + vu′
‖/c2

(4.27)

u⊥ =
dx⊥

dt
=

u′
⊥

γ(1 + vu′
⊥/c2)

. (4.28)

The so-called aberration formula connects the angle between the velocities u and u′ in the
two frames,

tan ϑ =
u⊥

u‖
=

u′ sin ϑ′

γ(u′ cos ϑ′ + v)
. (4.29)

The most interesting case is the aberration of light. We set ϑ′ = π/2, i.e. we ask how light
emitted into one half-sphere appears in a different inertial system. With u = u′ = c it follows
then

tan ϑ =
c

γv
(4.30)

or ϑ ≈ 1/γ for v → c. Thus a fast moving source emits photons mainly in a cone of opening
angle ϑ ≈ 1/γ around its forward direction.

1This motion depends on the velocity of the observer perpendicular to the line-of-sight to the star, but is
independent of the distance to the star. The deviation induced by classical aberration is much larger than
the parallax we discussed already.
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5 Binary stars and stellar parameters

We have discussed up to now the (surface) temperature T , the luminosity L, and the radius
R as basic properties of a star. The remaining one, the stellar mass M , can be only deter-
mined by its gravitational influence on another body. Fortunately, 50%–80% of all stars are
gravitationally bound in multiple star systems, most of them in binary systems.

For instance, 50 binaries, 14 triple and three systems with four stars were known up to
a distance of 10 pc from the Sun in the year 1980. For solar-type stars, the ratio of sin-
gle:double:triple:quadruple stars is 45:46:8:1. On the other hand, most dwarf stars that are
more difficult to detect are isolated stars.

Classification of binary stars:

• Apparent or optical binaries are not really binary stars, but random coincidences along
the same line-of-sight.

• A visual binary is a bound system that can be resolved into two stars by a telescope.
William Herschel discovered 1803 the first example when he noted that the fainter
component of Castor (Castor B) had moved relative to the brighter component (Castor
A). This was the first indication that gravity acts outside the solar system.

• In an astrometric binary system only the brighter star is visible. Its position “wobbles”
back and forth, because the star is moving on a periodic orbit.

• In a spectroscopic binary, the wavelength of spectral lines oscillates periodically due
to Doppler shift. The first case was detected 1889 by Pickering who found that the
spectral lines of the brighter component of Mizar (Mizar A) were usually double and
the spacing varied with a regular 104 day period.

• An eclipsing binary is a system that becomes periodically brighter and fainter. It is
dimmed when the faint companion passes in front of the main star. Thus we are aligned
to the plane of the orbit. An example visible by eye is Algol: Algol fades at intervals of
2d 20h 49m to a third of its normal brightness, then after a few hours returns to normal
brightness.

• In a composite spectrum binary are lines of two stars with different spectral type mixed.

Before we can use binary star systems as tools to determine stellar masses and radii, we
have to review the most prominent problem of classical mechanics and astronomy, namely
the gravitational two-body or Kepler problem.

5.1 Kepler’s laws

Kepler developed his three laws of planetary motions empirically from the observations of
Tycho Brahe. The laws are

1. Planets orbit the Sun in ellipses, with the Sun in one of the two focuses.
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5.1 Kepler’s laws

2. The line connecting the Sun and a planet sweeps out equal area in equal time.

3. The “Harmonic Law” states the squared orbital period P of planets measured in years
equals to the third power of their major axis measured in astronomical units, (P/yr)2 =
(a/AU)3.

Kepler noted already that his laws describe also the motion of the Saturn moons, if in the
Harmonic Law the appropriate units are used. Newton used later the Harmonic Law to derive
the 1/r2 dependence of the gravitational force. We will follow the opposite way and discuss
how Kepler’s laws follow from Newton’s law for gravitation.

Ellipses:

An ellipse may be defined by the condition r + r′ = 2a, i.e. as the set of points
with a constant sum 2a of the distances r and r′ to the two focal points F and F ′.
Additionally to its major axis a, an ellipse is characterized either by its minor axis b
or its eccentricity e. The latter two quantities can be connected by considering the
two points at the end of the minor axis b: Then r = r′ = a and r2 = b2 + (ae)2 or

b2 = a2(1 − e2) . (5.1)

F ′ F
ss

a ae

b r′

r

ϑ

s

Any point of an ellipse can be specified by the distance r to one of its focal points
and an angle ϑ that is measured counter-clockwise beginning from the major axis.
From the figure, one obtains immediately (with cos(180◦ − ϑ) = − cos(ϑ))

r′2 = r2 + (ae + a)2 + 2r(2ae + a) cos ϑ . (5.2)

Eliminating r′ with the help of r + r′ = 2a and solving for r one obtains

r =
a(1 − e2)

1 + e cos ϑ
. (5.3)

As starting point, we recall how a two-body problem can be reduced to an one-body problem
in the case of a central force.
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5 Binary stars and stellar parameters

Denoting the positions and the masses of two stars with mi and ri, i = 1, 2, respectively,
the equations of motions are

m1r̈1 = −f(|r1 − r2|)(r1 − r2) (5.4)

m2r̈2 = +f(|r1 − r2|)(r1 − r2) . (5.5)

Adding Eqs. (5.4) and (5.5),

(m1r̈1 + m2r̈2) = (m1 + m2)R̈ = 0 , (5.6)

i.e. we see that the center of mass (cm) moves freely. In the second step, we introduced
relative coordinates r′ = r − R and cm coordinates,

R =
m1r1 + m2r2

m1 + m2
. (5.7)

Multiplying Eq. (5.4) by m2 and (5.5) by m1 and subtracting the two equations, we obtain

µr̈ = f(r)r , (5.8)

where we introduced the reduced mass

µ =
m1m2

m1 + m2
. (5.9)

Thus we can solve an one-body problem for the reduced mass µ moving with the distance r
in the gravitational field of the mass M = m1 + m2.

5.1.1 Kepler’s second law: The area law

Consider the movement of a body under the influence of a central force,

µr̈ = f(r)
r

r
. (5.10)

Since r×r = 0, vectorial multiplication with r should simplify Eq. (5.10). Doing it, we obtain

µr × r̈ = 0 , (5.11)

that looks already similar to a conservation law. Since

d

dt
(r × ṙ) = ṙ × ṙ

︸ ︷︷ ︸

=0

+r × r̈ (5.12)

we obtain indeed the conservation of angular momentum L = µr × ṙ for the movement in a
central potential,

µr × r̈ =
d

dt
(µr × ṙ) =

d

dt
L = 0 . (5.13)

There are two immediate consequences: First, the movement is always in the plane per-
pendicular to L. Second, the area swept out by the vector r is

dA =
1

2
r × vdt =

1

2µ
dL (5.14)

and thus also constant.
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5.1 Kepler’s laws

5.1.2 Kepler’s first law

We introduce the unit vector r̂ = r/r and rewrite the definition of the angular momentum L
as

L = µr × ṙ = µrr̂ × d

dt
(rr̂) = µrr̂ ×

(

ṙr̂ + r
dr̂

dt

)

= µr2r̂ × dr̂

dt
. (5.15)

The first term in the parenthesis vanishes, because of r̂ × r̂ = 0. Next we take the cross
product of the gravitational acceleration,

a = −GM

r2
r̂ (5.16)

with the angular momentum,

a × L = −GM

r2
r̂ ×

(

µr2r̂ × dr̂

dt

)

= −GMµ r̂ ×
(

r̂ × dr̂

dt

)

. (5.17)

With the identity A × (B × C) = (A · C)B − (A · B)C, it follows

a × L = −GMµ

[(

r̂ · dr̂

dt

)

r̂ − (r̂ · r̂) dr̂

dt

]

. (5.18)

Because r̂ is a unit vector, r̂ · r̂ = 1 and d(r̂ · r̂)/dt = 0, and thus

a × L = GMµ
dr̂

dt
. (5.19)

Since L and GMµ are constant, we can rewrite this as

d

dt
(v × L) =

d

dt
(GMµr̂) . (5.20)

Integrating gives
v × L = GMµr̂ + C , (5.21)

where the integration constant C is a constant vector.
Taking now the dot product with r, we obtain

r · (v × L) = GMµrr̂ · r̂ + r · C . (5.22)

Applying next the identity A · (B × C) = (A × B) · C, it follows

(r × v) · L = GMµr + rC cos ϑ = GMµr

(

1 +
C cos ϑ

GMµ

)

. (5.23)

Expressing r × v as L/µ, defining e = C/(GMµ) and solving for r, we obtain finally the
equation for a conic section, i.e. Kepler’s first law,

r =
L2/µ2

GM(1 + e cos ϑ)
. (5.24)

In the case of an ellipse,

r =
a(1 − e2)

1 + e cos ϑ
(5.25)

and thus we obtain as angular momentum

L = µ
√

GMa(1 − e2) . (5.26)
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5.1.3 Kepler’s third law

We integrate Kepler’s second law in the form of Eq. (5.14) over one orbital period P ,

A = πab =
L

2µ
P . (5.27)

Squaring and solving for P , it follows

P 2 = 4π2 (abµ)2

L2
. (5.28)

With b2 = a2(1 − e2) and Eq. (5.26) for the angular momentum L, we obtain Kepler’s third
or harmonic law,

P 2 =
4π2

G(m1 + m2)
a3 . (5.29)

5.2 Determining stellar masses

Visual binaries The period of a visual binary system can be determined directly, if it is
observed long enough. Note that periods are typically long, from years up to 100–1000 yr,
because the angular separation of the two stars should be large. The plane containing the
orbit may be inclined relative to the plane orthogonal to the line of sight. This angle is called
inclination i and is zero when the two planes coincide and i = 90◦ when the orbit is seen
edge-on.

The inclination and the true orbit can be reconstructed from the apparent orbit, if good
enough observations exist: A tilted ellipse projected on the celestial sphere remains an ellipse,
but with a changed eccentricity. Therefore the stars seem to move not around the foci, and
this discrepancy can be used to find the “true” ellipse. In order to convert the observed
angular distances into true lengths, the distance to the binary system has to be known. The
total mass follows then from Kepler’s 3. law. Moreover, the ratio of masses can be determined
from the ratio r1/r2 (or via Doppler shift from v1/v2, if the system is also a spectroscopic
binary).

Spectroscopic binaries and Doppler shifts If two stars orbit their cms closely (AU) and fast
(P ≈ hours-months) and moreover the inclination i is not close to zero, the Doppler shift of
their spectral lines can be detected. The latter condition arises, because in the non-relativistic
limit v ≪ c or γ ≈ 1

ω0

ω
=

[
1 − (v/c)2

]1/2

1 − (v/c) cos α
≈ 1

1 − (v/c) cos α
=

1

1 − vr/c
, (5.30)

where vr is the radial velocity and α was the angle between the wave vector/propagation
direction and the direction of movement. Rearranging this equation and introducing ∆ω =
ω − ω0 it follows

∆ω

ω
= −vr

c
= −∆λ

λ
. (5.31)

If the orbit is circular, then the curve will be a sine curve. For an elliptical orbit, the shape
of the radial velocity curve depends on the eccentricity and the inclination of the ellipse.
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5.2 Determining stellar masses

For simplicity, we assume orbits with small eccentricity. Then from ri = P/(2π)vi, and
a = r1 + r2 = P/(2π)(v1 + v2) and thus Kepler’s 3. law becomes

2πG(m1 + m2) = P (v1 + v2)
3 =

P (v1r + v2r)
3

sin3 i
. (5.32)

with vr = v sin i.
If the inclination i is not known, one can derive at least a lower limit on m1 + m2 using

i = 90◦. Larger samples of spectroscopic binaries allow one to improve these limits by
performing a statistical analysis. One assume an isotropic distribution of the inclination
angle and calculates then the expectation value of sin3 i. Since there exists an observational
bias to discover values of i close to 90◦, the estimation has to be corrected for such a selection
effect.

Often only the Doppler shift of one of the two components can be measured. Eliminating
e.g. v2 using the cm condition (assuming again for simplicity circular orbits) gives

v2 =
m1

m2
v1 . (5.33)

Then

v1 + v2 = v1

(

1 +
m1

m2

)

=
v1

m2
(m1 + m2) . (5.34)

Now Kepler’s law can be rewritten as

P

2πG
v3
1r =

m3
2 sin3 i

(m1 + m2)2
. (5.35)

The RHS is called mass function and is again studied with statistical methods.

Eclipsing binaries An eclipsing binary star is a binary system in which the orbit plane of the
two stars lies nearly in the line-of-sight of the observer, sin(i) ≈ 1, so that the components
undergo mutual eclipses. Thus they appear as variable stars, with periodic drops in intensity
when the less luminous star obscures the other.

5.2.1 Mass-luminosity relation

For any binary system with derived mass also the distance is known. Thus, the luminosity can
be derived from the apparent magnitude. When the observed luminosity for stars in binary
systems is plotted as function of their mass, the so-called mass-luminosity relationship is
obtained. Eddington derived 1924 for main-sequence stars theoretically using a rather crude
model

L

L⊙
=

(
M

M⊙

)α

(5.36)

with α ∼ 3. This means that the main-sequence in the Hertzsprung-Russel diagram can be
indeed characterized by essentially a single parameter, e.g. their mass. From observations,
one finds a broken power law with

α ≈ 1.8 for M < 0.3M⊙ , (5.37)

α ≈ 4.0 for 0.3M⊙ < M < 3M⊙ , (5.38)

α ≈ 2.8 for M > 3M⊙ . (5.39)
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5 Binary stars and stellar parameters

From observations one tries to measure the number of stars as function of their mass,
correcting for the bias to see more easily massive and thus brighter stars. From this, taking
into account that massive stars live shorter, one can construct the initial mass function that
is an important theoretical ingredient in tests of stellar evolution models.

5.3 Stellar radii

Only for the Sun, the radius can be directly determined from its angular radius and the
distance. Other stars cannot be resolved as extended objects from the ground because of
atmospheric seeing. If the temperature and the luminosity of a star are known, the Stefan-
Boltzmann law can be used to define the “luminosity radius”. Eclipsing binaries offer another
possibility to measure stellar radii, since their light-curve depends directly on the radii of the
two stars. As result, one finds that the MS stars become larger with increasing temperature,
cf. Fig. 2.2.
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6 Stellar atmospheres and radiation transport

6.1 The Sun as typical star

The Sun is a rather typical main-sequence star, distinguished only by its proximity to the
observing astronomers on Earth.

Solar radius R⊙: From the distance D and the apparent radius of the solar disk, δ⊙ =
15′59.63′′, one obtains R⊙ = Dδ⊙ = 696000 km.

Solar mass and density: Kepler’s Third Law relates the semi-major axis a of their orbits,
the period P and the total mass of two gravitating bodies,

a3

P 2
=

G

4π2
(m1 + m2) . (6.1)

This gives with M⊕ ≪ M⊙, M⊙ = 1.989 × 1033 g. The average solar density follows as
ρ = M⊙

4π/3R3
⊙

= 1.409 g/cm3.

Solar temperature: Measuring the Solar Constant, i.e. the energy flux of the Sun at the
Earth’s position outside the atmosphere, one can use the Stefan-Boltzmann law to define the
effective solar temperature, T = 5762 K.

Magnetic field, sunspots: Magnetic field strengths can be determined spectroscopi-
cally via the Zemann effect: The energy levels of atoms split with ∆E = gmJ~ωL, where
ωL = eB/(2me) is the larmor frequency, g the Lande factor and |mJ | ≤ J is the magnetic
quantum number. The Sun seems to have no smooth large-scale magnetic field; magnetic
fields are concentrated in thin flux tubes. Sunspots are the ends of such flux tubes at the
solar atmosphere and have field strength up-to one T = 104 G. The abundance of sunspots
varies with an average period of 11 years. With the same period, the magnetic field of the
Sun reverses sign.

Rotation period: Observing sunspots, the rotation period P of the Sun can be determined.
It is found that the Sun rotates differentially, at the equator with P = 24.8 d and e.g. at
latitude 70◦ with P ≈ 31 d.

Structure: Those layers that give rise to the continuous radiation and the major part of
the Fraunhofer lines are called photosphere. During total solar eclipses, one can observe the
higher layer of the atmosphere. This layer is called chromosphere and is characterized by
the absence of continuum and absorption lines, showing only emission lines. Afterwards the
corona follows stretching outwards into the interplanetary medium.

6.2 Radiation transport

Let us idealize atoms as black discs of radius R. Then any photon hitting the disc with area
πR2 is absorbed. In other words, the cross-section σ for the absorption of a photon by a
single atom is σ = πR2.
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6 Stellar atmospheres and radiation transport

Consider now a cylinder of length l and area A, filled with N atoms. Their number density
n is n = N/(Al). Let us assume first for simplicity that Nσ ≪ A, i.e. the atoms do not overlap
much and are uniformly distributed. Then the fraction τ of incoming radiation absorbed in
the cylinder is simply

Nσ

A
= nlσ ≡ τ (6.2)

and defines the optical depth τ ≡ nlσ. Our assumption Nσ ≪ A corresponds to τ ≪ 1, an
“optical thin” or transparent source in contrast to an “optical thick” source with τ ≫ 1. For
arbitrary τ , we have to calculate how much radiation is absorbed passing the infinitesimal
distance dl,

dI = −Idτ = −Inσdl (6.3)

or
dI

I
= −nσdl . (6.4)

Integrating gives
∫ I

I0

dI ′

I
= −

∫ l

0
dl′nσ ≡ −τ ⇒ ln

I

I0
= −τ (6.5)

and finally

I = I0 exp(−τ) or I(l) = I0 exp

(

−
∫

dlnσ

)

. (6.6)

For small τ , expansion of the exponential reproduces our old result: From I0 exp(−τ) ≈
I0(1 − τ + . . .), one sees that the intensity is reduced by I0τ , i.e. the fraction of absorbed
photons is given by τ . If nσ does not depend on the distance l, the optical depth τ is simply
obtained by multiplying nσ with the path length, as in our original definition (6.2). In general,
nσ has to be integrated along the path length l. This equation can be seen as definition and
measurement description for the cross section σ.

What is the typical size of the cross section σ for the absorption of photons? A reasonable
estimate for the excitation of an atom is σ ∼ πr2

1 choosing r1 = ~
2/(meα) as the first Bohr

radius, while the cross section for scattering pf photons on free electrons can be estimated
as σ ∼ πr2

0, where r0 = α~/(mec) is the classical electron radius. A theory of the radiation
transport in stars needs as input scattering cross-section of photons with atoms and ions.

One introduces often the opacity κ = τ/l = nσ. Then, Eq. (6.3) becomes

dI = −Iκdl . (6.7)

Photons can not only be absorbed, but have to be also re-emitted by atoms. Hence, we should
add a source term S to the previous equation,

1

κ

dI

dl
= −I + S , (6.8)

where S accounts e.g. for the de-excitation of atoms. For instance, a photon can be absorbed
exciting an atom to the level n, de-exciting then in several steps emitting several photons of
lower energy.

Ex.: A beam of light with intensity I0 enters a gas layer with constant opacity κ and source function
S. Derive I(l) and sketch I(l) as function of τ = κl for S = 2I0 and S = I0/2.
We have solved already Eq. (6.8) for S = 0, where we obtained I(l) = I0 exp(−κl). The general solution
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6.3 Diffusion and random walks

for S 6= 0 is obtained by “variation of constants”, i.e. if we replace I0 by the unknown function f(l).
Inserting

dI

dl
=

df

dl
exp(−κl) − fκ exp(−κl)

into Eq. (6.8) gives
df

dl
= S exp(κl)

or

f(l) = S

∫

dl exp(κl) = Sκ exp(κl) + c .

The integration constant c has to be chosen such that I(0) = I0, c = I0 − S. Hence the solution is

I(l) = I0 exp(−κl) + S[1 − exp(κl)] .

The figure shows how the intensity I(l) of the photon beam reaches asymptotically the value S of the
source function. If I0 < S, more photons are replaced by the gas than absorbed and I(l) approaches
S from below for τ → ∞. The typical distance for a change of I is τ .

 0
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6.3 Diffusion and random walks

What is the fate of a photon created in the center of the Sun? If we estimate its mean
free-path ℓ = 1/(nσ) by assuming that most of hydrogen in the Sun is ionized, and thus the
mean density of free electron is ne = ρ⊙/mH ≈ 8.4 × 1023/cm3, and use as cross section
σ ∼ 10−25cm2, then we obtain as estimate ℓ ∼ 10 cm. In each scattering process, the photon
is approximately isotropically emitted: Thus the path of a photon from the center of the Sun
to the surface is not a straight-forward travel, but resembles a random-walk. The time a
photon needs to travel the distance R⊙ can be estimated in two ways:

After n steps li of the same size |li| = l a photon that started at zero is at the position
d =

∑n
i=1 li. The scalar product of d with itself is

d · d =
n∑

i=1

n∑

j=1

li · lj (6.9)

and splitting the sum into the diagonal and the off-diagonal terms, we obtain

d2 = nl2 + 2l2
n∑

i=1

n∑

j<i

cos ϑij ≈ nl2 . (6.10)
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6 Stellar atmospheres and radiation transport

By assumption, the angles ϑij between li and lj are chosen randomly and thus the off-diagonal
terms cancel against each other.

A more formal argument goes as follows: The probability p(m, n) to end after n steps of
unit size at the distance d = m is given in the Table as

m -3 -2 -1 0 1 2 3

n = 0 1
n = 1 1/2 1/2
n = 2 1/4 1/2 1/4
n = 3 1/8 3/8 3/8 1/8

The denominator of p(m, n) is the sum of all possible paths and thus equal to 2n. The
numerator is the sum of all paths ending at distance m after n steps. Each entry in the table
is given by the sum of the entries to the left and right in the line above and thus equal to the
binomial coefficient (remember Pascal’s triangle). Thus

p(m, n) = 2−n

(
n

m

)

. (6.11)

Since p(m, n) = p(−m, n), the average distance is zero. A more useful quantity is the root
mean square deviation d = 〈k2〉1/2,

d =

(∑

k k2p(k, n)

2n

)1/2

= n1/2 (6.12)

If the step size is l, then we obtain again d = n1/2l.

6.4 Photo-, chromosphere and corona

Photosphere: The photosphere gives rise to the continuous radiation and the major part
of the Fraunhofer lines. Main process for continuum absorption is the bound-free transition
H− + γ →H+e−, for emission the reverse process. Since the electron is free, the energy of the
photon is not fixed.

The surface of the Sun is not smooth but shows granules of ∼ 100km size: Lighter areas
are surrounded by darker (i.e. cooler) ones, providing evidence for convection.

Center limb darkening: An area element of a surface has the same brightness for any
viewing angle ϑ (“Lambert’s cosine law”): Although the emitted power from the area element
into the direction ϑ is reduced by cos ϑ, the observed size of the area element is also reduced
by that same amount. Consequently, the brightness of the solar disk should be constant, if
the Sun is an ideal black-body.

The observed darkening of the Sun towards the limb (cf. right panel of Fig. 6.1) can be
explained by the finite extension of the photosphere and a decrease of the solar temperature
towards its edge. We see by definition to τ = 1. At the center, a certain value r∗ = r(τ = 1)
is defined by this condition, while this r∗ corresponds to τ ∼ 1/ cos ϑ at the limb. Thus τ = 1
corresponds to layers lying more outside towards the limb that are in turn cooler. Since I
depends exponentially on τ , this explains also the sharpness of the solar atmosphere.
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6.4 Photo-, chromosphere and corona

Figure 6.1: Left: Solar corona in X-rays. Right: Photosphere with sunspots and limb-
darkening clearly visible.

Chromosphere: At most wavelengths the chromosphere is optically thin, and we see through
it to the photosphere. Only using special filters or during a solar eclipse, the chromosphere
becomes visible.
Corona: A very hot, low-density plasma that is far from thermal equilibrium. Its energy
density is dominated by magnetic fields. The heating mechanism of the corona is not yet
understood.
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7 Main sequence stars and their structure

7.1 Equations of stellar structure

We look for spherical symmetric, static solutions of the equations of stellar structure. This
requires that rotation, convection, magnetic fields B, and other effects that break rotational
symmetry have only a minor influence on the star. This assumption is in most cases very well
justified.

7.1.1 Mass continuity and hydrostatic equilibrium

We denote by M(r) the mass enclosed inside a sphere with radius r and density ρ(r),

M(r) = 4π

∫ r

0
dr′r′2ρ(r′) (7.1)

or
dM(r)

dr
= 4πr2ρ(r) . (7.2)

Although trivial, this equation constitutes the first (the “continuity equation”) of the five
equations needed to describe the structure and evolution of stars. An important application
of the continuity equation is to express physical quantities not as function of the radius r
but of the enclosed mass M(r). This facilitates the computation of the stellar properties as
function of time, because the mass of a star remains nearly constant during its evolution,
while the stellar radius can change considerably.

A radial-symmetric mass distribution M(r) produces according Gauß’ law the same grav-
itational acceleration, as if it would be concentrated at the center r = 0. Therefore the
gravitational acceleration produced by M(r) is

g(r) = −GM(r)

r2
. (7.3)

If the star is in equilibrium, this acceleration is balanced by a pressure gradient from the
center of the star to its surface. Since pressure is defined as force per area, P = F/A, a
pressure change along the distance dr corresponds to an increment

dF = dA P − (P + dP )dA = −dA dP
︸ ︷︷ ︸

force

= − ρ(r)dAdr
︸ ︷︷ ︸

mass

a(r)
︸︷︷︸

acceleration

(7.4)

of the force F produced by the pressure gradient dP . For increasing r, the gradient dP < 0
and the resulting force dF is positive and therefore directed outward. Hydrostatic equilibrium,
g(r) = −a(r), requires then

dP

dr
= ρ(r)g(r) = −GM(r)ρ(r)

r2
. (7.5)
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7.1 Equations of stellar structure

If the pressure gradient and gravity do not balance each other, the layer at position r is
accelerated,

a(r) =
GM(r)

r2
+

1

ρ(r)

dP

dr
. (7.6)

In general, we need an equation of state, P = P (ρ, T, Yi), that connects the pressure P with
the density ρ, the (not yet) known temperature T and the chemical composition Yi of the
star. For an estimate of the central pressure Pc = P (0) of a star in hydrostatic equilibrium,
we integrate (7.5) and obtain with P (R) ≈ 0,

Pc =

∫ R

0

dP

dr
dr = G

∫ M

0
dM

M

4πr4
, (7.7)

where we used the continuity equation to substitute dr = dM/(4πr2ρ) by dM . If we replace
furthermore r by the stellar radius R ≥ r, we obtain a lower limit for the central pressure,

Pc = G

∫ M

0
dM

M

4πr4
> G

∫ M

0
dM

M

4πR4
=

M2

8πR4
. (7.8)

Inserting values for the Sun, it follows

Pc >
M2

8πR4
= 4 × 108bar

(
M

M⊙

)2 (
R⊙

R

)4

. (7.9)

The value obtained integrating the hydrostatic equation using the “Solar Standard Model” is
Pc = 2.48 × 1011 bar, i.e. a factor 500 larger.

7.1.2 Gas and radiation pressure

A (relativistic or non-relativistic) particle in a box of volume L3 collides per time interval
∆t = 2L/vx once with the yz-side of the box, if the x component of its velocity is vx.
Thereby it exerts the force Fx = ∆px/∆t = pxvx/L. The pressure produced by N particles
is then P = F/A = Npxvx/(LA) = npxvx or for an isotropic distribution with 〈v2〉 =
〈v2

x〉 + 〈v2
y〉 + 〈v2

z〉 = 3〈v2
x〉

P =
1

3
nvp . (7.10)

If the particles have a distribution np of momenta with

N = V

∫ ∞

0
dp np = V

∫ ∞

0
dv nv , (7.11)

then we obtain the so-called pressure integral

P =
1

3

∫ ∞

0
dp npvp . (7.12)

Although the derivation assumed classical trajectories of the particles, the result holds for
any kind of non-interacting particles, in particular also if quantum effects are important (cf.
Exercise 7.1).

The two most important cases in astrophysics are a classical, non-relativistic gas of atoms
and a gas of photons. In the first case, we can derive the momentum distribution np noting
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7 Main sequence stars and their structure

that the states describing a free particle are labelled by the continuous three-momentum p.
Thus the sum over discrete quantum numbers in the Boltzmann factor is replaced by an
integration over the momenta d3p/(2π)3 and the volume d3x occupied by the system,

∑

i

exp(−E/kT ) →
∫

d3p

(2π)3
exp

(

−mv2

2kT

)

=
1

(2π)3

∫ ∞

0
exp

(

−mv2

2kT

)

4πm3v2dv . (7.13)

If we compare the RHS with Eq. (7.11) we see that we need only to normalize correctly nv.
The integral can be evaluated by substituting α = m/(2kT ) and noting that

− ∂

∂α

{∫ ∞

−∞
dx exp(−αx2)

}

=

∫ ∞

−∞
dxx2 exp(−αx2) = − ∂

∂α

√
π

α
=

1

2α

√
π

α
. (7.14)

Multiplying the integrand with 4(α/π)3/2, we obtain the Maxwell-Boltzmann distribution of
velocities for a classical gas,

nvdv = n
( m

2πkT

)2/3
exp

(

−mv2

2kT

)

4πv2dv . (7.15)

Because of npdp = nvdv, we can insert now nv into the pressure integral (7.12),

P =
1

3

∫ ∞

0
dv nvvp = n

(α

π

)2/3
∫ ∞

0
dx x4 exp

(
−αx2

)
= nkT . (7.16)

The integral
∫

dxx4 exp(−αx2) has been calculated with the same trick, but now differentiat-
ing twice the Gaussian integral with respect to α. Since we use generally the mass density ρ
instead of the particle number density n, it is more convenient to introduce the gas constant
R = k/mH and the mean atomic weight µ defined by n = ρ/(µmH). Then the ideal gas law
becomes

P = nkT = RρT/µ . (7.17)

A fully ionized plasma consisting mainly of hydrogen has µ ≈ 1/2.
The second important example is the pressure Prad of radiation, i.e. the pressure of a photon

gas. With p = hν/c and nνdν = npdp it follows

Prad =
1

3

∫ ∞

0
dν nνhν . (7.18)

Remembering that uνdν = 4π/cBνdν, it follows

Prad = aT 4/3 , (7.19)

where we introduced the radiation constant a = 4σ/c.

7.1.3 Virial theorem

The virial theorem is an important link between the (gravitational) potential energy and the
internal (kinetic) energy of any system in equilibrium. In order to derive it for the special
case of a star, we multiply both sides of the hydrostatic equilibrium Eq. (7.5) with 4πr3 and
integrate over r,

∫ R

0
dr 4πr3 P ′ = −

∫ R

0
dr 4πr3 GM(r)ρ

r2
. (7.20)
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7.1 Equations of stellar structure

Next we insert dM(r) = 4πr2ρdr on the RHS and integrate partially the LHS with V (0) = 0
and P (R) = 0,

−3

∫ R

0
dr 4πr2P = −

∫ M

0
dM

GM(r)

r
. (7.21)

The RHS is the gravitational potential energy Upot of the star. We can rewrite the LHS as

−3

∫ M

0
dM

P

ρ
= Upot . (7.22)

For the special case of an ideal gas, P = nkT = 2
3Ukin/V , and we obtain the virial theorem,

−2Ukin = Upot . (7.23)

Hence the average energy E = U/N of a single atom or molecule of the gas is 〈Ekin〉 =
−1

2〈Epot〉. This is the same result as for a free hydrogen atom, indicating that only the shape
not the strength of the potential V (r) ∝ r−α determines the ratio of kinetic and potential
energy.

Ex.: Estimate the central temperature of the Sun with the virial theorem.
We approximate the Sun as a homogeneous sphere. Then the gravitational potential energy of a proton
at the center of the Sun is

〈Epot〉 = −GM⊙mp

R⊙

≈ −3.2keV/c2 .

For a thermal velocity distribution of a Maxwell-Boltzmann gas we obtain

〈Ekin〉 =
3

2
kT = −1

2
〈Epot〉 ≈ 1.6 keV/c2 .

Hence our estimate for the central temperature of the Sun is Tc ≈ 1.1keV/c2 ≈ 1.2×107 K – compared

to Tc = 1.57 × 107 K in the Solar Standard Model.

7.1.4 ∗∗∗ Stability of stars ∗∗∗
We want to generalize the virial theorem to a gas with an equation of state such that the
pressure P can be expressed as function only of the density ρ. Such an equation of state is
called polytropic, and normally written as P = Kργ with polytropic index γ. To do so, we
have to express the energy density as function of the pressure and the index γ. Combining
dP/P = −γdρ/ρ and dρ/ρ = −dV/V , we obtain

V dP = −γPdV . (7.24)

Next we add pdV to both sides,

d(V P ) = V dP + PdV = −(γ − 1)PdV . (7.25)

or

d

(
V P

γ − 1

)

= −PdV = dU . (7.26)
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7 Main sequence stars and their structure

Hence the pressure and the (kinetic) energy density of a polytrope are connected by

P = (γ − 1)
U

V
. (7.27)

For an ideal gas, U/V = 3/2kT and P = nkT , and the adiabatic index follows as γ = 5/3,
while for radiation, U/V = aT 4 and P = aT 4/3, and thus γ = 4/3.

The relation P = (γ − 1)U/V allows us to re-express the LHS of Eq. (7.21) as

−3(γ − 1)Ukin = Upot . (7.28)

A star can be only stable, if its total energy Utot = Ukin + Upot is smaller than zero,

Utot = (4 − 3γ)Ukin =
3γ − 4

3γ − 3
Upot < 0 . (7.29)

For γ = 5/3, we obtain back our old result for an ideal gas. A star with γ = 4/3 has zero
energy and marks the border of matter that can become gravitationally bound. Adding an
arbitrary small amount of energy would disrupt such a star, while subtraction would lead to
its collapse. Important examples for matter with γ = 4/3 are apart from radiation relativistic
fermions, e.g. relativistic electrons, protons and neutrons.

Stars or more generally all gravitationally bound systems, have surprising thermodynam-
ical properties: Consider e.g. the heat capacity, CV = ∂Ukin/∂V ∝ ∂Ukin/∂R. Since the
temperature T increases for decreasing radius R, the heat capacity of a star is negative.

7.1.5 Energy transport

There exist three different mechanism for the transport of energy: i) radiative energy transfer,
i.e. energy transport by photons, ii) conduction, e.g. the transport of energy by valence elec-
trons or phonons in solids, and iii) macroscopic matter flows. Conduction plays a prominent
role as energy transport only for dense systems, and is therefore only relevant in the dense,
final stages of stellar evolution.

Radiative energy transport

For the energy flux F emitted per area and time by an layer of the star at radius r and
temperature T , a transport equation similar to Eq. (6.8) for the intensity I holds,

dF = −σnFdr = −κρFdr . (7.30)

Here we introduced also the opacity κ being the cross section per mass of a certain material.
Absorption of radiation implies also a transfer of momentum to the medium. Since the
momentum of photons is p = E/c and F = E/(At), a slab of matter absorbs the momentum
F/c per area and time. According to Newton’s second law, F = ṗ, the absorbed momentum
has to be equal to the net force applied to the layer. This force is simply the difference in
radiation pressure dPrad times the area. Thus

1

c
dF =

dp

dA dt
= dPrad (7.31)
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7.1 Equations of stellar structure

Figure 7.1: In the shadowed regions convection is important for Main Sequence stars, the x
axis labels the total mass of the stars, x = log(M/M⊙), while the y axis labels
the position in the star, y = M(r)/M .

and

F = − 1

κρ

dF
dr

= − c

κρ

dPrad

dr
. (7.32)

The pressure of radiation is Prad = aT 4/3 and hence

F = − c

3κρ

d(aT 4)

dr
= −4acT 3

3κρ

dT

dr
. (7.33)

The luminosity of a shell at radius r and temperature T is thus connected with a temperature
gradient dT/dr as

L(r) = 4πr2F(r) = −16πr2 acT 3

3κρ

dT

dr
. (7.34)

Convection

Convection is a cyclic mass motion carrying energy outwards, if the temperature gradient
in a star becomes too large – a phenomenon familiar to everybody from water close to the
boiling point. In the shadowed regions of Fig. 7.1 convection is important for main-sequence
stars of various masses. In the case of the Sun, convection takes places in its outer layer,
M(r) > 0.98M⊙.
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7 Main sequence stars and their structure

7.1.6 Thermal equilibrium and energy conservation

Thermal equilibrium and energy conservation require that the energy density ǫ produced per
time and mass by all possible processes corresponds to an increase of the luminosity L,

dL

dr
= 4πr2ǫρ . (7.35)

The energy production rate per time and mass unit, ǫ = dE/(dt), consists of three terms,

ǫ = ǫgrav + ǫnuc − ǫν , (7.36)

where ǫnuc accounts for the energy production by nuclear processes and ǫν for the energy
carried away by neutrinos. Both effects will be discussed in the next chapter in more detail.
The term ǫgrav is the only one that can be both positive (contraction) or negative (expansion
of the star) and is therefore crucial for the stability of a star.

7.2 Eddington luminosity and convective instability

Our first aim in this section is to derive an upper limit on the luminosity of any stable object.
We divide first Eqs. (7.32) and (7.5) and obtain

dPrad

dP
=

κL(r)

4πcGM(r)
. (7.37)

Since the total pressure P is the sum of radiation and gas pressure, P = Prad +Pgas, and both
decrease outwards, it follows that dPrad and dPgas have the same sign. Hence, dPrad < dP and

L(r) <
4πcGM(r)

κ
. (7.38)

This bound relies on Eq. (7.32), i.e. it assumes that the energy is transported only by radiation,
and is therefore not valid in zones of the star with convection. However, for r = R, energy
transport should be purely radiative if the star is stable. As noted by Eddington, Eq. (7.38)
represents therefore a critical luminosity,

L < LEdd =
4πcGM

κ
= 3.2 × 104 M

M⊙

κes

κ
L⊙ . (7.39)

If this luminosity is exceeded, the star ejects its outer layers in a stellar wind. To obtain the
numerical estimate, we inserted the opacity κes for Thompson scattering on free electrons1 in
the last step. Next we consider what happens if for r < R the condition (7.38) is violated.
We rewrite first the energy transport equation as equation for dPrad/dr,

dPrad

dr
= −κρ

c

L(r)

4πr2
. (7.40)

Then we solve the hydrostatic equilibrium equation,

dPrad

dr
= −GM(r)ρ

r2
, (7.41)

1Since the Thompson cross section σth ∝ 1/m2, photons interact much more often with electron than with
protons.
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7.3 Eddington or standard model

with P = Pgas + Prad for dPgas/dr,

dPgas

dr
=

dP

dr
− dPrad

dr
= −GM(r)ρ

r2
+

κρ

c

L(r)

4πr2
= −GM(r)ρ

r2

(

1 − κL(r)

4πcGM(r)

)

. (7.42)

Thus for L > LEd, the expression in the parenthesis changes sign and the gas pressure
increases outwards: The stratification of the gas layers becomes unstable and convection
starts. However, the criterion L(r) > Ledd(r) is only a necessary condition for convection.

7.3 Eddington or standard model

An important test for any model for stellar structure is to derive the mass-luminosity relation
it predicts and to compare it to observations, Eqs. (5.36).

7.3.1 Heuristic derivation of L ∝ M3

Converting the hydrostatic equilibrium equation Eq. (7.5) into a difference equation, dP →
∆P and dr → ∆r, gives

P ∝ Mρ/R . (7.43)

For an ideal gas P ∝ ρT , hence P ∝ Mρ/R ∝ ρT or T ∝ M/R with ρ ∝ M/R3. The
radiation transport equation gives in the same way

L ∝ RT 4

κρ
∝ R4T 4

κM
. (7.44)

Inserting T ∝ M/R shows that the luminosity is only determined by the stellar mass and the
opacity,

L ∝ M3

κ
.

The opacity in turn is controlled by the chemical composition of the star.

7.3.2 ∗∗∗ Analytical derivation of L ∝ M3 ∗∗∗
Let us define

η
L

M
=

L(r)

M(r)
(7.45)

and insert it into Eq. (7.37),
dPrad

dP
=

κη

4πcG

L

M
. (7.46)

At the surface, η = 1 by definition. In general, κ increases for small r, while η decreases
(L(r) ≈ const. and M(r) → 0 for r → 0). To proceed, Eddington made the assumption that
the product κη is approximately independent from the radius r, κη ≡ κs = const. Then we
can integrate Eq. (7.46) immediately,

Prad =
κsL

4πcGM
P . (7.47)
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7 Main sequence stars and their structure

Defining β as the fraction the gas contributes to the total pressure, Prad = (1 − β)P and
Pgas = βP , we have

P =
Prad

1 − β
=

Pgas

β
. (7.48)

Assuming an ideal gas law, Pgas = RρT/µ, and inserting Prad = aT 4/3, we obtain

aT 4

3(1 − β)
=

R

βµ
ρT . (7.49)

Now we can express the temperature as function of the density,

T =

(
3R(1 − β)

aβµ

)1/3

ρ1/3 . (7.50)

The total equation of state, P = Pgas/β = (Rρ/βµ)T , is therefore

P =

(
3R4(1 − β)

aβ4µ4

)1/3

︸ ︷︷ ︸

K

ρ4/3 , (7.51)

where the factor K is a constant. Recall that an equation of state with P = Kργ is called
polytropic with index γ = 1 + 1/n.

For such an equation of state, the continuity and the hydrostatic equation decouple and
can be solved separately from the energy transport and the energy conservation equation. We
multiply the hydrostatic equation by r2/ρ and differentiate it then with respect to r,

d

dr

(
r2

ρ

dP

dr

)

= −G
dM(r)

dr
= −4πGρ(r) , (7.52)

where we inserted the continuity equation in the last step. This second order differential
equation was studied already a century ago. The result for the total mass M as function of
the radius R is (

GM

Mn

)n−1 (
R

Rn

)3−n

=
[(n + 1)K]n

4πG
. (7.53)

For the case of interest, n = 3, the mass is independent of the radius and is determined only
by K,

M = 4πM3

(
K

πG

)3/2

, (7.54)

where M3 ≈ 2.02. Inserting K gives

M ∝ (1 − β)1/2

µ2β2
. (7.55)

Squaring and inserting the numerical values of the constants, we obtain “Eddingtion’s quartic
equation”,

1 − β = 0.003

(
M

M⊙

)2

µ4β4 . (7.56)

Its solution is shown in Fig. 7.2. What can we learn about the structure and evolution of
stars from this result?
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Figure 7.2: The solution β of Eddington’s quartic equation as function of x = µ2M/M⊙.

• Remember the meaning of β = Pgas/P . Thus β → 0 corresponds to a free gas of
photons, β → 1 to a “primordial”, cold cloud of gas. Only in the small range of µ2M
where β has an intermediate value stars can exist.

• Inserting

L =
4πcGM

κs
(1 − β) (7.57)

into Eq. (7.56), we obtain

L

L⊙
=

4πcGM⊙

κsL⊙
µ4β4

(
M

M⊙

)3

, (7.58)

i.e. again a power-law with exponent α = 3 that agrees reasonably well with the obser-
vations of main-sequence stars with intermediate mass. The variation in µ can explain
the observed scatter in the L-M plot.

• For stars of given composition (i.e. fixed µ), β increases as M increases. Thus, radiation
pressure is more important in case of massive stars.

• Nuclear reaction cause a gradual increase of µ and therefore an decrease of β. Hence,
radiation pressure becomes more important when stars become older. In their late
stages, stars may eject part of their envelope, an effect called stellar winds.

7.3.3 Lifetime on the Main-Sequence

If L/L⊙ ∝ (M/M⊙)α with α ∼ 3.5, then the life-time τ of stars on the main-sequence relative
to the one of the Sun is

t

t⊙
=

M

M⊙

L⊙

L
=

(
M

M⊙

)−α+1

. (7.59)

Hence a 10M⊙ star has approximately a 300 times shorter lifetime than the Sun.
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7 Main sequence stars and their structure

7.4 Stability of stars

The longevity of stars on the main-sequence, with only small changes in radius and luminosity,
means that a star has a heat-thermostat built in. This self-regulation of the nuclear burning
is provided by the virial theorem together with the fact that the nuclear reaction rates εnuc

are increasing with temperature.
In order to understand this mechanism, let us consider a small perturbation of a star,

compressing it. Half of the potential energy released by the contraction is radiated away,
while the other half leads because of Ekin = −1/2Epot ∝ 1/R to its heating. Since nuclear
reaction rates increase strongly with temperature, energy production by nuclear reaction
increases and therefore also the pressure. Thus the star expands until it reaches again an
equilibrium configuration.

7.5 Variable stars – period-luminosity relation of Cepheids

Cepheids are named after δ Cephei, a star with a period of 5.4 days and ∆m = 0.7 mag. Gen-
erally, the periods of Cepheids vary between P ∼ 1–100 days. H. Leavitt studied 1908–1912
Cepheids in the Small and Large Magellanic Clouds, i.e. at a fixed distance. She discovered
a relation between the period and the luminosity of Cepheids,

M = −2.81 log(P/d) − 1.43 . (7.60)

Cepheids are our first example of a “standard candle”. As soon as this relation is calibrated
(e.g. by measuring the distance to the LMC or SMC by other means), it can be used to obtain
distance to any other galaxy with Cepheides.

The spectral lines of Cepheids are Doppler shifted with same period as the light-curve.
This suggest radial oscillations of the star as a reason for the periodic luminosity change.

Let us consider a small radial perturbation of a stellar layer close to the surface. If the
radius of this layer is decreased by a small amount, its density and thus the pressure increase.
The increased pressure drives the layer back, it overshots its equilibrium position, and as a
result the star starts to oscillate.

Next we consider the effect of a change in the opacity: The opacity κ of the outer layer
of a normal star decreases for increasing temperatures. Thus if the radius of a layer is again
decreased by a small perturbation, the density and thus the pressure and also the temperature
increase. The resulting decrease of the opacity eases the radiation transport and counteracts
the increase in temperature and pressure. Hence the oscillations are damped.

The envelopes of Cepheid stars are characterized by a narrow range of temperatures and
densities where the opacity increases with temperature. Then the temperature dependence
of the opacity does not quench the oscillations, and the amplitude of the oscillations can be
stable and large.

7.6 Exercises

1. Show that the relation (7.12) for the pressure of non-interacting particles holds also for
a quantum gas. [Hint: Derive first P = −(∂U/∂V )S and consider then how the energy
of a free particle quantized in a box changes, if you change the volume of the box.]
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8 Nuclear processes in stars

8.1 Possible energy sources of stars

The origin of the radiation energy emitted by the Sun was questioned already 1846, soon after
the establishment of the law of energy conservation, by J.R. Meyer. It remained mysterious
for ninety years. Since the temperature on the Earth was approximately constant during the
last τ ≈ 4 × 109 years, the solar luminosity should be also roughly constant. Thus we can
bound the minimal energy output of the Sun as τL⊙ >∼ 6 × 1050 erg.

8.1.1 Gravitational energy

The mass dM(r) contained in the shell between r and r + dr feels only the gravitational
attraction of the enclosed mass M(r). Finding the total gravitational energy of a spherical
star amounts therefore to integrate dUpot = −GM(r)dM(r)/r,

Upot(R) = −G

∫ R

0

M(r)dM(r)

r
. (8.1)

We assume that the star is homogeneous and use M(r) = (4π/3)r3ρ as well as dM(r) =
4πr2ρdr. Then

Upot(R) = −G
(4π)2

3
ρ2

∫ R

0
dr r4 = −3G

5

(
4π

3

)2

︸ ︷︷ ︸

M2/R6

ρ2R5 = −3

5

GM2

R
. (8.2)

According to the virial theorem, −2Ukin = Upot, the total energy U gained by the Sun
contracting from infinity is U = −Upot/2 = 3GM2/(10R) while the other half is radiated
away.

Mayer proposed meteorites falling into the Sun, Helmholtz and Kelvin the contraction of
the Sun itself as energy source. In the latter case U ≈ (3GM2

⊙)/(10R⊙) ≈ 1 × 1048erg, and
this energy would be consumed within the time U/L⊙ ≈ 2 × 1014 s = 1 × 107 yr compared to
the age of the Earth of about 4 Gyr.

8.1.2 Chemical reactions

The typical energy scale of chemical reactions that corresponds to a fraction of the binding
energy of molecules, is of the order of 1 eV. (Remember the binding energy of hydrogen
is 13.6 eV.) The maximal number of molecules in the Sun is M⊙/(2mp) ∼ 2 × 1030kg/4 ×
10−27kg ≈ 0.5 × 1057, or the total energy 0.5 × 1048GeV ∼ 8 × 1044 erg and thus even less
that in gravitational energy.
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8 Nuclear processes in stars

n p 2p+2n 4He

m/u 1.0090 1.0081 4.0342 4.0039

Table 8.1: The masses of nucleons and 4He in atomic mass units u.

Figure 8.1: The binding energy per nucleon Eb/A as function of the nucleon number A.

8.1.3 Nuclear fusion

The total mass m(Z, N) of a nucleus with Z protons and N neutrons is because of its binding
energy Eb somewhat reduced compared to its constituent mass,

Eb/c2 = ZmH + Nmn − m(Z, N) . (8.3)

Measured values of the binding energy per nucleon Eb/A as function of nucleon number A
are shown in Fig. 8.1.

From Fig. 8.1, one recognizes that the binding energy per nucleon Eb/A has its maximum
at A ∼ 56, i.e. iron 56Fe is the most stable element. Thus there are two possible ways to
release energy by nuclear reactions: Two light nuclei can be fused or a heavy one can be
’broken’ up.

While Eb/A is a rather smooth function of A for A > 20, there several peaks visible
for small A: 4He, 12C, 14N, 16O and 20Ne are energetically much more favourable than their
neighbouring elements. The bound states of nucleons in nuclei have a similar shell structure as
electrons in atoms. Nuclei with filled shells are especially stable, as noble gases are especially
stable atoms.
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8.2 Excursion: Fundamental interactions

interaction gravitation electromagnetic weak strong

force GNm2
p/r2 e2/r2 GF E2e−r/λW /r2 αse

−rλπ/r2

coupling GN = (~c)/M2
Pl αem = e2/(~c) ≈ 1/137 GF =

√
2g2/(8M2

W ) αs = g2
s/(~c) ≈ 1

range ∞ ∞ λW = h/(MW c) λπ = h/(Mπc)
particle graviton photon W and Z-boson pions
mass 0 0 80 and 91 GeV 140 MeV
decay process π → 2γ µ− → e+ + ν̄e + νµ ρ → 2π
decay time τ ∼ 10−16s τ ∼ 10−6s τ ∼ 10−22s

Table 8.2: Some properties of the four fundamental forces.

In Tab. 8.1, the masses of 4He and its constituent nucleons are compared. These numbers
imply that the fusion of four protons to 4He releases 26.2 MeV energy, a factor 107 more
than in our estimate for chemical reactions. Converting a solar mass into helium releases
M⊙/(4mp) × 26.2 MeV ≈ 1.25 × 1052 erg and thus around 5% of the Sun have been already
converted into helium.

As shown by the failure of using fusion for the energy production on Earth and the longevity
of stars fusion is a non-trivial process: All four interactions are involved in the energy release
by nuclear fusion. The strong interaction leads to the binding of nucleons in nuclei, the
Coulomb repulsion has to be overcome to combine them, and the weak interactions convert
half of the protons into neutrons. Finally, gravitation is responsible for the confinement of
matter, heating it up the proto-star to the necessary “start temperature” and serving then
as a heat regulator.

8.2 Excursion: Fundamental interactions

Bosons and forces We know four fundamental forces in nature, that are all transmitted by
the exchange of bosons, i.e. particles with integer spin. Two of them are the gravitational
and electromagnetic force we have already encountered. These two forces fall-off like 1/r2

and are important on macroscopic scales. By contrast, the weak and the strong force are
exponentially suppressed beyond a distance which corresponds to the Compton wavelength
λ = h/(mc) of the particles that mediate these forces at energies relevant in astrophysics. A
comparison of some properties of the four fundamental forces is given in Table 8.2.

The first line shows the force law characterising the different interactions. The strength of
an interactions depends both on how strong the charges or couplings are and how large the
Compton wavelength λ of the exchange particles is. In a simple analogy, one can imagine the
cross section for a specific reaction as a grey disc: Its area is given by πλ2 and its greyness
depends on the magnitude of the coupling constant.

Fermions and the family structure Fermions carry half-integer spin and obey the Pauli
principle, a principle that is crucial for the stability of matter. Protons and neutrons differ
from electrons and neutrinos in that they have also strong interactions.

The discovery of the muon happened accidentally in 1936-1937. The realization that it is
an exact copy of an electron having only a different mass came as a real surprise. Nowadays
we know that there exist three different “families” or “flavors” of fermions, – but still not
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8 Nuclear processes in stars

why three. For instance, the electron has additionally to the muon with mass mµ = 207me

an even heavier copy, the tau with mτ = 3480me. In the same way, three different neutrinos
exist. They are called νe, νµ and ντ , depending on if they are generated together with an
electron, muon or tau.

charged leptons e− µ− τ−

neutrinos νe νµ ντ

8.3 Thermonuclear reactions and the Gamov peak

Coulomb barrier-classically Let us consider the forces between two protons: For r ≫ λπ =
h/(mπc), the Coulomb force dominates over the strong force. The size of a nucleon, rN ≈
10−13 cm, is comparable to the Compton wave-length of the pion and we will not distinguish
between them in the following. Thus nuclei should have classically the energy V ≈ Z1Z2e

2/rN

to cross the “Coulomb barrier” and to reach another nucleus of size rN . For a thermal plasma
of particles with reduced mass µ and charges Zie, this condition reads

1

2
µ〈v2〉 =

3

2
kT =

Z1Z2e
2

r
. (8.4)

Specifically, we obtain for protons with Z1 = Z2 = 1 and size rN ≈ 10−13 cm that the
temperature should be above

T >∼
2e2

3krN
≈ 1010 K . (8.5)

On the other hand, we have estimated the central temperature of the Sun as Tc ≈ 107 K.
Hence we should expect that only the tiny fraction of protons with v2 >∼ 1000〈v2〉 is able to
cross the Coulomb barrier.

Coulomb barrier-tunneling Quantum mechanically, tunneling though the Coulomb barrier
is possible. The wave-function of a particle with E − V < 0 is non-zero, but exponentially
suppressed. In order to avoid a too strong suppression, we require that λ = h/p ≈ rN ,

h2

2µλ2
=

Z1Z2e
2

λ
. (8.6)

Inserting λ = h2/(2Z1Z2e
2µ) for rN in Eq. (8.5) gives

T >∼
4Z2

1Z2
2e4µ

3h2k
≈ 107K . (8.7)

Hence we expect that quantum effects lead to a not too strong suppression of fusion rates.
Next we want to make this statement more precise: We can estimate the probability p(x)

that a nuclei is inside the classically forbidden region as

p(x)dx ∝ exp(−Ax/λ)dx ∝ exp(−Axmv/h)dx . (8.8)

If the two particles come closer than rN , the nuclear forces dominate and they fuse.
Therefore the probability for a fusion process to happen is proportional to p(rN ) with
rN = 2Z1Z2e

2/(µv2) from Eq. (8.4), or

p(rN )dx ∝ exp(−bZ1Z2e
2/E1/2)dx . (8.9)
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8.4 Main nuclear burning reactions

Reaction rates We introduced the interaction depth τ = nlσ as the probability that a
particle interacts once travelling the distance l through targets with density n. The rate Γ of
such interactions, i.e. the number of reactions per time follows then with l = vt as Γ ≡ nσv,
if the particle moves with velocity v. Since the energies of the particles are not uniform, but
distributed according a non-relativistic Maxwell-Boltzmann distribution,

nvdv =
( m

2πkT

)3/2
exp

(

−mv2

2kT

)

4πv2dv ∝ e−E/kT E1/2dE , (8.10)

we should average over the distribution nv. Then the rate follows as

Γ ∝
∫

dE σ(E)E e−b/E1/2

e−E/kT . (8.11)

Cross section for strong interactions are of geometrical nature, σ(E) ≈ πλ2 and with λ = h/p
it follows σ(E) ∝ 1/E. Therefore it is convenient to introduce the so-called S-factor S(E) =
Eσ(E) of the reaction,

Γ ∝
∫

dE S(E)e−b/E1/2

e−E/kT . (8.12)

If the cross-section behaves indeed as σ(E) ∝ 1/E, then S(E) is a slowly varying function.
The reminder of the integrand is sharply peaked (“Gamov peak”) in the region around 10 keV:
For higher energies, the integrand is suppressed because of the Boltzmann factor exp(−E/kT ),
while for lower energies the tunneling probability exp(−b/E1/2) goes to zero.

8.4 Main nuclear burning reactions

8.4.1 Hydrogen burning: pp-chains and CNO-cycle

The pp-chains are shown in detail in in the left panel of Fig. 8.2. Its main chain uses three
steps:
Step 1: p + p → d + e+ + νe

Step 2: p + d →3 He + γ
Step 2: 3He +3 He →4 He + p + p.

The CNO-cyle is shown in detail in the right panel of Fig. 8.2. The small inlet compares
the temperature dependence of the pp-chain and the CNO-cycle: For solar temperatures, the
contribution of the pp-chains to the solar energy production is four order of magnitudes more
important than the CNO-cycle.

Radius-mass relation of main-sequence stars Hydrogen is burned at nearly fixed temper-
ature T . Via the virial theorem, also the gravitational potential is nearly the same for all
main-sequence stars and thus GM/R ≈ const. As a result, the radius of main-sequence stars
increases approximate linearly with the stellar mass.

8.4.2 Later phases

The increasing Coulomb barrier for heavier nuclei means that the fusion of heavier nuclei
requires higher and higher temperatures. Therefore the different fusion phases – hydrogen,
helium, carbon,. . . burning – never coexist, but follow each-other. Since the temperature
decreases outwards, the fraction of the core participating in fusion reactions becomes smaller
in each new burning phase, cf. Fig. 8.3.
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Figure 8.2: Left: proton-proton chains Right: CNO cycle.

Figure 8.3: Burning phases of a 15 M⊙ star.
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8.5 Standard solar model and helioseismology

• Hydrogen burning 4p+2e− →4He+2νe

– proceeds by pp chains and CNO cycle.
– no heavier elements are formed, because no stable isotopes with mass number

A = 8 exist.
– neutrinos are produced by weak reaction in p → n conversions.
– the typical temperature is 107 K (∼ 1 keV).

• Helium burning 4He+4He+4He ↔8Be+4He →12C
– triple alpha reaction builds up Be with a concentration ∼ 10−9 which acts a cat-

alyzer for the production of 12C:
12C+4He→16O
16O+4He→20Ne.

– the typical temperature is 108 K (∼ 10 keV).

• Carbon burning
– many reactions like 12C+12C→20Ne+4He etc.
– the typical temperature is 109 K (∼ 100 keV).

8.5 Standard solar model and helioseismology

A “standard solar model” uses the i) conservation laws together with ii) an equation of
state, iii) energy production by fusion processes and iv) energy transport equation to evolve
the Sun in small time-step from some initial conditions to its present age of 4.5 × 109 yr.
Agreement with present-day luminosity and radius is enforced by tuning unknown pre-solar
helium abundance and a technical parameter determining convection.

The structural changes in the Sun, as it evolves, are caused by the nuclear reactions oc-
curring in the central regions of the Sun. The transmutation of four hydrogen atoms into
one helium reduces the number density of particles in the central regions which decreases
the pressure. The pressure decrease does not actually occur because the surrounding layers
respond to the force imbalance by contracting in the central regions. Half of the gravitational
energy released from the contraction goes to raising the temperature of the central regions
(the other half, according to the virial theorem, is radiated away). The increased temperature,
by the ideal gas law, increases the pressure of this region and restores the balance between the
pressure and gravitational forces. The larger mean molecular weight increases the luminosity
of the star, and the rate of nuclear reactions. Also, while the central layers contract, the
outer regions expand, in a sense, compensating for the steepening temperature gradients in
the central regions. Therefore, as the Sun evolves from the zero age both its luminosity and
radius increase.

The solar standard model can be tested by helioseismology: Inside the Sun, pressure
waves with periods between 2 min and 1 h have been observed by Doppler shifts of spectral
lines on the solar surface. (The amplitude is a few meters: The solar surface is rising and
falling a few meters every few minutes.) The oscillation pattern depends on the sound speed
in the solar interior and allows therefore to test predictions of the solar standard model in
the interior.

8.6 Solar neutrinos

Solar neutrinos flux From L⊙ = 4 × 1033erg/s= 2 × 1039MeV/s and the energy release of
26.2 MeV per reaction, the minimal number of neutrinos produced is Ṅν = 2× 1038/s. As we
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8 Nuclear processes in stars

Figure 8.4: Schematic picture of the Sun and different oscillation modes (left) together with
the measured oscillation frequencies (right).
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Figure 8.5: Relative density difference between the solar standard model or its variations and
the deduced values from helioseismology as function of the solar radius.
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8.6 Solar neutrinos

have seen, photon perform a random-walk. Neutrinos have much smaller interactions,

σν = 10−43cm2 Eν

MeV
(8.13)

and thus they can escape from the Sun: The interaction depth for a neutrino in the Sun is
approximately

τ = σνnR⊙ = 10−9 . (8.14)

At the distance of the Earth, this corresponds to a neutrino flux of

φν =
Ṅν

4πD2
= 7 × 1010 1

cm2s
. (8.15)

(Alternatively, one can derive φν from the known value of the Solar constant S via φν =
2S/(26.2 MeV).)

Weak interactions in the Sun produce always electron neutrinos, i.e. p → n + e+ + νe, but
not p → n + µ+ + νµ or p → n + τ+ + ντ , because the energy released in nuclear reaction and
the temperature is too small too produce a µ or τ . Similarly, only νe neutrinos are detected in
radio-chemical reactions via “inverse beta-decay”, while all type of neutrinos can be detected
in elastic scattering on electrons.

Solar neutrino experiments Radio-chemical experiments detect neutrinos by “inverse beta-
decay” in suitable nuclei. The historically first isotope used was chlorine, νe+

37Cl →37 Ar+e−,
i.e. changing a neutron inside a 37Cl nuclei into a proton, thereby converting it into a 37Ar.
The disadvantage of this reaction was its high energy threshold, Eν ≥ 0.814MeV, that made
this experiment only sensitive to 9% of all solar neutrinos, cf. the energy spectrum of solar
neutrinos in Fig. 8.6.

The experiment consisted of 615 tons of C2 Cl4 solutions in a mine 1500 m underground.
After exposure of around 2-3 months, a few Ar atoms were produced. They were chemically
extracted and counted by their subsequent decays (halftime 35 days). Starting from first data
in 1968, a deficit appeared relative to theoretical expected fluxes: only 30% of predicted event
number is measured. This deficit was dubbed “solar neutrino problem.” Finding the solution
to this problem required more than 30 years of intensive experimental and theoretical work.

Starting from 1991, 2 Gallium experiments νe +71 Ga →71 Ge + e− with threshold Eν ≥
233keV took data. They found 55% of the expected neutrino flux, corresponding to about 9
atoms of 71Ge in 30 tons of solution containing 12 tons 71Ga, after three weeks of run time.

What are plausible solutions to the solar neutrino problem?

• The experimental results might be wrong: For instance, the extraction efficiency of the
few Argon or Gallium atoms might have been not 100%.

• The nuclear cross sections used as input for the calculation of the solar standard model
were measured at higher energies and had to be extrapolation to the energy range of the
Gamov peak. This extrapolation might be wrong, if an unknown resonance lies close to
the Gamov peak.

• The solar standard model itself and in particular the central temperature Tc might have
a larger error than estimated.

• Finally, the particle physics properties of neutrinos might be different than expected
and νe may not survive the travel to the Earth.
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8 Nuclear processes in stars

As explained in the next subsection, the last possibility is the correct explanation: A large
fraction of electron neutrinos oscillate into muon and tau neutrinos that do not participate
in inverse-beta reactions.

8.6.1 ∗∗∗ Solar neutrino problem and neutrino oscillations ∗∗∗
We can consider the time-evolution of a neutrino analogous to the quantum mechanical prob-
lem with n states. If we denote the eigenstates of H by |n〉, H|n〉 = n|n〉, then their time-
evolution is simply

|n(t′)〉 = |n(t)〉e−iEn(t′−t) . (8.16)

An arbitrary (normalized) state |α(t)〉 is connected by an unitary transformation with the
eigenstates |n〉,

|α(t′)〉 =
∑

n

Uαn|n(t)〉e−iEn(t′−t) . (8.17)

Thus the probability to measure the eigen-value n will depend on time, if the state is not an
eigenstate of H.

For a two-level system and the unitarity condition UU † = UU−1 = 1, it follows

U =

(
cos ϑ sin ϑ
− sinϑ cos ϑ

)

. (8.18)

By definition we call the flavour of a neutrino according to the produced charged leptons
in weak interaction, να with α = e, µ, τ . These states are not necessary eigenstates of the free
Hamiltonian H describing the propagation of particles.

Analogous to Eq. (8.17), the time-evolution of a state describing an electron-neutrino, νe(t),
follows as

|νe(t)〉 =
∑

n

Uen|n〉e−iEnt = cosϑ|ν1〉e−iE1t + sin ϑ|ν2〉e−iE2t (8.19)

Thus the probability to find a neutrino in a certain flavour α will depend in general (ϑ 6= 0)
on time.

The survival probability Pνe→νe of an νe is

Pνe→νe(t) = |〈|νe(t)|νe(0)〉|2 = 1 − sin2 [(E2 − E1)t/2] sin2(2ϑ) . (8.20)

For ultra-relativistic neutrinos, Ei = (m2
i + p2)1/2 ≈ p2 + m2

i /(2p), and replacing the travel
time t by the distance L,

Pνe→νe(L) = 1 − sin2

[
∆m2

4E
L

]

sin2(2ϑ) . (8.21)

The two-neutrino survival probability depends on

• the vacuum oscillation length

losc = 4π
E

∆m2
≈ 2.5 m

(
E

MeV

) (
eV2

∆m2

)

• mass squared difference, no sensitivity to the absolute mass
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Figure 8.6: Left: The solar standard model predicts the neutrino flux and thus also the
number of events that should be measured. Right: Results of the SNO experiment.

• the mixing angle ϑ.

The measurements shown in the right panel of Fig. 8.6 demonstrated that neutrino flavor
conversions take place: The red band shows the flux of νe, measured by inverse-beta decay
reactions. This flux is just 36% of the expected flux from the solar standard model. However,
the experiment was also able to measure the flux of νµ and ντ , cf. the green and the blue
band. Summing all three favors up, the three bands cross and one obtains the value predicted
by the solar standard model. Hence neutrinos oscillate, changing their flavor on the way from
the solar core to the Earth.
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9 End points of stellar evolution

9.1 Observations of Sirius B

Sirius is with a distance of 2.6 pc the fifth closest stellar system to the Sun. Analyzing the
motions of Sirius 1833–1844, F.W. Bessel concluded that it had an unseen companion, with a
orbital period P ∼ 50 yr. In 1862, A. Clark discovered this companion, Sirius B, at apastron
or the time of maximal separation of the two components of the binary system. Following-
up observations showed that the mass of Sirius B equals approximately the one of the Sun,
M ≈ M⊙. Sirius B’s peculiar properties were not established until the next apastron, 1915,
by W.S. Adams. He noted the high temperature of Sirius B, which requires together with its
small luminosity an extremely small radius and thus a large density of this star.

Ex.: Find the mean density of Sirius B from its apparent magnitude, m = 8.5, and its surface
temperature T = 25, 000 K.
We convert first the apparent into an absolute magnitude,

M = m − 5 log(d/10pc = 11.4 ,

and express then the absolute magnitude as a luminosity,

L = 3.02 × 1028W × 10−0.4M = 3.84 × 1026W .

Now we can use the Stefan-Boltzmann law and obtain

R

R⊙

=

(
L

L⊙

)1/2 (
T

T⊙

)2

≈ 10−2 .

Therefore the mean density of Sirius B is a factor 106 higher than the one of the Sun. More precisely

one finds ρ = 3 × 106g/cm3.

We now apply the lower limit for the central pressure of a star in hydrostatic equilibrium,
Eq. (7.9), to Sirius B,

Pc >
M2

8πR4
= 4 × 108bar

(
M

M⊙

)2 (
R⊙

R

)4

= 4 × 1016 bar . (9.1)

What would be the central temperature Tc needed, if the pressure is dominated by an ideal
gas? From the ideal gas law, we find

Tc =
Pc

nk
∼ 102Tc,⊙ ≈ 109 K . (9.2)

For such a high central temperature, the temperature gradient dT/dr in Sirius B would be a
factor 104 larger than in the Sun. This would in turn require a larger luminosity L(r) and a
larger energy production rate ε than in a main sequence star. The solution to this puzzle is
that the main source of pressure in such compact stars has a different origin.
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9.2 Pressure of a degenerate fermion gas

Figure 9.1: Left: Hubble Space Telescope image showing Sirius A, the brightest star in
our nighttime sky, along with its faint, tiny stellar companion, Sirius B. Right:
Evolution of the Sun.

9.2 Pressure of a degenerate fermion gas

For a classical gas, P = nkT , and thus in the limit of zero temperature, also the pressure
inside a star goes to zero. How can a star be stabilized after the fusion processes and thus
energy production stopped?

The Pauli principle forbids that fermions can occupy the same quantum state. In statistical
mechanics, Heisenberg’s uncertainty principle ∆x∆p ≥ ~ together with Pauli’s principle imply
that each phase-space volume (1/~)dxdp can be occupied by only one fermionic state.

If we use ∆x = n−1/3 and ∆p ≈ ~/∆x ≈ ~n1/3 together with v = p/m valid for a non-
relativistic particles, we obtain for the pressure of a degenerate fermion gas

P ≈ nvp ≈ ~
2n5/3

m
or P ∝ ρ5/3 . (9.3)

For relativistic particles, we can obtain an estimate for the pressure inserting v = c,

P ≈ ncp ≈ c~2n4/3

m
or P ∝ ρ4/3 . (9.4)

Note the following important points:

1. Both the non-relativistic and the relativistic pressure laws are polytropic equations of
state, P = Kργ .

2. A non-relativistic degenerate Fermi gas has the same adiabatic index, γ = 5/3, as
an ideal gas, while a relativistic degenerate Fermi gas has the same adiabatic index,
γ = 4/3, as radiation. Since γ = 4/3 marks the border between stable and unstable
systems (cf. Eq. (7.29)), we can expect that there exists a critical mass for cold matter:
Increasing the mass of a star beyond the level that its constituents become relativistic
should “unbind” its constituents.
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9 End points of stellar evolution

3. The pressure is inversely proportional to the fermion mass, P ∝ 1/m. Thus the degen-
eracy pressure will become important first for electrons.

Let us compute the pressure of a degenerate non-relativistic electron gas and check if it is
consistent for Sirius B with the lower limit for the central pressure. First, we verify that
electrons are non-relativistic: With ne ≈ ρ/(2mp) and ρ ≈ 106g/cm3, where we assume that
Np ∼ Nn, it follows

ne ≈
1

2

106g/cm3

1.67 × 10−24g
≈ 3 × 1029cm−3 ≪ 2 × 1031cm−3 = (me/~c)3 . (9.5)

Thus we can use the equation for the pressure of a non-relativistic degenerate electron gas,

P ≈ ~
2n

5/3
e

me
≈ (1.05 × 10−27erg s)2

9.11 × 10−28g

(

106g/cm3

2 × 1.67 × 10−24g

)5/3

≈ 1023dyn/cm2 . (9.6)

This pressure corresponds with 106dyn/cm2 = 1bar to P = 1017bar, and is consistent with
our lower limit for central pressure of Sirius B.

9.3 White dwarfs and Chandrasekhar limit

Stars like Sirius B that are supported by the pressure of a degenerated electron gas are called
white dwarf stars. They have very long cooling times because of their small surface luminosity.
This type of stars is rather numerous: The mass density of man-sequence stars in the solar
neighborhood is 0.04M⊙/pc3 compared to 0.015M⊙/pc3 in white dwarfs. The typical mass
of white dwarfs lies in the range 0.4 − 1M⊙, peaking at 0.6M⊙.

If we combine Pc ∝ GM2

R4 and P = Kn5/3 ∝ (M/R3)5/3 = M5/3/R5, we obtain

GM2

R4
=

KM5/3

R5
or R =

M
10−12

6

K
=

1

KM1/3
. (9.7)

Thus there exists a unique relation between mass and radius, if we neglect differences due to
small variations in their chemical composition. The radius of white dwarf stars decreases for
increasing masses, suggesting also that there exists a maximal mass.

In order to derive this maximal mass, we consider now the energy of a star where the
pressure is dominated by a non-relativistic degenerate Fermi gas as function of its radius.
The total kinetic energy is Ukin = N p2/(2me), where n ∼ N/R3 and p ∼ ~n1/3. Thus

Ukin ∼ N
~

2n2/3

2m
∼ ~

2 N (3+2)/3

2mR2
=

~
2 N5/3

2mR2
. (9.8)

For the potential gravitational energy we use again the approximation Upot = αGM2/R with
α = 1. Hence

U(R) = Ukin + Upot ∼
~

2 N5/3

2mR2
− GM2

R
. (9.9)

For small R, the positive term dominates and therefore a stable minimum Rmin exists for
each M .
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If the Fermi gas in the star becomes however relativistic, then Ukin = N cp, or

Ukin ∼ N c~n1/3 ∼ c~ N4/3

R
(9.10)

and

U(R) = Ukin + Upot ∼
c~ N4/3

R
− GM2

R
. (9.11)

Now both terms scale like 1/R. For a fixed chemical composition, N/M = const., the negative
term increases faster than the first one, if M is increased. Hence, it exists a critical M so
that U becomes negative and can be made arbitrary small by decreasing the radius of the
star: The star collapses.

This critical mass is called Chandrasekhar mass MCh and is obtained by solving Eq. (9.11)

for U = 0 and using M = NNmN . Then c~N
4/3
max = GN2

maxm
2
N , or

Nmax ∼
(

c~

Gm2
p

)3/2

∼
(

MPl

mp

)3

∼ 2 × 1057 (9.12)

and
MCh = Nmaxmp ∼ 1.5M⊙ . (9.13)

The critical size can be determined from the condition the gas becomes relativistic,
Ukin <∼ Nmc2 together with N = Nmax. Thus

Nmaxmc2 >∼
c~ N

4/3
max

R
(9.14)

and finally

mc2 <∼
c~

R

(
c~

Gm2
N

)1/2

(9.15)

or

R >∼
~

mc

(
c~

Gm2
N

)1/2

. (9.16)

We have two options: We can

1. set m = me and obtain R >∼ 5 × 108cm. This corresponds to the radii found for white
dwarf stars.

2. set m = mN and obtain R >∼ 3 × 105cm. Since already Sirius B was difficult to detect,
the question arises if and how these extremely small stars can be observed. Moreover,
which factors decide if a star ends as a white dwarf or as a neutron star?

Note that MCh is for both cases the same, since the stellar mass is in both cases given by the
sum of the nucleon masses – only the main source of pressure (electron or neutrons) differs.

9.4 Supernovae

Novae and supernovae were characterized empirically according to their luminosity and their
spectral lines. Novae show a smaller luminosity increase than supernovae with peak lumi-
nosities between 10 and 106 times their average luminosity. They are recursive events with
periods in the range P ∼ 1 h–105 yr. By contrast, supernova are singular events. Supernovae
are further divided into type II and type I, depending on the presence of Balmer lines in their
spectrum, respectively.
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9 End points of stellar evolution

Figure 9.2: Lightcurves of type Ia supernovae; top observed ones, bottom after rescaling.

Novae and type Ia supernovae The physical interpretation of novae and supernovae does
not follow precisely this division: Novae and a subset of all type I supernovae called type Ia are
variations of accreting binary systems. In the case of a nova, the accreted material starts the
CNO cycle in a thin layer on the stellar surface when the pressure is large enough, expelling
the outermost shell of the star, but not destroying the star. In a type Ia SN, a white dwarf is
driven by accretion beyond MCh and explodes. More precisely, one finds the following picture
from numerical simulations:

• For M → 1.44M⊙, carbon in a white dwarf core starts to fuse into Fe, Co, and Ni. The
burning expands outwards from the core, synthesizing lighter elements such as Mg, Si,
Su.

• If the burning front reaches around 0.7R, the pressure of the outer layers is not sufficient
to confine the burning process. The white dwarf star explodes.

• The main part of optical luminosity comes from the decay of nickel-56, with a half-life of
6.1 days to Cobalt-56 (τ = 77.1d) to iron-56. The decays produce gamma-rays, heating
the ejected material.

Since the white dwarf stars explode crossing the Chandrasekhar limit, M >∼ 1.4M⊙, the re-
leased total energy should vary not to much. Thus one may wonder if they are possible
standard candles? This requires that the spread in luminosity, L = dE/dt, is not big. As the
upper panel of Fig. 9.2, shows more luminous supernovae evolve slower. If this effect is taken
into account, as done in the lower panel, the spread in luminosity is small enough to use these
events as standard candles.

Core collapse or type-II SN Type II or core collapse supernovae occur at the end of the
fusion process in very massive stars, M >∼ (5−8)M⊙. Theses stars have an onion-like structure
with a degenerate iron core. When the core is completely fused to iron, no further processes
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releasing energy are possible. Instead, photo-disintegration destroys the heavy nuclei, e.g. via
γ + 56Fe → 4He+4n, and removes the thermal energy necessary to provide pressure support
and the star collapses.

During the collapse of the core, the density increases and the free electrons are forced
together with protons to form neutrons via inverse beta decay, e− + p → n + νe. A proto-
neutron star is formed. When core density reaches nuclear density, the equation of state
stiffens suddenly and the infalling material is “reflected”.

If the supernova is successful, a neutron star is left over. Otherwise a black hole is formed.
The released energy goes mainly into neutrinos (99%), kinetic energy (1%); only 0.01% into
photons.

9.5 Pulsars

Generalities of compact stars White dwarf and neutron stars have in common that their
radius is strongly increased with respect to a main sequence star, RWD/R⊙ ∼ 10−2 and
RNS/R⊙ ∼ 10−5. Using two conservation laws involving the stellar radius, we can derive
immediately two important properties of these compact stars:

• Conservation of angular momentum, L = Iω = const. with I = αMR2, implies (ini-
tially) fast rotation of a compact star: A star like the sun, rotating once per month,
P ≈ 106s, would rotate with a ms period when contracted down to 10 km in size.

• The magnetic flux, φB = BA = const., is a conserved quantity for an ideal conductor,
where magnetic field lines are frozen in the plasma. As the core collapses, the magnetic
field lines are pulled more closely together, intensifying the magnetic field by a factor
(R⊙/RNS)

2 ∼ 1010. Magnetic A stars have surface fields up to 104 G, observed field
strengths of white dwarfs and of neutron stars are of the order of B ≈ (106 − 108) G
and B ≈ (1012 − 1012) G, respectively.

Discovery and identification of pulsars In 1967,
Hewish and collaborators detected an object emitting
a radio signal with period P = 1.377s. They called
the object “Pulsar”. Only one year later, Gold argued
that pulsars are rotating neutron stars. He predicted an
increase of the period as pulsars, because they should
loose energy via electromagnetic radiation. The slow-
down of the Crab pulsar was indeed discovered in 1969.

The key observations that helped to identify pulsars
with rotating neutron stars were:

1. The smallness of the observed periods, P ∼ 1ms−
5s.

2. The extreme stability of the periods, ∆P/P =
10−13.

3. The periods increase slowly.

Additional information from later observations include
that the source distribution is peaked in the Galactic
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9 End points of stellar evolution

plane, implying a Galactic origin. Moreover, several
pulsars like the Crab and Vela pulsars were found in remnants of type II supernovae.

Since the light travel time ct is 500 km for 1.5 ms, we can use this distance as an upper
limit for the emission region (that has to be causally connected to act as good clock). This
implies that a pulsar has to be a compact object and we have to choose between white dwarfs,
neutron stars or black holes as possible sites for the radio emission. Possible clock mechanisms
are rotation or pulsation of a single star or the orbital movement of a binary system. We now
consider the different options:

Black holes are surrounded by an event horizon. Radiation is emitted by the accretion disk
surrounding a black hole. However, both accretion and radiation is very irregular process,
excluding the surrounding of a black holes as source of a very regular pulsed radio signal.

The shortest period for a rotating system corresponds to rotation at the break-up velocity,

Rω2 =
GM

R2
(9.17)

(v = ωR) or in terms of the mean density ρ ∼ M/R3

ω2 = Gρ . (9.18)

Using as extreme value for the density of a white dwarf ρ = 108g/cm3 yields P = 2π/ω >∼ 1 s.
This excludes rotating white dwarfs.

What about a pulsating white dwarf? The estimate ω2 = Gρ holds also for the funda-
mental frequency of pulsations. Higher harmonics as explanation are excluded because a
superposition of frequencies would destroy the observed periodicity. Moreover, energy losses
lead generally to an increase of the period in case of oscillations. In case of a binary white
dwarf systems we can replace the radius R of the star by the distance d ≫ R of the system.
Thus the resulting periods are certainly even larger.

Finally, we consider the last option left over, neutron stars. If they are pulsating, the
fundamental frequency would be with ρNS ∼ 106ρWD typically too short, P ∼ 10−3 ms. A
binary system of neutron stars is a copious emitter of gravitational waves as we will discuss
in the next chapter. For such small distances as required by the ms periods, the life-time of
these systems would be too short. In summary, the only remains option is a rotating neutron
star.

Rotating dipole model A simple model for a pulsar is depicted in the figure above as a
neutron star with a non-aligned rotation and magnetic field axes. Physically, on can model a
pulsar as a rotating sphere endowed with a magnetic dipole moment. The energy of a rotating
sphere is E = 1/2Iω2 and the energy change due to a change in the rotation velocity ω is

Ė = Iωω̇ . (9.19)

The energy loss of a rotating magnetic dipole due to the emission of electromagnetic radiation
is

Ė = −B2R6ω4 sin2 α

6c3
, (9.20)

where α denotes the angle between rotation and dipole axis. If we define as time-scale τ
characterizing the slow-down of a pulsar,

τ = −ω

ω̇
= −Iω2

Ė
=

6Ic3

B2R6ω2 sin2 α
, (9.21)
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then we can compare the estimated life-time, e.g. of the Crab nebula, τ ∼ 1243 yr with its
true age, 1972–1054 = 918 yr. Also, the derived energy output Ė ∼ 6×1038erg is comparable
to one derived from observations.

Using pulsars as tool

• Dispersion measure and Galactic electron density:
The velocity v of electromagnetic waves in a medium is different from c, n = v/c 6= 1.
The refractive index n is a function of the wave-length λ and thus there is a dispersion
between the arrival times of a pulse at different wave-lengths,

∆t =
L

c
(n(λ1) − n(λ2)) . (9.22)

The deviation of the refractive index n from one is proportional to the number density
of electrons, ∆n ∝ ne. (Since ne is not constant, one should integrate along the line
of sight.) Thus the time-delay ∆t measures the integrated number density of electron
along the line of sight to a pulsar. This was used originally as a check that pulsars
are indeed Galactic objects. If the distance to a specific pulsar is known, one can the
method as a tool to measure the electron density ne in the Galaxy.

• The Faraday effect is used as measure for the Galactic magnetic field.

• Binary systems of pulsars have been used as test for the emission of gravitational waves
as predicted by general relativity, as we will discuss in the next chapter.
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10.1 Basic properties of gravitation

1. In classical mechanics, the equality of gravitating mass mg = F/g and inertial mass
mi = F/a is a puzzle noticed already by Newton. Knowing more forces, this puzzle
becomes even stronger. Contrast the acceleration in a gravitational field to the one in
a Coulomb field: In the latter, two independent properties, namely the charge q giving
the strength of the electric force and the mass mi, the inertia of the particle, are needed.
The equivalence of gravitating and inertial mass has been tested starting from Bessel,
comparing e.g. the period of a pendulum of different materials,

P = 2π

√

mil

mgg
. (10.1)

While mi = mg can be achieved for one material by a convenient choice of units,
there should be deviations for test bodies with other composition. Current limits are
∆ai/a < 10−12.

2. Newton’s law postulates as the Coulomb law instantaneous an interaction. This is in
contradiction to special relativity. Thus, as interactions with electromagnetic fields
replace the Coulomb law, a corresponding description should be found for gravity.
Moreover, the equivalence of mass and energy found in special relativity requires that,
in a loose sense, energy not only mass should couple to gravity: Imagine a particle-
antiparticle pair falling down a gravitational potential wall, gaining energy and finally
annihilating into two photons moving the gravitational potential wall outwards. If the
two photons would not loose energy climbing up the gravitational potential wall, a per-
petum mobile could be constructed. If all forms of energy act as sources of gravity,
then the gravitational field itself is gravitating. Thus the theory is non-linear and its
mathematical structure much more complicated as Maxwell’s equations.

3. Gravity can be switched-off locally, just by cutting the rope of an elevator. Inside a
freely falling elevator, one does not feel the effect of gravity.

Motivated by 2., Einstein used 1., the principle of equivalence, and 3. to derive general
relativity, a theory that describes the effect of gravity as deformation of the space-time known
from special relativity.

10.2 Schwarzschild metric

Because Einstein’s theory has a rather more complicated mathematical structure than New-
ton’s, no analytical solution to the two-body problem is known. Instead, we are looking for
the effect of a finite point-mass on the surrounding space-time.
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10.2 Schwarzschild metric

10.2.1 Heuristic derivation

Consider a freely falling elevator in the gravitational field of a radial-symmetric mass distri-
bution with total mass M . Since the elevator is freely falling, no effects of gravity are felt
inside and the space-time coordinates from r = ∞ should be valid inside. Let us call these
coordinates K∞ with x∞ (parallel to movement), y∞, z∞ (transversal) and t∞. The elevator
has the velocity v at the distance r from the mass M , measured in the coordinate system
K = (r, φ, ϑ, t) in which the mass M is at r = 0 at rest.

We assume that special relativity can be used for the transformation between K at rest
and K∞ moving with v = βc, as long as the gravitational field is weak. We shall see shortly
what “weak” means in this context. For the moment, we presume that the effect of gravity
are small, if the velocity of the elevator that was at rest at r = ∞ is still small, v ≪ c. Then

dt∞ = dt
√

1 − β2 (10.2)

dx∞ =
dr

√

1 − β2
(10.3)

dy∞ = rdϑ (10.4)

dz∞ = r sinϑdφ . (10.5)

Thus the line-element of special relativity, i.e. the infinitesimal distance between two space-
time events,

ds2 = dx2
∞ + dy2

∞ + dz2
∞ − c2dt2∞ (10.6)

becomes

ds2 =
dr2

1 − β2
+ r2(dϑ2 + sin2 ϑdφ2) − (1 − β2)dt2 . (10.7)

Next, we want to relate the factor 1 − β2 to the quantities M and r. Consider the energy of
the elevator with rest mass m,

(γ − 1)mc2 − GγmM

r
= 0 , (10.8)

where the first term is the kinetic energy and the second the Newtonian expression for the
potential energy. According to 2), we made here the crucial assumption that gravity couples
not only to the mass of the elevator but to its total energy. Dividing by γmc2 gives

(

1 − 1

γ

)

− GM

rc2
= 0 . (10.9)

Remembering the definition γ = 1/
√

1 − β2 and introducing α = GM/c2, we have
√

1 − β2 = 1 − α

r
(10.10)

or

1 − β2 = 1 − 2α

r
+

α2

r2
≈ 1 − 2α

r
. (10.11)

In the last step, we neglected the term (α/r)2, since we attempt only an approximation for
large distances, where gravity is still weak. Inserting this expression into Eq. (10.7), we obtain
the metric describing the gravitational field produced by a radial symmetric mass distribution,

ds2 =
dr2

1 − 2α
r

+ r2(dϑ2 + sin2 ϑdφ2) − c2dt2
(

1 − 2α

r

)

. (10.12)

Surprisingly, this agrees with the exact result found by Karl Schwarzschild 1916.
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10.2.2 Interpretation and consequences

Gravitational redshift As in special relativity, the line-element ds determines the time and
spatial distance between two space-time events. The time measured by an observer called the
proper-time dτ is given by dτ = cds. In particular, the time difference between two events at
the same point is given by setting dxi = 0. If we choose two static observers at the position
r and r′ in the Schwarzschild metric, then we find with dr = dφ = dϑ = 0,

dτ(r)

dτ(r′)
=

√

g00(r) dt
√

g00(r′) dt
=

√

g00(r)

g00(r′)
. (10.13)

The time-intervals dτ(r′) and dτ(r) are different and thus the time measured by clocks at
different distances r from the mass M will differ too. In particular, the time measured τ∞ by
an observer at infinity will pass faster than the time experienced in a gravitational field,

τ∞ =
τ(r)

√

1 − 2α/r
< τ(r) . (10.14)

Since frequencies are inversely proportional to time, the frequency or energy of a photon
traveling from r to r′ will be affected by the gravitational field as

ν(r′)

ν(r)
=

√

1 − 2α/r

1 − 2α/r′
. (10.15)

Hence an observer at r′ → ∞ will receive photons with frequency

ν∞ =

√

1 − 2GM

rc2
ν(r) (10.16)

if these photons were emitted by a source at position r with frequency ν(r): The frequency
of a photon is redshifted by a gravitational field, in agreement with our argument against a
perpetuum mobile in 2).

The size of this effect is of order Φ/c2, where Φ = −GM/r is the Newtonian gravitational
potential. We are now in position to specify more precisely what “weak gravitational fields”
means: As long as |Φ|/c2 ≪ 1, the deviation of gtt = 1 − 2GM

rc2
≈ 1 − 2Φ(r)/c2 from the

Minkowski value gtt = 1 is small and Newtonian gravity is a sufficient approximation.

Schwarzschild radius What is the meaning of r = RS ≡ 2α? At

RS =
2GM

c2
= 3 km

M

M⊙
(10.17)

the coordinate system (10.12) becomes ill-defined. However, this does not mean necessarily
that at r = RS physical quantities like tidal forces become infinite. Instead r = RS is an
event horizon: We cannot obtain any information about what is going on inside RS , if the
gravitating mass is concentrated inside a radius smaller than Rs

1. An object smaller than its
Schwarzschild radius is called a black hole. The black hole is fully characterized by its mass
M (and possibly its angular momentum L and electric charge q). To understand this better,
we consider next what happens to a photon crossing the event horizon at r = RS as seen
from an observer at r = ∞.

1Recall that in Newtonian gravity only the enclosed mass M(r) contributes to the gravitational potential
outside r for a spherically symmetric system. Thus, e.g. the Sun is not a black hole, since for all r the
enclosed mass is M(r) < rc2/2G.
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10.3 Gravitational radiation from pulsars

Approaching a black hole Light rays are characterized by ds2 = 0. Choosing a light ray in
radial direction with dφ = dϑ = 0, the metric (10.12) becomes

dr

dt
=

(

1 − 2α

r

)

c . (10.18)

Thus light travelling towards the star, as seen from the outside, will travel slower and slower
as it comes closer to the Schwarzschild radius r = 2α. In fact, for an observer at infinity the
signal will reach r = 2α only asymptotically for t → ∞. Similarly, the communication with
a freely falling space ship becomes impossible as it reaches r = Rs. A more detailed analysis
shows that indeed no signal can cross the surface at r = Rs.

Perihelion precession Ellipses are solutions only for a potential V (r) ∝ 1/r. General rela-
tivity generate corrections to the Newtonian 1/r potential, and as a result the perihelion of
ellipses describing the motion of e.g. planets process. This effect is largest for Mercury, where
∆φ/∆t ≈ 43′′/yr. This was the main known discrepancy of the planetary motions in the solar
system with Newtonian gravity at the time, when Einstein and others worked on relativistic
theories of gravity.

Light bending The factors (1−2α/r) in the line-element ds will lead to the bending of light
in gravitational fields. The measurement of the deflection of light by the Sun during the solar
eclipse 1919 was the first crucial test for general relativity. Nowadays, one distinguishes three
different cases of gravitational lensing, depending on the strength of the lensing effect:

1. Strong lensing occurs when the lens is very massive and the source is close to it: In
this case light can take different paths to the observer and more than one image of
the source will appear, either as multiple images or deformed arcs of a source. In the
extreme case that a point-like source, lens and observer are aligned the image forms an
“Einstein ring”.

2. Weak Lensing: In many cases the lens is not strong enough to form multiple images or
arcs. However, the source can still be distorted and its image may be both stretched
(shear) and magnified (convergence). If all sources were well known in size and shape,
one could just use the shear and convergence to deduce the properties of the lens.

3. Microlensing: One observes only the usual point-like image of the source. However,
the additional light bent towards the observer leads to brightening of the source. Thus
microlensing is only observable as a transient phenomenon, when the lens crosses ap-
proximately the axis observer-source.

10.3 Gravitational radiation from pulsars

An accelerated system of electric charges emits dipole radiation with luminosity

Lem =
2

3c3
|d̈|2 , (10.19)

where the dipole moment of a system of N charges at position xi is d =
∑N

i=1 qixi. One
might guess that for the emission of gravitational radiation the replacement qi → Gmi works.
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Figure 10.1: Left: Strong gravitational lensing of. Right: Weak gravitational lensing of
Abell2218.

But since
∑

mixi = ptot = const., momentum conservation means that there exists no
gravitational dipole radiation. Thus one has to go to the next term in the multipole expansion,
the quadrupole term,

Qij =
N∑

k=1

m(k)(xixj −
1

3
δijr

2) , (10.20)

and finds then for the luminosity emitted into gravitational waves

Lgr =
G

5c5

∑

i,j

|
...
Qij |2 . (10.21)

Ex.: Derive Lem ∝ d2/c3 and Lgr ∝ GQ2/c5 using dimensional analysis.
In the case of electromagnetic dipole radiation, we use that e2 = ~cα and the dimension of the electric
charge squared is [e2] = erg × cm. Then we compare

[Lem] =
erg

s

!
= erg × cm × s3

cm3
× cm2

s4
=

erg

s
.

In the same way, we can show that the luminosity of gravitational quadrupole radiation is proportional
to ca with a = −5: The unique solution for a from

[Lgr] =
erg

s
=

g cm2

s3
!
=

cm3

g s2
× cma

sa
× g2 cm4

s6

is a = −5.

The emission of gravitational radiation is negligible for all systems where Newtonian gravity
is a good approximation. One of the rare examples where general relativistic effects can
become important are close binary systems of compact stars. The first such example was
found 1974 by Hulse and Taylor who discovered a pulsar in a binary system via the Doppler-
shift of its radio pulses. The extreme precision of the periodicity of the pulsar signal makes
this binary system to an ideal laboratory to test various effect of special and general relativity:
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Figure 10.2: Measured change of the period of the orbital movement for the Hulse-Taylor
binary compared to the prediction of general relativity.

• The pulsar’s orbital speed changes by a factor of four during its orbit and allows us to
test the usual Doppler effect.

• At the same time, the gravitational field alternately strengthens at periastron and weak-
ens at apastron, leading to variable gravitational redshift of the pulse.

• The small size of the orbit leads to a precession of the Perihelion by 4.2◦/yr.

• The system emits gravitational waves and looses thereby energy. As a result the orbit
of the binary shrinks by 4mm/yr, in excellent agreement with the prediction of general
relativity, cf. Fig. 10.2.

10.4 ∗∗∗ Thermodynamics and evaporation of black holes ∗∗∗
Black holes thermodynamics Classically, the mass and therefore the radius of a black hole
can only increase with time. The only other quantity in physics with the same property is the
entropy, dS ≥ 0. This suggests a connection between a quantity characterizing the size of the
black hole and its entropy. To derive this relation, we apply the first law of thermodynamics
dU = TdS to a black hole. Its internal energy U is given by U = Mc2 and thus

dU = dMc2 !
= TdS . (10.22)

A Schwarschild black hole is fully characterised by only one quantity, e.g. Rs. Hence both
the temperature T and the entropy S of a black hole should be determined solely by Rs.

Our experience with the thermodynamics of non-gravitating systems suggests that the
entropy is an extensive quantity and thus proportional to the volume, S ∝ V . In this case,
dV ∝ R2

sdRs ∝ R2
sdM and dM ∝ R−2

s dV ∝ T 2dV . On the other hand, if we assume that
the entropy is proportional to the area of the event horizon, dA ∝ RsdRs ∝ RsdM and
dM ∝ R−1

s dA ∝ TdV . Surprisingly, several arguments show independently that the second
alternative is correct; one we will sketch below.
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Thus

dU = TdS = dMc2 =
c4

16πGRs
dA = Td

(
kc3A

4~G

)

(10.23)

and, as first suggested by Bekenstein, the entropy of a black hole is given by

S =
kc3

4~G
A . (10.24)

If this analogue is more than a formal coincidence, a black hole should behave similar as other
thermodynamical systems we know. In particular, if its surrounded by a cooler medium, it
should emit radiation and heat up the environment. Hawking could indeed show 1974 that a
black hole in vacuum emits black-body radiation (“Hawking radiation”) with temperature

kT =
~ c3

8πGM
. (10.25)

Evaporation of Black Holes The radiation of a BH is a quantum process, as indicated by
the presence of Planck’s constant ~ in Eq. (10.25). We can understand the basic mechanism
and the magnitude of the black hole temperature by considering a quantum fluctuation near
its event horizon at RS : Heisenberg’s uncertainty principle allows the creation of a virtual
electron-positron pair with total energy E for the time ∆t <∼ ~/E. This pair can become real,
if the gravitational force acting on them during the time ∆t can supply the energy E. More
precisely, the work is done by the tidal force

dF =
∂F

∂r
dr = −GME/c2

2r3
dr , (10.26)

because the electron-positron pair is freely falling.
After the time ∆t, the pair is separated by the distance ∆r = c∆t ∼ c~/E. The energy

gain by the tidal force is
F∆r ∼ (E/c2)GM/r3(∆r)2 . (10.27)

If we require that F∆r > E and identify the energy E of the emitted pair with the temperature
T of the black hole, we find

kT ∼ E <∼ ~(GM/r3)1/2 . (10.28)

The emission probability is maximal close to the event horizon, r = RS , and thus we obtain
indeed kT ∼ E ∼ ~c3/(GM). This result supports the idea that the entropy of a black hole
is indeed non-extensive and proportional to the surface of its event horizon. Since entropy
counts the possible micro-states of a system, any promising attempt to combine gravity and
quantum mechanics should provide a microscopic picture for these results.

Exercises

1. Assume that the surface A = 4πR2
S of a Black Hole is emitting black-body radiation

with temperature kT = ~c/(4πRS), where RS is its Scharzschild radius, RS = 2GM/c2.
i) Derive the luminosity L of the Black Hole.
ii) Derive with E = Mc2 and −dE/dt = L the lifetime of a Black Hole with initial mass
M .
iii) Find the temperature and the luminosity of a black hole with M = M⊙.
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2. Estimate the total entropy of the observable universe of radius 4 Gpc, comparing the
entropy of the cosmic microwave radiation (T = 2.7 K and S = (4π2/45) T 3V ) with
the entropy of all black holes assuming that each galaxy occupying the volume 10 Mpc3

contains a supermassive black hole with mass M = 106M⊙.

3. The Global Positioning System (GPS) consists of 24 satellites carrying with them atomic
clocks at an altitude of about 20,000 km from the ground. A GPS receiver determines
its current position by comparing the time signals it receives from a number of the GPS
satellites (usually 4 or more) and triangulating on the known positions of each satellite.
The attempted precision is below 1 m. Estimate special and general relativistic effects
that have to be accounted for to achieve this precision.
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11 Interstellar medium and star formation

11.1 Interstellar dust

Dust becomes visible by its blocking effect of star light. The combined effect of scattering
and absorption of light, mainly by dust grains, is called extinction. Clearly, extinction may
affects the properties like the luminosity or the distance of a star or galaxy that we deduce
from its observed spectra. Surprisingly, this possibility has been ignored until the 1930s by
astronomers.

R.J. Trümpler found the first clear evidence for extinction by dust examining cluster of
stars in our galaxy. He plotted the angular diameter D of these star clusters versus their
distance r. For the derivation of their distance he assumed F ∝ 1/r2. The distribution
n(D/r, r) should not depend on r, but he found a systematic increase of the linear size of
clusters with distance. There are only two interpretations possible: i) The Sun is at a special
place in the galaxy where the size of star clusters has a minimum. ii) Some light is absorbed
and thus the energy flux decreases faster than 1/r2.

If the dust between us and the source has the optical depth τ , then the observed intensities
with (I) and without (I0 ) absorption are connected by I = I0 exp(−τ). We can relate the
optical depth τ to the extinction A measured in magnitudes via

A ≡ m0 − m = 2.5 log(I0/I) (11.1)

or
A = 2.5 log(exp(−τ)) = 2.5τ log(e) ≈ 1.09τ . (11.2)

Thus the extinction A equals approximately the optical depth.
If the spectral type and distance of a star is known, then the extinction between us and

the star can be determined: The spectral type determines the absolute magnitude M , while
the apparent magnitude m is observed directly. Then

m = M + 5 log(r/(10pc)) + A , (11.3)

and we can find A for known m, M and r. On the other hand, distance measurements using
spectroscopic parallaxes or standard candles like Cepheides or Supernovae of type Ia are
affected by extinction.

Reddening and extinction curves The scattering cross section of light on dust is wave-
length dependent. In general, light with shorter wavelengths is more efficiently scattered. In
classical electrodynamics, one can roughly distinguish three scattering regimes,

λ ≪ R : σ ∼ πR2 geometrical, (11.4)

λ ∼ R : σ ∝ λ−1 Mie, (11.5)

λ ≫ R : σ ∝ λ−4 Rayleigh. (11.6)
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Figure 11.1: A dark cloud, Barnard 86, is silhouetted against a starry background.

Measuring extinction at different wave-lengths allows astronomers to determine the properties
of interstellar dust. One finds roughly A ∝ 1/λ, thus the typical size of dust grains is
comparable to the wave-length of visible light. If the wave-length dependence of extinction
for “typical dust” is known, the absolute value of the extinction in the spectrum of a certain
source can be estimated by observing it at different wave-lengths.

Polarization Light passing dust clouds becomes polarized and the degree of its polarization
is found to be proportional to the extinction. Using classical electrodynamics one can show
that this requires a non-spherical shape of dust grains. Since the polarization builds up
scattering on different dust grains, the dust grains have to be moreover partially aligned. The
observed polarization is most likely explained, if dust grains have a magnetic moment and
become aligned by magnetic fields.

Composition and sources The absorption features visible in the IR of extinction curves
correspond to vibrational transitions of silicates and ice, while extinction features in the UV
can be connected to the presence of carbon. This leads to the idea that dust grains are mainly
“dirty ice balls” containing some graphite. The composition suggests that dust originates from
massive stars: In their red giant phase they loose part of their envelope; silicon and carbon
condenses cooling down, and a layer of hydrogen is bound around the silicon and graphite
core.

11.2 Interstellar gas

Interstellar gas was first detected by its absorption of background light. Since gas clouds are
much cooler than the surface of stars, their absorption lines are narrower than those of stars,
have smaller excitation energies, and can thus be distinguished from stellar absorption lines.

One expects that gas clouds consist mainly of hydrogen. Since they are cool, hydrogen is
in the ground state. Therefore the main absorption feature is the Lyman-α line that is in the
UV and thus not observable with a ground telescope. Instead, early studies concentrated on
absorption lines of simple molecules like CH and CN and of atoms like Ca and So.
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Nowadays, one observes gas clouds mainly with radio observation of the 21cm line of hydro-
gen. This wavelength corresponds to the temperature T = ch/kλ ≈ 0.07 K and can thus be
excited even in cool clouds. The 21cm line is caused by transitions between the two hyperfine
levels of the hydrogen 1s ground state. The ground state of hydrogen can be occupied by an
electrons with spin up or down. These two stated have the same energy, apart from a small
correction due to the interaction of the electron spin with the spin of the proton. The 21cm
emission line corresponds to a flip of the electron spin from parallel to anti-parallel to the
spin of the proton.

The 21cm emission line is an extremely useful tool to study gas clouds in our and nearby
galaxies. Since their movement can be measured using the Doppler effect, they serve as tracers
for the velocity distribution of matter in galaxies. Radio observations are not hampered by
dust, and thus one can observe gas clouds close to the galactic center and beyond, regions
that are obscured to optical observations. The Zeeman effect allows one to measure magnetic
fields in the clouds and thereby to trace the galactic magnetic field. In summary, these
studies conclude that gas clouds fill ∼ 5% of the galaxy; they have an average density nH ∼
(1 − 10) cm−3.

11.3 Star formation

11.3.1 Jeans length and mass

A cloud of gas will collapse, if the gravitational attraction dominates over thermal pressure.
A bound system has negative energy E = Epot + Ekin ≤ 0, or

3

5

GM2

R
≥ 3M

2m
kT or

M

R
≥ 5

2

kT

Gm
. (11.7)

Here we assumed a homogeneous distribution of gas atoms of mass m, obeying the ideal gas
law, in a cloud of radius R and total mass M . The smallest mass M (for fixed density ρ and
temperature T ) which collapses is called Jeans mass MJ = 4/3πR3

Jρ with Jeans length RJ .
Inserting the expression for MJ , we find

4π

3
R2

Jρ =
5

2

kT

Gm
or RJ =

(
15kT

8πGρm

)1/2

. (11.8)

The acceleration a for a homogeneous cloud is

a =
GM(r)

r2
=

4π

3
Gρr . (11.9)

Since the density increases as the cloud collapses, we can derive an upper limit on the time
required for a complete collapse, the so called free-fall time τff , assuming the density is con-
stant,

τff ∼ 1

(Gρ0)1/2
. (11.10)

Since the sound speed of an ideal gas is v2
s = 5kT/(3m), the Jeans length can be expressed

also as

RJ ∝ vs/
√

Gρ . (11.11)
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This suggests another intuitive interpretation of the Jeans criterion: It compare the timescale
of gravitational collapse τff ∼ (Gρ0)

−1/2 with the one pressure can react, τp ∼ R/vs. For
τp ≫ τff , or R ≫ vs/(Gρ0)

1/2, gravitational collapse occurs.

The time-scale τff sets the time-scale of growth of density perturbations. However, without
detailed analysis we do not know the functional dependence, i.e. if e.g. ρ(t) ∼ exp(t/τff)
or ρ(t) ∼ (t/τgr)

α. The same idea applies to the formation of structures on all scales in
the Universe. Since gravitation can enhance only already existing density fluctuation, a
mechanism in the early Universe should exist that produced initial density fluctuations.

Density dependence If the initial density of the cloud is ρ0, then

ρ = ρ0

(r0

r

)3
(11.12)

or differentiating

dρ = −3ρ0

r

(r0

r

)3
dr = −3ρ

r
dr or

dρ

ρ
= −3dr

r
. (11.13)

Thus for smaller r, the density increases faster. The free-fall time will increase towards the
center, the outer material will lag behind the material closer towards the center, enhancing
the difference between core and outer layers.

Rotation The acceleration in radial direction is now the difference between gravitational
and centrifugal acceleration,

ar =
GM(r)

r2
− rω2 . (11.14)

Let us estimate by how much the cloud collapses until the two forces on the RHS balance
each other, a = 0.

GM(r) = r3ω2 = r3ω2
0

︸︷︷︸

r3v2
0
/r2

0

(r0

r

)4
=

r2
0v

2
0

r
, (11.15)

where we used angular momentum conservation L = Iω = const. with I = αMr2 and thus
ω/ω0 = (r0/r)2. We now introduce the speed v0 = ω0r and solve for the fraction r/r0 the
cloud collapses,

r

r0
=

r0v
2
0

GM(r)
. (11.16)

Ex.: Consider the collapse of a cloud with nH = 105cm−3, T = 50K and initial rotation velocity

v0 = 1km/s.

The Jeans radius is 0.2pc, the Jeans mass MJ = 76M⊙, and thus r/r0 = 0.6. Thus the cloud should

expand for the chosen parameters. Angular momentum conservation is an important obstacle to the

formation of dense structures, leading to fragmentation in sub-clouds and to the formation of discs

perpendicular to L.
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11.3 Star formation

11.3.2 Protostars

Luminosity of collapsing clouds Let us apply once again the virial theorem, −Epot = 2Ekin,
for the evolution of a collapsing cloud. Its total energy is E = −Ekin = Epot/2 and as it
collapses |Epot| increases, but only half remains as kinetic energy in the cloud. The other half
has to be radiated away.

The total energy E = −(3/10)GM2/R changes in time as

dE

dt
=

3

10

GM2

R2

dR

dt
(11.17)

or

− 1

E

dE

dt
=

1

R

dR

dt
. (11.18)

Thus the relative decrease of the radius is directly connected to the relative energy release of
the cloud. If energy cannot be emitted efficiently, the collapse is slowed down.

The formation of a proto-star can be divided into the following stages: Initially, the cloud
consists of molecular and atomic hydrogen plus atomic helium. Half of the energy deliberated
by the collapse is transferred into the internal energy of the proto-star. In the beginning, the
energy is not used to heat the gas, but for its ionization. Only after that, the proto-star heats
up and its pressure increases, slowing-down the collapse.

Ex.: For a 1M⊙ proto-star with an initial radius R = 500R⊙, find the free-fall time τ ≈ (Gρ)1/2,
the energy released and the average luminosity in the last 100 years of collapse.
We use our standard approximation of a spherically symmetric and homogeneous gas cloud,

E =
3

10

GM2

R
≈ 2 × 1045erg .

The average luminosity is 〈L〉 = ∆E/∆t, or

L =
2 × 1045erg

100 × π107s
≈ 7 × 1035erg/s ≈ 170L⊙ .

Once the luminosity reached typical stellar luminosities, the cloud is called proto-star. For
increasing density, the interior becomes more and more opaque to radiation, and finally only
the surface can radiate. The central temperature is rising until fusion processes start. At
same point, the pressure gradient is large enough to stop the collapse and a stable main
sequence star is born.
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12 Cluster of stars

A look at the night-sky with binoculars or a small telescope shows that stars are not uniformly
distributed on the sky. They are concentrated in groups of stars like the Plejades and a thin
band across the sky. The thin band with a milky appearance is the disc of our own galaxy,
the Milky Way, that we will discuss in the next chapter. In this chapter, we discuss cluster
of stars and in particular their evolution.

12.1 Overview

Types and properties There are two main types of star clusters, galactic or open clusters

and globular clusters. Figure 12.1 shows in the left panel the open cluster M45, also called
Plejades, and in the right one the globular cluster M80.

1. Galactic or open clusters have typically < 103 stars and a diameter D <∼ 10 pc. They
are close to the galactic plane and contain often dust and interstellar gas.

2. Globular clusters consist typically of 104–106 stars within a diameter of D ∼ 20–100pc.
The globular clusters in our galaxy form a spherical distribution with center around
8 kpc away, cf. Fig. 12.2. Assuming that the center of this distribution coincides with
the center of our galaxy allowed Harlow Shapely 1918 to determine for the first time
the distance of the Sun to the galactic center.
Globular clusters contain, if at all, only small amounts of dust and interstellar gas. The
fraction of heavier elements of stars in a globular cluster is larger than in stars of a
galactic cluster.

Different star populations Because of the continuous fusion in stars of hydrogen to helium
and heavier elements, collectively called “metals” in astronomy, the initial chemical compo-
sition of stars differs. This effect can be roughly accounted for by dividing stars into two
different populations. Population I stars are relatively young stars, which are found mainly in
the galactic disc. Population II stars on the other hand are older stars, which are found e.g.
in the galactic halo and globular clusters. Typical values for their initial chemical composition
are

X ≈ 0.70 − 0.75, Y ≈ 0.24 − 0.28, Z ≈ 0.005 − 0.04, Pop I (12.1)

X ≈ 0.75 − 0.77, Y ≈ 0.23 − 0.25, Z ≈ 10−5 − 10−4, Pop II , (12.2)

where X, Y and Z denote relative mass fractions of hydrogen, helium and heavier elements,
respectively. Population III stars are a hypothetical population of extremely massive and hot
stars with virtually no metal content which are believed to have been formed in the early
universe as the “zeroth” generation of stars. They have not yet been observed directly, but
their existence is suggested to account for the fact that ”heavy” elements, which could not
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12.1 Overview

Figure 12.1: Left: M45 or the “Pleiades stars”, an open cluster of ≈ 500 mostly faint stars
spread over a 2 degree (four times the diameter of the Moon) field. Right: The
globular cluster M80 containing several 100,000s of stars.

Figure 12.2: Distribution of globular clusters in the Milky Way.
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Figure 12.3: The angle φ between v and the line-of-sight approaches zero for t → ∞ and the
line-of-sight converges against the “convergent point.”

have been created in the ”Big Bang”, are observed in the emission spectra of very early,
powerful galaxies.

A natural explanation for these differences is that star formation started in the whole galaxy.
The primordial material from which the first, i.e. Pop. II, stars were formed contained only a
tiny contribution of metals. Outside of the galactic disc, most gas has been used up to form
this first generation of stars. Now, the density of interstellar gas is too small in the galactic
halo and globular clusters, and star formation has stopped there. By contrast, the galactic
disc still contains dense regions and star formation continues there. However, the interstellar
material contains the ashes of old massive stars, and therefore the metallicity of this second
generation of stars (= Pop I) is larger.

Proper motion and distances Some nearby stars move with a sufficiently large velocity such
that their motion over the sky becomes visible over the years. The velocity v can be split
into its radial and transverse component,

v2 = v2
r + v2

t = (v sin φ)2 + (v cos φ)2, tan φ =
vt

vr
. (12.3)

The radial part can be measured via Doppler shift, while the transverse part is responsible
for the proper motion µ = vt/D of the cluster at the distance D across the celestial sphere.
As long as we cannot determine φ, we cannot determine vt and D separately from a single
measurement.

A solution is to observe the star (or the cluster of stars) over a longer time period. If the
cluster moves away, φ decreases and therefore the proper motion becomes slower: the star
heads towards a definite point on the celestial sphere, called convergent point. From Fig. 12.3
we see that the angle between the line of sight and the line to the convergent point is φ. This
method is an important way to establish distances to clusters containing Cepheides.

12.2 Evolution of a globular cluster

The crucial points in our derivation of the virial theorem 2〈Ukin〉 = −〈Upot〉 for a star was
the assumption of a gravitationally bound system in equilibrium. Thus it holds also for any
other system like a cluster of stars or galaxies, if this system fulfills the two conditions to be
i) gravitationally bound, and ii) in equilibrium. The first condition can be checked directly
by the virial theorem, while the second one needs a more detailed discussion. In particular,
we will see that a gravitationally bound system evolves and thus can be only approximately
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12.2 Evolution of a globular cluster

“in equilibrium.” In this context, we define a system as “in equilibrium” or “dynamically
relaxed”, if the interchange of energy between the members of a cluster is fast compared to
the evolution of the cluster.

Rms and escape velocity from the virial theorem: The total kinetic energy of cluster with
mass M = Nm is

Ukin =
1

2
M〈v2〉 , (12.4)

where vrms ≡ 〈v2〉1/2 is the root mean square (rms) velocity. Applying the virial theorem and
using Upot = 3GM2/(5D), it follows

〈v2〉 =
3GM

5D
. (12.5)

Ex.: Find the typical rms velocity of stars in a spherical cluster with size D = 5 pc that consists of
106 stars with average mass m = 0.5M⊙.

〈v2〉 =
3GM

5D
= 2.5 × 1012cm2/s2 (12.6)

or vrms ≈ 16km/s. This value can be compared with observations. If the observed velocities are

significantly higher, the cluster cannot be gravitationally bound or its total mass has to be larger.

Crossing time: The crossing time tcr is the typical time required for a star in the cluster
to travel the characteristic size D of the cluster (typically taken to be the half-mass radius).
Thus, tcr ∼ D/v or tcr ∼ 3 × 105 yr for the values of our example.

Relaxation time: The relaxation time trel is the typical time in which the star’s velocity
changed an amount comparable to its original velocity by gravitational encounters. Thus one
might think of it as the time-scale after which the velocity distribution of stars bound in a
cluster has reached an equilibrium distribution by the exchange energy and momentum with
each other. But since part of the stars will have velocities v > vesc and escape, the velocity
distribution of a cluster is not stationary: High-velocity stars escape, the cluster contracts
and its core is heated-up.

The depth τ for collisions of stars with each-other is

τ =
1

σnl
=

1

σnvt
, (12.7)

when n denotes the density of stars and l = vt the path traveled by a singe star. Let us call
the relaxation time trel the time for which τ = 1. Thus trel = 1/(σnv).

What should we use for R (as function of v) in σ = πR2? Stars are certainly gravitationally
interacting with each other, if they are bound to each other. Therefore we can estimate the
effective interaction range R from Ekin = Epot, mv2/2 = Gm2/R or R = 2Gm/v2. Then

trel =
1

πR2nv
=

v3

4πn(Gm)2
. (12.8)
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12 Cluster of stars

Inserting 1/n = (m/M)(4π/3)D3 (with M = Nm as total mass of the cluster) gives

trel =
v3D3

3G2mM
. (12.9)

If the cluster is dynamically relaxed and the virial theorem applies, then v2 = 3GM/(5D)
and thus

trel =
D

v

M

m

v4D2

3G2M2
∼ ND

v
= Ntcross . (12.10)

Note that trel ≫ tcross, in striking contrast to an ordinary gas.
We should take into account how much momentum per collision is exchanged: In a collision

at small impact parameter b the momentum transfer is larger than in one at large b. Moreover,
one cannot treat relaxation just as a two-body process: Because of the infinite range of the
gravitational force, N -body processes with N > 2 are not negligible. Formalizing this, the
relaxation time given by Eq. (12.10) becomes reduced by a logarithmic term, ≈ 12 ln(N/2),
or

trel ≈ 0.1tcross
N

ln(N)
. (12.11)

Thus, trel ∼ 2 × 109 yr for the values of our example.

Evaporation time: The evaporation time for a cluster is the time required for the cluster to
dissolve through the gradual loss of stars that gain sufficient velocity through encounters to
escape its gravitational potential.

Assuming an isolated cluster with negligible stellar evolution, the evaporation time tev can
be estimated by assuming that a constant fraction α of the stars in the cluster is evaporated
every relaxation time. Thus, the rate of loss is dN/dt = −αN/trel = −N/tev. The value
of α can be determined by noting that the escape speed vesc at a point x is related to
the gravitational potential Epot(x) at that point by v2

esc = −2Epot(x). (The total energy
of a particle able to escape has to be equal or larger than zero, i.e. Ekin + Epot ≥ 0 or
v2
esc ≥ 2GM/R.) If the system is virialized (as we would expect after one relaxation time),

then also 〈v2〉 = 3GM/(5R).
Thus, stars with speeds above twice the RMS speed will evaporate. Assuming a Maxwellian

distribution of speeds, the fraction of stars with v > 2vrms is α = 7.4 × 10−3. Therefore, the
evaporation time is

tev =
trel
α

≈ 136trel . (12.12)

Stellar evolution and tidal interactions with the galaxy tend to shorten the evaporation time.
Using a typical trel for a globular cluster, we see that tev ∼ 1010 yr, which is comparable to
the observed age of globular clusters.

∗∗∗ Emergence of order vs. the 2.nd law of thermodynamics ∗∗∗ The second law of
thermodynamics, dS ≥ 0, implies generally that the order in a closed system decreases: Heat
flows from a hotter to a cooler subsystem, and particles diffuse from denser to under-dense
regions. The standard example for this behavior are two subsystems of an ideal gas with
different temperature and density. The entropy of each system is

Si = kNi

(
3

2
lnTi − ln ρi + C

)

. (12.13)
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12.3 Virial mass

An exchange of energy δU1 = −δU2 or particles δN1 = −δN2 between the two systems leads
to a change in the total entropy, δS = δS1 + δS2. With U = (3/2)NkT and thus

δSi =
∂Si

∂Ui
δUi +

∂Si

∂Ni
δNi =

δUi

Ti
+ k

(
3

2
lnTi − ln ρi

)

δNi , (12.14)

the total change of the entropy δStot = S1 + S2 follows as

δStot =

(
1

T1
− 1

T2

)

δU1 + k

(
3

2
ln

T1

T2
− ln

ρ1

ρ2

)

δN1 . (12.15)

Therefore the second law of thermodynamics, dS ≥ 0, implies the decrease of temperature
and density inhomogeneities.

The crucial difference gravity introduces is a connection between the temperature, density
and size of the system. From the virial theorem we obtain

NT ∝ Ukin ∝ −Upot ∝
M2

R
∝ N2

V 1/3
(12.16)

or V ∝ N3/T 3. Thus we can eliminate ρ and obtain

S = kN

(

−3

2
lnT + 2 lnN + C ′

)

. (12.17)

Note the changed signs of the lnT and lnN terms, indicating that the inhomogeneities in a
system dominated by gravity increase.

12.3 Virial mass

For a dynamically relaxed cluster, we can use

M =
5R〈v2〉

3G
(12.18)

to estimate the cluster mass M . Here, 〈v2〉 as before refers to the “thermal” motions of
stars. Thus the center-of-mass velocity of the cluster has to be subtracted. Using Doppler
shift measurement, the radial component 〈v2

r 〉 can be measured. Since 〈v2〉 = 3〈v2
i 〉 for an

arbitrary cartesian component of v, we have also 〈v2〉 = 3〈v2
r 〉. Thus

M =
5R〈v2

r 〉
G

. (12.19)

The main advantage of this method to determine masses is that from a representative sample
of vr measurements the total cluster mass including invisible stuff can be determined. Its
main disadvantage is the inherent assumption of a relaxed, bound system that has to be
checked, e.g. by comparing the cluster age with trel; also there is a weak dependence of the
viral mass on the exact density profile ρ(r). This method can be applied to other bound
systems as cluster of galaxies as well.
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12 Cluster of stars

Figure 12.4: Hertzsprung-Russell diagram for several open clusters (left) and the globular
cluster M55 (right).

12.4 Hertzsprung-Russell diagrams for clusters

Stars in a cluster have not only a common distance but were most likely also formed at the
same time and from material with the same composition. Studying the Hertzsprung-Russell
diagram of stars of the same cluster is therefore possible without knowing the distance to
the individual stars. Moreover, a comparison of Hertzsprung-Russell diagrams of different
clusters informs us about the evolution of stars.

Main sequence fitting A Hertzsprung-Russell diagram for stars of the same cluster can be
made using the apparent magnitude m of the stars. In general, there is a shift up or down
necessary so that the mean-sequence lies correctly in the absolute magnitude scale M . The
shift gives directly the distance modulus m−M , or the cluster distance d/pc = 10(m−M+5)/5.

Turn-off point Hertzsprung-Russell diagrams of several clusters are shown in Fig. 12.4, left
panel. For all clusters, a turn-off point is visible above which no mean-sequence stars are
found. Thus the more luminous stars that are hotter and have a shorter life-time are missing
in the clusters: They evolved already into white dwarfs or neutron stars. Since stars in a
cluster were formed at the same time, the turn-off point fixes the cluster age. Table B.7 gives
the life-time of stars on the mean-sequence. The age of the oldest globular cluster, t ∼ 12 Gyr,
gives a lower limit to the age of the Universe.
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13 Galaxies

13.1 Milky Way

In visible light we see an accumulation of stars as a band across the sky. In the infrared
or far-infrared the structure of the Milky Way consisting of a disk and a bulge starts to be
revealed. The Milkyway is an example for a spiral galaxy; it can be subdivided into (cf. also
Fig. 13.2):

• The galactic bulge with a radius of 3 kpc around the center of the galaxy. It is composed
both of old (pop II) and young (pop I) stars.

• The galactic disk with a radius of 20 kpc and a thickness 300 pc contains also both pop
I and pop II stars together with gas and dust. The disk appears not uniform, but has
probably four spiral arms and a central bar. The reason why the arms of spiral galaxies
are so prominent is that the brightest stars are found in the spiral arms. Spiral arms
are the major regions of star formation in spiral galaxies and this is where most of the
major nebulae are found.

• The galactic halo with a radius of 25 kpc includes globular clusters (consisting only of
old stars (population II))

• A dark halo with an extension of order 100 kpc contains 80%-95% of the mass of the
galaxy (dark matter).

The number of stars in the Milky Way is ∼ 1011, while its total mass is estimated to be
1012M⊙.

13.1.1 Rotation curve of the Milkyway

In the disk of the Milky Way, stars and other matter is rotating around the center in a regular
pattern, as revealed by Doppler effects. In the galactic halo and the galactic bulge, the motion
is largely random.

Determination of the rotation curve For simplicity, we assume a spherical mass distribution
and use again the enclosed mass M(r). For circular orbits, GM(r)m/r2 = mv2(r)/r, or

M(r) =
rv2(r)

G
. (13.1)

Measurements of v(r) are mainly done using the 21cm line of gas clouds as tracer. For orbits
inside the Sun’s orbit, the radial velocity is largest, when the distance along the line-of-sight
to the Galactic center is minimal: Hence the maximal Doppler shift along one line-of-sight
determines v(r) at this minimal distance rmin.

If the visible stars dominate the mass distribution of the Milky Way, then we expect for
small r inside the bulge, M(r) ∝ r3 and thus v(r) ∝ r. Outside the disc, for r >∼ 20 kpc,

M(r) = const. and gas clouds should follow Keplerian orbits with v(r) ∝ 1/r1/2.
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Figure 13.1: Left: Schematic view of the spiral structure of the Milky Way; the position of
the Sun is marked by a red dot. Right: Rotation curve of the Milky Way.
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Figure 13.2: Schematic picture of the Milky Way with a gas and dust disc of height h = 300pc.
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13.1 Milky Way

Figure 13.3: Winding-up of the spiral arms due to differential rotation.

Figure 13.1 compares the observed rotation curve with the one obtained theoretically from
the observed distribution M(r) of visible matter as stars and gas. The discrepancy indicates
that a large fraction, around 90%, of the mass in the Milky Way is non-visible. What ρ(r)
corresponds to v(r) = const.? We have v2(r) = GM(r)/r = const. ∝ ρr2 or ρ ∝ 1/r2. Thus
each radial shell of thickness dr contains the same amount of dark matter, dM ∝ ρ(r)r2dr ∝
const. (This makes the definition of the “size” or edge of the DM halo somewhat arbitrary.)
We shall discuss what could be the explanation for this unseen matter later, in Sec. 13.3.2.

Rotation and the spiral structure The rotation of stars around the center of the Milky Way
is differential: The observed constant rotation velocity, v(r) ≈ const., means that the rotation
period increases linearly with the distance to the Galactic center, P ∝ r. Thus the spiral
arms should wind up as shown schematically in Fig. 13.3. For instance, the rotation period
of the Sun around the Galactic center is 2 × 108 yr, so the Sun completed 20 turns around
the Milky Way. How does the observed spiral pattern survives?

The wind-up picture assumes that the spiral arms are a denser region of stars. However,
we noted already that spiral arms are instead the major regions of star formation in spiral
galaxies. Star formation is triggered by gravitational perturbations, in particular during
encounters with neighbor galaxies, which compress interstellar matter. The velocity with
which these density perturbations travel has a priori nothing to do with the rotation velocity
of individual stars.

13.1.2 Black hole at the Galactic center

Supermassive black holes (SMBH) are supposed to be in the center of each galaxy, and that
includes our own galaxy, the Milky Way. One way to show the existence of a SMBH is to
deduce first the enclosed mass from rotation curves around the supposed BH. Then one has
to show that no object with such a mass has a sufficient long lifetime.

Observationally, it is crucial to observe stars as close as possible to the BH. The large
amount of dust in the Galactic bulge requires excellent IR observations. In spring 2002, a
star was passing with v = 5000 km/s at 17 light hours distance – or 3AU – the point of closest
approach to the black hole. One could determine a unique Keplerian orbit (highly elliptical
(eccentricity 0.87), semimajor axis of 5.5 light days, a period of 15.2 years and an inclination
of 46 degrees). Kepler’s 3rd law gives as enclosed mass M(r) = (3.7 ± 1.5) × 106M⊙, cf.
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13 Galaxies

Figure 13.4: Enclosed mass as function of the distance to Sgr A (an object at the galactic
center); the dashed-dotted line gives for comparison the enclosed mass for a DM
halo with ρ(r) ∝ r−α and α = 1.8.

Fig. 13.4. It is not possible to explain this result with a dense cluster of dark astrophysical
objects because such a cluster would have the extremely short lifetime of at most a few
hundred thousand years.

13.2 Normal and active galaxies

Are nebula as e.g. Andromeda galactic objects as globular clusters? Or is our galaxy just
one of many in the Universe?

Ernst Julius Öpik estimate 1922 the distance to Andromeda as follows: The rotation ve-
locity at the edge of Andromeda was known from Doppler measurements. Expressing then
the radius R of Andromeda as R = ϑd, where d is its distance and ϑ the angular diameter,
in the virial theorem, he obtained

GM

(ϑd)2
=

v2

ϑd
. (13.2)

The luminosity L and the observed flux F are connected by F = L/4πd2. Öpik did not
know L, but he assumed that M/L is quite universal. Thus he used M/L ∼ 3 determined
as average value for the Milky Way also for Andromeda. Inserting d2 = L

4πF on the LHS of
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Figure 13.5: Hubble’s classification scheme for galaxies.

Eq. (13.2) gives then

d ≈ v2ϑL

4πFGM
≈ 450 kpc . (13.3)

This distance is much larger than the size of the galactic stellar disc. Edwin Hubble mea-
sured 1924 the distance to three spiral nebula including Andromeda by observing Cepheides,
confirming that these are extragalactic objects.

13.3 Normal Galaxies

The total energy emitted by a normal galaxies is the sum of the emission from each of the
stars found in the galaxy. Thus the emission is roughly thermal and mainly in the infrared,
visible and ultraviolet bands.

13.3.1 Hubble sequence

Spiral galaxies are two-dimensional objects, with or without bar. They make up 2/3 of all
bright galaxies. They contain gas and dust; young and old stars. The stars move regularly
in the disc. The surface luminosity of spiral galaxies decreases exponentially for large radii,
L(r) = L0 exp(−r/r0) with r0 ∼ 5 kpc.

Elliptical galaxies have a three-dimensional, elliptical appearance. Most common are dwarf
elliptical galaxies, with sizes of only a few kpc. But there exist also giant elliptical galaxies
with an extension up to 100 kpc. Their low gas content (< 1%) excludes the idea of an
evolution from elliptical to spiral galaxies by flattening.

Elliptical galaxies contain no young stars. Stars are moving randomly. Their surface
luminosity decreases as L(r) = L0 exp(−r/r0)

1/4 with a large variation of r0.

S0 and irregular galaxies are the remaining ones.
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Figure 13.6: Rotation curves of two galaxies, superimposed are optical images.

13.3.2 Dark matter in galaxies

Flat rotation curves as far as luminous matter extends are found in practically all galax-
ies. Hence, as for the Milky way, v(r) = const. corresponds to ρ ∝ 1/r2, compared to an
exponential fall-off of luminous matter.

What are potential explanations for this discrepancy?

• Dust and gas clouds are seen by their blocking effect on light or in radio. Their contri-
bution to the mass density has been accounted for.

• Most of the mass contained in galaxies could consist of non-luminous objects, so-called
MAssive Compact Halo Object (MACHOs) like brown dwarfs, Jupiter-like objects, or
back holes. This possibility can be tested by microlensing, i.e. the occasional ampli-
fication of light from extragalactic stars by the gravitational lens effect. Searches for
microlensing towards the Large Magellanic Cloud exclude MACHOs as main component
of dark matter in the Milky Way.

• The missing matter is composed of a new stable, neutral particle: “dark matter.”

• Gravity has to be modified.

Modification of gravity (MOND) Newton’s law of inertia F = ma could be wrong for the
very small accelerations that are relevant for the dynamics of galaxies. Such an effect could
be incorporated by introducing a function µ in Newton’s law,

mµ(a/a0)a = F (13.4)

with µ(x) → 1 for x → ∞ and µ(x) → x for x → 0. Choosing a0 ∼ 10−12cm/s2, all Newtonian
standard results and observations are reproduced. Alternatively, Newtonian gravity could be
modified,

µ(g/a0)g = gN . (13.5)

As long as gravity is the only force relevant for the dynamics, the two alternatives cannot
be distinguished. MOND describes a large amount of data successful and also a relativistic
generalization of MOND is possible. However, MOND fits many cosmological observations
(that we shall discuss later) worse than the hypothesis that a large fraction of the mass of
the universe is in form of a new dark matter particle.
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Figure 13.7: A potential MACHO microlensing event.

Dwarf galaxies and neutrino as DM If the mass of galaxies consists indeed mainly of an
elementary particle different to protons, then our only candidate for the dark matter particle
we know are neutrinos. As neutrino oscillations show, they are massive and they are most
likely stable even on time-scales much larger than the age of the universe. However, we can
use an argument similar to the one we used to derive the degeneracy pressure of fermions to
exclude this possibility. Since neutrinos are fermions, they cannot be packed arbitrarily dense.
Together with the upper mass limit mν < 3 eV ≈ 6 × 10−6me from beta-decay experiments,
the Pauli principle excludes neutrinos as main component of dark matter in galaxies.

Ex.: Neutrinos as dark matter.
Consider cold neutrinos with arbitrary mass m as explanation for dark matter in spiral and dwarf
galaxies. (Use M ∼ 1011M⊙ and R = 50kpc for spiral and M ∼ 107M⊙ and R = 0.1kpc for dwarf
galaxies.) Derive a lower limit for the neutrino mass m using that neutrinos are fermions. (Hint:
connect the escape velocity from the galaxy with the maximal momentum of a degenerate Fermi gas.)
A neutrino bound to a galaxy has energy E = GMm/R + mv2/2 ≤ 0, hence its momentum should be
smaller than pesc = mvesc =

√

2GM/R. On the other hand, the number N of possible neutrino states
inside the volume V = 4πR3/3 up to pesc can be estimated with Heisenberg’s uncertainty principle:
In one dimension ∆xpx/~ >∼ 1 and thus

N ≈ (1/~
3)

∫

d3xd3p =
4π

3
R3 4π

3
(pesc/~)3 .

Since the Pauli principle forbids that 2 fermions occupy the same state, N is equal to the maximal
number of neutrinos in the galaxy. The total mass in neutrinos follows as

M = Nm ≤
(

4π

3

)2

m4(2GMR/~
2)3/2
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or neglecting numerical factors
m >∼ (G3R3M/~

6)−1/8 .

For typical spiral galaxies, m >∼ 10 eV, while for typical dwarf galaxies m >∼ 500 eV. The current

experimental upper limit is m <∼ few eV and excludes therefore neutrinos as main component of DM.

13.3.3 Galactic evolution

Galaxies are not isolated objects that are well-separated from each other. Instead they are
bound together forming larger clusters, collide with each other and may merge. We discuss
just one example for what might happen to a smaller body moving in the dark matter cloud
of a larger one. For a concrete realization one can think at a dwarf galaxy like the Magellanic
clouds orbiting around the Milky Way.

Dynamical friction What happens when a test body of mass M moves through a background
of matter? Our test body will attract matter towards his position, creating a high-density
“wake” trailing with him. The energy transferred to the surrounding material has to be
supplied by the kinetic energy of our test body. As a result, a force F know as gravitational
drag or dynamical friction acts on M .

We can obtain an understanding of this effect using just dimensional analysis. Since the
force F can depend only on GM , v and ρ, the unique combination with the dimension of a
force is (cf. Exercise 13.1)

F ≈ C
ρ(GM)2

v2
, (13.6)

where C is a dimensionless constant. This constant has to be determined from numerical
simulations and varies between 10–100.

Inserting the density distribution appropriate for a dark matter halo, ρ = v2/(4πr2G), the
force acting on a star cluster of mass M moving around a galaxy is

F ≈ C
GM2

4πr2
. (13.7)

The angular momentum of the cluster is L = Mvr. Since F acts tangentially to the obit
(assumed to be circular), the torque τ = dL/dt = r × F is simply

dL

dt
= −rF . (13.8)

Using v(r) = const. motivated by the observed rotation curves, we obtain

Mv
dr

dt
= −C

GM2

4πr
. (13.9)

Separating the variables and integrating from the initial distance R until zero gives the life-
time τ of a cluster moving through background matter with density ρ,

∫ 0

R
dr r = −CGM

4πv

∫ τ

0
dt (13.10)
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or

τ =
2πvR2

CGM
. (13.11)

Ex.: i) The age of the oldest globular cluster in the Milky Way is t = 13 Gyr. Estimate with
C = 76, M = 5 × 106M⊙ and v = 220 km/s the maximal distance from which globular clusters could
have been spiraled into the center of the galaxy.
ii) The large Magellanic Cloud (LMC), which has M = 2×1010M⊙, orbits the Milky Way at a distance
of 51 kpc. Assuming that the Milky Way’s dark matter halo and flat rotation curve extends out to
the LMC, estimate how much time it will take for the LMC to spiral into the Milky Way (C = 23).
For both questions we use

R =

(
CτGM

2πv

)1/2

solved either for R or τ . Solution to ii) is R = 4 kpc and to iii) τ = 1.7 Gyr. Thus inside 4 kpc there

should be no globular clusters, because they spiraled already into the center of the Milky Way and

were dissolved, while the LMC has still some time to go. . .

13.4 Active Galaxies and non-thermal radiation

Active galaxies is a common name for all galaxies with unusual, mostly non-thermal emission
not associated with stars. The modern view is that the source of the non-thermal radiation is
connected to the SMBH in their center. We will therefore first discuss the two most important
mechanisms to generate non-thermal photons.

13.4.1 Non-thermal radiation

Synchrotron radiation An electron in a homogeneous magnetic field moves on a Larmor
orbit with radius rL = v⊥mc/(eB). Because of its acceleration, the electron emits electro-
magnetic radiation. For typical magnetic field strengths found in galaxies, B ∼ µG, and
relativistic electrons, the emitted radiation is in the radio range.

We start by considering non-relativistic electrons. Then the Lorentz force is

FL = −e

c
v × B = ma . (13.12)

Hence the motion parallel to B is force-free (v × v = 0), while the acceleration in the plane
perpendicular to B is constant, ar = (e/m)v⊥B. Thus the electron moves along a helix.

Equating the Lorentz and the centripetal force,

(e/c)v⊥B =
mv2

⊥

r
, (13.13)

and introducing the angular frequency ω = 2πν = v⊥/r, the cyclotron frequency ω0 follows
as

ω0 =
eB

mc
or ν0/Mhz = 2.8B/G . (13.14)

As long as electrons are non-relativistic, i.e. their total energy is dominated by their rest
energy mc2, they emit cyclotron radiation with the same frequency, independent of their
velocity.
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Figure 13.8: The emitted flux νF from the BL Lacartae Markarian 421 as function of fre-
quency ν, in a quiet (lower line) and a flaring state (upper line).

For a relativistic electron, we have to replace ma by γma and thus the cyclotron frequency
becomes ωc = eB

γmc = eB
E/c . However, there are two additional effects. First, the radiation

is beamed and emitted in a small cone of opening angle ∆ϑ ≈ 1/γ. Second, there is a
time-dilation between the frame of the electron and the observer (compare with Eq. (13.16)),

dt

dτ
= 1 − β cos(∆ϑ) ≈ 1 − β + β(∆ϑ)2/2 ≈ γ−2 . (13.15)

As consequence, all frequencies from ω0 to γ2ω0 are emitted, although most energy goes into
the frequency range around ωcr = (3/2)γ2ω0.

Ex.: Determine the Larmor radius rL, its orbital period P , the opening angle ϑ and the frequency

νcr in which the radiation is mainly emitted, for an electron with γ = 104 in a magnetic field with

strength typical for galaxies, B = 3µG.

The Larmor radius is rL = 6.0 × 1012cm, the orbital period with P = 1/ν = γ/ν0 = 20min, the

opening angle ϑ = 0.005◦ and the frequency νcr = 890Mhz.

Inverse Compton scattering The usual text book set-up for Compton scattering assumes an
energetic photon hitting an electron at rest, transferring part of its energy to the electron. In
an astrophysical environments, the opposite situation is realized more often: A fast electron
hits a low-energy photon and transfers a large fraction of its energy to the photon. (“Inverse
Compton scattering”). Thus charged electron are accelerated by electromagnetic fields, emit
synchrotron radiation in the radio range as well as high-energy photons via inverse Compton

108



13.4 Active Galaxies and non-thermal radiation

Figure 13.9: Left:Schematic picture of a radio galaxy. Right: NGC4258

scattering. An example where this two different components of the electromagnetic radiation
are visible is shown in Fig. 13.8.

13.4.2 Radio galaxies

Radio galaxies emit typically 106 times more energy in the radio range than normal galaxies.
The main emission mechanism is synchrotron radiation of electrons. The radio emission comes
mainly from two radio lobes separated by up to a distance of order 10 Mpc, cf. Fig. 13.9.
Additionally, there is a weaker radio source in center of the galaxy. Radio galaxies appear in
the visible light as giant elliptical galaxies.

The lobes are caused by the interaction of a jet of high energy particles and the intergalactic
medium: The medium slows down the jet, material is dragged along with the jet, while higher
velocity particle are coming from behind. Thus a shocks forms and creates a ”Hot Spot,”
which is the site of most intense emission, see Fig. 13.9.

Superluminal motion Consider a source moving with velocity v from A to B towards an
observer. Denote the difference in radial distance to the observer by x‖, the perpendicular
one by x⊥. Then a light signal from B needs x‖/c less time than a signal from A. Thus, the
apparent time for the object to travel from A to B the distance r is

tapp =
r

v
−

x‖

c
=

r

v
− r

c
cos ϑ =

r

v
(1 − β cos ϑ) , (13.16)

where r is the distance between A and B. The apparent velocity across the sky is then

vapp =
x⊥

tapp
=

r sinϑ
r
v (1 − β cos ϑ)

=
v sinϑ

1 − β cos ϑ
. (13.17)
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For v ≪ c, we obtain the expected result vapp ≈ v sinϑ, while for β → 1 the apparent velocity
can exceed the speed of light. We determine the maximal value of the apparent velocity by
first deriving the maximum of vapp as function of ϑ,

dvapp

dϑ
∝ cos ϑ0(1 − β cos ϑ0) − β sin2 ϑ0 = 0 (13.18)

or cos ϑ0 = β. Inserting the latter condition into Eq. (13.17) gives then

(vapp

v

)

max
=

1

(1 − β2)1/2
= γ . (13.19)

Hence the apparent velocity is maximally increased by the Lorentz factor γ of the source
towards the direction cosϑ = β.

Jet beaming Another important relativistic effect is jet beaming. Consider an emission
process that is isotropic in the rest frame of the emitting source. Let us use the Lorentz
transformation between energies in the rest system of the source (primed) and the observer
system (unprimed). In the observer system,

E = γ(E′ + βp′ cos ϑ) (13.20)

where ϑ is the angle between the velocity β of the source and the emitted photon. The
maximal/minimal values of E follow directly as E = γ(E′ ± βp′) for cos ϑ = ±1, i.e. if the
photons are emitted parallel and anti-parallel to the direction of the source. For a relativistic
source, β → 1, and the observed energy of photons in the backward direction goes to zero.
Moreover, a similar effect leads also to an increase of the number of photons observed in the
direction parallel to the source velocity. As a result, the emitted luminosity of a relativistic
source (e.g. the hot spot of a radio galaxy) moving towards us can be increased by a large
factor, 103–104, compared to isotropic emission.

13.4.3 Other AGN types and unified picture

Seyfert galaxies In 1943, Carl Seyfert noticed that certain nearby spiral galaxies have very
bright, pinpoint nuclei. The spectra of these galaxies show very strong, often broad, emission
lines. The brightness of the cores of Seyfert galaxies fluctuates: The light from the central
nucleus varies in less than a year, which implies that the emitting region must be less than
one light year across. They do not have radio lobes. Most are powerful sources of infrared
radiation. In addition, some emit intensely in the radio, X ray, and gamma ray regimes.
Approximately 2% of all spiral galaxies are Seyfert galaxies.

Seyfert galaxies are divided into two classes, based upon the widths of their spectral emission
features. Seyfert 1 galaxies have hydrogen emission features with very large widths, indicating
that the gas in the galaxy’s central regions is moving with velocities of several thousand km/sec
(Seyfert 1 galaxies show velocities up to almost 0.1c). Seyfert 2 galaxies have much narrower
emission features implying much lower velocities (note that the Seyfert 1 in Fig. 13.10 shows
narrow features as well).

BL Lacertae Main characteristics of BL Lacertae is their fast variability, with night-to-night
variations of 10-30%, or a factor 100 within weeks if the source flares. Their spectra show no
emission lines, and their appearance in the optical is point-like.
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13.4 Active Galaxies and non-thermal radiation

Figure 13.10: The spectra of Seyfert 1 (left) and Seyfert 2 (right) galaxies.

Quasars Quasi-stellar objects were discovered in late 1963, when a star-like object with
m = 13 was identified with a strong radio source. Emission line as Balmer lines, but displaced
by ∆λ/λ = 0.15 were found. If interpreted as redshift due to expansion of Universe, quasars
are at “cosmological distance.” For the particular case of the quasi-stellar objects found 1963,
the distance is 640 Mpc. This requires enormous luminosities: The distance modulus is

m − M = 5 log(d/10pc) = 39 (13.21)

of M = −26. For comparison, the absolute magnitude of the Sun is 5, a difference of 31
corresponds to a brightness ratio of 1012. In the radio, the source emits even stronger.

Energy gain from accretion onto SMBHs: The maximal energy gain is Emax = GmM/RS ,
where RS = 2GM/c2, and thus Emax = mc2/2. Modelling the accretion process gives a
maximal efficiency of ǫ = 10%–20%. Thus the luminosity from accretion is

L =
ǫc2dm

2dt
(13.22)

For dm/dt = 1M⊙/yr, one obtains 6×1045erg/s or L ∼ 1012L⊙. Thus the large energy output
of AGN can be, at least in principle, easily explained by accretion onto an supermassive black
hole.

Unified picture The fast variability and the large energy output point to accretion on SMBH
as main energy source of the AGN activity. We observe different types of AGN due to their
time evolution (e.g. from Quasars to Seyfert), different angles of view and different stages
(active vs. quiet due to changes in dm/dt). A cartoon sketching the different types of AGN
is shown in Fig. 13.11.

Exercises

1. Dynamical friction. Show that the unique combination with the dimension of GM , v
and ρ with the dimension of a force is F ∝ ρ(GM)2/v2.
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13 Galaxies

Figure 13.11: The unified picture for AGN explains the large AGN variety mainly as differ-
ences in the viewing angle relative to the jet axis.

112



Part III

Cosmology

113



14 Overview: Universe on large scales

14.1 Problems of a static, Newtonian Universe

Newton’s law of universal gravitation changed together with the Copernican principle, i.e.
the assumption that all bodies in the Universe obey the same laws as measured on Earth,
cosmology from a purely philosophical subject to a sub-discipline of physics. In Newtonian
gravity, a static Universe has to be infinite. However, a static infinite Universe would be an
unstable solution and over-dense regions should collapse: As we discussed for the example
of star clusters, gravitationally bound systems do not have an equilibrium solution and the
second law of thermodynamics, dS ≥ 0, requires their collapse. Physicists around the year
1850 were concerned about the opposite faith of the Universe: A state without temperature
or density gradients called “heat death.”

Olber’s paradox addresses the question “why is the night sky dark?” The number of stars
in shell at distance r is proportional to 4πr2dr, and thus the observed flux F ∝ 1/r2 from
each shell is constant. If the Universe is infinite and has no beginning, the total flux diverges.
Thus the darkness of the night sky is inconsistent with an Universe extending infinitely in
space and time.

14.2 Einstein’s cosmological principle

Einstein postulated that the Universe is homogeneous and isotropic (at each moment of its
evolution). An important question is then at which scale the hierarchical structure of the
universe (galaxies, cluster of galaxies, superclusters, . . . ?) stops.

In the extreme case of a fractal Universe an infinite sequence n of structures exists. Imagine
then the case that a structure of order n contains pn stars of mass M and occupies the volume
kqn. Then the density ρn averaged over structures of order n is

ρn ∝ M

k

(
p

q

)n

with limit ρn = 0 for p < q and n → ∞. Hence, physical quantities O like 〈0〉R =

(4π/V )
∫ R
0 drr2 O(r) depend on the averaging scale R and the simple picture of an universe

with, e.g., “the” average density ρ would be not possible.

Observations show that the hierarchical structure of the real universe stops at the scale
of superclusters – the Universe is homogeneous on scales larger than a few 100 Mpc. There
is just a factor ∼ 30 between the size of the largest structures and size of the observable
universe.

Hubble’s F−3/2 test If we correct for extinction, we can use F = L/(4πr2) assuming an
euclidean geometry of space. If furthermore all galaxies would have the same luminosity L,
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then all galaxies brighter than > F would be closer than r. Thus the total number of galaxies
brighter than a certain limiting value is

N(> F) = nV =
4πn

3

(
L

4πF

)3/2

∝ F−3/2 . (14.1)

Around 1920, it was known that star counts vary less rapidly, i.e. the edge of the Milky Way
became “visible”. Hubble applied the same argument 1926 to galaxies and found agreement
with the F−3/2 prediction. This was the first evidence for an homogeneity of the universe on
large scales.

14.3 Expansion of the Universe: Hubble’s law

Hubble’s law Hubble found empirically that the spectral lines of “distant” galaxies are
redshifted, z = ∆λ/λ0 > 1, with a rate proportional to their distance d,

cz = H0d . (14.2)

If this redshift is interpreted as Doppler effect, z = ∆λ/λ0 = vr/c, then the recession velocity
of galaxies follows as

v = H0d . (14.3)

The restriction “distant galaxies” means more precisely that H0d ≫ vpec ∼ few × 100 km/s.
In other words, the peculiar motion of galaxies caused by the gravitational attraction of
nearby galaxy clusters should be small compared to the Hubble flow H0d. Note that the
interpretation of v as recession velocity is problematic. The validity of such an interpretation
is certainly limited to v ≪ c.

The parameter H0 is called Hubble constant and has the value H0 ≈ 71+4
−3 km/s/Mpc. We

will see soon that the Hubble law Eq. (14.3) is an approximation valid for z ≪ 1. In general,
the Hubble constant is not constant but depends on time, H = H(t), and we will call it
therefore Hubble parameter for t 6= t0.

Hubble’s law does not imply that we live at a special place of the Universe: Imagine a
balloon that is inflated during the time dt so that all distances increase by the factor (1+da).
Then original distances l0 are changed to (1 + da)l0 and the recession velocity is

v =
da

dt
l0 = ȧl0 . (14.4)

If we write l(t) = l0a(t), then a(t) is a scale factor describing how distances or space itself is
stretched and

v = ȧl0 =
ȧ

a
l . (14.5)

Comparing Eq. (14.3) and (14.5) we can identify H as H = ȧ/a, i.e. the Hubble parameter
determines the relative change of distance per time.

The Hubble constant has the dimension of an inverse time. If v would be constant, then
all galaxies and space would have been expanded from one single point to its present size in
the time

1

H0
≈ (70km/s/Mpc)−1 ≈ 4 × 1017s ≈ 13Gyr . (14.6)
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objects methods basis of calibration

nearby stars trigonometric parallaxes radar determination of AU
Galactic clusters main sequence fitting main sequence fixed by nearby stars

trig. parallaxes/moving cluster
MS stars in Galaxy spectroscopic parallax trig. parallaxes/color-magnitude diagrams
Cepheides period-luminosity relation color-magnitude diagrams
Type Ia supernovae standard candle SN nearby in galaxies
spiral galaxies Tully-Fisher relation nearby galaxies
galaxies Hubble’s law nearby galaxies

Table 14.1: Several distance indicators together with the underlying calibration method.

How precise might be t0 = H−1
0 as our first estimate for the age of the Universe? Since

gravity should decelerate the expansion of the Universe, we might anticipate that a proper
calculation should lead to a smaller age of the Universe. On the other hand, the age of the
oldest stars in the Universe is estimated as 13 Gyr—thus there is some tension between a
decelerating universe and a large value of H0.

Note also that the actual size of the balloon at time t is not directly connected to the size
of the “observable” part c/H0 of the balloon. The former can be much larger than c/H0 or
even infinite.

Hubble’s law as consequence of homogeneity Consider Hubble’s law as a vector equation
with us at the center of the coordinate system,

v = Hd . (14.7)

What sees a different observer at position d′? He has the velocity v′ = Hd′ relative to us.
We are assuming that velocities are small and thus

v′′ ≡ v − v′ = H(d − d′) = Hd′′ , (14.8)

where v′′ and d′′ denote the position relative to the new observer. A linear relation be-
tween v and d as Hubble law is the only relation compatible with homogeneity and thus the
“cosmological principle”.

14.3.1 Cosmic distance ladder

The Table 14.1 summarizes a few methods to measure astronomical distances. The chain of
overlapping methods by which astronomers establish distance scales in the universe is called
“cosmic distance ladder:” Every extension of the distance ladder inherits all the uncertainties
of the previous steps it is based on. It is therefore important to establish methods to measure
cosmological distances calibrated with as few intermediate steps as possible.

Hubble’s law For many galaxies measurements of their redshift has been performed. Since
the conversion from redshift to true distances depends on e.g. the numerical value of the
Hubble parameter, astronomers often uses the redshift to indicate the extragalactic distances.
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Tully-Fisher relation An empirical relation published 1977 between the luminosity of a spiral
galaxies and the width of its spectral lines, especially the 21cm line. Since M ∝ v2 and there
is red- and blue-shifting on opposite sides, such a relation is expected. The detailed form has
to derived empirically, since it depends on the distributions v(r) and L(r). One uses then the
distance modulus to find the distance from the luminosity and the apparent magnitude.
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15 Cosmological models for an homogeneous,
isotropic universe

15.1 Friedmann-Robertson-Walker metric for an homogeneous,
isotropic universe

The spatial part dl of the line-element of special relativity,

ds2 = c2dt2 − (dx2 + dy2 + dz2) = c2dt2 − dl2 , (15.1)

corresponds to the one of an usual euclidean three-dimensional space. Such a space is flat,
static, homogeneous and isotropic. An expanding universe means that at different times t,
the distance dl between two observes at rest changes,

ds2 = c2dt2 − a2(t)
(
dx2 + dy2 + dz2

)
= c2dt2 − a2(t)dl2 . (15.2)

Our postulate of homogeneity requires that the dimensionless function a(t), the scale factor,
depends only on t.

Do other homogeneous, isotropic metrics exist? In three dimensions, the sphere S2 is
another example for an homogeneous and isotropic space. This space has constant positive
curvature and its line-element is dl2 = r2dϑ2 + r2 sin2 ϑdφ2. Let us try to find the equivalent
expression for dl in 3+1 dimensions by considering a sphere S3 embedded in a (fictitious!)
4-dimensional,

x2
1 + x2

2 + x2
3 + x2

4 = R2 , (15.3)

euclidean space,
dl2 = dx2

1 + dx2
2 + dx2

2 + dx2
4 . (15.4)

We choose x1, x2, x3 as the three coordinates describing the sphere and eliminate x4 using
Eq. (15.3). Forming the differential of Eq. (15.4) gives x1dx1 + . . . + x4dx4 = 0 and allows us
thus to eliminate also dx4,

dl2 = dx2
1 + dx2

2 + dx2
2 +

(x1dx1 + x2dx2 + x3dx3)
2

R2 − x2
1 − x2

2 − x3
3

. (15.5)

This expression becomes more transparent in spherical coordinates,

x1 = r cos φ sin ϑ , (15.6)

x2 = r sin φ sinϑ , (15.7)

x3 = r cos ϑ . (15.8)

We calculate

dxi =
∂xi

∂r
dr +

∂xi

∂φ
dφ +

∂xi

∂ϑ
dϑ , (15.9)
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i.e.
dx1 = cos φ sin ϑdr − r sinφ sinϑdφ + r cos φ cos ϑdϑ,

etc., and insert them into dl2. After somewhat lengthy but elementary simplifications we
obtain

dl2 =
dr2

1 − r2/R2
+ r2(sin2 ϑdφ2 + dϑ2) =

dr2

1 − r2/R2
+ r2dΩ . (15.10)

Note that the angular part dΩ corresponds to the usual expression for spherical coordinates,
while the radial distance dr is modified by the factor (1 − r2/R(t)2)−1.

The only other form of a homogeneous, isotropic space is a hyperbolic plane with con-
stant negative curvature. Formally, a hyperbolic plane can be identified with a sphere with
imaginary radius R, i.e. it is obtained by replacement 1 − r2/R2 → 1 + r2/R2.

Combining the three cases (and making the radial coordinate dimensionless, r → r/R(t)),
the Friedmann-Robertson-Walker (FRW) metric in its most commonly used representation
follows as

ds2 = c2dt2 − R2(t)

[
dr2

1 − kr2
+ r2(sin2 ϑdφ2 + dϑ2)

]

(15.11)

with k = ±1 (positive/negative curvature) or k = 0 (flat three-dimensional space).

Geometry of the FRW spaces

Let us consider a sphere of fixed radius at fixed time, dr = dt = 0. The line-element ds
simplifies then to R2(t)r2(sin2 ϑdφ+dϑ2), which is the usual line-element of a sphere S2 with
radius rR(t). Thus the area of the sphere is A = 4π(rR(t))2 and the circumference of a circle
is L = 2πrR(t), while rR(t) has the physical meaning of a length.

By contrast, the radial distance between two points (r, ϑ, φ) and (r + dr, ϑ, φ) is dl =
R(t)dr/

√
1 − kr2. Thus the radius of a sphere centered at r = 0 is

l = R(t)

∫ r

0

dr′√
1 − kr′ 2

= R(t) ×







arcsin(r) for k = 1 ,
r for k = 0 ,
arcsinh(r) for k = −1 .

(15.12)

Hence for k = 0, i.e a flat space, one obtains the usual result L/l = 2π, while for k = 1
(spherical geometry) L/l = 2πr/ arcsin(r) < 2π and for k = −1 (hyperbolic geometry)
L/l = 2πr/arcsinh(r) > 2π.

For k = 0 and k = −1, l is unbounded, while for k = +1 there exists a maximal distance
lmax(t). Hence the first two case correspond to open spaces with an infinite volume, while the
latter is a closed space with finite volume.

Lemâıtre’s redshift formula

A light-ray propagates with v = c or ds2 = 0. Assuming a galaxy at r = 0 and an observer at
r, i.e. light rays with dφ = dϑ = 0, we rewrite the FRW metric as

dt

R
=

dr√
1 − kr2

. (15.13)

We integrate this expression between the emission and absorption times t1 and t2 of the first
light-ray,

∫ t2

t1

dt

R
=

∫ r

0

dr√
1 − kr2

(15.14)
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Figure 15.1: World lines of a galaxy emitting light and an observer at comoving coordinates
r = 0 and r, respectively.

and between t1 + δt1 and t2 + δt2 for the second light-ray (see also Fig. 15.1),

∫ t2+δt2

t1+δt1

dt

R
=

∫ r

0

dr√
1 − kr2

. (15.15)

The RHS’s are the same and thus we can equate the LHS’s,

∫ t2

t1

dt

R
=

∫ t2+δt2

t1+δt1

dt

R
. (15.16)

We change the integration limits, subtracting the common interval [t1 + δt1 : t2] and obtain

∫ t1+δt1

t1

dt

R
=

∫ t2+δt2

t2

dt

R
. (15.17)

Now we choose the time intervals δti as the time between two wave crests separated by the
wave lengths λi of an electromagnetic wave. Since these time intervals are extremely short
compared to cosmological times, δti = λi/c ≪ ti, we can assume R(t) as constant performing
the integrals and obtain

δt1
R1

=
δt2
R2

or
λ1

R1
=

λ2

R2
. (15.18)

The redshift z of an object is defined as the relative change in the wavelength between emission
and detection,

z =
λ2 − λ1

λ1
=

λ2

λ1
− 1 (15.19)

or

1 + z =
λ2

λ1
=

R2

R1
. (15.20)

This result is intuitively understandable, since the expansion of the universe stretches all
lengths including the wave-length of a photon. For a massless particle like the photon, ν = cλ
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and E = cp, and thus its frequency (energy) and its wave-length (momentum) are affected
in the same way. By contrast, the energy of a non-relativistic particle with E ≈ mc2 is
nearly fixed. A similar calculation as for the photon shows that indeed not the energy but
the momentum p = ~/λ of massive particles is red-shifted.

To be able to compare Eq. (15.20) with Hubble’s law, v = Hd with v = cz and H = Ṙ/R,
we have to understand next how the scale factor R evolves with time.

15.2 Friedmann equation from Newton’s and Hubble’s laws

The Friedmann equation connects the expansion rate H of the Universe with its energy den-
sity. Since we assume the cosmological principle to be valid, i.e. we assume an homogeneous
and isotropic Universe, this equation is a single ordinary differential equation. We can derive
this equation in a straightforward manner using Hubble’s law together with the Newtonian
expression for the energy of a gravitating system plus the insight of special relativity that
gravity should couple also to energy.

15.2.1 Friedmann equation

Let us consider the (Newtonian) energy of a galaxy of mass m at the distance R in a Universe
that is very close to homogeneity and isotropy,

E = Ekin + Epot =
1

2
mṘ2 − GmM(R)

R
. (15.21)

According to Hubble’s law we can express the recession velocity Ṙ of the galaxy as Ṙ = HR,
while the mass enclosed within R is given by M(R) = (4π/3)R3ρm. Hence

E =
1

2
m(HR)2 − 4π

3
GmρmR2 (15.22)

or
2E

mR2
= H2 − 8π

3
Gρm . (15.23)

Since we assume that the universe is homogeneous, H and ρm cannot be functions of R.
Therefore also the LHS, 2E

mR2 , cannot depend on the chosen distance R to the coordinate
center. However, the value of 2E/(mR2) is time-dependent, because the distance between us
and the galaxy will change as the Universe expands. Since the mass m of our test galaxy is
arbitrary, we can choose it such that |2E/(mc2)| = 1 holds at an arbitrary moment as long
as E 6= 0. For different times, the LHS scales as 1/R2 and thus we can rewrite Eq. (15.23)
with k = 0,±1 as

kc2

R2
= H2 − 8π

3
Gρm . (15.24)

Since E is constant, k is constant too. Finally, we account for the equivalence of mass and
energy by including in ρ not only the mass but also the energy density, ρ = ρmc2 + ρrad + . . .:

H2 ≡
(

Ṙ

R

)2

=
8π

3
Gρ/c2 − kc2

R2
. (15.25)
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15 Cosmological models for an homogeneous, isotropic universe

The result is the “Friedmann equation” without cosmological constant and agrees exactly with
the one derived from general relativity1. The three cases k = −1, 0, +1 in the Friedmann
equation correspond to the same three cases in Eq. (15.11). Hence they distinguish the
geometry of space, i.e. the geometry of 3-dimensional hypersurfaces with t = const. This
geometry (k and R) can be determined by measuring two simple numbers, H0 and ρ0.

We set from now on c = 1. Quantities evaluated at the present time are labelled with a zero,

t0, H0, . . .. The value of H0 fixes the present density ρ0 for k = 0 as ρ0(k = 0) ≡ ρcr =
3H2

0

8πG .
Most cosmological quantities like ρcr will depend on the actual value of H0. One “hides” this
dependence by introducing h,

H0 = 100hkm/s/Mpc .

Then one can express the critical density as function of h,

ρcr = 2.77 × 1011h2M⊙/Mpc3 = 1.88 × 10−29h2g/cm3 = 1.05 × 10−5h2GeV/cm3 .

Thus a flat universe with H0 = 100hkm/s/Mpc requires an energy density of ∼ 10 protons
per cubic meter.

We define the abundance Ωi of the different players in cosmology as their energy density
relative to ρcr, Ωi = ρ/ρcr. The ones we know already are non-relativistic or cold dark matter
(CDM with Ωm) and relativistic matter or radiation (Ωrad).

Cosmological constant In general relativity, the absolute value of the energy matters not
only energy differences. Thus we should add a constant (the “cosmological constant” Λ) to
the RHS of the Friedmann equation to account for a possible intrinsic energy and pressure of
the vacuum,

H2 ≡
(

Ṙ

R

)2

=
8π

3
Gρ − k

R2
+

Λ

3
. (15.26)

With Λ 6= 0, the simple relation ρ = ρcr ↔ k = 0 still holds, if the contribution of Λ to the
energy density ρ is included viz.

8π

3
GρΛ =

Λ

3
. (15.27)

Thereby one recognizes also that the cosmological constant acts as a constant energy density
ρΛ = Λ

8πG , or ΩΛ = Λ
3H2

0

.

For Λ 6= 0, an observable additional to ρ0 and H0 is needed to fix the geometry of the
three-dimensional spatial hypersurface: We obtain this observable by a Taylor expansion of
R(t),

R(t) = R(t0) + (t − t0)Ṙ(t0) +
1

2
(t − t0)

2R̈(t0) + . . . (15.28)

= R(t0)

[

1 + (t − t0)H0 −
1

2
(t − t0)

2q0H
2
0 + . . .

]

, (15.29)

where q ≡ −R̈(t0)R(t0)/Ṙ2(t0) is called deceleration parameter: If the expansion is slowing
down, R̈ < 0 and q0 > 0.

1In general relativity, a generalization of Gauss’ theorem called Birkhoff’s theorem is valid. Thus only the
enclosed mass and energy enter the Friedmann equation, and choosing R sufficiently small, the Newtonian
approximation becomes arbitrarily precise.
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We show now that Hubble’s law is indeed an approximation for small redshift. For not too
large time-differences, we can use the expansion Eq. (15.28) and write

1 − z ≈ 1

1 + z
=

R(t)

R0
≈ 1 + (t − t0)H0 . (15.30)

Hence Hubble’s law, z = (t0−t)H0 = d/cH0, is valid as long as z ≈ H0(t0−t) ≪ 1. Deviations
from its linear form arises for z >∼ 1 and can be used to determine q0.

15.2.2 Local energy conservation and acceleration equation

Additionally to the Friedmann equation we need one equation that describes how the energy
content of the Universe is affected by its expansion.

Local energy conservation The first law of thermodynamics becomes with dQ = 0 (no heat
exchange to the outside, since no outside exists) simply

dU = TdS − PdV = −PdV (15.31)

or

d(ρR3) = −Pd(R3) . (15.32)

Dividing by dt,

Rρ̇ + 3(ρ + P )Ṙ = 0 , (15.33)

we obtain

ρ̇ = −3(ρ + P )H . (15.34)

Thus the expansion decreases the energy density both by dilution and by the work required
to expand a gas with pressure P ≥ 0.

Ex.: Derive how the expansion of the Universe changes the particle number density n
The Hubble flow v = Hr induces the flux vn through the surface 4πr2 of a sphere with radius r,
and thus Ṅ = 4πr2vn. These particles are missing inside the sphere containing the total number of
particles N = V n. Hence

Ṅ = −4πr2vn =
4π

3
r3ṅ (15.35)

or ṅ = −3vn/r = −3Hn. Thus the first term on the RHS of Eq. (15.34) corresponds indeed due
the dilution of the particle number by the expansion of the Universe. More formally, we can use that
n ∝ 1/R3 and thus

dn

dt
=

dn

dR

dR

dt
= −3

n

R
Ṙ .
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15 Cosmological models for an homogeneous, isotropic universe

Acceleration equation An equivalent, but often more useful equation is obtained by first
multiplying the Friedmann equation with R2,

Ṙ2 =
8πG

3
ρR2 − k +

ΛR2

3
. (15.36)

Taking then the time derivative,

2ṘR̈ =
8πG

3

[

ρ̇R2 + ρ(2RṘ)
]

+
2ΛRṘ

3
(15.37)

inserting ρ̇R = −3(ρ + P )Ṙ into ρ̇R2 and dividing by 2Ṙ gives

R̈ =
4πG

3
[(−3ρ − 3P ) + 2ρ]R +

Λ

3
R (15.38)

and finally the “acceleration equation”

R̈

R
=

Λ

3
− 4πG

3
(ρ + 3P ) . (15.39)

This equation determines the (de-) acceleration of the Universe as function of its matter
and energy content. “Normal” matter is characterized by ρ > 0 and p ≥ 0. Thus a static
solution is impossible for a universe with Λ = 0. Such a universe is decelerating and since
today Ṙ > 0, R̈ was always negative and there was a “big bang”.

We can understand better the physical properties of the cosmological constant by replacing
Λ by (8πG)ρΛ. Now we can compare the effect of normal matter and of the Λ term on the
acceleration,

R̈

R
=

8πG

3
ρΛ − 4πG

3
(ρ + 3P ) (15.40)

Thus Λ is equivalent to matter with an E.o.S. wΛ = P/ρ = −1. This property can be checked
using only thermodynamics: With P = −(∂U/∂V )S and UΛ = ρΛV , it follows P = −ρ.

The borderline between an accelerating and decelerating universe is given by ρ = −3P
or w = −1/3. The condition ρ < −3P violates the so-called energy condition for “normal”
matter in equilibrium. An accelerating universe requires therefore a positive cosmological
constant or a dominating form of matter that is not in equilibrium.

Note that the energy contribution of relativistic matter, photons and possibly neutrinos, is
much smaller than the one of non-relativistic matter (stars and cold dark matter). Thus the
pressure term in the acceleration equation can be neglected at the present epoch. Measuring
R̈/R, Ṙ/R and ρ fixes therefore the geometry of the universe.

15.3 Scale-dependence of different energy forms

The dependence of different energy forms as function of the scale factor R can derived from
energy conservation, dU = −PdV , if an E.o.S. P = P (ρ) = wρ is specified. For w = const.,
it follows

d(ρR3) = −3PR2dR (15.41)

or eliminating P
dρ

dR
R3 + 3ρR2 = −3wρR2 . (15.42)
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15.4 Cosmological models with one energy component

Separating the variables,

−3(1 + w)
dR

R
=

dρ

ρ
, (15.43)

we can integrate and obtain

ρ ∝ R−3(1+w) =







R−3 for matter (w = 0)
R−4 for radiation (w = 1/3)
const. for Λ (w = −1)

(15.44)

This result can be understood also from heuristic arguments:

• (Non-relativistic) matter means that kT ≪ m. Thus ρ = nm ≫ nT = P and non-
relativistic matter is pressure-less, w = 0. The mass m is constant and n ∝ 1/R3, hence
ρ is just diluted by the expansion of the universe, ρ ∝ 1/R3.

• Radiation is not only diluted but the energy of each single photon is additionally red-
shifted, E ∝ 1/R. Thus the energy density of radiation scales as ∝ 1/R4. Alternatively,
one can use that ρ = aT 4 and T ∝ 〈E〉 ∝ 1/R.

• Cosmological constant Λ: From 8π
3 Gρλ = Λ

3 one obtains that the cosmological constant
acts as an energy density ρλ = Λ

8πG that is constant in time, independent from a possible
expansion or contraction of the universe.

• Note that the scaling of the different energy forms is very different. It is therefore
surprising that “just today”, the energy in matter and due to the cosmological constant
is of the same order (“coincidence problem”).

15.4 Cosmological models with one energy component

We consider a flat universe, k = 0, with one dominating energy component with E.o.S w =
P/ρ = const.. With ρ = ρ0(R/R0)

−3(1+w), the Friedmann equation becomes

Ṙ2 =
8π

3
GρR2 = H2

0R3+3w
0 R−(1+3w) , (15.45)

where we inserted the definition of ρcr = 3H2
0/(8πG). Separating variables we obtain

R
−(3+3w)/2
0

∫ R0

0
dR R(1+3w)/2 = H0

∫ t0

0
dt = t0H0 (15.46)

and hence the age of the Universe follows as

t0H0 =
2

3 + 3w
=







2/3 for matter (w = 0)
1/2 for radiation (w = 1/3)
→ ∞ for Λ (w = −1)

(15.47)

Models with w > −1 needed a finite time to expand from the initial singularity R(t = 0) = 0
to the current size R0, while a Universe with only a Λ has no “beginning”.

In models with a hot big-bang, ρ, T → ∞ for t → 0, and we should expect that classical
gravity breaks down at some moment t∗. As long as R ∝ tα with α < 1, most time elapsed
during the last fractions of t0H0. Hence our result for the age of the universe does not depend
on unknown physics close to the big-bang as long as w > −1/3.
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15 Cosmological models for an homogeneous, isotropic universe

If we integrate (15.46) to the arbitrary time t, we obtain the time-dependence of the scale
factor,

R(t) ∝ t2/(3+3w) =







t2/3 for matter (w = 0)

t1/2 for radiation (w = 1/3)
exp(t) for Λ (w = −1)

(15.48)

15.5 Determining Λ and the curvature R0 from ρm,0, H0, q0

General discussion: We apply now the Friedmann and the acceleration equation to the
present time. Thus Ṙ0 = R0H0, R̈ = −q0H

2
0R0 and we can neglect the pressure term in

Eq. (15.39),

R̈0

R0
= −q0H

2
0 =

Λ

3
− 4πG

3
ρm,0 . (15.49)

Thus we can determine the value of the cosmological constant from the observables ρm,0, H0

and q0 via

Λ = 4πGρm,0 − 3q0H
2
0 . (15.50)

Solving next the Friedmann equation (15.26) for k/R2
0,

k

R2
0

=
8πG

3
ρm,0 +

Λ

3
− H2

0 , (15.51)

we write ρm,0 = Ωmρcr and insert Eq. (15.50) for Λ. Then we obtain for the curvature term

k

R2
0

=
H2

0

2
(3Ωm − 2q0 − 2) . (15.52)

Hence the sign of 3Ωm − 2q0 − 2 decides about the sign of k and thus the curvature of
the universe. For a universe without cosmological constant, Λ = 0, equation (15.50) gives
Ωm = 2q0 and thus

k = −1 ⇔ Ωm < 1 ⇔ q0 < 1/2 ,

k = 0 ⇔ Ωm = 1 ⇔ q0 = 1/2 , (15.53)

k = +1 ⇔ Ωm > 1 ⇔ q0 > 1/2 .

For a flat universe with Λ = 0, ρm,0 = ρcr and k = 0,

0 = 4πG
3H2

0

8πG
+ H2

0 (q0 − 1) = H2
0

(
3

2
+ q0 − 1

)

, (15.54)

and thus q0 = 1/2. In this special case, q0 < 1/2 means k = −1 and thus an infinite space
with negative curvature, while a finite space with positive curvature has q > 1/2.

Ex.: Comparison with observations: Use the Friedmann equations applied to the present time
to derive central values of Λ and k,R0 from the observables H0 ≈ (71 ± 4) km/s/Mpc and ρ0 =
(0.27 ± 0.04)ρcr, and q0 = −0.6. Discuss the allowed range and significance of the values.
We determine first

H2
0 ≈

(
7.1 × 106cm

s 3.1 × 1024cm

)2

≈ 5.2 × 10−36s−2
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Figure 15.2: The product t0H0 for an open universe containing only matter and for a flat
cosmological model with ΩΛ + Ωm = 1.

The value of the cosmological constant Λ follows as

Λ = 4πGρm,0 − 3q0H
2
0 = 3H2

0

(
ρ

2ρcr

− 3q0

)

≈ 3H2
0 × (

1

2
× 0.27 + 0.6) ≈ 0.73 × 3H2

0

or ΩΛ = 0.73.
The curvature radius R follows as

k

R2
0

= 4πGρm,0 − H2
0 (q0 + 1) = 3H2

0

(
ρ

2ρcr

− q0 + 1

3

)

(15.55)

= 3H2
0 (0.135 ± 0.02 − 0.4/3) = 3H2

0 (0.002 ± 0.02) (15.56)

thus a flat universe (k = 0) is consistent with observations.

Age problem of the universe. The age of a matter-dominated universe is (expanded around
Ω0 = 1)

t0 =
2

3H0

[

1 − 1

5
(Ω0 − 1) + . . .

]

. (15.57)

Globular cluster ages require t0 ≥ 13 Gyr. Using Ω0 = 1 leads to H0 ≤ 2/3 × 13Gyr =
1/19.5Gyr or h ≤ 0.50. Thus a flat universe with t0 = 13 Gyr without cosmological constant
requires a too small value of H0. Choosing Ωm ≈ 0.3 increases the age by just 14%.

The age t0 of a flat Universe with Ωm + ΩΛ = 1 is given by

3t0H0

2
=

1√
ΩΛ

ln
1 +

√
ΩΛ√

1 − ΩΛ
. (15.58)

Requiring H0 ≥ 65 km/s/Mpc and t0 ≥ 13 Gyr means that the function on the RHS should
be larger than 3 × 13Gyr × 0.65/(2 × 9.8Gyr) ≈ 1.3 or ΩΛ = 0.55.
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15 Cosmological models for an homogeneous, isotropic universe

15.6 The ΛCDM model

We consider a flat Universe containing as its only two components pressure-less matter and
a cosmological constant, Ωm + ΩΛ = 1. Then the curvature term in the Friedmann equation
and the pressure term in the deceleration equation play no role and we can hope to solve
these equations for a(t). Multiplying the deceleration equation (15.39) by two and adding it
to the Friedmann equation (15.26), we eliminate ρm,

2
ä

a
+

(
ȧ

a

)2

= Λ . (15.59)

Next we rewrite first the LHS and then the RHS as total time derivatives: With

d

dt
(aȧ2) = ȧ3 + 2aȧä = ȧa2

[(
ȧ

a

)2

+ 2
ä

a

]

, (15.60)

we obtain
d

dt
(aȧ2) = ȧa2Λ =

1

3

d

dt
(a3)Λ . (15.61)

Integrating is now trivial,

aȧ2 =
Λ

3
a3 + C . (15.62)

The constant C can be determined most easily by setting a(t0) = 1 and comparing the
Friedmann equation (15.26) with (15.62) for t = t0 as C = 8πGρm,0/3.

Next we introduce the new variable x = a3/2. Then

da

dt
=

dx

dt

da

dx
=

dx

dt

2x−1/3

3
, (15.63)

and we obtain as new differential equation

ẋ2 − Λx2/4 + C/3 = 0 . (15.64)

Inserting the solution x(t) = A sinh(
√

Λt/2) of the homogeneous equation fixes A as A =
√

3C/Λ. This can be expressed by the current values of Ωi as A = Ωm/ΩΛ = (1 − ΩΛ)/ΩΛ.
Hence the time-dependence of the scale factor is

a(t) = A1/3 sinh2/3(
√

3Λt/2) . (15.65)

The time-scale of the expansion is set by tΛ = 2/
√

3Λ.
The present age t0 of the universe follows by setting a(t0) = 1 as

t0 = tΛarctanh(
√

ΩΛ) . (15.66)

The deceleration parameter q = −ä/aH2 is an important quantity for observational tests
of the ΛCDM model. We calculate first the Hubble parameter

H(t) =
ȧ

a
=

2

3tΛ
coth(t/tΛ) . (15.67)

and then

q(t) =
1

2
[1 − 3 tanh2(t/tΛ) . (15.68)
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Figure 15.3: The deceleration parameter q as function of t/t0 for a ΛCDM model and various
values for ΩΛ (0.1, 0.3, 0.5, 0.7 and 0.9 from the top to the bottom).

The limiting behavior of q corresponds with q = 1/2 for t → 0 and q = −1 for t → ∞ as
expected to the one of a flat Ωm = 1 and a ΩΛ = 1 universe. More interesting is the transition
region and, as shown in Fig. 15.3, the transition from a decelerating to an accelerating universe
happens for ΩΛ = 0.7 at t ≈ 0.55t0. This can easily converted to redshift, z∗ = a(t0)/a(t∗) −
1 ≈ 0.7, that is directly measured by Supernova observations.

Exercises

1. Derive the relation between temperature and time in the early (radiation dominated)
universe using ρ = gaT 4 = gπ2T 4/30 as expression for the energy density of a gas with
g relativistic degrees of freedom in the Friedmann equation. What is the temperature
at t = 1 s? [Hints: The expression ρ = gπ2T 4/30 is valid for k = c = ~ = 1. Then one
can measure temperatures in MeV/GeV and use s−1 = 6.6 × 10−25 GeV and G−1/2 =
MPl = 1.2 × 1019 GeV.]

129



16 Early universe

16.1 Thermal history of the Universe - Time-line of important

dates

Different energy form today. Let us summarize the relative importance of the various energy
forms today. The critical density ρcr = 3H2

0/(8πG) has with h = 0.7 today the numerical
value ρcr ≈ 7.3 × 10−6 GeV/cm3. This would corresponds to roughly 8 protons per cubic
meter. However, main player today is the cosmological constant with ΩΛ ≈ 0.73. Next comes
(pressure-less) matter with Ωm ≈ 0.27. The energy density of cosmic microwave background
(CMB) photons with temperature T = 2.7 K = 2.3 × 10−4 eV is ργ = aT 4 = 0.4 eV/cm3 or
Ωγ ≈ 5 × 10−5.

Different energy forms as function of time The scaling of Ωi with redshift z, 1 + z =
R0/R(t) is given by

H(z)2/H2
0 = Ωm,0(1 + z)3 + Ωrad,0(1 + z)4

+ ΩΛ,0 − (Ωtot,0 − 1)(1 + z)2
︸ ︷︷ ︸

≈ 0

.

Thus the relative importance of the different energy forms changes: Going back in time, one
enters first the matter-dominated and then the radiation-dominated epoch.

The cosmic triangle shown in Fig. 16.1 illustrates the evolution in time of the various energy
components and the resulting coincidence problem: Any universe with a non-zero cosmological
constant will be driven with time to a fix-point with Ωm, Ωk → 0. The only other constant
state is a flat universe containing only matter—however, this solution is unstable. Hence, the
question arises why we live in an epoch where all energy components have comparable size.

Temperature increase as T ∼ 1/R has three main effects: Firstly, bound states like atoms
and nuclei are dissolved when the temperature reaches their binding energy, kT >∼ Eb. Sec-
ondly, particles with mass mX can be produced, when kT >∼ 2mX , in reactions like γγ → X̄X.
Thus the early Universe consists of a plasma containing more and more heavier particles that
are in thermal equilibrium. Finally, reaction rates Γ = nσv increases, since n ∝ T 3. Therefore,
reactions that have became ineffective today were important in the early Universe.

Matter-radiation equilibrium zeq: The density of matter decreases slower than the energy
density of radiation. Going backward in time, there will be therefore a time when the density
of matter and radiation were equal. Before that time with redshift zeq, the universe was
radiation-dominated ,

Ωrad,0(1 + zeq)
4 = Ωm,0(1 + zeq)

3 (16.1)
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Figure 16.1: The cosmic triangle showing the time evolution of the various energy compo-
nents.

or

zeq =
Ωm,0

Ωrad,0
− 1 ≈ 5400 . (16.2)

This time is important, because i) the time-dependence of the scale factor changes from
R ∝ t2/3 for a matter to R ∝ t1/2 for a radiation dominated universe, ii) the E.o.S. and thus the
speed of sound changed from w ≈ 1/3, v2

s = (∂P/∂ρ)S = c2/3 to w ≈ 0, v2
s = 5kT/(3m) ≪ c2.

The latter quantity determines the Jeans length and thus which structures in the Universe
can collapse.

Recombination zrec: Today, hydrogen and helium in the interstellar and intergalactic
medium is neutral. Increasing the temperature, the fraction of ions and free electron increases,
i.e. the reaction H + γ ↔ H+ + e− that is mainly controlled by the factor exp(−Eb/T ) will
be shifted to the right. By definition, we call recombination the time when 50% of all atoms
are ionized. A naive estimate gives T ∼ Eb ≈ 13.6 eV≈ 160.000K or zrec = 60.000. However,
there are many more photons than hydrogen atoms, and therefore recombination happens
latter: A more detailed calculation gives zrec ∼ 1000.
Since the interaction probability of photons with neutral hydrogen is much smaller than with
electrons and protons, recombination marks the time when the Universe became transparent
to light.

Big Bang Nucleosynthesis At Tns ∼ ∆ ≡ mn − mp ≈ 1.3 MeV or t ∼ 1 s, part of protons
and neutrons forms nuclei, mainly 4He. As in the case of recombination, the large number
of photons delays nucleosynthesis relative to the estimate Tns ≈ ∆ to Tns ≈ 0.1MeV.
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16 Early universe

Quark-hadron or QCD transition Above T ∼ mπ ∼ 100 MeV, hadrons like protons, neu-
trons or pions dissolve into their fundamental constituents, “quarks” q.

Baryogenesis The fraction baryons (=protons, neutrons, and nuclei) contribute to the criti-
cal density is certainly limited by Ωm ∼ 0.27. All the matter observed in the Universe consists
of matter (protons and electrons), and not of anti-protons (anti-protons an positrons). Thus
the baryon-to-photon ratio is

η =
nb − nb̄

nγ

<∼
8 × 10−6

400
∼ 10−8 . (16.3)

The early qq̄ plasma contained a tiny surplus of quarks. After all anti-matter annihilated
with matter, only the small surplus of matter remained. The tiny surplus can be explained
by interactions in the early Universe that were not completely symmetric with respect to an
exchange of matter-antimatter.

16.2 Big Bang Nucleosynthesis

Nuclear reactions in main sequence stars are supposed to produce all the observed heavier
elements up to iron. However, stellar reaction can explain at most a fraction of 5% of 4He,
while the production of the weakly bound deuterium and Lithium-7 in stars is impossible.
Thus the light elements up to Li-7 are primordial. Their abundance Y is Y (D) = few× 10−5,
Y ( 3H) = few × 10−5 Y ( 4He) ≈ 0.25, Y ( 7Li) ≈ (1 − 2) × 10−7. Observational challenge is
to find as ”old” stars/gas clouds as possible and then to extrapolate back to the primordial
values.

Ex.: Estimate of 4He production by stars:
The binding energy of 4He is Eb = 28.3 MeV. If 25% of all nucleons were fussed into 4He during
t ∼ 10 Gyr by stellar fusion, the resulting luminosity-mass ratio would be

L

Mb
=

1

4

Eb

4mpt
≈ 5

erg

g s
≈ 2.5

L⊙

M⊙

.

The observed luminosity-mass ratio is however only L
Mb

≤ 0.05L⊙/M⊙. Assuming a roughly constant

luminosity of stars, they can produce only 0.05/2.5 ≈ 2% of the observed 4He.

Big Bang Nucleosynthesis (BBN) is controlled by two parameters: The mass difference
between protons and neutrons, ∆ ≡ mn − mp ≈ 1.3 MeV and the freeze-out temperature
Tf of reactions converting protons into neutrons and vice versa. We will treat BBN as a
two-step process: First, the weak processes freeze-out and the n/p ratio becomes fixed. Still,
the temperature is high compared to Eb and nuclei cannot form. Meanwhile, neutrons decay.
After the temperature dropped from Tf to TNS, most remaining neutrons are built into 4He
nuclei.

Gamov criterion We introduced the optical depth τ = nlσ as the probability that a photon
interacts in a slab of length l filled with targets of density n. If τ ≫ 1, photons and targets
interact efficiently and are in thermal equilibrium. We can apply the same criteria to the
Universe: We say a particle species A is in thermal equilibrium, as long as τ = nlσ =
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16.2 Big Bang Nucleosynthesis

nσvτ ≫ 1. The time τ corresponds to the typical time-scale for the expansion of the universe,
τ = (Ṙ/R)−1 = H−1. (Since T ∝ 1/R and thus ⇒Ṫ /T = −Ṙ/R = −H, the time-scale for
changes of the expansion rate and of the temperature are the same.) Hence we can rewrite
this condition as

Γ ≡ nσv ≫ H . (16.4)

A particle species ”goes out of equilibrium” when its interaction rate Γ becomes smaller than
the expansion rate H of the universe.

Decoupling of neutrinos The cross section of reactions involving neutrinos in processes like
n ↔ p + e− + νe or e+e− ↔ ν̄ν is σ ∼ G2

F E2. If we approximate the energy of all particle
species by their temperature T , their velocity by c and their density by n ∼ T 3, then the
interaction rate of weak processes is

Γ ≈ 〈vσnν〉 ≈ G2
F T 5 . (16.5)

The early universe is radiation-dominated, ρrad ∝ 1/R4, and its curvature k/R2 is negligible.
Thus the Friedmann equation simplifies to H2 = (8π/3)Gρ with ρ = g∗aT 4, where g counts
the number of relativistic degrees of freedom (photons, neutrinos, electrons) at that time.
Requiring Γ(Tfr) = H(Tfr) gives as freeze-out temperature Tfr of weak processes Tfr ≈ 1 MeV,
at time tfr ≈ 0.3 s.

Thus the time-sequence is as follows

• At Tfr ≈ 1 MeV, the neutron-proton ratio freezes-in and can be approximated by the
ratio of their equilibrium distribution in the non-relativistic limit.

• As the universe cools down from Tfr to Tns, neutrons decay with half-live τn ≈ 886 s.

• At Tns ≈ 0.1 MeV, practically all neutrons are bound to 4He, with only a small admix-
ture of other elements.

Proton-neutron ratio Above Tfr, reactions like νe + n ↔ p + e− keep nucleons in thermal
equilibrium. As we have seen, Tfr ∼ 1 MeV and thus we can treat nucleons in the non-
relativistic limit. Then their relative abundance is given by the Boltzmann factor exp (−∆/T )
for T >∼ Tfr. Hence for Tfr,

nn

np

∣
∣
∣
∣
t=tfr

= exp

(

− ∆

Tf

)

≈ 1

6
. (16.6)

As the universe cools down to Tns, neutrons decay with half-live τn ≈ 886 s, and thus

nn

np

∣
∣
∣
∣
t=tns

≈ 1

6
exp

(

− tns

τn

)

≈ 2

15
. (16.7)

Estimate of helium abundance The synthesis if 4He proceeds though a chain of reactions,
pn → dγ, dp → 3Heγ, d 3He → 4Hep.

Let us assume that 4He formation takes place instantaneously. Moreover, we assume that all
neutrons are bound in 4He. We need two neutrons to form one helium atom, n(4He) = nn/2,
and thus

Y (4He) ≡ M(4He)

Mtot
=

4mN × nn/2

mN (np + nn)
=

2nn/np

1 + nn/np
=

4/15

15/15 + 2/15
=

4

17
≈ 0.235 . (16.8)
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16 Early universe

Figure 16.2: Abundances of light elements as function of η (left) and of the number of light
neutrino species (right).

Our simple estimate is not too far away from Y ≈ 0.245.

The abundance of Y (4He) depends mainly on exp(−∆/Tf ): The freeze-out temperature Tfr

depends in turn on the number of relativistic particles at t ∼ 1 s and was used as a method to
count the number of different light neutrino flavors, cf. right panel of Fig. 16.2. Additionally,
there is a weaker dependence on the start of nucleosynthesis Tns and thus ηb or Ωb.

Results from detailed calculations Detailed calculations predict not only the relative
amount of light elements produced, but also their absolute amount as function of e.g. the
baryon-photon ratio η. Requiring that the relative fraction of helium-4, deuterium and
lithium-7 compared to hydrogen is consistent with observations allows one to determine η
or equivalently the baryon content, Ωbh

2 = 0.019 ± 0.001. Note that Ωb ≪ Ωm and hence
BBN shows that dark matter cannot be in form of baryons (as e.g. the MACHOs hypothesis
assumes).

Although the binding energy per nucleon of Carbon-12 and oxygen-16 is higher than the
of 4He, these heavier elements are not produced in BBN: At the time of 4He production,
the Coulomb barrier prevents already fusion with such large electric charges. Also, a stable
intermediate element with A = 5 is missing.

16.3 Structure formation

The left panel of Figure 16.3 shows the distribution of matter obtained in a numerical simu-
lation, while the right panel shows the observed distribution of galaxies from an astronomical
survey. On both panels, galaxies are distributed in a honeycomb-like structure: There are
voids visible that are essentially free of matter, while most galaxies are concentrated at the
corners of a web-like structure and along the connections between the corners, so-called fila-
ments.

How can we transform these visual impressions into testable mathematical expressions?
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Figure 16.3: Distribution of galaxies found in numerical simulations for four different cosmo-
logical scenarios (left) and from observations (right).

Or more precisely, how can we test which one of the four different numerical simulation on
the left agrees best with observations? In order to make such a comparison, one employs a
statistical description, i.e. one asks questions like how big is the fraction of voids with volume
between V1 and V2, or how likely is it to find a second galaxies separated by distance r from
a first one?

A brief summary of the method is as follows:

• Structure formation operates via gravitational instability, as we discussed for star for-
mation, and needs as starting point a seed of primordial fluctuations.

• One derives from observations the power spectrum P (k) = |δk|2 of density fluctuations
today, δ(x) ≡ (ρ(x) − ρ̄)/ρ̄:

δk ∝
∫

d3x e−ikxδ(x) .

• Assuming initial fluctuations Pi(k), one can calculate how they are transformed by
gravitational instability and diffusion of different particle species into a power-spectrum
at present time,

P (k) = T (k)Pi(k) .

Then one can check for which cosmological parameters (H0, Ωi,. . . ) and initial spectrum
Pi(k) one finds agreement between observations and predictions.

• The Jeans radius of radiation, P = ρ/3 equals with v2
s = c2/3 approximately the Hubble

radius. Since fluctuations with wave-length shorter than the Jeans radius oscillate
(“acoustic oscillations”), and only modes with longer wave lengths can grow, structure
formations becomes effective only in the matter-dominated epoch.
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16.4 Cosmic microwave background

Blackbody radiation in an expanding universe

We discussed earlier that the temperate of photons decreases as T ∼ 1/R in an expanding
universe. Now we want to justify that the expansion preserves the thermal spectrum in the
absence of particle interactions. If reactions like f̄f → 2γ are absent or negligible, the total
number N of photons is conserved and the number density n = N/V behaves as n ∝ 1/R3.

From the Kirchhoff-Planck distribution

Bνdν =
2hν3

c2

1

e
hν
kT − 1

dν (16.9)

describing the energy of photons emitted per time and area by a body in thermal equilibrium,
we obtain the number density n of photons as n(ν, T )dν = 4π/(chν)Bν(ν, T )dν.

Assume that at a certain time with scale factor R the distribution of photons was initially
thermal. Then the number dN of photons in the volume V and the frequency interval [ν :
ν + dν] is given by

dN = V
4

chν
Bνdν =

8V

c3

hν2 dν

exp
(

hν
kT

)
− 1

. (16.10)

At a different time with scale factor R′, the frequency of a single photon scales as ν ′ ∝ 1/R′

and thus also the frequency interval dν as dν ′ ∝ 1/R′. Thus the expression for dN becomes

dN ′ =
8V (R′/R)3

c3

hν2(R/R′)2 dν(R/R′)

exp
(

hν(R/R′)
kT ′

)

− 1
=

8V

c3

hν2 dν

exp
(

hν(R/R′)
kT ′

)

− 1
. (16.11)

The last expression agrees with Eq. (16.10) as required by photon number conservation,
dN = dN ′, if

1

T
=

R

R′

1

T ′
or T =

R′

R
T ′ . (16.12)

Thus a distribution of photons remains thermal, but changes its temperature as T ∝ 1/R.

CMB and its dipole anisotropy

A background of thermal photons left over from the big-bang was first predicted by Gamov
and others. In 1964, the cosmic microwave background was detected and subsequently its
isotropy and deviations from a thermal spectrum were searched for. Apart from a dipole
anisotropy induced by the relative motion of the Sun with 370 km/h relative to the CMB, the
temperature differences are ∆T/T ∼ 10−5 in different directions of the sky. In each direction,
one measures a perfect blackbody spectrum.

Causality and the isotropy of the CMB

The CMB is to a high degree isotropic, i.e. two points on the sky have the same temperature.
Let us estimate the maximal angular separation of a region that was in causally connected
at the time of recombination. Two points with angular distance ϑ on the surface of last
scattering are separated today by the linear distance l = dlsϑ, where dls = c(t0 − tls) ≈ ct0
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Figure 16.4: The influence of several cosmological parameters on the angular power spectrum
of the CMB.

is the distance a photon travelled freely after its last scattering at tls. Thus the maximal
angular separation of a causally connected points is with l = ctls(1 + zls)

ϑ =
(1 + zls)tls

t0
≈ 0.02 ≈ 1◦ (16.13)

The reason for this “causality problem” is that the universe expands slower than light
travels: As the age of the universe increases, the part observable to us increases linearly, ∝ ct,
while the scale factor increases only with t2/3 or (t1/2). Thus we see more and more regions
that were never in causal contact for a radiation or matter-dominated universe.

The sound horizon has approximately the same angular size, because of vs ≈ c/
√

3. The
exact size depends among other on the cosmological model: The sound horizon serves as a
ruler at fixed redshift zls to measure the geometry of space-time. Moreover, the fluid of pho-
tons and nucleons performs acoustic oscillations with its fundamental frequency connected
to the sound horizon plus higher harmonics. The relative size of peaks and locations gives
information about cosmological parameters. Figure 16.4 shows the influence of several cos-
mological parameters on the angular power spectrum as function of ℓ ∼ π/ϑ. The first panel
shows that the first peak sits indeed at ℓ ≈ 100 (or ϑ ∼ 1◦) for a flat Universe, as we have
found in our simple estimate (16.13). Observations by the WMAP satellite confirm with high
significance the value for Ωb from BBN, for ΩΛ from type Ia supernovae, and that we live in
a flat Universe.

16.5 Inflation

Shortcomings of the standard big-bang model
• Causality or horizon problem: why are even causally disconnected regions of the universe

homogeneous, as we discussed for CMB?
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16 Early universe

The horizon grows like t, but the scale factor in radiation or matter dominated epoch
only as t2/3 or t1/2, respectively. Thus for any scale l contained today completely inside
the horizon, there exists a time t < t0 where it crossed the horizon. A solution to the
horizon problem requires that R grows faster than the horizon t. Since R ∝ t2/[3(1+w],
we need w < −1/3 or (q < 0, accelerated expansion of the universe).

• Flatness problem: the curvature term in the Friedmann equation is k/R2. Thus this
term decreases slower than matter (∝ 1/R3) or radiation (1/R4), but faster than vacuum
energy. Let us rewrite the Friedmann equation as

k

R2
= H2

(
8πG

3H2
ρ0 +

Λ

3H2
− 1

)

= H2 (Ωm+rad + Ωrad + ΩΛ − 1) = H2 (Ωtot − 1)

(16.14)
The LHS scales ar (1+z)2, the RHS for MD (1+z)3 as and for RD as (1+z)4. General
relativity is supposed to be valid until the energy scale MPl. Most of time was RD, so we
can estimate 1 + zPl = (t0/tPl)

1/2 ∼ 1030 (tPl ∼ 10−43s). Thus if today |Ωtot − 1| <∼ 1%,
then the deviation had too be extremely small at tPl, |Ωtot−1| <∼ 10−2/(1+zPl)

2 ≈ 10−62!

Taking the time-derivative of

|Ωtot − 1| =
k

Ṙ2
=

|k|
H2R2

(16.15)

gives
d

dt
|Ωtot − 1| =

d

dt

|k|
Ṙ2

= −2|k|R̈
Ṙ3

< 0 (16.16)

for R̈ > 0. Thus Ωtot − 1 increases if the universe decelerates, i.e. Ṙ decreases (radia-
tion/matter dominates), and decreases if the universe accelerates , i.e. Ṙ increases (or
vacuum energy dominates).

• The standard big-bang model contains no source for the initial fluctuations required for
structure formation.

Solution by inflation Inflation is a modification of the standard big-bang model where a
phase of accelerated expansion in the very early universe is introduced. For the expansion a
field called inflaton with E.o.S w < −1/3 is responsible. We discuss briefly how the inflation
solves the short-comings of standard big-bang model for the special case w = −1:

• Horizon problem: In contrast to the radiation or matter-dominated phase, the scale
factor grows during inflation faster than the horizon scale, R(t2)/R(t1) = exp[(t2 −
t1)H] ≫ t2/t1. Thus one can blow-up a small, at time t1 causally connected region, to
superhorizon scales.

• Flatness problem: During inflation Ṙ = R exp(Ht) and thus

Ωtot − 1 =
k

Ṙ2
= k exp(−2Ht) (16.17)

Thus Ωtot − 1 exponentially drives towards zero.

• Inflation blows-up quantum fluctuation to astronomical scales, generating initial fluc-
tuation without scale, P0(k) = kn

s with ns ≈ 1, as required by observations.
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A Some formulae

A.1 Mathematical formulae

The following integrals frequently appear in the context of calculations involving particle
reactions in thermal media, where ζ refers to the Riemann zeta function.

Table A.1: Thermal integrals.

Maxwell–Boltzmann Fermi–Dirac Bose–Einstein
∞∫

0

xn dx
ex

∞∫

0

xn dx
ex+1

∞∫

0

xn dx
ex−1

n = 2 2 3
2ζ3 ≃ 1.8031 2ζ3 ≃ 2.40411

n = 3 6 7π4

120 ≃ 5.6822 π4

15 ≃ 6.4939

A.2 Some formulae from cosmology

Redshift-time relations
dz

dt
= −(1 + z)H

matter-dominated universe:

t =
2

3H0
(1 + z)−3/2Ω

−1/2
0

radiation-dominated universe:

t =
1

2H0
(1 + z)−2Ω

−1/2
0
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B Units and useful constants

B.1 SI versus cgs units

Doing only mechanics, the difference between the SI and the cgs system is trivial: The first
one uses kg, m and s as basic units, while the latter is based on g, cm and s. Thus derived
units like energy, power, etc. differ just by powers of ten. As an example compare the energy
units Joule and erg in the two systems: J = 1 Nm = 1 kgm2/s2 = 103g104cm2/s = 107 erg.

Electromagnetism adds as a fundamental property of a particle its charge e. However,
one can choose if one expresses the charge through the mechanical units or adds a fourth
independent basic unit. This freedom can be seen e.g. in the Coulomb law between two
charges,

F = k
e2

r2
, (B.1)

where clearly only the product ke2 is measurable. In the Gaussian cgs system one sets k = 1
and uses Eq. (B.1) as definition of the electric charge: Two charges with the “electrostatic
charge unit esu” equal to one at the distance r = 1cm repel each other with the force 1 dyn.

In the SI system, one defines the current via the force between two parallel, infinitely long
conductors: They attract/repel each other being at the distance 1 m with the force 2× 107 N,
if the current 1 Ampere flows in each of them. The charge 1 C follows as Ampere times
second. The value of k has to be fixed experimentally and is normally expressed through
ǫ0 = 1/(4πk0) ≈ 8.85 × 10−12C2/(Nm2). Hence, the Coulomb law in SI units is

F =
1

4πǫ0

e2

r2
. (B.2)

The two charge units are connected by

1 C = 2.998 × 109 e.s.u. (B.3)

As a last complication, there exist two variants of the cgs system, the Gauß and the Lorentz-
Heaviside systems. They differ by the appearance of the factor 4π in Maxwell’s equations
(Gauß) or of k = 1/4π in the Coulomb law.

Finally, note that it is sufficient to know the numerical value of Sommerfeld’s finestructure
constant, α ≈ 1/137. In Gauß cgs units, α = e2, in Lorentz-Heaviside cgs units (used in this
notes) α = e2/(4π) and in SI units α = e2/(4πǫ0~c).

B.2 Natural units

Special relativity, the wave-particle dualism of quantum mechanics, and statistical mechanics
relate many units. For instance, a particle with mass m = 1 g has the rest energy E = mc2 =
(3×1010cm/s)2 ×1g = 9×1020 erg. The associated temperature is E = kT , the length scales
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B.3 Physical constants and measurements

is the Compton wave length λC = ~/mc, time λC/c, etc.
In any calculations, it’s possible to set c = ~ = k = 1 and in the end either to the right powers
of this constant by dimensional analysis, or or to use directly the values derived above.

B.3 Physical constants and measurements

Gravitational constant G = 6.674 × 10−11m3 kg−1 s−2 = 6.674 × 10−8cm3 g−1 s−2

Planck’s constant ~ = h/(2π) = 1.055 × 10−27erg s
velocity of light c = 2.998 × 1010 cm/s
Boltzmann constant k = 1.381 × 10−23 J/K = 1.38 × 10−16 erg/K

electron mass me = 9.109 × 10−28 g = 0.5110 MeV/c2

proton mass mp = 1.673 × 10−24 g = 938.3 MeV/c2

Fine-structure constant α = e2/(~c) ≈ 1/137.0
Fermi’s constant GF /(~c)3 = 1.166 × 10−5 GeV−2

Stefan-Boltzmann constant σ = (2π5k4)/(15c2h3) ≈ 5.670 × 10−5 erg s−1 cm−2 K−4

Radiation constant a = 4σ/c ≈ 7.566 × 10−15 erg cm−3 K−4

Rydberg constant R∞ = 1.10 × 105 cm−1

Thomson cross-section σT = 8πα2
em/(3m2

e) = 6.652 × 10−25 cm2

B.4 Astronomical constants and measurements

Astronomical Unit AU = 1.496 × 1013 cm
Parsec pc = 3.086 × 1018 cm = 3.261 ly
Tropical year yr = 31 556 925.2 s ≈ π × 107 s
Solar radius R⊙ = 6.960 × 1010 cm
Solar mass M⊙ = 1.998 × 1033 g
Solar luminosity L⊙ = 3.84 × 1033 erg/s
Solar apparent visual magnitude m = −26.76
Earth equatorial radius R⊕ = 6.378 × 105 cm
Earth mass M⊕ = 5.972 × 1027 g
Age of the universe t0 = (13.7 ± 0.2) Gyr
present Hubble parameter H0 = 73 km/(s Mpc) = 100h km/(s Mpc)
present CMB temperature T = 2.725 K
present baryon density nb = (2.5 ± 0.1) × 10−7 cm3

Ωb = ρb/ρcr = 0.0223/h2 ≈ 0.0425
dark matter abundance ΩDM = Ωm − Ωb = 0.105/h2 ≈ 0.20

B.5 Other useful quantities

cross section 1 mbarn = 10−27 cm2

flux conversion L = 3.02 × 1028W × 10−0.4M
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B.6 Abbreviations:

B Kirchoff-Planck function
E energy of a single object
F energy flux E/(At), the brightness of a star observed on Earth
J angular momentum J = mrv
L luminosity, emitted energy per time
m mass (of a single object), apparent magnitude
M mass of a system of objects, absolute magnitude
p momentum
P pressure
σ cross section
T temperature
U energy of a system of objects

B.7 Properties of main-sequence stars

The spectral class, absolute visual magnitude MV color index B-V, effective surface temper-
ature radius T , lifetime on the main sequence, and the fraction of the spectral class out of all
stars is given in the following table:

SK MV B-V T/K lifetime/yr fraction

O5 -6 -0.45 35000 < 106 10−5

B0 -3.7 -0.31 21000 3 × 106 10−3

B5 -0.9 -0.17 13500

A0 0.7 0.0 9700 4 × 108 0.01
A5 2.0 0.16 8100

F0 2.8 0.30 7200 4 × 109 0.02
F5 3.8 0.45 6500

G0 4.6 0.57 6000 1 × 1010 7%
G5 5.2 0.70 5400

K0 6.0 ? 4700 6 × 1010 15%
K5 7.4 1.11 4000

M0 8.9 1.39 3300 > 1011 75%
M5 12.0 1.61 2600
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ΛCDM model, 126

aberration, chromatic, 26
aberration, relativistic, 33

Balmer formula, 19
beaming, 33, 108
Big Bang Nucleosynthesis, 130
binaries, spectroscopic, 38
binaries, visual, 38
black hole, 78

supermassive, 99, 105, 109
blackbody radiation, 10
Boltzmann distribution, 20

Chandrasekhar limit, 70
Chandrasekhar mass, 71
CNO-cycle, 61
color index, 10, 22
cosmological constant, 120
cross section, 42

dark matter, 102, 132
distance modulus, 17
dynamical friction, 104

Eddington luminosity, 52
Eddington model, 53
Ellipse, 35

force, central, 35
forces, fundamental, 59
frequency, angular, 105
frequency, cyclotron, 105
Friedmann equation, 120

galaxies
active, 105
evolution, 104
radio, 107
Seyfert, 108

Gamov criterion, 130
Gamov peak, 61
gravitational radiation, 80

Hawking radiation, 82
helioseismology, 63
Hertzsprung-Russel diagram, 21, 39, 96
Hubble parameter, 113
Hubble’s law, 113

inflation, 135

Jeans mass, 87, 133

Kepler’s laws, 34
Kirchhoff’s laws, 20
Kirchhoff-Planck distribution, 11

Lemâıtre’s redshift formula, 117
light gathering power, 25

MACHO, 102, 132
magnification, 24
magnitude, absolute, 16
magnitude, apparent, 9
main sequence fitting, 96
main sequence stars, 22
mass function, 39
mass-luminosity relation, 39
Maxwell-Boltzmann distribution, 48
MOND, 102

neutrino
dark matter, 103
oscillations, 65

opacity, 42
optical depth, 42

parallax, 15
polytrope, 49, 54
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pp-chains, 61
pressure integral, 47
principle of equivalence, 76

radiation pressure, 48
random walk, 43
Rayleigh-Jeans law, 12
reduced mass, 36
relaxation time, 93
resolution, 24

Schwarzschild metric, 77
Schwarzschild radius, 78
seeing, atmospheric, 26
spectral classes, 21
stability of stars, 49
Stefan-Boltzmann law, 13
superluminal motion, 107
supernova, 71
synchrotron radiation, 105

virial mass, 95
virial theorem, 48

Wien’s displacement law, 12
Wien’s law, 12
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