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Preface

These notes summarise the lectures for FY3452 Gravitation and Cosmology I gave first
in 2009 and 2010. After a break, I restarted to teach the lectures in 2020 and 2022ff. As
the title indicates, the course focused in 2009 on cosmology as main application. Since then,
black holes and gravitational waves have gained much more popularity. Asked to which of
these three more advanced topics more time should be devoted, students in later years voted
therefore, not surprisingly, mostly for black holes and/or gravitational waves. As a result,
the notes contain more material than manageable in an one semester course. In 2025, we will
have to make a similar decision, and there will be a vote in the first weeks of the lecturing
period. Moreover, it seems that gauge theories are not longer discussed in the FY3464 QFT
lectures. To compensate for this, and in order to make the similarity between gauge fields
and gravity clearer, I have rearranged therefore the chapter on classical field theory compared
to earlier versions.

There are various differing sign conventions in general relativity possible – all of them are
in use. One can classify these choices as follows

ηαβ = S1 × [−1,+1,+1,+1], (0.1a)

Rα
βρσ = S2 × [∂ρΓ

α
βσ − ∂σΓ

α
βρ + Γα

κρΓ
κ
βσ − Γα

κσΓ
κ
βρ], (0.1b)

Gαβ = S3 × 8πG Tαβ , (0.1c)

Rαβ = S2S3 ×Rρ
αρβ . (0.1d)

We choose these three signs as Si = {−,+,+}. The convention of few other authors are
summarised in the following table:

HEL dI,R MTW, H W
[S1] - - + +
[S2] + + + -
[S3] - - + -

Some useful books:

H: J. B. Hartle. Gravity: An Introduction to Einstein’s General Relativity (Benjamin
Cummings)

HEL: Hobson, M.P., Efstathiou, G.P., Lasenby, A.N.: General relativity: an introduction for
physicists. Cambridge University Press 2006. [On a somewhat higher level than Hartle.]

• Robert M. Wald: General Relativity. University of Chicago Press 1986. [Uses a modern
mathematical language]

• Landau, Lev D.; Lifshitz, Evgenij M.: Course of theoretical physics 2 - The classical
theory of fields. Pergamon Press Oxford, 1975.
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MTW: Misner, Charles W.; Thorne, Kip S.; Wheeler, John A.: Gravitation. Freeman New
York, 1998. [Entertaining and nice description of differential geometry - but lengthy.]

• Schutz, Bernard F.: A first course in general relativity. Cambridge Univ. Press, 2004.

• Stephani, Hans: Relativity: an introduction to special and general relativity. Cambridge
Univ. Press, 2004.

W: Weinberg, Steven: Gravitation and cosmology. Wiley New York, 1972. [A classics.
Many applications; outdated concerning cosmology.]

• Weyl, Hermann: Raum, Zeit, Materie. Springer Berlin, 1918 (Space, Time, Matter,
Dover New York, 1952). [The classics.]

Finally: If you find typos (if not, you havn’t read carefully enough) in the part which is
already updated, conceptional errors or have suggestions, send me an email!
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1 Special relativity

1.1 Newtonian mechanics and gravity

Inertial frames and the principle of relativity Newton presented his mechanics in an ax-
iomatic form. His Lex Prima (or the Galilean law of inertia) states: Each force-less mass point
stays at rest or moves on a straight line at constant speed. Distinguishing between straight
and curved lines requires an affine structure of space, while measuring velocities relies on a
metric structure that allows one to measure distances. In addition, we have to be able to
compare time measurements made at different space points. Thus, in order to apply Newton’s
first law, we have to add some assumptions on space and time. Implicitly, Newton assumed
an Euclidean structure for space, and thus the distance between two points P1 = (x1, y1, z1)
and P2 = (x2, y2, z2) in a Cartesian coordinate system is

∆l212 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 (1.1)

or, for infinitesimal distances,

dl2 = dx2 + dy2 + dz2 . (1.2)

Moreover, he assumed the existence of an absolute time t on which all observers can agree.

In a Cartesian inertial coordinate system, Newton’s lex prima becomes then

d2x

dt2
=

d2y

dt2
=

d2z

dt2
= 0 . (1.3)

Most often, we call such a coordinate system just an inertial frame. Newton’s first law is not
just a trivial consequence of its second one, but may be seen as a practical definition of those
reference frames for which his following laws are valid.

Which are the transformations which connect these inertial frames or, in other words, which
are the symmetries of empty space and time? We know that translations a and rotations R
are symmetries of Euclidean space: This means that using two different Cartesian coordinate
systems, say a primed and an unprimed one, to label the points P1 and P2, their distance
defined by Eq. (1.3) remains invariant, cf. with Fig. 1.1. The condition that the norm of the
distance vector l12 is invariant, l12 = l

′
12, implies

l′T l′ = lTRTRl = lT l (1.4)

orRTR = 1. Thus rotations acting on a three-vector x are represented by orthogonal matrices,
R ∈ O(3). In addition to rotations, this group contains reflexions xi → −xi. All frames
connected by x′ = Rx+ a to an inertial frame are inertial frames too. Finally, there may be
transformations which connect inertial frames which move with a constant relative velocity.
In order to determine them, we consider two frames with relative velocity v along the x

9



1 Special relativity

y

x

P
b

x′

y′

Figure 1.1: The point P is invariant, but its coordinates (x, y) and (x′, y′) differ in the two
coordinate systems.

direction: The most general linear1 transformation between these two frames is given by




t′

x′

y′

z′


 =




At+Bx
Dt+ Ex

y
z


 =




At+Bx
A(x− vt)

y
z


 . (1.5)

In the second step, we used that the transformation matrix depends only on two constants,
as you should show in Ex. 1.3.

Newton assumed the existence of an absolute time, t = t′, and thus A = 1 and B = 0.
Then proper Galilean transformations x′ = x + vt connect inertial frames moving with
relative speed v. Taking a time derivative leads to the classical addition law for velocities,
ẋ′ = ẋ+ v. Time differences ∆t12 and space differences ∆l12 are separately invariant under
these transformations.

The Principle of Relativity states that identical experiments performed in different inertial
frames give identical results. Galilean transformations keep (1.3) invariant, hence Newton’s
first law does not allow to distinguish between different inertial frames. Before the advent of
special relativity, it was thought that this principle applies only to mechanical experiments.
In particular, it was thaught that electrodynamic waves require a medium (the “aether”) to
propagate: thence the rest frame of the aether could be used to single out a preferred frame.

Newton’s Lex Secunda states that observed from an inertial reference frame, the net force
on a particle is proportional to the time rate of change of its linear momentum,

F =
dp

dt
(1.6)

where p = minv and min denotes the inertial mass of the body.

1A non-linear transformation would destroy translation invariance, for a formal proof that the transformation
has to be linear see exercise 3.1
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1.2 Minkowski space

Newtonian gravity Newton’s gravitational law as well as Coulomb’s law are examples for
an instantaneous force,

F (x) =
∑

i

Ki
x− xi

|x− xi|3
. (1.7)

The force F (x, t) depends on the distance x(t) − xi(t) to all sources i (electric charges or
masses) at the same time t, i.e. the force needs no time to be transmitted from xi to x.
The factor K in Newton’s law is −GmgMg, where we introduced analogue to the electric
charge in the Coulomb law the gravitational “charge” mg characterizing the strength of the
gravitational force between different particles. Surprisingly, one finds min = mg and we can
drop the two indices.

Since the gravitational field is conservative, ∇×F = 0, we can introduce a potential φ via

F = −m∇φ (1.8)

with

φ(x) = − GM

|x− x′| . (1.9)

Analogue to the electric field E = −∇φ we can introduce a gravitational field, g = −∇φ.
We then obtain ∇ · g(x) = −4πGρ(x) and as Poisson equation,

∆φ(x) = 4πGρ(x) , (1.10)

where ρ is the mass density, ρ = dm/d3x. Similiarly as the full Maxwell equations reduce in
the v/c → 0 to the electrostatic Poisson equation, a relativistic generalisation of Newtonian
gravity should exist.

1.2 Minkowski space

Light cone and metric tensor A light-signal emitted at the x1 at the time t1 propagates
along a cone defined by

(ct1 − ct2)
2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)

2 = 0. (1.11)

In special relativity, we postulate that the speed of light is universal, i.e. that all observers
measure c = c′. A condition which guarantees this and generalizes Eq. (1.11) is that the
squared distance in an inertial frame

∆s2 ≡ (ct1 − ct2)
2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)

2 (1.12)

between two spacetime events xµ1 = (ct1,x1) and xµ2 = (ct2,x2) is invariant. Hence the
symmetry group of space and time is given by all those coordinate transformations xµ →
x̃µ = Λµ

νxν that keep ∆s2 invariant. Since these transformation mix space and time, we
speak about spacetime or, to honor the inventor of this geometrical interpretation, about
Minkowski space.

The distance of two infinitesimally close spacetime events is called the line-element ds of
the spacetime. In Minkowski space, it is given by

ds2 = c2dt2 − dx2 − dy2 − dz2 (1.13)

11



1 Special relativity

using a Cartesian inertial frame. We can define the line-element ds i as the norm of the
displacement vector

ds = dsµeµ. (1.14)

Choosing as basis the coordinate vectors xµ = (ct,x), its components are

dsµ = dxµ = (cdt,dx) . (1.15)

We compare now our physical requirement on the distance of spacetime events, Eq. (1.13),
with the general result for the scalar product of two vectors a and b. If these vectors have
the coordinates ai and bi in a certain basis ei, then we can write

a · b =
3∑

µ,ν=0

(aµeµ) · (bνeν) =
3∑

µ,ν=0

aµbν(eµ · eν) . (1.16)

Thus we can evaluate the scalar product between any two vectors, if we know the symmetric
matrix g composed of the products of the basis vectors at all spacetime points xµ,

gµν(x) = eµ(x) · eν(x) = gνµ(x) . (1.17)

This symmetric matrix gµν is called the metric tensor.

Applying this now for the displacement vector, we obtain

ds2 = ds · ds =
3∑

µ,ν=0

gµνdx
µdxν

!
= c2dt2 − dx2 − dy2 − dz2 . (1.18)

Hence the metric tensor gµν becomes diagonal for the special case of a Cartesian inertial frame
in Minkowski space with elements

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ≡ ηµν . (1.19)

Introducing Einstein’s summation convention (cf. the box for details), we can rewrite the
scalar product of two vectors with coordinates aµ and bµ as

a · b ≡ ηµνa
µbν = aνb

ν = aµbµ . (1.20)

In the last part of Eq. (1.20), we “lowered an index:” aν = ηµνa
µ or bµ = ηµνb

ν . Alternatively,
we can introduce the opposite operation of rasing an index by aµ = ηµνaν . Since raising and
lowering are inverse operations, we have ηµνη

νσ = δσµ . Thus the elements of ηµν and ηµν form
inverse matrices. For the special case of a Cartesian intertial coordinate frame in Minkowski
space, the two matrices ηµν and ηµν have the same elements.

12



1.2 Minkowski space

t

x

yb

(x− y)2 > 0 time-like

(x− y)2 = 0 light-like

(x− y)2 < 0 space-like

Figure 1.2: Light-cone at the point y generated by light-like vectors. Contained in the light-
cone are the time-like vectors, outside the space-like ones.

Einstein’s summation convention:
1. Two equal indices, of which one has to be an upper and one an lower index, imply

summation. We use Greek letters for indices from zero to three, µ = 0, 1, 2, 3, and Latin
letters for indices from one to three, i = 1, 2, 3. Thus

aµb
µ ≡

3∑

µ=0

aµb
µ = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − a · b = a0b0 − aibi .

2. Summation indices are dummy indices which can be freely exchanged; the remaining free
indices of the LHS and RHS of an equation have to agree. Hence

8 = aµµ = cµνd
µν = cµσd

µσ

is okay, while aµ = bµ or aµ = bµν compares apples to oranges.

Since the metric ηµν is indefinite, the norm of a vector aµ can be

aµa
µ > 0, time-like, (1.21)

aµa
µ = 0, light-like or null-vector, (1.22)

aµa
µ < 0, space-like. (1.23)

The cone of all light-like vectors starting from a point P is called light-cone, cf. Fig. 1.2. The
time-like region inside the light-cone consists of two parts, past and future. Only events inside
the past light-cone can influence the physics at point P , while P can influence only its future
light-cone.

The line describing the position of an observer is called world-line. The proper-time τ is
the time displayed by a clock moving with the observer. How can we determine the correct
definition of τ? First, we ask that in the rest system of the observer, proper- and coordinate-
time agree, dτ = dt. But for a clock at rest, it is dsµ/c = (dt,0) and thus ds/c = dt. Since
the RHS of dτ = ds/c is an invariant expression, it has to be valid in any frame and thus also

13



1 Special relativity

for a moving clock. For finite times, we have to integrate the line-element,

τ12 =

∫ 2

1
dτ =

∫ 2

1
[dt2 − (dx2 + dy2 + dz2)/c2]1/2 (1.24)

=

∫ 2

1
dt [1− (1/c2)((dx/dt)2 + (dy/dt)2 + (dz/dt)2)]1/2 (1.25)

=

∫ 2

1
dt [1− v2/c2]1/2 < t2 − t1 . (1.26)

to obtain the proper-time. The last part of this equation, where we introduced the three-
velocity vi = dxi/dt of the clock, shows explicitly the relativistic effect of time dilation, as
well as the connection between coordinate time t and the proper-time τ of a moving clock,
dτ = (1− (v/c)2)1/2dt ≡ dt/γ.

Lorentz transformations If we replace t by −it in ∆s2, the difference between two spacetime
events becomes (minus) the normal Euclidean distance. Thus we expect that a close corre-
spondence exists between rotations Rij in Euclidean space which leave ∆x2 invariant and
Lorentz transformations Λµ

ν which leave ∆s2 invariant. Similarly, the replacement t → −it
makes the velocity imaginary. This suggests that boosts are similar to a rotation by an imag-
inary angle η = iα. Then the identity cos2 α+ sin2 α = 1 transforms for the imaginary angle
η = iα into cosh2 η− sinh2 η = 1. We try therefore as a guess for a boost along the x direction

ct̃ = ct cosh η + x sinh η , (1.27)

x̃ = ct sinh η + x cosh η , (1.28)

with ỹ = y and z̃ = z. Direct calculation shows then that ∆s2 is invariant as desired. Consider
now in the system K̃ the origin of the system K. Then x = 0 and

x̃ = ct sinh η and ct̃ = ct cosh η . (1.29)

Dividing the two equations gives x̃/ct̃ = tanh η. Since β = x̃/cc̃ is the relative velocity of the
two systems measured in units of c, the imaginary “rotation angle η” equals the rapidity

η = arctanh β . (1.30)

Note that the rapidity η is a more natural variable than v or β to characterise a Lorentz
boost, because η is additive: Boosting a particle with rapidity η1 by η leads to the rapidity
η2 = η1 + η. Using the following identities,

cosh η =
1√

1− tanh2 η
=

1√
1− β2

≡ γ (1.31)

sinh η =
tanh η√

1− tanh2 η
=

β√
1− β2

= γβ (1.32)

in (1.27) gives the standard form of the Lorentz transformations,

x̃ =
x+ vt√
1− β2

= γ(x+ βct) (1.33)

ct̃ =
ct+ vx/c√

1− β2
= γ(ct+ βx) . (1.34)
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1.2 Minkowski space

The inverse transformation is obtained by replacing v → −v and exchanging quantities with
and without tilde.

In addition to boosts parametrised by the rapidity η, rotations parametrised by the angle
α keep the spacetime distance invariant and are thus Lorentz transformations. For the special
case of a boost along and a rotation around the x1 axis, they are given in matrix form by

Λµ
ν(ηx) =




cosh η sinh η 0 0
sinh η cosh η 0 0
0 0 1 0
0 0 0 1


 , and Λµ

ν(αx) =




1 0 0 0
0 1 0 0
0 0 cosα sinα
0 0 − sinα cosα


 .

(1.35)

Four-vectors and tensors In Minkowski space, we call a four-vector any four-tupel V µ that
transforms as Ṽ µ = Λµ

νV ν . By convention, we associate three-vectors with the spatial
part of vectors with upper indices, e.g. we set xµ = {ct, x, y, z} or Aµ = {φ,A}. Lowering
then the index by contraction with the metric tensor results in a minus sign of the spatial
components of a four-vector, xµ = ηµνx

ν = {ct,−x,−y,−z} or Aµ = {φ,−A}. Summing over
a pair of Lorentz indices, always one index occurs in an upper and one in a lower position.
Additionally to four-vectors, we will meet tensors T µ1···µn of rank n which transform as
T̃ µ1···µn = Λµ1

ν1 · · ·Λµn
νnT

ν1···νn . Every tensor index can be raised and lowered, using the
metric tensors ηµν and ηµν .

A scalar is a tensor of rank n = 0; it is a single number which transforms trivially under
Lorentz transformation. The simplest example is the mass of a particle. Example for a scalar
field φ(x) is the pion or the Higgs field.

Special tensors are the Kronecker delta, δνµ = ηνµ with δνµ = 1 for µ = ν and 0 otherwise,
and the Levi–Civita tensor εµνρσ . The latter tensor is completely antisymmetric and has in
four dimensions the elements +1 for an even permutation of ε0123, −1 for odd permutations
and zero otherwise. In three dimensions, we define the Levi–Civita tensor by ε123 = ε123 = 1.

Next consider differential operators. Forming the differential of a function f(xµ) defined
on Minkowski space,

df =
∂f

∂t
dt+

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz =

∂f

∂xµ
dxµ , (1.36)

we see that an upper index in the denominator counts as lower index, and vice versa. We
define the four-dimensional nabla operator as

∂

∂xµ
=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
≡ ∂µ .

Note the “missing” minus sign in the spatial components, which is consistent with the rule
for the differential in Eq. (1.36). The notations ∂µ = ∂

∂xµ makes it explicit that the index µ
counts as an lower one. Finally, note that ∂µdx

ν = δνµ.
The d’Alembert or wave operator is

� ≡ ηµν∂
µ∂ν = ∂µ∂

µ =
1

c2
∂2

∂t2
−∆ . (1.37)

This operator is a scalar, i.e. all the Lorentz indices are contracted, and thus invariant under
Lorentz transformations.
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1 Special relativity

1.3 Relativistic mechanics

From now on, we use natural units and set c = ~ = kB = 1. In the next chapters, we
set also GN = 1, implying that we measure all quantities in Planck units. Starting from
chapter 7, we keep GN 6= 1. This implies that a single dimensionfull unit, which we choose
typically as a mass scale, can be used to characterise all dimensionfull quantities.

Four-velocity and four-momentum What is the relativistic generalization of the three-
velocity v = dx/dt? The nominator dx has already the right behaviour to become part
of a four-vector, if the denominator would be invariant. We use therefore instead of dt the
invariant proper time dτ and write

uα =
dxα

dτ
. (1.38)

The four-velocity is thus the tangent vector to the world-line xα(τ) parametrised by the
proper-time τ of a particle. Written explicitly, we have

u0 =
dt

dτ
=

1√
1− v2

= γ (1.39)

and

ui =
dxi

dτ
=

dxi

dt

dt

dτ
=

vi√
1− v2

= γvi . (1.40)

Hence the four-velocity is uα = (γ, γv) and its norm is

u · u = u0u0 − uiui = γ2 − γ2v2 = γ2(1− v2) = 1 . (1.41)

Thus the four-velocity is a unit tangent vector and contains only three independent elements.

Energy and momentum After having constructed the four-velocity, the simplest guess for
the four-momentum is

pα = muα = (γm, γmv) . (1.42)

For small velocities, v ≪ 1, we obtain

pi =

(
1 +

v2

2
− . . .

)
mvi (1.43)

p0 = m+
mv2

2
− . . . = m+Ekin,nr + . . . (1.44)

Thus we can interpret the components as pα = (E,p). The norm follows with (1.41) imme-
diately as

p · p = m2 . (1.45)

Solving for the energy, we obtain

E = ±
√
m2 + pipi (1.46)

including the famous E = mc2 as special case for a particle at rest. Note that (1.46) predicts
the existence of solutions with negative energy—undermining the stability of the universe. Ac-
cording Feynman, we should view these negative energy solutions as positive energy solutions
moving backward in time, exp(−i(−

√
m2 + p2)t) = exp[−i(+

√
m2 + p2)(−t)].
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1.A Appendix: Practising with tensors

Four-forces We postulate now that in relativistic mechanics Newton’s law becomes

fα =
dpα

dτ
(1.47)

where we introduced the four-force fα. Since both uα and pα consist of only three independent
components, we expect that there exists also a constraint on the four-force fα. We form the
scalar product

u · f = u · d(mu)
dτ

= u · udm
dτ

+mu · du
dτ

=
dm

dτ
. (1.48)

In the last step we used twice that u · u = 1. Since all electrons ever observed have the
same mass, no force should exist which changes m. As a consequence, we have to ask that all
physical acceptable force-laws satisfy u · f = 0; such forces are called pure forces. Moreover,
u · f = 0 implies f = f(u) and thus all four-forces have to be velocity dependent.

1.A Appendix: Practising with tensors

How to guess physical tensors Classical electrodynamics is typically taught using a for-
mulation which is valid in a specific frame. Thus one uses scalars like the charge density ρ,
vectors like the electric and magnetic field strengths E and B and tensors like Maxwell’s
stress tensor σij, defining their transformation properties with respect to rotations in three-
dimensional space. This leads to the question how we can guess how the four-dimensional
tensors are composed out of their three-dimensional relatives.

In the simplest cases, we may guess this by considering quantities which are related by a
physical law. An example is current conservation,

∂tρ+∇ · j = 0. (1.49)

We know that any 4-vector aµ has 4 = 3 + 1 components, which transform as a 3-scalar (a0)
and a 3-vector (a) under rotations. This suggests to combine (ρ, j) = jµ and ∂µ = (∂t,∇)
into four-vectors (consistent with our definition of the nabla operator), leading to ∂µj

µ = 0.
Similarly, we combine the scalar potential φ and the vector potential A into a four-vector
Aµ = (φ,A). If we move to tensors of rank two, i.e. 4 × 4 matrices, it is useful to formalise
the splitting of such a tensor.

Reduicible and irreduicible tensors An object which contains invariant subgroups with
respect to a symmetry operation is called reducible. In our case at hand, we want to determine
the irreducible subgroups of a tensor of rank n with respect to spatial rotations. We start
with an arbitrary tensor T µν of rank two. First, we note that we can split any tensor T µν into
a symmetric and an antisymmetric part, T µν = Sµν +Aµν with Sµν = Sνµ and Aµν = −Aνµ,
writing

Tµν =
1

2
(Tµν + Tνµ) +

1

2
(Tµν − Tνµ) ≡ T{µν} + T[µν] ≡ Sµν +Aµν . (1.50)

This splitting is invariant under general coordinate transformations, and thus also under
rotations, cf. with exercise. 12. Physically this expected, since our equations tell us that some
quantities are antisymmetric (e.g. the field-strength tensor Fµν), while others are symmetric
(e.g. Maxwell’s stress tensor σij) and all observers should agree on this.
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1 Special relativity

Thus we can examine the symmetric and antisymmetric tensors seperately, and we start
with the former. We can split Sµν into a scalar S00, a three-vector S0i and a three-tensor Sij ,

Sµν =

(
S00 S0i

Si0 Sij

)
. (1.51)

To show that the three pieces have the claimed transformation properties under rotations,
calculate simply the effect of a rotation, S̃µν = Λ ρ

µΛ σ
ν Sρσ, or in matrix notation S′ = ΛSΛT ,

where for a rotation

Λ ν
µ =

(
1 0
0T R

)
. (1.52)

The tensor Sij is again reducible, since its trace is a scalar. Thus we can decompose Sij into
its trace s = Sii and its traceless part Si

j − sδij/(d − 1).
An antisymmetric tensor Aµν has 3 + 2 + 1 = 6 components, i.e. such a tensor combines

two 3-vectors, or more precisely a pure vector like E and an axial vector like B (where we
use names motivated by the electrodynamics),

Aµν =

(
0 −Ei

Ei Bij

)
=




0 −Ex −Ey −Ez

Ex 0 −B12 B13

Ey B12 0 −B23

Ez −B13 B23 0


 =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 .

(1.53)
Here, we used that we can map an antisymmetric tensor in d = 3 on an axial vector,

Bi =
1

2
εijkBjk.

(Anti-) symmetrisation Finally let us note some useful relations for contractions involving
symmetric and antisymmetric tensors. First, they are “orthogonal” in the sense that the
contraction of a symmetric tensor Sµν with an antisymmetric tensor Aµν gives zero,

SµνA
µν = 0. (1.54)

This allows one to (anti-) symmetrize the contraction of an arbitrary tensor Cµν with an
(anti-) symmetric tensor: First split Cµν into symmetric and antisymmetric parts,

Cµν =
1

2
(Cµν + Cνµ) +

1

2
(Cµν − Cνµ) ≡ C{µν} + C[µν]. (1.55)

Then
SµνC

µν = SµνC
{µν} and AµνC

µν = AµνC
[µν]. (1.56)

Index gymnastics We are mainly concerned with vectors and tensors of rank two. In this
case we can express all equations as matrix operations. For instance, lowering the index of a
vector, Aµ = ηµνA

ν , becomes

Aµ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







A0

A1

A2

A3


 =




A0

−A1

−A2

−A3


 .
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1.A Appendix: Practising with tensors

Raising and lowering indices is the inverse, and thus ηµνη
νσ = δσµ . In matrix notation,

ηη−1 = 1.

We can view ηµνη
νσ = δσµ as the operation of raising an index of ηµν (or lowering an index of

ηµν): in both cases, we see that the Kronecker delta corresponds to the metric tensor with
mixed indices, δσµ = ησµ .
The expression for the line-element becomes

ds2 = ηµνdx
µdxν = dxµηµνdx

ν =
(
dx0,dx1,dx2,dx3

)



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







dx0

dx1

dx2

dx3




= (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

For a second-rank tensor, raising one index gives

Tµν = ηµρT
ρ
ν = T ρ

νηµρ 6= ηµρT
ρ

ν = Tνµ

Note that the order of tensors does not matter, but the order of indices does. If we move to
matrix notation, we have to restore the right order. Raising next the second index,

Tµν = ηµρηνσT
ρσ

we have to re-order it as Tµν = ηµρT
ρσησν in matrix notation (using that η is symmetric).

We apply this to the field-strength tensor: Starting from Fµν , we want to construct Fµν =
ηµρF

ρσησν ,

Fµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 .

(1.57)

Note the general behaviour: The F 00 element and the 3-tensor F ik are multiplied by 12 and
(−1)2, respectively and do not change sign. The 3-vector F 0k is multiplied by (−1)(+1) and
does change sign.

Next we want to construct a Lorentz scalar out of Fµν . A Lorentz scalar has no indices, so
we contract the two indices, ηµνF

µν = F µ
µ . This is invariant, but zero (and thus not useful)

because Fµν is antisymmetric. As next try, we construct a Lorentz scalar S using two F’s:
Multiplying the two matrices Fµν and Fµν , and taking then the trace, gives

S = FµνF
µν = −tr{FµνF

νρ} = −tr




E ·E
E2

x −B2
z −B2

y

E2
y −B2

z −B2
x

E2
z −B2

y −B2
x



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1 Special relativity

i.e. S = −2(E ·E −B ·B). Note the minus, since we have to change the order of indices in
the second F .

Note also that S has to be a bilinear in E and B and invariant under rotations. Thus the
only possible terms entering S are the scalar products E ·E, B ·B and E ·B. Since B is a
polar (or axial) vector, PB = B, the last term is a pseudo-scalar and cannot enter the scalar
S.

Now we become more ambitious, looking at a tensor with 4 indices, the Levi–Civita or
completely antisymmetric tensor εαβγδ in four dimensions, with

ε0123 = +1, (1.58)

and all even permutations, −1 for odd permutations and zero otherwise. We lower its indices,

εαβγδ = εᾱβ̄γ̄δ̄η
ᾱαηβ̄βηγ̄γηδ̄δ

and consider the 0123 element using that the metric is diagonal,

ε0123 = +1η00η11η22η33 = −1. (1.59)

Thus in 4 dimensions, εαβγδ and εαβγδ have opposite signs.
We can use the Levi-Civita tensor to define the dual field-strength tensor

F̃αβ =
1

2
εαβγδFγδ .

How to find the elements of this? Using simply the definitions,

F̃01 =
1

2

(
ε0123︸ ︷︷ ︸

1

F 23
︸︷︷︸
−Bx

+ε0132F
32
)
= −Bx

F̃12 =
1

2

(
ε1203F

03 + ε1230F
30
)
= −Ez

etc., gives

F̃µν =




0 −Bx −By −Bz

Bx 0 −Ez Ey

By Ez 0 −Ex

Bz −Ey Ex 0


 and F̃µν =




0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0


 .

The dual field-strength tensor is useful, because the homogeneous Maxwell equation

∂αFβγ + ∂βFγα + ∂γFαβ = 0 (1.60)

becomes simply
∂αF̃

αβ = 0 . (1.61)

Inserting the potential, we obtain zero,

∂αF̃
αβ =

1

2
εαβγδ∂αFγδ = εαβγδ∂α∂γAδ = 0 , (1.62)

because we contract a symmetric tensor (∂α∂γ) with an anti-symmetric one (εαβγδ).

20



1.B Appendix: Some transformation properties

Having Fµν and F̃µν , we can form another (pseudo-) scalar, A = F̃µνF
µν . Multiplying the

two matrices F̃µν and Fµν , and taking then the trace, gives

F̃µνF
µν = −tr{F̃µνF

νρ} = tr




B ·E
B ·E

B ·E
B ·E




i.e. F̃µνF
µν = 4E ·B. We know that E ·B is a pseudo-scalar. This tells us that including the

Levi-Civita tensor converts a tensor into a pseudo-tensor, which does not change sign under
a parity transformation Px = −x. (This analogous to Bi = εijk∂jAk, which converts two
pure vectors into an axial one.)

1.B Appendix: Some transformation properties

While the transformation properties of some quantities like the charge or energy density
under Lorentz boosts are rather obvious, the behavior of other observables like the intensity
or the emissivity of radiation under Lorentz transformations is less trivial to determine. Other
quantities like the relative velocity loose even their intuitive meaning we are used from our non-
relativistic experience. In this appendix, we discuss therefore the transformation properties
of some quantities appearing often in applications of astrophysics and high-energy physics.

Integration measure

Radiation

Scattering 2-2 scattering, Mandelstam variables, relative velocity
threshold energies

Problems

1.1 Transformation between inertial frames Con-
sider two inertial frames K and K ′ with parallel
axes at t = t′ = 0 that are moving with the rela-
tive velocity v in the x direction.
a.) Show that the linear transformation between
the coordinates in K and K ′ can be expressed by
Eq. (1.5). b.) Show that requiring the invariance
of

∆s2 ≡ c2t2−x2− y2− z2 = c2t′ 2−x′ 2− y′ 2− z′ 2
(1.63)

leads to Lorentz transformations.

1.2 Splitting into (anti-) symmetric parts Show
that the splitting of the arbitrary tensor T µν

into its symmetric part Sµν = Sνµ and its anti-
symmetric part Aµν = −Aνµ is invariant under
Lorentz transformations.
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2 Lagrangian mechanics and symmetries

We review briefly the Lagrangian formulation of classical mechanics and it connection to
symmetries.

2.1 Calculus of variations

A map F [f(x)] from a certain space of functions f(x) into R is called a functional. We will
consider functionals from the space C2[a : b] of (at least) twice differentiable functions between
fixed points a and b. Extrema of functionals are obtained by the calculus of variations. Let
us consider as functional the action S defined by

S[L(qi, q̇i, t)] =

∫ b

a
dt L(qi, q̇i, t) , (2.1)

where L is a function of the 2n independent functions qi and q̇i = dqi/dt as well as of the
parameter t. In classical mechanics, we call L the Lagrange function of the system, q are its
generalised coordinates, q̇i the corresponding velocities and t is the time. The extremum of
this action gives the paths from a to b which are solutions of the equations of motion for the
system described by L. We discuss in the next section how one derives the correct L given a
set of interactions and constraints.

The calculus of variations shows how one find those paths that extremize such functionals:
Consider an infinitesimal variation of the path, qi(t) → qi(t)+ δqi(t) with δqi(t) = εηi(t) that
keeps the endpoints fixed, but is otherwise arbitrary. Thus we do not vary the velocities q̇i

independently, considering the action as a functional of only the coordinates, S = S[qi]. The
resulting variation of the functional is

δS[qi] =

∫ b

a
dt δL(qi, q̇i, t) =

∫ b

a
dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)
. (2.2)

We can eliminate the dependent variation δq̇i of the velocities, integrating the second term
by parts using δ(q̇i) = d/dt(δqi),

δS[qi] =

∫ b

a
dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi +

[
∂L

∂q̇i
δqi
]b

a

. (2.3)

The boundary term vanishes, because we required that the variations δqi are zero at the
endpoints a and b. Since the variations are otherwise arbitrary, the terms in the first bracket
have to be zero for an extremal curve, δS = 0. Paths that satisfy δS = 0 are classically
allowed. The equations resulting from the condition δS = 0 are called the Euler-Lagrange
equations of the action S,

δS

δqi
=
∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 , (2.4)
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2.2 Hamilton’s principle and the Lagrange function

and give the equations of motion of the system specified by L. Physicists call these equations
often simply Lagrange equations or, especially in classical mechanics, Lagrange equations of
the second kind.

The Lagrangian L is not uniquely fixed: Adding a total time-derivative, L′ = L+df(q, t)/dt
does not change the resulting Lagrange equations,

S′ = S +

∫ b

a
dt

df

dt
= S + f(q(b), tb)− f(q(a), ta) , (2.5)

since the last two terms vanish varying the action with the restriction of fixed endpoints a
and b.

Remark 2.1: Infinitesimal variation—If you are worried about the meaning of “infinitesi-
mal” variations, the following definition may help: Consider an one-parameter family of paths,

qi(t, ε) = qi(t, 0) + εηi(t).

Then the “infinitesimal” variation δq corresponds to the change linear in ε,

δq ≡ lim
ε→0

q(t, ε)− q(t, 0)

ε
=
∂q(t, ε)

∂ε

∣∣∣∣
ε=0

, (2.6)

and similarly for functions and functionals of q. Moreover, it is obvious from Eq. (2.6) that the
assumption of time-independent ε implies that the variation δ and the time-derivative d/dt acting
on q commute,

δ(q̇) =
∂q̇(t, ε)

∂ε

∣∣∣∣
ε=0

=
d

dt
(δq) ,

2.2 Hamilton’s principle and the Lagrange function

The observation that the solution of the equations of motion can be obtained as the extrema
of an appropriate functional (“the action S”) of the Lagrangian L subject to the conditions
δqi(a) = δqi(b) = 0 is called Hamilton’s principle or the principle of least action. Note that
the last name is a misnomer, since the the extremum can be also a maximum or saddle-point
of the action.

We derive now the Lagrangian L of a free non-relativistic particle from the Galilean principle
of inertia. More precisely, we use that the homogeneity of space and time forbids that L
depends on x and t, while the isotropy of space implies that L depends only on the norm of
the velocity vector, but not on its direction,

L = L(v2).

Let us consider two inertial frames moving with the infinitesimal velocity ε relative to each
other. Then a Galilean transformation connects the velocities measured in the two frames as
v′ = v+ε. The Galilean principle of relativity requires that the laws of motion have the same
form in both frames, and thus the Langrangians can differ only by a total time-derivative.
Expanding the difference δL in ε gives with δv2 = 2vε

δL =
∂L

∂v2
δv2 = 2vε

∂L

∂v2
. (2.7)
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2 Lagrangian mechanics and symmetries

The difference has to be a total time-derivative. Since v = q̇, the derivative term ∂L/∂v2 has
to be independent of v. Hence, L ∝ v2 and we call the proportionality constant m/2, and
the total expression kinetic energy T ,

L = T =
1

2
mv2 . (2.8)

Example 2.1: Check the relativity principle for finite relative velocities:
Evaluating

L′ =
1

2
mv′2 =

1

2
m(v + V )2 =

1

2
mv2 +mv · V +

1

2
mV 2,

we can write

L′ = L+
d

dt

(
mx · V +

1

2
mV 2t

)
.

Thus the difference is indeed a total time derivative.

We can write the velocity with dl2 = dx2 + dy2 + dz2 as

v2 =
dl2

dt2
= gik

dxi

dt

dxk

dt
, , (2.9)

where the quadratic form gik is the metric tensor of the configuration space {qi}. For instance,
in spherical coordinates dl2 = dr2 + r2 sin2 ϑdφ2 + r2dϑ2 and thus

T =
1

2
m
(
ṙ2 + r2 sin2 ϑφ̇2 + r2ϑ̇2

)
. (2.10)

Choosing the appropriate coordinates, we can account for constraints: The kinetic energy of a
particle moving on sphere with radius R would be simply given by T = mR2(sin2 ϑφ̇2+ ϑ̇2)/2.

For a system of non-interacting particles, L is additive, L =
∑

a
1
2mav

2
a. If there are

interactions (assumed for the moment to dependent only on the coordinates), then we subtract
a function V (r1, r2, . . .) called potential energy.

We can now derive the equations of motion for a system of n interacting particles,

L =

n∑

a=1

1

2
mav

2
a − V (r1, r2, . . . , rn) . (2.11)

using the Lagrange equations,

ma
dva
dt

= − ∂V

∂ra
= F a . (2.12)

We can change from Cartesian coordinates to arbitrary (or “generalized”) coordinates for
the n particles,

xa = fa(q1, . . . , qn), ẋa =
∂fa

∂qk
q̇k . (2.13)

Substituting gives

L =
1

2
aik q̇

iq̇k − V (qi) , (2.14)
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2.3 Symmetries and conservation laws

where the matrix aik(q) is a quadratic function of the velocities q̇i that is apart from the
factors ma identical to the metric tensor on the configuration space {qi}. Finally, we define
the canonically conjugated momentum pi as

pi =
∂L

∂q̇i
. (2.15)

A coordinate qi that does not appear explicitly in L is called cyclic. The Lagrange equations
imply then ∂L/∂q̇i = const., so that the corresponding canonically conjugated momentum
pi = ∂L/∂q̇i is conserved.

Remark 2.2: Feynman’s approach to quantum theory—The whole information about a
quantum mechanical system is contained in its time-evolution operator U(t, t′). Its matrix ele-
ments K(x′, t′;x, t) (propagator or Green’s function) in the coordinate basis relate wavefunctions
at different times as

ψ(x′, t′) =

∫
d3xK(x′, t′;x, t)ψ(x, t) .

Following a pretty vague suggestion by Dirac, Feynman proposed the following connection between
the propagator K and the classical action S,

K(x′, t′;x, t) = N

∫ x′

x

Dq exp(iS) ,

where Dq denotes the “integration over all paths.” Hence the difference between the classical and

quantum world is that in the former only paths extremizing the action S are allowed while in the

latter all paths weighted by exp(iS) contribute.

For a readable introduction see R. P. Feynman, A. R. Hibbs: Quantum mechanics and path integrals or R. P.

Feynman (editor: Laurie M. Brown), Feynman’s thesis : a new approach to quantum theory.

2.3 Symmetries and conservation laws

Quantities that remain constant during the evolution of a mechanical system are called
integrals of motion. Seven of them that are connected to the fundamental symmetries of space
and time are of special importance: These are the conserved quantities energy, momentum
and angular momentum.

Energy The Lagrangian of a closed system depends, because of the homogeneity of time,
not on time. Its total time derivative is

dL

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i . (2.16)

Replacing ∂L/∂qi by (d/dt)∂L/∂q̇i, it follows

dL

dt
= q̇i

d

dt

∂L

∂q̇i
+
∂L

∂q̇i
q̈i =

d

dt

(
q̇i
∂L

∂q̇i

)
. (2.17)

Hence the quantity

E ≡ q̇i
∂L

∂q̇i
− L (2.18)
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2 Lagrangian mechanics and symmetries

remains constant during the evolution of a closed system. This holds also more generally, e.g.
in the presence of static external fields, as long as the Lagrangian is not time-dependent.

We have still to show that E coincides indeed with the usual definition of energy. Using as
L = T (q, q̇)− V (q), where T is quadratic in the velocities, we have

q̇i
∂L

∂q̇i
= q̇i

∂T

∂q̇i
= 2T. (2.19)

Thus E = 2T −L = T +V and the total energy E is the sum of kinetic and potential energy.

Momentum Homogeneity of space implies that a translation by a constant vector of a closed
system does not change its properties. Thus an infinitesimal translation from r to r+ε should
not change L. Since velocities are unchanged, we have (summation over a particles)

δL =
∑

a

∂L

∂ra
· δra = ε ·

∑

a

∂L

∂ra
. (2.20)

The condition δL = 0 is true for arbitrary ε, if

∑

a

∂L

∂ra
= 0 . (2.21)

Using again Lagrange’s equations, we obtain

∑

a

d

dt

∂L

∂va
=

d

dt

∑

a

∂L

∂va
= 0 . (2.22)

Hence, in a closed mechanical system the total momentum vector of the system

ptot =
∑

a

∂L

∂va
=
∑

a

mava = const. (2.23)

is conserved.

The condition (2.21) signifies with ∂L/∂ra = −∂V/∂ra that the sum of forces on all
particles is zero,

∑
a F a = 0. For the particular case of a two-particle system, F a = −F b, we

have thus derived Newton’s third law, the equality of action and reaction.

Isotropy We consider now the consequences of the isotropy of space, i.e. search the conserved
quantity that follows from a Lagrangian invariant under rotations. Under an infinitesimal
rotation by δφ both coordinates and velocities change,

δr = δφ × r , (2.24)

δv = δφ × v . (2.25)

Inserting the expression into

δL =
∑

a

(
∂L

∂ra
δra +

∂L

∂va
δva

)
= 0 (2.26)
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2.4 Two-body problem

gives, using also the definition pa = ∂L/∂va as well as the Lagrange equation ṗa = ∂L/∂ra,

δL =
∑

a

(ṗa · δφ × ra + pa · δφ × va) = 0 . (2.27)

Permuting the factors and extracting δφ gives

δφ ·
∑

a

(ra × ṗa + va × pa) = δφ · d

dt

∑

a

ra × pa = 0 . (2.28)

Thus the total angular momentum

M =
∑

a

ra × pa = const. (2.29)

is conserved.

General formulation We can derive a general condition for the existence of conserved quan-
tities for a Lagrangian system. Under a continous symmetry, the Lagrangian can change at
most by a total derivative, and thus

dL

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i =

dL′

dt
+

df

dt
. (2.30)

Now we use that Lagrange equation and apply the Leibniz product rule to obtain

d

dt

(
∂L

∂q̇k
δqk − f

)
= 0. (2.31)

This is Noether’s theorem for a Lagrangian system with a finite number of degrees of freedom.

2.4 Two-body problem

General two-body problem We consider now for illustration the important example of two
bodies interacting via a potential,

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − V (r1, r2). (2.32)

Thus the Lagrangian L depends on six variables. Introducing the center-of-mass (CoM)
coordinate

R =
m1r1 +m2r2

m1 +m2
(2.33)

and the total mass M = m1 +m2, it follows

r1 = R+
m2

M
r and r2 = R− m1

M
r. (2.34)

Differenting these expressions, we can eleminate ṙ1 and ṙ2, obtaining

L =
1

2
MṘ

2
+

1

2
µṙ2 − V (r,R) (2.35)
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2 Lagrangian mechanics and symmetries

with the reduced mass
µ =

m1m2

m1 +m2
=
m1m2

M
. (2.36)

In the special case of a central potential, V (r1, r2) = V (r), the CoM coordinate R is cyclic
and thus the CoM momentum P = ∂L/∂Ṙ is clearly conserved. In general, R is however not
cyclic, V (r1, r2) breaks translation invariance and thus the total momentum is not conserved.
We will now show that in the general case (2.32) the invariance under Galilean transformations
leads to Ṙ = const.

Example 2.2: We apply Noether’s theorem (2.31) to the case of Gallilean transformations,
x′ = x+ V t. Then

∂L

∂q̇k
δqk = (m1ṙ1 +m2ṙ2)V t =MṘ · V t.

We know already that the kinetic energy changes as δT = (mṙ1+m2ṙ2)V =MṘ·V . In contrast,
the potential energy is invariant,

δV =

(
∂V

∂r1
+
∂V

∂r2

)
V t = 0,

since F a = −F b. Combining the two terms, we obtain

∂L

∂q̇k
δqk − f =MṘV t−MRV = const. (2.37)

Hence Ṙt −R = const. or R = Ṙt +R0, implying that the velocity of the center-of-mass Ṙ is

constant.

Two-body problem with central forces Next we specialise the potential to the important
example of two bodies interacting via a central force. In this case, we can introduce a potential
V (r) which depends only on the relative coordinate r = r1 − r2,

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − V (r) =

1

2
MṘ

2
+

1

2
µṙ2 − V (r). (2.38)

Moving to the CoM frame, it is Ṙ = 0. Hence we have the two-body problem reduced to
the one-body problem of a mass µ moving in the potential V (r). We exploit now that the
Lagrangian depends only on r = |r| and is thus invariant under rotations. We introduce
therefore spherical coordinates,

L =
1

2
µ
(
ṙ2 + r2 sin2 ϑφ̇2 + r2ϑ̇2

)
− V (r). (2.39)

The conservation of angular momentum L allows us to choose L‖ez. Then the orbit is
contained in the xy plane and ϑ = π/2. The Lagrange equations become with l = L/m

r2φ̇ = l , and r̈ =
l

r3
+ V ′ . (2.40)

We use now energy conservation, E = T + V , and employ φ̇ = l/r2 to eleminate the angular
dependence. This reduces the radial equation to an one-dimesnional motion in the radial
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2.4 Two-body problem

direction with an effective potential,

E =
1

2
µ

(
ṙ2 +

l2

r2

)
+ V (r) =

1

2
µṙ2 + Veff (2.41)

with

Veff = V (r) +
l2

2r2
. (2.42)

Kepler problem We choose now as potential the Newtonian V (r) = −GµM/r, where we
used µM = m1m2 to eleminate the individual masses mi. Then the Lagrange equations follow
from L = (1/2)µ(ṙ2 + r2φ̇2) +GµM/r as

r2φ̇ = l , and r̈ =
l

r3
− GM

r2
. (2.43)

In order to derive the orbital equation r = r(φ), we eliminate the time t by

dr

dt
=

dr

dφ

dφ

dt
=

dr

dφ

l

r2
≡ r′

l

r2
(2.44)

and introduce u = 1/r,

u′′ + u =
GM

l2
. (2.45)

Inserting as trial solution the equation of a conic section,

u =
1

r
=

1 + e cosφ

a(1− e2)
, (2.46)

we find

u′′ + u =
1 + e cos φ− e cosφ

a(1− e2)

!
=
GMµ2

L2
. (2.47)

Thus we obtain as constraint for the angular momentum

L = µ
√
GMa(1 − e2) . (2.48)

The effective potential becomes for the Newtonian potential

Veff = −GµM
r

+
l2

2r2
. (2.49)

For small r, the positive centrifugal potential dominates. Thus a particle with finite angular
momentum, l > 0, cannot reach r = 0. The orbits of particles with negative energy, E < 0,
are bounded, rmin < r < rmax, while they are unbound for E > 0.

Example 2.3: Total energy of a binary system.
Derive the velocity of the reduced mass µ at perihelion (ϑ = 0) and at aphelion (ϑ = π). Show that
the total energy in the center-of-mass system can be expressed as E = −GMµ/(2a) = 〈V 〉/2.
At both points, v and r are perpendicular and thus L = µrv. Inserting L into Eq. (2.48) at
perihelion and at aphelion, respectively, results in

v2p = GM(1 + e)/rp and v2a = GM(1− e)/ra.
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2 Lagrangian mechanics and symmetries

Using then (2.46) for an ellipse, it follows

v2p =
GM

a

(
1− e

1 + e

)
, v2a =

GM

a

(
1 + e

1− e

)
.

Evaluating the energy expression

E =
1

2
µv2 − Gmµ

r

for rp and vp gives

E =
GMµ

a

[
1

2

1 + e

1− e
− 1

1− e

]
= −GMµ

2a
. (2.50)

Since 〈1/r〉 = 〈u〉 = 1/a, the total energy corresponds to half the time-averaged potential energy,

as expected from the virial theorem.

2.5 Free relativistic particle

Massive particles We introduced the proper-time τ to measure the time along the worldline
of a massive particle,

τ12 =

∫ 2

1
dτ =

∫ 2

1
[dt2 − (dx2 + dy2 + dz2)]1/2 (2.51)

=

∫ 2

1
[ηµνdx

µdxν]1/2 . (2.52)

If we use a different parameter σ, e.g. such that σ(τ = 1) = 0 and σ(τ = 2) = 1, then

τ12 =

∫ 1

0
dσ

[
ηµν

dxµ

dσ

dxν

dσ

]1/2
. (2.53)

Note that τ12 is invariant under a reparameterisation σ′ = f(σ).
We check now if the choice

L =

[
ηµν

dxµ

dσ

dxν

dσ

]1/2
(2.54)

is sensible for a free particle1: L is Lorentz-invariant with xµ = (x, t) as dynamical variables,
while σ plays the role of the parameter time t in the non-relativistic case. The Lagrange
equations are

d

dσ

∂L

∂(dxα/dσ)
=

∂L

∂xα
. (2.55)

Consider e.g. the x1 component, then

d

dσ

∂L

∂(dx1/dσ)
=

d

dσ

(
1

L

dx1

dσ

)
= 0 . (2.56)

Since L = dτ/dσ, it follows after multiplication with dσ/dτ

d2x1

dτ2
= 0 (2.57)

1We neglect the unimportant mass term
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2.5 Free relativistic particle

and the same for the other coordinates.
An alternative Lagrangian which we use latter more often is

L = ηµν ẋ
µẋν (2.58)

with ẋµ = dxν/dτ . Since this Lagrangian is the square-root of the one defined in Eq. (2.54)
for the special choice σ = τ , is it clear that the same equation of motion result. While this
Lagrangian is more useful in calculations, it is invariant only under affine transformations,
τ → Aτ +B.

Massless particles The energy-momentum relation of massless particles like the photon
becomes ω = |k|. Thus their four-velocity and four-momenta are light-like, u2 = p2 = 0, and
light signals form the future light-cone of the emission point P . Since ds = dτ = 0 on the
light-cone, we cannot use the Lagrangians (2.54) or (2.58).

To find an alternative, consider how we can parameterise the curve x = t. Choosing
uα = (1, 1, 0, 0), we can set

xα(λ) = λuα. (2.59)

Then the four-velocity becomes the tangent vector uα = dxα(λ)/dλ, similar to the defini-
tion (1.38) for massive particles. With the choice (2.59), the four-velocity for a massless
particle satisfies

du

dλ
= 0. (2.60)

Such parameters are called affine, and the set of these parameters are invariant under affine
transformations, λ → Aλ + B. In this case, we can use the same equations of motion for
massive and massless particles, only replacing u · u = 1 with u · u = 0.

Problems

2.1 Oscillator with friction. Consider a one-
dimensional system described by the Lagrangian
L = exp(2αt)L0 and L0 =

1
2mq̇

2−V (q). a.) Show
that the equation of motion corresponds to an os-
cillator with friction term. b). Derive the en-
ergy lost per time dE/dt of the oscillator, with
E = 1

2mq̇
2 + V (q). c.) Show that the result in

b.) agrees with the one obtained from the La-
grange equations of the first kind, d

dt
∂L
∂q̇ − ∂L

∂q = Q,
where the generalised force Q perform the work
δA = Qδq.

2.2 Classical driven oscillator. Consider an har-
monic oscillator satisfying q̈(t) − Ω2q(t) = 0 for
0 < t < T and q̈(t) + ω2q(t) = 0 otherwise, with
ω and Ω as real constants. a.) Show that for
q(t) = A1 sin(ωt) for t < 0 and ΩT ≫ 1, the

solution q(t) = A2 sin(ω0t + α) with α = const.
satisfies A2 ≈ 1

2 (1+ω
2/Ω2)1/2 exp(ΩT ). b.) If the

oscillator was in the ground-state at t < 0, how
many quanta are created?

2.3 Higher derivatives.
a.) Find the Lagrange equation for a Lagrangian
containing higher derivatives, L = L(q, q̇, q̈, . . .).
b.) Consider L = L(q, q̇, q̈) choosing as canon-
ical variables Q1 = q, Q2 = q̇, P1 = ∂L

∂q −
d
dt

∂L
∂q̇ and P2 = ∂L

∂q̈ and defining as Hamiltonian

H(Q1, Q2, P1, P2) =
∑2

i=1 Piq
(i) − L. Show that

the resulting Hamilton equations give the correct
time evolution and that H corresponds to the en-
ergy. Show that H is unbounded from below, i.e.
that it describes a unstable system.
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3 Basic differential geometry

3.1 Gravitation as a spacetime phenomenon

We motivate this chapter about differential geometry by giving some arguments why a
relativistic theory of gravity should replace Minkowski space by a curved manifold. Let us
start by reviewing three basic properties of gravitation.

1.) The idea underlying the equivalence principle emerged in the 16th century, when among
others Galileo Galilei found experimentally that the acceleration g of a test mass in
a gravitational field is universal. Because of this universality, the gravitating mass
mg = F/g and the inertial mass mi = F/a are identical in classical mechanics, a fact
that puzzled already Newton. While mi = mg can be achieved for one material by a
convenient choice of units, there should be in general deviations for test bodies with
differing compositions.

Knowing more forces, this puzzle becomes even stronger: Contrast the acceleration of
a particle in a gravitational field to the one in a Coulomb field. In the latter case, two
independent properties of the particle, namely its charge q determining the strength of
the electric force acting on it and its mass mi, i.e. the inertia of the particle, are needed
as input in the equation of motion. In the case of gravity, the “gravitational charge”
mg coinicides with the inertial mass mi.

The equivalence of gravitating and inertial masses has been tested already by Newton
and Bessel, comparing the period P of pendula of different materials,

P = 2π

√
mil

mgg
, (3.1)

but finding no measurable differences. The first precision experiment giving an upper
limit on deviations from the equivalence principle was performed by Loránd Eötvös in
1908 using a torsion balance. Current limits for departures from universal gravitational
attraction for different materials are |∆gi/g| < 10−12.

2.) Newton’s gravitational law postulates as the latter Coulomb law an instantaneous inter-
action. Such an interaction is in contradiction to special relativity. Thus, as interactions
of currents with electromagnetic fields replace the Coulomb law, a corresponding de-
scription should be found for gravity. Moreover, the equivalence of mass and energy
found in special relativity requires that, in a loose sense, not only mass but all forms
of energy should couple to gravity: Imagine a particle-antiparticle pair falling down a
gravitational potential well, gaining energy and finally annihilating into two photons
moving the gravitational potential well outwards. If the two photons would not loose
energy climbing up the gravitational potential well, a perpetuum mobile could be con-
structed. If all forms of energy act as sources of gravity, then the gravitational field
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3.1 Gravitation as a spacetime phenomenon

itself is gravitating. Thus the theory is non-linear and its mathematical structure is
much more complicated than the one of electrodynamics.

3.) Gravity can be switched-off locally, just by cutting the rope of an elevator: Inside a
freely falling elevator, one does not feel any gravitational effects except for tidal forces.
The latter arise if the gravitational field is non-uniform and tries to stretch the elevator.
Inside a sufficiently small freely falling system, also tidal effects plays no role. This
allows us to perform experiments like the growing of crystalls in “zero-gravity” on the
International Space Station which is orbiting around the Earth at an altitude of only
300 km.

Motivated by 2.), Einstein used 1.), the principle of equivalence, and 3.) to derive general
relativity, a theory that describes the effect of gravity as a deformation of the space-time
known from special relativity.

In general relativity, the gravitational force of Newton’s theory that accelerates particles
in an Euclidean space is replaced by a curved spacetime in which particles move force-free
along geodesic lines. In particular, as in special relativity, photons still move along curves
satisfying ds2 = 0, while all effects of gravity are now encoded in the non-Euclidean geometry
of spacetime which is determined by the line element ds or the metric tensor gµν ,

ds2 = gµνdx
µdxν . (3.2)

Switching on a gravitational field, the metric tensor gµν can be transformed only locally by a
coordinate change into the form ηµν = diag(1,−1,−1,−1). Thus we should develop the tools
necessary to undertake analysis on a curved manifold M which geometry is described by the
metric tensor gµν .

Remark 3.1: Information from quantum theory—Quantum theory provides three addi-

tional pieces of information on the possible form of the gravitational interaction. The first one

comes from the low-energy interactions of massless particles with spin s = 0, 1, 2, . . . in Minkowski

space [8]. In the low-energy limit, these particles see a classical current and, as a result, the prob-

ability amplitude for the emission or absorption of such a particle factorises into an universal

factor and a remainder. While for massless spin s = 0 particles no constraint arises, massless

spin s = 1 particles have to couple to a current jµ which is conserved, ∂µj
µ = 0. Massless spin

s = 2 particles have to couple again to a current T µν which is conserved, ∂µT
µν = 0. In addi-

tion, now the coupling strength has to be universal. This implies the equivalence of inertial and

gravitational mass. Finally, no consistent theory of interacting massless particles with spin s ≥ 3

is possible.

Second, one can derive the potential energy between two static sources due to the exchange of

particles with spin s = 0, 1, 2, . . .. One finds that this energy is positiv for equal charges for odd

spin; this corresponds to the fact that the Coulomb force between equal charges is repulsive. In

contrast, the energy is negative for the exchange of particles with even spin. Since gravity is

attractive, the force has to be mediated by particles with even spin. Finally, a long-range force

∝ 1/r2 implies that the exchange particle is massless.

Combining these pieces of information, we can conclude that the classical gravitational field is

mediated by a massless spin-0 or spin-2 field. The equivalence principle allows us to inteprete
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gravity as a spacetime phenomen, suggesting to identify the gravitational field with the metric

tensor gµν .

3.2 Manifolds and tensor fields

Manifolds A manifold M is any set that can be continuously parameterised. The number
of independent parameters needed to specify uniquely any point of M is its dimension n,
the parameters x = {x1, . . . , xn} are called coordinates. Locally, a manifold with dimension
n can be approximated by R

n. Examples for manifolds are the group of rotations in R
3

(with three Euler angles, dim = 3), the configuration space qi (with dim = n) or the phase
space (qi, pi) (with dim = 2n) of classical mechanics, and spacetime in general relativity. We
require the manifold to be smooth. The transitions from one set of coordinates to another
one, xi = f(x̃i, . . . , x̃n), should be C∞. In general, it is impossible to cover all M with one
coordinate system that is well-defined on all M . An example are spherical coordinate (ϑ, φ)
on a sphere S2, where φ is ill-defined at the poles. Instead one has to cover the manifold with
patches of different coordinates that partially overlap.

Vector fields A vector field V (xµ) on (a subset S of) M is a set of vectors associating to
each spacetime point xµ ∈ S exactly one vector. The paradigm for such a vector field is the
four-velocity u(τ) = dx/dτ which is the tangent vector to the world-line x(τ) of a particle.
Since the differential equation dx/dσ = X(σ) has locally always a solution, we can find for
any given X a curve x(σ) which has X as tangent vector, and vice versa. Although the
definition u(τ) = dx/dτ coincides with the one familiar from Minkowski space, there is an
important difference: In a general manifold, we cannot imagine a vector V as an “arrow”−−→
PP ′ pointing from a certain point P to another point P ′ of the manifold. Instead, the vectors
V generated by all smooth curves through P span an n-dimensional vector space at the
point P called tangent space TPM . We can visualise the tangent space for the case of a
two-dimensional manifold embedded in R

3: at any point P , the tangent vectors lie in a plane
R
2 which we can associate with TP . In general, TPM 6= TP ′M and we cannot simply move a

vector V (xµ) to another point x̃µ. This implies in particular that we cannot add the vectors
V (xµ) and V (x̃µ), if the points xµ and x̃µ differ. Therefore we cannot differentiate a vector
field without introducing an additional mathematical structure which allows us to transport
a vector from one tangent space to another.

If we want to decompose the vector V (xµ) into components V ν(xµ), we have to introduce
a basis eµ in the tangent space. There are two natural choices for such a basis: First, we can
use the Cartesian inertial system associated with an world-line passing through xµ. Such a
choice, which can model a local observer, will be discussed in section 3.4 when we discuss how
one connects the components of tensor fields to measurements. In general, we use as basis
vectors instead the tangential vectors along the coordinate lines xµ in M ,

eµ =
∂

∂xµ
≡ ∂µ. (3.3)

Here the index µ counts the different basis vector: Their only non-zero entry is the partial
derivative w.r.t. to the µ.th coordinate, eµ = (0, . . . , ∂/∂xµ, . . . 0). Using this basis, a vector
can be decomposed as

V = V µeµ = V µ∂µ. (3.4)
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A coordinate change

xµ = f(x̃1, . . . , x̃n), (3.5)

or more briefly xµ = xµ(x̃ν), changes the basis vectors as

eµ =
∂

∂xµ
=
∂x̃ν

∂xµ
∂

∂x̃ν
=
∂x̃ν

∂xµ
ẽν . (3.6)

Therefore the vector V will be invariant under general coordinate transformations,

V = V µ∂µ = Ṽ µ∂̃µ = Ṽ , (3.7)

if its components transform opposite to the basis vectors eµ = ∂µ, or

V µ =
∂xµ

∂x̃ν
Ṽ ν . (3.8)

If xµ and x̃µ are two inertial frames in Minkowski space, we came back to Lorentz transfor-
mations ∂xµ/∂x̃ν = Λµ

ν as a special case of general coordinate transformations.

Remark 3.2: Vector fields as differential operators—The notation V = V µ∂µ suggests
that we can interprete a vector field as a differential operator. This allows us to define the
commutator [X ,Y ] of two vector fields by their action on scalar functions φ as

[X,Y ]φ = (XY − Y X)φ. (3.9)

Consider as an example the three space-like vector fields given by J1 = y∂z − z∂y and its cyclic
permutations. Simple calculation gives

(J1J2 − J2J1)φ = (y∂zz∂y − y∂zx∂z − y∂zx∂z + z∂yx∂z)φ

− (z∂xy∂z − z∂xz∂y − x∂zy∂z + x∂zz∂y)φ = (y∂x − x∂y)φ = −J3φ. (3.10)

Here we used that partial derivatives commute and thus all second order terms cancel. As a
result, only the terms linear in derivatives arising from the underlined terms survive. The other
comutation relations are computed in the same way, leading to

[J i,J j ] = −εijkJk, (3.11)

The replacement J i → J̃ = iJ i (which makes them hermitian operators) converts this into the

usual commutatation relations for the angular momentum operators in quantum mechanics. There

we learnt that the angular momentum operators are the infinitesimal generators of rotations, i.e.

they transport the wave-function φ(x) along the vector field J . This connection will become

clearer in Example 4.1.

Covectors or one-forms In quantum mechanics, we use Dirac’s bracket notation to associate
to each vector |a〉 a dual vector 〈a| and to introduce a scalar product 〈a| b〉. If the vectors |n〉
form a basis, then the dual basis 〈n| is defined by 〈n|n′〉 = δnn′ . Similarly, we define a basis
eµ dual to the basis eµ in TPM by

eµ(eν) = δµν . (3.12)
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This basis can be used to form a new vector space T ∗
PM called the cotangent space which is

dual to TPM . Its elements ω are called covectors or one-forms, and can be expanded as

ω = ωµe
µ. (3.13)

Combining a vector and a one-form, we obtain a map into the real numbers,

ω(V ) = ωµV
νeµ(eν) = ωµV

µ. (3.14)

The last equality shows that we can calculate ω(V ) in component form without reference to
the basis vectors. In order to simplify notation, we will use therefore in the future simply
ωµV

µ; we also write eµeν instead of eµ(eν).

Using a coordinate basis, the duality condition (3.12) is obviously satisfied, if we choose
eµ = dxµ. Then the one-form ω becomes

ω = ωµdx
µ . (3.15)

Thus the familiar “infinitesimals” dxµ are actually the finite basis vectors of the cotangent
space T ∗

PM . We require again that the transformation of the components ωµ of a covector
cancels the transformation of the basis vectors,

ωµ =
∂x̃ν

∂xµ
ω̃ν . (3.16)

This condition guarantees that the covector itself is an invariant object, since

ω = ωµdx
µ =

∂x̃ν

∂xµ
ω̃ν
∂xµ

∂x̃σ
dx̃σ = ω̃µdx̃

µ = ω̃ . (3.17)

Covariant and contravariant tensors Next we generalise the concept of vectors and covec-
tors. We call a vector X also a contravariant tensor of rank one, while we call a covector
also a covariant vector or covariant tensor of rank one. A general tensor of rank (n,m) is a
multilinear map

T = T µ,...,ν
α,...,β ∂µ ⊗ . . . ⊗ ∂ν︸ ︷︷ ︸

n

⊗ dxα ⊗ . . .⊗ dxβ︸ ︷︷ ︸
m

(3.18)

which components transforms as

T̃ µ,...,ν
α,...,β (x̃) =

∂x̃µ

∂xρ
. . .

∂x̃ν

∂xσ︸ ︷︷ ︸
n

∂xγ

∂x̃α
. . .

∂xδ

∂x̃β︸ ︷︷ ︸
m

T ρ,...,σ
γ,...,δ (x) (3.19)

under a coordinate change.

Metric tensor A (pseudo-) Riemannian manifold is a differentiable manifold containing as
additional structure a symmetric tensor field gµν which allows us to measure distances and
angles. We define the scalar product of two vectors a(x) and b(x) which have the coordinates
aµ and bµ in a certain basis eµ as

a · b = (aµeµ) · (bνeν) = (eµ · eν)aµbν = gµνa
µbν . (3.20)
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3.2 Manifolds and tensor fields

Thus we can evaluate the scalar product between any two vectors, if we know the symmetric
matrix gµν composed of the n2 products of the basis vectors,

gµν(x) = eµ(x) · eν(x), (3.21)

at any point x of the manifold. This symmetric matrix gµν is called metric tensor. The
manifold is called Riemannian if all eigenvalues of gµν are positive, and thus the scalar product
defined by gµν is positive-definite. If the scalar product is indefinite, as in the case of general
relativity, one calls the manifold pseudo-Riemannian.

In the same way, we define for the dual basis eµ the metric gµν via

gµν = eµ · eν . (3.22)

Now we want to show that the definitions (3.21) and (3.22) together with Eq. (3.12) imply
that we can use the metric tensor to raise and lower indices. We set first

eµ = Aµνeν , (3.23)

with the tensor Aµν to be determined. Then we form the scalar product with eρ and obtain

gµρ = eµ · eρ = Aµνeν · eρ = Aµρ . (3.24)

Hence the metric gµν maps covariant vectors Xµ into contravariant vectors Xµ, while gµν
provides a map into the opposite direction. In the same way, we can use the metric tensor to
raise and lower indices of any tensor.

Next we want to determine the relation of gµν with gµν . We multiply eρ with eµ = gµνe
ν ,

obtaining
δρµ = eρ · eµ = eρ · eνgµν = gρνgµν (3.25)

or
δρµ = gµνg

νρ. (3.26)

Thus the components of the covariant and the contravariant metric tensors, gµν and gµν , are
inverse matrices of each other. Moreover, the RHS corresponds to the rasing or lowering of
an index in the metric tensor. Thus the mixed metric tensor of rank (1,1) is given by the
Kronecker delta, gνµ = δνµ. Note that this implies that the trace of the metric tensor is not
−2, but

tr(gµν) = gµµgµµ = δµµ = 4 , (3.27)

because we have to contract an upper and a lower index.

Example 3.1: Spherical coordinates 1: Calculate for spherical coordinates x = (r, ϑ, φ) in R
3,

x′1 = r sinϑ cosφ ,

x′2 = r sinϑ sinφ ,

x′3 = r cosϑ ,
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the components of gij and gij , and g ≡ det(gij). From ei = ∂x′j/∂xie′j , it follows

e1 =
∂x′j
∂r

e′j = sinϑ cosφe′1 + sinϑ sinφe′2 + cosϑe′3 ,

e2 =
∂x′j
∂ϑ

e′j = r cosϑ cosφe′1 + r cosϑ sinφe′2 − r sinϑe′3 ,

e3 =
∂x′j
∂φ

e′j = −r sinϑ sinφe′1 + r sinϑ cosφe′2 .

Since the ei are orthogonal to each other, the matrices gij and g
ij are diagonal. From the definition

gij = ei · ej one finds gij = diag(1, r2, r2 sin2 ϑ) Inverting gij gives gij = diag(1, r−2, r−2 sin−2 ϑ).
The determinant is g = det(gij) = r4 sin2 ϑ. Note that the volume integral in spherical coordinates
is given by ∫

d3x′ =

∫
d3x J =

∫
d3x

√
g =

∫
drdϑdφ r2 sinϑ ,

since gij =
∂xk′

∂x̃i
∂xl′

∂x̃j g
′
kl and thus det(g) = J2det(g′) = J2 with det(g′) = 1.

3.3 Covariant derivative and the geodesic equation

Covariant derivative In an inertial system in Minkowski space, taking the partial derivative
∂µ maps a tensor of rank (n,m) into a tensor of rank (n,m+1). As required for any derivative,
this map obeys linearity and the Leibniz product rule. We will see that in general the partial
derivative in a curved space does not transform as tensor. We therefore introduce a new
derivative ∇µ called covariant derivative, modified such that it fulfils these rules.

Let us first see how a derivative is connected with the transport of tensors. Performing a
Taylor expansion, we can move a scalar from the point x to x+ dx as

f(x+ dx) = f(x) + ∂µf(x)dx
µ + . . . (3.28)

In the case of a vector, we have to take into account that its components are given by the
projection on the basis vectors in the two tangent spaces at x and x+dx. If the basis vectors
are rotated or boosted, an additional change Γ results. This change should be proportional
to A and ds and carries therefore two lower indices in addition to the upper index required
by the LHS. Thus we introduce the connection (coefficients) Γµ

σν ,

Aµ(x+ dx) = Aµ(x) +
[
∂νA

µ(x) + Γµ
σνA

σ
]
dxν + . . . = Aµ(x) +∇νA

µdxν + . . . (3.29)

and ask that the expression in the square bracket transforms as a tensor of rank (1, 1). Any
n3 numbers Γµ

ρσ which satisfy this requirement are called (affine) connection coefficients or
symbols in order to stress that they are not the components of a tensor. Mathematically, an
infinite number of choices for Γµ

σν is consistent with the requirement that ∇νA
µ transforms

as a tensor of rank (1, 1) (and that ∇µ is a derivative). These conditions define the set of
affine connections on M which are briefly discussed in the appendix.

We will impose in the following two additional conditions.

• The length of a vector should remain constant being transported along the manifold.
(Think about the four-momentum gµνp

µpν = m2.) This requires that∇σgµν = ∇σg
µν =

0; A connection satisfying this condition is called metric compatible. In the derivation
below, we will include this requirement by not differentiating the “dot” in a scalar
product.
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3.3 Covariant derivative and the geodesic equation

• A vector should not be twisted “unnecessarily” being transported along the manifold.
If no such twist arises during parallel transport, the connection is called torsion free. A
necessary condition for this is that the connection is symmetric, Γσ

µν = Γσ
νµ.

We start by considering the gradient ∂µφ of a scalar φ. By definition, a scalar quantity
does not depend on the coordinate system, φ(x) = φ̃(x̃). Therefore its gradient transforms as

∂µφ→ ∂̃µφ̃ =
∂xν

∂x̃µ
∂νφ. (3.30)

Thus the gradient is a covariant vector. Similarly, the derivative of a vector V transforms as
a tensor,

∂µV → ∂̃µṼ =
∂xν

∂x̃µ
∂νV , (3.31)

because V is an invariant quantity. If we consider however its components V µ = eµ ·V , then
the moving coordinate basis in curved spacetime, ∂µe

ν 6= 0, leads to an additional term in
the derivative,

∂µV
ν = eν · (∂µV ) + V · (∂µeν). (3.32)

The term eν · (∂µV ) transforms as a tensor, since both eν and ∂µV are tensors. This implies
that the combination of the two remaining terms has to transform as tensor too, which we
define as the covariant derivative

∇µV
ν ≡ eν · (∂µV ) = ∂µV

ν − V · (∂µeν). (3.33)

The first equality tells us that we can view the covariant derivative ∇µV
ν as the projection

of ∂µV onto the direction eν .
We now expand the partial derivatives of the basis vectors as a linear combination of the

basis vectors,
∂ρe

µ = −Γµ
ρσe

σ and ∂ρeµ = Γσ
ρµeσ. (3.34)

Comparing with Eq. (3.29), we see that the two definitions agree for a coordinate basis,
eµ = dxµ. The coefficients Γµ

ρσ in Eq. (3.34) are a special case of the generic affine connection.

Example 3.2: Show the validity of the RHS of Eq. (3.34):
The duality relation eµ ·eν = δνµ leads to ∂ρ(eµ ·eν) = 0. Inserting the definition of the connection
coefficients, it follows indeed

∂ρ(eµ · eν) = (∂ρeµ)e
ν + eµ · (∂ρeν) = Γσ

ρµeσ · eν − eµΓν
ρσ · eσ = Γν

ρµ − Γν
ρµ = 0.

Introducing this expansion into (3.33) we can rewrite the covariant derivative of a vector
field as

∇µV
ν = ∂µV

ν + Γν
σµV

σ, (3.35)

and of a covector as
∇σXµ = ∂σXµ − Γν

µσXν (3.36)

For a general tensor, the covariant derivative is defined by the same reasoning as

∇σT
µ...
ν... = ∂σT

µ...
ν... + Γµ

ρσT
ρ...
ν... + . . .− Γρ

νσT
µ...
ρ... − . . . (3.37)

Note that it is the last index of the connection coefficients that is the same as the index of
the covariant derivative. The plus sign goes together with upper (superscripts), the minus
with lower indices.
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Levi-Civita connection Next we want to find the relation between the connection coefficients
and the metric tensor. We first differentiate the definition of the metric tensor, gab = ea · eb,
with respect to xc,

∂cgab = (∂cea) · eb + ea · (∂ceb) = Γd
aced · eb + eaΓd

bced = (3.38)

= Γd
acgdb + Γd

bcgad . (3.39)

We obtain two equivalent expression by a cyclic permutation of the indices {a, b, c},

∂bgca = Γd
cbgda + Γd

abgcd
✿✿✿✿✿

(3.40)

∂agbc = Γd
bagdc

✿✿✿✿✿

+ Γd
cagbd . (3.41)

We add the first two terms and subtract the last one. Assuming additionally the symmetries
Γa
bc = Γa

cb and gab = gba, all terms except the single-underlined terms cancel, and dividing by
two we obtain

1

2
(∂cgab + ∂bgac − ∂agbc) = Γd

cbgad . (3.42)

Multiplying by gea and relabeling indices gives as final result

Γµ
νλ =

{µ
νλ

}
=

1

2
gµκ(∂νgκλ + ∂λgνκ − ∂κgνλ). (3.43)

This equation defines the Levi-Civita connection (aka Christoffel symbols {abc} aka Rieman-
nian connection): It is the unique connection on a Riemannian manifold which is metric
compatible and torsion-free (i.e. symmetric). Admitting torsion, on the RHS of Eq. (3.43)
three permutations of the torsion tensor T a

bc would appear. Such a connection would be still
be a metric connection, but not torsion-free.

We now check our claim that the connection (3.43) is metric compatible. We define1

Γµνλ = gµκΓ
κ
νλ. (3.44)

Thus Γµνλ is symmetric in the last two indices. Then it follows

Γµνλ =
1

2
(∂νgµλ + ∂λgνµ − ∂µgνλ). (3.45)

Adding 2Γµνλ and 2Γνµλ gives

2(Γµνλ + Γνµλ) = ∂νgµλ + ∂λgνµ − ∂µgνλ

+ ∂µgνλ + ∂λgµν − ∂νgµλ = 2∂λgµν
(3.46)

or
∂λgµν = Γµνλ + Γνµλ . (3.47)

Applying the general rule for covariant derivatives, Eq. (3.37), to the metric,

∇λgµν = ∂λgµν − Γκ
µλgκν − Γκ

νλgµκ = ∂λgµν − Γνµλ − Γµνλ , (3.48)

1We showed that the metric tensor can be used to raise or to lower tensor indices, but the connection Γ is
not a tensor.
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3.3 Covariant derivative and the geodesic equation

and inserting Eq. (3.47) shows that

∇λgµν = ∇λg
µν = 0 . (3.49)

Hence ∇λ commutes with contracting indices,

∇λ(X
µXµ) = ∇λ(gµνX

µXν) = gµν∇λ(X
µXν) (3.50)

and conserves the norm of vectors as announced. Thus the Christoffel symbols are symmetric
and compatible with the metric. These two properties specify uniquely the connection.

Since we can choose for a flat space an Cartesian coordinate system, the connection coef-
ficients are zero and thus ∇µ = ∂µ. This suggests as general rule that physical laws valid in
Minkowski space hold in general relativity, if one replace ordinary derivatives by covariant
ones and ηµν by gµν .

Geodesic equation In flat space, we know that the solution to the equation of motion of a
free particle is a straight line. Such a path is characterised by two properties: it is the shortest
curve between the considered initial and final point, and it is the curve whose tangent vector
remains constant if it is parallel transported along it. Both conditions can be generalised
to curved space and the curves satisfying either one of them are called geodesics. Using
the definition of a geodesic as the “straightest” line on a manifold requires as mathematical
structure only the possibility to parallel transporting a tensor and thus the existence of
an affine connection. In contrast, the concept of an “extremal” (shortest or longest) line
between two points on a manifold relies on the existence of a metric. Requiring that these
two definitions agree fixes uniquely the connection to be used in the covariant derivative.

We start by defining a geodesics as the extremal curve between two points on a manifold.
The Lagrangian of a free particle in Minkowski space, Eq. (2.58), is generalised to a curved
spacetime manifold with the metric tensor gµν by replacing ηµν with gµν (we set alsom = −1),

L = gµν ẋ
µẋν . (3.51)

The Lagrange equations are
d

dτ

∂L

∂(ẋλ)
− ∂L

∂xλ
= 0. (3.52)

Only the metric tensor gµν depends on xµ and thus ∂L/∂xλ = gµν,λẋ
µẋν . Here we also intro-

duced the shorthand notation gµν,λ = ∂λgµν for partial derivatives. Now we use ∂ẋµ/∂ẋν = δµν
and apply the chain rule for gµν(x(σ)), obtaining first

gµν,λẋ
µẋν = 2

d

dτ
(gµλẋ

µ) = 2(gµλ,ν ẋ
µẋν + gµλẍ

µ) (3.53)

and then

gµλẍ
µ +

1

2
(2gµλ,ν − gµν,λ)ẋ

µẋν = 0. (3.54)

Next we rewrite the second term as

2gλµ,ν ẋ
µẋν = (gλµ,ν + gλν,µ)ẋ

µẋν , (3.55)

multiply everything by gκµ and arrive at our desired result,

ẍκ +
1

2
gκλ(gµν,λ + gµλ,ν − gµν,λ)ẋ

µẋν = ẍκ + Γκ
µν ẋ

µẋν = 0 . (3.56)
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t

x

G
C

Figure 3.1: Approximation of a time-like geodesics G by adding zigzaging null curves C.

In the last step, we introduced the Levi–Civita connection.

This result justifies the use of a torsionless connection which is metric compatible: Although
a star consists of a collection of individual particles carrying spin si, its total spin sums up to
zero,

∑
i si ≈, 0, because the si are uncorrelated. Thus we can describe macrosopic matter in

general relativity as a a classical spinless point particle (or fluid, if extended). In such a case,
only the symmetric part of the connection influences the geodesic motion of the considered
system.

Example 3.3: Calculate the Christoffel symbols of the two-dimensional unit sphere S2.
The line-element of the two-dimensional unit sphere S2 is given by ds2 = dϑ2 + sin2 ϑdφ2. A
faster alternative to the definition (3.43) of the Christoffel coefficients is the use of the geodesic
equation: From the Lagrange function L = gabẋ

aẋb = ϑ̇2 + sin2 ϑφ̇2 we find

∂L

∂φ
= 0 ,

d

dt

∂L

∂φ̇
=

d

dt
(2 sin2 ϑφ̇) = 2 sin2 ϑφ̈+ 4 cosϑ sinϑϑ̇φ̇

∂L

∂ϑ
= 2 cosϑ sinϑφ̇2 ,

d

dt

∂L

∂ϑ̇
=

d

dt
(2ϑ̇) = 2ϑ̈

and thus the Lagrange equations are

φ̈+ 2 cotϑϑ̇φ̇ = 0 and ϑ̈− cosϑ sinϑφ̇2 = 0 .

Comparing with the geodesic equation ẍκ + Γκ
µν ẋ

µẋν = 0, we can read off the non-vanishing

Christoffel symbols as Γφ
ϑφ = Γφ

φϑ = cotϑ and Γϑ
φφ = − cosϑ sinϑ. (Note that 2 cotϑ =

Γφ
ϑφ + Γφ

φϑ.)

Let us now show that a time-like geodesic G is a local maximum of the proper-time: We
note first that the path of a light-ray satisfies ds2 = 0, and thus the proper-time along a
light-like geodesics is zero. Next we use that we can approximate G using zig-zaging light-like
paths, as shown in Fig. 3.1 by the red curve C. Increasing the number of these paths, the
approximation becomes arbitrarly precise, but τ(C) = 0 < τ(G). Thus the time-like geodesic
cannot be a minimum of the proper-time. This agrees with our knowledge from Minkwoski
space that an accelerated clock ticks slower than one at rest.
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Parallel transport We say a tensor T is parallel transported along the curve x(σ), if its
components T µ...

ν... stay constant. In flat space, this means simply

d

dσ
T µ...
ν... =

dxα

dσ
∂αT

µ...
ν... = 0. (3.57)

In curved space, we have to replace the normal derivative by a covariant one. We define the
directional covariant derivative along x(σ) as

D

dσ
=

dxα

dσ
∇α. (3.58)

Then a tensor is parallel transported along the curve x(σ), if

D

dσ
T µ...
ν... =

dxα

dσ
∇αT

µ...
ν... = 0. (3.59)

In an inertial system, an alternative definition of a geodesics as the “straightest line” is
the path generated by propagating its tangent vector parallel to itself. The tangent vector
along the path x(σ) is ua = dxa/dσ. Then the requirement (3.59) of parallel transport for ua

becomes
D

dσ

dxc

dσ
=

d2xc

dσ2
+ Γc

ab

dxa

dσ

dxb

dσ
= 0 . (3.60)

Introducing the short-hand ẋα = dxα/dσ, we obtain again the geodesic equation in its usual
form,

ẍσ + Γσ
αβ ẋ

αẋβ = 0 . (3.61)

(But note that for any connection other than the Levi-Civita connection the two definitions
will disagree.)

3.4 Observers and measurements

Observers The world-line xµ(τ) of an observer, or of any massive particle, is time-like:
With this we mean not that xµ as a vector is time-like (a statement not invariant under
translations) but that the distance ds2 between any two points of the world-line is time-
like. Equivalently, the four-velocity uα of a massive particle is a time-like vector. At each
instant, we can choose an instantanous Cartesian inertial frame with the four basis vectors
{eµ(τ)} = {e0(τ),e1(τ),e2(τ),e3(τ)} in which the observer is at rest. Then the time-like
basis vector e0(τ) agrees with the four-velocity uobs of the observer. Moreover, the scalar
product of the basis vectors satisfies eµ · eν = ηµν .

Let us consider first an observer in Minkowski space. An observer at rest measures the
energy ω and the momenta ki for a particle with four-momentum kµ = (ω,k). We can
rewrite these values as tensor equations,

ω = k · e0 = k · uobs and ki = −k · ei, (3.62)

and thus the RHSs are valid also for a moving observer. Going to a curved spacetime, we have
to show that one can introduce an instantanous Cartesian inertial frame at any point—what
is equivalent to introducing Riemannian normal coordinates discussed in the next paragraph.
Thus measuring the energy and momenta of a particle with four-momentum kµ corresponds
mathematically to the projection of kµ on the normalised basis vectors of the instantanous
Cartesian inertial frame carried by the observer.
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3 Basic differential geometry

Example 3.4: Physical angular momentum:
Consider a particle in R

2 with Lagrangian L = 1
2 (ṙ

2 + r2φ̇2). The angle φ is a cyclic coordinate,
and thus the canonically conjugated momentum

pφ =
∂L

∂φ̇
= r2φ̇

is conserved. We can raise the index,

pφ = gφφpφ = φ̇,

and see that pφ agrees with uφ, as it should for a particle with unit mass. Next we ask what
the physical (or measured) angular momentum of the particle is. As discussed, a momentum
measurement by an observer corresponds to a projection of this quantity on an unit basis vector
of its inertial frame. Rescaling the basis, eî = ei/

√
gii, the measured angular momentum follows

as

pφ̂ = pφ̂ = p · eφ̂ = p · eφ
1

r
= pφ

1

r
= rφ̇.

Thus the physical angular momentum pφ̂ = rφ̇ agrees neither with pφ nor with pφ.

Riemannian normal coordinates In a (pseudo-) Riemannian manifold, one can find in each
point P a coordinate system, called (Riemannian) normal or geodesic coordinates, with the
following properties,

g̃ab(P ) = ηab, (3.63a)

∂cg̃ab(P ) = 0, (3.63b)

Γ̃a
bc(P ) = 0. (3.63c)

We proof this assertion by construction. First, we choose new coordinates x̃a centered at P ,

x̃a = xa − xaP +
1

2
Γa

bc(x
b − xbP )(x

c − xcP ). (3.64)

Here Γa
bc are the connection coefficients in P calculated in the original coordinates xa. Then

we differentiate x̃a, obtaining

∂x̃a

∂xd
= δad + Γa

db(x
b − xbP ) . (3.65)

Hence ∂x̃a/∂xd = δad at the point P . Differentiating again, we find

∂2x̃a

∂xd∂xe
= Γa

dbδ
b
e = Γa

de . (3.66)

Inserting these results into the transformation law (3.79) of the connection coefficients, where
we swap in the second term derivatives of x and x̃,

Γ̃a
bc =

∂x̃a

∂xd
∂xf

∂x̃b
∂xg

∂x̃c
Γd

fg −
∂2x̃a

∂xd∂xf
∂xd

∂x̃b
∂xf

∂x̃c
(3.67)

gives
Γ̃a

bc = δad δ
f
b δ

g
c Γ

d
fg − Γa

df δ
d
b δ

f
c = Γa

bc − Γa
bc (3.68)
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3.5 Newtonian gravity as a spacetime phenomenon

or

Γ̃a
de(P ) = 0 . (3.69)

Thus we have found a coordinate system with vanishing connection coefficients at P . By
a linear transformation (that does not affect ∂gab) we can bring finally gab into the form
ηab: As required by the equivalence principle, we can introduce in each spacetime point P a
free-falling coordinate system in which physics is described by the known physical laws in the
absence of gravity.

Note that the introduction of Riemannian normal coordinates is in general only possible, if
the connection is symmetric: Since the antisymmetric part of the connection coefficients, the
torsion, transforms as a tensor, it can not be eliminated by a coordinate change. This implies
not necessarily a contradiction to the equivalence principle, as long as the torsion is properly
generated by source terms in the equations of motion of the matter fields. In particular, the
spin current of fermions leads to non-zero torsion. As the elementary spins in macroscopic
bodys cancel, torsion is in all relevant astrophysical and cosmological applications negligible.
This justifies our choice of a symmetric connection.

Proper distance, area and volume Recall that the n-dimensional volume spanned by n
vectors is given by their determinant. Therefore the n-dimensional volume element dnx
changes by the Jacobian J under a coordinate transformation,

dnx = det(∂xµ/∂x̃σ) dx̃σ = J dnx̃. (3.70)

Taking the determinant of the transformation law of the metric tensor, gij = ∂xk′

∂x̃i
∂xl′

∂x̃j g
′
kl,

implies that det(g) = J2det(g′) = J2, if we start from a normalised basis with det(g′) = 1.
Thus we have to add the factor

√
|g|, where g denotes the determinant of the metric tensor

gµν to obtain an invariant 4-volume element,

V4 =

∫

Ω
d4x
√

|g|. (3.71)

In the case of lower-dimensional integrals which are obtained as slices keeping some coor-
dinates fixed, the latter are omitted forming the determinant g. For instance, the proper
volume V of a 3-space at a fixed time t is obtained as

V3 =

∫
d3x

√
g3, (3.72)

where g3 is the determinant the metric tensor restricted to gij .

3.5 Newtonian gravity as a spacetime phenomenon

Since Newtonian gravity is a special case of Einstein gravity, it should be also possible to
replace the Newtonian gravitational force by a deformation of Minkowski space. We will show
now that the metric describing gravitational effects in the Newtonian limit can be chosen as

ds2 =
(
1 + 2Φ/c2

)
c2dt2 −

(
1− 2Φ/c2

)
dl2. (3.73)
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3 Basic differential geometry

Here, Φ is the Newtonian gravitational potential and dl2 = dx2 + dy2 + dz2 is the Euclidean
line-element. We also kept explicitly factors of c, to facilitate the limit v/c → 0. With this
metric, the action of a point particle becomes

S =

∫ 2

1
ds =

∫ 2

1

dτ

c
=

∫ 2

1
[
(
1 + 2Φ/c2

)
dt2 −

(
1− 2Φ/c2

)
(dx2 + dy2 + dz2)]1/2 (3.74a)

=

∫ 2

1
dt

[
1 +

2Φ

c2
− 1

c2
(
1− 2Φ/c2

)
v2
]1/2

. (3.74b)

Expanding the square root and keeping only terms of order 1/c2, the action becomes

S ≃
∫ 2

1
dt

[
1− 1

c2

(
1

2
v2 −Φ

)]
. (3.75)

The first, constant term does not contribute to the variation δS, so that this action is equiv-
alent to the one using the standard Lagrangian

L =
1

2
mv2 −mΦ = T + V (3.76)

for a non-relativistic particle with mass m and the gravitational potential energy V = mΦ.
Thus the geodesics of the metric (3.73) agree with the classical trajectories in the gravitational
potential Φ. Note also that the coefficient of dl dropped out of Eq. (3.76): Thus an infinite
number of spacetimes leads at lowest order in v/c to the same trajectories of non-relativistic
particles. Such metrics may however imply different trajectories of relativistic particles like
photons.

3.A Appendix: Affine connection and torsion

Our derivation of the covariant derivative ∇aV
b in Eq. (3.33) as the projection of ∂aV onto

the direction eb relied on the existence of a metric to form the scalar product eb · (∂aV ). In
this appendix, we define the more general affine connection. Let us consider how the partial
derivative of a vector field, ∂cX

a, transforms under a change of coordinates,

∂′cX
′a =

∂

∂x′c

(
∂x′a

∂xb
Xb

)
=
∂xd

∂x′c
∂

∂xd

(
∂x′a

∂xb
Xb

)
(3.77a)

=
∂x′a

∂xb
∂xd

∂x′c
∂dX

b +
∂2x′a

∂xb∂xd
∂xd

∂x′c︸ ︷︷ ︸
≡−Γa

bc

Xb . (3.77b)

The first term transforms as desired as a tensor of rank (1,1), while the second term—caused
by the in general non-linear change of the coordinate basis—destroys the tensorial behavior.
If we define a covariant derivative ∇cX

a of a vector Xa by requiring that the result is a tensor,
we should set

∇cX
a = ∂cX

a + Γa
bcX

b . (3.78)

Any n3 quantities Γa
bc transforming as

Γ′a
bc =

∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γd
ef +

∂2xd

∂x′b∂x′c
∂x′a

∂xd
. (3.79)
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3.A Appendix: Affine connection and torsion

are called affine connection. From the transformation law (3.79), it is clear that the inhomo-
geneous term disappears for an antisymmetric combination of the connection coefficients Γ
in the lower indices. Thus this combination forms a tensor which is called torsion,

T a
bc = Γa

bc − Γa
cb . (3.80)

Thus the statemement that the connection is symmetric, Γa
bc = Γa

cb, is equivalent to T
a
bc = 0

and thus invariant.

Problems

3.1 Linearity of Lorentz transformation Show that
spacetime transformations in Minkoswki space are
linear, starting from the general transformation

law

η̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
ηαβ(x).
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4 Schwarzschild solution

In the next three chapters, we investigate the solutions of Einsteins field equation which
describe the gravitational field outside a spherical mass distribution. The metric valid for
a static mass distribution was found by Karl Schwarzschild in 1915, only one month after
the publication of Einstein’s field equation. In this chapter, we will use the Schwarzschild
solution to derive the classical tests of general relativity: the perihelion precession of Mercure,
the deflection of light by the Sun, and the time-delay of radio signals passing the Sun. All these
tests are based on finding the orbits of test particles in the Schwarzschild metric. Similar to the
Newtonian case, deriving such orbits is simplified using the conservation laws of energy and
angular momentum. Therefore we start by deriving the connection between the symmetries
of a curved spacetime and the resulting conservation laws.

4.1 Spacetime symmetries and Killing vector fields

Killing equation A spacetime posseses a symmetry if it looks the same moving from a point
P to a different point P̃ . More precisely, we mean with “looking the same” that the metric
shifted along the vector field ξµ from P to the new point P̃ agrees with original metric at this
point, g̃µν(P̃ ) = gµν(P̃ ). Such a shift is an active coordinate transformation, which should be
not confused with the passive coordinate transformations we usually consider. In the latter
case, we keep the point P fixed and change the coordinates, while we consider in the former
cases two different points.

To simplify the calculations, we restrict ourselves to an infinitesimal shift from P to P̃ ,
described by

x̃µ = xµ + εξµ(xν) +O(ε2). (4.1)

Thus the requirement that the shifted metric and the original metric agree becomes

g̃µν(x) = gµν(x) for all x. (4.2)

Note the difference to the definition of a scalar, φ̃(x̃) = φ(x), where we consider a passive
coordinate transformation. In the latter case, we require that a scalar field has the same value
at a point P which in turn changes coordinates from x to x̃.

We start to connect the two metric tensors in (4.2) using the usual transformation law for
a tensor of rank two under an arbitrary coordinate transformation,

g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x), (4.3)

or, exchanging tilted and untilted quantities,

gµν(x) =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃). (4.4)
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4.1 Spacetime symmetries and Killing vector fields

In order to check the condition (4.2), we have to compare the metric tensors gµν and g̃µν at
the same point. We can connect the metric tensor at two infinitesimally separated points
performing a Taylor expansion,

gµν(x̃) = gµν(x+ εξ) = gµν(x) + εξα∂αgµν(x) +O(ε2). (4.5)

Evaluating the transformation matrices using (4.1) and inserting the Taylor expansion
into (4.2), we obtain

gµν(x) =
∂x̃α

∂xµ
∂x̃β

∂xν
gαβ(x̃) (4.6a)

= (δαµ + ε∂µξ
α)(δβν + ε∂νξ

β) [gαβ(x) + εξρ∂ρgαβ(x)] +O(ε2) (4.6b)

= gµν(x) + ε
[
gαν(x)∂µξ

α + gµβ(x)∂νξ
β + ξρ∂ρgαβ(x)

]
+O(ε2). (4.6c)

Thus the metric is kept invariant, if the condition

δgµν = gµα∂νξ
α + gαν∂µξ

α + ξα∂αgµν = 0 (4.7)

is satisfied. Note that we cannot lower the index of ξα, since ∂µξ
α is not a tensor. We

eleminate instead the metric tensor in the first two terms by differentiating ξµ = gµαξ
α,

obtaining
gµα∂νξ

α = ∂νξµ − ξα∂νgµα. (4.8)

Using this relation twice results in

δgµν = ∂µξν + ∂νξµ + ξα[∂αgµν − ∂µgαν − ∂νgµα]. (4.9)

Next we lower also the index of the third ξα and recall the definition of the Christoffel symbols,

δgµν = ∂µξν + ∂νξµ − ξρg
ρα[∂µgαν + ∂νgµα − ∂αgµν ] (4.10a)

= ∂µξν + ∂νξµ − 2ξρΓ
ρ
µν . (4.10b)

Now we can combine the Christoffel symbols with the partial derivatives into covariant deriva-
tives of the vector field ξ, obtaining the Killing equation1

δgµν = ∇µξν +∇νξµ = 0. (4.11)

Its solutions ξ are the Killing vector fields of the metric. Moving along a Killing vector field,
the metric is kept invariant.

Remark 4.1: Lie derivatives—Since Eq. (4.11) is a tensor equation, the previous Eq. (4.7)
is also invariant under arbitrary coordinate transformations, although it contains only partial
derivatives. The change δgµν along ξµ is a special case of the Lie derivative LξT of a tensor T
of rank two along the vector field ξ,

LξTµν = lim
ε→0

Tµν(x + εξ)− Tµν(x)

ε
= ξα∂αTµν + Tµα∂νξ

α + Tαν∂µξ
α, (4.12)

1This equation is a much stronger constraint than it looks at a first glance: its solutions are uniquely
determined by the equation evaluated at a single point.
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4 Schwarzschild solution

while the Lie derivative of a scalar, a vector and co-vector field are given by

LY φ = Y φ = Y ν∂νφ, (4.13a)

LYX
µ = [Y ,X]µ = Y ν∂νX

µ −Xν∂νX
µ, (4.13b)

LYXµ = Y ν∂νXµ +Xν∂νXµ. (4.13c)

It is a general property of the Lie derivative that the partial derivatives can be exchanged against

covariant derivatives, if the connection is torsion free. Then Eq. (4.12) leads directly to the Killing

equation setting Tµν = gµν .

Example 4.1: Killing vectors of R
3:

Choosing Cartesian coordinates, dl2 = dx2 +dy2 +dz2, makes it obvious that translations corre-
spond to Killing vectors ξ1 = (1, 0, 0), ξ2 = (0, 1, 0), and ξ3 = (0, 0, 1). We find the Killing vectors
describing rotational symmetry by writing for an infinitesimal rotation around, e.g., the z axis,

x′ = cosαx− sinαy ≈ x− αy ,

y′ = sinαx+ cosαy ≈ y + αx ,

z′ = z .

Hence ξz = (−y, x, 0) and ξx, ξy follow by cyclic permutation. One of them, ξz, we could have

also identified by rewriting the line-element in spherical coordinates and noting that dl does not

contain φ dependent terms.

Conserved quantities along geodesics Assume that the metric is independent from one
coordinate, e.g. x0. Then there exists a corresponding Killing vector, ξ = (1, 0, 0, 0), and
x0 is a cyclic coordinate, ∂L/∂x0 = 0. With L = dτ/dσ, the resulting conserved quantity
∂L/∂ẋ0 = const. can be written as

∂L

∂ẋ0
= g0β

dxβ

Ldσ
= g0β

dxβ

dτ
= ξ · u . (4.14)

Hence the quantity ξ ·u is conserved along the solutions xµ(σ) of the Lagrange equation, i.e.
along geodesics.

In the previous case, the coordinates were adapted to the symmetry. In general, the metric
depends on all coordinates, even if there exists Killing vectors. We can check that Eq. (4.11)
leads also in this case to a conservation law, multiplying the equation for geodesic motion,

Duµ

dτ
= 0, (4.15)

first by the Killing vector ξµ and using then Leibniz’s product rule together with the definition
of the absolute derivative (3.58),

ξµ
Duµ

dτ
=

d

dτ
(ξµu

µ)−∇µξνu
µuν = 0. (4.16)

The second term vanishes for a Killing vector field ξµ, because the Killing equation implies
the antisymmetry of ∇µξν . Hence the quantity ξµu

µ is indeed conserved along any geodesics.
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4.2 Schwarzschild metric

Stationary, static and isotropic spacetimes Spacetimes which are of physical interest are
often highly symmetric. For instance, the spacetime around a star is radially symmetric if
the influence of other masses can be neglected. Similarly, the universe is homogeneous and
isotropic, if one averages over sufficiently large scales. These symmetries allow us in turn to
derive exact analytical solutions of the Einstein equation. We define a stationary spacetime
as a spacetime having a time-like Killing vector field. In appropriate coordinates, the metric
tensor is independent of the time coordinate,

ds2 = g00(x)dt
2 + 2g0i(x)dtdx

i + gij(x)dx
idxj . (4.17)

A stationary spacetime is static, if it is invariant under time reversal. Thus the off-diagonal
terms g0i have to vanish, and the metric simplifies to

ds2 = g00(x)dt
2 + gij(x)dx

idxj. (4.18)

An example of a stationary spacetime is the metric around a spherically symmetric mass
distribution which rotates with constant velocity. If the mass distribution is at rest then
the spacetime becomes static. Finally, an isotropic spacetime is invariant under rotations
R ∈ O(3). More precisely, such a spacetime contains three space-like Killing vector fields ξµ

with closed orbits ξµ(σ) which satisfy the commutation relations of the Lie algebra of O(3).
Choosing Cartesian coordinates, the Killing vector fields are ξ0 = 0 and ξi = ωi

jx
j with

ωij = −ωji. For more details see the appendix.

4.2 Schwarzschild metric

In the appendix, we show that the most general metric of an isotropic and static spacetime
can be written as

ds2 = A(r)dt2 −B(r)dr2 − r2(dϑ2 + sin2 ϑdφ2) . (4.19)

Outside a static radial-symmetric mass distribution, the two functions A and B are given in
Schwarzschild coordinates by A = 1/B = 1− 2M/r, or

ds2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2(dϑ2 + sin2 ϑdφ2) . (4.20)

Note that the radial coordinate r should not be interpretated as the distance to the center
of the mass distribution, since the Schwarzschild metric is not valid inside the star. (Or, if
a black hole forms, an event horizon prevents us to measure this distance.) Instead we can
measure r indirectly via the area A = 4πr2 of a sphere around the mass distribution.

The main properties of this metric are
• symmetries: The metric is time-independent and spherically symmetric. Hence two

(out of the four) Killing vectors are ξ = (1, 0, 0, 0) and η = (0, 0, 0, 1), where we order
coordinates as {t, r, ϑ, φ}.

• asymptotically flat: we recover Minkowski space for M/r → 0.

• the metric is diagonal.

• potential singularities at r = 2M and r = 0. The radius 2M is called Schwarzschild
radius and has the value

Rs =
2GM

c2
≃ 3 km

M

M⊙
(4.21)

• For r < Rs, the coordinate t becomes space-like, while r becomes time-like.
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4 Schwarzschild solution

Gravitational redshift According to Eq. (3.62), an observer with four-velocity uobs measures
the frequency

ω = k · uobs (4.22)

of a photon with four-momentum k. For an observer at rest,

uobs · uobs = 1 = gtt(u
t)2 . (4.23)

Hence

uobs = (1− 2M/r)−1/2ξ . (4.24)

Inserting this relation into Eq. (4.22), we find for the frequency measured by an observer at
position r

ω(r) = (1− 2M/r)−1/2ξ · k . (4.25)

Since ξ · k is conserved and ω∞ = ξ · k, we obtain

ω∞ = ω(r)

√
1− 2M

r
. (4.26)

Thus a photon climbing out of the potential wall of the mass M looses energy, in agreement
with the principle of equivalence. Any signal sent towards an observer at infinity by a space-
ship falling towards r = 2M will be more and more redshifted, with ω → 0 for r → 2M .
Thus the sphere at r = 2M is an infinite redshift surface. Such a sphere acts like a membrane
hiding all processes inside from the outside.

If M/r ≪ 1, we can expand the square root. Inserting also G and c, we find

ω∞ ≈ ω(r)

(
1− GM

rc2

)
= ω(r)

(
1− Φ

c2

)
, (4.27)

where Φ is the Newtonian potential. Relativistic corrections become small for Φ/c2 ≪ 1. In
this limit, the Schwarzschild metric becomes

ds2 = (1− 2Φ) dt2 − (1 + 2Φ) dr2 − r2(dϑ2 + sin2 ϑdφ2) . (4.28)

Moreover, in this limit non-linear effects are negligible and the superposition principle is
valid. Thus Φ can include the gravitational potential generated by an arbitrary static mass
distribution. We have already shown in section 3.5 that a particle in this metric indeed follows
the trajectories from classical mechanics.

4.3 Orbits of massive particles

We have discussed the classical Kepler problem in Sec. 2.4. The orbits of massive test
particles in the Schwarzschild metric can be solved using similar methods. In particular, we
derive the famous precession of Mercury’s perihelion.
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4.3 Orbits of massive particles

Radial equation and effective potential for massive particles Spherically symmetry means
that the movement of a test particle is contained in a plane. We choose ϑ = π/2 and uϑ = 0.
We replace in the normalization condition u ·u = 1 written out for the Schwarzschild metric,

1 =

(
1− 2M

r

)(
dt

dτ

)2

−
(
1− 2M

r

)−1(dr

dτ

)2

− r2
(
dφ

dτ

)2

, (4.29)

the velocities ut and ur by the conserved quantities

e ≡ ξ · u =

(
1− 2M

r

)
dt

dτ
(4.30)

l ≡ −η · u = r2 sinϑ2
dφ

dτ
. (4.31)

Setting then A = 1− 2M/r, we find

1 =
e2

A
− 1

A

(
dr

dτ

)2

− l2

r2
. (4.32)

We want to rewrite this equation in a form similar to the energy equation in the Newtonian
case. Multiplying by A/2 makes the dr/dτ term similar to a kinetic energy term. Bringing
also all constant terms on the LHS and calling them E ≡ (e2 − 1)/2, we obtain

E ≡ e2 − 1

2
=

1

2

(
dr

dτ

)2

+ Veff (4.33)

with

Veff = −M
r

+
l2

2r2
− Ml2

r3
= V0 −

Ml2

r3
. (4.34)

Hence the energy2 of a test particle in the Schwarzschild metric can be, as in the Newtonian
case, divided into kinetic energy and potential energy. The latter contains the additional term
Ml2/r3, suppressed by 1/c2, that becomes important at small r.

The asymptotic behavior of Veff for r → 0 and r → ∞ is

Veff(r → ∞) → −M
r

and Veff(r → 0) → −Ml2

r3
, (4.35)

while the potential at the Schwarzschild radius, V (2M) = 1/2, is independent of M .
We determine the extrema of Veff by solving dVeff/dr = 0 and find

r1,2 =
l2

2M

[
1±

√
1− 12M2/l2

]
(4.36)

Hence the potential has no extrema for M/l > 1/
√
12 and is always negative: A particle can

reach r = 0 for small enough but finite angular momentum, in contrast to the Newtonian case.
By the same argument, there exists a last stable orbit at r = 6M , when the two extrema r1
and r2 coincide for l/M =

√
12. The effective potential Veff is shown for various values of l/M

in Fig. 4.1. Reducing l/M the maximum of Veff decreases, until it disappears for
√
12 ≃ 3.46.

Similarly, one sees that for l = 6M indeed only one extremum exist.
The orbits can be classified according the relative size of E and Veff for a given l:

2More precisely, e and l are the energy and the angular momentum per unit mass. Thus the −1 in E
corresponds to the rest mass of the test particle.
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Figure 4.1: The effective potential Veff for various values of l/M as function of distance r/M ,
for two different scales.

• Bound orbit exists for E < 0. Two circular orbits, one stable at the minimum of Veff and
an unstable one at the maximum of Veff ; orbits that oscillate between the two turning
points.

• Scattering orbit exists for E > 0: If E > max{Veff}, the particle hits after a finite time
the singularity r = 0. For 0 < E < max{Veff}, the particle turns at E = max{Veff} and
escapes to r → ∞.

We derive below a differential equation for r(φ), from which the orbits in the Schwarzschild
metric can be calculated. For the lazy student, several webpages exist where such orbits can
be visualised, see e.g. http://www.fourmilab.ch/gravitation/orbits/.

Example 4.2: Maximal accretion efficiency a Schwarzschild black hole:

Black holes are the most efficient energy sources known in astrophysics, converting the “potential

gravitational energy” of infalling particles into heat via an accretion disk. For a Schwarzschild

BH, this efficiency can be calculated as follows: The innermost stable circular orbit is at rc =

3RS = 6M with lc =
√
3RS = 2

√
3M . Evaluating the potential (4.34) at rc, it follows Veff =

−1/6+12/72−12/216 = −1/18. Setting ṙ = 0 in the energy equation (4.33) gives e =
√
1 + 2V =

2
√
2/3, while the particle started with e = 1 at infinity. Thus the fraction of energy released is

f = 1− 2
√
2/3 ≃ 0.06.

Radial infall We consider the free fall of a particle that is at rest at infinity, dt/dτ = 1,
E = 0 and l = 0. The radial equation (4.33) simplifies to

1

2

(
dr

dτ

)2

=
M

r
(4.37)

and can be integrated by separation of variables,

∫ 0

r∗

drr1/2 = ±
√
2M

∫ τ

τ∗

dτ. (4.38)
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Choosing the minus sign appropriate for an infalling particle and τ∗ = 0 as start time results
in

τ =
2r3/2

3
√
2M

. (4.39)

Hence a freely falling particle needs only a finite proper-time to fall from finite r to r = 0.
In particular, it passes the Schwarzschild radius 2M in finite proper time. Moreover, nothing
special happens at r = 2M .

We can answer the same question using the coordinate time t by combining Eqs. (4.30)
[with E = 0 and thus e = 1] and (4.37),

dt

dr
= −

(
2M

r

)−1/2(
1− 2M

r

)−1

. (4.40)

Integrating gives

t− t0 =

∫ r

r0

dr′
(
2M

r′

)−1/2(
1− 2M

r′

)−1

= (4.41)

= −2M

[
−2

3

(
r′

2M

)3/2

− 2

(
r′

2M

)1/2

+ ln

∣∣∣∣∣

√
r′/2M + 1√
r′/2M − 1

∣∣∣∣∣

]r

r0

→ ∞ for r → 2M.

Since the coordinate time t equals the proper-time for an observer at infinity, a freely falling
particle reaches the Schwarzschild radius r = 2M only for t→ ∞ for such an observer.

The last result can be derived immediately for light-rays. Choosing a light-ray in radial
direction with dφ = dϑ = 0, the metric (4.20) simplifies with ds2 = 0 to

dr

dt
= 1− 2M

r
. (4.42)

Thus light travelling towards the star, as seen from the outside, will travel slower and slower
as it comes closer to the Schwarzschild radius r = 2M . The coordinate time is ∝ ln |1−2M/r|
and thus for an observer at infinity the signal will reach r = 2M again only asymptotically
for t→ ∞.

Example 4.3: Two particles fall radially from infinity towards a point mass M , one starting
with e = 1, the other with e = 2. How big is the ratio of their velocities measured by a stationary
observer at r = 6M?
An observer with uobs measure as energy E and velocity v

E = p · uobs =
m√
1− v2

for a particle with four-momentum pµ and mass m. If the observer is stationary, urobs = uϑobs =

uφobs = 0, the normalisation condition uobs · uobs = 1 gives

utobs =

(
1− 2M

r

)−1/2

.

Thus

E = mu · uobs = mgαβu
αuβobs = m

(
1− 2M

r

)1/2

ut =
m√
1− v2

.
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Now we replace ut by the conserved energy,

e =

(
1− 2M

r

)
dt

dτ
=

(
1− 2M

r

)
ut,

to obtain

v(e) =
1

e

(
e2 − 1 +

2M

r

)1/2

.

The ratio of the velocities at r = 6M follows as

v(2)

v(1)
=

1

2

(
4− 1 + 1/3

1− 1 + 1/3

)1/2

=

√
10

2
.

Perihelion precession We follow the same strategy as in the Kepler problem in the Newton-
ian limit, starting from Eq. (4.33) for the Schwarzschild metric,

ṙ2 +
l2

r2
= e2 − 1 +

2M

r
+

2Ml2

r3
. (4.43)

We eliminate first t and introduce then u = 1/r,

(u′)2 + u2 =
e2 − 1

l2
+

2Mu

l2
+ 2Mu3 . (4.44)

We can transform this into a linear differential equation differentiating with respect to φ.
Thereby we eliminate also the constant (e2 − 1)/l2, and dividing3 by 2u′ it follows

u′′ + u =
M

l2
+ 3Mu2 =

GM

l2
+

3GM

c2
u2 . (4.45)

In the last step we reintroduced c and G. Hence we see that the Newtonian limit corresponds
to c → ∞ (“instantaneous interactions”) or v/c → 0 (“static limit”). The latter statement
becomes clear, if one uses the virial theorem: GMu = GM/r ∼ v2.

In most situations, the relativistic correction is tiny. We use therefore perturbation theory
to determine an approximate solution, setting u = u0+δu, where u0 is the Newtonian solution.
Inserting u into Eq. (4.45), we obtain

(δu)′′ + δu =
3(GM)3

c2l4
(u20 + 2u0δu+ δu2) . (4.46)

Here we used that u0 solves the Newtonian equation of motion (2.45). Keeping on the RHS
only the leading term u20 results in

(δu)′′ + δu =
3(GM)3

c2l4
(1 + 2e cosφ+ e2 cos2 φ) . (4.47)

Its solution is

δu =
3(GM)3

c2l4

[
1 + eφ sinφ+ e2

(
1

2
− 1

6
cos(2φ)

)]
. (4.48)

3The case u′ = 0 corresponds to radial infall treated in the previous section.
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4.4 Orbits of photons

Example 4.4: The solution of the linear inhomogenous differential equation (4.47) is found
by adding the particular solutions of the three inhomogenous terms. With A,B and C being
constants, it is

u′′ + u = A ⇒ u = A, (4.49)

u′′ + u = B cosφ ⇒ u =
1

2
Bφ sinφ, (4.50)

u′′ + u = C cos2 φ ⇒ u =
1

2
C − 1

6
C cos(2φ). (4.51)

While the first and third term in the square bracket lead only to extremely tiny changes
in the orbital parameters, the second term is linear in φ and its effect accumulates therefore
with time. Thus we include only δu ∝ eφ sinφ in the approximate solution. Introducing
α = 3(GM)2/(cl)2 ≪ 1 and employing

cos[φ(1 − α)] = cosφ cos(αφ) + sinφ sin(αφ) ≃ cosφ+ αφ sinφ, (4.52)

we find

u = u0 + δu ≃ GM

l2
[1 + e(cosφ+ αφ sinφ)] ≃ GM

l2
[1 + e cos(φ(1− α))] . (4.53)

Hence the period is 2π/(1 − α), and the ellipse processes with

∆φ =
2π

1− α
− 2π ≃ 2πα =

6π(GM)2

(lc)2
=

6πGM

a(1− e2)c2
. (4.54)

The effect increases for orbits with small major axis a and large eccentricity e. Urbain Le
Verrier first recognized in 1859 that the precession of the Mercury’s perihelion deviates from
the Newtonian predicition: Perturbations by other planets lead to ∆φ = 532.3′′/century,
compared to the observed value of ∆φ = 574.1′′/century. The main part of the discrepancy
is explaind by the effect of Eq. (4.54), predicting a shift of ∆φ = 43.0′′/century. (Tiny
additional corrections are induced by the quadrupole moment of the Sun (0.02′′/century) and
the Lense-Thirring effect (−0.002′′/century)).

4.4 Orbits of photons

We repeat the discussion of geodesics for massive particle for massless ones by changing
u · u = 1 into u · u = 0 and by using an affine parameter λ instead of the proper-time τ .
Reordering gives

1

b2
≡ e2

l2
=

1

l2

(
dr

dλ

)2

+Weff (4.55)

with the impact parameter b = |l/e| and

Weff =
1

r2

(
1− 2M

r

)
. (4.56)

The radial equation (4.55) is invariant under reparametrisations of the affine parameter,
λ→ Aλ+B, since the change cancels both in b and ldλ. Consequently, the orbit of a photon
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4 Schwarzschild solution

does not depend seperately on the energy e and the angular momentum l, but only on the
impact parameter b of the photon.

The maximum of Weff is at 3M with height 1/27M2. For impact parameters b > b0 =
3
√
3M , photon orbits have a turning point and photons escape to infinity. For b < b0, they

hit r = 0, while for b = b0 a (unstable) circular orbit is possible. Thus the absorption cross
section of a point mass M for massless particles is σ = πb20 = 27πM2.

Light deflection We transform Eq. (4.55) as in the m > 0 case into a differential equation
for u(φ). For small deflections, we use again perturbation theory. In zeroth order in v/c, we
can set the RHS of

u′′ + u =
3GM

c2
u2 (4.57)

to zero. The solution u0 is a straight line,

u0 =
sinφ

b
. (4.58)

For large r, it is φ ≃ b/r.

Inserting u = u0 + δu gives

(δu)′′ + δu =
3GM

c2
sin2 φ

b2
. (4.59)

A particular solution is

δu =
3GM

2c2b2
(1 + 1/3 cos(2φ)) . (4.60)

Thus the complete approximate solution is

u = u0 + δu =
sinφ

b
+

3GM

2c2b2
(1 + 1/3 cos(2φ)) . (4.61)

Considering the limit r → ∞ or u→ 0 of this equation gives half of the deflection angle of a
light-ray with impact parameter b to a point mass M ,

∆φ =
4GM

c2b
=

2Rs

b
. (4.62)

For a light-ray grazing the Solar surface, b = R⊙, we obtain as numerical estimate

∆φ⊙ =
4GM⊙

c2R⊙
=

2Rs

R⊙
≃ 10−5 ≈ 2′′ . (4.63)

For a recollection of the 1919 results see https://arxiv.org/abs/2010.13744.

Shapiro effect Shapiro suggested to use the time-delay of a radar signal as test of general
relativity. Suppose we send a radar signal from the Earth to Venus where it is reflected back
to Earth. The point r0 of closest approach to the Sun is characterized by dr/dt|r0 = 0.

Rewriting Eq. (4.55) as

ṙ2 +
l2

r2

(
1− 2M

r

)
= e2 (4.64)
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and introducing the Killing vector e in ṙ2,

ṙ2 =

(
dr

dt

dt

dλ

)2

=
e2

(1− 2M/r)2

(
dr

dt

)2

, (4.65)

we find
1

(1− 2M/r)3

(
dr

dt

)2

+
l2

e2r2
− 1

1− 2M/r
= 0 . (4.66)

We now evaluate this equation at the point of closest approach, i.e. for dr/dt|r0 = 0,

l2

e2
=

r20
1− 2M/r0

, (4.67)

and use this equation to eliminate l2/e2 in (4.66). Then we obtain

dr

dt
=

(
1− 2M

r

)[
1− r20(1− 2M/r)

r2(1− 2M/r0)

]1/2
(4.68)

or

t(r, r0) =

∫ r

r0

dr

1− 2M/r

[
1− r20(1− 2M/r)

r2(1− 2M/r0)

]−1/2

. (4.69)

Next we expand this expression in M/r ≪ 1,

t(r, r0) =

∫ r

r0

dr
r

(r2 − r20)
1/2

[
1− 2M)

r
+

Mr0
r(r + r0)

]
(4.70)

=
(r2 − r20)

1/2

c
+

2GM

c3
ln

[
r + (r2 − r20)

1/2

r0

]
+
GM

c3

(
r − r0
r + r0

)1/2

, (4.71)

where we restored also G and c in the last step. The first term corresponds to straight line
propagation and thus the excess time ∆t is given by the second and third term. Finally, we
can use that the orbits both of Earth and Venus are much more distant from the Sun than
the point of closest approach, RE , RV ≫ r0. Hence we obtain for the time delay

∆t =
4GM

c3

[
ln

(
4RERV

r20

)
+ 1

]
. (4.72)

In Fig. 4.2, one of the first measurements of the Shapiro time-delay is shown together with
the prediction using Eq. (4.72); an excellent agreement is visible.

4.5 Post-Newtonian parameters

In order to search for deviations from general relativity one uses the post-Newtonian ap-
proximation, i.e. an expansion around Minkowski space. Any spherically symmetric, static
spacetime can be expressed as

ds2 = A(r)dt2 −B(r)dr2 − r2(dϑ2 + sin2 ϑdφ2) (4.73)
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Figure 4.2: Measurement of the Shapiro time-delay compared to the prediction in GR.

with two unknown functions A(r) and B(r). Since the only available length is Rg = GM/c2,
A and B can be expanded as power series in Rg/r ≪ 1,

A(r) = 1 + a1Rg/r + a2(Rg/r)
2 + . . . = 1− 2GM

c2r
+ 2(β − γ)

(
2GM

c2r

)2

. . . (4.74)

B(r) = 1 + b1Rg/r + b2(Rg/r)
2 + . . . = 1 + γ

2GM

c2r
+ . . . (4.75)

Agreement with Newtonian gravity is achieved for A = 1− 2GM/(rc2) and B = 1. Searching
for deviations from GR, one keeps therefore a1 = 2 fixed and introduces the “post-Newtonian”
parameter β and γ such that agreement with Einstein gravity is achieved for γ = 1 and
β = 1. The predictions for the three classical tests of GR we have discussed can be redone
using the metric (4.74). Alternative theories of gravity predict the numerical values of the
post-Newtonian parameters and can thereby easily compared to experimental results.

4.A Appendix: General stationary spherically symmetric metric

The general form of a stationary isotropic metric in coordinates which are adopted to these
symmetries could be easily guessed. Since in more complicated case this may not be possible,
we start instead from the Killing equation as illustratation of the more general approach.

Killing equation An isotropic spacetime admits three space-like Killing vector fields satis-
fying ξi = ωijxj with ωij = −ωji and ξ0 = 0. Considering now

δg00 = εijxj∂ig00 = 0 (4.76)

or
xi∂jg00 = xj∂ig00 (4.77)
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or g00 = g00(t, r). Evaluating δg0i results in

g0iω
i
j + (∂ig0j)ω

ikxk = 0 (4.78)

showing that
g0idx

idt = a(r, t)xidx
idt = f(r, t)drdt. (4.79)

Finally, evaluating δgij results in

gikω
k
j + gkjω

k
i + (∂kgij)ω

klxl = 0 (4.80)

and
gijdx

idxj = (b(t, r)δij + c(t, r)xixj)dx
idxj (4.81)

Introducing spherical coordinates such that r2 ≡ x · x, x · dx = rdr, it follows

ds2 = A(t, r)dt2 −B(t, r)dtdr− C(t, r)dr2 −D(t, r)dΩ (4.82)

A stationary spacetime has a time-like Killing vector field which we can choose as ξµ =
(1, 0, 0, 0). Inserting this vector into the Killing equation (4.7) results in

δgµν = ξα∂αgµν = ∂0gµν = 0. (4.83)

Thus all components of the metric tensor, i.e. the function A,B,C and D, are independent
of the time t.

Symmetry of the line-element We can guess also directly this form of the line-element:
Isotropy requires that line-element depends in addition to t only on r2 ≡ x · x, dx · x,
and dx · dx, Introducing spherical coordinates, r2 ≡ x · x, x · dx = rdr and dx · dx =
dr2 + r2(dϑ2 + sin2 ϑdφ2), it is

ds2 = A(r)dt2 −B(r)dtdr− C(r)dr2 −D(r)dΩ. (4.84)

We can eliminate the function D(r) by the rescaling r2 → Dr2. Next we want to cancel
B(t, r)dtdr. We set

dt̃ = Φ(t, r)

[
A(t, r)dt− 1

2
B(t, r)dr

]
, (4.85)

where Φ(t, r) is the integrating factor which makes dt an exact differential. Squaring

dt̃2 = Φ2

[
A2dt2 −ABdtdr +

1

4
B2dr2

]
(4.86)

or

Adt2 −Bdtdr =
dt̃2

AΦ2
− B2

4A
dr2 (4.87)

Setting now A = 1/(AΦ2) and B = C +B2/(4A), we obtain

ds2 = A(t, r)dt2 −B(t, r)dr2 − r2dΩ. (4.88)

A general isotropic metric depends therefore only on two independent functions of t and r.
A stationary spacetime has a time-like Killing vector field. In appropriate coordinates, the
metric tensor is therefore independent of the time coordinate t,

ds2 = g00(x)dt
2 + 2g0i(x)dtdx

i + gij(x)dx
idxj . (4.89)

We can therefore set A(t, r) → A(r) and B(t, r) → B(r). Then the metric satisfies automati-
cally ds2(−t) = ds2(t), and thence is static.
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Further reading For more on Killing vectors see [5].
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5 *** Gravitational lensing ***

One distinguishes three different cases of gravitational lensing, depending on the strength
of the lensing effect:

1. Strong lensing occurs when the lens is very massive and the source is close to it: In
this case light can take different paths to the observer and more than one image of
the source will appear, either as multiple images or deformed arcs of a source. In the
extreme case that a point-like source, lens and observer are aligned the image forms an
“Einstein ring”; if they ar close to be aligned, pairs of lensed images appear as arcs, cf.
with Fig. 5.2.

2. Weak Lensing: In many cases the lens is not strong enough that multiple images or
arcs are visible. However, the source can still be distorted and its image may be both
stretched (shear) and magnified (convergence). If the sources were well known in size
and shape, one could just use the shear and convergence to deduce the properties of the
lens.

3. Microlensing: The source cannot be resolved and one observes only a point-like image.
However, the additional light bent towards the observer leads to a brightening of the
source. Thus microlensing is only observable as a transient phenomenon, when the lens
crosses approximately the axis observer-source.

Lens equation We consider the simplest case of a point-like mass M , the lens, between the
observer O and the source S as shown in Fig. 5.1. The angle β denotes the (unobservable)
angle between the true position of the source and the direction to the lens, while ϑ± are the
angles between the image positions and the source. The corresponding distances DOS, DOL,
and DLS are also depicted in Fig. 5.1 and, since DOS+DLS = DOL does not hold in cosmology,
we keep all three distances. Finally, the impact parameter b is as usual the smallest distance
between the light-ray and the lens.

Then the lens equation in the “thin lens” (b ≪ Di) and weak deflection (α ≪ 1) limit
follows from AS + SB = AB as

βDos + αDls = ϑDos. (5.1)

The thin lens approximation implies ϑ ≪ 1, and since β < ϑ, also β is small. Solving for β
and inserting for the deflection angle α = 4GM/(c2b) as well as b = ϑDol, we find first

β = ϑ− 4GM

c2
Dls

DosDol

1

ϑ
. (5.2)

Multiplying then by ϑ, we obtain a quadratic equation for ϑ,

ϑ2 − βϑ− ϑ2E = 0 , (5.3)
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⑦
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Dsl Dlo
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A

B

Figure 5.1: The source S that is off the optical axis OL by the angle β appears as two images
on opposite sides from the optical axis OL. The two images are separated by the
angles ϑ± from the optical axis O.

where we introduced the Einstein angle

ϑE =

(
2RS

Dls

DosDol

)1/2

. (5.4)

The two images of the source are deflected by the angles

ϑ± =
1

2
[β ± (β2 + 4ϑ2E)

1/2] (5.5)

from the line-of-sight to the lens. If we do not know the lens location, measuring the separation
of two lenses images, ϑ++ϑ−, provides only an upper bound on the lens mass. If observer, lens
and source are aligned, then symmetry implies that ϑ+ = ϑ− = ϑE , i.e. the image becomes
a circle with radius ϑE. Deviations from this perfectly symmetric situations break the circle
into arcs as shown in an image of the galaxy cluster Abell 2218 in Fig. 5.2.

For a numerical estimate of the Einstein angle in case of a stellar object in our own galaxy,
we set M =M⊙ and Dls/Dos ≈ 1/2 and obtain

ϑE = 0.64′′ × 10−4

(
M

M⊙

Dol

10 kpc

)1/2

. (5.6)

The numerical value of order 10−4 of an arc-second for the deflection led to the name “mi-
crolensing.”

Magnification Without scattering or absorption of photons, the conservation of photon
number implies that the intensity along the trajectory of a light-ray stays constant, 1

2

h3
f(x,p) =

dN

d3xd3p
=

dN

dA dt dΩ dE
=

I

hcp2
. (5.7)

1We define here intensity as connected to the energy flux F , while often the particle flux is used.
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Figure 5.2: Gravitational lensing of the galaxy cluster Abell 2218.

Thus the observed intensity I equals the surface brightness B of the source.
Gravity can affect this result in two ways: First, gravity can redshift the frequency of

photons, νsr = νobs(1 + z). This can be either the gravitational redshift as in Sec. 4.2 or a
cosmological redshift due to the expansion of the universe (that will be discussed in Sec. 11.2).
Thus the intensity Iobs at the observed frequency photons νobs is the emitted intensity eval-
uated at νsr = νobs(1 + z) and reduced by (1 + z)3,

Iobs(νobs) =
I(νsr)

(1 + z)3
. (5.8)

In both cases, this redshift depends only on the initial and the final point of the photon
trajectory, but not on the actual path in-between. Thus the redshift cancels if one considers
the relative magnification of a source by gravitational lensing.

Second, gravitational lensing affects the solid angle the source is seen in a detector of fixed
size. As a result, the apparent brightness of a source increases proportionally to the increase
of the visible solid angle, if the source cannot be resolved as a extended object. Hence we
can compute the magnification of a source by calculating the ratio of the solid angle visible
without and with lensing.

In Fig. 5.3, we sketch how the two lensed images are stretched: An infinitesimal small
surface element 2π sin βdβdφ ≈ 2πβdβdφ of the unlensed source becomes in the lense plane
2πϑ±dϑ±dφ. Thus the images are tangentially stretched by ϑ±/β, while the radial size is
changed by dϑ±/dβ. Thus the magnification a± of the source is

a± =

∣∣∣∣
ϑ±dϑ±
βdβ

∣∣∣∣ . (5.9)

Differentiating Eq. (5.5) gives

dϑ±
dβ

=
1

2

[
1± β

(β2 + 4ϑ2E)
1/2

]
=

1

2

[
1± 1

(1 + 4x2)1/2

]
, (5.10)
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ϑ−

ϑ+β

Figure 5.3: The effect of gravitational lensing on the shape of an extended source: The surface
element 2πβdβdφ of the unlensed image at position β is transformed into the two
lensed images of size 2πϑ±dϑ±dφ at position ϑ±.

where we introduced x = ϑE/β. Thus the magnification of the two images becomes

a± =
1

4

∣∣∣∣
[
2± (1 + 4x2)1/2 ± 1

(1 + 4x2)1/2

]∣∣∣∣ . (5.11)

Since y + 1/y ≥ 2, we have to choose the over-all sign of the expression in the bracket such
that atot = y + 1/y ± 2. Then the total magnification is

atot = a+ + a− =
1

2

[
(1 + 4x2)1/2 +

1

(1 + 4x2)1/2

]
. (5.12)

For large separation x, the magnification atot goes to one, while the magnification diverges for
x → 0 as atot ∼ 1/x: In this limit we would receive light from an infinite number of images
on the Einstein circle. Physically, the approximation of a point source breaks down when x
reaches the extension of the source. Since atot is larger than one, gravitational lensing always
increases the total flux observed from a lensed source, facilitating the observation of very faint
objects. As compensation, the source appears slightly dimmed to all those observers who do
not see the source lensed.

Two important applications of gravitational lensing are the search for dark matter in the
form of black holes or brown dwarfs in our own galaxy by microlensing and the determination
of the value of the cosmological constant by weak lensing observations.

In microlensing experiments that have tried to detect dark matter in the form of MACHOs
(black holes, brown dwarfs,. . . ) one observed stars of the LMC. If a MACHO with speed
v ≈ 220 km/s moves through the line-of-sight of a monitored star, its light-curve is magnified
temporally. If v is the perpendicular velocity of the source,

β(t) =

[
β20 +

v2

D2
ol

(t− t0)
2

]1/2
(5.13)
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The magnification a(t) is symmetric around t0 and its shape can be determined inserting
typical values for Dol and the MACHO mass.

More about lensing in Ref. [3].
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A black hole is a solution of Einstein’s equations containing a physical singularity which
in turn is covered by an event horizon. Such a horizon acts classically as a perfect unidirec-
tional membrane which any causal influence can cross only towards the singularity. A real
understanding of the physical significance of the singularities contained in the solution was
obtained only in the 1960s.

Apart from the Schwarzschild solution valid for a static, uncharged black hole, we will
examine also the Kerr solution for a rotating, and (very briefly) the solution for a charged
black hole.

6.1 Schwarzschild black hole

Our main aim in this section to obtain a better understanding of the meaning of the
hypersurface r = 2M in the Schwarzschild metric. This requires to find new coordinates which
are non-singular at r = 2M . In addition, these coordinates should facilitate the understanding
of the causal structure of the spacetime. In the case of the Schwarzschild black hole, we would
like to transform the two-dimensional subspace {t, r} to new coordinates {T,R} which are
regular for R > 0 and conformally flat. We start this enterprise with few definitions.

Conformal flatness A conformal transformation of the metric,

gµν(x) → g̃µν(x) = Ω2(x)gµν(x). (6.1)

changes distances, but keeps angles invariant. Thus the causal structure of two conformally
related spacetimes is identical. A spacetime is called conformally flat if it is connected by a
conformal transformation to Minkowski space,

gµν(x) = Ω2(x)ηµν(x) = e2ω(x)ηµν(x). (6.2)

In particular, light-rays also propagate in conformally flat spacetimes along straight lines
at ±45 degrees to the time axis. In the appendix 6.B, we show that any two-dimensional
manifold is conformally flat.

Hypersurfaces We can define a three-dimensional hypersurface H by imposing a constraint,
f(xµ) = a, on the spacetime coordinates xµ. For two infinitesimally separated points in such
a hypersurface, P (xµ) and Q(xµ + dxµ), we can expand the constraint as

a = f(xµ + dxµ) = f(xµ) +
∂f

∂xµ
dxµ. (6.3)

Subtracting then a = f(xµ), we obtain

0 =
∂f

∂xµ
dxµ = ∇µfdx

µ. (6.4)
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6.1 Schwarzschild black hole

This equation defines the gradient nµ = ∂µf . Because of

0 = nµdx
µ = gµνn

µdxν , (6.5)

we see that nµ is orthogonal to dxν which in turn lies in H. Thus the 1-form nµ is normal to
the hypersurface H.

Horizons We define an event horizon as a three-dimensional hypersurface which limits a
region of a spacetime which can never influence an observer. The event horizon is formed
by light-rays and is therefore a null surface. Hence we require that at each point of such
a surface defined by f(xµ) = 0 a null tangent vector nµ exists that is orthogonal to two
space-like tangent vectors. The normal nµ to this surface is parallel to the gradient along the
surface, nµ = h∇µf = h∂µf , where h is an arbitrary non-zero function. From

0 = nµn
µ = gµνn

µnν (6.6)

we see that the line element vanishes on the horizon, ds = 0. Hence the (future) light-cones
at each point of an event horizon are tangential to the horizon. The normal n to this surface
is parallel to the gradient along the surface, na = ∇af = ∂af . From

0 = nan
a = gabnanb = gabna∂bf . (6.7)

and df = nadx
a = 0 we see that the normal vector is parallel to dxa and thus lies inside the

surface. In a stationary, axisymmetric spacetime the general equation of a surface, f(xµ) = 0,
simplifies to f(r, ϑ) = 0. The condition for a null surface becomes

0 = gµν(∂µf)(∂νf) = grr(∂rf)
2 + gϑϑ(∂ϑf)

2. (6.8)

Example 6.5: normal in,outside space/timelike in Minkowski space.

Eddington–Finkelstein coordinates We next try to find new coordinates which are regular
at r = 2M and valid in the whole range 0 < r < ∞. Such a coordinate transformation
has to be singular at r = 2M , otherwise we cannot hope to cancel the singularity present in
the Schwarzschild coordinates. We can eliminate the troublesome factor grr = (1− 2M/r)−1

introducing a new radial coordinate r∗ defined by

dr∗ =
dr

1− 2M
r

. (6.9)

Integrating (6.9) results in

r∗(r) = r + 2M ln
∣∣∣
r

2M
− 1
∣∣∣+A, (6.10)

with A ≡ −2Ma as integration constant. The coordinate r∗(r) is often called tortoise co-
ordinate, because r∗(r) changes only logarithmically close to the horizon. This coordinate
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6 Black holes

change maps the range r ∈ [2M,∞] of the radial coordinate onto r∗ ∈ [−∞,∞]. A radial null
geodesics satisfies d(t± r∗) = 0, and thus in- and out-going light-rays are given by

ũ ≡ t− r∗ = t− r − 2M ln
∣∣∣
r

2M
− 1
∣∣∣−A, outgoing rays, (6.11)

ṽ ≡ t+ r∗ = t+ r + 2M ln
∣∣∣
r

2M
− 1
∣∣∣+A, ingoing rays. (6.12)

For r > 2M , Eq. (4.42) implies that dr/dt > 0 so that r increases with t. Therefore (6.11)
describes outgoing light-rays, while (6.12) corresponds to ingoing light-rays for r > 2M .

We can extend now the Schwarzschild metric using as coordinate the “advanced time pa-
rameter ṽ” instead of t. Forming the differential,

dṽ = dt+ dr +
( r

2M
− 1
)−1

dr = dt+

(
1− 2M

r

)−1

dr, (6.13)

we can eliminate dt from the Schwarzschild metric and find

ds2 =

(
1− 2M

r

)
dṽ2 − 2dṽdr − r2dΩ. (6.14)

This metric was found first by Eddington and was later rediscovered by Finkelstein. Although
gṽṽ vanishes at r = 2M , the determinant g = r4 sin2 ϑ is non-zero at the horizon and thus
the metric is invertible. Moreover, r∗ was defined by (6.10) initially only for r > 2M , but we
can use this definition also for r < 2M , arriving at the same expression (6.14). Therefore,
the metric using the advanced time parameter ṽ is regular at 2M and valid for all r > 0. We
can view this metric hence as an extension of the r > 2M part of the Schwarzschild solution,
similar to the process of analytic continuation of complex functions. The price we have to
pay for a non-zero determinant at r = 2M are non-diagonal terms in the metric. As a result,
the spacetime described by (6.14) is not symmetric under the exchange t → −t. We will see
shortly the consequences of this asymmetry.

We now study the behaviour of radial light-rays, which are determined by ds2 = 0 and
dφ = dϑ = 0. Thus radial light-rays satisfy Adṽ2 − 2dṽdr = 0, which is trivially solved by
ingoing light-rays, dṽ = 0 and thus ṽ = const. The solutions for dṽ 6= 0 are given by (6.12).
Additionally, the horizon r = 2M which is formed by stationary light-rays satisfies ds2 = 0.
In order to draw a spacetime diagram, it is more convenient to replace the light-like coordinate
ṽ by a new time-like coordinate. We show in the left panel of Fig. 6.1 geodesics using as new
time coordinate t̃ = ṽ − r. Then the ingoing light-rays are straight lines at 45◦ to the r axis.
Radial light-rays which are outgoing for r > 2M and ingoing for r < 2M follow Eq. (6.12).
A few future light-cones are indicated: they are formed by the intersection of light-rays, and
they tilt towards r = 0 as they approach the horizon. At r = 2M , one light-ray forming the
light-cone becomes stationary and part of the horizon, while the remaining part of the cone
lies completely inside the horizon.

Let us now discuss how Fig. 6.1 would look like using the retarded Eddington–Finkelstein
coordinate ũ. Then the outgoing radial null geodesics are straight lines at 45◦. They start
from the singularity, crossing smoothly r = 2M and continue to spatial infinity. Such a
situation, where the singularity is not covered by an event horizon is called a “white hole”.
The cosmic censorship hypothesis postulates that singularities formed in gravitational collapse
are always covered by event horizons. This implies that the time-invariance of the Einstein
equations is broken by its solutions. In particular, only the BH solution using the retarded
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6.1 Schwarzschild black hole

a
b

Figure 6.1: Left: The Schwarzschild spacetime using advanced Eddington–Finkelstein coor-
dinates; the singularity is shown by a zigzag line, the horizon by a thick line and
geodesics by thin lines. Right: Collapse of a star modelled by pressureless matter;
dashes lines show geodesics, the thin solid line encompasses the collapsing stellar
surface.

Eddington–Finkelstein coordinates should be realised by nature—otherwise we should expect
causality to be violated. This behaviour may be compared to classical electrodynamics,
where all solutions of the wave equation are described by the retarded Green function, while
the advanced Green function seems to have no relevance.

Collapse to a BH After a star has consumed its nuclear fuel, gravity can be balanced only
by the Fermi degeneracy pressure of its constituents. Increasing the total mass of the star
remnant, the stellar EoS is driven towards the relativistic regime until the star becomes
unstable. As a result, the collapse of its core to a BH seems to be inevitable for a sufficiently
heavy star.

Let us consider a toy model for such a gravitational collapse. We describe the star by
a spherically symmetric cloud of pressureless matter. While the assumption of negligible
pressure is unrealistic, it implies that particles at the surface of the star follow radial geodesics
in the Schwarzschild spacetime. Thus we do not have to bother about the interior solution
of the star, where Tµν 6= 0 and our vacuum solution does not apply. In advanced Eddington–
Finkelstein coordinates, the collapse is schematically shown in the right panel of Fig. 6.1.
At the end of the collapse, a stationary Schwarzschild BH has formed. Note that in our toy
model the event horizon forms before the singularity, as required by the cosmic censorship
hypothesis. The horizon grows from r = 0 following the light-like geodesic a shown by the
thin black line until it reaches its final size Rs = 2M . What happens if we drop a lump
of matter δM on a radial geodesics into the BH? Since we do not add angular momentum
to the BH, the final stage is, according to the Birkhoff’s theorem, still a Schwarzschild BH.
All deviations from spherical symmetry corresponding to gradient energy in the intermediate
regime are being radiated away as gravitational waves. Thus in the final stage, the only
change is an increase of the horizon, size Rs → 2(M + δM). Therefore some light-rays (e.g. b)
which we expected to escape to spatial infinity will be trapped. Similarly, light-ray a, which
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6 Black holes

we thought to form the horizon, will be deflected by the increased gravitational attraction
towards the singularity. In essence, knowing only the spacetime up to a fixed time t, we
are not able to decide which light-rays form the horizon. The event horizon of a black hole
is a global property of the spacetime: It is not only independent of the observer but also
influenced by the complete spacetime.

How does the stellar collapse looks like for an observer at large distances? Let us assume
that the observer uses a neutrino detector and is able to measure the neutrino luminosity
Lν(r) = dEν/dt = Nνων/dt emitted by a shell of stellar material at radius r. In order to
determine the luminosity Lν(r), we have to connect the radial coordinate r of the shell and
the emission time t. Using in Eq. (4.41), the leading term for r → 2M gives

√
r/2M + 1√
r/2M − 1

= e−(t−t0)/2M (6.15)

or
r

2M
− 1 ∝ e−(t−t0)/4M . (6.16)

For an observer at large distance r0, the time difference between two pulses sent by a shell
falling into a BH increases thus exponentially with the characteristic time scale τ = 4M for
r → 2M . As a result the energy ων of an individual neutrino is also exponentially redshifted

ων(r) = ων(r0)e
−(t−t0)/4M . (6.17)

A more detailed analysis confirms the expectation that then also the luminosity decreases
exponentially. Thus an observer at infinity will not see shells which slow down logarithmically
as they fall towards r → 2M , as suggested by Eq. (4.41). Instead the signal emitted by the
shell will fade away exponentially, with the short characteristic time scale ofM =MtPl/MPl ≈
10−5 s for a stellar-size BH.

Remark 6.2: Singularity theorems: The collapse of a star within GR was first discused
by Oppenheimer and Synder 1936: They concluded that “. . . The star thus tends to close
itself off from any communication with a distant observer; only its gravitational field persists.”
However, the predominant attitude was that the appearance of singularities is an artefact of the
assumed spherical collapse. Only after the first hints for the existence of supermassive black
holes (discovery of quasars 1963), the general attitude changed.
But how to tackle the non-spherical problem? Penrose introduced the concept of a trapped
surface, i.e. a closed space-like two-dimensional surface for which both the in- and out-going
lightrays are converging. He could prove the following theorem:
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6.1 Schwarzschild black hole

Assume a spacetime allows for a well-posed initial value problem. Then a future
incomplete light-path exists, if it contains a closed future-trapped surface, and if the
matter is “normal”. (For a definition of “normal” matter see remark 8.4.)

Since the theorem relies on topology, its conclusion is stable under perturbations; Moreover, it is

well suited for studies in numerical relativity.

Kruskal coordinates We have been able to extend the Schwarzschild solution into two dif-
ferent branches; a BH solution using the advanced time parameter ṽ and a white hole solution
using the retarded time parameter ũ. The analogy with the analytic continuation of complex
functions leads naturally to the question of whether we can combine these two branches into
one common solution. Moreover, our experience with the Rindler metric suggests that an
event horizon where energies are exponentially redshifted implies the emission of a thermal
spectrum. If true, our BH would not be black after all. One way to test this suggestion is to
relate the vacua as defined by different observers via a Bogolyubov transformation. In order
to simplify this process, we would like to find new coordinates for which the Schwarzschild
spacetime is conformally flat.

An obvious attempt to proceed is to use both the advanced and the retarded time param-
eters. For most of our discussion, it is sufficient to concentrate on the t, r coordinates in the
line element ds2 = ds̄2 + r2dΩ, and to neglect the angular dependence from the r2dΩ part.
We start by eliminating r in favour of r∗,

ds̄2 =

(
1− 2M

r(r∗)

)
(dt2 − dr∗2), (6.18)

where r has to be expressed through r∗. This metric is conformally flat but the definition
of r(r∗) on the horizon contains the ill-defined factor ln(2m/r − 1). Clearly, a new set of
coordinates where this factor is exponentiated is what we are seeking.

This is achieved introducing both Eddington–Finkelstein parameters,

ũ = t− r∗, ṽ = t+ r∗, (6.19)

for which the metric simplifies to

ds̄2 =

(
1− 2M

r(ũ, ṽ)

)
dũdṽ. (6.20)

From (6.10) and (6.19), it follows

ṽ − ũ

2
= r∗(r) = r + 2M ln

∣∣∣
r

2M
− 1
∣∣∣− 2Ma, (6.21)

or

1− 2M

r
=

2M

r
exp

(
ṽ − ũ

4M

)
exp

(
a− r

2M

)
. (6.22)

This allows us to eliminate the singular factor 1− 2M/r in (6.20), obtaining

ds̄2 =
2M

r
exp

(
a− r

2M

)
exp

(
− ũ

4M

)
dũ exp

(
ṽ

4M

)
dṽ. (6.23)
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Rt = 0

T

t =
∞

t = −∞

t = −2M

t =
2M

r
=
3M

r
=

4M

r
=
2M

II

II’

I’ I

Figure 6.2: Spacetime diagram for the Kruskal coordinates T and R.

Finally, we change to Kruskal light-cone coordinates u and v defined by

u = −4M exp

(
− ũ

4M

)
and v = 4M exp

(
ṽ

4M

)
, (6.24)

arriving at

ds2 =
2M

r
exp

(
a− r

2M

)
dudv + r2dΩ. (6.25)

Kruskal diagram The coordinates ũ, ṽ cover only the exterior r > 2M of the Schwarzschild
spacetime, and thus u, v are initially only defined for r > 2M . Since they are regular at the
Schwarzschild radius, we can extend these coordinates towards r = 0. In order to draw the
spacetime diagram of the full Schwarzschild spacetime shown in Fig. 6.2, it is useful to go
back to time- and space-like coordinates via

u = T −R and v = T +R. (6.26)

Then the connection between the pair of coordinates {T,R}, {u, v} and {t, r} is given by

uv = T 2 −R2 = −16M2 exp

(
r∗

2M

)
= −16M2

( r

2M
− 1
)
exp

( r

2M
− a
)
, (6.27a)

u

v
=
T −R

T +R
= exp [−t/(2M)] . (6.27b)

Lines with r = const. are given by uv = T 2 − R2 = const. They are thus parabola shown
as dotted lines in Fig. 6.4. Lines with t = const. are determined by u/v = const. and are
thus given by straight (solid) lines through zero. In particular, null geodesics correspond to
straight lines with angle 45◦ in the R− T diagram. The horizon r = 2M is given by to u = 0
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6.2 Reissner-Nordström black hole

or v = 0. Hence two separate horizons exist: a past horizon at t = −∞ (for v = 0 and thus
T = −R) and a future horizon at t = +∞ (for u = 0 and thus T = R). Also, the singularity
at r = 0 corresponds to two separate lines in the R− T Kruskal diagram1 and is given by

T = ±
√

16M2 +R2. (6.28)

The horizon lines {t = −∞, r = 2M} and {t = ∞, r = 2M} divide the spacetime in four
parts. The future singularity is unavoidable in part II, while in region II’ all trajectories start
at the past singularity. Region I corresponds to the original Schwarzschild solution outside
the horizon r > 2M , while region I and II encompass the advanced Eddington–Finkelstein
solution. The regions I’ and II’ represent the retarded Eddington–Finkelstein solution, where
II’ corresponds to a white hole. Note that I’ represents a new asymptotically flat Schwarzschild
exterior solution.

The presence of a past horizon v = 0 at t = −∞ makes the complete BH solutions time-
symmetric and corresponds to an eternal BH. If we model a realistic BH, that is, one that
was created at finite t by a collapsing mass distribution, with Kruskal coordinates, then any
effect induced by the past horizon should be considered as unphysical.

6.2 Reissner-Nordström black hole

The solution of the coupled Einstein-Maxwell equations for a point-like particle with mass
M and electric charge Q was found by Reissner and Nordström. We will derive its line-
element,

ds2 = A(r)dt2 − dr2

A(r)
− r2(dϑ2 + sin2 ϑdφ2) (6.29)

with

A(r) = 1− 2M

r
+
Q2

r2
, (6.30)

in section 9.2. As in the Schwarzschild case, the position of the horizon is determined by the
solution of A = 0. However, now A = 0 is a quadratic equations with the solution

r± =M ±
√
M2 −Q2. (6.31)

Thus there exists an outer and an inner horizon given by r+ and r−, respectively. Moreover,
the charge of the black hole cannot be arbitrarly large, as r± becomes complex forQ > 2

√
πM .

Possibly singularities are given by A→ ∞, i.e. at r = 0 and r = r±. We will show next that
the latter are coordinate singularities, determining a metric which is regular at r.

Eddington-Finkelstein coordinates Following the same approach as for a Schwarzschild
black hole, we use the equation for an ingoing radial photon to introduce advanced Eddington-
Finkelstein coordinates. Radial light-rays satisfy ds2 = 0 and dφ = dϑ = 0, leading to

dr

dt
= 1− 2M/r +Q2/r2 = ±(r − r−)(r − r+)

r2

1Recall that we suppress two space dimension: Thus a point in the R − T Kruskal diagram correspond to a
sphere S2, and a line to R × S2.
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where Eq. (6.36) was used in the second step. Inverting and integrating gives

t = r − r2−
r+ − r−

ln

∣∣∣∣
r

r−
− 1

∣∣∣∣+
r2+

r+ − r−
ln

∣∣∣∣
r

r+
− 1

∣∣∣∣+ const. (6.32)

t = −r −+
r2−

r+ − r−
ln

∣∣∣∣
r

r−
− 1

∣∣∣∣−
r2+

r+ − r−
ln

∣∣∣∣
r

r+
− 1

∣∣∣∣+ const. (6.33)

where the first equation describes an outgoing and the second an ingoing light-ray. The
advanced Eddington-Finkelstein coordinate uses the integration constant p = const. as new
coordinate. Changing then again to the time-like coordinate t′ = p− r gives

t′ = t− r2−
r+ − r−

ln

∣∣∣∣
r

r−
− 1

∣∣∣∣+
r2+

r+ − r−
ln

∣∣∣∣
r

r+
− 1

∣∣∣∣ . (6.34)

Differentiating gives

dt′ = dp− dr = dt+ (1/A− 1) dr. (6.35)

Inserting dt′ into the metric, one finds that the spacetime is regular for all r > 0.

Ingoing radial light-rays satisfy

t′ + r = const.,

while for outgoing it holds

dt′

dr
=

2−A

A
.

Thus ingoing radial light-rays are straight lines at 45◦. The gradient of the outgoing ones is
determined by (2−A)/A.

Next we determine the horizons of the Reissner-Nordström BH solution (for any M and
Q). Coordinate singularities and horizons are given by the solution of A = 0,

r± =M ±
√
M2 −Q2. (6.36)

Depending on the values of M and Q, we have to distinguish three cases: i) For Q2 < M2,
both r± are real and two horizons exists; ii) Q2 = M2, r− and r+ coincide; iii) Q2 > M2,
both r± are imaginary. No coordinate singularity exists and the metric is regular except at
r = 0. Since the singularity is not coveed by an event horizon, this case should not be possible
in the real world.

6.3 Kerr black holes

The stationary spacetime outside a rotating mass distribution can be derived by symmetry
arguments similarly (but much more tortorous. . . ) to the case of the Schwarzschild metric.
It was found first accidentally by R. Kerr in 1963. The black hole solution of this spacetime
is fully characterised by two quantities, the mass M and the angular momentum L of the
Kerr BH. Both parameters can be manipulated, at least in a gedankenexperiment, dropping
material into the BH. Examining the response of a Kerr black hole to such changes was crucial
for the discovery of “black hole thermodynamics”.
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6.3 Kerr black holes

In Boyer–Lindquist coordinates, the metric outside of a rotating mass distribution is given
by

ds2 =

(
1− 2Mr

ρ2

)
dt2 +

4Mar sin2 ϑ

ρ2
dφdt− ρ2

∆
dr2 − ρ2dϑ2

−
(
r2 + a2 +

2Mra2 sin2 ϑ

ρ2

)
sin2 ϑdφ2,

(6.37)

with the abbreviations

a = L/M , ρ2 = r2 + a2 cos2 ϑ, ∆ = r2 − 2Mr + a2. (6.38)

The metric is time-independent and axially symmetric. Hence the two Killing vectors are, as
in the Schwarzschild case, ξ = (1, 0, 0, 0) and η = (0, 0, 0, 1), where we again order coordinates
as {t, r, ϑ, φ}.

The presence of the mixed term gtφ means that the metric is stationary, but not static—as
one expects for a star or BH rotating with constant rotation velocity. Finally, the metric is
asymptotically flat and the weak-field limit shows that L is the angular momentum of the
rotating black hole.

Its main properties are

• The metric is asymptotically flat.

• Potential singularities at ρ = 0 and ∆ = 0.

• The weak-field limit shows that L is the angular momentum of the rotating black hole.

• The presence of the mixed term gtφ means that infalling particles (and thus space-time)
is dragged around the rotating black hole.

Orbits in the equatorial plane ϑ = π/2 could be derived in the same way as for the
Schwarzschild case, for ϑ 6= π/2 the discussion becomes much more involved.

Singularity First we examine the potential singularities at ρ = 0 and ∆ = 0. The calculation
of the scalar invariants formed from the Riemann tensor shows that only ρ = 0 is a physical
singularity, while ∆ = 0 corresponds to a coordinate singularity. The physical singularity at
ρ2 = 0 = r2+a2 cosϑ2 corresponds to r = 0 and ϑ = π/2. Thus the value r = 0 is surprisingly
not compatible with all ϑ values. o understand this point, we consider the M → 0 limit of
the Kerr metric (6.37) keeping a = L/M fixed,

ds2 = dt2 − ρ2

r2 + a2
dr2 − ρ2dϑ2 − (r2 + a2) sin2 ϑdφ2. (6.39)

The comparison with the Minkowski metric shows that

x =
√
r2 + a2 sinϑ cosφ, z = r cosϑ,

y =
√
r2 + a2 sinϑ sinφ,

(6.40)

Hence the singularity at r = 0 and ϑ = π/2 corresponds to a ring of radius a in the equatorial
plane z = 0 of the Kerr black hole.
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Horizons We have defined an event horizon as a three-dimensional hypersurface, f(xµ) = 0,
that is null. In a stationary, axisymmetric spacetime the general equation of a surface,
f(xµ) = 0, simplifies to f(r, ϑ) = 0. The condition for a null surface becomes

0 = gµν(∂µf)(∂νf) = grr(∂rf)
2 + gϑϑ(∂ϑf)

2. (6.41)

In the case of the surface defined by the coordinate singularity ∆ = r2 − 2Mr + a2 = 0 that
depends only on r,

r± =M ±
√
M2 − a2, (6.42)

the condition defining a horizons becomes simply grr = 0 or grr = 1/grr = ∞. Hence, r− and
r+ define an inner and outer horizon around a Kerr black hole.

The surface A of the outer horizon follows from inserting r+ together with dr = dt = 0
into the metric,

ds2 = ρ2+dϑ
2 +

(
r2+ + a2 +

2Mr+a
2 sin2 ϑ

ρ2+

)
sin2 ϑdφ2, (6.43)

Using r2± + a2 = 2Mr±, we obtain

ds2 = ρ2+dϑ
2 +

(
2Mr+
ρ+

)2

sin2 ϑdφ2. (6.44)

Hence the metric determinant g2 restricted to the angular variables is given by
√
g2 =√

gϑϑgφφ = 2Mr+ sinϑ. As expected for an axialsymmetric metric, the two-dimensional
surface described by the metric (6.44) is not the one of a sphere S2. Integrating gives the
area A of the horizon as

A =

∫ 2π

0
dφ

∫ π

0
dϑ

√
g2 = 8πMr+ = 8πM(M +

√
M2 − a2). (6.45)

Note that the area depends on the angular momentum of the black hole that can in turn
be manipulated by dropping material into the hole. The horizon area A for fixed mass M
becomes maximal for a non-rotating black hole, A = 16πM2, and decreases to A = 8πM2 for
a maximally rotating one with a = M . For a > M , the metric component grr = ∆ has no
real zero and thus no event horizon exists.

(For an interpretation see the space-time diagram 6.4 that uses coordinates of the advanced
Eddington-Finkelstein type.)

Ergosphere and dragging of inertial frames The Kerr metric is a special case of a metric
with gtφ 6= 0. As result, both massive and massless particles with zero angular momentum
alling into a Kerr black hole will acquire a non-zero angular rotation velocity ω = dφ/dt as
seen by an observer from infinity.

We consider a light-ray with dϑ = dr = 0. Then the line element becomes

gttdt
2 + 2gtφdtdφ+ gφφdφ

2 = 0. (6.46)

Dividing by gφφdt
2, we obtain a quadratic equation for the angular rotation velocity ω =

dφ/dt,

ω2 + 2
gtφ
gφφ

ω +
gtt
gφφ

= 0 (6.47)
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x

z

y

Figure 6.3: Structure of a Kerr black hole: The ergoregion (grey area) is bounded by the

outer ergosurface r+ = M +
√
M2 − a2 cos2 ϑ and the outer event horizon rh =

M +
√
M2 − a2, followed by the inner event horizon rh = M −

√
M2 − a2, the

inner ergosurface r− =M −
√
M2 − a2 cos2 ϑ and the ring singularity {x2 + y2 =

a2, z = 0}.

Figure 6.4: Space-time diagram in advanced Eddington-Finkelstein coordinates for a Kerr
black hole with a < M . Between the two horizons r− < r < r+, light cones are
oriented towards r−, particles have to cross r−. Inside the inner horizon, geodesics
are possible that do not reach r = 0 in finite time. The behavior for r → 0 (and
ϑ 6= π/2) suggests that one can extend the space-time to r < 0.
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with the two solutions

ω1/2 = − gtφ
gφφ

±

√(
gtφ
gφφ

)2

− gtt
gφφ

. (6.48)

There are two interesting special cases of this equation. First, on the surface gtt = 0, the two
possible solutions of ω = dφ/dt for light-rays satisfy2

ω1 = 0 and ω2 = −2
gtφ
gφφ

. (6.49)

Hence, the rotating black hole drags spacetime at gtt = 0 so strongly that even a photon can
only co-rotate. Similarly, this condition specifies a surface inside which no stationary observers
are possible. The normalisation condition u · u = 1 is inconsistent with ua = (ut, 0, 0, 0) and
gtt < 0: however strong your rocket engines are, your space-ship will not be able to hover
at the same point (r, ϑ, φ) inside the region with gtt < 0. Therefore one calls a surface with
gtt = 0 a stationary limit surface. Solving

gtt = 1− 2Mr

ρ2
= 0, (6.50)

we find the position of the two stationary limit surfaces at

r1/2 =M ±
√
M2 − a2 cos2 ϑ. (6.51)

The ergosphere is the space bounded by the outer stationary limit surface and the outer
horizon.

The other interesting special case of Eq. (6.48) occurs when the allowed range of values,
ω1 ≤ ω ≤ ω2, shrinks to a single value, i.e. when

ω2 =
gtt
gφφ

=

(
gtφ
gφφ

)2

. (6.52)

This happens at the outer horizon r+ and defines the rotation velocity ωH of the black hole.
In the case of a Kerr black hole, we find

ωH =
a

2Mr+
. (6.53)

Thus the rotation velocity of the black hole corresponds to the rotation velocity of the light-
rays forming its horizon, as seen by an observer at spatial infinity.

Example 6.6: Rotation velocity of horizon—We derive Eq. (6.53) evaluating first gtt/gφφ
on the outer horizon using Eq. (6.44),

ω2
H =

gtt
gφφ

=
ρ2+ − 2Mr+

2Mr2+ sin2 ϑ
.

Inserting then ρ2+ = r2+ + a2 cos2 ϑ and r2+ + a2 = 2Mr+, we obtain the desired result,

ω2
H =

a2(1 − cos2 ϑ)

2Mr2+ sin2 ϑ
=

a2

2Mr2+
.

2Note that ω1 < ω2, because of gφφ < 0. Hence photons (and thus also spacetime) is corotating, as expected.
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Next we consider the RHS. Because of gφt = gtφ, it is gtφ = 2Mar sin2 ϑ and thus

ω2
H =

(
gtφ
gφφ

)2

=

(
a

2Mr+

)2

.

Extension of the Kerr metric The behavior of geodesics for r → 0 (and ϑ 6= π/2) suggests
that one can extend the space-time to r < 0. For r → −∞, the extension becomes asymptot-
ically flat, i.e. there exists a second Minkowski space that is connected to ours via the Kerr
black hole. Since for negative r, ∆ is always positive, ∆ = r2− 2Mr+ a2 > 0, the singularity
is not protected by an event horizon in the “other” Minkowksi space. Moreover, there exist
closed time-like curves: Consider a curve depending only on φ in the equatorial plane, the
line-element for small, negative r is

ds2 =

(
r2 + a2 +

2Ma2

r

)
dφ2 ∼ 2Ma2

r
dφ2 < 0 (6.54)

time-like.
The cosmic censorship hypothesis postulates that singularities formed in gravitational col-

lapse are always covered by event horizons. Thus we are in the “r > 0” Minkowski space of
all Kerr black holes – and the r < 0 is simply a mathematical artefact of a highly symmetrical
manifold, not showing up in real physical situations.

6.4 Black hole thermodynamics

Penrose process and the area theorem The total energy of a Kerr BH consists of its rest
energy and its rotational energy. These two quantities control the size of the event horizon
and therefore it is important to understand how they change dropping matter into the BH.

The energy of any particle moving on a geodesics is conserved, E = p · ξ. Inside the
ergosphere, the Killing vector ξ is space-like and the quantity E is thus the component of a
spatial momentum which can have both signs. This led Penrose to entertain the following
gedankenexperiment: Suppose the spacecraft A starts at infinity and falls into the ergosphere.
There it splits into two parts: B is dropped into the BH, while C escapes to infinity. In the
splitting process, four-momentum has to be conserved, pA = pB + pC . We can now choose
a time-like geodesics for B falling into the BH such that EB < 0. Then EC > EA and the
escaping part C of the spacecraft has at infinity a higher energy than initially.

The Penrose process decreases both the mass and the angular momentum of the BH by an
amount equal to that of the space craft B falling into the BH. Now we want to show that the
changes are correlated in such a way that the area of the BH increases. Let us first define a
new Killing vector,

K = ξ + ωHη.

This Killing vector is null on the horizon and time-like outside. It corresponds to the four-
velocity with the maximal possible rotation velocity. Now we use EB = pB ·ξ and LB = −pB ·η
and

pB ·K = pB · (ξ + ωHη) = EB − ωHLB > 0, (6.55)

to obtain the bound LB < EB/ωH . Since EB < 0, the added angular momentum is negative,
LB < 0.
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The mass and the angular momentum of the BH change by δM = EB and δL = LB , when
particle B drops into the BH. Thus

δM > ωHδL =
aδL

r2+ + a2
. (6.56)

Now we define the irreducible mass of BH as the mass of that Schwarzschild BH whose event
horizon has the same area,

M2
irr =

1

2
(M2 +

√
M4 − L2) (6.57)

or

M2 =M2
irr +

(
L

2Mirr

)2

. (6.58)

Thus we can interpret the total mass as the Pythagorean sum of the irreducible mass and a
contribution related to the rotational energy. Differentiating the relation (6.57) results in

δMirr =
a

4Mirr

√
M2 − a2

(
ω−1
H δM − δL

)
. (6.59)

Our bound implies now δMirr > 0 or δA > 0. Thus the surface of a Kerr BH can only increase,
even when its mass decreases.

Bekenstein entropy We have shown that classically the horizon of a black hole can only
increase with time. The only other quantity in physics with the same property is the entropy,
dS ≥ 0. This suggests a connection between the horizon area and its entropy. To derive this
relation, we apply the first law of thermodynamics dU = TdS − PdV + . . . to a Kerr black
hole. Its internal energy U is given by U =M and thus

dU = dM = TdS − ωdL , (6.60)

where ωdL denotes the mechanical work done on a rotating macroscopic body.
Our experience with the thermodynamics of non-gravitating systems suggests that the

entropy is an extensive quantity and thus proportional to the volume, S ∝ V . We now offer
an argument that shows that the entropy S of a black hole is proportional to its area A. We
introduce the “rationalised area” α = A/4π = 2Mr+, cf. (6.45), or

α = 2M2 + 2
√
M4 − L2. (6.61)

The parameters describing a Kerr black hole are its massM and its angular momentum L and
thus α = α(M,L). We form the differential dα and find after some algebra (problem 25.??)

√
M2 − a2

2α
dα = dM +

a

α
dL. (6.62)

Using now Eq. (6.45) and (6.53), we can rewrite the RHS as

√
M2 − a2

2α
dα = dM + ωHdL. (6.63)

Thus the first law of black hole thermodynamics predicts the correct angular velocity ωH of
a Kerr black hole. Including the term Φdq representing the work done by adding the charge
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dq to a black hole, the area law of a charged black hole together with the first law of BH
thermodynamics reproduces the correct surface potential Φ of a charged black hole.

The factor in front of dα is positive, as its interpretation as temperature requires. This
lead Bekenstein to suggest the identification

TdS =

√
M2 − a2

2α
dα. (6.64)

If this identification is not just of formal nature, then a black hole should emit thermal
radiation. This rather bold hypothesis was confirmed by Hawking 1974 who showed that a
black hole in vacuum emits black-body radiation (“Hawking radiation”) with the temperature
suggested by Bekenstein,

T =
2
√
M2 − a2

A
. (6.65)

Specialising to the case of a Schwarzschild BH, it is T = 1/(8πM). Integrating then dM =
TdS = dS/(8πM) results3 in

S =
A

4
=

A

4L2
Pl

=
kc3

4~G
A. (6.66)

Thus the entropy of a black hole is not extensive but is proportional to its surface. It is large,
because its basic unit of entropy, 4L2

Pl, is so tiny. The presence of ~ in the last formula, where
we have inserted the natural constants, signals that the black hole entropy is a quantum
property.

The heat capacity CV of a Schwarzschild black hole follows with U = M = 1/(8πT ) from
the definition

CV =
∂U

∂T
= − 1

8πT 2
< 0 . (6.67)

As it is typical for self-gravitating systems, its heat capacity is negative. Thus a black hole
surrounded by a cooler medium emits radiation, heats up the environment and becomes
hotter.

6.5 *** Quantum black holes ***

6.5.1 Rindler spacetime and the Unruh effect

Rindler spacetime Recall from exercise 2.3 that the trajectory of an accelerated observer
(suppressing the transverse coordinates y and z) is given by

t(τ) =
1

a
sinh(aτ) and x(τ) =

1

a
cosh(aτ). (6.68)

It describes one branch of the hyperbola x2 − t2 = a−2. Introducing light-cone coordinates,

u = t− x and v = t+ x, (6.69)

it follows

u(τ) = −1

a
exp(−aτ). (6.70)

3We set the integration constant to zero, such that the third law of thermodynamics is valid for black holes.
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Our aim is to determine how the uniformly accelerated observer experiences Minkowski
space. As a first step, we try to find a frame {ξ, χ} comoving with the observer. In this
frame, the observer is at rest, χ(τ) = 0, and the coordinate time ξ agrees with the proper
time, ξ = τ . Introducing comoving light-cone coordinates,

ũ = ξ − χ and ṽ = ξ + χ, (6.71)

these conditions become
ũ(τ) = ṽ(τ) = τ. (6.72)

Moreover, we can choose the comoving coordinates such that the metric is conformally flat,

ds2 = Ω2(ξ, χ)(dξ2 − dχ2) = Ω2(ũ, ṽ)dũdṽ. (6.73)

Next we have to relate the comoving coordinates {ũ, ṽ} to Minkowski coordinates {t, x}.
Since dũ2 and dṽ2 are missing in the line element, the functions u(ũ, ṽ) and v(ũ, ṽ) can depend
only on one of their two arguments. We can set therefore u(ũ) and v(ṽ). Expressing u̇ as

du

dτ
=

du

dũ

dũ

dτ
, (6.74)

inserting u̇ = −au and ˙̃u = 1 we arrive at

−au =
du

dũ
. (6.75)

Separating variables and integrating we end up with u = C1e
−aũ. In the same way, we find

v = C2e
aṽ. Since the line element has to agree along the trajectory with the proper-time,

ds2 = dτ2 = dudv, the two integration constants C1 and C2 have to satisfy the constraint
−a2C1C2 = 1. Choosing C1 = −C2, the desired relation between the two sets of coordinates
becomes

u = −1

a
e−aũ and v =

1

a
eaṽ , (6.76)

or using Cartesian coordinates,

t =
1

a
eaχ sinh(aξ) and x =

1

a
eaχ cosh(aξ). (6.77)

The spacetime described by the coordinates defining the comoving frame of the accelerated
observer,

ds2 = e2aχ(dξ2 − dχ2), (6.78)

is called Rindler spacetime. It is locally equivalent to Minkowski space but differs globally.
If we vary the Rindler coordinates over their full range, ξ ∈ R and χ ∈ R, then we cover
only the one quarter of Minkowski space with x > |t|. Thus for an accelerated observer an
event horizon exist: Evaluating on a hypersurface of constant comoving time, ξ = const., the
physical distance from χ = −∞ to the observer placed at χ = 0 gives

d =

∫ 0

−∞
dχ
√
|gχχ| =

1

a
. (6.79)

This corresponds to the coordinate distance between the observer and the horizon in
Minkowski coordinates.

definition:: The particle horizon is the maximal distance from which we can receive signals,
while the event horizon defines the maximal distance to which we can send signals.
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Exponential redshift Later we will discuss gravitational particle production as the effect
of a non-trivial Bogolyubov transformation between different vacua. Before we apply this
formalism, we will examine the basis of this physical phenomenon in a classical picture. As a
starter, we want to derive the formula for the relativistic Doppler effect. Consider an observer
who is moving with constant velocity v relative to the Cartesian inertial system xµ = (t, x)
where we neglect the two transverse dimensions. We can parameterise the trajectory of the
observer as

xµ(τ) = (t(τ), x(τ)) = (τγ, τγv), (6.80)

where γ denotes its Lorentz factor. A monochromatic wave of a scalar, massless field φ(k) ∝
exp[−iω(t− x)] will be seen by the moving observer as

φ(τ) ≡ φ(xµ(τ)) ∝ exp [−iωτ (γ − γv)] = exp

[
−iωτ

√
1− v

1 + v

]
. (6.81)

Thus this simple calculation reproduces the usual Doppler formula, where the frequency ω of
the scalar wave is shifted as

ω′ =

√
1− v

1 + v
ω. (6.82)

Next we apply the same method to the case of an accelerated observer. Then t(τ) =
a−1 sinh(aτ) and x(τ) = a−1 cosh(aτ). Inserting this trajectory again into a monochromatic
wave with φ(k) ∝ exp(−iω(t− x) now gives

φ(τ) ∝ exp

[
− iω

a
[sinh(aτ)− cosh(aτ)]

]
= exp

[
iω

a
exp(−aτ)

]
≡ e−iϑ. (6.83)

Thus an accelerated observer does not see a monochromatic wave, but a superposition of
plane waves with varying frequencies. Defining the instantaneous frequency by

ω(τ) =
dϑ

dτ
= ω exp(−aτ), (6.84)

we see that the phase measured by the accelerated observer is exponentially redshifted. As
next step, we want to determine the power spectrum P (ν) = |φ(ν)|2 measured by the observer,
for which we have to calculate the Fourier transform φ(ν).

Remark 6.3: Determine the Fourier transform of the wave φ(τ).
Substituting y = exp(−aτ) in

φ(ν) =

∫ ∞

−∞

dτφ(τ)eiντ =

∫ ∞

−∞

dτ exp

(
iω

a
exp(−aτ)

)
eiντ (6.85)

gives

φ(ν) =
1

a

∫ ∞

0

dy y−iν/a−1 ei(ω/a)y. (6.86)

On the other hand, we can rewrite Euler’s integral representation of the Gamma function as

∫ ∞

0

dt tz−1e−bt = b−z Γ(z) = exp(−z ln b) Γ(z) (6.87)

for ℜ(z) > 0 and ℜ(b) > 0. Comparing these two expressions, we see that they agree setting
z = −iν/a+ ε and b = −iω/a+ ε. Here we added an infinitesimal positive real quantity ε > 0 to
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ensure the convergence of the integral. In order to determine the correct phase of b−z, we have
rewritten this factor as exp(−z ln b) and have used

ln b = lim
ε→0

ln

(
− iω

a
+ ε

)
= ln

∣∣∣
ω

a

∣∣∣− iπ

2
sign(ω/a). (6.88)

Thus the Fourier transform φ(ν) is given by

φ(ν) =
1

a

(ω
a

)iν/a
Γ(−iν/a)eπν/(2a). (6.89)

The Fourier transform φ(ν) contains negative frequencies,

φ(−ν) = φ(ν)e−πν/a =
1

a

(ω
a

)iν/a
Γ(−iν/a)e−πν/(2a). (6.90)

Using the reflection formula of the Gamma function for imaginary arguments,

Γ(ix)Γ(−ix) =
π

x sinh(πx)
, (6.91)

we find the power spectrum at negative frequencies as

P (−ν) = π

a2
e−πν/a

(ν/a) sinh(πν/a)
=
β

ν

1

eβν − 1
(6.92)

with β = 2π/a. Remarkably, the dependence on the frequency ω of the scalar wave—still
present in the Fourier transform φ(ν)—has dropped from the negative frequency part of
the power spectrum P (−ν) which corresponds to a thermal Planck law with temperature
T = 1/β = a/(2π).

The occurrence of negative frequencies is the classical analogue for the mixing of posi-
tive and negative frequencies in the Bogolyubov method. Therefore we expect that on the
quantum level a uniformly accelerated detector will measure a thermal Planck spectrum with
temperature T = 1/β = a/(2π). This phenomenon is called Unruh effect and T = a/(2π) the
Unruh temperature.

6.5.2 Hawking radiation from the Unruh effect

Hawking radiation Hawking could show 1974 that a black hole in vacuum emits black-body
radiation (“Hawking radiation”) with temperature

T =
2
√
M2 − a2

A
(6.93)

and thus

S =
kc3

4~G
A =

A

4L2
Pl

. (6.94)

A black hole surrounded by a cooler medium emits radiation and heats up the environment.
The entropy of a black hole is large, because its basic unit of entropy, 4L2

Pl, is so tiny.
We can understand this result considering an observer in the Schwarzschild metric. The

force required by of rocket to stay on a stationary orbit was calculated in exercise 6.1. The
derived acceleration of a stationary observer,

a ≡ (−a · a)1/2 =
(
1− 2M

r

)−1/2 M

r2
=

(
1− Rs

r

)−1/2 Rs/2

r2
, (6.95)
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diverges approaching the horizon, r → Rs = 2M . The acceleration a close to the horizon, i.e.
for r1 − Rs ≪ Rs, is thus much larger than the curvature ∝ 1/Rs. We can use therefore the
approximation of an accelerated observer in a flat space, who sees according to the Unruh
effect a thermal spectrum with temperature T = a1/2π at r1. Assume now that the observer
moves from r1 to r2 > r1. Then the spectrum is redshifted by V1/V2 with Vi =

√
1−Rs/ri.

For r2 → ∞, it is V2 → 1 and thus T2 → V1T1. Approaching also the horizon, the temperature
becomes

T = lim
r1→Rs

V1T1 = lim
r1→Rs

√
1−Rs/r1

1

2π

Rs/2

r21
√

1−Rs/r1
=

1

4πRs
=

1

8πM
. (6.96)

6.5.3 Information paradox–resolved?

Fine vs. coarse-grained entropy Entropy is a quantity of fundamental importance. It is
therefore no surprise that it comes in a series of different flavours. Boltzmann introduced the
entropy of a classical system with phase-space density f(qj, pj , t) as

S = −
∫

dqjdpj f(q
j, pj , t) ln[f(q

j, pj, t)]. (6.97)

Liouville’s theorem states that the phase-space density f(qj, pj , t) of a Hamiltonian system
stays constant along a trajectory in phase space and thus its entropy stays constant too.
Analogously, in quantum mechanics the von Neumann entropy is defined as

SN = −tr[ρ ln(ρ)] (6.98)

with ρ as the density operator of the system. Now it is the unitary time evolution of a
quantum system which gurantees that SN remains constant. Both entropies are called fine-
grained entropy, since they are based on our (partial) knowledge of the microstates of the
system.

In contrast, the thermodynamic entropy Std increases with time, dStd/dt ≥ 0. What is the
reason for this different time behaviour? A thermodynamic system is typically characterised
by the value of only a few macroscopic quantities like its total energy, volume, pressure,
Ai = {U, V, P, . . .}, while the microscopic variables of the system are unknown. As result,
the thermodynamical entropy Std is obtained by calculating first the fine-grained entropy for
all microstates compatible with the values of the macroscopic quantities Ai. Then the set of
allowed value of S(Ai) is maximised,

Std = max
Ai=Ai,0

{SN(Ai)}. (6.99)

The thermodynamic entropy is therefore also called the coarse-grained entropy. From the
definition, it is obvious that Std ≥ SN. Moreover. one can show that it implies dStd/dt ≥ 0.
Since the Bekenstein entropy of a BH increases, it has to be its thermodynamic or coarse-
grained entropy. In this view, the BH entropy is enormous because an extremely large set of
different initial configurations leads to the same BH.

Entanglement entropy We can visualize the Hawking process as follows: A virtual particle-
antiparticle pair is created close to the horizon. One particle of the pair crosses the horizon
and adds negative energy to the BH, while the other escapes with positive energy to infinity.
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Since the vacuum has zero charge and spin, the state of the escaping particle is entangled
with the one inside the horizon. We can therefore view the entropy of the Hawking radiation
as entanglement entropy.

The von Neumann entropy (6.98) specifies our knowledge of the system. In particular, for
a pure state ψ ∈ H , it is zero. However, if we divide the total system in two sub-systems
A and B, and can measure only variables connect to, say, B, then the density matrix of the
subsystem B becomes

ρB = −trA[ρ ln(ρ)]. (6.100)

Its entropy becomes non-zero. Moreover, SA = SB. Applied to BH evaporation, we divide
the universe in two subsystems, the BH and the outside world, where we have access only to
the latter.

Page curve Hawking’s claim from 1976 that BH evaporation adds a new source of uncer-
tainty to physics can be phrased as follows: Imagine a BH formed from pure states (e.g. by
the collision of gravitational plane waves). After the BH evaporated, the remaining thermal
radiation is in a mixed state, described by a thermal density matrix. This is in conflict with
unitary time evolution, and seems thus to require some fundamental new aspects in quantum
gravity with respect to other quantum field theories.

In the modern formulation, the paradox arises as follows: As the BH evaporates, its area
and thus its Bekenstein entropy decrease. At the same time, more and more thermal radiation
is emitted and thus the entropy of the Hawking radiation increases. At same point, called
the Page time tP , the two entropies become equal, SB = Srad. If the entropy of the Hawking
radiation can be identified with the entanglement entropy between pairs of quanta emitted to
infinity and confined in the BH. i.e. with degrees of freedom inside the BH, the paradox arises
at t ≥ tP : The Bekenstein entropy is the coarse-gained entropy of the von Neumann entropy
of the internal BH degrees of freedom. Therefore the latter has to be smaller, SN ≤ SB. In
turn, it has to be also smaller than the entanglement entropy of the Hawking radiation, or
SB ≥ Srad. But after the Page time, there are not enough internal degrees of freedom in the
BH with which the radiation can be entangled with.

The only solution is that the entropy of the Hawking radiation starting from tP decreases,
such that Srad ≤ SB. Numerically, one finds that the Page time is roughly half of the
evaporation time of the BH, tP ≃ 0.5tev. For a macroscopic BH, effects of quantum gravity
should play no role at this time, and the semiclassical calculation of Hawking should hold.
Both argumentations seems to be valid, but are contradicting each other—this is the paradox.

Modern developments The fact that the Bekenstein entropy is proportional to the surface
of the BH suggests that the microstates characterising its entropy are also there localised.
This led to the idea of holography: the information about the state of a gravitating system
is contained in its surface. This somewhat vague proposal put forward originally by t’Hooft
was made more concrete by the AdS/CFT correspondence conjectured by Maldacena: While
its original version was connecting anti-de Sitter space within string/M-theory to a conformal
field theory on its boundary, today the conjecture is believed to hold much more general. If
the conjecture is true, then we can describe the BH physics equivalently by a conformal field
theory. The latter respects unitary time evolution. Thus Hawking had to be wrong.

While the AdS/CFT correspondence suggests that information is conserved, it has been
unclear how and why the entropy is decreasing after the Page time. Only in the last years,

88



6.A Appendix: General stationary axisymmetric metric

there has been progress in addressing this question directly using the path-integral approach
to quantum gravity, i.e. avoiding the AdS/CFT correspondence. While these calculations are
restricted to toy models, they can reproduce the Page curve. Moreover, they suggest that the
problem can be understood semi-classically. For a review article introducing the basic ideas
see Ref. [2]

6.A Appendix: General stationary axisymmetric metric

6.B Appendix: Conformal flatness for d = 2

A conformal transformation of the metric,

gµν(x) → g̃µν(x) = Ω2(x)gµν(x). (6.101)

changes distances, but keeps angles invariant. Thus the causal structure of two conformally
related spacetimes is identical. A spacetime is called conformally flat if it is connected by a
conformal transformation to Minkowski space,

gµν(x) = Ω2(x)ηµν(x) = e2ω(x)ηµν(x). (6.102)

In particular, light-rays also propagate in conformally flat spacetimes along straight lines at
±45 degrees to the time axis.

We want to show that any two-dimensional (pseudo-) Riemannian manifold is conformally
flat. For this, we have to show that a transformation from

ds2 = g11(dx
1)2 + 2g12dx

1dx2 + g12(dx
2)2 (6.103)

to
ds2 = (dx1)2 ± (dx2)2 (6.104)

exists. Let us assume that the transformations are given by

x̃1 = F (x1, x2) and x̃2 = G(x1, x2).

Using the usual transformation law for a tensor of rank two under an arbitrary coordinate
transformation,

g̃µν(x̃) =
∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ(x), (6.105)

it follows

0 = g̃12 = (∂αF )(∂βG)g
αβ = g11∂1F∂1G+ g12(∂1F∂2G+ ∂2F∂1G) + g11∂2F∂2G (6.106)

and

0 = g̃11 ∓ g̃22 = [(∂αF )(∂βF )∓ (∂αG)(∂βG)]g
αβ = (6.107a)

= g11
[
(∂1F )

2 ∓ (∂1G)
2
]
+ 2g12(∂1F∂2F ∓ ∂1G∂2G) + g22

[
(∂2F )

2 ∓ (∂2G)
2
]
, (6.107b)

where the first (plus) minus corresponds to a (pseudo-) Riemannian manifold. Let us pick
out the minus sign for definiteness. Inserting then the ansatz

∂1F = κ(g21∂1G+ g22∂2G) (6.108a)

∂2F = −κ(g11∂1G+ g12∂2G) (6.108b)
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into the first condition, we see that it is satisfied identically for an arbitrary function κ.
Inserting it next in the second condition, we obtain

[
κ2
(
g11g22 − (g12)2

)
− 1
] [
g11(∂1G)

2 + 2g21∂1G∂2G+ g22(∂2G)
2
]
= 0 (6.109)

We recognise g11g22 − (g12)2 as det(gij) = 1/det(gij) = 1/g. Thus the expression vanishes
choosing κ2 = g.

Further reading https://arxiv.org/pdf/0706.0622

Problems

6.1 Force of a hovering rocket. A station-
ary observer hovers on a radial orbit around a
Schwarzschild black-hole. a.) Argue that

fα = m
(
ẍα + Γα

βγ ẋ
β ẋγ

)

is the correct generalisation of Newton’s second

law to curved spacetime. b.) Usw Γr
tt = (1 −

2M/r)(M/r2) to find the radial force required to
stay on a stationary orbit. c.) The result from
b.) is the radial force in the coordinate basis. Re-
late it to the force measured by the observer in its
Cartesian inertial frame.
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7 Classical field theory

In this chapter, we consider classical fields in Minkowski space. We derive the connection
between symmetries and conservation laws, and discuss the scalar and massless vector field as
examples. The latter is characterised by a local gauge symmetry, which has much in common
with a gravitational wave in Minkowski space.

7.1 Lagrange formalism for fields

A relativistic field associates to each spacetime point xµ a set of values. The space of
field values at each point can be characterized by its transformation properties under Lorentz
transformations (a scalar φ, vector Aµ, tensor gµν , or spinor ψa field) and internal symme-
try groups which are (typically) Lie groups like U(1), SU(n),. . . Thus we have to generalize
Hamilton’s principle to a collection of fields φa(x

µ), a = 1, . . . , k, where the index a includes
both Lorentz and group indices. To ensure Lorentz invariance, we consider a scalar Lagrange
density L that may, analogously to L(q, q̇), depend on the fields and its first derivatives ∂µφa.
There is no explicit time-dependence, since “everything” should be explained by the fields
and their interactions. The Lagrangian L(φa, ∂µφa) is obtained by integrating L over a given
space volume V .

The action S is thus the four-dimensional integral over the Lagrange density L ,

S[φa] =

∫ b

a
dt L(φa, ∂µφa) =

∫

Ω
d4xL (φa, ∂µφa) , (7.1)

where Ω = V × [ta : tb]. We require again that the variations δφa = εφ̃a vanish on the
boundary, δφa|∂Ω = 0, and that ε is independent of xµ. If the Lorentz scalar L is in addition
a local function, i.e. it is a function of the fields and their gradients at the same spacetime
point xµ, we will obtain automatically Lorentz-invariant equations of motion.

A variation εφa ≡ δφa of the fields leads to a variation of the action,

δS =

∫

Ω
d4x

(
∂L

∂φa
δφa +

∂L

∂(∂µφa)
δ(∂µφ

a)

)
, (7.2)

where we have to sum over fields (a = 1, . . . , k) and the Lorentz index µ = 0, . . . , 3. We
eliminate again the variation of the field gradients ∂µφ

a by a partial integration using Gauß’
theorem,

δS =

∫

Ω
d4x

[
∂L

∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa = 0 . (7.3)

The boundary term vanishes, since we require that the variation is zero on the boundary ∂Ω.
Thus the Lagrange equations for the fields φa are

∂L

∂φa
− ∂µ

(
∂L

∂(∂µφa)

)
= 0 . (7.4)
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If the Lagrange density L is changed by a four–dimensional divergence, the same equations
of motion result.

7.2 Noether’s theorem and conservation laws

Conservation laws Let jµ be a conserved vector field in Minkowski space,

∂µj
µ = 0 . (7.5)

Then
d

dt

∫

V
d3x j0 = −

∫

∂V
dS · j (7.6)

and

Q =

∫

V
d3x j0 (7.7)

is a globally conserved quantity, if there is no outgoing flux j through the boundary ∂V . To
show that Q is a Lorentz invariant quantity, we have to rewrite Eq. (7.7) as a tensor equation.

Consider

Q(t = 0) =

∫
d4x jµ(x)∂µϑ(n · x) (7.8)

with ϑ the step function and n a unit vector in time direction, n · x = x0 = t. Then

Q(t = 0) =

∫
d4x j0(x)∂0ϑ(x

0) =

∫
d4x j0(x)δ(x0) =

∫
d3x j0(x) (7.9)

and hence Eqs. (7.7) and (7.8) are equivalent. Since one of them is a tensor equation, Q is
Lorentz invariant.

Example 7.1: Show explictely that observers in different frames x and x′ measure the same
charge.
The charge measured by the observer O′ is

Q′ =

∫
d4x j′µ(x′)

∂

∂x′µ
ϑ(n · x′) =

∫
d4x jµ(x)∂µϑ(n · x′) . (7.10)

Since

nαx
′α = nα

∂x
′α

∂xβ
xβ = n′

αx
α (7.11)

it follows

Q−Q′ =

∫
d4x jµ(x)∂µ[ϑ(n · x)− ϑ(n′ · x)] . (7.12)

The current is conserved, ∂µj
µ = 0, and we can thus move ∂µ to the left,

Q −Q′ =

∫
d4x ∂µ[j

µ(x)(ϑ(n · x)− ϑ(n′ · x))] . (7.13)

Now we can integrate by parts and use that all surface terms vanish, because for large |x| the
current vanishes, while for large |t| the theta functions are identical and cancel. Thus a globally,

Lorentz invariant conserved charge Q exists.
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In the same way, we can construct in Minkowski space globally conserved quantities Q for
conserved tensors: If for instance ∂µT

µν = 0, then

P ν =

∫
d3x T 0ν (7.14)

is a globally conserved vector, and similarly for higher-rank tensors.

Symmetries and Noether’s theorem Noether’s theorem gives a formal connection between
global, continuous symmetries of a physical system and the resulting conservation laws. Such
symmetries can be divided into space-time and internal symmeties. We derive this theorem
in two steps, considering in the first one only internal symmetries.

We assume that our collection of fields φa has a continuous symmetry group. Thus we can
consider an infinitesimal change δφa that keeps L (φa, ∂µφa) invariant,

0 = δL =
δL

δφa
δ0φa +

δL

δ∂µφa
δ0∂µφa . (7.15)

Here, we used the notation δ0 to stress that we exclude variations due to the change of
spacetime point. Now we exchange δ∂µ against ∂µδ in the second term and use then the
Lagrange equations, δL /δφa = ∂µ(δL /δ∂µφa), in the first term. Then we can combine the
two terms using the Leibniz rule,

0 = δL = ∂µ

(
δL

δ∂µφa

)
δ0φa +

δL

δ∂µφa
∂µδ0φa = ∂µ

(
δL

δ∂µφa
δ0φa

)
. (7.16)

Hence the invariance of L under the change δ0φa implies the existence of a conserved current,
∂µj

µ = 0, with

jµ =
δL

δ∂µφa
δ0φa . (7.17)

If the transformation δ0φa leads to change in L that is a total four-divergence, δ0L = ∂µK
µ,

and boundary terms can be dropped, then the equation of motion are still invariant. The
conserved current is changed to jµ = δL /δ∂µφa δ0φa −Kµ.

In the second step, we consider in addition a variation of the coordinates, x′µ = xµ + δxµ.
Such a variation implies a change of the fields

φ′a(x
′
µ) = φa(xµ) + δφa(xµ) (7.18)

and thus also of the Lagrange density. Note that we compare now the field at different points.
In order to be able recycle our old result, we split the total variation δφa(xµ) as follows

δφa(xµ) = φ′a(x
′
µ)− φa(xµ) = φ′a(xµ + δxµ)− φa(xµ) (7.19)

= φ′a(xµ) + δxµ∂µφ
′
a(xµ)− φa(xµ) = δ0φa(xµ) + δxµ∂µφ

′
a(xµ) (7.20)

= δ0φa(xµ) + δxµ∂µφa(xµ). (7.21)

Here we made in the second line first a Taylor expansion, and introduced then the local
variation δ0φa(xµ) = φ′a(xµ) − φa(xµ) which we calculated previously. Since δxµ is already
a linear term, we could replace in the third line φ′a(xµ) ≃ φa(xµ), neglecting thereby only a
quadratic term.
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We consider now the variation of the action S implied by the coordinate change x̃µ =
xµ + δxµ. Such a variation implies not only a variation of L but also of the integration
measure d4x,

δS =

∫

Ω

[
d4x(δL ) + (δd4x)L

]
. (7.22)

The two integration measures d4x and d4x̃ are connected by the Jacobian, i.e. the determinant
of the transformation matrix

aµν =
∂x̃µ

∂xν
. (7.23)

Using again that the variation is infinitesimal, we find

J =

∣∣∣∣
∂x̃µ

∂xν

∣∣∣∣ =




1 + ∂δx0

∂x0
∂δx0

∂x1 · · ·
∂δx1

∂x0 1 + ∂δx1

∂x1

. . . . . .


 = 1 +

∂δxµ

∂xµ
. (7.24)

Inserting first this result and using then Eq. (7.21) applied to L gives

δS =

∫

Ω
d4x

[
δL + L

∂δxµ

∂xµ

]
=

∫

Ω
d4x

[
δ0L +

∂L

∂xµ
δxµ + L

∂δxµ

∂xµ

]
. (7.25)

We combine the last two terms using the Leibniz rule, and insert the known variation δ0L
at the same point from Eq. (7.16), obtaining

δS =

∫

Ω
d4x

∂

∂xµ

[
∂L

∂(∂µφa)
δ0φa + L δxµ

]
. (7.26)

If the system is invariant under these transformations, the variation of the action is zero,
δS = 0, and the square bracket represents a conserved current jµ. As last step, we change
from the local variation δ0 to the full variation δ using Eq. (7.21), obtaining as final expression
for the Noether current

jµ =
∂L

∂(∂µφa)
δφa −

[
∂L

∂(∂µφa)

∂φa
∂xν

− ηµνL

]
δxν . (7.27)

Translations Invariance under translations x′µ = xµ + εµ means φ′a(x
′) = φa(x) or δφa = 0.

Hence we obtain a conserved tensor

Θµν =
∂L

∂(∂µφa)

∂φa
∂xν

− ηµνL (7.28)

called the energy-momentum stress tensor or in short the stress tensor. We will see in the
next chapter that this tenor sources gravity—being thus of crucial interest for us. If the
stress tensor is derived via the Noether procedure (7.28), it is called canonical. In general,
the canonical stress tensor is not symmetric, Θµν 6= Θνµ, as it should be as source of gravity
in Einstein’s theory. Note however that the Noether procedure does not uniquely specificy the
stress tensor, because we can add any tensor ∂λf

λµν which is a four-divergence and antisym-
metric in µ and λ: Such a term drops out of the conservation law because of ∂µ∂λf

λµν = 0
and of the global charge because it is a four-divergence. This freedom allows us to obtain
always a symmetric stress tensor. We will learn later a different method, leading directly to
a symmetric energy-momentum tensor Tµν (called the dynamical energy-momentum tensor).
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Remark 7.1: The invention of the three-dimensional stress tensor σij goes back to Pascal
and Euler. Recall that σij is determined via dFi = σijdAj as the response of a material to the
force Fi on its surface element Aj . This implies that we can view the stress tensor also as an
(anisotropic) pressure tensor, Pij = dFi/dAj = σij . Moreover, it follows with fi = dFi/dV for
the force density fj = ∂iσij as equilibrium condition (or equation of motion) of the system.
The relativistic stress tensor Tµν was introduced by Minkowski in 1908 for electrodynamics,
combining Maxwell’s stress tensor (in vaccuum)

σij = EiEj +BiBj −
1

2
(E2 −B2)δij

with the energy density ρ = (E2 +B2)/2, the Poynting vector (or energy flux) S = E ×B, and
the momentum density π

T µν =

(
ρ S

π σij

)
.

In a relativistic theory, the energy flux equals the momentum density. Then T 0i = T i0, what is

sufficient condition for the symmetry of the full tensor.

Integrating we obtain four conserved Noether charges,

pν =

∫
d3xΘ0ν . (7.29)

From the example, we know that Θ00 corresponds to the energy density ρ. Therefore p0 is
the energy, and thus pµ the four-momentum of the field. This is in line with the fact that
translations are generated by the four-momentum operator.

Lorentz transformations Lorentz transformation, i.e. rotations and boosts, lead to a linear
change of coordinates,

x̃µ = xµ + δωµνxν . (7.30)

They preserve the norm of vectors, implying that

xµxµ = x̃µx̃µ = (xµ + δωµσxσ) (xµ + δωµτx
τ ) (7.31)

= xµxµ + δωµσxσxµ + δωµτx
µxτ +O(ω2) (7.32)

= xµxµ + (δωµν + δωνµ)xµxν . (7.33)

Thus the matrix parameterising Lorentz transformations is antisymmetric,

ωµν = −ωνµ, (7.34)

and has six independent elements. For an infinitesimal transformation, the transformed fields
φ̃a(x̃) depend linearly on1 δωµν and φa(x),

φ̃a(x̃) = φa(x) +
1

2
δωµν(I

µν)abφb(x) . (7.35)

The symmetric part of (Iµν)ab does not contribute, because of the antisymmetry of the δωµν .
Hence we can choose also the (Iµν)ab as antisymmetric and thus there exists six generators

1We add a factor 1/2, because in the summation two terms contribute for each transformation parameter.
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(Iµν)ab corresponding to the three boosts and the three rotations. The explicit form of the
generators Iab (the “matrix representation of the Lorentz group” for spin s) depends on the
spin of the considered field, as the known different transformation properties of scalar (s = 0),
spinor (s = 1/2) and vector (s = 1) fields under rotations show.

We evaluate now the Noether current (7.27), inserting first the definition of the stress
tensor,

jµ =
∂L

∂(∂µφa)
δφa −Θµνδx

ν . (7.36)

Next we use δxµ = δωµνxν and δφa = 1
2δω

µν(Iµν)abφb(x) as well as the antisymmetry of δωµν ,
to obtain

jµ =
∂L

∂(∂µφa)

1

2
δωνλ(Iνλ)abφb(x)− Θµνδω

νλxλ︸ ︷︷ ︸
1
2
δωνλ(Θµνxλ−Θµλxν)

=
1

2
δωνλMµνλ (7.37)

with the definition

Mµνλ = Θµλxν −Θµνxλ +
∂L

∂(∂µφa)
(Iνλ)abφb . (7.38)

This tensor of rank three is antisymmetric in the index pair νλ and conserved with respect
to the index µ. In order to understand its meaning, let us consider first a scalar field φ(x).
Then φ̃(x̃) = φ(x), the last term is thus absent, and the conservation law becomes

0 = ∂µM
µνλ = δνµ Θµλ − δλµΘ

µν = Θνλ −Θλν . (7.39)

Hence for a scalar field, the canonical stress tensor is symmetric, Θνλ = Θλν , and agrees with
the dynamical stress tensor, Θµν = T µν . The corresponding Noether charges are

Mνµ =

∫
d3xM0νµ =

∫
d3x xνΘ0µ − xµΘ0ν ≡ Lµν . (7.40)

Recalling Eq. (7.29), we see that these charges agree with the relativistic orbital angular mo-
mentum tensor Lµν . Since Lµν is antisymmetric, Eq. (7.40) defines six conserved quantities,
one for each of the generators of the Lorentz group. Choosing spatial indices, Lij agrees with
the non-relativistic orbital angular momentum, while the conservation of Li0 leads to the
relativistic version of the constant center-of-mass motion.

For a field with non-zero spin, the last term in Eq. (7.38) does not vanish. It represents
therefore the intrinsic or spin angular momentum density Sµν of the field. In this case, only
the total angular momentum Mµν is conserved, not however the orbital and spin angular mo-
mentum individually. Moreover, the canonical stress tensor derived using Noether’s theorem
is in general not symmetric.

7.3 Perfect fluid

In cosmology, the various contributions to the energy content of the universe can be mod-
elled as fluids, averaging over sufficiently large scales such that N ≫ 1 particles (photons,
dark matter particles, . . . , galaxies) are contained in a “fluid element”. In almost all cases,
viscosity is negligible and the state of such an ideal or perfect fluid is fully parametrised by
its energy density ρ and pressure P .
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We construct the stress tensor of a perfect fluid considering first the simplest case of
pressureless matter, traditionally called dust. Consider now how the energy density ρ
of dust transforms. An observer moving relative to the rest frame of dust measures
ρ′ = γdm/(γ−1dV ) = γ2ρ. Hence the energy density should be the 00 component of the
stress tensor tensor Tαβ , with T 00 = ρ in the rest frame. In order to find the expression
valid in any frame we can use the tensor method: We express Tαβ as a linear combination of
all relevant tensors, which are in our case the four-velocity uα plus the invariant tensors of
Minkowski space, i.e. the metric tensor and the Levi-Civita symbol. Additionally, we impose
the constraint that Tαβ is symmetric, leading to

Tαβ = Aρuαuβ +Bρηαβ . (7.41)

In the rest-frame, uα = (1,0), the condition T 00 = ρ leads A−B = 1, while T 11 = 0 implies
B = 0. Thus the stress tensor of dust is

Tαβ = ρuαuβ . (7.42)

Writing uα = (γ, γv), we can identify T 00 = γ2ρ with the energy density, T 0i = γ2ρvi with
the energy/momentum density flux in direction i, and T ij = γ2ρvivj with the flow of the
momentum density component i through the area with normal direction j.

Let us now check the consequences of ∂αT
αβ = 0, assuming for simplicity the non-relativistic

limit. We look first at the β = 0 component,

∂tρ+∇ · (ρu) = 0 . (7.43)

This corresponds to the mass continuity equation and, because of E = m for dust, at the
same time to energy conservation. Next we consider the β = 1, 2, 3 = i components,

∂t(ρu
j) + ∂i(u

iujρ) = 0 (7.44)

or

u∂tρ+ ρ∂tu+ u∇ · (ρu) + (u ·∇)ρu = 0 . (7.45)

Taking the continuity equation into account, we obtain the Euler equation for a force-free
fluid without viscosity,

ρ∂tu+ (u ·∇)ρu = 0 . (7.46)

Hence, as anounced, the condition ∂µT
µν = f ν gives the equations of motion for a continuous

medium.

In fluid mechanics, the derivative ∂t + u ·∇ is often called convective derivative,

D
Dt ≡ ∂t + u ·∇. (7.47)

Returning to four-vector notation and using uα ≃ (1,v), we can rewrite the convective deriva-
tive applied to the vector V α as

D
DtV

α = ∂tV
α + u ·∇V α = uβ∂βV

α. (7.48)

Thus the convective derivative agrees with “our” directional (covariant) derivative (3.58).
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Finally we include the effect of pressure. We know that the pressure tensor coincides with
the σij part of the stress tensor. Moreover, for a perfect fluid in its rest-frame, the pressure is
isotropic Pij = Pδij . This corresponds to Pij = −Pηij and adds −P to T 00. Compensating
for this gives

Tαβ = (ρ+ P )uαuβ − Pηαβ . (7.49)

7.4 Free scalar field

Real field The Klein-Gordon equation is a relativistic wave equation describing a scalar
field. We first consider a real, free field φ. Similar as the free Schrödinger equation,

i∂tψ =
p2

2m
ψ =

∆

2m
ψ , (7.50)

can be “derived” using the replacements

E → i∂t p→ −i∇x (7.51)

from the non-relativistic energy-momentum relation E = p2/(2m), we obtain from the
relativistic E2 = m2 + p2

(�+m2)φ = 0 with � = ηµν∂
µ∂ν . (7.52)

Translation invariance implys that we can choose the solutions as eigenstates of the momen-
tum operator, p̂φ = pφ. These states are plane waves with positive and negative energies
±
√
p2 +m2. Interpreting the Klein–Gordon equation as a relativistic wave equation for a

single particle cannot therefore be fully satisfactory, since the energy of its solutions is not
bounded from below.

How do we guess the correct Lagrange density L ? The correspondence q̇ ↔ ∂µφ means
that the kinetic field energy is quadratic in the field derivatives. In contrast, the mass term
m2 should be part of the potential energy, V (φ) ∝ m2. The relativistic energy-momentum
relation E2 = m2+p2 suggests that V (φ) is also quadratic, with the same numerical coefficient
as the kinetic energy. Therefore we try as Lagrange density

L =
1

2
ηµν(∂

µφ)(∂νφ)− V (φ) =
1

2
ηµν(∂

µφ)(∂νφ)− 1

2
m2φ2 ≡ 1

2
(∂µφ)

2 − 1

2
m2φ2, (7.53)

where the factor 1/2 is convention: The kinetic energy of a canonically normalised real field
carries the prefactor 1/2. With

∂

∂(∂αφ)
(ηµν∂µφ∂νφ) = ηµν

(
δαµ∂νφ+ δαν ∂µφ

)
= ηαν∂νφ+ ηµα∂µφ = 2∂αφ, (7.54)

the Lagrange equation becomes

∂L

∂φ
− ∂α

(
∂L

∂(∂αφ)

)
= −m2φ− ∂α∂

αφ = 0. (7.55)
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7.4 Free scalar field

Thus the Lagrange density (7.53) leads to the Klein-Gordon equation. We can check if we
have correctly chosen the signs by calculating the stress tensor,

T µν =
∂L

∂φ,µ
φ,ν − ηµνL = φ,µφ,ν − ηµνL . (7.56)

that is already symmetric. The corresponding 00 component is

T 00 = φ,0φ,0 − L =
1

2

[
(∂tφ)

2 + (∇φ)2 +m2φ2
]
> 0 (7.57)

positiv definite. Thus the energy density of a scalar field is, in contrast to the energy of the
single-particle solution, bounded from below.

Complex field and internal symmetries If two field exist with the same mass m, one might
wish to combine the two real fields into one complex field,

φ =
1√
2
(φ1 + iφ2) . (7.58)

Then one can interprete φ and φ† as a particle and its antiparticle, which are Hermetian
conjugated fields.

The resulting Lagrangian density is just the sum,

L = ∂µφ
†∂µφ−m2φ†φ (7.59)

The presence of two fields sharing some quantum numbers (here the mass) opens up the
possibility of internal symmetries. The Lagrangian (7.59) is invariant under global phase
transformations, φ → eiϑφ and φ† → e−iϑφ†. With δφ = iφ and δφ† = −iφ†, the conserved
current follows as

jµ = i
[
φ†∂µφ− (∂µφ†)φ

]
. (7.60)

The conserved charge Q =
∫
d3x j0 can be also negative and thus we cannot interpret j0

as the probability density to observe a φ particle. Instead, we should associate Q with a
conserved additive quantum number as, for example, the electric charge.

Next we calculate the stress tensor,

T 00 = 2∂tφ
†∂tφ− L = |∂tφ|2 + |∇φ|2 +m2|φ|2 > 0 . (7.61)

We consider now plane-wave solutions to the Klein-Gordon equation,

φ = Ne−ikx. (7.62)

If we insert ∂µφ = ikµφ into L , we find L = 0 and thus

T 00 = 2|N |2k0k0 . (7.63)

Relativistic one-particle states are usually normalised as N−2 = 2ωV . Thence the energy
density T 00 = ω/V agrees with the expectation for one particle with energy ω per volume V .

The other components are necessarily

T µν = 2|N |2kµkν . (7.64)

Since T µν is symmetric, we can find a frame in which T µν is diagonal with T ∝
diag(ω, vxkx, vyky, vzkz)/V ). This agrees with the contribution of a single particle to the
energy density and pressure of an ideal fluid. This holds also for other free fields, and thus
we can model elementary fields as ideal fluids, distinguished only by their equation of state
(E.o.S.), w = P/ρ.
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7 Classical field theory

7.5 Charge conservation and local gauge invariance

We have seen that the free charged scalar field is invariant under global phase transforma-
tions exp[iqΛ] ∈ U(1), implying a conserved current via Noether’s theorem. We now ask if
we can promote this global U(1) symmetry to a local one,

φ(x) → φ′(x) = U(x)φ(x) = exp[iqΛ(x)]φ(x), (7.65)

by making the phase U spacetime dependent. Since the partial derivatives in the La-
grangian (7.59) will lead to an additional term ∝ ∂µU(x), its invariance is destroyed except
we add an additional term as compensation to the free Lagrangian.

We proceed now similar to the case of gravity, where we modified the partial derivative
such that we obtained the desired transformation properties. Thus we replace the normal
derivative by a new covariant derivative Dµ,

∂µ → Dµ = ∂µ + igAµ, (7.66)

and require that Dµ transforms as the matter field φ,

Dµφ(x) → D′
µφ

′(x) = U(x)Dµφ(x). (7.67)

In the general case, φ may be a vector of N complex scalar fields, φ = {φ1, . . . , φn}, which are
mixed by the gauge transformations. Then Aµ and U are matrices in field space, Aµ = (Aij)µ.
We will suppress these indices—the only important point to remember is that matrices do
not necessairly commute.

We now determine the transformation properties of Dµ and Aµ demanding that (7.66) and
(7.67) hold. Combining both requirements gives

Dµφ(x) → [Dµφ]
′ = UDµφ = UDµU

−1Uφ = UDµU
−1φ′, (7.68)

and thus the covariant derivative transforms as D′
µ = UDµU

−1. Using its definition (7.66),
we find

[Dµφ]
′ = [∂µ + igA′

µ]Uφ = UDµφ = U [∂µ + igAµ]φ. (7.69)

We compare now the second and the fourth term, after having performed the differentiation
∂µ(Uφ). The result

[(∂µU) + igA′
µU ]φ = igUAµφ (7.70)

should be valid for arbitrary φ and hence, after multiplying from the right with U−1, we arrive
at

Aµ → A′
µ = UAµU

−1 +
i

g
(∂µU)U−1 = UAµU

−1 − i

g
U∂µU

−1. (7.71)

Here we also used ∂µ(UU
−1) = 0. In most cases, the gauge transformation U is an unitary

transformation and one sets U−1 = U †. A term changing as U(x)Dµ(x)U
†(x) is said to

transform homogeneously, while the potential Aµ is said to transform inhomogeneously.
Our discussion up to now was generic, applying to all (non-) abelian gauge fields as the

photon, the electroweak gauge bosons or the gluons. Specialing now to the case of electrody-
namics, the gauge group U(1) is abelian. Thus the transformation law for the electromagnetic
field simplifies using U = exp[iqΛ(x)] and g → q to

Aµ(x) → A′
µ(x) = Aµ(x)−

i

q
U(x)∂µU

†(x) = Aµ(x)− ∂µΛ(x), (7.72)
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7.6 Electrodynamics as an abelian gauge theory

agreeing with the standard result.
Finally, we consider the new Lagrangian of the complex scalar field, replacing the normal

with covariant derivatives,
L = (Dµφ)

†Dµφ−m2φ†φ. (7.73)

Inserting the definition Dµ = ∂µ + iqAµ and multiplying out, we obtain

L = ∂µφ
†∂µφ− iqAµφ

†∂µφ+ iqAµ(∂µφ
†)φ+ q2AµA

µφ†φ−m2φ†φ. (7.74)

The three terms additional to the free Lagrangian of the complex scalar field φ describe its
interactions with the photon field Aµ: The first two connect two φ and one Aµ fields, the last
one two φ and two Aµ fields. In the language of Feynman diagrams, the first two terms are
represented by a vertex φφAµ connecting three particles, the last one by a vertex φφAµAν

connecting four particles.
To summarise: the invariance of complex (scalar or Dirac) fields under global phase trans-

formations exp[iqΛ] ∈ U(1) implies a conserved current; promoting it to a local U(1) symmetry
requires the existence of a massless U(1) gauge boson2 coupled via gauge-invariant derivatives
to these fields. What is still is missing, is the free Lagrangian of the field Aµ.

7.6 Electrodynamics as an abelian gauge theory

Field-strength tensor We have to find the free Lagrangian for the field Aµ. The Lagrangian
should be gauge invariant, and quadratic in first derivative of the field Aµ (compare with
the scalar field). Thus we should use covariant instead of partial derivatives. Moreover, the
commutator of covariant derivatives is antisymmetric and thus the annoying inhomogeneous
term in the transformation rule of Aµ may drop out.

Calculating therefore the commutator of covariant derivatives,

[Dµ,Dν ]φ = iq([∂µ, Aν ]− [∂ν , Aµ])φ = iqφ(∂µAν − ∂νAµ) ≡ iqφFµν . (7.75)

where we introduced the field-strength tensor

Fµν = ∂µAν − ∂νAµ. (7.76)

Clearly, its antisymmetry implies its invariance under gauge transformations,

F ′
µν = ∂µA

′
ν − ∂νA

′
µ = Fµν − ∂µ∂νΛ+ ∂ν∂µΛ = Fµν . (7.77)

Example 7.2: Find the connection between 3- and 4-dim. formulation of electrodynamics:
The first row of Fµν = ∂µAν − ∂νAµ reads with Aµ = (φ,−Ak) and ∂ν = ∂/∂xµ = (∂/∂t,∇k) as

F0k = ∂0Ak − ∂kA0

Setting F0k = Ek gives
E = −∇φ− ∂tA,

what agrees with the first row of Fµν given in Eq. (1.57). We go in the opposite direction for

2The absence of such massless bosons (or classically 1/r2 forces) in the case of baryon number means that
this is a global symmetry which cannot be promoted to a local one.
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7 Classical field theory

B = ∇×A. In components, we have e.g.

B1 = ∂2A
3 − ∂3A

2 = ∂3A2 − ∂2A3 = F32

and similarly for the other components.

Now we can rewrite the Maxwell equations as

∂αF
αβ = jβ (7.78)

and
∂αFβγ + ∂βFγα + ∂γFαβ = 0 . (7.79)

The last equation is completely antisymmetric in all three indices, and contains therefore only
four independent equations. It is equivalent to

∂αF̃
αβ = 0 , (7.80)

where

F̃αβ =
1

2
εαβγδFγδ (7.81)

is the dual field-strength tensor.
The components of the electromagnetic field-strength tensor Fµν and its dual F̃αβ =

1
2εαβµνF

µν are given by (see also appendix to chapter 1)

Fµν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 and F̃µν =




0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 .

In general, the electric and magnetic fields measured by an observer with four-velocity uα are
connected to the field-strength tensor as Eα = Fαβu

β and Bα = F̃αβu
β.

Example 7.3: compare the measured E and B with those in Fαβ and Fαβ .

Current conservation and gauge invariance We take the divergence of Maxwells equation
(7.78),

∂ν∂µF
µν = ∂νj

ν . (7.82)

Since ∂ν∂µ is symmetric and Fµν antisymmetric, the summation of the two factors has to be
zero,

∂ν∂µF
µν = −∂ν∂µF νµ = −∂µ∂νF νµ = −∂ν∂µFµν . (7.83)

Thus current conservation,
∂νj

ν = 0 , (7.84)

follows from the antisymmetry of Fµν . The latter followed in turn from the required gauge-
invariance of the Maxwell Lagrangian.
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7.6 Electrodynamics as an abelian gauge theory

Remark 7.2: Differential forms:
A surface in R

3 can be described at any point either by its two tangent vectors e1 and e2 or by
the normal n. They are connected by a cross product, n = e1 × e2, or in index notation,

ni = εijke1,jek,2 . (7.85)

In four dimensions, the ε tensor defines a map between 1-3 and 2-2 tensors. Since ε is antisym-
metric, the symmetric part of tensors would be lost; Hence the map is suited for antisymmetric
tensors.
Antisymmetric tensors of rank n can be seen also as differential forms: Functions are forms of
order n = 0; differential of functions are an example of order n = 1,

df =
∂f

∂xi
dxi (7.86)

Thus the dxi form a basis, and one can write in general

A = Ai dx
i . (7.87)

For n > 1, the basis has to be antisymmetrized,

F =
1

2
Fµνdx

µ ∧ dxν (7.88)

with dxµ ∧ dxν = −dxν ∧ dxµ. Looking at df , we can define a differentiation of a form ω with
coefficients w and degree n as an operation that increases its degree by one to n+ 1,

dω = dwα,...,βdx
n+1 ∧ dxα ∧ . . . ∧ dxβ (7.89)

Thus we have F = dA. Moreover, it follows d2ω = 0 for all forms. Hence a gauge transformation

F ′ = d(A+ dχ) = F .

Wave equation The Maxwell equation (7.78) consists of four equations for the six compo-
nents of F . Thus we need either a second equation, i.e. Eq. (7.79), or we should transform
Eq. (7.78) into an equation for the four components of the four-potential A. In this case,
Eq. (7.79) is automatically satisfied. Let us do the latter and insert the definition of A,

∂µF
µν = ∂µ(∂

µAν − ∂νAµ) = �Aν − ∂µ∂
νAµ = jν . (7.90)

Gauge invariance allows us to choose a potential Aµ such that ∂µA
µ = 0. Such a choice is

called fixing the gauge, and the particular case ∂µA
µ = 0 is denoted as the Lorenz gauge. In

this gauge, the wave equation simplifies to

�Aµ = jµ. (7.91)

Inserting then a plane wave Aµ ∝ εµeikx into the free wave equation, �Aν = 0, we find
that k is a light-like vector, while the Lorenz gauge condition ∂µA

µ = 0 results in εµkµ = 0.
Imposing the Lorenz gauge, we can still add to the potential Aµ any function ∂µχ satisfying
�χ = 0. We can use this freedom to set A0 = 0, obtaining thereby εµkµ = −ε · k = 0.
Thus the photon propagates with the speed of light, is transversely polarised and has two
polarisation states as expected for a massless particle.

103



7 Classical field theory

Let us discuss now why gauge invariance is necessary for a massless spin-1 particle. First

we consider a linearly polarised photon with polarisation vectors ε
(r)
µ lying in the plane per-

pendicular to its momentum vector k. If we perform a Lorentz boost on ε
(1)
µ , we will find

ε̃(1)µ = Λν
µε

(1)
ν = a1ε

(1)
µ + a2ε

(2)
µ + a3kµ , (7.92)

where the coefficients ai depend on the direction β of the boost. Thus, in general the po-
larisation vector will not be anymore perpendicular to k. Similarly, if we perform a gauge
transformation

Aµ(x) → A′
µ(x) = Aµ(x)− ∂µΛ(x) (7.93)

with
Λ(x) = −iλ exp(−ikx) + h.c. , (7.94)

then
A′

µ(x) = (εµ + λkµ) exp(−ikx) + h.c. = ε′µ exp(−ikx) + h.c. (7.95)

Choosing, for example, a photon propagating in z direction, kµ = (ω, 0, 0, ω), we see that
the gauge transformation does not affect the transverse components ε1 and ε2. Thus only
the components of εµ transverse to k can have physical significance. On the other hand, the
time-like and longitudinal components depend on the arbitrary parameter λ and are therefore
unphysical. In particular, they can be set to zero by a gauge transformation. First, ε′µk

′µ = 0
implies (again for a photon propagating in z direction) ε′0 = −ε′3. From ε′3 = ε3 + λω, we see
that λ = −ε3/ω sets ε′3 = −ε′0 = 0. Thus the transformation law (7.92) for the polarisation
vector of a massless spin-1 particles requires the existence of the gauge symmetry (7.93). The
gauge symmetry in turn implies that the massless spin-1 particle couples only to conserved
currents.

Lagrange density The free field equation is

∂µF
µν = 0 . (7.96)

In order to find L , we multiply by a variation δAν that vanishes on the boundary ∂Ω. Then
we integrate over Ω = V × [ta : tb], and perform a partial integration,

∫

Ω
d4x ∂µF

µν δAν = −
∫

Ω
d4x Fµν δ(∂µAν) = 0 . (7.97)

Next we note that

(∂µAν − ∂νAµ)(∂
µAν − ∂νAµ) = 2(∂µAν − ∂νAµ)∂

µAν (7.98)

and thus

Fµν δ(∂µAν) =
1

2
Fµν δFµν . (7.99)

Applying the product rule, we obtain as final result

−1

4
δ

∫

Ω
d4x FµνF

µν = δS[Aµ] = 0 (7.100)

with

L = −1

4
FµνF

µν . (7.101)
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7.6 Electrodynamics as an abelian gauge theory

Note that although we expressed L through the field-strength tensor Fµν , the action is a
functional of A: The latter is the dynamical field variable which enters, e.g., the Lagrange
equations, giving us the a second-order (wave) equation. This is in accordance with the fact
that Aµ determines the interaction (7.110) with charged particles.

In order to justify the sign of the Lagrangian, we calculate next the corresponding energy
density ρ = T 00. In exercise 7.2, you are asked to show that factor 1/4 leads to a canonically
normalised field.

Stress tensor According to Eq. (7.28) we have

Θ ν
µ =

∂Aσ

∂xµ
∂L

∂(∂Aσ/∂xν)
− δνµL . (7.102)

Since L depends only on the derivatives Aµ
,ν , we can use the following short-cut: We know

already that

δL = −1

4
δ(FµνF

µν) = Fµν δ(∂νAµ) . (7.103)

Thus
∂L

∂(∂Aσ/∂xν)
= F σν = −F νσ (7.104)

and

Θ ν
µ = −∂Aσ

∂xµ
F νσ +

1

4
δνµFστF

στ . (7.105)

Raising the index µ and rearranging σ, we have

Θµν = −∂A
σ

∂xµ
F ν

σ +
1

4
ηµνFστF

στ . (7.106)

This result in neither gauge invariant (contains A) nor symmetric. To symmetrize it, we
should add

∂Aµ

∂xσ
F ν

σ =
∂

∂xσ
(AµF ν

σ) . (7.107)

The last step is possible for a free electromagnetic field, ∂σF
νσ = 0, and shows that we are

allowed to add the LHS. Then the two terms combine to F , and we get

Θµν = −Fµσ F ν
σ +

1

4
ηµνFστF

στ . (7.108)

In this form, the stress tensor is symmetric and gauge invariant. We can thus identify the
expression (7.108) with the dynamical stress tensor, Θµν = T µν . Note that its trace is zero,
T µ

µ = 0.

Lorentz force We start by considering a charged point particle interacting with an external
electromagnetic described by the vector potential Aµ = (φ,A). As Lagrangian for the free
particle we use L = −mds or

S0 = −
∫ b

a
ds m. (7.109)
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7 Classical field theory

How can the interaction term charged particle with an electromagnetic field look like? The
action should be a scalar and the simplest choice is

Sem = −q
∫

dxµAµ(x) = −q
∫

dσ
dxµ

dσ
Aµ(x) . (7.110)

Note that this choice for Sem is invariant under a change of gauge,

Aµ(x) → Aµ(x) + ∂µΛ(x) . (7.111)

The resulting change in the action,

δΛSem = −q
∫ 2

1
dσ

dxµ

dσ

∂Λ(x)

∂xµ
= −q

∫ 2

1
dΛ = q[Λ(2)− Λ(1)] (7.112)

drops out from δS for fixed endpoints, thus not affecting the resulting equation of motion.
With ds =

√
dxµdxµ, the variation of the action is

δS = −δ
∫ b

a
(mds+ qAµdx

µ) = −
∫ b

a

(
m
dxµδdxµ

ds
+ qAµd(δx

µ) + qδAµdx
µ

)
. (7.113)

We use δd = dδ in the frist term and integrate then the first two terms partially,

δS =

∫ b

a

(
md

(
dxµ
ds

)
δxµ + qδxµdAµ − qδAµdx

µ

)
(7.114)

where we have uses as “always” that the boundary terms vanish. Next we introduce uµ =
dxµ/ds and use

δAµ =
∂Aµ

∂xν
δxν , dAµ =

∂Aµ

∂xν
dxν . (7.115)

Then

δS =

∫ b

a

(
mduµδx

µ + q
∂Aµ

∂xν
δxµdxν − q

∂Aµ

∂xν
δxνdxµ

)
. (7.116)

Finally, we rewrite in the first term duα = duα/ds ds, in the second and third dxα = uαds
and exchange the summation indices µ and ν in the third term. Then

δS =

∫ b

a

[
m
duµ
ds

− q

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
uν
]
δxµds = 0 . (7.117)

For arbitrary variations, the brackets has to be zero and we obtain as equation of motion

m
duµ
ds

= fµ = q

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
uν ≡ qFµνu

ν . (7.118)

This is the relativistic form of the Lorentz force.
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7.7 Non-abelian gauge theories

Gauge fields as connection There is a close analogy between the covariant derivative ∇µ

introduced for a spacetime containing a gravitational field and the gauge-invariant derivative
Dµ required for a spacetime containing a gauge field. In the former case, the moving coordi-
nate basis in curved spacetime, ∂µe

ν 6= 0, introduces an additional term in the derivative of
vector components V µ = eµ · V . Analogously, a non-zero gauge field Aµ leads to a rotation
of the basis vectors ei in group space which in turn produces an additional term ψ · (∂µei)
performing the derivative of a ψi = ψ · ei.

Let us rewrite our formulae such that the analogy between the covariant gauge derivative
Dµ and the covariant spacetime derivative ∇µ becomes obvious. The vector ψ of fields with
components {ψ1, . . . , ψn} transforming under a representation of a gauge group can be written
as

ψ(x) = ψi(x)ei(x). (7.119)

We can pick out the component ψj by multiplying with the corresponding basis vector ej,

ψj = ψ · ej(x). (7.120)

If the coordinate basis in group space depends on xµ, then the partial derivative of ψi acquires
a second term,

∂µψi = (∂µψ) · ei +ψ · (∂µei) . (7.121)

We can argue, as in section 3.3, that (∂µψ) · ei is an invariant quantity, defining therefore as
gauge-invariant derivative

Dµψi = (∂µψ) · ei = ∂µψi −ψ · (∂µei). (7.122)

The change ∂µei of the basis vector in group space should be proportional to gAµ. Setting

∂µei = −ig(Aµ)ijej (7.123)

we are back to our old notation. In the abelian case, i.e. electrodynamics, there is a single
gauge field, the photon. Then the matrix becomes diagonal, containing the charge in units of
e as entries, g(Aµ)ij → eAµdiag(qi, . . . , qn).

Gauge loops The correspondence between the derivatives ∇µ and Dµ suggests that we can
use the gauge field Aµ to transport fields along a curve xµ(σ). In empty space, we can use
the partial derivative ∂µψ(x) to compare fields at different points,

∂µψ(x) ∝ ψ(x+ dxµ)− ψ(x). (7.124)

If there is an external gauge field present, the field ψ is additionally rotated in group space
moving it from x to x+ dx,

ψ̃(x+ dx) = ψ(x+ dx) + igAµ(x)ψ(x)dx
µ (7.125a)

= ψ(x) + ∂µψ(x)dx
µ + igAµ(x)ψ(x)dx

µ. (7.125b)

Then the total change is

ψ̃(x+ dx)− ψ(x) = [∂µ + igAµ(x)]ψ(x)dx
µ = Dµψ(x)dx

µ. (7.126)
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dx

1

3
dy 4

x x+ dx

x+ dy x+ dx+ dy

2

Figure 7.1: Parallelogram used to calculate the rotation of a test field ψi moved along a closed
loop in the presence of a non-zero gauge field Aµ.

Thus we can view3

Pdx(x) = 1− igAµ(x)dx
µ (7.127)

as an operator which allows us to transport a gauge-dependent field the infinitesimal distance
from x to x+ dx.

We ask now what happens to a field ψi(x), if we transport it along an infinitesimal paral-
lelogram, as shown in Fig. 7.1. Calculating path 2, we find

Pdy(x+ dx) = 1− igAν(x+ dx)dyν

= 1− igAν(x)dy
ν − ig∂µAν(x)dx

µdyν,
(7.128)

where we Taylor expanded Aν(x+ dx). Combining paths 1 and 2, we arrive at

Pdy(x+ dx)Pdx(x) = [1− igAν(x)dy
ν − ig∂µAν(x)dx

µdyν ][1− igAµ(x)dx
µ]

= 1− igAµ(x)dx
µ − igAν(x)dy

ν − ig∂µAν(x)dx
µdyν

− g2Aν(x)Aµ(x)dy
νdxµ +O(dx3).

(7.129)

Instead of performing the calculation for a round trip 1→2→3→4, we evaluate next 4→3
which we then subtract from 1 → 2. In this way, we can reuse our result for 1 → 2 after
exchanging labels, Aµdx

µ ↔ Aνdy
ν , obtaining

Pdx(x+ dy)Pdy(x) = 1− igAν(x)dy
ν − igAµ(x)dx

µ − ig∂νAµ(x)dx
µdyν

− g2Aµ(x)Aν(x)dx
µdyν +O(dx3).

(7.130)

The first three terms on the RHSs of (7.129) and (7.130) cancel in the result P (�) for the
round trip, leaving us with

P (�) ≡ Pdy(x+ dx)Pdx(x)− Pdx(x+ dy)Pdy(x) =

− ig {∂µAν − ∂νAµ + ig[Aµ, Aν ]} dxµdyν .
(7.131)

If the enclosed flux is non-zero, then P (�)ψi 6= ψi and thus the field is rotated.

Maxwell’s equations inform us that the line integral of the vector potential equals the
enclosed flux. The area of the parallelogram corresponds to dxµdyν, and the pre-factor
has to be therefore the field-strength tensor. In the abelian case, i.e. electrodynamics, the

3Note the sign change compared to the covariant derivative: there we pull back the field from x+ dx to x.
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7.7 Non-abelian gauge theories

commutator [Aµ, Aν ] vanishes and we are back to our definition (7.76). In the non-abelian
case, we read-off

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (7.132)

as the generalisation of the field-strength tensor. This is in line with the definition Fµν =
[Dµ,Dν ]/(ig) in Eq. (7.75).

Problems

7.1 Dynamical stress tensor. Show that the defi-
nition of the dynamical stress tensor can be sim-
plified to

Tµν =
2√
|g|

δSm

δgµν
= 2

∂L

∂gµν
− gµνL . (7.133)

7.2 Maxwell Lagrangian. Show that the normali-
sation of the Maxwell Lagrangian corresponds to
a canonically normalised field.
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8 Einstein’s field equation

Up to now, we have investigated the behaviour of test-particles and light-rays in a given
curved spacetime determined by the metric tensor gµν . In this chapter we discuss how the
metric tensor gµν , or the geometry of a spacetime, is connected to its matter content, and
vice versa. The transition from point mechanics to a field theory means that the role of the
mass m as the source of Newtonian gravity should be taken by the mass density ρ, or in
the relativistic case, by the stress tensor Tµν . Thus we expect a field equation of the type
Gµν = κTµν , where κ is proportional to Newton’s constant G and Gµν is a function of gµν
and its derivatives.

8.1 Curvature and the Riemann tensor

We are looking for an invariant characterisation of the curvature of an manifold induced
by gravity. As the discussion of normal coordinates showed, the first derivatives of the metric
can be (at one point) always chosen to be zero. Hence such quantity should contain second
derivatives of the metric, i.e. first derivatives of the Christoffel symbols. Curvature mainfests
itself in two ways: By the rotation of a vector parallel transported and by tidal effects on
nearby geodesics. Both effects can be used to define the curvature and the Riemann tensor.

Curvature as commutator of covariant derivatives We start using the first approach, em-
ploying the analogy between gauge theories and gravity. Both the gauge field Aµ and the
connection Γµ

κρ transform inhomogeneously. Therefore we cannot use them to judge if a
gauge or gravitational field is present. In the gauge case, we introduced therefore the field-
strength Fµν . It transforms homogeneously and thus the statement Fµν(x) = 0 holds in any
gauge. This suggests transforming (7.75) into a definition for a tensor measuring a non-zero
curvature of spacetime by replacing Dµ with ∇µ: The commutator of covariant derivatives
applied to a tensor,

(∇α∇β −∇β∇α)T
µ...
ν... = [∇α,∇β]T

µ...
ν... 6= 0, (8.1)

is obviously a tensor and contains second derivatives of the metric.

For the special case of a vector V α we obtain with

∇ρV
α = ∂ρV

α + Γα
βρV

β (8.2)

first

∇σ∇ρV
α = ∂σ(∂ρV

α + Γα
βρV

β) + Γα
κσ(∂ρV

κ + Γκ
βρV

β)− Γκ
ρσ(∂κV

α + Γα
βκV

β). (8.3)

The second part of the commutator follows relabelling σ ↔ ρ as

∇ρ∇σV
α = ∂ρ(∂σV

α + Γa
βσV

β) + Γα
κρ(∂σV

κ + Γκ
bσV

β)− Γκ
σρ(∂κV

α + Γα
βκV

β). (8.4)
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8.1 Curvature and the Riemann tensor

Now we subtract the two equations using that ∂ρ∂σ = ∂σ∂ρ and Γα
βρ = Γα

ρβ,

[∇ρ,∇σ]V
α =

[
∂ρΓ

α
βσ − ∂σΓ

α
βρ + Γα

κρΓ
κ
βσ − Γα

κσΓ
κ
βρ

]
V β ≡ Rα

βρσV
β. (8.5)

The tensor Rα
βρσ is called Riemann or curvature tensor.

Remark 8.1: We can push the analogy between Yang-Mills theories and gravity further by
remembering that the field-strength defined in Eq. (7.132) is a matrix. Writing out the implicit
matrix indices of Fµν in Eq. (7.75) gives

(Fµν)ij = ∂µ(Aν)ij − ∂ν(Aµ)ij + ig {(Aµ)ik(Aν)kj − (Aν)ik(Aµ)kj} . (8.6)

Comparing this expression to

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + Γα

ρµΓ
ρ
βν − Γα

ρνΓ
ρ
βµ (8.7)

we see that the first two indices of the Riemann tensor, α and β, correspond to the group indices

ij in the field-strength tensor. This is in line with the relation of the potential (Aµ)ij and the

connection Γα
βν implied by (7.123).

***Equation of geodesic deviation*** An alternative definition of the Riemann tensor
uses how the distance of nearby geodesics changes. In the context of general relativity, this
deviation is caused by the tidal forces induced by gravity.

Denote by t the tangent vector fields along a family of geodetics xµ(τ, s) which are
parametrised by proper-time τ and their separation s. Then a second family of vector field n
normal to t given by nα = ∂xα/∂vδv gives the separation between two neighbouring geodesics
with v and v + δv. Compute the acceleration of the separation,

D2nα

dτ
= tβ∇β(t

σ∇σn
α) = tβ∇β(n

σ∇σt
α) = (tβ∇βn

σ)(∇σt
α) + tβnσ∇β∇σt

α. (8.8)

where we used first that the two vector fields satisfy [t,n] = 0 or tα∇αs
β = sα∇αn

β, and
then the Leibiniz rule. Next we use the definition (8.5) of the Riemann tensor,

D2nα

dτ
= (tβ∇βn

σ)(∇σt
α) + tβnσ(∇σ∇βt

α +Rα
ρσβt

ρ). (8.9)

Then we apply in the middle term the Leibniz rule in reverse,

D2nα

dτ
= (tβ∇βn

σ)(∇σt
α) + tβ∇σ(n

σ∇βt
α)− (nσ∇σt

β)∇βt
α +Rα

ρσβt
ρtσnβ. (8.10)

Relabeling indices, we see that the first and third terms cancel, while the second term vanishes
as t is a tangent vector. Thus the final result is

D2nα

dτ
= Rα

ρσβt
ρtσnβ. (8.11)

Specialising to a freely falling frame, we set n = naea and e0 = t. Thus the distance ni of
two freely falling particles changes as

n̈i = Ri
00jn

j. (8.12)
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8 Einstein’s field equation

Example 8.1: Forces on a observer falling into a BH:
The freely-falling frame and the standard Schwarschild coordinates are connnected by a Lorentz
transformation. For a boost η, it is

R′
0101 = Λµ

0Λ
ν
1Λ

σ
0Λ

ρ
1Rµνσρ = (cosh4 η︸ ︷︷ ︸

0101

− 2 cosh2 η sinh2 η︸ ︷︷ ︸
1001,0110

+sinh4 η︸ ︷︷ ︸
1010

)R0101 = R0101.

Similarly, the other non-zero elements coincide in the two frames. Inserting the non-zero values
of the Riemann tensor,

R0101 = −R2323 =
2M

r3
, R0202 = R0303 = −R1212 = −R1313 = −M

r3
(8.13)

into the equation of geodesic deviation (8.12), it follows

n̈1 =
2M

r3
n1 n̈2 = −M

r3
n2 n̈3 = −M

r3
n3 (8.14)

A volume element dm at the height h above the center-of-mass (in direction x1 would be acclerated
by a = 2M/r3h relative to the center-of-mass, if it could move freely. To prevent this, the force
dF = adm has to counter-act on the mass element. The total force along the plane is

F =

∫ L/2

0

dLL2 2M

r3
m

L3
=
mMl

4r3

with the volume element dLL2 and the density m/L3. The resulting stresses σ = −F/L2 follow
then as

σ‖ = −mM

4Lr3
, σ⊥ =

mM

8Lr3
,

With m = 80kg and L = 1m, the stresses on a human body are around

σ ∼ 1015
dyn

cm2

M/M⊙

r/1 km

(Compare with the normal pressure of Earth’s atmosphere: 106dyn/cm2.)

Symmetry properties The study of the symmetry properties of the Riemann tensor are
simplified lowering its upper index and using normal coordinates. Inserting the definition
of the Christoffel symbols, the Riemann tensor at the considered point P becomes with
∂σgαβ = 0

Rαβρσ = gαρR
ρ
βµν = gαρ(∂µΓ

ρ
βν − ∂νΓ

ρ
βµ) (8.15a)

=
1

2
(∂σ∂βgαρ + ∂ρ∂αgβσ − ∂σ∂αgβρ − ∂ρ∂βgασ). (8.15b)

The tensor is antisymmetric in the indices ρ ↔ σ, antisymmetric in α ↔ β and symmetric
against an exchange of the index pairs (αβ) ↔ (ρσ). Moreover, there exists one algebraic
identity,

Rαβρσ +Rασβρ +Rαρσβ = 0, (8.16)

which is again simplest chcked using normal coordinates. Since each pair of indices (αβ) and
(ρσ) can take six values, we can combine the antisymmetrized components of R[αβ][ρσ] in a
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8.1 Curvature and the Riemann tensor

symmetric six-dimensional matrix. The number of independent components of this matrix is
thus for d = 4 space-time dimensions

n× (n+ 1)

2
− 1 =

6× 7

2
− 1 = 20 ,

where we accounted also for the constraint (8.16). In general, the number n of independent
components is in d space-time dimensions given by n = d2(d2 − 1)/12. The number m of
field equations, Gµν = κTµν , is given by the number independent components of a symmetric
tensor of rank in d space-time dimensions, m = d(d + 1)/2. Thus we find

d 1 2 3 4
n 0 1 6 20
m - 3 6 10

This implies that an one-dimensional manifold is always flat. In the appendix 6.B, we showed
that a two-dimensional manifold is conformally flat. Moreover, the number of independent
components of the Riemann tensor is smaller or equals the number of field equations for d = 2
and d = 3. Hence the Riemann tensor vanishes in empty space, if d = 2, 3. Starting from
d = 4, already an empty space can be curved and gravitational waves exist.

The Bianchi identity is a differential constraint,

∇κRαβρσ +∇ρRαβσκ +∇σRαβκρ = 0 , (8.17)

that is checked again simplest using normal coordinates. Then

∇κRαβρσ = ∂κRαβρσ =
1

2
∂κ{∂σ∂βgαρ + ∂ρ∂αgβσ − ∂σ∂αgβρ − ∂ρ∂βgασ} . (8.18)

Adding then two cyclic permuatations of the first and the last two indices, all terms cancel
and the Bianchi identity (8.17) follows. In the context of general relativity, this identities is
a necessary consequence of the Einstein-Hilbert action which ensures the local conservation
of the stress tensor.

The symmetry properties of the Riemann tensor imply that we can construct one non-zero
tensor of rank two, contracting α either with the third or fourth index, Rρ

αρβ = −Rρ
αβρ. We

define the Ricci tensor by

Rαβ = Rρ
αρβ = −Rρ

αβρ = ∂ρΓ
ρ
αβ − ∂βΓ

ρ
αρ + Γρ

αβΓ
σ
ρσ − Γσ

βρΓ
ρ
ασ. (8.19)

A further contraction gives the curvature scalar,

R = Rαβg
αβ . (8.20)

Example 8.2: Sphere S2. Calculate the Ricci tensor Rij and the scalar curvature R of the
two-dimensional unit sphere S2.
We have already determined the non-vanishing Christoffel symbols of the sphere S2 as Γφ

ϑφ =

Γφ
φϑ = cotϑ and Γϑ

φφ = − cosϑ sinϑ. We will show later that the Ricci tensor of a maximally
symmetric space as a sphere satisfies Rab = Kgab. Since the metric is diagonal, the non-diagonal
elements of the Ricci tensor are zero too, Rφϑ = Rϑφ = 0. We calculate with

Rab = Rc
acb = ∂cΓ

c
ab − ∂bΓ

c
ac + Γc

abΓ
d
cd − Γd

bcΓ
c
ad
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8 Einstein’s field equation

the ϑϑ component, obtaining

Rϑϑ = 0− ∂ϑ(Γ
φ
ϑφ + Γϑ

ϑϑ) + 0− Γd
ϑcΓ

c
ϑd = 0− ∂ϑ cotϑ− Γφ

ϑφΓ
φ
ϑφ

= 0− ∂ϑ cotϑ− cot2 ϑ = 1 .

From Rab = Kgab, we find Rϑϑ = Kgϑϑ and thus K = 1. Hence Rφφ = gφφ = sin2 ϑ.
The scalar curvature is (diagonal metric with gφφ = 1/ sin2 ϑ and gϑϑ = 1)

R = gabRab = gφφRφφ + gϑϑRϑϑ =
1

sin2 ϑ
sin2 ϑ+ 1× 1 = 2 .

Note that our definition of the Ricci tensor guaranties that the curvature of a sphere is also

positive, if we consider it as subspace of a four-dimensional space-time.

8.2 Integration and differential operators

Transition to curved spacetime In special relativity, Lorentz transformations left the vol-
ume element d4x invariant, d4x′ = dt′d2x′⊥dx

′
‖ = (γdt)d2x⊥(dx‖/γ) = dx4. We allow now for

arbitrary coordinate transformation for which the Jacobi determinant can deviate from one.
Thus the action of a field with Lagrange density L becomes

S =

∫

Ω
d4x
√

|g| L =

∫

Ω
d4xL

′, (8.21)

where g denotes the determinant of the metric tensor gµν . Sometimes, as in the second step,
we prefer to include the factor

√
|g| into the definition of L .

In the Lagrangian Lm of the matter fields, the effects of gravity are accounted for by the
replacements {∂α, ηαβ} → {∇α, gαβ}. Note that this transition is not unique: First, there
is an order ambiguity in the presence of second-order differential operators, reflecting the
fact that in presence of gravity, covariant derivatives do not commute. This problem can be
avoided, if one performs the transition on the level of the Lagrangian containing typically
first-order derivatives. Second, in the presence of gravity new interaction terms are possible.
For instance, in the case of a scalar field we can add a term ξR2φ2 to the usual Lagrangian.
Since this term vanishes in Minkowski space, we have no way to determine the value of ξ from
experiments in a flat spacetime.

Variation of the metric determinant g In order to find the equations of motion, we have
to determine the variation of the metric determinant g. We consider a variation of a matrix
M with elements mij(x) under an infinitesimal change of the coordinates, δxa = εxa,

δ ln detM ≡ ln det(M + δM)− ln det(M) (8.22a)

= ln det[M−1(M + δM)] = ln det[1 +M−1δM ] = (8.22b)

= ln[1 + tr(M−1δM)] +O(ε2) = tr(M−1δM) +O(ε2). (8.22c)

In the last step, we used ln(1 + ε) = ε+O(ε2). Expressing now both the LHS and the RHS
as δf = ∂µfδx

µ and comparing then the coefficients of δxµ gives

∂µ ln detM = tr(M−1∂µM). (8.23)
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8.2 Integration and differential operators

Useful formula for derivatives The replacement ∂ → ∇ and the additional factor
√
|g| will

prevent in general the use of Gauss’ law, needed to derive e.g. global conservation laws. The
only exception is if we can rewrite ∇µX

µ··· as 1/
√

|g|∂µ(· · · ).
Applying (8.23) to derivatives of g, we obtain

1

2
gµν∂λgµν =

1

2
∂λ ln g =

1√
|g|
∂λ(
√

|g|). (8.24)

while we find for contracted Christoffel symbols

Γµ
µν =

1

2
gµκ(∂µgκν + ∂νgµκ − ∂κgµν) =

1

2
gµκ∂νgµκ =

1

2
∂ν ln g =

1√
|g|
∂ν(
√

|g|). (8.25)

Next we consider the divergence of a vector field,

∇µV
µ = ∂µV

µ + Γµ
λµV

λ = ∂µV
µ +

1√
|g|

(∂µ
√

|g|)V µ =
1√
|g|
∂µ(
√

|g|V µ). (8.26)

and of an antisymmetric tensor of rank two,

∇µA
µν = ∂µA

µν + Γµ
λµA

λν + Γν
λµA

µλ =
1√
|g|
∂µ(
√

|g|Aµν) . (8.27)

In the latter case, the third term Γν
λµA

µλ vanishes because of the antisymmetry of Aµλ so
that we could combine the first two as in the vector case. This generalises to completely
antisymmetric tensors of all orders. For a symmetric tensor of rank two, we find analogously

∇µS
µν =

1√
|g|

∂µ(
√

|g|Sµν) + Γν
λµS

µλ. (8.28)

Thus the covariant derivative of symmetric tensors of rank two and higher contains additional
terms which prohibit the use of Gauss’ theorem.

Example 8.3: Spherical coordinates 3:
Calculate for spherical coordinates x = (r, ϑ, φ) in R

3 the gradient, divergence, and the Laplace
operator. Note that one uses normally normalized unit vectors in case of a diagonal metric: this
corresponds to a rescaling of vector components V i → V i/

√
gii (no summation in i) or basis

vectors. (Recall the analogue rescaling in the exercise “acceleration of a stationary observer in
SW BH.)
We express the gradient of a scalar function f first as

∂if ei = gij
∂f

∂xj
ei =

∂f

∂r
er +

1

r2
∂f

∂ϑ
eϑ +

1

r2 sin2 ϑ

∂f

∂φ
eφ

and rescale then the basis, e∗i = ei/
√
gii, or e

∗
r = er, e

∗
ϑ = reϑ, and e

∗
φ = r sinϑeφ. In this new

(“physical”) basis, the gradient is given by

∂if e∗i =
∂f

∂r
e∗r +

1

r

∂f

∂ϑ
e∗ϑ +

1

r sinϑ

∂f

∂φ
e∗φ .

The covariant divergence of a vector field with rescaled components X i/
√
gii is with

√
g = r2 sinϑ
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8 Einstein’s field equation

given by

∇iX
i =

1√
|g|
∂i(
√
|g|X i) =

1

r2 sinϑ

(
∂(r2 sinϑXr)

∂r
+
∂(r2 sinϑXϑ)

r∂ϑ
+
∂(r2 sinϑXφ)

r sinϑ∂φ

)

=
1

r2
∂(r2Xr)

∂r
+

1

r sinϑ

∂(sinϑXϑ)

∂ϑ
+

1

r sinϑ

∂Xφ

∂φ

=

(
∂

∂r
+

2

r

)
Xr +

(
∂

∂ϑ
+

cotϑ

r

)
Xφ +

1

r sinϑ

∂Xφ

∂φ
.

Global conservation laws An immediate consequence of Eq. (8.26) is a covariant form of
Gauß’ theorem for vector fields. In particular, we can conclude from local current conser-
vation, ∇µj

µ = 0, the existence of a globally conserved charge. If the conserved current jµ

vanishes at infinity, then we obtain also in a general space-time

∫

Ω
d4x
√

|g| ∇µj
µ =

∫

Ω
d4x∂µ(

√
|g|jµ) =

∫

∂Ω
dSµ

√
|g| jµ = 0 . (8.29)

For a current which vanishes as spatial infinity but is otherwise non-zero, the volume integral
over the charge density j0 remains constant,

∫

Ω
d4x
√

|g| ∇µj
µ =

∫

V (t2)
d3x
√

|g|j0 −
∫

V (t1)
d3x
√

|g|j0 = 0 . (8.30)

Thus the conservation of Noether charges of internal symmetries as the electric charge, baryon
number, etc., is not affected by an expanding universe.

Next we consider the stress tensor as example for a locally conserved symmetric tensor of
rank two. Now, the second term in Eq. (8.28) prevents us to convert the local conservation
law into a global one. If the space-time admits however a Killing field ξ, then we can form
the vector field Pµ = T µνξν with

∇µP
µ = ∇µ(T

µνξν) = ξν∇µT
µν + T µν∇µξν = 0. (8.31)

Here, the first term vanishes since T µν is conserved and the second because T µν is symmet-
ric, while ∇µξν is antisymmetric. Therefore the vector field Pµ = T µνξν is also conserved,
∇µP

µ = 0, and we obtain thus the conservation of the component of the energy-momentum
vector in the direction of ξ.

In summary, global energy conservation requires the existence of a time-like Killing vector
field. Moving along such a Killing field, the metric would be invariant. Since we expect in an
expanding universe a time-dependence of the metric, a time-like Killing vector field does not
exist and the energy contained in a “comoving” volume changes with time.

8.3 Einstein-Hilbert action

Einstein equation in vacuum Our main guide in choosing the appropriate action for the
gravitational field is simplicity. A Lagrange density has mass dimension four (or length
−4) such that the action is dimensionless. In the case of gravity, we have to account for the
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8.3 Einstein-Hilbert action

dimensionfull coupling, Newton’s constant G, and require therefore that the Lagrange density
without coupling has mass dimension two. Among the possible terms we can select are

L =
√

|g|
{
Λ + bR+ c∇a∇bR

ab + d(∇a∇bR
ab)2 + . . .

+ f(R) + . . .
}

(8.32)

Note that the terms in the first line are ordered according to the number of derivatives: Λ : ∂0,
b : ∂2, c : ∂4. Choosing only the first term, a constant, will not give dynamical equations.
The next simplest possibility is to pick out only the second term, as it was done originally
by Hilbert. The following c term will be suppressed relative to b by dimensional reasons as
∇a∇b/M

2 ∼ E2/M2. Here, E is the characteristic energy of the process considered, while
we expect 1/M2 ∼ GN for a theory of gravity. Alternatively, we can think of the terms in
the first line as an gradient expansion. Since spacetime is stiff, the movement of most sources
will lead only to small variations in the metric. Thus at low energies, the first two terms
should dominate the gravitational interactions. In contrast, a term like f(R) in the second
line is a modification of the simple R term—the allowed size of this modification has to be
constrained by experiments. We will see later that, if we do no include a constant term Λ
in the gravitational action, it will pop up on the matter side. Thus we add Λ right from the
start and define as the Einstein-Hilbert Lagrange density for the gravitational field

LEH = −
√
|g|(R + 2Λ) . (8.33)

The Lagrangian is a function of the metric, its first and second derivatives,1

LEH(gµν , ∂ρgµν , ∂ρ∂σgµν). The resulting action

SEH[gµν ] = −
∫

Ω
d4x
√

|g| {R+ 2Λ} (8.34)

is a functional of the metric tensor gµν , and a variation of the action with respect to the metric
gives the field equations for the gravitational field. We allow for variations of the metric gµν
restricted by the condition that the variation of gµν and its first derivatives vanish on the
boundary ∂Ω. Asking that variation is zero, we obtain

0 = δSEH = −δ
∫

Ω
d4x
√

|g|(R+ 2Λ) = (8.35a)

= −δ
∫

Ω
d4x
√

|g| (gµνRµν + 2Λ) (8.35b)

= −
∫

Ω
d4x

{√
|g| gµνδRµν +

√
|g|Rµνδg

µν + (R+ 2Λ) δ
√

|g|
}
. (8.35c)

Our task is to rewrite the first and third term as variations of δgµν or to show that they are
equivalent to boundary terms. Let us start with the first term. Choosing inertial coordinates,
the Ricci tensor at the considered point P becomes

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ. (8.36)

Hence
gµνδRµν = gµν(∂ρδΓ

ρ
µν − ∂νδΓ

ρ
µρ) = gµν∂ρδΓ

ρ
µν − gµρ∂ρδΓ

ν
µν , (8.37)

1Recall that the Lagrange equations are modified in the case of higher derivatives which is one reason why
we directly vary the action in order to obtain the field equations.
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8 Einstein’s field equation

where we exchanged the indices ν and ρ in the last term. Since ∂ρgµν = 0 at P , we can
rewrite the expression as

gµνδRµν = ∂ρ(g
µνδΓρ

µν − gµρδΓν
µν) = ∂ρV

ρ. (8.38)

The quantity V ρ is a vector, since the difference of two connection coefficients transforms as
a tensor, cf. with Eq. (torsion). Replacing in Eq. (8.38) the partial derivative by a covariant
one promotes it therefore into a valid tensor equation,

gµνδRµν = ∇µV
µ =

1√
|g|
∂µ(
√

|g|V µ). (8.39)

Thus this term corresponds to a surface term which we assume to vanish. Next we rewrite
the third term using

δ
√

|g| = 1

2
√

|g|
δ|g| = 1

2

√
|g| gµνδgµν = −1

2

√
|g| gµνδgµν (8.40)

and obtain

δSEH = −
∫

Ω
d4x
√
|g|
{
Rµν −

1

2
gµνR− Λ gµν

}
δgµν = 0. (8.41)

Hence the metric fulfils in vacuum the equation

− 1√
|g|

δSEH
δgµν

= Rµν −
1

2
Rgµν − Λgµν ≡ Gµν − Λgµν = 0, (8.42)

where we introduced the Einstein tensor Gµν . The constant Λ is called the cosmological
constant. It has the demension of a length squared: If the cosmological constant is non-zero,
empty space is curved with a curvature radius Λ−1/2.

Einstein equation with matter We consider now the combined action of gravity and matter,
as the sum of the Einstein-Hilbert Lagrange density LEH/2κ and the Lagrange density Lm

including all relevant matter fields,

L =
1

2κ
LEH + Lm = − 1

2κ

√
|g|(R + 2Λ) + Lm . (8.43)

In Lm, the effects of gravity are accounted for by the replacements {∂µ, ηµν} → {∇µ, gµν},
while we have to adjust later the constant κ such that we reproduce Newtonian dynamics in the
weak-field limit. We expect that the source of the gravitational field is the energy-momentum
stress tensor. More precisely, the Einstein tensor (“geometry”) should be determined by the
matter, Gµν = κTµν . Since we know already the result of the variation of SEH, we conclude
that the variation of Sm should give

2√
|g|

δSm
δgµν

= Tµν . (8.44)

The tensor Tµν defined by this equation is called dynamical energy-momentum stress stress
tensor . In order to show that this definition makes sense, we have to prove that ∇µT

µν = 0
and we have to convince ourselves that this definition reproduces the standard results we
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8.3 Einstein-Hilbert action

know already. We note however already that the stress tensor defined by Eq. (8.44) is by
contruction symmetric. Moreover, the stresss tensor is automatically gauge invariant, if the
matter Lagrangian is gauge invariant. Thus the dynamical stress tensor avoids the problems
of the canonical stress tensor.

Einstein’s field equation follows then as

Gµν − Λgµν = κTµν . (8.45)

Alternative form of the Einstein equation We can rewrite the Einstein equation such that
the only geometrical term on the LHS is the Ricci tensor. Because of

R µ
µ − 1

2
g µ
µ (R+ 2Λ) = R− 2(R + 2Λ) = −R− 4Λ = κT µ

µ (8.46)

we can perform with T ≡ T µ
µ the replacement R = −4Λ − κT in the Einstein equation and

obtain

Rµν = κ(Tµν −
1

2
gµνT )− gµνΛ . (8.47)

This form of the Einstein equations is often useful, when it is easier to calculate T than R.
Note also that Eq. (9.69) informs us that an empty universe with Λ = 0 has a vanishing Ricci
tensor, Rµν = 0. A spacetime with Rµν = 0 is callled Ricci flat.

Remark 8.2: Einstein guessed the right form of the field equations realising that ∇µT
µν = 0

implies ∇µG
µν = 0. Applying the tensor method to evaluate this constraint, we use the ansatz

Gµν = aRµν + bRgµν . (8.48)

Metric compatbility ensures ∇µg
µν = 0; thus we can always add a term Λgµν with an uncon-

strained coefficient Λ. To determine the ratio a/b, we consider the Bianchi identity,

∇κRαβρσ +∇ρRαβσκ +∇σRαβκρ = 0 , (8.49)

Raising the index α and contracting with σ gives

∇κR
α
βρα +∇ρR

α
βακ +∇αR

α
βκρ = −∇κRβρ +∇ρRβκ +∇αR

α
βκρ = 0. (8.50)

Next we raise the index β and contract with κ,

−∇βR
β
ρ +∇ρR+∇αR

αβ
βρ = −∇βR

β
ρ +∇ρR−∇αR

α
ρ = 0, (8.51)

what gives finally ∇µ(R
µν − 1

2 Rg
µν) = 0.

Structure of the equations The Einstein equation is a set of ten second-order partial dif-
ferential equations for the ten independent components of metric tensor. The equation is
non-linear, even setting Tµν = 0 and considering only the gravitational sector. Thus we
cannot superimpose solutions for, e.g., a point mass to obtain generic solutions. Moreover,
attempts to derive analytical solutions are complicated by the fact that usually also the stress
tensor is a non-linear function of the metric tensor.

Let us now look at the Einstein equation as an intial-value problem. At first sight, it looks
like we have to prescribe the values of the metric gαβ and its first time-derivative ∂tgαβ on a
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8 Einstein’s field equation

space-like hypersurface at a given time as initial values. However, the equation ∇αG
αβ = 0

or ∇αT
αβ = 0 imply that at least four of the Einstein equations are constraints. As a result,

the time derivatives of g00 and g0i can be eleminated from the Einstein equations. Therefore
the true dynamical variables are the six space-space like components gij of the metric tensor.

Remark 8.3: Weyl tensor—The Riemann tensor has 20 independent elements, while the

local matter distribution Tµν fixes only the 10 independent elements of the Ricci tensor. Thus

we should be able to decompose the Riemann tensor into a tensor determined only by the Ricci

tensor, and a remainder. The latter, called the Weyl tensor, contains the non-local curvature

effects of matter as well as gravitational waves.

An example for such non-local curvature effects is the Schwarzschild (exteriror) metric: For r > R,

the space is empty, Tµν = 0, and thus Ricci flat, Rµν = 0. However, the spacetime is curved and

the Riemann tensor is non-zero, with all curvature effects contained in the Weyl tensor.

8.4 Dynamical stress tensor

We start by proving that the dynamical stress tensor defined by by Eq. (8.44) is conserved.
We consider the change of the matter action under variations of the metric,

δSm =
1

2

∫

Ω
d4x
√

|g| Tαβδgαβ = −1

2

∫

Ω
d4x
√

|g| Tαβδgαβ . (8.52)

We allow infinitesimal but otherwise arbitrary coordinate transformations,

x̃α = xα + ξα(xβ) . (8.53)

For the resulting change in the metric δgαβ we can use the Killing Eq. (4.11),

δgαβ = ∇αξβ +∇βξα . (8.54)

We use that Tαβ is symmetric and that general covariance guarantees that δSm = 0 for a
coordinate transformation,

δSm = −
∫

Ω
d4x
√

|g| Tαβ∇αξβ = 0 . (8.55)

Next we apply the product rule,

δSm = −
∫

Ω
d4x
√

|g| (∇αT
αβ)ξβ +

∫

Ω
d4x
√

|g| ∇α(T
αβξβ) = 0 . (8.56)

The second term is a four-divergence and thus a boundary term that we can neglect. The
remaining first term vanishes for arbitrary ξ only, if the stress tensor is conserved,

∇αT
αβ = 0 . (8.57)

Hence the local conservation of energy-momentum is a consequence of the general covariance
of the gravitational field equations, in the same way as current conservation follows from
gauge invariance in electrodynamics.
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8.4 Dynamical stress tensor

We now evaluate the dynamical stress tensor for the examples of the Klein-Gordon and the
photon field. Note that the replacements ηαβ → gαβ requires also that we have to express
summation indices as contractions with the metric tensor, i.e. we have to replace e.g. AαB

α

by gαβAαBβ . Thus we rewrite Eq. (7.53) including a potential V (φ), that could be also a
mass term, V (φ) = m2φ2/2, as

L =
1

2
gαβ∇αφ∇βφ− V (φ) . (8.58)

With ∇αφ = ∂αφ for a scalar field, the variation of the action gives

δSKG =
1

2

∫

Ω
d4x

{√
|g|∇αφ∇βφ δg

αβ + [gαβ∇αφ∇βφ− 2V (φ)]δ
√

|g|
}

(8.59a)

=

∫

Ω
d4x
√

|g|δgαβ
{
1

2
∇αφ∇βφ− 1

2
gαβL

}
, (8.59b)

and thus

Tαβ =
2√
|g|

δSm
δgαβ

= ∇αφ∇βφ− gαβL . (8.60)

Next we consider the free electromagnetic action,

Sem = −1

4

∫

Ω
d4x
√
|g|FαβF

αβ = −1

4

∫

Ω
d4x
√

|g|gαρgβσFαβFρσ . (8.61)

Noting that Fαβ = ∇αAβ −∇βAα = ∂αAβ − ∂βAα, we obtain

δSem = −1

4

∫

Ω
d4x

{
(δ
√

|g|)FρσF
ρσ +

√
|g|δ(gαρgβσ)FαβFρσ

}
(8.62a)

= −1

4

∫

Ω
d4x
√

|g|δgαβ
{
−1

2
gαβFρσF

ρσ + 2gρσFαρFβσ

}
. (8.62b)

Hence the dynamical stress tensor is

Tαβ = −FαρF
ρ

β +
1

4
gαβFρσF

ρσ . (8.63)

Thus we reproduced in both cases the (symmetrised) canonical stress tensor.

Cosmological constant To understand better the meaning of the constant Λ, we ask now if
one of the known stress tensors could mimick the term gαβΛ. First we consider a scalar field.
The constancy of Λ requires clearly ∇αφ = 0 and thus

Tαβ = gαβV0(φ) , (8.64)

where V0 is the minimum of the potential V (φ). Hence a constant scalar field sitting at a
non-zero minimum of its potential acts as a cosmological constant.

Next we consider a perfect fluid which E.o.S. is fixed by the two parameters density ρ and
pressure P . We know already that Tαβ = diag{ρ, P, P, P} is valid for a perfect fluid in its
rest frame. Hence a fluid with P = −ρ, i.e. marginally fulfilling the strong energy condition,
has the same property as a cosmological constant.
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8 Einstein’s field equation

Is it possible to distinguish a term like Tab = gabV0(φ) in Sm from a non-zero Λ in SEH? In
principle yes, since a cosmological constant fulfils P = −ρ exactly and independently of all
external parameters like temperature or density. The latter change with time in the universe
and therefore there may be detectable differences to a fluid with P = P (ρ, T, . . .) and a scalar
field with potential V = V (ρ, T, . . .), even if they mimick today very well a cosmological
constant with P = −ρ.

Remark 8.4: Energy conditions: We can now explain what the assumption “normal matter”
in Penrose’s singularity theorem means. Depending on the eigenvalues of the stress tensor, one
says that the stress tensor satisfies the

• weak energy condition, if ρ ≥ 0, and ρ+ Pi > 0, i = {1, 2, 3};
• strong energy condition, if ρ+

∑
i Pi ≥ 0 for i = {1, 2, 3}, and ρ+ Pi > 0;

• dominant energy condition, if ρ ≥ 0, and −ρ < Pi < ρ.

The dominant energy condition gurantees that the local speed of sound in the fluid is smaller

than the speed of light. Causality implies thus that all “normal” forms of matter satisfy this

condition. This condition is sufficient for the valifity of the Penrose’s singularity theorems; for a

proof see Wald’s textbook.

On the other hand, a stress tensor dominated by a positive cosmological constant does not satisfy

these assumptions. (This is not in contradiction to causality, since a cosmological constant does

not support sound waves.) From a physical point of view, the repulsion induced by the negative

pressure can counteract the focusing of geodesics by gravity and thus avoid the formation of

singularities.

Equations of motion We show now that the Einstein equation implies that particles move
along geodesics. By analogy with a pressureless fluid, Tαβ = ρuαuβ, we use as ansatz2

Tαβ(x̃) =
m√
|g|

∫
dτ

dxα

dτ

dxβ

dτ
δ(4)(x̃− x(τ)) (8.65)

for a point-particle moving along the world-line x(τ) with proper time τ . Inserting this
expression into

∇αT
αβ = ∂αT

αβ + Γα
σαT

σβ + Γβ
σαT

ασ =
1√
|g|

∂α(
√

|g|Tαβ) + Γβ
σαT

ασ = 0 (8.66)

gives ∫
dτ ẋαẋβ

∂

∂x̃α
δ(4)(x̃− x(τ)) + Γβ

σα

∫
dτ ẋαẋσδ(4)(x̄− x(τ)) = 0 . (8.67)

We can replace ∂/∂x̃α = −∂/∂xα acting on δ(4)(x̃− x(τ)) and use moreover

ẋα
∂

∂xα
δ(4)(x̃− x(τ)) =

d

dτ
δ(4)(x̃− x(τ)) (8.68)

to obtain

−
∫

dτ ẋβ
d

dτ
δ(4)(x̃− x(τ)) + Γβ

σα

∫
dτ ẋαẋσδ(4)(x̃− x(τ)) = 0 . (8.69)

2Note the delta function is accompanied by a factor 1/
√

|g| such that
∫

d4x
√

|g|f(x)δ(x−x0)/
√

|g| = f(x0).
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Integrating the first term by parts we end up with

∫
dτ
(
ẍβ + Γβ

σαẋ
αẋσ

)
δ(4)(x̃− x(τ)) = 0 . (8.70)

The integral vanishes only, when the word-line xα(τ) is a geodesics. Hence the Einstein
equation implies the equation of motion of a point particle, in contrast to Maxwell’s theory,
where the Lorentz force law has to be postulated separately.

8.5 Alternative theories

The Einstein-Hilbert action (8.33) is most likely only the low-energy limit of either the
“true” action of gravity or of an unified theory of all interactions. It is therefore interesting
to examine modifications of the Einstein-Hilbert action and to compare their predictions to
observations.

Tensor-scalar theories The (linear) field equation for a purely scalar theory of gravity would
be

�φ = −4πGT µ
µ . (8.71)

It predicts no coupling between photons and gravitation, since T µ
µ = 0 for the electromagnetic

field. A purely vector theory for gravity fails too, since it predicts not attraction but repulsion
for two masses.

However, it may well be that gravity is a mixture of scalar, vector and tensor exchange,
dominated by the later. An important example for a tensor-scalar theory is the Brans-Dicke
theory. Here one use gµν to describe gravitational interactions but assumes that the strength,
G, is determined by a scalar field φ,

S =

∫
d4x
√

|g|
{
−1

2
φ2R+ α(∂µφ)

2 + Lm(gµν , ψ)

}
, (8.72)

where ψ represents all matter fields. Rescaling the metric by

g̃µν = gµν
κ

φ2

we are back to Einstein gravity, but now φ couples universally to all matter fields ψ.

f(R) gravity Another important class of modified gravity models are the so-called f(R)
gravity models, which generalise the Einstein–Hilbert action replacing R by a general function
f(R). Thus the action of f(R) gravity coupled to matter has the form

S =

∫
d4x
√

|g|
{
− 1

2κ̃
f(R) + Lm

}
. (8.73)

Note that for f(R) 6= R, the gravitational constant κ̃ = 8πG̃ deviates from Newton’s constant
G measured in a Cavendish experiment.
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Extra dimensions and Kaluza-Klein theories String theory suggests that we live in a world
with d = 10 spacetime dimensions. There are two obvious answers to this result: first, one
may conclude that string theory is disproven by nature or, second, one may adjust reality.
Consistency of the second approach with experimental data could be achieved, if the d − 4
dimensions are compactified with a sufficiently small radius R, such that they are not visible
in experiments sensible to wavelengths λ≫ R.

Let us check what happens to a scalar particle with mass m, if we add a fifth compact
dimension y. The Klein–Gordon equation for a scalar field φ(xµ, y) becomes

(�5 +m2)φ(xµ, y) = 0 (8.74)

with the five-dimensional d’Alembert operator �5 = �− ∂2y . The equation can be separated,
φ(xµ, y) = φ(xµ)f(y), and since the fifth dimension is compact, the spectrum of f is discrete.
Assuming periodic boundary conditions, f(x) = f(x+R), gives

φ(xµ, y) = φ(xµ) cos(nπy/R). (8.75)

The energy eigenvalues of these solutions are ω2
k,n = k2 + m2 + (nπ/R)2. From a four-

dimensional point of view, the term (nπ/R)2 appears as a mass term, m2
n = m2 + (nπ/R)2.

Since we usually consider states with different masses as different particles, we see the five-
dimensional particle as a tower of particles with mass mn but otherwise identical quantum
numbers. Such theories are called Kaluza–Klein theories, and the tower of particles Kaluza–
Klein particles. If R≪ λ, where λ is the length-scale experimentally probed, only the n = 0
particle is visible and physics appears to be four-dimensional.

Since string theory includes gravity, one often assumes that the radius R of the extra-
dimensions is determined by the Planck length, R = 1/MPl = (8πGN )1/2 ∼ 10−34 cm. In this
case it is difficult to imagine any observational consequences of the additional dimensions. Of
greater interest is the possibility that some of the extra dimensions are large,

R1,...,δ ≫ Rδ+1,...,6 = 1/MPl.

Since the 1/r2 behaviour of the gravitational force is not tested below d∗ ∼mm scales, one
can imagine that large extra dimensions exists that are only visible to gravity: Relating the
d = 4 and d > 4 Newton’s law F ∼ m1m2

r2+δ at the intermediate scale r = R, we can derive
the “true” value of the Planck scale in this model: Matching of Newton’s law in 4 and 4 + δ
dimensions at r = R gives

F (r = R) = GN
m1m2

R2
=

1

M2+δ
D

m1m2

R2+δ
. (8.76)

This equation relates the size R of the large extra dimensions to the true fundamental scale
MD of gravity in this model,

G−1
N = 8πM2

Pl = RδM δ+2
D , (8.77)

while Newton’s constant GN becomes just an auxiliary quantity useful to describe physics
at r >∼ R. (You may compare this to the case of weak interactions where Fermi’s constant
GF ∝ g2/m2

W is determined by the weak coupling constant g and the mass mW of the W -
boson.) Thus in such a set-up, gravity is much weaker than the weak interaction because the
gravitational field is diluted into a large volume.
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Next we ask, if MD ∼ TeV is possible, what would allow one to test such theories at
accelerators as LHC. Inserting the measured value of GN and MD = 1TeV in Eq. (8.77) we
find the required value for the size R of the large extra dimension as 1013 cm and 0.1 cm for
δ = 1 and 2, respectively. Thus the case δ = 1 is excluded by the agreement of the dynamics
of the solar system with four-dimensional Newtonian physics. The cases δ ≥ 2 are possible,
because Newton’s law is experimentally tested only for scales r >∼ 1mm.

8.A Appendix: Electrodynamics in curved spacetime

Wave equation in a curved spacetime Most of the derivations performed in section 7.6 for
Minkowski spacetime can be simply recycled in a curved spacetime using the replacement
{∂α, ηαβ} → {∇α, gαβ}. Thus the Maxwell equations in curved spacetime become

∇αF
αβ = jβ and ∇αF̃

αβ = 0 , (8.78)

while the definition of the field-strength tensor,

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ, (8.79)

is, due to its antisymmetry, unchanged. Inserting Fα
ν = gµαFµν into the inhomogenous

Maxwell gives

gµα∇α∇µAν −∇α∇νA
α = �Aν +∇ν∇αA

α +RναA
α = jν . (8.80)

In the second step, we introduced gαβ∇α∇β ≡ � as the generalisation of the usual wave- or
d’Alembert operator to a curved spacetime. Moreover, we used Eq. (13.7) to anticommute the
derivatives ∇α∇ν . Employing then the Lorenz gauge, ∇νA

ν = 0, we obtain as wave equation

�Aµ +RµνA
ν = jµ. (8.81)

Note that the transition to curved spacetime is not unique: Performing the transition directly
in the wave equation, we would miss the coupling RµνA

ν of the photon field to the Riccci
tensor.

***Geometrical optics*** Studying the paths of light-rays in the Schwarzschild or Kerr
metric, we have implicitely worked in the limit of geometrical optics: This is an aproximation
to wave-propagation in Maxwell’s theory, Eq. (8.81), which assumes that the wave-length
of the photons constituting the light-ray is much smaller than any other length scale in the
problem. In particular, the wave-length λ has to be smaller than the scale r of curvature,
which we identify with the square root of a “typical” component of the Riemann tensor in an
inertial system of interest. Moreover, the wave-lenght has to be small compared to the length
L over which the wave varies. Thus we require λ≪ min{L, r}.

We split the wave into Aµ = ℜ[fµeiφ], with a fast varying real phase φ and a slowly varying
complex amplitude fµ. Introducing then the parameter ε = λ/min{L, r}, we can expand the
amplitude as

fµ = aµ + iεbµ +O(ε2), (8.82)
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where the constants aµ and bµ are independent of λ. The limit of geometrical optics corre-
sponds to the case when the O(ε2) term can be neglected. Note that the phase φ is of order
1/λ ∼ ε, and therefore we replace φ→ φ/ε. Thus our ansatz becomes

Aµ ≃ ℜ[aµ + iεbµ +O(ε2)]eiφ/ε. (8.83)

The expansion parameter ε can be set to one at the end of the derivation.
In order to prove that this ansatz corresponds to the geometrical optics limit, we have to

show that the wave-vector kµ is a null vector, that it is tangential to the light-ray and satisfies
the geodesic equation. In the local intertial frame of an observer, it is φ = kµx

µ and kµ = ∂µφ.
Since the phase φ is a scalar, the last relation holds in general. Differentiating (8.83) once,
we obtain

∇µA
ν =

[
i

ε
kµa

ν − kµb
ν +∇µa

ν +O(ε)

]
eiφ/ε. (8.84)

Differentiating a second time, it follows

�Aµ =

[
−k

2

ε2
aµ +

i

ε

(
k2bµ + 2kν∇νa

µ + (∇νk
µ)aν

)
+O(ε)

]
eiφ/ε. (8.85)

Since Rµ
νAν = O(ε0), the free Maxwell equation (8.81) implies that �Aµ vanishes at O(ε−2)

and O(ε−1). Hence the O(ε−2) term implies k2 = 0, while the O(ε−1) term gives a differential
equation for the evolution of the amplitude a,

kν∇νa
µ = −1

2
(∇νk

µ)aν . (8.86)

We now show that the relation kµ = ∂µφ together with the null condition implies the
geodesice equation. Differentiating the null condition gives

0 = 2kµ∇νkµ = 2kµ∇ν∇µφ = 2kµ∇µ∇νφ = 2kµ∇µkν , (8.87)

where we used in the next-to-last step that two covariant derivatives commute acting on a
scalar. Thus we have shown that the ansatz (8.84) specifies the vector potential in the limit
of geometrical optics. Moreover, we have shown that the approximation of geometrical optics
breaks down, if the condition λ≪ min{L, r} does not hold.

8.B Appendix: More differential geometry

8.B.1 Differential forms

We have seen that we can define a generalise partial integration for completely anti-
symmetric tensor fields. Moreover, the observation that Maxwell equations are conformally
invariant, suggests that one can define such a theory without the need to introduce a metric
tensor. In order to achive this, we define first differential forms.

Remark 8.5: Antisymmetric tensors of rank n can also be seen as differential forms. We
already know functions as forms of order n = 0 and co-vectors as forms of order n = 1. Since
differentials df = ∂if dx

i of functions are forms of order n = 1, the dxi form a basis, and one can
write in general A = Ai dx

i. For n > 1, the basis has to be antisymmetrised. Hence, a two-form
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as the field-strength tensor is given by

F =
1

2
Fµνdx

µ ∧ dxν (8.88)

with dxµ ∧ dxν = −dxν ∧ dxµ. Looking at df suggestions to define the differentiation of a form
ω with coefficients w and degree n as an operation that increases its degree by one to n+ 1,

dω =
1

n!
(∂βwα1...,αn

)dxβ ∧ dxα1 ∧ . . . ∧ dxαn . (8.89)

Thus we have F = dA. Moreover, it follows d2ω = 0 for all (smooth) forms. Hence we can write

an abelian gauge transformation as F ′ = d(A− dΛ) = F .

Next, we want to rewrite the Maxwell equations using differential forms.
integration, Stokes theorem using differential forms

8.B.2 Cartan’s structure equation and anholonomic coordinates

The derivation of our explicit expressions for the connection and the Riemann tensor were all
performed using as coordinates the tangential vectors to the coordinate lines, {eµ} = {∂/∂xµ}.
In this appendix, we generalize these expressions to arbitrary (“anholonomic”) coordinates.

8.B.3 Vielbein formalism and spin connection

Gravity can be seen as a local gauge theory of Lorentz transformation SO(1,3); this point
of view allows one to derive the spin connection for fermionic fields, for an introductionsee
my book or lecture notes on QFT.

Problems

8.1 Hyperbolic plane H2 II. Calculate the Rie-
mann tensor Ra

bcd and the scalar curvature R for
the Hyperbolic plane H2.

8.2 Weyl tensor. Split the Riemann tensor into a

tensor determined soley by the Ricci tensor, and
a reminder. Show that the latter, called th Weyl
tensor, is invariant under conformal transforma-
tions.
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9 Relativistic stars

In this chapter, we will examine the Schwarzschild interior solution and use it to derive the
equations of stellar structure for a relativistic, compact star. The most important example
for stars where general relativistic effects are important are neutron stars. In order to obtain
some manageable equations, we consider a static and spherically symmetric star. The matter
inside a neutron star can be described as an ideal fluid, and we will assume an equation
of state (E.o.S.) which depends on density but not on temperature, P = P (ρ(r)). Then
the equations of stellar structure reduce to a set of two, ordinary differential equations, the
continuity and the hydrostatic equilibrium equation. We start the chapter generalising the
hydrodynamics of an ideal fluid to general relativity.

Be aware of a mix of sign conventions in this chapter!

9.1 General-relativistic hydrodynamics

We reserve the letter ρ to the total energy density, and write mn for the mass density of
the fluid. Then the total energy density ρ = mn + ε includes the internal (thermodynamic)
energy density ε and the mass density mn. In addition, the fluid is characterised by the mass
current jα = mnuα and the pressure P , assumed to be isotropic.

The densities are all measured in an inertial frame that is momentarily comoving with a
selected fluid element; this frame is attached to an observer moving freely in the gravitational
field. The mass density mn satisfies the conservation law1,

∇αj
α = ∇α(mnu

α) = 0, (9.1)

if the production and destruction of nucleons can be negelected. Using the product rule, it
follows

m
dn

dτ
+mn∇αu

α = 0, (9.2)

where dn/dτ = uα∇αn is the convective (or Lagrangian) derivative of the density n. For an
ideal fluid, the stress tensor (7.49) becomes in curved space-time replacing ηαβ with gαβ

Tαβ = (ρ+ P )uαuβ − Pηαβ . (9.3)

Local energy-momentum conservation, ∇βT
αβ = 0, leads to

uα
[
dρ

dτ
+ (ρ+ P )∇βu

β

]
+ (ρ+ P )

duα

dτ
+ (gαβ − uαuβ)∇βP = 0. (9.4)

In section 7.3, we split the conservation law ∂αT
αβ = 0 valid in Minkowski space by hand into

two separate conservation laws for energy and momentum. We want to perform this splitting
now in a covariant way: In order to do so, we recall that the acceleration duα/dτ is orthogonal

1More properly, it is the baryon number which is conserved.
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9.1 General-relativistic hydrodynamics

to the velocity uα. Thus we can divide this equation into two independent equations, one
for the projection parallel to uα and one for the projection perpendicular to uα. While this
splitting is obvious for the first two terms, we will show next that the third term contains
already the apropriate projection operator.

Example 9.1: Projection operators—Recall from quantum mechanics that a set of two
projection operators P± should satisfy

P2
± = P±, P±P∓ = 0, and P+ + P− = 1.

We want to show that
P β
α = δ β

α − nαn
β (9.5)

is an operator which projects any vector on the three-dimensional subspace orthogonal to the unit
vector nα. First, we verify that this operator satisfies P2 = P ,

P β
α P γ

β = (δ β
α − nαn

β)(δ γ
β − nβn

γ) = δ γ
α − nαn

γ = P γ
α . (9.6)

Morover, it is nαP β
α n

β = 0 for all unit vectors n; Thus P projects indeed any vector on the

subspace orthogonal to n.

Raising one index in Eq. (9.5), we see that Pαβ = gαβ−uαuβ projects the pressure gradient
∇βP on the subspace orthogonal to the fluid velocity uα. Thus we obtain two independent
equations, one for the component parallel to uα,

dρ

dτ
+ (ρ+ P )∇αu

α = 0 (9.7)

and one for the components perpendicular to uα,

(ρ+ P )
Duα
dτ

= −(gαβ + uαuβ)∇βP. (9.8)

This is the general-relativistic generalisation of the Euler equation: The acceleration of a fluid
element is given by the gradient of the pressure perpendicular to u, as it should be for a pure
force. Using mass conservation, we can rewrite the parallel equation as

ρ
dε

dτ
− (ε+ P )m

dn

dτ
= 0. (9.9)

This equation expresses the first law of thermodynamics for an ideal fluid, i.e. the limit if a
fluid when entropy production is negligible.

Hydrostatic equilibrium equation The equilibrium condition implies that the metric is
static,

ds2 = g00(x)dt
2 + gij(x)dx

idxj . (9.10)

We set g00(x) = e−2Φ(x), such that Φ becomes in the non-relativistic limit the Newtonian
potential. Since the space-time is static, the fluid variables do also not depend on time. The
only non-zero component of the four-velocity is u0, and thus uαu

α = 1 implies u0 = e−Φ(x).
Calculating the (spatial) acceleration of the fluid-element, we find

Dui
dτ

= gij∂jΦ. (9.11)
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9 Relativistic stars

Inserting the acceleration into the spatial part of the Euler equation (9.8) results ins

(ρ+ P )gij∂jΦ+ gij∇jP = 0, (9.12)

or, in three-vector notation,
(mn+ ε+ P )∇Φ = −∇P. (9.13)

This is the relativistic version of the hydrostatic equilibrium equation, where in addition
to the mass density mn the internal energy ε and the pressure P source the gravitational
acceleration.

9.2 Reissner-Nordström exterior solution

The solution outside of s static star is decribed by the Schwarzschild metric we discussed
in detail in chapter 4. We start by deriving this metric from the Einstein equations. Since it
does not cost much more effort, we allow for a non-zero electric charge, deriving thereby the
Reissner-Nordström solution for a charged black hole.

In the appendix 4.A, we have shown that the metric of a stationary, isotropic spacetime is
determined by two functions,

ds2 = A(r)dt2 −B(r)dr2 − r2(dϑ2 + sin2 ϑdφ2) (9.14)

= eσ(r)dt2 − eλ(r)dr2 − r2(dϑ2 + sin2 ϑdφ2) . (9.15)

The second equation makes it clear that these two functions are positive. Moreover, the
second version is sometimes preferred since the combinations A′/A = σ′ and B′/B = λ′

(where prime denotes derivatives w.r.t. r) appear often. The non-zero components of the
Ricci tensor in this metric are given by

R00 =
A′′

2B
− A′

4B

(
A′

A
+
B′

B

)
+
A′

rB
, (9.16)

R11 = −A
′′

2A
+
A′

4A

(
A′

A
− B′

B

)
− B′

rB
, (9.17)

R22 = 1− 1

B
− r

2B

(
A′

A
− B′

B

)
, (9.18)

R33 = R22 sin
2 ϑ, (9.19)

where we order coordinates as xµ = (t, r, ϑ, φ).
We consider next the inhomogenuous Maxwell equation ∇µF

µν = jν for a point charge in
the metric (9.14). The electric field measured by an observer with four-velocity uα is Eα =
Fαβu

β, i.e. it is associated with the field-strength tensor with lower indices. For a static charge
at r = 0, the only non-zero field component is the radial electric field, F01 = −F10 = E(r).
Raising the indices, we have F 01 = g00g11F 01 = E/(AB). In order to evaluate the Maxwell
equation as

∇µF
µν =

1√
|g|
∂µ(
√

|g|Fµν) = jν , (9.20)

we have to determine the determinant of the metric, obtaining
√

|g| =
√
ABr2 sin2 ϑ. (9.21)
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9.2 Reissner-Nordström exterior solution

For r > 0, the current jµ is zero and thus

∂r

(√
ABr2F 01

)
= ∂r

(
r2E√
AB

)
= 0 (9.22)

can be integrated, with the result

E(r) =

√
ABQ

4πr2
. (9.23)

Here, the integration constant k can be identified with Q/(4π), because of A,B → 1 for
r → ∞. The homogeneous Maxwell equation is automatically satisfied, since there exists a
potential A0 with E(r) = −∂rA0.

We use the Einstein equation in its “reversed” form (9.69), which avoids the calculation of
R. The stress tensor of the electromagnetic field is always traceless2

T µ
µ = −Fµσ F

µσ +
1

4
δµµFστF

στ = 0 . (9.24)

Thus the Einstein equation becomes [changed sign convention]

Rµν = −κ(Tµν −
1

2
gµνT ) + gµνΛ = κTµν . (9.25)

Evaluating

Tµν = −Fµσ F
σ

ν +
1

4
ηµνFστF

στ (9.26)

using also F 1
0 = g11F01 = E/B and F 0

1 = g00F10 = E/A, we find that they are given
explicitely (setting κ = 1) by

R00 = −E2/(2B), (9.27)

R11 = E2/(2A), (9.28)

R22 = −E2r2/(2AB), (9.29)

R33 = R22 sin
2 ϑ. (9.30)

Combining (9.27) and (9.28), it follows

BR00 +AR11 = 0. (9.31)

Next we insert (9.16) and (9.17), obtaining

A′B +AB′ = 0. (9.32)

Then (AB)′ = 0 or AB = const. Assuming that spacetime becomes Minkowskian at large
distance, it follows A(r)B(r) = 1. We see now that the choice of the radial coordinate is such
that r corresponds to the “luminosity distance” or, in other words, such that a 1/r2 law is
valid for the flux from a point source.

Finally, we use the R22 component of the Einstein equation to determine A(r) and B(r).
We insert AB = 1 and (9.23) into (9.29),

R22 = −E2r2/(2AB) = −1

2
E2r2 = −1

2

Q2

(4π)2r2
. (9.33)

2This is true for all fields without dimensionfull parameter in their Lagrangian, which are conformally invari-
ant.
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9 Relativistic stars

Next we simplify (9.18) using AB = 1, obtaining

R22 = A− 1 +A′r (9.34)

and thus

A+A′r = 1− 1

2

Q2

(4π)2r2
. (9.35)

Using A+A′r = (Ar)′ and integrating, it follows

A(r) = 1 +
k

r
+

Q2

2(4π)2r2
= 1− 2GM

r
+
GQ2

4πr2
and B(r) = 1/A(r), (9.36)

where the integration constant k was fixed by requiring that we obtain the Schwarzschild
metric for Q = 0. In the last step, we changed also from κ = 1 to κ = 8πG.

9.3 Schwarzschild interior solution

TOV equations – standard approach The non-zero components of the Ricci tensor are
again given by Eqs.(9.16-9.19). Proceeding like for the exterior solution, we could determine
the two functions A and B for given energy and pressure profiles ρ(r) and P (r). However,
pressure and energy are not independent but connected by the equation of state of the stellar
matter. Thus we should determine how ρ(r) and P (r) evolve as function of r for a given
equation of state and boundary conditions.

Modelling the stellar matter as ideal fluid, the stress tensor is

Tαβ = (ρ+ P )uαuβ − Pgαβ . (9.37)

Its trace follows as

T = T α
α = (ρ+ P )uαu

α − Pδαα = (ρ+ P )− 4P = ρ− 3P. (9.38)

The star is static, and thus uα = (ut, 0) = ((gtt)−1/2, 0) = (1/
√
A, 0). Hence we obtain

T00 = A(ρ+ P )− PA (9.39)

T11 = −BP (9.40)

T22 = −r2P (9.41)

T33 = T22 sin
2 ϑ, (9.42)

and

R00 =
1

2
κ(ρ+ 3P )A (9.43)

R11 =
1

2
κ(ρ− P )B (9.44)

R22 =
1

2
κ(ρ− P )r2 (9.45)

R33 = sin2 ϑr2R22 (9.46)

The two angular Einstein equations are not independent. We can use either three indepen-
dent Einstein equations, or two plus the conservation of the stress tensor. We use the latter

132



9.3 Schwarzschild interior solution

first, since we expect it to be directly connected to the hydrostatic equilibrium condition.
We differentiate the stres tensor, using in the second term ∇αg

αβ = 0 und in the first one
Eq. (8.28), obtaining

∇αT
αβ =

1√
|g|
∂α

[√
|g|(ρ+ P )uαuβ

]
+ (ρ+ P )Γβ

σαu
αuσ − gαβ∂αP. (9.47)

The first term vanishes because only ut is non-zero, and the star is static. For the same reason,
the second term becomes (ρ+P )Γβ

00/A. Using the definition of the Christoffel symbols, it is

Γβ
00 = −1

2
gαβ∂αg00 = −1

2
gαβ∂αA. (9.48)

Combining everything, it follows

(ρ+ P )

2A
gαβ∂αA+ gαβ∂αP = 0 (9.49)

or
(ρ+ P )

2A
∂αA+ ∂αP = 0. (9.50)

The function A depends only on r, so the 0 (static pressure) and 2, 3 (no pressure gradients
in tangential direction because of spherical symmetry) components are trivial. For the r
component, it follows

(ρ+ P )
A′

A
+ P ′ = 0. (9.51)

In addition to this constraint on A′/A, we require an equation for B. The linear combination

R00

A
+
R11

B
+

2R22

r2
=

1

r2
− 2

Br2
+

2B′

B2r
= 16πρ (9.52)

depend only on ρ and B. Expressed by λ, it is

−e−λ

(
1

r2
− λ′

r

)
+

1

r2
= 8πρ (9.53)

We note next that the metric (9.14) has to become equal to the Schwarzschild solution at
r ≥ R. This is ensured by setting

B(r) = eλ =

(
1− 2m(r)

r

)−1

(9.54)

and m(R) =M . Solving Eq. (9.66) for m(r) and differentiating the result gives

2
dm

dr
= 1− e−λ + rλ′e−λ. (9.55)

Thus
2

r2
dm

dr
= e−λ

(
λ′

r
− 1

r2

)
1

r2
= 8πρ (9.56)

or in integrated form

m(r) = 4π

∫ r

0
dr′ r′2ρ(r′). (9.57)
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9 Relativistic stars

Finally we note that in the R22 equation A and A′ enter only via their ratio. Using the
constraint to eleminate A′/A and Eq. (9.66) for B, we evaluate first the three ingredients

1− 1

B
= 1−

(
1− 2m(r)

r

)
, (9.58)

r

2B

B′

B
= 4πρr2 − M(r)

r
, (9.59)

and
r

2B

A′

A
=

(
1− 2m(r)

r

)(
− rP ′

P + ρ

)
. (9.60)

Combining everything we arrive at

1−
(
1− 2m(r)

r

)(
1− rP ′

P + ρ

)
+ 4πρr2 − M(r)

r
= 4π(ρ+ P )r2. (9.61)

Solving for P ′ and factoring 1/r2 and (1 − 2m(r)/r)−1/2 out, we obtain the Tolman-
Oppenheimer-Volkov (TOV) equation for the pressure gradient of a relativistic star,

dP

dr
= −ρ+ P

r2
[
m(r) + 4πr3P

](
1− 2m(r)

r

)−1

. (9.62)

For a given E.o.S., the continuity equation (9.64) and the TOV equation can be solved nu-
merically using as boundary value M(0) = 0. Choosing in addition an arbitrary value for the
core density, ρc, determines via the E.o.S. also the core pressure Pc. Integrating then outside
until the pressure is zero defines the stellar radius R and the stellar mass M via P (R) = 0
and M =M(R).

In the non-relativistic limit (small velocities), pressure is negligible. Moreover, the 2m(r)/r
correction is negligible. Then the TOV equation reduces to

dP

dr
= −Gρ(r)m(r)

r2
(9.63)

where we added also G. Note that all correction terms increase the pressure gradient relative
to the Newtonian case.

The continuity equation looks identical to the non-relativstic case, except that ρ has the
meaning of the total energy density. Recalling however that the proper volume is dV =
4πr2

√
grrdr, the integrated energy density is

m̃(r) = 4π

∫ r

0
dr′ r′2

ρ(r′)

(1− 2M(r′)/r)1/2
. (9.64)

The difference E = m̃(R) − m(R) is the gravitational binding energy of the star, i.e. the
amount of energy required to disperse the stellar material to r → ∞.

TOV equations using hydrodynamics We can short-cut the rather lengthy derivation of the
TOV equations using the results from section 9.1 on hydrodynamics. In this apprach, we use
the Einstein equations in the standard form G ν

µ = κT ν
µ . We evaluate the components of the

Einstein tensor for the metric of a stationary, isotropic spacetime, setting

ds2 = eσ(r)dt2 − eλ(r)dr2 − r2(dϑ2 + sin2 ϑdφ2), (9.65)
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9.4 Simple solutions

From the derivation of the hydrostatic equilibrium equation, we know already that we can
identify σ = 2Φ. The non-relativistic stellar structure equations suggest that the second
function λ is connected with the relativistic generalisation of the enclosed mass. Moreover,
we use that the metric (9.14) has to become equal to the Schwarzschild solution at r ≥ R.
This is ensured by setting

B(r) = eλ =

(
1− 2m(r)

r

)−1

(9.66)

and m(R) = M . Evaluating then the Einstein tensor using, e.g., the python program from
the webpage, we find

G 0
0 = −2G

r2
∂rm(r) (9.67)

G r
r = −2

r
f∂rΦ(r); (9.68)

the other components of G ν
µ are not needed. Inserting these expressions into the Einstein

equations and solving for ∂rm(r) and ∂rΦ(r) gives

∂rm(r) = −4πr2T 0
0 = −4πr2(mn+ ε) (9.69)

∂rΦ(r) = − G

r2B

(
m+ 4πr3T r

r

)
= − G

r2B

(
m+ 4πr3P

)
. (9.70)

In the last step, we inserted the relevant components of the stress tensor, T 0
0 = ρ = mn + ε

and T r
r = P .

meaning: gravitational acceleration, mass
Next we use the hydrostatic equilibrium equation (9.13) applied to a spherically symmetric

system,

(mn+ ε+ P )
dΦ

dr
= −dP

dr
, (9.71)

and insert the gravitational acceleration, obtaining the TOV equation

dP

dr
= −ρ+ P

r2
[
m(r) + 4πr3P

](
1− 2m(r)

r

)−1

. (9.72)

9.4 Simple solutions

Incompressible star The simplest possible model for a star is to assume a constant den-
sity ρ, which is the idealisation of an ultra-stiff E.o.S. The enclosed mass m(r) of such an
incompressible star with mass M and radius R is given by

m(r) =
4π

3
ρr3 = (r/R)3M. (9.73)

Inserting m(r) into the TOV equation, the equation can be separated,

∫ P

P0

dP

(ρ+ P )(ρ+ 3P )
= −4πG

3

∫ r

0
dr′

r′

1− 8πGρr′2/3
. (9.74)

The integration results with Pc ≡ P (r = 0) in

ρ+ 3P

ρ+ P
=
ρ+ 3Pc

ρ+ Pc

(
1− 8πG

3
ρr2
)1/2

. (9.75)
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9 Relativistic stars

At the stellar surface, the pressure is zero and thus the LHS equals one. Thus we obtain an
equation for the stellar radius R as function of the central pressure Pc,

R2 =
3

8πG

[
1−

(
ρ+ Pc

ρ+ 3Pc

)2
]
. (9.76)

Evaluateing on the other hand Eq. (9.75) at r = 0, we can express the central pressure as

Pc = ρ
1−

√
1−RS/R

3
√

1−RS/R− 1
ρ, (9.77)

where we introduced the Schwarzschild radius RS = 2GM . As expected does the central
pressure increase as R decreases. More surpridingly, the pressure diverges for a finite value
of R, since the denominator vanishes for

Rcr =
9

8
RS =

9M

4
. (9.78)

Thus there exits a minimal radius Rcr for an incompressible star with a given M . Using m(r),
we can rephrase this as an upper limit on M for a given density,

M ≤ 5.7M⊙

(
XXX

ρ0

)1/2

, (9.79)

where we inserted a value for ρ0 typical for the density of nuclear matter.
Buchdahl’s theorem states that this mass limits holds for any E.o.S. Thus within general

relativity, any object violating the condition R/M > 9/4 has to collapse to a black hole. This
implies also an upper limit on the gravitational redshift (4.26):

1 + z ≡ ω∞

ω(R)
>

√
1− 2M

Rcr
=

1

3
. (9.80)

Thus any observed redshift z > 4/3 has to be of cosmological origin.

Relativistic polytropes A relativistic star satisfying the E.o.S.

P = Kρ(n+1)/n = Kργ and ε = nρ. (9.81)

at each r with the same adiabatic exponent γ = (n + 1)/n is called a relativistic polytrope.
In the relativistic case, the continuty and TOV equation cannot be combined into a single
second order differential equation. Instead, they
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10 Linearized gravity and gravitational waves

In any relativistic theory of gravity, the effects of an accelerated point mass on the sur-
rounding spacetime can propagate maximally with the speed of light. Thus one expects that,
in close analogy to electromagnetic waves, gravitational waves exist. Such waves correspond
to ripples in spacetime which lead to local stresses and transport energy. Although gravita-
tional waves were already predicted by Einstein in 1916, their existence was questioned (also
by Einstein himself) until the 1950s: Since locally the effects of gravity can be eliminated, it
was doubted that they cause any measurable effects. Similarly, the non-existence of a stress
tensor for the gravitational field raised the question how, e.g., the momentum and energy flux
of gravitational waves can be properly defined. Only in 1957, at the now famous “Chapell
Hill Conference”, this controversy was decided: First, Pirani presented a formalism how co-
ordinate independent effects of a gravitational wave could be deduced. Second, Feynman
suggested the following simple gedankenexperiment: A gravitational wave passing a rod with
sticky beads would move the beads along the rod; friction would then produce heat, imply-
ing that the gravitational wave had done work. Soon after that the first gravitational wave
detectors were developed, but only in 2015 the first detection was accomplished.

10.1 Linearized gravity

In electrodynamics, the photon is uncharged and the Maxwell equations are thus linear. In
contrast, gravitational fields carry energy, are thus self-interacting and in turn the Einstein
equations are non-linear. In order to derive a wave equation, we have therefore to linearize
the field equations as first step.

10.1.1 Metric perturbations as a tensor field

We are looking for small perturbations hµν around the Minkowski1 metric ηµν ,

gµν = ηµν + hµν , with |hµν | ≪ 1. (10.1)

These perturbations may be caused either by the propagation of gravitational waves or by the
gravitational potential of a star. In the first case, current experiments show that we should
not hope for h larger than O(h) ∼ 10−22. Keeping only terms linear in h is therefore an
excellent approximation. Choosing in the second case as application the final phase of the
spiral-in of a neutron star binary system, deviations from Newtonian limit can become large.
Hence one needs a systematic “post-Newtonian” expansion or even a numerical analysis to
describe properly such cases.

1The same analysis could be performed for small perturbations around an arbitrary metric g
(0)
µν , adding

however considerable technical complexity.
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10 Linearized gravity and gravitational waves

�Aα = jα wave equation �h̄ab = T ab

∂αA
α = 0 covariant gauge condition ∂ah̄

αβ = 0

transverse polarization transverse, traceless

Aα(x) =
∫
d3x′ J

α(tr ,x′)
|x−x′| solution h̄αβ(x) =

∫
d3x′ T

αβ(tr ,x′)
|x−x′|

Lem = −2
3 d̈ad̈

a energy loss Lgr = −G
5

...
I ab

...
I
ab

Table 10.1: Comparison of basic formulas for electromagnetic and gravitational radiation.

We choose a Cartesian coordinate system xµ and ask ourselves which transformations are
compatible with the splitting (10.1) of the metric. If we consider global Lorentz transforma-
tions Λν

µ, then x̃
ν = Λν

µx
µ, and the metric tensor transforms as

g̃αβ = Λρ
αΛ

σ
βgρσ = Λρ

αΛ
σ
β(ηρσ + hρσ) = ηαβ + Λρ

αΛ
σ
βhρσ = η̃αβ + Λρ

αΛ
σ
βhρσ . (10.2)

Since h̃αβ = Λρ
αΛσ

βhρσ, we see that global Lorentz transformations respect the split-
ting (10.1). Thus hµν transforms as a rank-2 tensor under global Lorentz transformations.
We can view therefore the perturbation hµν as a symmetric rank-2 tensor field defined on
Minkowski space that satisfies as wave equation the linearized Einstein equation, similar as
the photon field fulfills a wave equation derived from Maxwell’s equations.

The splitting (10.1) is however clearly not invariant under general coordinate transforma-
tions, as they allow, for example, the finite rescaling gµν → Ω2gµν . We restrict therefore
ourselves to infinitesimal coordinate transformations,

x̃µ = xµ + ξµ(xν) (10.3)

with |ξµ| ≪ 1. Then the Killing equation (4.7) simplifies to

h̃µν = hµν + ∂µξν + ∂νξµ, (10.4)

because the term ξρ∂ρhµν is quadratic in the small quantities hµν and ξµ and can be neglected.
Recall that the ξρ∂ρhµν term appeared, because we compared the metric tensor at different
points. In its absence, it is more fruitful to view Eq. (10.4) not as a coordinate but as a gauge
transformation analogous to Eq. (7.95). In this interpretation, we stay in Minkowski space
and the fields h̃µν and hµν describe the same physics, since the gravitational field equations
do not fix uniquely hµν for a given source.

Comparison with electromagnetism In Table 10.1, basic properties of electromagnetic and
gravitational waves are compared. The procedure to determine the physical polarisation
states, their wave equation and solutions is in both cases very similar.

10.1.2 Linearized Einstein equation in vacuum

From ∂µηνρ = 0 and the definition

Γµ
νλ =

1

2
gµκ(∂νgκλ + ∂λgνκ − ∂κgνλ) (10.5)
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10.1 Linearized gravity

we find for the change of the connection linear in hµν

δΓµ
νλ =

1

2
ηµκ(∂νhκλ + ∂λhνκ − ∂κhνλ) =

1

2
(∂νh

µ
λ + ∂λh

µ
ν − ∂µhνλ). (10.6)

Note that we used ηµν to lower indices which is appropriate in the linear approximation.
Remembering the definition of the Riemann tensor,

Rµ
νλκ = ∂λΓ

µ
νκ − ∂κΓ

µ
νλ + Γµ

ρλΓ
ρ
νκ − Γµ

ρκΓ
ρ
νλ, (10.7)

we see that we can neglect the terms quadratic in the connection terms. Thus we find for the
change

δRµ
νλκ = ∂λδΓ

µ
νκ − ∂κδΓ

µ
νλ (10.8a)

=
1

2

{
∂λ∂νh

µ
κ + ∂λ∂κh

µ
ν − ∂λ∂

µhνκ − (∂κ∂νh
µ
λ + ∂κ∂λh

µ
ν − ∂κ∂

µhνλ)
}

(10.8b)

=
1

2

{
∂λ∂νh

µ
κ + ∂κ∂

µhνλ − ∂λ∂
µhνκ − ∂κ∂νh

µ
λ

}
. (10.8c)

The change in the Ricci tensor follows by contracting µ and λ,

δRλ
νλκ =

1

2

{
∂λ∂νh

λ
κ + ∂κ∂

λhνλ − ∂λ∂
λhνκ − ∂κ∂νh

λ
λ

}
. (10.9)

Next we introduce h ≡ hµµ, � = ∂µ∂
µ, and relabel the indices,

δRµν =
1

2

{
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ −�hµν − ∂µ∂νh

}
. (10.10)

We now rewrite all terms apart from �hµν as derivatives of the vector

ξµ = ∂νh
ν
µ − 1

2
∂µh, (10.11)

obtaining

δRµν =
1

2
{−�hµν + ∂µξν + ∂νξµ} . (10.12)

Looking back at the properties of hµν under gauge transformations, Eq. (10.4), we see that we
can gauge away the second and third term. Thus the linearised Einstein equation in vacuum,
δRµν = 0, becomes simply

�hµν = 0, (10.13)

if the harmonic gauge2

ξµ = ∂νh
ν
µ − 1

2
∂µh = 0 (10.14)

is chosen. Hence the familiar wave equation holds for all independent components of hµν ,
and the perturbations propagate with the speed of light: Inserting plane waves hµν =
εµν exp(−ikx) into the wave equation, one finds immediately that k is a null vector.

The characteristic property of gravity that we can introduce in each point an inertial
coordinate system implies that we can set the perturbation hµν equal to zero in a single

2Alternatively, this gauge is called Hilbert, Loren(t)z, de Donder,. . . , gauge.
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10 Linearized gravity and gravitational waves

point. This ambiguity was one of the reasons that the existence of gravitational waves was
doubted for long time. In Section 8.1, we introduced therefore the Riemann tensor as an
umambigious signature for the non-zero curvature of space-time. The derivation of a wave
equation for the Riemann tensor,

�Rµ
νλκ = 0, (10.15)

by Pirani in 1956 (which follows by using (10.13) in (10.8c)), can be therefore seen as the
theoretical proof for the existence of gravitational waves in Einstein gravity: Ripples in space-
time, or more formally perturbations of the curvature tensor, propagate with the speed of
light.

10.1.3 Linearized Einstein equation with sources

We found 2δRµν = −�hµν . By contraction it follows 2δR = −�h. Combining then both
terms gives

�

(
hµν −

1

2
ηµνh

)
= −2

(
δRµν −

1

2
ηµνδR

)
= −2κδTµν . (10.16)

Since we assumed an empty universe in zeroth order, δTµν is the complete contribution to the
stress tensor. We omit therefore in the following the δ in δTµν . Next we introduce as useful
short-hand notation the “trace-reversed” amplitude as

h̄µν ≡ hµν −
1

2
ηµνh . (10.17)

The harmonic gauge condition becomes then

∂µh̄µν = 0 (10.18)

and the linearised Einstein equation in the harmonic gauge follows as

�h̄µν = −2κTµν . (10.19)

Because of ¯̄hµν = hµν and Eq. (9.69), we can rewrite this wave equation also as

�hµν = −2κT̄µν (10.20)

with the trace-reversed stress tensor T̄µν ≡ Tµν − 1
2ηµνT .

Newtonian limit We are now in the position to fix the value of the constant κ, comparing
the wave equation (10.19) with the Schwarzschild metric in the Newtonian limit. This limit
corresponds to v/c → 0 and thus the only non-zero element of the stress tensor becomes
T 00 = ρ. Moreover, the d’Alembert operator can be approximated by minus the Laplace
operator, � → −∆. The Schwarzschild metric in the weak-field limit is

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)
(
dx2 + dy2 + dz2

)
(10.21)

with Φ = −GM/r as the Newtonian gravitational potential. Comparing this metric to
Eq. (10.1), we find as the static metric perturbations caused by a point mass M at the
distance r,

h00 = 2Φ, hij = 2δijΦ, h0i = 0 . (10.22)
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10.1 Linearized gravity

With hji = −hij and thus h = −4Φ, it follows

−∆

(
h00 −

1

2
η00h

)
= −4∆Φ = −2κρ . (10.23)

Hence the linearised Einstein equation has in the Newtonian limit the same form as the
Poisson equation ∆Φ = 4πGρ, and the constant κ equals κ = 8πG.

10.1.4 Polarizations states

TT gauge We consider a plane wave hµν = εµν exp(−ikx). The symmetric matrix εab
is called polarization tensor. Its ten independent components are constrained both by the
wave equation and the gauge condition. The harmonic gauge ∂µh̄µν = 0 corresponds to four
constraints and reduces thereby the number of independent polarisation states from ten to six.
Even after fixing the harmonic gauge ∂µh̄µν = 0, we can still perform a gauge transformation
using four functions ξµ satisfying �ξµ = 0. We can choose them such that four additional
components of hµν vanish. In the transverse traceless (TT) gauge, we set (i = 1, 2, 3)

h0i = 0, and h = 0. (10.24)

The harmonic gauge condition becomes ξα = ∂βh
β
α = 0 or

ξ0 = ∂βh
β
0 = ∂0h

0
0 = −iωε00e

−ikx = 0 , (10.25a)

ξa = ∂βh
β
a = ∂bh

b
a = ikbεabe

−ikx = 0. (10.25b)

Thus ε00 = 0 and the polarisation tensor is transverse, kaεab = kbεab = 0. If we choose
the plane wave propagating in the z direction, k = kez, the last row and column of the
polarisation tensor vanish too. Accounting for h = 0 and εαβ = εβα, only two independent
elements are left,

εαβ =




0 0 0 0
0 ε11 ε12 0
0 ε12 −ε11 0
0 0 0 0


 . (10.26)

Thus the two base states for a linearly polarised GW are

ε
(+)
αβ =

(
a 0
0 −a

)
and ε

(×)
αβ =

(
0 b
b 0

)
, (10.27)

where we omit the zero columns and rows of the tensor.
Let us re-discuss the procedure of determing the physical polarisation states of a gravita-

tional wave following the same approach that we used for the photon in Eqs. (7.93)-(-7.95).
We consider first as gauge transformation

ξµ(x) = −iλµ exp(−ikx) , (10.28)

obtaining3

h̃µν = hµν + ∂µξν + ∂νξµ = (εµν + λµkν + λνkµ) exp(−ikx) = ε̃µν exp(−ikx). (10.29)

3Simpler to consider trace-reversed h̄µν ...
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10 Linearized gravity and gravitational waves

Choosing again a photon propagating in z direction, kµ = (ω, 0, 0, ω), it follows

λµkν + λνkµ = ω




2λ0 λ1 λ2 λ0λ3

λ1 0 0 λ1

λ2 0 0 λ2

λ0λ3 λ1 λ2 2λ3


 . (10.30)

Thus the gauge transformation does not affect the non-zero components in the TT gauge,
which are therefore the only physical ones. On the other hand, the arbitrariness of λµ allows
us to set all other elements of the polarisation tensor to zero. To see this, we note that the
harmonic gauge implies

kµεµν =
1

2
kνε

µ
µ. (10.31)

Then it follows for ν = {1, 2}

ε01 + ε31 = ε02 + ε32 = 0, (10.32)

while the ν = {0, 3} components result with εij = −εij and kµ = (ω, 0, 0,−ω) in

ε00 + ε30 =
1

2
(ε00 − ε11 − ε22 − ε33) = −(ε03 + ε33). (10.33)

Thus we can eleminate four elements of the polarisation tensor. We choose to eleminate ε0i,
using first ε01 = −ε31 and ε02 = −ε32. Next we combine the LHS and the RHS of Eq. (10.33)
using ε30 = ε03, obtaining

ε03 = −1

2
(ε00 + ε33). (10.34)

Finally, we use this relation to eleminate ε03 in the ν = 3 equation,

1

2
ε00 −

1

2
ε33 =

1

2
(ε00 − ε11 − ε22 − ε33). (10.35)

and thus ε11 = −ε22. Apart from the invariant physical elements, ε̃11 = ε11 and ε̃12 = ε12,
the remaining four elements of the polarisation tensor transform as

ε̃13 = ε13 + ωλ1, ε̃23 = ε23 + ωλ2, (10.36)

ε̃33 = ε33 + 2ωλ3, ε̃00 = ε00 + 2ωλ0, (10.37)

Since each of the four elements depends on a different λµ, they can be set to zero choosing

λ0 = −ε00
2ω

, λ1 = −ε13
ω
, λ2 = −ε23

ω
, λ3 = −ε33

2ω
. (10.38)

Helicity We determine now how a metric perturbation hµν transforms under a rotation with
the angle α. We choose the wave propagating in z direction, k = kez, the TT gauge, and the
rotation in the xy plane. Then the general Lorentz transformation Λ becomes

Λ ν
µ =




1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1


 . (10.39)

142



10.1 Linearized gravity

Figure 10.1: The effect of a right-handed polarised gravitational wave on a ring of trans-
verse test particles as function of time; the dashed line shows the state without
gravitational wave.

Since k = kez and thus Λ ν
µ kν = kµ, the rotation affects only the polarisation tensor. We

rewrite ε′µν = Λ ρ
µΛ σ

ν ερσ in matrix notation, ε′ = ΛεΛT . It is sufficient to perform the
calculation for the xy sub-matrices. The result after introducing circular polarisation states
ε± = ε11 ± iε12 is

ε′µν± = exp(∓2iα)εµν± . (10.40)

The same calculation for a circularly polarised photon gives ε′µ± = exp(∓iα)εµ±. Any plane
wave ψ which is transformed into ψ′ = e−ihαψ by a rotation of an angle α around its propa-
gation axis is said to have helicity h. Thus if we say that a photon has spin 1 and a graviton
has spin 2, we mean more precisely that electromagnetic and gravitational plane waves have
helicity 1 and 2, respectively. Doing the same calculation in an arbitrary gauge, one finds that
the remaining, unphysical degrees of freedom transform as helicity 1 and 0 (problem 9.6). In
general, a massive tensor field of rank n contains states with helicity h = −n, . . . , n, contain-
ing thus 2n+1 polarisation states. In contrast, a massless tensor field of rank n contains only
the two polarisation states with maximal helicity, h = −n and h = n.

Detection principle of gravitational waves Let us consider the effect of a gravitational
wave on a free test particle that is initially at rest, uα = (1, 0, 0, 0). Then the geodesic
equation simplifies to u̇α = −Γα

00. The four relevant Christoffel symbols are in the linearised
approximation, cf. Eq. (10.6),

Γα
00 =

1

2
(∂0h

α
0 + ∂0h

α
0 − ∂αh00) . (10.41)

We are free to choose the TT gauge in which all component of hαβ appearing on the RHS
are zero. Hence the acceleration of the test particle is zero and its coordinate position is
unaffected by the gravitational wave: the TT gauge defines a comoving coordinate system.
The physical distance l between two test particles is given by integrating

dl2 = gabdξ
adξb = (hab − δab)dξ

adξb , (10.42)

where gab is the spatial part of the metric and dξ the spatial coordinate distance between
infinitesimal separated test particles. Hence the passage of a gravitational wave, hαβ ∝
εαβ cos(ωt), results in a periodic change of the separation of freely moving test particles.
Figure 10.1 shows that a gravitational wave exerts tidal forces, stretching and squashing test
particles in the transverse plane. The relative size of the change, ∆L/L, is given by the
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10 Linearized gravity and gravitational waves

Figure 10.2: Sensitivity of present and future experiments compared to the expectations for
the amplitude h = ∆L/L for various gravitational wave sources.

amplitude h of the gravitational wave. It is this tiny periodic change, ∆L/L <∼ 10−21 cos(ωt),
which gravitational wave experiments aim to detect.

There are two basic types of gravitational wave experiments. In the first, one uses the fact
that the tidal forces of a passing gravitational wave excite lattice vibrations in a solid state.
If the wave frequency is resonant with a lattice mode, the vibrations might be amplified to
detectable levels. In the second type of experiment, the free test particles are replaced by
mirrors. Between the mirrors, a laser beam is reflected multipe times, thereby increasing the
effective length L and thus ∆L, before two beams at 90◦ interfere.

A collection of potential gravitational wave sources is compared to the sensitivity of present
and future experiments in Fig. 10.2. As the most promising gravitational wave source the
inspiral of binary systems composed of neutron stars or black holes has been suggested. In
September 2015, the Advanced Laser Interferometer Gravitational-Wave Observatory (Ad-
vanced LIGO) detected such a signal for the first time [1, 4]. Since then, such merger have
been observed on a regular basis: Currently, 47 compact binary mergers have been detected.
Other, weaker sources in the frequency range ∼ 100Hz are supernova explosions. The coales-
ence of supermassive black holes during the merger of two galaxies proceeds on much longer
time scales. Correspondingly, the frequency of these events is much lower, and experiments
searching for them are space-based interferometers. Additionally, a stochastic background
of gravitational waves might be produced during inflation and phase transitions in the early
universe. This background can be detected by searching for correlated changes in the arrival
times of the signals from Galactic pulsars.
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10.2 Stress pseudo-tensor for gravity

10.2 Stress pseudo-tensor for gravity

Stress pseudo-tensor We consider again the splitting (10.1) of the metric, but we take into
account now terms of second order in hαβ . We rewrite the Einstein equation by bringing the
Einstein tensor on the RHS and adding the linearized Einstein equation,

R
(1)
αβ − 1

2
R(1) ηαβ = κTαβ +

(
−Rαβ +

1

2
Rgαβ +R

(1)
αβ − 1

2
R(1) ηαβ

)
. (10.43)

The LHS of this equation is the LHS of the usual gravitational wave equation, while the RHS
now includes as source not only matter but also the gravitational field itself. It is therefore
natural to define

R
(1)
αβ − 1

2
R(1) ηαβ = κ (Tαβ + tαβ) (10.44)

with tαβ as the stress pseudo-tensor for gravity. If we expand all quantities,

gαβ = ηαβ + h
(1)
αβ + h

(2)
αβ +O(h3) , Rαβ = R

(1)
αβ +R

(2)
αβ +O(h3) , (10.45)

we can set, assuming hαβ ≪ 1, Rαβ − R
(1)
αβ = R

(2)
αβ + O(h3), etc. Hence we find as stress

pseudo-tensor for the metric perturbations hαβ at O(h3)

tαβ = −1

κ

(
R

(2)
αβ − 1

2
R(2) ηαβ

)
. (10.46)

This tensor is symmetric, quadratic in hαβ and conserved because of the Bianchi identity.
Moreover, it transforms as a tensor in Minkowski space. This implies that one can derive
global conservation laws for the energy and the angular momentum of the gravitational field,
if we assume |hαβ | → 0 for x → ∞. However, the splitting into a background metric and
a perturbation used to derive tαβ does not hold under general coordinate transformations.
Moreover, the interpretation of tαβ as the local stress tensor of gravity is murky, because it can
be transformed at each point to zero by a suitable coordinate transformation. Therefore, no
stress tensor for gravity can be defined, and tαβ is called the stress pseudo-tensor for gravity.

In the case of gravitational waves, we may expect that averaging tαβ over a volume large
compared to the wave-length considered solves this problem. Moreover, such an averaging
simplifies the calculation of tαβ, since all terms odd in kx cancel. Nevertheless, the calculation
is extremly messy. We will use therefore a short-cut via the following two digressions.

Quadratic Einstein-Hilbert action We construct the action of gravity quadratic in hµν from
the wave equation (10.19), following the same logic as in the Maxwell case. We multiply by
a variation δhµν and integrate, obtaining

0 = δSharm
EH + δSharm

m =

∫
d4x
√

|g|
[
1

4κ
δhµν�h̄µν +

1

2
δhµνTµν

]
. (10.47)

Here, we divided by two such that we obtain the correctly normalised stress tensor of matter
using Eq. (8.44). Now we can restrict ourselves again to stay in Minkowski space, setting√

|g| = 1. Our aim is to massage the first term into a form similar to the kinetic energy of

145



10 Linearized gravity and gravitational waves

a scalar field: We insert first the definition of h̄µν , use then the product rule and perform
finally a partial integration,

δhµν�h̄µν = δhµν�hµν −
1

2
δhµνηµν�h = δhµν�hµν −

1

2
δh�h (10.48a)

= δ

[
1

2
hµν�hµν −

1

4
h�h

]
= −δ

[
1

2
(∂κh

µν)2 − 1

4
(∂κh)

2

]
. (10.48b)

Thus the quadratic Einstein-Hilbert action in the harmonic gauge becomes

Sharm
EH = − 1

32πG

∫
d4x

[
1

2
(∂ρh

µν)2 − 1

4
(∂ρh)

2

]
. (10.49)

Specializing (10.49) to the TT gauge, we obtain

STT
EH = − 1

32πG

∫
d4x

1

2
(∂ρhij)

2 . (10.50)

We can express an arbitrary polarisation state as the sum over the polarisation tensors for
linear polarised waves,

hµν =
∑

a=+,×

h(a)ε(a)µν . (10.51)

Inserting this decomposition into (10.50) and using ε
(a)
µν εµν(b) = δab, the action becomes

STT
EH = − 1

32πG

∑

a

∫
d4x

1

2

(
∂ρh

(a)
)2
. (10.52)

Thus the gravitational action in the TT gauge consists of two degrees of freedom, which we
can choose as h+ and h×. These two smplitudes determine the relative contribution of the two
polarisation states. Apart from the pre-factor, the action is the same as the one of two scalar
fields. This means that we can shortcut many calculations involving gravitational waves by
using simply the corresponding results for scalar fields. We can understand this equivalence by
recalling that the part of the action action quadratic in the fields just enforces the relativistic
energy–momentum relation via a Klein–Gordon equation for each field component. The
remaining content of (10.49) is just the rule how the unphysical components in hµν have to
be eliminated. In the TT gauge, we have already applied this information, and thus the two
scalar wave equations for h(±) summarise the Einstein equation at O(h2).

Averaged stress tensor The stress tensor of a scalar field is in general given by

Tαβ =
2√
|g|

δSm
δgαβ

= ∂αφ∂βφ− gαβL . (10.53)

We consider now a free field, i.e. set now V (φ) = 0, and take the average over a volume Ω
large compared to the typical wavelength of the field,

〈Tαβ〉 =
1

Ω

∫
d4x Tαβ = 〈∂αφ∂βφ〉 −

1

2
ηαβ〈(∂ρφ)2〉 . (10.54)

Performing a partial integration of the second term, we can drop the surface term, and use
then the equation of motion,

〈(∂ρφ)2〉 = −〈φ�φ〉 = 0 . (10.55)

146



10.3 Emission of gravitational waves

Hence 〈Tαβ〉 = 〈∂αφ∂βφ〉. Comparing now SKG and SEH in the TT gauge suggests that the
averaged stress pseudo-tensor of the gravitational field is given in this gauge by

〈tαβ〉 =
1

32πG
〈∂αhij∂βhij〉 . (10.56)

Bootstrap Derivation of full Einstein equation out of linear ansatz.

10.3 Emission of gravitational waves

The first, indirect, evidence for gravitational waves has been the observation of close neutron
star-neutron star binaries showing that such systems loose energy, leading to a shrinkage of
their orbit with time. These observations are consistent with the prediction for the energy
loss by the emission of gravitational waves.

The steps in deriving this energy loss formula are similar to the corresponding derivation
for the dipole emission formula of electromagnetic radiation. Step one, the derivation of the
Green function for the wave equation (10.19) is exactly the same, after having fixed the gauge
freedom. In the second step, we have to connect the amplitude of the field at large distances
(“in the wave zone”) to the source, i.e. the current jα and the stress tensor Tαβ , respectively.

Finally, we use the connection between the field and its (pseudo) stress tensor (Tαβ
em or tαβ)

to derive the energy flux through a sphere around the source.

Quadrupol formula Gravitational waves in the linearized approximation fulfil the superpo-
sition principle. Hence, if the solution for a point source is known,

−�xG(x− x′) = δ(x − x′) , (10.57)

the general solution can be obtained by integrating the Green function over the sources,

h̄αβ(x) = −2κ

∫
d4x′G(x− x′)Tαβ(x

′) . (10.58)

The Green function G(x−x′) is not completely specified by Eq. (10.57): We can add solutions
of the homogeneous wave equation and we have to specify how the poles of G(x − x′) are
treated. In classical physics, one chooses the retarded Green function G(+)(x−x′) defined by

G(+)(x− x′) = − 1

4π|x− x′|δ[|x − x′| − (t− t′)]ϑ(t− t′) , (10.59)

picking up the contributions along the past light-cone; for a derivation see appendix 10.B.

Inserting the retarded Green function into Eq. (10.58), we can perform the time integral
using the delta function and obtain

h̄αβ(x) = 4G

∫
d3x′

Tαβ(t− |x− x′|,x′)

|x− x′| . (10.60)

The retarded time tr ≡ t−|x−x′| denotes the emission time tr of a signal emitted at x′ that
reaches x at time t propagating with the speed of light.
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We perform now a Fourier transformation from time to angular frequency,

h̄αβ(ω,x) =
1√
2π

∫
dt eiωth̄αβ(t,x) =

4G√
2π

∫
dt

∫
d3x′ eiωt

Tαβ(tr,x
′)

|x− x′| . (10.61)

Next we change from the integration variable t to tr,

h̄αβ(ω,x) =
4G√
2π

∫
dtr

∫
d3x′ eiωtreiω|x−x′|Tαβ(tr,x

′)

|x− x′| , (10.62)

and introduce the Fourier transformed Tαβ(ω,x
′),

h̄αβ(ω,x) = 4G

∫
d3x′ eiω|x−x′|Tαβ(ω,x

′)

|x− x′| . (10.63)

We proceed using the same approximations as in electrodynamics: We restrict ourselves to
slowly moving, compact sources observed in the wave zone and choose the coordinate system
such that |x′| ≪ |x|. Then most radiation is emitted at frequencies such that |x−x′| ≃ |x| ≡ r
and thus

h̄αβ(ω,x) = 4G
eiωr

r

∫
d3x′ Tαβ(ω,x

′) . (10.64)

Finally, we Fourier transform first back to the observation time t, and introduce then the
stress tensor evaluated at the retarded time tr = t− r,

h̄αβ(t,x) =
1√
2π

∫
dω e−iωth̄αβ(ω,x) (10.65a)

=
4G√
2π r

∫
dω e−iω(t−r)

∫
d3x′ Tαβ(ω,x

′) . (10.65b)

=
4G

r

∫
d3x′ Tαβ(tr,x

′) . (10.65c)

Next we want to eleminate all elements of Tαβ except T00. We note first that T00 = ρ,
T0i = ρui, and Tij = ρuiuj implies h00 = 4GM/r, h0i ∝ Pi, while hij is proportional to the
stresses. Thus h00 contains the constant monopole term generated by the total mass of the
system. The terms h0i are sourced by the total momentum Pi of the system. Hence they can
be set to zero choosing the center-of-mass as the origin of the coordinate system. Thus we
have only to express the elements Tab via T00. We use first (flat-space) energy-momentum
conservation,

∂

∂t
T 00 +

∂

∂xb
T 0b = 0 , (10.66a)

∂

∂t
T a0 +

∂

∂xb
T ab = 0 . (10.66b)

Then we differentiate Eq. (10.66a) with respect to time and use Eq. (10.66b), obtaining

∂2

∂t2
T 00 = − ∂2

∂xb∂t
T 0b =

∂2

∂xa∂xb
T ab . (10.67)

Multiplying with xaxb and integrating gives then

∂2

∂t2

∫
d3x xaxbT 00 =

∫
d3x xaxb

∂2

∂xixj
T ij = 2

∫
d3x T ab . (10.68)
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10.3 Emission of gravitational waves

Here we performed two partial integerations on the RHS, dropping the surface terms as the
source is compact. In the harmonic gauge, we need to calculate only the components hij(tr,x).
We define as quadrupole moment of the source stress tensor

Iab(tr) =

∫
d3x xaxbT 00(tr,x) . (10.69)

Then the quadrupole formula for the emission of gravitational waves results,

h̄ab(t,x) =
2G

c6r
Ïab(tr) , (10.70)

where we added also c.

Example 10.1: Equal mass binary system on circular orbits:
We choose coordinates such that the orbits are centered at the origin in the xy-plane. Then

x1 = −x2 = R cosΩt , y1 = −y2 = R sinΩt. (10.71)

The corresponding energy density is

T 00 =Mδ(z)[δ(x−R cosΩt)δ(y −R sinΩt) + δ(x +R cosΩt)δ(y +R sinΩt)]. (10.72)

The quadrupole moments follow as

Ixx = 2MR2 cos2 Ωt =MR2(1 + cos 2Ωt) (10.73a)

Iyy = 2MR2 sin2 Ωt =MR2(1− cos 2Ωt) (10.73b)

Ixy = Iyx = 2MR2 cosΩt sinΩt =MR2 sin 2Ωt (10.73c)

and Iiz = 0. Differentiating twice gives Ïij = −4Ω2Iij and thus the GW amplitude follows as

h̄ij(t,x) = −8GM

r
(ΩR)2




cos 2Ωtr sin 2Ωtr 0
sin 2Ωtr − cos 2Ωtr 0

0 0 0


 . (10.74)

The frequency ω of the GW is twice the rotation frequency of the stars, ω = 2Ω, indicating
again that the helicity of GWs is h = 2. Neglecting the oscillating factor, the amplitude is

h =
8GM

r
(ΩR)2

For a numerical estimate, it is convinient to eleminate (ΩR)2 using the Keplerian velocity
and to replace 2GM by the Schwarzschild radius RS ,

h ≃ 2
R2

s

ar
.

The amplitude is maximised for a ≃ RS, i.e. during the coalesence of two black holes. Close
to the merging black holes, the amplitude is h ∼ 1 and perturbation theory is clearly not
valid. At typical distance of r = 100Mpc, it follows h ≃ 10−22 for BHs with M = 20M⊙.

Finally, we want to determine the physical part of the ampltiude, i.e. fixing the TT gauge.
In general, the projection operator defined in the appendix 10.A has to be applied to obtain

149



10 Linearized gravity and gravitational waves

the physical states of the GW. If the coordinate system is aligned with the wave-vector of the
GW, we can set the non-transverse components zo zero by hand, and subtract then half the
resulting trace. In the TT gauge, we can use also that h̄TT

ij = hTT
ij .

For an observer along the z direction, the result is already in the TT gauge, which we can
express as

httµν ∝ ℜ[(ε(1)µν − iε(2)µν ) exp(2iΩtr)].

This corresponds to a right-handed circularly polarized wave, ε
(−)
µν = ε

(1)
µν − iε

(2)
µν .

Next consider an observer on the x axis. Transforming to the TT form, we obtain

h̄ij(t,x) =
4GM

r
(ΩR)2




0 0 0
0 − cos 2Ωtr 0
0 0 cos 2Ωtr


 .

This corresponds to a linearly polarized wave, ∝ ε
(1)
µν .

Since hαβ is traceless, the trace of Iαβ does not produce gravitational waves: It is connected
to the scalar helicity component of a gravitational wave which is non-zero only in extension
of Einstein gravity. Thus it is more convenient to replace Iαβ by the reduced (trace-less,
irreducible) quadrupole moment

Qab =

∫
d3x

[
xaxb − 1

3
δabr2

]
T 00(x) . (10.75)

Our derivation neglected perturbations of flat space and seems therefore not applicable to a
self-gravitating system. However, our final result depends only on the motion of the particles,
not how it is produced. An analysis at next order in perturbation theory shows indeed that
our result applies to self-gravitating systems like binary stars.

Note the following peculiarity of a gravitational wave experiment: Such an experiment
measures the amplitude hab ∝ 1/r of a metric perturbation, while the sensitivity of all other
experiments (light, neutrinos, cosmic rays, . . . ) is proportional to the energy flux ∝ 1/r2 of
radiation. This difference is connected to the fact that a gravitational wave is caused by the
coherent motion of the source, and can be thus observed as a coherent wave over time. In
particular, one can measure the phase of hab as function of time. In contrast, light observed
from an astrophysical source is a incoherent superposition of individual photons. As a result,
increasing the sensitivity of a gravitational wave detector by a factor ten increases the number
of potential sources by a factor 1000, in contrast to a factor 103/2 for other detectors.

One may wonder if this behavior contradicts the fact that also the energy flux of a gravi-
tational wave follows as 1/r2 law. However, the energy dissipated from a gravitational wave
crossing the Earth (including our experimental set-up) is extremely tiny, while the energy den-
sity of gravitational wave with amplitude as small as h ∼ 10−22 is surprisingly large (check it
e.g. with (10.80)).

Energy loss We evaluate now the pseudo stress tensor given in Eq. (10.56) for a plane-wave,

hij = Aij cos(kx), (10.76)

with amplitudes Aij which we choose to be real. Using 〈sin2(kx)〉 = 1/2, we obtain

〈tαβ〉 =
1

64πG
kαkβAijA

ij . (10.77)
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10.3 Emission of gravitational waves

The energy-flux F , i.e. the energy crossing an unit area per unit time, in the direction n is
in general F = −ct0ini. For a plane-wave with wave-vector kµ, it follows

F = −t0ik̂i =
1

64πG
k0kik̂iAijA

ij = ct00, (10.78)

where we used k0 = −kik̂i. Thus we got the reasonable result that the energy-flux is simply
the energy-density t00 multiplied with the wave-speed c. Expressing the energy flux as a sum
over linearly polarised waves,

hµν =
∑

a=+,×

h(a)ε(a)µν , (10.79)

it follows with a = h(+) and b = h(×)

F =
ω2

32πG

(
a2 + b2

)
. (10.80)

In the case of a spherical wave emitted from the origin, we choose n = er. Then

F(er) =
1

32πG
〈t0ini〉 =

1

32πG
〈(∂thij)(n ·∇)hij〉 = 1

32πG
〈(∂thij)(∂rhij)〉 . (10.81)

Since the quadrupol moment is a function of retarded time, Qij = hij(tr,x) with tr = t− r,
we can replace the space with a time derivative, ∂r = −∂t. Then

∂thij =
2G

r

...
Qij (10.82)

∂rhij = −2G

r2
Q̈ij −

2G

r

...
Qij ≃ −2G

r

...
Qij (10.83)

Thus

F(er) =
G

8πr2
...
Q

TT
ij

...
Q

ij
TT (10.84)

and

Lgr = −dE

dt
= −

∫
dΩr2 F(er) =

G

8π

∫
dΩ

...
Q

TT
ij

...
Q

ij
TT. (10.85)

The remaining tasks, performing the TT projection and carrying out the integrals, are deferred
to the appendix. Inserting the results found there in the quadrupole formula, one finds

Lgr = −dE

dt
= −

∫
dΩr2F(er) =

G

5c5
...
Qij

...
Q

ij
, (10.86)

where we show explicitely the dependence on c. Finally, we can express Qij through Iij ,
obtaining

...
Qij

...
Q

ij
=

(
...
I ij −

1

3
δij

...
I

)(
...
I
ij − 1

3
δij

...
I

)
=

...
I ij

...
I
ij − 2

3

...
I
2 +

1

3

...
I
2 =

...
I ij

...
I
ij − 1

3

...
I
2 (10.87)

with I ≡ Iijδ
ij .
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10 Linearized gravity and gravitational waves

10.4 Gravitational waves from binary systems

10.4.1 Weak field limit

The emission of gravitational radiation is negligible for all systems where Newtonian gravity
is a good approximation. One of the rare examples where general relativistic effects can
become important are close binary systems of compact stars. The first such example was
found 1974 by Hulse and Taylor who discovered a pulsar in a binary system via the Doppler-
shift of its radio pulses. The extreme precision of the periodicity of the pulsar signal makes
this binary system to an ideal laboratory to test various effect of special and general relativity:

• The pulsar’s orbital speed changes by a factor of four during its orbit and allows us to
test the usual (special relativistic) Doppler effect.

• At the same time, the gravitational field alternately strengthens at periastron and weak-
ens at apastron, leading to a periodic gravitational redshift of the pulse.

• The small size of the orbit leads to a precession of the Perihelion by 4.2◦/yr.

• The system emits gravitational waves and looses thereby energy. As a result the orbit
of the binary shrinks by 4mm/yr.

In the following, we will derive some of these predictions.

Gravitational wave emission on eccentric orbits In the first step, we derive the instantanu-
ous energy loss of the binary system due to gravitational wave emission. Since we assume that
the losses are small, we can treat the orbital parameters a and e as constant. The quadrupole
moments follow for an orbit in the xy plane as

Ixx = m1x
2
1 +m2x

2
2 = µr2 cos2 φ, (10.88a)

Iyy = µr2 sin2 φ, (10.88b)

Ixy = µr2 cosφ sinφ, (10.88c)

I ≡ Ixx + Iyy = µr2. (10.88d)

In order to find the derivates of Iik, we have to determine first ṙ and φ̇. Eleminating L using
Eq. (2.48) we obtain

φ̇ =
L

µr2
=

[a(1− e2)M ]1/2

r2
. (10.89)

Differentiating then Eq. (2.46) and inserting φ̇, we find

ṙ =
a(1 − e2)e sin φ φ̇

(1 + e cosφ)2
=

(
M

a(1− e2)

)1/2

e sinφ. (10.90)

We are now in the position to calculate, e.g.,

İxx = 2µ cosφ
(
rṙ cosφ− r2φ̇ sinφ

)
(10.91)

as function of r and φ. With

r2φ̇ = [a(1− e2)M ]1/2 ≡ A (10.92)
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and

rṙ = A
e sinφ

1 + e cosφ
, (10.93)

it follows

rṙ cosφ− r2φ̇ sinφ = A sinφ

(
e sinφ

1 + e cosφ
− 1

)
= − Mr

[a(1− e2)]1/2
sinφ. (10.94)

Thus we obtain

İxx = − 2m1m2r

[a(1− e2)M ]1/2
cosφ sin φ. (10.95)

The calculation of the other elements of the quadrupol tensor and the higher derivatives
proceeds in the same way, leading to

Ïxx = − 2m1m2

a(1− e2)

(
cos 2φ+ e cos3 φ

)
, (10.96a)

...
I xx =

2m1m2

a(1− e2)

(
2 sin 2φ+ 3e cos2 φ sinφ

)
φ̇, (10.96b)

İyy =
2m1m2

[a(1− e2)M ]1/2
r (cosφ sinφ+ e sinφ) , (10.96c)

Ïyy =
2m1m2

a(1− e2)

(
cos 2φ+ e cos φ+ e cos3 φ+ e2

)
, (10.96d)

...
I yy = − 2m1m2

a(1− e2)

(
2 sin2 φ+ e sin φ+ 3e cos2 φ sinφ

)
φ̇, (10.96e)

İxy =
m1m2r

[a(1− e2)M ]1/2
(
cos2 φ− sin2 φ+ e cos φ

)
(10.96f)

Ïxy = − 2m1m2

a(1− e2)

(
sin 2φ+ e sinφ+ e sin φ cos2 φ

)
(10.96g)

...
I xy = − 2m1m2

a(1− e2)

(
2 cos 2φ− e cosφ+ 3e cos3 φ

)
φ̇, (10.96h)

...
I =

...
I xx +

...
I yy = − 2m1m2

a(1− e2)
e sinφφ̇. (10.96i)

Inserting these expressions into

Lgr = −dE

dt
=
G

5

...
Qij

...
Q

ij
=
G

5

(
...
I
2
xx + 2

...
I
2
xy +

...
I
2
yy −

1

3

...
I
2

)
(10.97)

results in

−dE

dt
=

8m2
1m

2
2

15a(1 − e2)2
[
12(1 + e cos φ)2 + e2 sin2 φ

]
φ̇2. (10.98)

for the instantanous energy loss. In order to obtain the average energy loss, we have to average
this expression over one period,

−
〈
dE

dt

〉
= − 1

T

∫ T

0
dt

dE

dt
= − 1

T

∫ 2π

0

dφ

φ̇

dE

dt
=

32

5

m2
1m

2
2M

a5
f(e) (10.99)

with

f(e) =
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
(10.100)
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Time evolution Now we can determine how the orbital parameters change over time. The
major axis a decreases with time as

da

dt
=
m1m2

2E2

dE

dt
=

2a2

m1m2

dE

dt
, (10.101)

or averaged over one period,

−
〈
da

dt

〉
=

64

5

m2
1m

2
2M

a3
f(e). (10.102)

The orbital period changes as

Ṗ

P
=

3

2

Ė

E
= −3

2

ȧ

a
= −96

5

m2
1m

2
2M

a4
f(e). (10.103)

What remains to do is to work out the change of the eccentricity,

de

dt
=

M

m3
1m

3
2 e

(
L2dE

dt
+ 2EL

dL

dt

)
. (10.104)

Determining the loss L̇ of angular momentum due to gravitational wave emission is more
involved than the energy loss: Since L = r × p contains a factor r, we have to take into
account terms h ∝ 1/r2 what requires to include term of O(h3) in 〈tµν〉. This calculation was
performed first by Peters 1964 [6, 7], who obtained

−dL

dt
=

2G

5
ε3ijQ̈k

i

...
Qjk, (10.105)

where it is assumed that the orbit is in the xy plane. Alternatively, we can use the back-
reaction force as shown in the next box. Either way, the instantaneous loss of angular mo-
mentum follows as

−dL

dt
=
G

5

[
Ïxy(

...
I yy −

...
I xx) +

...
I xy(Ïxx − Ïyy)

]
, (10.106)

leading to

−
〈
de

dt

〉
=

304

15

m1m2Me

a4
g(e) (10.107)

with

g(e) =
1 + 121

304e
2

(1− e2)7/2
. (10.108)

Remark 10.1: Back reaction:—The emission of gravitational waves leads to a back-reaction
force, which slows down the the star. We can derive the time-averaged back-reaction force, asking
that

P = 〈F · v〉 = −Lgr = −dE

dt
=
G

5

...
Qij

...
Q

ij
(10.109)

is valid. The time-average of any total derivative dF/dt vanishes,

〈
dF

dt

〉
=

1

T

∫ T

0

dt
dF

dt
=

1

T
[F ((T )− F (0)] → 0, (10.110)

if F is a bounded function. This implies that we can perform partial integrations in time-averages.
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Since Q̇ij is linear in the velocity,

Q̇ij =
∑

a

(
xivj + vixj −

2

3
δijr · v

)
(10.111)

we switch the time derivaties as

−
〈
dE

dt

〉
=
G

5

〈...
Qij

...
Q

ij
〉
=
G

5

〈
dQij

dt

d5Qij

dt5

〉
. (10.112)

Thus the back-reaction is given by

Fi = −2Gm

5

d5Qij

dt5
xj = (10.113)

Now we can obtain the loss of angular momentum as

〈
dL

dt

〉
= 〈r × f 〉. (10.114)

Hulse-Taylor pulsar The binary system found by Hulse and Taylor consists of a pulsar
with mass m1 = 1.44M⊙ and a companion with mass m2 = 1.34M⊙. Their orbital period
is P = 7h40min on an orbit with rather strong eccentricity, e = 0.617. In this case, the
emission of gravitational radiation is strongly enhanced compared to an circular orbit. Let
us now compare the observed change in the orbit of the binary with the prediction of general
relativity. The prediction of Einstein’s general relativity,

Ṗ (e)
∣∣∣
th

= f(e) Ṗ (0) ≃ 11.7× Ṗ (0) ≃ (−2.403 ± 0.002) × 10−12, (10.115)

is in excellent agreement with the observed value,

Ṗ (e)
∣∣∣
obs

≃ (−2.4184 ± 0.0009) × 10−12 (10.116)

A comparison of the predicted and observed accumulated shift in the period is shown in
Fig. ??.

Example 10.2: Circularisation/some numbers:

10.4.2 Strong field limit and binary merger

Post-Newtonian approximation and beyond In the previous section, we used the orbits
obtained in the Newtonian limit. This approximation corresponds to the limit c → ∞ and
neglects all retardation effects. Since the energy loss due the gravitational wave emission
is of order O(1/c5), cf. with (Eq. 10.86), we should be able to improve this approximation
using a Lagrange function only of coordinates and velocities but including post-Newtonian
(PN) corrections up to order (v/c)4. The first relativistic terms, at the 1PN order, were
derived in 1937–39, the 2PN approximation was tackled by Ohta et al. in 1973–74, while
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results for the 3PN order were obtained starting from 1998. Alternatives to this brûte-de-
force approach such as the effective one-body theory have been developped where one maps
the two-body problem of GR onto an one-body problem in an effective metric. However,
all these approaches are restricted to the inspiral phase of a merger. In contrast, numerical
simulations of the merging phase of binaries give accurate results, but can take months even on
super-computers. Thus their extension towards early times of the inspiral phase is restricted,
and the set of parameters {m1,m2, s1, s2, e, . . .} for which simulations exist is sparse. For
instance, simulations for large mass ratios m1/m2 are numerically still prohibitive. As a
results, a combination of the different approaches is needed to describe the coalesence of
binaries accurately.

Qualitative discussion Let us now discuss qualitatively the final stage in the time evolution
of a close binary system. We can assume that the emission of GWs has lead to a circularisation
of the orbits. Then

Lgw =
32

5

G4µ2M3

a5
. (10.117)

Next we can relate the relative changes per time in the orbital period P , the separation a and
the energy E using E ∝ 1/a and P ∝ a3/2 as

Ė

E
= − ȧ

a
= −2

3

Ṗ

P
. (10.118)

Solving first for the change in the period,

Ṗ =
3

2

Lgw

E
P = −96

5

G3µM2

a4
P, (10.119)

and eliminating then a (which is not observed) gives

Ṗ = −96

5
(2π)8/3G5/3µM2/3P−5/3 . (10.120)

Combining Eqs. (10.118) and (10.119), we obtain

ȧ =
2

3

Ṗ

P
a = −64

3

G3µM2

a3
. (10.121)

Separating variables and integrating, we find

a4 =
256

5
G3µM2(t− tc). (10.122)

Here, tc denotes the (theoretical) coalensence time for point-like stars. With the initial con-
dition a(t = 0) = a0, it follows

a(t) = a0

(
1− t

tc

)1/4

(10.123)

and

tc =
5

256

a40
G3µM2

. (10.124)

As a rule of thumb, our approximations (slow velocities and weak fields) break down at
r ≃ rISCO. Since the last stage of the merger is fast, the estimate (10.124) is quite reliable.
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10.4 Gravitational waves from binary systems

Figure 10.3: Typical waveforms for the merger of black hole (upper) and neutrons star (lower
panel) binaries.

From the exercise, we know that the amplitude of the gravitational wave is

hij =
4GµM

ar
Aij =

h

r
Aij, (10.125)

where the factors Aij for the non-zero amplitudes have the form Aij ∝ sin(2ωt + φ). Thus
the emitted gravitational wave is monochromatic, with frequency twice the orbital frequency
of the binaries,

νGW =
2ω

2π
=

2

P
=

(GM)1/2

πa3/2
= ν0

(
1− t

tc

)−3/8

. (10.126)

This factor two reflects the helicity of gravitational waves. Moreover, the amplitude of the
gravitational wave signal increases with time as

h(t) ∝ 1

a
∝ (t− tc)

−1/4. (10.127)

Expressed as function of the frequency νGW, the amplitude becomes

h(t) =
4GµM

a
= 4GµM

ω2/3

(GM)1/3
≡ 4π2/3G2/3M5/3 ν

2/3
GW. (10.128)

In the last step, we introduced the chirp mass,

M ≡ µ3/5M2/5 =
(m1m2)

3/5

(m1 +m2)1/5
, (10.129)
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which is the combination of the masses m1 and m2 easiest to extract from the gravitational
wave signal. Finally, we have to replace the instantaneous phase in the polarisation tensor by
the time-integrated phase, since ω depends on time,

Φ(t) =

∫
dt 2ω =

(
t− tc
5GM

)−5/8

+ φ0. (10.130)

Thus both the amplitude and the phase evolution of the gravitational wave signal provide
information on the chirp mass M.

Example 10.3: Show that the chirp mass M provides a lower bound on the total mass M .

A typical wave-form of the merger of a black hole binary is shown in the upper panel of
Fig. 10.3. It consists of the waves emitted during the inspiral (“the chirp”), the merger,
and the ring-down. In this last phase, oscillations of the BH formed during the merger are
damped by the emission of GWs and decay exponentially, leading to standard Kerr BH. The
frequencies and the damping times of the eigenmodes of a BH can be calculated, and thus the
ring-down provides additional opportunities to test GR. The lower panel of Fig. 10.3 shows
a typical wave-form of a neutron star merger: When tidal interactions start to deform the
neutron stars, the gravitational wave signal is not monochromatic anymore and the structure
of the stars has to be accounted for.

10.A Appendix: Projection operator on TT states

We want to find the trace-less transverse part MTT
ik of an arbitrary symmetric tensor Mik.

We start by searching for an operator which projects any tensor on the two-dimensional
subspace orthogonal to the unit vector n. Any (set of two) projection operator should satisfy

P 2
± = P±, P±P∓ = 0, and P+ + P− = 1.

In our case, the desired projection operator is

P j
i = δ j

i − nin
j. (10.131)

First, we show that this operator satisfies P 2 = P ,

P j
i P

k
j = (δ j

i − nin
j)(δ k

j − njn
k) = δ k

i − nin
k = P k

i . (10.132)

Morover, it is niP j
i vj = 0 for all vectors v; Thus P projects indeed any vector on the subspace

orthogonal to n. Since a tensor is a multi-linear map, we have to apply a projection operator
on each of its indices,

MT
kl = P i

k P
j
l Mij. (10.133)

The tensor MT
kl is transverse, n

kMT
kl = nlMT

kl = 0, but in general not traceless

MT k
k = P i

k P
kjMij = P i

l Mil. (10.134)

Subtracting the trace, we obtain the transverse, traceless part of M ,

MTT
kl =

(
P i
k P

j
l − 1

2
PklP

ij

)
Mij . (10.135)
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TT polarisation states We apply Eq. (10.135) to the polarisation tensor

εTT
kl = P i

k εijP
j
l − 1

2
PklεijP

ij (10.136)

of a gravitational wave. Moving to matrix notation,

εTT = PεP T − 1

2
P tr[εP ], (10.137)

and choosing k‖ez, it follows

εTT
ij =




1
2(ε11 − ε22) ε12 0

ε12
1
2(ε22 − ε11) 0

0 0 0


 . (10.138)

If k agrees with one of the axes of a cartesian coordinate system, we can obtain the polarisation
tensor in TT gauge simply by setting first the longitudinal part to zero and subtracting then
half of the trace.

Evaluation of the quadrupole formulae We insert this projection operator into Eq. (10.85),

Lgr = − G

8π

∫
dΩ

...
Q

TT
ij

...
Q

TT ij
. (10.139)

We have to find the projection onto the radial unit vector er, whose Cartesian components
we denote as (x̂1, x̂2, x̂3). Then we obtain for the transverse part

...
Q

T
ij

...
Q

T ij
=

...
QijP

i
k P

j
l

...
Q

kl
=

...
Qij

...
Q

ij − 2
...
Q

j
i

...
Q

ik
x̂j x̂k +

...
Q

ij ...
Q

kl
x̂ix̂j x̂kx̂l. (10.140)

and for the trace

−1

2

...
QijPklP

ij
...
Q

kl
= −1

2

...
Q

ij...
Q

kl
x̂ix̂jx̂kx̂l. (10.141)

Here, we used P 2 = P and the fact that Qij is traceless. Since Qij is an integral over space,
it does not depend on er and can be taken out of the angular integral. Then it follows

∫
dΩ x̂ix̂j =

4π

3
δij and

∫
dΩ x̂ix̂jx̂kx̂l =

4π

15

(
δijδkl + δikδjl + δilδjk

)
. (10.142)

To see the first result, we note that the only available symmetric tensor of rank two is δij .
Contracting the indices in

∫
dΩ x̂ix̂j = Aδij , it follows A = 4π/3. Using the same line of

argument, the integral with four x̂i is evaluated. Combining everything and recalling that
Qi

i = 0,

∫
dΩ

...
Q

TT
ij

...
Q

TT ij
=

∫
dΩ

[
...
Qij

...
Q

ij − 2
...
Q

j
i

...
Q

ik
x̂ix̂j +

1

2

...
Q

ij...
Q

kl
x̂ix̂jx̂kx̂l

]
(10.143)

= 4π

[
1− 2

3
+

1

15

]
...
Qij

...
Q

ij
=

24π

15

...
Qij

...
Q

ij
, (10.144)

we obtain the quadrupole formuala (10.86) for the emission of gravitational waves.
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10 Linearized gravity and gravitational waves

10.B Appendix: Retarded Green function

We want to find the Green function for the gravitational wave equation (10.13). Starting
from Eq. (10.57),

−
(
∂2

∂t2
−∆

)
G(x− x′) = δ(x− x′)δ(t − t′), (10.145)

we introduce relative coordinates, r = x−x′ and τ = t−t′. Then we perform an (asymmetric)
Fourier transformation in the time t,

∫
dt

(
∆− ∂2

∂t2

)
G(r, τ)eiωt = δ(r)

∫
dt δ(t− t′)eiωt. (10.146)

The integral on the RHS is trivial, and the one on the LHS defines G(r, ω). Next we perform
the time derivatives, obtaining

(∆ + ω2)G(r, ω) = δ(r)eiωt. (10.147)

Thus the time dependence of the Green function is

G(r, ω) = Gω(r)e
iωt. (10.148)

We are interested in spherically symmetric solutions, emitted by a source at r = |r| = 0.
Then

1

r

d2[rGω(r)]

dr2
+ ω2Gω(r) = δ(r). (10.149)

For r > 0, the solution of
d2[rGω(r)]

dr2
+ ω2rGω(r) = 0 (10.150)

is

Gω(r) =
Aeikr

r
+
Be−ikr

r
≡ AG(+)

ω (r) +BG(−)
ω (r). (10.151)

Thus the solution consists of out- and in-going spherical waves. Next we consider the limit
r → 0 (or the static limit) of the wave equation. Integrating over a small sphere of radius r,
we obtain ∫

d3x∆G(r, ω) =

∫
dSi ∂iG(r, ω) = 4πr2∂rG(r, ω) = 1. (10.152)

Here, we used Gauss’ theorem to convert the volume into a surface integral, while we could
neglect

∫
d3xω2G(r, ω) ∝ r3 for r → 0. Moreover, we used that the integral over the delta

function on the RHS gives one. Thus the Green function for small r satisfies

G(r, ω) = − 1

4πr
+ C. (10.153)

Comparing this to Eq, (10.151) fixes A+ B = −1 and C = 0. Finally, we transform back to
time,

G(±)(r, t) =

∫
dω

2π
G(±)(r, ω)e−iωt = − 1

4πr

∫
dω

2π
e−iω(t∓r), (10.154)

where we used ω = |k|. Then it follows

G(±)(r, t) = −δ(t∓ r)

4πr
. (10.155)

160



10.B Appendix: Retarded Green function

The delta function enforces t = ±r. Since r > 0, the Green function G(+) includes only
sources with τ > 0, i.e. along the past light-cone of the observer at {t,x}, while the Green
function G(−) includes only sources with τ < 0, i.e. along the past light-cone.

Finally, we comment on the differences between the classical and the quantum treatement
of wave propagation:

• In classical physics, we use only positive energy solutions and the causal propagator
is the retarded one, which propagates these solutions forward in time. A relativistic
quantum theory contains in addition negative energy solutions. The causal or Feyn-
man propagates then positive energy solutions (particles) forward, and negative energy
solutions (antiparticles) backward in time, in a way consistent with the CPT theorem.

• In the classical case, one eleminates the gauge freedom completely such that only phys-
ical degrees of freedom propagate. Then it is sufficient to use a scalar Green function,
which propagates the physical polarisation states in the same way. Such gauges (like the
Coulomb or TT gauge) are however valid only in a specific frame. Moreover, the effects
of the instantanous Coulomb-like interactions have to added seperately. Therefore one
prefers in the quantum case a covariant gauges (like the Lorenz or harmonic gauge)
which include also the instantanous Coulomb or Newtonian interactions. The Green
function of a tensor of rank n becomes then a tensor of rank 2n.

• In classical physics, we are mostly interested in the temporal evolution of the energy
flux and the polarisation of a wave consisting of many quanta. This dependence is
obtained easiest using spherical waves. In the quantum limit, an accelerated electron
may emit only a single high-energy photon. Typically the energy and the direction of
such a photon is measured. Therefore it is preferable to use plane waves to describe
such emission processes.

Problems

10.1 Dynamical stress tensor. Show that the def-
inition of the dynamical stress tensor can be sim-
plified to

Tµν =
2√
|g|

δSm

δgµν
= 2

∂L

∂gµν
− gµνL . (10.156)

10.2 Variation δgµν . The variation of SEH w.r.t.
gµν will lead to different signs in Eq. (8.42). Ex-
plain why one obtains the same Einstein equation.

10.3 Cosmological constant Λ ♣. a.) Compare
the stress density Tµν = κΛgµν of the cosmological
constant to the one of an ideal fluid and determine
thereby its EoS w = PΛ/ρΛ. b.) Confirm the EoS
using U = V ρΛ and thermodynamics. c.) Es-
timate a bound on ρΛ using that the observable
universe with size ∼ 3000Mpc looks flat.

10.4 Expansion of SEH. Expand g
µν and

√
|g| up

to O(λ3) around Minkowski space. Show that the
O(λ) term of LEH is a total derivative which can
be dropped.

10.5 Helicity. Show that the unphysical degrees of
freedom of an electromagnetic wave transform as
helicity 0, and of a a gravitational wave as helicity
0 and 1.

10.6 GWs from a binary system. Consider a bi-
nary system of two stars with equal mass M on
circular orbits. a.) Calculate the quadrupole mo-
ments Iab. b.) Determine the amplitude of the
gravitational wave h̄αβ(t,x). c.) Estimate the
strength for a Galactic neutron star-neutron star
binary with a separation of r = 0.1AU.

10.7 GWs from a binary system. The energy flux
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10 Linearized gravity and gravitational waves

F of a GW is F = c3

32πGω
2(a2+b2), where a and b

are the amplitudes of the two polarisation states.
a.) Estimate the energy flux for the binary system
in 8. b.) Estimate how much energy is dissipated

if a GW crosses the interstellar or intergalactic
medium: Which processes might be relevant? Use
simple dimensional analysis for your estimate.
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11 Cosmological models for an homogeneous,
isotropic universe

11.1 Friedmann-Robertson-Walker metric for an homogeneous,

isotropic universe

Einstein’s cosmological principle Einstein postulated that the Universe is homogeneous and
isotropic at each moment of its evolution. Note that a space isotropic around at least two
points is also homogeneous, while a homogeneous space is not necessarily isotropic. The CMB
provides excellent evidence that the universe is isotropic around us. Baring suggestions that
we live at a special place, the universe is also homogeneous.

Weyl’s postulate In 1923, Hermann Weyl postulated the existence of a privileged class
of observers in the universe, namely those following the “average” motion of galaxies. He
postulated that these observers follow time-like geodesics that never intersect. They may
however diverge from a point in the (finite or infinite) past or converge towards such a point
in the future.

Weyl’s postulate implies that we can find coordinates such that galaxies are at rest. These
coordinates are called comoving coordinates and can be constructed as follows: One chooses
first a space-like hypersurface. Through each point in this hypersurface lies a unique worldline
of a privileged observer. We choose the coordinate time such that it agrees with the proper-
time of all observers, g00 = 1, and the spatial coordinate vectors such that they are constant
and lie in the tangent space T at this point. Then uα = δα0 and for n ∈ T it follows nα = (0,n)
and

0 = uαn
α = gαβu

αnβ = g0bn
b . (11.1)

Since n is arbitrary, the metric tensor satisfies g0b = 0. Hence as a consequence of Weyl’s
postulate we may choose the metric as

ds2 = dt2 − dl2 = dt2 − gabdx
adxb . (11.2)

The cosmological principle constrains further the form of dl2: Homogeneity requires that
the gab can depend on time only via a common factor S(t), while isotropy requires that only
x · x ≡ r2, dx · x, and dx · dx enter dl2. Hence

dl2 = C(r)(x · dx)2 +D(r)dx · dx = C(r)r2dr2 +D(r)[dr2 + r2dϑ2 + r2 sin2 ϑdφ2]. (11.3)

We can eliminate the functionD(r) by the rescaling r2 → Dr2. Thus the line-element becomes

dl2 = S(t)
[
B(r)dr2 + r2dΩ

]
(11.4)

with dΩ = dϑ2 + sin2 ϑdφ2, while B(r) is a function that we have still to specify.
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11 Cosmological models for an homogeneous, isotropic universe

Maximally symmetric spaces are spaces with constant curvature. Hence the Riemann ten-
sor of such spaces can depend only on the metric tensor and a constant K specifying the
curvature. The only form that respects the (anti-)symmetries of the Riemann tensor is

Rabcd = K(gacgbd − gadgbc) . (11.5)

Contracting Rabcd with gac, we obtain in three dimensions for the Ricci tensor

Rbd = gacRabcd = Kgac(gacgbd − gadgbc) = K(3gbd − gbd) = 2Kgbd . (11.6)

A final contraction gives as curvature R of a three-dimensional maximally symmetric space

R = gabRab = 2Kδaa = 6K . (11.7)

A comparison of Eq. (11.6) with the Ricci tensor for the metric (11.4) will fix the still
unknown function B(r). We proceed in the standard way: Calculation of the Christoffel
symbols with the help of the geodesic equations, then use of the definition (8.19) for the Ricci
tensor,

Rrr =
1

rB

dB

dr
= 2Kgrr = 2KB (11.8)

Rϑϑ = 1 +
r

2B2

dB

dr
− 1

B
= 2Kgϑϑ = 2Kr2 . (11.9)

(The φφ equation contains no additional information.) Integration of (11.8) gives

B =
1

A−Kr2
(11.10)

with A as integration constant. Inserting the result into (11.9) determines A as A = 1. Thus
we have determined the line-element of a maximally symmetric 3-space with curvature K as

dl2 =
dr2

1−Kr2
+ r2(sin2 ϑdφ2 + dϑ2) . (11.11)

Going over to the full four-dimensional line-element, we rescale for K 6= 0 the r coordinate
by r → |K|1/2r. Then we absorb the factor 1/|K| in front of dl2 by defining the scale factor
R(t) as

R(t) =

{
S(t)/|K|1/2, K 6= 0

S(t), K = 0
(11.12)

As result we obtain the Friedmann-Robertson-Walker (FRW) metric for an homogeneous,
isotropic universe

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2(sin2 ϑdφ2 + dϑ2)

]
(11.13)

with k = ±1 (positive/negative curvature) or k = 0 (flat three-dimensional space). Finally,
we give two alternatives forms of the FRW metric that are also often used. The first one uses
the conformal time dη = dt/R,

ds2 = R2(η)
[
dη2 − dl2

]
(11.14)
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and gives for k = 0 a conformally flat metric. In the second one, one introduces r = sinχ for
k = 1. Then dr = cosχdχ = (1− r2)1/2dχ and

ds2 = dt2 −R2(t)
[
dχ2 + S2

k(χ)(sin
2 ϑdφ2 + dϑ2)

]
(11.15)

with Sk(χ) = sinχ = r. Defining

Sk(χ) =





sinχ for k = 1 ,

χ for k = 0 ,

sinhχ for k = −1 .

(11.16)

the metric (11.15) is valid for all three values of k. Note that the rescaling r → |K|1/2r
makes r dimensionless, while R has the dimension of a length. Therefore one often introduces
additionally a dimensionless scale factor a(t) ≡ R(t)/R0 which satisfies a0 = 1. Here, we
denote the value of physical quantities at the present epoch by the subscript zero.

11.2 Geometry of the Friedmann-Robertson-Walker metric

Geometry of the FRW spaces Let us consider a sphere of fixed radius at fixed time, dr =
dt = 0. The line-element ds2 simplifies then to R2(t)r2(sin2 ϑdφ2 + dϑ2), which is the usual
line-element of a sphere S2 with radius rR(t). Thus the area of the sphere is A = 4π(rR(t))2 =
4π[Sk(χ)R(t)]

2 and the circumference of a circle is L = 2πrR(t), while rR(t) has the physical
meaning of a length.

By contrast, the radial distance between two points (r, ϑ, φ) and (r + dr, ϑ, φ) is dl =
R(t)dr/

√
1− kr2. Thus the radius of a sphere centered at r = 0 is

l = R(t)

∫ r

0

dr′√
1− kr′ 2

= R(t)×





arcsin(r) for k = 1 ,
r for k = 0 ,
arcsinh(r) for k = −1 .

(11.17)

Using χ as coordinate, the same result follows immediately

l = R(t)

∫ χ(r)

0
dχ = R(t)χ . (11.18)

Hence for k = 0, i.e. a flat space, one obtains the usual result L/l = 2π, while for k = 1
(spherical geometry) L/l = 2πr/ arcsin(r) < 2π and for k = −1 (hyperbolic geometry)
L/l = 2πr/arcsinh(r) > 2π.

For k = 0 and k = −1, l is unbounded, while for k = +1 there exists a maximal distance
lmax(t). Hence the first two case correspond to open spaces with an infinite volume, while the
latter is a closed space with finite volume.

Hubble’s law Hubble found empirically that the spectral lines of “distant” galaxies are
redshifted, z = ∆λ/λ0 > 1, with a rate proportional to their distance d,

cz = H0d . (11.19)

If this redshift is interpreted as Doppler effect, z = ∆λ/λ0 = vr/c, then the recession velocity
of galaxies follows as

v = H0d . (11.20)
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O

G

d

d′′

d′

Figure 11.1: An observer at position d′ sees the galaxy G recessing with the speed
H(d− d′) = Hd′′, if the Hubble relation is linear.

The restriction “distant galaxies” means more precisely that H0d ≫ vpec ∼ few × 100 km/s.
In other words, the peculiar motion of galaxies caused by the gravitational attraction of
nearby galaxy clusters should be small compared to the Hubble flow H0d. Note that the
interpretation of v as recession velocity is problematic. The validity of such an interpretation
is certainly limited to v ≪ c.

The parameter H0 is called Hubble constant and has the value H0 ≈ 71+4
−3 km/s/Mpc. We

will see soon that the Hubble law Eq. (11.20) is an approximation valid for z ≪ 1. In general,
the Hubble constant is not constant but depends on time, H = H(t), and we will call it
therefore Hubble parameter for t 6= t0.

We can derive Hubble’s law by a Taylor expansion of R(t),

R(t) = R(t0) + (t− t0)Ṙ(t0) +
1

2
(t− t0)

2R̈(t0) + . . . (11.21)

= R(t0)

[
1 + (t− t0)H0 −

1

2
(t− t0)

2q0H
2
0 + . . .

]
, (11.22)

where

H0 ≡
Ṙ(t0)

R(t0)
and q0 ≡ − R̈(t0)R(t0)

Ṙ2(t0)
(11.23)

is called deceleration parameter: If the expansion is slowing down, R̈ < 0 and q0 > 0.
Hubble’s law follows now as an an approximation for small redshift: For not too large

time-differences, we can use the expansion Eq. (11.21) and write

1− z ≈ 1

1 + z
=
R(t)

R0
≈ 1 + (t− t0)H0 . (11.24)

Hence Hubble’s law, z = (t0−t)H0 = d/cH0, is valid as long as z ≈ H0(t0−t) ≪ 1. Deviations
from its linear form arises for z >∼ 1 and can be used to determine q0.

Hubble’s law as consequence of homogeneity Consider Hubble’s law as a vector equation
with us at the center of the coordinate system,

v = Hd . (11.25)
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galaxy, r = 0

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

t1 + δt1

t1

t2

t2 + δt2

observer, r

Figure 11.2: World lines of a galaxy emitting light and an observer at comoving coordinates
r = 0 and r, respectively.

What sees a different observer at position d′? He has the velocity v′ = Hd′ relative to us.
We are assuming that velocities are small and thus

v′′ ≡ v − v′ = H(d− d′) = Hd′′ , (11.26)

where v′′ and d′′ denote the position relative to the new observer. A linear relation be-
tween v and d as Hubble law is the only relation compatible with homogeneity and thus the
“cosmological principle”.

Lemaitre’s redshift formula

A light-ray propagates with v = c or ds2 = 0. Assuming a galaxy at r = 0 and an observer
at r, i.e. light rays with dφ = dϑ = 0, we rewrite the FRW metric as

dt

R
=

dr√
1− kr2

. (11.27)

We integrate this expression between the emission and absorption times t1 and t2 of the first
light-ray, ∫ t2

t1

dt

R
=

∫ r

0

dr√
1− kr2

(11.28)

and between t1 + δt1 and t2 + δt2 for the second light-ray (see also Fig. 11.2),

∫ t2+δt2

t1+δt1

dt

R
=

∫ r

0

dr√
1− kr2

. (11.29)

The RHS’s are the same and thus we can equate the LHS’s,

∫ t2

t1

dt

R
=

∫ t2+δt2

t1+δt1

dt

R
. (11.30)
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We change the integration limits, subtracting the common interval [t1 + δt1 : t2] and obtain
∫ t1+δt1

t1

dt

R
=

∫ t2+δt2

t2

dt

R
. (11.31)

Now we choose the time intervals δti as the time between two wave crests separated by the
wave lengths λi of an electromagnetic wave. Since these time intervals are extremely short
compared to cosmological times, δti = λi/c ≪ ti, we can assume R(t) as constant performing
the integrals and obtain

δt1
R1

=
δt2
R2

or
λ1
R1

=
λ2
R2

. (11.32)

The redshift z of an object is defined as the relative change in the wavelength between emission
and detection,

z =
λ2 − λ1
λ1

=
λ2
λ1

− 1 (11.33)

or

1 + z =
λ2
λ1

=
R2

R1
. (11.34)

Typically, the observation happens at the present epoch, and thus we set 1 + z = R0/R(t).
This result is intuitively understandable, since the expansion of the universe stretches all

lengths of unbound sytems including the wave-length of a photon. For a massless particle
like the photon, ν = cλ and E = cp, and thus its frequency (energy) and its wave-length
(momentum) are affected in the same way. By contrast, the energy of a non-relativistic
particle with E ≈ mc2 is nearly fixed.

A similar calculation as for the photon can be done for massive particles. Since the geodesic
equation for massive particles leads to a more involved calculation, we use in this case however
a different approach. We consider two comoving observer separated by the proper distance
δl. A massive particle with velocity v needs the time δt = δl/v to travel from observer one
to observer two. The relative velocity of the two observer is

δu =
Ṙ

R
δl =

Ṙ

R
vδt = v

δR

R
. (11.35)

Since we assume that the two observes are separated only infinitesimally, we can use the
addition law for velocities from special relativity for the calculation of the velocity v′ measured
by the second observer,

v′ =
v − δu

1− vδu
= v − (1− v2)δu+O(δu2) = v − (1− v2)v

δR

R
. (11.36)

Introducing δv = v − v′, we obtain

δv

v(1 − v2)
=
δR

R
. (11.37)

and integrating this equation results in

p =
mv√
1− v2

=
const.

R
. (11.38)

Thus not the energy but the momentum p = ~/λ of massive particles is red-shifted: The
kinetic energy of massive particles goes quadratically to zero, and hence peculiar velocities
relative to the Hubble flow are strongly damped by the expansion of the universe.
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11.2 Geometry of the Friedmann-Robertson-Walker metric

Luminosity and angular diameter distance

In an expanding universe, the distance to an object depends on the expansion history, i.e.
the behaviour of the scale factor R(t) between the time of emission t of a light signal and its
reception at t0. From the metric (11.15), we can define the (radial) coordinate distance

χ =

∫ t0

t

dt

R(t)
(11.39)

as well as the proper distance d = gχχχ = R(t)χ. The proper distance is however only for
a static metric a measurable quantity and cosmologists use therefore other, operationally
defined measures for the distance. The two most important examples are the luminosity
and the angular diameter distances. They are useful for standard candles, i.e. for sources
with known luminosity, and for standard ruler, i.e. processes happening on a knows physical
scales, respectively. Two important examples are supernova explosions of type Ia and baryon-
acoustic oscillations in the early universe. Most recently, the possibility of “standard sirenes”
has been suggested, using the emission of gravitational waves in binary mergers.

Luminosity distance The luminosity distance dL is defined such, that the inverse-square
law between luminosity L = dE/dt of a source at distance d and the received energy flux
F = dE/(dAdt) is valid,

dL =

(
L

4πF

)1/2

. (11.40)

Assume now that a (isotropically emitting) source with luminosity L(t) and comoving coor-
dinate χ is observed at t0 by an observer at O. The cut at O through the forward light cone
of the source emitted at te defines a sphere S2 with proper area

A = 4πR2(t0)S
2
k(χ) . (11.41)

Two additional effects are that the frequency of a single photon is redshifted, ν0 = νe/(1+ z),
and that the arrival rate of photons is reduced by the same factor due to time-dilation. Hence
the received flux is

F(t0) =
1

(1 + z)2
L(te)

4πR2
0S

2
k(χ)

(11.42)

and the luminosity distance in a FRW universe follows as

dL = (1 + z) R0Sk(χ) . (11.43)

Note that dL depends via χ on the expansion history of the universe between te and t0.
Observable are not the coordinates χ or r, but the redshift z of a galaxy. Differentiating

1 + z = R0/R(t), we obtain

dz = −R0

R2
dR = −R0

R2

dR

dt
dt = −(1 + z)Hdt (11.44)

or

t0 − t =

∫ t0

t
dt =

∫ z

0

dz

H(z)(1 + z)
. (11.45)

This relation connects the redshift z with the “looking-back time” t0 − t, or the age t of th
universe.
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11 Cosmological models for an homogeneous, isotropic universe

Inserting the relation (11.44) into Eq. (11.39), we find the coordinate χ of a galaxy at
redshift z as

χ =

∫ t0

t

dt

R(t)
=

1

R0

∫ z

0

dz

H(z)
. (11.46)

This defines χ via the redshift and the expansion history of the universe which is encoded in
the function H(z).

For small redshift z ≪ 1, we can use the expansion (11.22)

χ =

∫ t0

t

dt

R0
[1− (t− t0)H0 + . . .]−1 (11.47)

≈ 1

R0
[(t− t0) +

1

2
(t− t0)

2H0 + . . .] =
1

R0H0
[z − 1

2
(1 + q0)z

2 + . . .]. (11.48)

Note also that for a flat universe, k = 0, the parameter R0 has no physical meaning and drops
out of dL. For k = ±1, R0 corresponds to the curvature radius of the spatial 3-space at the
present time. We will seein example 11.1 that its value can be determined via a measurement
of H0, q0 and the current energy density of the universe.

In practise, one observes only the luminosity within a certain frequency range instead of
the total (or bolometric) luminosity. A correction for this effect requires the knowledge of the
intrinsic source spectrum.

Angular diameter distance Instead of basing a distance measurement on standard candles,
one may use standard rods with know proper length l whose angular diameter ∆ϑ can be
observed. Then we define the angular diameter distance as

dA =
l

∆ϑ
. (11.49)

Inserting the length l = R(t)Sk(χ) of a line-elment of an a sphere in FLRW metric (11.15)
gives

dA =
R0Sk(χ)

1 + z
. (11.50)

Thus at small distances, z ≪ 1, the two definitions for the distance agree by construction,
while for large redshifts the differences increase as (1 + z)2.

Cosmological tests For a given cosmological model, H(z) is fixed and we can calculate
the value of χ for an event with the measured resdshift z using Eq. (11.46). If the event is a
standard candle, we can use the measured energy flux F to obtain the the luminosity distance
via the definition (11.40). Comparing this value to the theoretical predition (11.43) allows to
(dis-) favour this model. The same procedure can be applied to a standard ruler.

11.3 Friedmann equations

The FRW metric together with a perfect fluid as energy-momentum tensor gives for the
time-time component of the Einstein equation

R̈ = −4πG

3
(ρ+ 3P )R , (11.51)
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11.3 Friedmann equations

for the space-time components

RR̈+ 2Ṙ2 + 2K = 4πG(ρ− P ) , (11.52)

and 0 = 0 for the space-space components. Eliminating R̈ and showing explicitly the con-
tribution of a cosmological constant to the energy density ρ, the usual Friedmann equation
follows as

H2 ≡
(
Ṙ

R

)2

=
8π

3
Gρ− k

R2
+

Λ

3
. (11.53)

while the “acceleration equation” is

R̈

R
=

Λ

3
− 4πG

3
(ρ+ 3P ) . (11.54)

This equation determines the (de-) acceleration of the Universe as function of its matter and
energy content. “Normal” matter is characterized by ρ > 0 and P ≥ 0. Thus a static solution
is impossible for a universe with Λ = 0. Such a universe is decelerating and since today Ṙ > 0,
R̈ was always negative and there was a “big bang”.

We define the critical density ρcr as the density for which the spatial geometry of the
universe is flat. From k = 0, it follows

ρcr =
3H2

0

8πG
(11.55)

and thus ρcr is uniquely fixed by the value of H0. One “hides” this dependence by introducing
h,

H0 = 100h km/(sMpc) .

Then one can express the critical density as function of h,

ρcr = 2.77 × 1011h2M⊙/Mpc3 = 1.88 × 10−29h2g/cm3 = 1.05 × 10−5h2GeV/cm3 .

Thus a flat universe with H0 = 100h km/s/Mpc requires an energy density of ∼ 10 protons
per cubic meter. We define the abundance Ωi of the different players in cosmology as their
energy density relative to ρcr, Ωi = ρ/ρcr.

In the following, we will often include Λ as other contributions to the energy density ρ via

8π

3
GρΛ =

Λ

3
. (11.56)

Thereby one recognizes also that the cosmological constant acts as a constant energy density

ρΛ =
Λ

8πG
or ΩΛ =

Λ

3H2
0

. (11.57)

We can understand better the physical properties of the cosmological constant by replacing
Λ by (8πG)ρΛ. Now we can compare the effect of normal matter and of the Λ term on the
acceleration,

R̈

R
=

8πG

3
ρΛ − 4πG

3
(ρ+ 3P ) (11.58)
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11 Cosmological models for an homogeneous, isotropic universe

Thus Λ is equivalent to matter with an E.o.S. wΛ = P/ρ = −1. This property can be checked
using only thermodynamics: With P = −(∂U/∂V )S and UΛ = ρΛV , it follows P = −ρ.

The borderline between an accelerating and decelerating universe is given by ρ = −3P or
w = −1/3. The condition ρ < −3P violates the so-called strong energy condition for “normal”
matter in equilibrium. An accelerating universe requires therefore a positive cosmological
constant or a dominating form of matter that is not in equilibrium.

Note that the energy contribution of relativistic matter, photons and possibly neutrinos,
is today much smaller than the one of non-relativistic matter (stars and cold dark matter).
Thus the pressure term in the acceleration equation can be neglected at the present epoch.
Measuring R̈/R, Ṙ/R and ρ fixes therefore the geometry of the universe.

Thermodynamics The first law of thermodynamics becomes for a perfect fluid with dS = 0
simply

dU = TdS − PdV = −PdV (11.59)

or
d(ρR3) = −Pd(R3) . (11.60)

Dividing by dt,
Rρ̇+ 3(ρ+ P )Ṙ = 0 , (11.61)

we obtain our old result,
ρ̇ = −3(ρ+ P )H . (11.62)

This result could be also derived from ∇aT
ab = 0. Moreover, the three equations are not

independent.

11.4 Scale-dependence of different energy forms

The dependence of different energy forms as function of the scale factor R can derived from
energy conservation, dU = −PdV , if an E.o.S. P = P (ρ) = wρ is specified. For w = const.,
it follows

d(ρR3) = −3PR2dR (11.63)

or eliminating P
dρ

dR
R3 + 3ρR2 = −3wρR2 . (11.64)

Separating the variables,

−3(1 +w)
dR

R
=

dρ

ρ
, (11.65)

we can integrate and obtain

ρ ∝ R−3(1+w) =





R−3 for matter (w = 0) ,
R−4 for radiation (w = 1/3) ,
const. for Λ (w = −1) .

(11.66)

This result can be understood also from heuristic arguments:

• (Non-relativistic) matter means that kT ≪ m. Thus ρ = nm ≫ nT = P and non-
relativistic matter is pressure-less, w = 0. The mass m is constant and n ∝ 1/R3, hence
ρ is just diluted by the expansion of the universe, ρ ∝ 1/R3.
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11.5 Cosmological models

• Radiation is not only diluted but the energy of each single photon is additionally red-
shifted, E ∝ 1/R. Thus the energy density of radiation scales as ∝ 1/R4. Alternatively,
one can use that ρ = aT 4 and T ∝ 〈E〉 ∝ 1/R.

• Cosmological constant Λ: From 8π
3 Gρλ = Λ

3 one obtains that the cosmological constant
acts as an energy density ρλ = Λ

8πG that is constant in time, independent from a possible
expansion or contraction of the universe.

• Note that the scaling of the different energy forms is very different. It is therefore
surprising that “just today”, the energy in matter and due to the cosmological constant
is of the same order (“coincidence problem”).

Let us rewrite the Friedmann equation for the present epoch as

k

R2
0

= H2
0

(
8πG

3H2
0

ρ0 +
Λ

3H2
0

− 1

)
= H2

0 (Ωtot,0 − 1) . (11.67)

We express the curvature term for arbitrary times through Ωtot,0 and the redshift z as

k

R2
=

k

R2
0

(1 + z)2 = H2
0 (Ωtot,0 − 1)(1 + z)2 . (11.68)

Dividing the Friedmann equation (11.53) by H2
0 = 8πGρcr/3, we obtain

H2(z)

H2
0

=
∑

i

Ωi(z)− (Ωtot,0 − 1)(1 + z)2

= Ωrad,0(1 + z)4 +Ωm,0(1 + z)3 +ΩΛ − (Ωtot,0 − 1)(1 + z)2 (11.69)

This expression allows us to calculate the age of the universe (11.45), distances (11.43), etc. for
a given cosmological model, i.e. specifying the energy content Ωi,0 and the Hubble parameter
H0 at the present epoch.

11.5 Cosmological models

11.5.1 Single energy component

We consider a flat universe, k = 0, with one dominating energy component with E.o.S
w = P/ρ = const.. With ρ = ρcr (R/R0)

−3(1+w), the Friedmann equation becomes

Ṙ2 =
8π

3
GρR2 = H2

0R
3+3w
0 R−(1+3w) , (11.70)

where we inserted the definition of ρcr = 3H2
0/(8πG). Separating variables we obtain

R
−(3+3w)/2
0

∫ R0

0
dRR(1+3w)/2 = H0

∫ t0

0
dt = t0H0 (11.71)

and hence the age of the Universe follows as

t0H0 =
2

3 + 3w
=





2/3 for matter (w = 0) ,
1/2 for radiation (w = 1/3) ,
→ ∞ for Λ (w = −1) .

(11.72)
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11 Cosmological models for an homogeneous, isotropic universe

Models with w > −1 needed a finite time to expand from the initial singularity R(t = 0) = 0
to the current size R0, while a Universe with only a Λ has no “beginning”.

In models with a hot big-bang, ρ, T → ∞ for t → 0, and we should expect that classical
gravity breaks down at some moment t∗. As long as R ∝ tα with α < 1, most time elapsed
during the last fractions of t0H0. Hence our result for the age of the universe does not depend
on unknown physics close to the big-bang as long as w > −1/3.

If we integrate (11.71) to the arbitrary time t, we obtain the time-dependence of the scale
factor,

R(t) ∝ t2/(3+3w) =





t2/3 for matter (w = 0) ,

t1/2 for radiation (w = 1/3) ,
exp(t) for Λ (w = −1) .

(11.73)

11.5.2 Matter- or radiation dominated universe

In the case of a matter- or radiation dominated universe with non-zero curvature, we start
again from the Friedmann equation,

Ṙ2 =
8πG

3
ρR2 − k. (11.74)

Then we introduce conformal time,

R′2 ≡
(
dR

dη

)2

=
8πG

3
ρR4 − kR2, (11.75)

Next we differentiate again w.r.t. η and divide by 2R′,

R′′ +−kR =
4πG

3

(
dρ

dR
R+ 4ρ

)
R3. (11.76)

Using now (11.64) in the form

dρ = −3(ρ+ P )
dR

R
(11.77)

gives

R′′ + kR =
4πG

3
(ρ− 3P )R3. (11.78)

This equation can be also obtained calculating the trace of the Einstein equation.
For a radiation-dominated universe, P = ρ/3, and thus R′′ + kR = 0. Fixing one of the

two integration constants by setting a(0) = 0, it follows

a(η) = amSk(η). (11.79)

The remaining integration constant can be determined by considering the Friedmann equation
at η = 0,

R′2(η = 0) =
8πG

3
ρR4 =

8πG

3
ρ0 ≡ am, (11.80)

where we used also ρR4 = ρ0 = const.. Integrating dt = Rdη, the time dependence follows as

t(η) = am





(1− cos η) for k = 1 ,

η2/2 for k = 0 ,

(1− cosh η) for k = −1 .

(11.81)
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Figure 11.3: The product t0H0 for an open universe containing only matter (dotted blue line)
and for a flat cosmological model with ΩΛ +Ωm = 1 (solid red line).

For a matter=dominated universe, P = 0, the RHS of (11.78) is constant. Adding a
particular solution to the homogenous solution derived above gives

a(η) = ar





(1− cos η) for k = 1 ,

η2 for k = 0 ,

(cosh η − 1) for k = −1 .

(11.82)

and

t(η) = ar





(η − sin η) for k = 1 ,

η3/2 for k = 0 ,

(1− sinh η) for k = −1 .

(11.83)

with ar = am/2.

Age problem of the universe The age of a matter-dominated universe is (expanded around
Ω0 = 1)

t0 =
2

3H0

[
1− 1

5
(Ω0 − 1) + . . .

]
. (11.84)

Globular cluster ages require t0 ≥ 13Gyr. Using Ω0 = 1 leads to H0 ≤ 2/3 × 13Gyr =
1/19.5 Gyr or h ≤ 0.50. Thus a flat universe with t0 = 13Gyr without cosmological constant
requires a too small value of H0. Choosing Ωm ≈ 0.3 increases the age by just 14%.

We derive the age t0 of a flat Universe with Ωm +ΩΛ = 1 in the next section as

3t0H0

2
=

1√
ΩΛ

ln
1 +

√
ΩΛ√

1− ΩΛ
. (11.85)

Requiring H0 ≥ 65 km/s/Mpc and t0 ≥ 13Gyr means that the function on the RHS should
be larger than 3× 13Gyr × 0.65/(2 × 9.8Gyr ≈ 1.3 or ΩΛ ≥ 0.55.
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11 Cosmological models for an homogeneous, isotropic universe

11.5.3 The ΛCDM model

We consider a flat Universe containing as its only two components pressure-less matter and
a cosmological constant, Ωm +ΩΛ = 1. Then the curvature term in the Friedmann equation
and the pressure term in the deceleration equation play no role and we can hope to solve
these equations for a(t). Multiplying the deceleration equation (11.54) by two and adding it
to the Friedmann equation (11.53), we eliminate ρm,

2
ä

a
+

(
ȧ

a

)2

= Λ . (11.86)

Next we rewrite first the LHS and then the RHS as total time derivatives: With

d

dt
(aȧ2) = ȧ3 + 2aȧä = ȧa2

[(
ȧ

a

)2

+ 2
ä

a

]
, (11.87)

we obtain
d

dt
(aȧ2) = ȧa2Λ =

1

3

d

dt
(a3)Λ . (11.88)

Integrating is now trivial,

aȧ2 =
Λ

3
a3 + C . (11.89)

The constant C can be determined most easily by setting a(t0) = 1 and comparing the
Friedmann equation (11.53) with (11.89) for t = t0 as C = 8πGρm,0/3.

Next we introduce the new variable x = a3/2. Then

da

dt
=

dx

dt

da

dx
=

dx

dt

2x−1/3

3
, (11.90)

and we obtain as new differential equation

ẋ2 − 3Λx2/4 + 9C/4 = 0 . (11.91)

Inserting the solution x(t) = A sinh(
√
3Λt/2) of the homogeneous equation fixes the constant

A as A =
√

3C/Λ. We can express A also by the current values of Ωi as A = Ωm/ΩΛ =
(1− ΩΛ)/ΩΛ. Hence the time-dependence of the scale factor is

a(t) = A2/3 sinh2/3(
√
3Λt/2) . (11.92)

The time-scale of the expansion is set by tΛ = 2/
√
3Λ.

The present age t0 of the universe follows by setting a(t0) = 1 as

t0 = tΛarctanh(
√

ΩΛ) . (11.93)

The deceleration parameter q = −ä/aH2 is an important quantity for observational tests
of the ΛCDM model. We calculate first the Hubble parameter

H(t) =
ȧ

a
=

2

3tΛ
coth(t/tΛ) (11.94)

and then

q(t) =
1

2
[1− 3 tanh2(t/tΛ) . (11.95)
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Figure 11.4: The deceleration parameter q as function of t/t0 for the ΛCDM model and
various values for ΩΛ (0.1, 0.3, 0.5, 0.7 and 0.9 from the top to the bottom).

The limiting behavior of q corresponds with q = 1/2 for t → 0 and q = −1 for t → ∞ as
expected to the one of a flat Ωm = 1 and a ΩΛ = 1 universe. More interesting is the transition
region and, as shown in Fig. 11.4, the transition from a decelerating to an accelerating universe
happens for ΩΛ = 0.7 at t ≈ 0.55t0. This can easily converted to redshift, z∗ = a(t0)/a(t∗)−
1 ≈ 0.7, that is directly measured in supernova observations.

11.6 Cosmological tests

11.6.1 Determining Λ and the curvature R0 from ρm,0, H0, q0

General discussion: We apply now the Friedmann and the acceleration equation to the
present time. Thus Ṙ0 = R0H0, R̈ = −q0H2

0R0 and we can neglect the pressure term in
Eq. (11.54),

R̈0

R0
= −q0H2

0 =
Λ

3
− 4πG

3
ρm,0 . (11.96)

Thus we can determine the value of the cosmological constant from the observables ρm,0, H0

and q0 via
Λ = 4πGρm,0 − 3q0H

2
0 . (11.97)

Solving next the Friedmann equation (11.53) for k/R2
0,

k

R2
0

=
8πG

3
ρm,0 +

Λ

3
−H2

0 , (11.98)

we write ρm,0 = Ωmρcr and insert Eq. (11.97) for Λ. Then we obtain for the curvature term

k

R2
0

=
H2

0

2
(3Ωm − 2q0 − 2) . (11.99)
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11 Cosmological models for an homogeneous, isotropic universe

Hence the sign of 3Ωm − 2q0 − 2 decides about the sign of k and thus the curvature of
the universe. For a universe without cosmological constant, Λ = 0, equation (11.97) gives
Ωm = 2q0 and thus

k = −1 ⇔ Ωm < 1 ⇔ q0 < 1/2 ,

k = 0 ⇔ Ωm = 1 ⇔ q0 = 1/2 , (11.100)

k = +1 ⇔ Ωm > 1 ⇔ q0 > 1/2 .

For a flat universe with Λ = 0, ρm,0 = ρcr and k = 0,

0 = 4πG
3H2

0

8πG
+H2

0 (q0 − 1) = H2
0

(
3

2
+ q0 − 1

)
, (11.101)

and thus q0 = 1/2. In this special case, q0 < 1/2 means k = −1 and thus an infinite space
with negative curvature, while a finite space with positive curvature has q > 1/2.

Example 11.1: Comparison with observations:: Use the Friedmann equations applied to the
present time to derive central values of Λ and k,R0 from the observables H0 ≈ (71±4) km/s/Mpc
and ρ0 = (0.27± 0.04)ρcr, and q0 = −0.6.
We evaluate first

H2
0 ≈

(
7.1× 106cm

s 3.1× 1024cm

)2

≈ 5.2× 10−36s−2 .

The value of the cosmological constant Λ follows as

Λ = 4πGρm,0 − 3q0H
2
0 = 3H2

0

(
ρ

2ρcr
− 3q0

)
≈ 3H2

0 × (
1

2
× 0.27 + 0.6) ≈ 0.73× 3H2

0

or ΩΛ = 0.73. The curvature radius R follows as

k

R2
0

= 4πGρm,0 −H2
0 (q0 + 1) = 3H2

0

(
ρ

2ρcr
− q0 + 1

3

)

= 3H2
0 (0.135± 0.02− 0.4/3) = 3H2

0 (0.002± 0.02)

thus a flat universe (k = 0) is consistent with the given values.

11.6.2 Standard candles, rulers and sirenes

11.7 Particle horizons

The particle horizon lH is defined as distance out to which one can observe a particle by
exchange of a light signal, i.e. it is the border of the region causally connected to the observer.
Without expansion, lH = ct0, where t0 is the age of the universe. In an expanding universe,
the path the light has to travel will be stretched, dlH = R0/R(t)cdt, and thus

lH = cR0

∫
dt′

R(t′)

178



11.7 Particle horizons
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Figure 11.5: Causal structure of a spacetime with big bang: particle horizons at the time ηr
are shown in grey together with the event horizon of point P (black cone).

For a matter- or radiation-dominated universe R(t) = R0(t/t0)
α with α = 2/3 and 1/2,

respectively. Both models start with an initial singularity t = 0, and thus

lH(t0) = c

∫ t0

0
dt

(
t

t0

)−α

=
ct0

1− α
.

The ratio
lH(t)

R(t)
∝ t

tα
∝ t1−α

gives the fraction of the Hubble horizon that was causally connected at time t < t0. Since
0 < α < 1, this fraction decreases going back in time.

For an universe dominated by a cosmological constant Λ > 0, R(t) = R0 exp(
√

Λ/3t) =
R0 exp(Ht) and thus

lH(t2) = cR0

∫ t0

t

dt′

exp(Ht′)
=
cR0

H
[exp(−Ht)− exp(−Ht0)]

With R(t0) = R0 and thus t0 = 0,

lH(t)

R0
=

c

H
[exp(−Ht)− 1] .

Since t < t0 = 0, the expression in the bracket is always larger than one and the causally
connected region is larger than the Hubble horizon. If exponential expansion would have
persisted for all times, then lH(t) → ∞ for t → −∞ and thus the whole universe would be
causally connected.
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12 Cosmic relics

12.1 Time-line of important dates in the early universe

Different energy form today. Let us summarize the relative importance of the various energy
forms today. The critical density ρcr = 3H2

0/(8πG) has with h = 0.7 today the numerical
value ρcr ≈ 7.3 × 10−6 GeV/cm3. This would corresponds to roughly 8 protons per cubic
meter. However, main player today is the cosmological constant with ΩΛ ≈ 0.73. Next comes
(pressure-less) matter with Ωm ≈ 0.27 that consists mostly of non-baryonic dark matter,
while only Ωb = 4% of the total energy density of the universe consists of matter that we
know. The energy density of cosmic microwave background (CMB) photons with temperature
T = 2.7K = 2.3 × 10−4 eV is ργ = aT 4 = 0.4 eV/cm3 or Ωγ ≈ 5× 10−5.

The contribution of the three neutrino flavors to the energy density depends on the unknown
absolute neutrino mass scale, 5 × 10−5 <∼ Ων <∼ 0.05. The lower bound corresponds to three
(effectively) massless neutrinos, the upper to one massive neutrino flavor with mν ∼ 0.3 eV.

Different energy forms as function of time The scaling of Ωi with redshift z, 1 + z =
R0/R(t) is given by

H2(z)/H2
0 = Ωm,0(1 + z)3 +Ωrad,0(1 + z)4 +ΩΛ − (Ωtot,0 − 1)(1 + z)2︸ ︷︷ ︸

≈ 0

. (12.1)

Thus the relative importance of the different energy forms changes: Going back in time, one
enters first the matter-dominated and then the radiation-dominated epoch.

The cosmic triangle shown in Fig. 12.1 illustrates the evolution in time of the various energy
components and the resulting coincidence problem: Any universe with a non-zero positive
cosmological constant will be driven with time to a fix-point with Ωm,Ωk → 0. The only
other non-evolving state is a flat universe containing only matter—however, this solution is
unstable. Hence, the question arises why we live in an epoch where all energy components
have comparable size.

Temperature increase as T ∼ 1/R has three main effects: Firstly, bound states like atoms
and nuclei are dissolved when the temperature reaches their binding energy, T >∼ Eb. Secondly,
particles with mass mX can be produced, when T >∼ 2mX , in reactions like γγ → X̄X. Thus
the early Universe consists of a plasma containing more and more heavier particles that are in
thermal equilibrium. Finally, most reaction rates Γ = nσv increase faster than the expansion

rate of the universe for t → 0, since n ∝ T 3 for relativistic particles, while H ∝ ρ
1/2
rad ∝ T 2.

Therefore, reactions that have became ineffective today were important in the early Universe.

Matter-radiation equilibrium zeq: The density of matter decreases slower than the energy
density of radiation. Going backward in time, there will be therefore a time when the density
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12.1 Time-line of important dates in the early universe
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Figure 12.1: The cosmic triangle showing the time evolution of the various energy compo-
nents.

of matter and radiation were equal. Before that time with redshift zeq, the universe was
radiation-dominated ,

Ωrad,0(1 + zeq)
4 = Ωm,0(1 + zeq)

3 (12.2)

or

zeq =
Ωm,0

Ωrad,0
− 1 ≈ 5400 . (12.3)

This time is important, because i) the time-dependence of the scale factor changes from
R ∝ t2/3 for a matter to R ∝ t1/2 for a radiation dominated universe, ii) the E.o.S. and thus the
speed of sound changed from w ≈ 1/3, v2s = (∂P/∂ρ)S = c2/3 to w ≈ 0, v2s = 5kT/(3m) ≪ c2.
The latter quantity determines the Jeans length and thus which structures in the Universe
can collapse.

Recombination zrec: Today, most hydrogen and helium in the interstellar and intergalactic
medium is neutral. Increasing the temperature, the fraction of ions and free electron increases,
i.e. the reaction H+γ ↔ H++e− that is mainly controlled by the factor exp(−Eb/kT ) will be
shifted to the right. By definition, we call recombination the time when 50% of all atoms are
ionized. A naive estimate gives kT ∼ Eb ≈ 13.6 eV≈ 160.000K or zrec = 60.000. However,
there are many more photons than hydrogen atoms, and therefore recombination happens
latter: A more detailed calculation gives zrec ∼ 1000.
Since the interaction probability of photons with neutral hydrogen is much smaller than with
electrons and protons, recombination marks the time when the Universe became transparent
to light.

181



12 Cosmic relics

Big Bang Nucleosynthesis At Tns ∼ ∆ ≡ mn −mp ≈ 1.3 MeV or t ∼ 1 s, part of protons
and neutrons forms nuclei, mainly 4He. As in the case of recombination, the large number
of photons delays nucleosynthesis relative to the estimate Tns ≈ ∆ to Tns ≈ 0.1MeV.

Quark-hadron or QCD transition Above T ∼ mπ ∼ 100 MeV, hadrons like protons, neu-
trons or pions dissolve into their fundamental constituents, quarks q and gluons g.

Baryogenesis All the matter observed in the Universe consists of matter (protons and elec-
trons), and not of anti-matter (anti-protons an positrons). Thus the baryon-to-photon ratio
is

η =
nb − nb̄
nγ

=
nb
nγ

=
Ωbρcr/mN

2ζ(3)T 3
γ /π

2
≈ 7× 10−10 . (12.4)

The early plasma of quarks q and anti-quarks q̄ contained a tiny surplus of quarks. After all
anti-matter annihilated with matter, only the small surplus of matter remained. The tiny
asymmetry can be explained by interactions in the early Universe that were not completely
symmetric with respect to an exchange of matter-antimatter.

12.2 Equilibrium statistical physics in a nut-shell

The distribution function f(p) of a free gas of fermions or bosons in kinetic equilibrium are
are

f(p) =
1

exp[β(E − µ)]± 1
(12.5)

where β = 1/T denotes the inverse temperature, E =
√
m2 + p2, and +1 refers to fermions

and -1 to bosons, respectively. As we will see later, photons as massless particles stay also
in an expanding universe in equilibrium and may serve therefore as a thermal bath for other
particles. A species X stays in kinetic equilibrium, if e.g. in the reaction X + γ → X + γ the
energy exchange with photons is fast enough.

The chemical potential µ is the average energy needed, if an additional particles is added,
dU =

∑
i µdNi. If µ is zero, If the species X is also in chemical equilibrium with other species,

e.g. via the reaction X + X̄ ↔ γ+ γ with photons, then their chemical potentials are related
by µX + µX̄ = 2µγ = 0.

The number density n, energy density ρ and pressure P of a species X follows as

n =
g

(2π)3

∫
d3p f(p) , (12.6)

ρ =
g

(2π)3

∫
d3p Ef(p) , (12.7)

P =
g

(2π)3

∫
d3p

p2

3E
f(p) . (12.8)

The factor g takes into account the internal degrees of freedom like spin or color. Thus for a
photon, a massless spin-1 particle g = 2, for an electron g = 4, etc.
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12.2 Equilibrium statistical physics in a nut-shell

Derivation of the pressure integral for free quantum gas:
Comparing the 1. law of thermodynamics, dU = TdS − PdV , with the total differential
dU = (∂U/∂S)V dS + (∂U/∂V )SdV gives P = −(∂U/∂V )S .
Since U = V

∫
Ef(p) and S ∝ ln(V f(p)), differentiating U keeping S constant means P =

−V
∫
(∂E/∂V )f(p).

We write ∂E/∂V = (∂E/∂p)(∂p/∂L)(∂L/∂V ). To evaluate this we note that ∂E/∂p = p/E,
that from V = L3 it follows ∂L/∂V = 1/(3L2) and that finally the quantization conditions of
free particles, pk = 2πk/L implies ∂p/∂L = −p/L. Combined this gives ∂E/∂V = −p2/(3EV ).

In the non-relativistic limit T ≪ m, eβ(m−µ) ≫ 1 and thus differences between bosons and
fermions disappear,

n =
g

2π2
e−β(m−µ)

∫ ∞

0
dp p2e−β p2

2m = g

(
mT

2π

)3/2

exp[−β(m− µ)] , (12.9)

ρ = mn , (12.10)

P = nT ≪ ρ . (12.11)

These expressions correspond to the classical Maxwell-Boltzmann statistics1. The number of
non-relativistic particles is exponentially suppressed, if their chemical potential is small. Since
the number of protons per photons is indeed very small in the universe, cf. Eq. (12.4), and
therefore also the number of electron (the universe should be neutral), the chemical potential
µ can be neglected in cosmology at least for protons and electron.

In the relativistic limit T ≫ m with T ≫ µ all properties of a gas are determined by its
temperature T ,

n =
g T 3

2π2

∫ ∞

0
dx

x2

ex ± 1
= ε1

ζ(3)

π2
gT 3 , (12.12)

ρ =
g T 4

2π2

∫ ∞

0
dx

x3

ex ± 1
= ε2

π2

30
gT 4 , (12.13)

P = ρ/3 , (12.14)

where for bosons ε1 = ε2 = 1 and for fermions ε1 = 3/4 and ε2 = 7/8, respectively.

Since the energy density and the pressure of non-relativistic species is exponentially sup-
pressed, the total energy density and the pressure of all species present in the universe can
be well-approximated including only relativistic ones,

ρrad =
π2

30
g∗T

4 , (12.15)

Prad = ρrad/3 =
π2

90
g∗T

4 , (12.16)

where

g∗ =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑

fermions

gi

(
Ti
T

)4

. (12.17)

Here we took into account that the temperature of different particle species can differ.

1Integrals of the type
∫

∞

0
dxx2ne−ax2

can be reduced to a Gaussian integral by differentiating with respect
to the parameter a.

183



12 Cosmic relics

Entropy Rewriting the first law of thermodynamics, dU = TdS − PdV , as

dS =
dU

T
+
P

T
dV =

d(V ρ)

T
+
p

T
dV =

V

T

dρ

dT
dT +

ρ+ P

T
dV (12.18)

and comparing this expression with the total differential dS(T, V ), one obtains

∂S

∂V T
=
ρ+ P

T
. (12.19)

Since the RHS is independent of V for constant T , we can integrate and obtain

S =
ρ+ P

T
V + f(T ) . (12.20)

The integration constant f(T ) has to vanish to ensure that S is an extensive variable, S ∝ V .
The total entropy density s ≡ S/V of the universe can again approximated by the relativis-

tic species,

s =
2π2

45
g∗ST

3 , (12.21)

where now

g∗,S =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑

fermions

gi

(
Ti
T

)3

. (12.22)

The entropy S is an important quantity because it is conserved during the evolution of the
universe. Conservation of S implies that S ∝ g∗,SR

3T 3 = const. and thus the temperature
of the Universe evolves as

T ∝ g
−1/3
∗,S R−1 . (12.23)

When g∗ is constant, the temperature T ∝ 1/R. Consider now the case that a particle
species, e.g. electrons, becomes non-relativistic at T ∼ me. Then the particles annihilate,
e++e− → γγ, and its entropy is transferred to photons. Formally, g∗,S decreases and therefore
the temperature decreases for a short period less slowly than T ∝ 1/R.

Since s ∝ R−3 and also the net number of particles with a conserved charge, e.g. nB ≡
nB − nB̄ ∝ R−3 if baryon number B is conserved, the ratio nB/s remains constant.

Relativistic degrees of freedom. To obtain the number of relativistic degrees of freedom
g∗ in the universe as function of T , we have to know the degrees of freedom of the various
particle species:

• The spin degrees of freedom of massive particles with spin s are 2s+1, and of neutrinos
1, where we count particles and anti-particles separately. Massless bosons like photons
and gravitons are their own anti-particle and have 2 spin states.

• Below TQCD ∼ 250 MeV strongly interacting particles are bound in hadrons, while
above TQCD free quarks and gluons exist.

• Quarks have as additional label 3 colors, there are eight gluons.

• We assume that all species have the same temperature and approximate their contribu-
tion to g∗ by a step function ϑ(T −m).

Using the “Particle Data Book” to find the masses of the various particles, we can construct
g∗ as function of T as shown in table 12.1.
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12.3 Big Bang Nucleosynthesis

Temperature new particles 4∆g∗ 4g∗

T < me γ + νi 4× (2 + 3× 2× 7/8) 29
me < T < mµ e± 14 43
mµ < T < mπ µ± 14 57
mπ < T < Tc π±, π0 12 69
Tc < T < ms u, ū, d, d̄, g 6× 14 + 4× 8× 2− 12 205
ms < T < mc s, s̄ 3× 14 = 42 247
mc < T < mτ c, c̄ 42 289
mτ < T < mb τ± 14 303
mb < T < mW,Z b, b̄ 42 345
mW,Z < T < mh W±, Z 4× 3× 3 = 36 381
mh < T < mt h 4 384
mt < T <? t, t̄ 42 426

Table 12.1: The number of relativistic degrees of freedom g∗ present in the universe as func-
tion of its temperature.

12.3 Big Bang Nucleosynthesis

Nuclear reactions in stars are supposed to produce all the observed heavier elements. How-
ever, stellar reaction can explain at most a fraction of 5% of 4He, while the production of
the weakly bound deuterium and Lithium-7 in stars is impossible. Thus the light elements
up to Li-7 are primordial: Y (D) = few × 10−5, Y ( 3H) = few × 10−5 Y ( 4He) ≈ 0.25,
Y ( 7Li) ≈ (1 − 2) × 10−7. Observational challenge is to find as ”old” stars/gas clouds as
possible and then to extrapolate back to primordial values.

Example 12.2: Estimate the amount of 4He producted by stars:
The binding energy of 4He is Eb = 28.3MeV. If 1/4 of all nucleons were fused into 4He during
t ∼ 10Gyr, the luminosity-mass ratio would be

L

Mb
=

1

4

Eb

4mpt
= 5

erg

g s
≃ 2.5

L⊙

M⊙
.

The observed luminosity-mass ratio is however only L/Mb ≤ 0.05L⊙/M⊙. Assuming a roughly

constant luminosity of stars over time, they can produce only 0.05/2.5 ≃ 2% of the observed 4He.

Big Bang Nucleosynthesis (BBN) is controlled by two parameters: The mass difference
between protons and neutrons, ∆ ≡ mn −mp ≃ 1.3MeV and the freeze-out temperature Tf
of reaction converting protons into neutrons and vice versa.

12.3.1 Equilibrium distributions

In the non-relativistic limit T ≪ m, the number density of the nuclear species with mass
number A and charge Z is

nA = gA

(
mAT

2π

)3/2

exp[β(µA −mA)] . (12.24)
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12 Cosmic relics

In chemical equilibrium, µA = Zµp + (A − Z)µn and we can eliminate µA by inserting the
equivalent expression of (12.24) for protons and neutrons,

exp(βµA) = exp[β(Zµp + (A− Z)µn)] =
nZp n

A−Z
n

2A

(
2π

mNT

)3A/2

exp[β(Zmp + (A− Z)mn)] .

(12.25)
Here and in the following we can set in the pre-factors mp ≈ mn ≈ mN and mA ≈ AmN ,
keeping the exact masses only in the exponentials. Inserting this expression for exp(βµA)
together with the definition of the binding energy of a nucleus, BA = Zmp+(A−Z)mn−mA,
we obtain

nA = gA

(
2π

mNT

)3(A−1)/2 A3/2

2A
nZp n

A−Z
n exp(βBA) . (12.26)

The mass fraction XA contributed by a nuclear species is

XA =
AnA
nB

with nB = np + nn +
∑

i

AinAi
and

∑

i

Xi = 1 . (12.27)

With nZp n
A−Z
n /nN = XZ

p X
A−Z
n nA−1

N and η ∝ T 3 and thus nA−1
B ∝ ηA−1T 3(A−1), we have

XA ∝
(
T

mN

)3(A−1)/2

ηA−1XZ
p X

A−Z
n exp(βBA) . (12.28)

The fact that η ≪ 1, i.e. that the number of photons per baryon is extremely large, means
that nuclei with A > 1 are much less abundant and that nucleosynthesis takes place later
than naively expected. Let us consider the particular case of deuterium in Eq. (12.28),

XD

XpXn
=

24ζ(3)√
π

(
T

mN

)3/2

η exp(βBD) (12.29)

with BD = 2.23 MeV. The start of nucleosynthesis could be defined approximately by the
condition XD/(XpXn) = 1, or T ≈ 0.1MeV according to the left panel in Fig. 12.2. The right
panel of the same figure shows the results, if the equations (12.28) together with

∑
iXi = 1

are solved for the lightest and stablest nuclei. Now it becomes clear that in thermal equi-
librium between 0.1 <∼ T <∼ 0.2MeV essentially all free neutrons will bind to 4He. For low
temperatures one cannot expect that the true abundance follows the equilibrium abundance,
Eq. (12.28), shown in Fig. 12.2. First, in the expanding universe the weak reactions that
convert protons and nucleons will freeze out as soon as their rate drops below the expansion
rate of the universe. This effect will discussed in the following in more detail. Second, the
Coulomb barrier will prevent the production of nuclei with Z ≫ 1. Third, neutrons are not
stable and decay.

12.3.2 Proton-neutron ratio

Gamov criterion The interaction depth τ = nlσ gives the probability that a test particle
interacts with cross section σ in a slab of length l filled with targets of density n. If τ ≫ 1,
interactions are efficient and the test particle is in thermal equilibrium with the surrounding.
We can apply the same criteria to the Universe: We say a particle species A is in thermal
equilibrium, as long as τ = nlσ = nσvt≫ 1. The time t corresponds to the typical time-scale
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12.3 Big Bang Nucleosynthesis

Figure 12.2: Relative equilibrium abundance XD/(XpXn) of deuterium as function of tem-
perature T (left) and equilibrium mass fractions of nucleons, D, 3He, 2He and
12C (right).

for the expansion of the universe, τ = (Ṙ/R)−1 = H−1. Note that this is also the typical
time-scale for changes in the temperature T . Thus we can rewrite this condition as

Γ ≡ nσv ≫ H . (12.30)

A particle species ”goes out of equilibrium” when its interaction rate Γ becomes smaller than
the expansion rate H of the universe.

Decoupling of neutrinos The interaction rates of neutrinos in processes like n↔ p+e−+νe
or e+e− ↔ ν̄ν is σ ∼ G2

FE
2. If we approximate the energy of all particle species by their

temperature T , their velocity by c and their density by n ∼ T 3, then the interaction rate of
weak processes is

Γ ≈ 〈vσnν〉 ≈ G2
FT

5 (12.31)

The early universe is radiation-dominated with ρrad ∝ 1/R4, H = 1/(2t) and negligible cur-
vature k/R2. Thus the Friedmann equation simplifies toH2 = (8π/3)Gρ with ρ = g∗π

2/30T 4,
or

1

2t
= H = 1.66

√
g∗

T 2

MPl
. (12.32)

Here, we introduced also the Planck mass MPl = 1/
√
GN ≈ 1.2 × 1019 GeV. Requiring

Γ(Tfr) = H(Tfr) gives as freeze-out temperature Tfr of weak processes

Tfr ≈
(
1.66

√
g∗

G2
FMPl

)1/3

≈ 1MeV (12.33)

with g∗ = 10.75. The relation between time and temperature follows as

t

s
=

2.4√
g∗

(
MeV

T

)2

. (12.34)
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Thus the time-sequence is as follows

• at Tfr ≈ 1 MeV: the neutron-proton ratio freezes-in and can be approximated by the
ratio of their equilibrium distribution in the non-relativistic limit.

• as the universe cools down from Tfr to Tns, neutrons decay with half-live τn ≈ 886 s.

• at Tns, practically all neutrons are bound to 4He, with only small admixture of other
elements.

Proton-neutron ratio Above Tf , reactions like νe + n ↔ p + e− keep nucleons in thermal
equilibrium. As we have seen, Tf ∼ 1 MeV and thus we can treat nucleons in the non-
relativistic limit. Then their relative abundance is given by the Boltzmann factor exp (−∆/T )
for T >∼ Tf with ∆ = mN −mP = 1.29MeV for the mass difference of neutrons and protons.
Hence for Tf ,

nn
np

∣∣∣∣
t=tfr

= exp

(
−∆

Tf

)
≈ 1

6
. (12.35)

As the universe cools down to Tns, neutrons decay with half-live τn ≈ 886 s,

nn
np

∣∣∣∣
t=tns

≈ 1

6
exp

(
− tns
τn

)
≈ 2

15
. (12.36)

12.3.3 Estimate of helium abundance

The synthesis if 4He proceeds though a chain of reactions, pn→ dγ, dp → 3Heγ, d 3He →
4Hep. Let’s assume that 4He formation takes place instantaneously. Moreover, we assume
that all neutrons are bound in 4He. We need two neutrons to form one helium atom, n(4He) =
nn/2, and thus

Y (4He) ≡ M(4He)

Mtot
=

4mN × nn/2

mN (np + nn)
=

2nn/np
1 + nn/np

=
4

17
∼ 0.235 (12.37)

Our naive estimate not too far away from Y ∼ 0.245.
The dependence of Y ( 4He) on the input physics is rather remarkable.

• The helium abundance dependence exponentially on ∆ and Tf :

– The mass difference ∆ depends on both electromagnetic and strong interactions.
BBN tests therefore the time-dependence of fundamental interaction expected e.g.
in string theories.

– The freeze-out temperature Tfr depends on number of relativistic degrees of freedom
g∗ and restricts thereby additional light particle.

– a non-zero chemical potential of neutrinos.

• A weaker dependence on start of nucleosynthesis Tns and thus ηb or Ωb.

12.3.4 Results from detailed calculations

Detailed calculations predict not only the relative amount of light elements produced, but
also their absolute amount as function of e.g. the baryon-photon ratio η. Requiring that the
relative fraction of helium-4, deuterium and lithium-7 compared to hydrogen is consistent with
observation allows one to determine η or equivalently the baryon content, Ωbh

2 = 0.019±0.001.
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12.4 Dark matter

Figure 12.3: Abundances of light-elements as function of η (left) and of the number of light
neutrino species (right).

Although the binding energy per nucleon of Carbon-12 and Oxygen-16 is higher than the of
4He, they are not produced: at time of 4He production Coulomb barrier prevents already
fusion. Also, stable element with A = 5 is missing.

12.4 Dark matter

12.4.1 Freeze-out of thermal relic particles

When the number density nX of a particle species X is not changed by interactions, then
it is diluted just by the expansion of space, nX ∝ R−3. It is convenient to account for this
trivial expansion effect by dividing nX through the entropy density s ∝ R−3, i.e. to use the
quantity Y = n/s. We first consider again the equilibrium distribution Yeq for µX = 0,

Yeq =
nX
s

=

{
45
2π4

(
π
8

)1/2 gX
g∗S

x3/2 exp(−x) = 0.145 gX
g∗S

x3/2 exp(−x) for x≫ 3,
45ζ(3)
2π4

εgX
g∗S

= 0.278 εgX
g∗S

for x≪ 3
(12.38)

where x = T/m and geff = 3/4 (geff = 1) for fermions (bosons). If the particle X is in chemical
equilibrium, its abundance is determined for T ≫ m by its contribution to the total number of
degrees of freedom of the plasma, while Yeq is exponentially suppressed for T ≪ m (assuming
µX = 0). In an expanding universe, one may expect that the reaction rate Γ for processes
like γγ ↔ X̄X drops below the expansion rate H mainly for two reasons: i) Cross sections
may depend on energy as, e.g., weak processes σ ∝ s ∝ T 2 for s <∼ m2

W , ii) the density nX
decreases at least as n ∝ T 3. Around the freeze-out time xf , the true abundance Y starts
to deviate from the equilibrium abundance Yeq and becomes constant, Y (x) ≈ Yeq(xf) for
x >∼ xf . This behavior is illustrated in Fig. 12.4.

Boltzmann equation When the number N = nV of a particle species is not changed by
interactions, then the expansion of the Universe dilutes their number density as n ∝ R−3.
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The corresponding change in time is connected with the expansion rate of the universe, the
Hubble parameter H = Ṙ/R, as

dn

dt
=

dn

dR

dR

dt
= −3n

Ṙ

R
= −3Hn . (12.39)

Additionally, there might be production and annihilation processes. While the annihilation
rate βn2 = 〈σannv〉 n2 has to be proportional to n2, we allow for an arbitrary function as
production rate ψ,

dn

dt
= −3Hn− βn2 + ψ . (12.40)

In a static Universe, dn/dt = 0 defines equilibrium distributions neq. Detailed balance requires
that the number of X particles produced in reactions like e+e− → X̄X is in equilibrium equal
to the number that is destroyed in X̄X → e+e−, or βn2eq = ψeq. Since the reaction partners
(like the electrons in our example) are assumed to be in equilibrium, we can replace ψ = ψeq

by βn2eq and obtain
dn

dt
= −3Hn− 〈σannv〉(n2 − n2eq) . (12.41)

This equation together with the initial condition n ≈ neq for T → ∞ determines n(t) for a
given annihilation cross section σann.

Next we rewrite the evolution equation for n(t) using the dimensionless variables Y and x.
Changing from n = sY to Y we can eliminate the 3Hn term,

dn

dt
= −3Hn+ s

dY

dt
. (12.42)

With (2t)−2 = H2 ∝ ρ ∝ T 4 ∝ x−4 or t = t∗x
2, we obtain

dY

dx
= −sx

H
〈σannv〉

(
Y 2 − Y 2

eq

)
. (12.43)

Finally we recast the Boltzmann equation in a form that makes our intuitive Gamov criterion
explicit,

x

Yeq

dY

dx
= −ΓA

H

[(
Y

Yeq

)2

− 1

]
(12.44)

with ΓA = neq〈σannv〉: The relative change of Y is controlled by the factor ΓA/H times
the deviation from equilibrium. The evolution of Y = nX/s is shown schematically in
Fig. 12.4: As the universe expands and cools down, nX decreases at least as R−3. Therefore,
the annihilation rate ∝ n2 quenches and the abundance “freezes-out:” The reaction rates are
not longer sufficient to keep the particle in equilibrium and the ratio nX/s stays constant.

For the discussion of approximate solutions to this equation, it is convenient to distinguish
according to the freeze-out temperature: hot dark matter (HDM) with xf ≪ 3, cold dark
matter (CDM) with xf ≫ 3 and the intermediate case of warm dark matter with xf ∼ 3.

12.4.2 Hot dark matter

For xf ≪ 3, freeze-out occurs when the particle is still relativistic and Yeq is not changing
with time. The asymptotic value of Y , Y (x → ∞) ≡ Y∞, is just the equilibrium value at
freeze-out,

Y∞ = Yeq(xf) = 0.278
geff
g∗S

, (12.45)
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Figure 12.4: Illustration of the freeze-out process. The quantity Y = nX/s is nX divided by
the entropy density s ∝ R−3 to scale out the trivial effect of expansion.

where the only temperature-dependence is contained in g∗S . The number density today is
then

n0 = s0Y∞ = 2970Y∞cm−3 = 825
geff
g∗S

cm−3 . (12.46)

The numerical value of s0 used will be discussed in the next paragraph. Although a HDM
particle was relativistic at freeze-out, it is today non-relativistic if its mass m is m ≫ 3K ≈
0.2meV. In this case its energy density is simply ρ0 = ms0Y∞ and its abundance Ωh2 = ρ0/ρcr
or

Ωh2 = 7.8 × 10−2 m

eV

geff
g∗S

. (12.47)

Hence HDM particles heavier than O(100eV) overclose the universe.

12.4.3 Cold dark matter

Abundance of CDM For CDM with xf ≫ 3, freeze-out occurs when the particles are already
non-relativistic and Yeq is exponentially changing with time. Thus the main problem is
to find xf , for late times we use again Y (x → ∞) ≡ Y∞ ≈ Y (xf), i.e. the equilibrium
value at freeze-out. We parametrize the temperature-dependence of cross section as 〈σann〉 =
σ0(T/m)n = σ0/x

n. For simplicity, we consider only the most relevant case for CDM, n = 0
or s-wave annihilation. Then the Gamov criterion becomes with H = 1.66

√
g∗ T

2/MPl and
ΓA = neq〈σannv〉,

g

(
mTf
2π

)3/2

exp(−m/Tf)σ0 = 1.66
√
g∗

T 2
f

MPl
(12.48)

or
x
−1/2
f exp(xf) = 0.038

g√
g∗
MPlmσ0 ≡ C . (12.49)

To obtain an approximate solution, we neglect first in

lnC = −1

2
lnxf + xf (12.50)
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12 Cosmic relics

the slowly varying term lnxf . Inserting next xf ≈ lnC into Eq. (12.50) to improve the
approximation gives then

xf = lnC +
1

2
ln(lnC) . (12.51)

The relic abundance for CDM follows from n(xf) = 1.66
√
g∗ T

2
f /(σ0MPl) and n0 =

n(xf)[R(xf)/R0]
3 = n(xf)[g∗,f/g∗,0][T0/T (xf)]

3 as

ρ0 = mn0 ≈ 10
xfT

3
0√

g∗,fσ0MPl
(12.52)

or

ΩXh
2 =

mn0
ρcr

≈ 4× 10−39cm2

σ0
xf (12.53)

Thus the abundance of a CDM particle is inverse proportionally to its annihilation cross
section, since a more strongly interacting particle stays longer in equilibrium. Note that the
abundance depends only logarithmically on the mass m via Eq. (12.51) and implicitly via
g∗,f on the freeze-out temperature Tf . Typical values of xf found numerically for weakly
interacting massive particles (WIMPs) are xf ∼ 20. Partial-wave unitarity bounds σann as
σann ≤ c/m2. Requiring Ω < 0.3 leads to m < 20 − 50 TeV. This bounds the mass of any
stable particle that was once in thermal equilibrium.

Baryon abundance from freeze-out:
We can calculate the expected baryon abundance for a zero chemical potential using the formulas
derived above. Nucleon interact via pions; their annihilation cross section can be approximated
as 〈σv〉 ≈ m−2

π . With C ≈ 2× 1019, it follows xf ≈ 44, Tf ∼ 22MeV and Y∞ = 7× 10−20.
The observed baryon abundance is much larger and can be not explained as a usual freeze-out
process.

Cold dark matter candidates

A particle suitable as CDM candidate should interact according Eq. (12.53) with σ ∼
10−37 cm2. It is surprising that the numerical values of T0 and MPl conspire in Eq. (12.53) to
lead to numerical value of σ0 typical for weak interactions. Cold dark matter particles with
masses around the weak scale and interaction strengths around the weak scale were dubbed
“WIMP”. An obvious candidate was a heavy neutrino, mν ∼ 10GeV, excluded early by direct
DM searches, neutrino mass limits, and accelerator searches. Presently, the candidate with
most supporters is the lightest supersymmetric particle (LSP). Depending on the details of
the theory, it could be a neutralino (most favorable for detection) or other options. The
mass range open of thermal CDM particles is rather narrow: If it is too light, it becomes a
warm or hot dark matter particle. If it is too heavy, it overcloses the universe. There exists
however also the possibility that DM was never in thermal equilibrium. Two examples are
the axion (a particle proposed to solve the CP problem of QCD) and superheavy particle
(generically produced at the end of inflation). An overview of different CDM candidates is
given in Fig. 12.5.
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Figure 12.5: Particles proposed as DM particle with Ω ∼ 1, the expected size of their cross
section and their mass. Red excluded; blue thermally and black non-thermally
produced.
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13 Inflation and structure formation

The hot big bang cosmology described in the previous two chapters is a remarkably suc-
cessful theory, explaining the evolution of the Universe from at least the time of BBN (t ∼ s
and T ∼MeV) until today (t ∼ 13Gyr and T ∼ 2.7 keV). Complementing the hot big bang
cosmology by a phase of exponential expansion in the early universe is an attempt to avoid
some shortcomings of the standard big-bang model.

13.1 Inflation

Shortcomings of the standard big-bang model

• Causality or horizon problem: why are even causally disconnected regions of the universe
homogeneous, as we discussed for CMB?

The horizon grows like t, but the scale factor in radiation or matter dominated epoch
only as t2/3 or t1/2, respectively. Thus for any scale l contained today completely inside
the horizon, there exists a time t < t0 where it crossed the horizon. A solution to the
horizon problem requires that R grows faster than the horizon t. Since R ∝ t2/[3(1+w],
we need w < −1/3 or (q < 0, accelerated expansion of the universe).

• Flatness problem: the curvature term in the Friedmann equation is k/R2. Thus this
term decreases slower than matter (∝ 1/R3) or radiation (1/R4), but faster than vacuum
energy. Let us rewrite the Friedmann equation as

k

R2
= H2

(
8πG

3H2
ρ+

Λ

3H2
− 1

)
= H2 (Ωtot − 1) . (13.1)

The LHS scales as (1 + z)2, the Hubble parameter for MD as (1 + z)3 and for RD
as (1 + z)4. General relativity is supposed to be valid until the energy scale MPl.
Most of time was RD, so we can estimate 1 + zPl = (t0/tPl)

1/2 ∼ 1030 (tPl ∼ 10−43s).
Thus if today |Ωtot − 1| <∼ 1%, then the deviation had too be extremely small at tPl,
|Ωtot − 1| <∼ 10−2/(1 + zPl)

2 ≈ 10−62!

Taking the time-derivative of

|Ωtot − 1| = |k|
H2R2

=
|k|
Ṙ2

(13.2)

gives
d

dt
|Ωtot − 1| = d

dt

|k|
Ṙ2

= −2|k|R̈
Ṙ3

< 0 (13.3)

for R̈ > 0. Thus Ωtot − 1 increases if the universe decelerates, i.e. Ṙ decreases (radia-
tion/matter dominates), and decreases if the universe accelerates , i.e. Ṙ increases (or
vacuum energy dominates). Thus again q < 0 (or w < −1/3) is needed.

• The standard big-bang model contains no source for the initial fluctuations required for
structure formation.
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Solution by inflation Inflation is a modification of the standard big-bang model where a
phase of accelerated expansion in the very early universe is introduced. For the expansion a
field called inflaton with E.o.S w < −1/3 is responsible. We discuss briefly how the inflation
solves the short-comings of standard big-bang model for the special case w = −1:

• Horizon problem: In contrast to the radiation or matter-dominated phase, the scale
factor grows during inflation faster than the horizon scale, R(t2)/R(t1) = exp[(t2 −
t1)H] ≫ t2/t1. Thus one can blow-up a small, at time t1 causally connected region, to
superhorizon scales.

• Flatness problem: During inflation Ṙ = HR, R = R0 exp(Ht) and thus

Ωtot − 1 =
k

Ṙ2
∝ exp(−2Ht) . (13.4)

Thus Ωtot − 1 drives exponentially towards zero.

• Inflation blows-up quantum fluctuation to astronomical scales, generating initial fluc-
tuation without scale, P0(k) = kns with ns ≈ 1, as required by observations.

13.1.1 Scalar fields in the expanding universe

Equation of state A scalar field φ sitting at the minimum of its potential V (φ) has the
desired EoS w = −1 to drive accelerated expansion. The simplest dynamical model for an
inflationary phase is a single, scalar field which is initially displaced from its minimum. A
necessary condition for accelerated expansion is w < −1/3, and thus we should find the EoS
of a scalar field φ evolving in an FLRW background.

The stress tensor for a scalar field with L = 1
2g

µν∇µφ∇νφ− V (φ) follows from

Tµν = 2
∂L

∂gµν
− gµνL = ∇µφ∇νφ− gµν

[
1

2
gρσ∇ρφ∇σφ− V (φ)

]
, (13.5)

where we used the relation (13.91) derived in problem 19.1. We can describe the scalar field
also as an ideal fluid. Equating the two expressions for the stress tensor gives

Tµν = ∇µφ∇νφ− gµνL
!
= (ρ+ P )uµuν − Pgµν . (13.6)

Comparing the two independent tensor structures we can identify P = L and

∇µφ∇νφ = (ρ+ P )uµuν . (13.7)

Contracting the indices with gµν , remembering uµu
µ = 1 and using ∇µφ∇µφ = 2L + 2V

results in

ρ = P + 2V. (13.8)

Now we have to calculate only the energy density ρ = T00 in order to determine the (isotropic)
pressure P and the equation of state w = P/ρ. In an FLRW background, the energy density
of the field φ is given by

ρ = T00 = φ̇2 −
[
1

2
φ̇2 − 1

2a2
(∇φ)2 − V (φ)

]
=

1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ). (13.9)
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Thus the pressure1 follows as

P =
1

2
φ̇2 +

1

2a2
(∇φ)2 − V (φ). (13.10)

If we require the field φ to respect the symmetries of the FLRW background then φ has to
be homogeneous and the (∇φ)2 term vanishes. As result, the equation of state simplifies to

w =
P

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
∈ [−1 : 1]. (13.11)

Thus a classical scalar field may act as dark energy, w < −1/3, leading to an accelerated
expansion of the universe. A necessary condition is that the field is “slowly rolling”, that is,
that its kinetic energy is sufficiently smaller than its potential energy, φ̇2 < 2V/3.

Field equation in a FRW background We use Eq. (7.53) including a potential V (φ) (that
could be also a mass term, V (φ) = m2φ2/2),

L =
1

2
gµν∇µφ∇νφ− V (φ) , (13.12)

to derive the equation of motion for a scalar field in a flat FRW metric with gµν =
diag(1,−a2,−a2,−a2), gµν = diag(1,−a−2,−a−2,−a−2), and

√
|g| = a3. Varying the ac-

tion

SKG =

∫

Ω
d4x a3

{
1

2
φ̇2 − 1

2a2
(∇φ)2 − V (φ)

}
(13.13)

gives

δSKG =

∫

Ω
d4x a3

{
φ̇δφ̇− 1

a2
(∇φ) · δ(∇φ) − V ′δφ

}

=

∫

Ω
d4x

{
− d

dt
(a3φ̇) + a∇2φ− a3V ′

}
δφ

=

∫

Ω
d4x a3

{
−φ̈− 3Hφ̇+

1

a2
∇2φ− V ′

}
δφ

!
= 0 . (13.14)

Thus the field equation for a Klein-Gordon field in a FRW background is

φ̈+ 3Hφ̇− 1

a2
∇2φ+ V ′ = 0 . (13.15)

The term 3Hφ̇ acts in an expanding universe as a friction term for the oscillating φ field.
Moreover, the gradient of φ is also suppressed for increasing a; this term can be therefore
often neglected in an expanding universe.

1For an alternative definition of the pressure see problem 24.??.
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Number of e-foldings and slow roll conditions We can integrate Ṙ = RH for an arbitrary
time-evolution of H,

R(t) = R(t0) exp

(∫
dtH(t)

)
. (13.16)

If we define the number N of e-foldings as N = ln(R2/R1), then

N = ln
R2

R1
=

∫
dt H(t) =

∫
dφ

φ̇
H(t) . (13.17)

With φ̈+ 3Hφ̇+ V ′ = 0 or

φ̇ = − φ̈+ V ′

3H
≈ − V ′

3H
(13.18)

and the Friedmann equation H2 = 8πGV/3 it follows

N =

∫
dφ

3H2

V ′
=

∫
dφ

8πGV

V ′
≫ 1 . (13.19)

Successful inflation requires N >∼ 40 and thus

ε ≡ 1

2

(
V ′

8πGV

)2

≪ 1 . (13.20)

Additionally to large V and a flat slope V ′, the potential energy can dominate only, if |φ̈| ≪
|V ′|. Then the field equation reduces to V ′ ≈ −3Hφ̇, or after differentiating to V ′′φ̇ ≈ −3Hφ̈.
Thus another condition for inflation is

1 ≫ |φ̈|
|V ′| ≈

|V ′′φ̇|
|3HV ′| ≈

|V ′′|
24πGV

(13.21)

and one defines as second slow-roll condition

η ≡ V ′′

8πGV
≪ 1 . (13.22)

Hence inflation requires large V , a flat slope V ′ and small curvature V ′′ of the potential.

Mode solutions of the KG equation in a FRW background Next we want to rewrite the KG
equation as the one for an harmonic oscillator with a time-dependent oscillation frequency.
We introduce first the conformal time dη = dt/a,

φ̇ =
dφ

dt
=

dφ

dη

dη

dt
=

1

a
φ′ , (13.23)

φ̈ =
1

a

d

dη

(
1

a
φ′
)

=
1

a2
φ′′ − a′

a3
φ′ , (13.24)

and express also the Hubble parameter as function of η,

H =
ȧ

a
=
a′

a2
≡ H

a
. (13.25)
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Inserting these expressions into Eq. (13.15) and multiplying with a2 gives

φ′′ + 2H φ′ −∇2φ+ V ′ = 0 . (13.26)

Performing then a Fourier transformation,

φ(x, t) =
∑

k

φk(t)e
ikx , (13.27)

and using as potential a mass term, V ′ = m2φ, we obtain

φ′′k + 2Hφ′k + (k2 +m2a2)φk = 0 . (13.28)

Finally, we can eliminate the friction term 2Hφ′k by introducing φk(η) = uk(η)/a. Then a
harmonic oscillator equation for uk,

u′′k + ω2
kuk = 0 , (13.29)

with the time-dependent frequency

ω2
k(η) = k2 +m2a2 − a′′

a
(13.30)

results. You can check that the action for the field u using conformal coordinates η,x is
mathematically equivalent to the one of a scalar field in Minkowski space with time-dependent
mass m2

eff(η) = m2a2 − a′′/a. This time-dependence appears, because the gravitational field
can perform work on the field u. Alternatively, we could show that “the” vacuum at different
times η is not the same, because we compare the vacuum for fields with different effective
masses, leading to particle production. For an excellent introduction into this subject see
the book by V. F. Mukhanov and S. Winitzki, “Introduction to quantum fields in gravity;”
for a free pdf file of the draft version see http://sites.google.com/site/winitzki/. We
consider now as two limiting cases the short and the long-wavelength limit. In the first case,
k2 +m2a2 ≫ a′′

a , the field equation is conformally equivalent to the one in normal Minkowski
space, with solution

uk(η,x) =
1√
2k

(Ake
−ikx +Ake

ikx) . (13.31)

In the opposite limit, a′′uk = au′′k, with the solution φk = const. The complete solution is
given by Hankel functions H3/2(η),

uk(η) = Ake
−ikx

(
1− i

kη

)
+Bke

ikx

(
1 +

i

kη

)
. (13.32)

Modes outside the horizon are frozen in with amplitude

|φk| =
∣∣∣
uk
a

∣∣∣ =
H√
2k3

. (13.33)

We observe modes which exited the horizon ∆N ∼ 60 e-folding before the end of inflation.
If there is no special choice of the initial conditions for inflation, we expect that the total
number Ntot of e-folding is much larger. Thus the physical momentum of these modes at
the beginning of inflation, p(ti) ∼ HeNtot−∆N , is extremely high. A natural assumption is
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13.1 Inflation

Figure 13.1: Marginalized joint 68% and 95% CL regions for ns and r at k = 0.002Mpc−1

from alone and in combination with BK15 or BK15+BAO data, compared
to the theoretical predictions of selected inflationary models. Note that the
marginalized joint 68% and 95% CL regions assume dns/d ln k = 0,

therefore that these modes were empty at the start of inflation. Thus we should require that
for early times, η → −∞, only positive frequencies survive, what implies Bk = 0 and Ak = 1.
This choice is called the Bunch–Davies vacuum. Inserting this choice into (??), we find for
the fluctuations inside the horizon, k ≫ |1/η| = aH,

|δφk| =
∣∣∣
χk

a

∣∣∣ =
Hη√
2k

. (13.34)

Modes outside the horizon, k ≪ aH, are frozen-in with amplitude

|δφk| =
∣∣∣
χk

a

∣∣∣ =
H√
2k3

. (13.35)

Power spectrum of perturbations The two-point correlation function of the field φ is

〈φ(x′, t′)φ(x, t)〉 =
∑

k

〈φ(x′, t′)|k〉〈k|φ(x, t)〉 =
∫

d3k

(2π)3
|φk|2 eik(x

′−x) . (13.36)

We introduce spherical coordinates in Fourier space and choose x = x′,

〈φ2(x, t)〉 =
∫

4πk2dk

(2π)3
|φk|2 =

∫
dk

k2

2π2
|φk|2

︸ ︷︷ ︸
≡P (k)

=

∫
dk

k
∆2

φ(k) . (13.37)
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Figure 13.2: Left: A slowly rolling scalar field as model for inflation. Right: The evolution
of the scale factor R including an inflationary phase in the early universe.

The functions P (k) is the power spectrum, but often one calls also ∆2
φ(k) with the same name.

The spectrum of fluctuations ∆2
φ(k) outside of the horizon is

∆2
φ(k) =

k3

2π2
|φk|2 =

H2

4π2
(13.38)

Hence, the power-spectrum of superhorizon fluctuations is independent of the wave-number
in the approximation that H is constant during inflation. The total area below the function
∆2

φ(k) = const. plotted versus ln(k) gives 〈φ2(x, t)〉, as shown by the last part of Eq. (13.90).

Hence a spectrum with ∆2
φ(k) = const. contains the some amount of fluctuation on all angular

scales. Such a spectrum of fluctuations is called a Harisson-Zel’dovich spectrum, and is
produced by inflation in the limit of infinitely slow-rolling of the inflaton.

Fluctuations in the inflaton field, φ = φ0+δφ, lead to fluctuations in the energy-momentum
tensor T ab = T ab

0 + δT ab, and thus to metric perturbations gab = gab0 + δgab. These metric
perturbations hab affect in turn all matter fields present.

13.1.2 Models for inflation

Inflation has to start and to stop (“graceful exit problem”). In order to start inflation, the
inflaton has to be displaced from its equilibrium position.
Original idea of Guth: Symmetry restoration at a first order (discontinuous) phase transi-
tion, bubble creation or 2.order. Latent heat of phase transition is used to reheat universe
(expansion lead to cool, empty state!) and to create particles. Too inhomogenous.
Modern ideas: Chaotic inflation: quantum fluctuation in a patch of the universe. Field rolls
back, inflation ends when φ back in minimum. Oscillates around minimum, coupling to other
particles leads to particle production.
If the coupling to other particles is “large”, then (instantaneous) reheating aT 4

rh = V . Gener-
ically, the coupling should be small. Delay leads to aT 4

rh = V (R/R′)3.

Models for inflation Up to now we have discussed the, for a particle physicist, perhaps
most natural option that a scalar field drives inflation. Moreover, we have restricted our
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Figure 13.3: Typical potential of a large field (left) and of a small field model (right) for
inflation.

attention to the case of a single scalar field. Single-field models can be characterised by two
parameters, for example, the width and the height of the potential. Generically, we can divide
these models into large and small field models as shown in Fig. 13.3. In the first class, inflation
requires trans-Planckian field values as, for example, for the m2φ2 or the λφ4 models. The
potential of these models has positive curvature, V ′′ > 0, and thus εV > 0.

The trans-Planckian field values required to start inflation clearly lead to the question of
how the inflaton was displaced from its equilibrium position. A suggestion by Linde is “chaotic
inflation”. The inflaton field φ acquires random values due to quantum fluctuations. In a
region of initial size 1/M4

Pl with φ ≫ MPl, inflation starts and produces a homogeneous
patch inside the universe. Other regions do not undergo inflation at all, or with only a few
e-foldings. Thus on scales much larger than our successfully inflated patch, the universe is
very inhomogeneous. In a variant, called “stochastic inflation”, quantum fluctuations disturb
the classical slow-roll trajectory so strongly that the volume filled with large quantum fluc-
tuations φ≫MPl grows exponentially. As a result, new patches of inflating “miniverses” are
generated continuously, leading to an eternal self-reproduction of the inflationary universe. A
controversial question in these types of models is how generic is the observed universe, and
how such a statement can be made precise.

Typical examples for a small field model are potentials like V (φ) = λ(η2 − φ2)2/4 or of
the Coleman–Weinberg type. Such potentials are generically much flatter than those of large
field models. They often are connected to SSB, and the inflaton sits initially at the unstable
equilibrium position φ = 0. The potential has negative curvature, V ′′ < 0, and thus εV < 0.
The idea of small field models implies that we choose parameters such that inflation starts at
sub-Planckian field values, and thus, for example, λφ4f ≪ V0 <∼M4

Pl for V (φ) = V0 − λφ4/4.
Inflation may be realised in this class of models as follows. Before the start of inflation, the
universe is at high temperature in a potentially inhomogeneous state. The symmetry of the
temperature-dependent effective potential Veff(φ, T ) is restored. Thus the field φ sits initially
at φ = 0. As the universe expands, it cools down and the size of the temperature-dependent
corrections becomes smaller, V (φ, T ) ≃ V (φ, 0). Finally, the symmetry is broken, the field
starts to roll down the potential and inflation starts.

Using a scalar field as the driving force of inflation, a natural question to address is if
we can identify the inflaton with a Higgs field. During the 1980s, one tried to connect the
GUT phase transition and GUT Higgs fields to inflation. However, combining the slow-roll
conditions and the size of density fluctuations (which will be discussed in the after next
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section) restricts the potential severely. Generically, loop corrections destroy the flatness of
the potential if the inflation is not extremely weakly coupled to the SM fields. Therefore, it
seems natural to consider the inflaton as a gauge singlet. The discovery of the SM Higgs has
created nevertheless interest in the question if the SM Higgs can act as inflaton. First, we
know that the Higgs potential flattens for large values of the renormalisation scale. Second,
its coupling ξφ2R to the curvature scalar is unconstrained. A large enough number of e-
foldings can be achieved, if the coupling ξ is large, ξ ≈ 50 000. Such a term flattens the Higgs
potential below MPl/

√
ξ sufficiently to lead to slow-roll inflation. This scenario faces however

two problems: first, perturbative unitarity is violated below MPl, requiring the existence of
new degrees of freedom. Thus predictions in “Higgs inflation” depend on the unknown UV
completion. More severely, we have seen that the SM Higgs potential (for the values of mh

and mt currently favoured) develops an instability below MPl. Thus the SM Higgs cannot be
the main agent of inflation but may play some role during inflation.

The range of options widens drastically as soon as one uses several inflaton fields, reducing
at the same time, however, the predictive power of the models. We comment here only
briefly on another option, namely abandoning the idea that the inflaton is a fundamental
field. In particular, during the very early universe higher derivative terms in the gravitational
action may have played an important role. As a specific possibility, one can modify gravity by
generalising the Einstein–Hilbert action as LEH = R→ f(R). Here, the function f(R) should
be chosen such that observational constraints are obeyed in the R → 0 limit, while for large
R modified gravity may lead to inflation. An example of this approach is the Starobinsky
model proposed in 1979 that uses f(R) = R − R2/(6M2). It represents the first working
theory of inflation and is still in excellent agreement with data. Neglecting other matter fields,
this theory is equivalent to standard gravity with a scalar field. Changing first the metric
as gµν → gµν/χ with χ ≡ ∂f(R)/∂R, and using then χ = exp[4

√
πφ/(

√
3MPl)] in order to

obtain a canonically normalised kinetic term gives the scalar potential

V (φ) =
3M2M2

Pl

32π2
(1− 1/χ)2 =

3M2M2
Pl

32π2

[
1− exp

(
4
√
πφ√

3MPl

)]2
. (13.39)

Thus one can analyse the Starobinsky model using V (φ) and standard gravity. However, the
transformation gµν → gµν/χ induces couplings of gravitational strength between φ and all
other SM fields. These additional gravitational couplings indicate that it is more natural to
see this class of models as a modification of gravity.

In order to distinguish between these various possibilities, we have to work out the fluc-
tuations predicted by these models. Prior to that, we consider first the transition from the
inflationary phase to the standard radiation dominated universe.

13.2 Structure formation

13.2.1 Overview and data

• Structure formation operates via gravitational instability, but needs as starting point a
seed of primordial fluctuations (generated in inflation)

• Growth of structure is inhibited by many factors, e.g. pressure.
The distance travelled by a freely falling particle is R ∼ gt2/2 with g = GM/R2; or
t ∼

√
R3/GM ∼

√
1/Gρ. Thus τff ∼ 1/

√
Gρ.
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13.2 Structure formation

Pressure can balance gravity, if τff >∼ λ/vs. This defines a critical length (“Jeans length”)

λ ∼ vs√
Gρ

,

below which pressure can counteract density perturbations (resulting in acoustic oscil-
lations), above the density perturbation grows. Shows already that structure formation
is sensitive to E.o.S. (compare e.g. radiation with v2s = 1/3 with baryonic matter
v2s = 5T/(3m)).

• If growth of perturbation leads to Ω ≥ 1 in a region, the region decouples from the
Hubble expansion and collapses.

• Assume ρ = ρm + ργ . If perturbations in ρ are adiabatic, i.e. the entropy per baryon is
conserved, δ(ρm/s) = 0 or δ ln(ρm/T

3) = 0, then δ ln ρm − 3δ lnT = 0 or

δρm
ρm

= 3
δT

T
.

[Another possibility would be δρ = 0 or δρm = −δργ = −4aT 3δT = −4ργδT/T and
4δT/T = −δρm/ργ = −(ρm/ργ) (δρm/ρm). In the radiation epoch ρm/ργ ≪ 1 and
temperature fluctuations are suppressed.]

⇒ Temperature fluctuation in CMB at z ≈ 1100 and matter fluctuation today 0 ≤ z <∼ 5
have the same origin, if primordial fluctuations are adiabatic.

• Basics of structure formation:
assume initial fluctuations and examine how they are transformed by gravitational in-
stability, interactions and free-streaming of different particle species

• comparison with observations via i) power-spectrum P (k) = |δk|2, where

δk ∝
∫
d3x e−ikxδ(x) ∝ kns with δ(x) ≡ ρ(x)− ρ̄

ρ̄

or ii) correlation function
∫
d3x n(x)n(x+ x0) or normalized

ξ(x0) ≡
1/V

∫
d3x n(x)n(x+ x0)

(1/V
∫
d3x n(x)n(x+ x0))2

− 1

The correlation function is the Fourier-transform of the power spectrum.
Typical ξ ≈ (r/r0)

γ with γ ∼ 1.8 for 0.1 <∼ r <∼ 10Mpc.

• An example of the status in 1995 is shown in Fig. 13.4. The field is driven by a
tremendous growth of data:
galaxy catalogues: Hubble ’32: 1250, Abell ’58: 2712 cluster, 2dF : 250.000, SDSS (-
’08): 106.
CMB experiments: ’65 detection, COBE ’92: anisotropies, towards ’00: first peak, . . .
N-body simulations: Peeble ’70: N = 100, Efstahiou, Eastwood ’81: N = 20.000, 2005:
Virgo: Millenium simulation N = 106.
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Figure 13.4: Comparison of the predicted power spectrum normalized to COBE data in several
models popular around ’95 with observations: HDM (Ων = 1), CDM (Ωm = 1)
and MDM (Ωm = 0.8, Ων = 0.2).

13.2.2 Linear growth of perturbations

Matter-dominated universe We restrict ourselves to the simplest case: perturbations in
a pressure-less, expanding medium. Starting from a homogeneous universe, we add matter
inside a sphere of radius R, ρ̄→ ρ̄(1+ δ). Then the acceleration on the surface of this sphere
is

R̈

R
= −4π

3
Gρ̄(1 + δ) . (13.40)

The time evolution of the mass density is

ρ(t) = ρ̄(t)[1 + δ(t)] = ρ̄0/a
3(t)[1 + δ(t)] (13.41)

and thus mass conservation

M =
4π

3
ρ̄0 [1 + δ]

R3

a3
= const. (13.42)

implies
R(t) ∝ a(t)[1 + δ(t)]−1/3 . (13.43)

Expanding for δ ≪ 1 and differentiating twice gives

R̈

R
=
ä

a
− 2

3

ȧ

a
δ̇ − 1

3
δ̈. (13.44)

Combined with the usual acceleration equation for a pressureless universe,

ä

a
= −4π

3
Gρ̄, (13.45)

we obtain
δ̈ + 2Hδ̇ − 4πGρ̄δ = 0. (13.46)
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13.2 Structure formation

General case Our simplified derivation assumed a matter-dominated universe. In general,
the same equation holds if one includes into ρ all contributions to the energy density, while δ
contains only the contast in the density of matter. Introducing therefore

Ωm =
ρm
ρcr

=
8πGρ̄m
3H2

,

we can re-write Eq. (13.46) in the general case as

δ̈ + 2Hδ̇ − 3

2
ΩmH

2δ = 0. (13.47)

We can now apply this equation to the evolution of the density contrast in various models
with a single dominating energy component. For a matter-dominated universe, it is H =
2/(3t) and ρ = 1/(6πGt2). Inserting as trial solution δ ∝ tα gives

α(α − 1)tα−2 +
4

3
αtα−2 − 2

3
tα−2 = 0 (13.48)

or

α2 +
1

3
α− 2

3
= 0 (13.49)

and finally α = −1 and 2/3. Thus the general solution δ(t) = At−1 + Bt2/3 consists of a
decaying mode δ ∝ 1/t and a mode growing like the scale factor, δ ∝ t2/3 ∝ R. Compared to
the static universe, we see the the expansion of the universe slows down the growth from an
exponential to a power-law growth.

During the radiation-dominated epoch, Ωm ≪ 1, and we can neglect the term linear in
Ωmδ. With H = 1/(2t), it follows then

δ̈ +
1

t
δ̇ = 0 (13.50)

with solution δ(t) = δ(ti)[1 + a ln(t/ti)]. Thus sub-horizon perturbations essentially do not
grow until zeq.

In the late universe, z <∼ 0.6, the cosmological constant dominates, H ≃ HΛ = const., and

δ̈ + 2HΛδ̇ = 0 (13.51)

with δ(t) = C1 +C2 exp(−2HΛt). Thus the (fractional) fluctuations in the matter density do
not grow further, while the average density decreases exponentially, ρ̄m ∝ exp(−3HΛt).

Fourier expansion and super-horizon modes In a flat universe, k = 0, we can perform for
wavelengths small compared to the Hubble radius a usual Fourier expansion,

δk =

∫
d3x e−ik·xδ(x) with δ(x) ≡ ρ(x)− ρ̄

ρ̄
. (13.52)

The Fourier modes δk satisfy then the same equation,

δ̈k + 2Hδ̇k −
3

2
ΩmH

2δk = 0, (13.53)
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13 Inflation and structure formation

as long as 2πa(t)/k ≪ 1/H. Note that the evolution of different modes is decoupled. Thus
we can still use the linear equation (13.53) for all modes with δk ≪ 1, even if other modes
became already non-linear.

As the universe expands deaccelerating, modes which had initially wave-lengths larger than
the horizon will cross the horizon and become sub-horizon modes. This implies that we need to
know the behaviour of super-horizon modes as initial conditions for our Newtonian analysis.
For the study of super-horizon modes, the use of the full perturbed Einstein equations is
necessary. The key-point can be uderstood however from the following simple argument:
Starting from the Friedmann equation for a flat, homogeneous universe, H2 = 8πGρ̄/3, we
consider a perturbed model with the same expansion rate H but higher density ρ > ρ̄. Thus
this model has positive curvature,

H2 =
8πG

3
ρ− 1

R2
. (13.54)

Comparing now the perturbed “sub-universe” to the average one, the density contrast follows
as

δ ≡ ρ− ρ̄

ρ̄
=

3

8πGρ̄R2
. (13.55)

Thus the evolution of the density contrast is controlled by the ratio of the curvature term to
the energy density. For small δ, we can assume the same evolution of the scale factor in both
models. Using then ρ ∝ 1/R3 and ρ ∝ 1/R4 in a matter and radiation-dominated universe,
respectively, it follows

δ ∝ 1

R2ρ̄
∝
{
R2 radiation,

R matter.
(13.56)

Transfer function We are now in the position to sketch in the left panel of Fig. 13.5 the
time evolution of the density contrast δk(t) as function of the wave-number k, if all effects
except the expansion of the universe can be neglected. For small enough k, the mode is
always super-horizon. Thus the density contrast grows until aeq as δk(t) ∝ a2, and then as a.
Increasing k, the mode crosses the horizon at δk(t) ∝ a and the growth is then until aeq only
logarithmically, after it becomes linear. Thus after aeq the slope of the modes is the same,
but the normalisation is k-dependent.

Next we want to relate the density contrast at some initial time ti with the one observed
at later time t. The choice of ti ia arbitrary, as long it is early enough that all relevant scales
are super-horizon. We consider first the range k < keq. Then

δk(t) =

(
aeq
ai

)2( a

aeq

)
δk(ti) ≡ D(t, ti)δk(ti), (13.57)

where we introduced the scale-independent growth function D. In addition, we define the
transfer function T (k) which includes all scale-dependent effects as

T (k, t) = D(t, ti)
−1 δk(t)

δk(ti)
. (13.58)

As required, it is T (k, t) = 1 for k < keq.
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13.2 Structure formation

Now we consider the range k > keq, where

δk(t) =

(
ak
ai

)2( a

aeq

)
δk(ti). (13.59)

We rwrite the pre-factors such that we can introduce the scale-independent growth function
D,

δk(t) =

(
ak
aeq

)2(aeq
ai

)2( a

aeq

)
δk(ti) =

(
ak
aeq

)2

D(t, ti)δk(ti). (13.60)

Thus the scale dependence of the transfer function is determined by the ratio (ak/aeq)
2.

Since at horizon crossing k = akHk and H ∝ 1/a2 in the radiation dominated epoch, it
follows T ∝ 1/k2. Then the transfer function is given by

T (k) =

{
1 k < keq,

(keq/k)
2 k > keq.

(13.61)

Let us now assume that the initial power spectrum follows a power law, Pi(k) ∝ kn. Then
the linear power spectrum at late times is

P (k) ∝
{
kn k < keq,

kn−4 k > keq.
(13.62)

Thus this model predicts a break by ∆n = 4 at k = keq ≃ 0.015h/Mpc in the linear power
spectrum.

Example 13.1: Determine the numerical value of keq:

This prediction can be compared only indirectly to observations of the CMB and galaxy
clustering. In the former case, the temperature fluctuations can be simply rescaled using
Eq. (??). In the latter case, however, the fluctuations are non-linear. Moreover, the transfer
function is the one for a universe consisting purely of CDM, since we neglected all effects
like free-streaming or damping. Thus one has to take into account that the distribution of
galaxies has a bias relative to the one of CDM. Accounting for these effects, one can convert
the observed power spectrum at late times into the linear power spectrum. The latter is shown
in Fig, 13.4; both the position of the break and the change of the slope agree surprisingly well
with predictions, if the primordial power spectrum has n = 1.

Harisson-Zel’dovich spectrum We have still to find the connection between the power spec-
trum P(k) of matter fluctuations and the spectrum of fluctuations ∆2

φ(k) predicted by in-
flation. On sub-horizon scales, the latter are fluctuations in the Newtonian gravitational
potential. Thus we can use the Poisson equation ∆δφ(x) = 4πGρ̄δ(x) to find first k2δφk ∝ δk
and then P(k) ∝ k4Pφ(k). Thus the primordial slope n ≃ 1 in the matter fluctuations
corresponds to

∆2
φ(k) ∝ k3Pφ(k) ∝ P(k)/k ∼ const.

consistent with the scale-invariant spectrum predicted by inflation.
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Figure 13.5: Left panel: The growth of δk(a) as function of scale factor a for different k values.
Right panel: The tranfer function T (k).

Harisson and Zel’dovich argued long before the invention of inflation that the spectrum
of initial fluctuations should be scale-invariant: Otherwise we would not see structures in
the universe on a broad range of scales. Instead, collapsed objects would be concentrated
either on the largest scales close to the Hubble horizon for n ≫ 1, or on small scales for
n ≪ 1. Moreover, the power spectrum should contain a cutoff for n 6= 1, i.e. a scale, to
be finite. Therefore a scale invariant spectrum of fluctuations with n = 1 is often called a
Harisson-Zel’dovich spectrum.

Hierarchical structure formation We can now address the question how large the density
contrast is when a mode crosses the horzion, given some initial condition for the power-
spectrum of density fluctuation. More specifically, we want to determine the mass contained
in a fluctuation. Starting from (see appendix)

ξ(r) =
1

2π2

∫
dk k2P (k)j0(kr) (13.63)

and P (k) ∝ kn, it follows

ξ(r) =
1

2π2

∫
dk k2+nj0(kr). (13.64)

Since the integrand is approximately constant until k ≃ 1/r and then decreases reapidly, we
can integrate up to kmax ≃ 1/r, obtaining

ξ(r) ∝ r−(3+n). (13.65)

With M ∝ r3,the mass contained in a fluctuation scales as ξ(M) ∝ M−(3+n)/3. The density
contrast follows as

δρ

ρ
≡ ∆(M) ∝M−(n+3)/6 ∝M−2/3 for n = 1. (13.66)

From (13.56), it follows that the density contrast of super-horizon modes scales as ∆(M) ∝ R2

in the radiation-dominated epoch. Thus

∆(M) ∝ R2M−(n+3)/6. (13.67)
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13.2 Structure formation

Next we consider modes which cross the horizon and assume that the mass is dominated by
CDM. Then with a ∝ t1/2, it follows

MCDM|horizon ∝ mCDMnCDMt
3
H ∝ a−3a6 ∝ a3 (13.68)

Thus the scale factor scales as a ∝M
1/3
h and

∆(M) ∝M2/3M−(n+3)/6 ∝M−(n−1)/6 (13.69)

is constant for n = 1. Thus for a Harisson-Zel’dovich spectrum, the density contrast of all
fluctuations has the same amplitude at horizon crossing, independent of their scale. Since
fluctuations with large k cross earlier the horizon, they start to grow earlier, reaching therefore
also earlier the non-linear stage, δk ≃ 1. Thus in this picture, structures at small scales are
formed first.

13.2.3 Mass and damping scales

Jeans mass of baryons Consider a mixture of radiation and non-relativistic nucleons after
e+e− annihilations, i.e. T ≈ 0.5 MeV. With ρ = ρm + ργ and P ≈ Pγ = ργ/3, we have

vs =

(
∂ρ

∂P

)−1/2

S

=
1√
3

(
1 +

∂ρm
∂ργ S

)−1/2

=
1√
3

(
1 +

3ρm
4ργ

)−1/2

(13.70)

where we used δρm
ρm

= 3 δT
T =

3δργ
4ργ

.

For t≪ teq, the adiabatic sound speed is close to vs = 1/
√
3, while vs = 0.76/

√
3 for t = teq.

The Jeans mass of baryons is close to the horizon size until recombination. Then vs drops to
the value for a mono-atomic gas, v2s = 5Tb

3m , where m ∼ mH ∼ 1 GeV.

The total mass MJ contained within a sphere of radius λJ/2 = π/kJ is

MJ =
4π

3

(
π

kJ

)3

ρ0 =
π5/2

6

v3s

G3/2ρ
1/2
0

(13.71)

is called the Jeans mass. It is unchanged by the expansion of the universe, since the wave-
number kJ ∝ R and ρ0 ∝ 1/R3.

Let us compare the Jeans mass just before and after recombination,

MJ(zeq,>) =
π5/2

6

v3s
G3/2ρ1/2

∼ 1015
(
Ωh2

)−2
M⊙ (13.72)

and

MJ (zeq,<) ∼ 105
(
Ωh2

)−1/2
M⊙ (13.73)

The Jeans mass of baryons does not coincide with the observed mass of galaxies, neither
fits the corresponding length scale the break in the power spectrum around k ≈ 0.04h/Mpc.
Thus the mass scales for structure formation are not controlled by baryons—this was one of
the first evidence for the importance of non-baryonic matter.
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13 Inflation and structure formation

Figure 13.6: Acoustic baryon oscillation in the correlation function of galaxies with large
redshift of the SDSS, astro-ph/0501171.

Damping scales

Up to now, we have approximated the matter and radiation content in the universe as an
ideal fluid. While this is in most cases an excellent approximatins, deviations may lead to
observable imprints. Examples are dissipative processes or the case of particles so weakly
interacting that the fluid approximations is invalid.

Collisional or Silk damping Consider which fluctuations are damped by dissipative pro-
cesses, e.g. by Thomson scattering. We note first that the mean free path of photons is always
much larger than the one of electrons, lγ = (neσT )

−1 ≫ le = (nγσT )
−1, since nγ ∼ 1010ne.

Thus photon diffusion is much more important then electron diffusion.

A sound wave with wavelength λ can be damped if the diffusion time τdiff is smaller than
the Hubble time tH . We can estimate τdiff by a random-walk with N = λ2/l2int steps, each
with size lint = 1/neσth,

τdiff = Nlint = λ2/lint < tH . (13.74)

Thus the damping scale is λD = (lintlH)1/2. If there would be a baryon-dominated epoch,
then ne ∝ ρ and ρ ∝ 1/t2, hence lintlH ∝ ρ−1−1/2 and λD ∝ ρ−3/4. Finally, the corresponding
mass scale is MD ∝ λ3ρ ∝ ρ−9/4ρ ∝ ρ−5/4. Numerically,

MD = 1012(Ωh2)−5/4M⊙ (13.75)

and the corresponding length scale is (taking into account Ωb ≈ 0.04 < Ωm ≈ 0.27 and
h ≈ 0.7)

λD = 3.5(Ωm/Ωb)
1/2(Ωh2)−3/4 Mpc ≃ 40Mpc . (13.76)

Thus the Silk scale λD has the right numerical value to explain the break in the power
spectrum at k ≈ 0.04h/Mpc. Fluctuations are damped on scales λ >∼ λD, the stronger the
larger Ωb. Since MD ≫ MJ , acoustic oscillation should be visible for k >∼ kD in the power
spectrum of galaxies. The first evidence for this baryon-acoustic oscillations was found around
2005, cf. Fig. 13.6.
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13.2 Structure formation

Collisionless damping or freestreaming Relativistic collisionless particles like neutrinos are
streaming out of over-dense regions, smoothing density inhomogenities. Let us estimate the
corresponding damping scale λFS, choosing values appropriate for the (hypothetical) case
that neutrinos constitute a significant part of (hot) DM:

• choose dφ = dϑ = 0, then for a freely falling particle R(t)dr = v(t)dt

• coordinate distance traversed from ti = 0 to t is

λFS(t) = r(t)− r(0) =

∫ t

0
dt′

v(t′)

R(t′)

• divide in relativistic (v = 1) and non-relativistic regime (v ≪ 1), with transition at tnr:

λFS =

∫ tnr

0

dt′

R(t′)
+

∫ teq

tnr

dt′
v(t′)

R(t′)

• Since p ∝ 1/R, non-relativistically p = mv ⇒v ∝ 1/R
assume radiation-dominance R ∝ t1/2:

λFS =
2tnr
Rnr

+

∫ teq

tnr

Rnr

R2(t′)
dt′ =

tnr
Rnr

[2 + ln(teq/tnr)]

• neutrinos become non-relativistic when 3Tν ≈ mν , corresponding to znr ≈ 6× 104h2Ων

⇒λFS(t) = 30 Mpc (Ωνh
2)−1

• using M(λ) ≈ 1.5 × 1011M⊙(Ω0h
2)λ3Mpc

MFS ≈ 4× 1014M⊙

(
30eV

mν

)2

• pure HDM, assuming Ων ∼ 1:
⇒ structure formations starts at supercluster scales. Smaller structure are produced
later by fragmentation. This is opposite to the case of CDM.

• horizon scale Rh(znr ∼ zeq) = 14Ω−1
0 h−2 Mpc

⇒ HDM freestreams and wipes out all density perturbation on galactic scales

• we consider now a mixed dark matter model, HCDM: Then HDM can fall into potential
walls created earlier by CDM, if the scale of these walls is >∼MJ,ν .

– mean velocity vν = c for z >∼ znr

– vν ∝ 1/a for z <∼ znr

• comoving Jeans length kJ = 2πa/λj is

k−1
J ≈ 2.3 × 10−2(1 + z)1/2

h3Ων
Mpc
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13 Inflation and structure formation

• on scales 1/(h3Ων) Mpc ( >∼ 100 Mpc): HDM clusters already at znr ⇒ small difference
to CDM

• on scales <∼ 1 Mpc: clustering has not started yet

• intermediate scales: surpression of density fluctuation

• CDM:
if λD ≪ 1Mpc (i.e. CDM becomes non-relativistic much earlier than teq), the first
bound structure are of galactic size or smaller ⇒ hierarchical structure formation.

13.2.4 Non-linear regime

Spherical collapse model When perturbations reach the non-linear stage, δk ≃ 1, our linear
analysis is not valid anymore. A useful model for the subsequent evolution is an ovderdense
sphere which evolves in the same way as an closed sub-universe. Thus the equation of motion
for the radius R of a sphere containing the mean mass density ρ is the same as the one for
the scale factor of a closed universe. Thus

r = A(1− cos ϑ) (13.77)

t = B(ϑ− sinϑ) (13.78)

with A = (GmB2)1/3 (from r̈ = −GM/r2). An expansion of r(ϑ) for small ϑ gives

r ≃ A

2

(
6t

B

)2/3
[
1− 1

20

(
6t

B

)2/3
]

(13.79)

The density perturbation is

δ ≃ 3

20

(
6t

B

)2/3

(13.80)

Thus intially, the perturbation grow as expected as δ ∝ t2/3 ∝ a.

The radius sphere reaches a maximum at ϑ = π, or t = πB. At this point, the sphere
decouples completely from the Hubble flow and starts to collapse. The density has increased
by a factor δ = 9π2/16 ≃ 5.5, while the linear theory predicts δ ≃ 1.1. Neglecting any
dissipation, the collapes ends in a singularity within the time ϑ = 2π. In practise, the
particles inside the sphere will viralize: collisions will convert the ordered kinetic energy of
the “Hubble flow” into random motion.

Add: example PBHs?

Zeldovich pancakes

N -body simulations Once the a non-linear structure formed and virialized, it will continue
to accrete matter. Moreover merger. Formation of the cosmic web.

N -body simulations are mainly used to study structure formation on the smallest scale,
e.g. the dark matter profile of a galaxy.
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13.2 Structure formation

13.2.5 Summary

Recipes for structure formation

Summary of different effects

• On sub-horizon scales our Newtonian analysis applies. During the radiation-dominated
epoch, perturbations do not grow. During the matter-dominated epoch, perturbations
grow on scales larger than the Jeans scale as δ ∝ t2/3 ∝ R. Perturbations on smaller
scales oscillate as acoustic waves.

• Before recombination, baryons are tightly coupled to radiation. The baryon Jeans scale
is of order of the horizon size. After recombination, it drops by a factor 1010.

• Silk damping reduces power on scales smaller than 40 Mpc.

• Free-streaming of HDM suppresses exponentially suppress power on scales smaller than
few Mpc (for Ων = 1).

• CDM with baryons would be affected only by Silk damping.

Recipe

• The connection between the initial perturbation spectrum Pi(k) = |δk,i|2 and the ob-
served power spectrum P (k) today is formally given by the transfer function T (k),

P (k) = T 2(k)Pi(k). (13.81)

• Inflation predicts that an initial perturbation spectrum Pi(k) ∝ kns with ns ≈ 1, gen-
erally adiabatic ones.

• Normalize Pi(k) to the COBE data.

• Choose a set of cosmological parameters {h,ΩCDM ,Ωb,ΩΛ,Ων , ns}.

• Calculate T (k).

• Fix a prescription to convert ρ ≈ ρCDM with ρb measured in observation (“bias”).

• Derive statistical quantities to be compared to observations; perform a likelihood anal-
ysis.

Results

• The three models without cosmological constant shown in Fig. 13.4 all fail.

• The exponential suppression on small scales typical for HDM is not observed, can be
used to derive limit on Ων <∼ 0.05 or

∑
mνi

<∼ 2.2 eV.

• Acoustic baryon oscillations are only a tiny sub-dominant effect, but are now observed,
cf. Fig. 13.6.

213



13 Inflation and structure formation

0.01 0.10
k (h Mpc

−1
)

10
3

10
4

10
5

P
g(

k)
 (h

−3
 M

pc
3 )

Ων = 0.05
❄

Ων = 0.01
❄

Ων = 0
✻

⇒∑
mν <∼ 2.2 eV at 95% C.L.

Figure 13.7: Neutrino mass limits from the 2dF galaxy survey: For Ων >∼ 0.05 there is too
less power on scales smaller than (or since normalization is arbitrary) slope too
steep).
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13.A Appendix: Power spectrum and correlation functions

13.A Appendix: Power spectrum and correlation functions

Our convention for the Fourier transformation is asymmetric, putting the factor V/(2π)3

into

f(x) =

∫
d3k

(2π)3
f(k)eikx.

If no borders are specified in definite integrals, integration from −∞ to ∞ is assumed. Then
the normalisation factor V/(2π)3 becomes the factor 1/(2π)3. Moreover, we often write
f(k) = fk.

The FLRW spaces are homogenous. Translation invariance implies thus that, e.g., the
two-point auto-correlation function 〈φ(x′)φ(x)〉 can depend only on the relative distance
r = |x′ − x|, and we define the two-point auto-correlation function ξ(r) as

ξ(r) = 〈φ(x′)φ(x)〉. (13.82)

Power spectrum We start by defining the (three-dimensional) power-spectrum P (k) of a
random field φ(x) as

〈φk′φk〉 = (2π)3δ(k′ − k)P (k). (13.83)

Next we want to show that the power spectrum P (k) is the Fourier transform of the two-
point auto-correlation function ξ(r). To derive this relation, we Fourier transform 〈φk′φk〉
and introduce then relative coordinates r = x′ − x,

〈φk′φk〉 = 〈
∫

d3x′φ(x′)eik
′
x′

∫
d3xφ(x)e−ikx〉 (13.84a)

=

∫
d3x′eik

′
x
′

∫
d3xe−ikx〈φ(x′)φ(x)〉 (13.84b)

=

∫
d3xe−i(k−k

′)x

∫
d3re−ik′

r〈φ(x′)φ(x)〉 (13.84c)

= (2π)3δ(k′ − k)
∫

d3re−ikrξ(r). (13.84d)

Here we set also ξ(r) = 〈φ(x′)φ(x)〉. Comparing the two expressions, we obtain the desired
relation,

P (k) =

∫
d3re−ikrξ(r). (13.85)

Assuming an isotropic random field, P (k) = P (k), we can simplify the power spectrum
introducing spherical coordinates and setting kr = kr cosϑ = krx,

P (k) = 2π

∫ ∞

0
dr r2

∫ 1

−1
dx e−ikrxξ(r) (13.86)

= 4π

∫ ∞

0
drr2

sin(kr)

kr
ξ(r) (13.87)

= 4π

∫ ∞

0
dr j0(kr)ξ(r). (13.88)

With j0(x) ≡ sin(x)/x ≃ 1 for x <∼ 1 and j0(x) ≃ 0 for x >∼ 1, we see at the scale k fluctuations
up to r ≃ 1/k dominate the integral. more precise: correlation length
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Finally, we connect the power spectrum to the fluctuations of φ(x),

〈φ2(x)〉 =
∫

d3k′

(2π)3
d3k

(2π)3
ei(k

′−k)x〈φk′φk〉 =
∫

d3k′

(2π)3
P (k). (13.89)

We assume again isotropy P (k) = P (k), and introduce spherical coordinates in Fourier space,

〈φ2(x)〉 =
∫

4πk2dk

(2π)3
|φk|2 =

∫
dk

k2

2π2
|φk|2

︸ ︷︷ ︸
≡P(k)

=

∫
dk

k
∆2

φ(k). (13.90)

The functions P(k) and ∆2
φ(k) are the linear and the logarithmic power spectrum, respectively.

The total area below the function ∆2
φ(k) plotted versus ln(k) gives 〈φ2(x, t)〉, as shown by the

last part of Eq. (13.90). Thus ∆2
φ(k) is the variance, and (∆2

φ(k))
1/2 is the typical strength

of the fluctuation φ(k).

Correlation functions We can express also ξ(r) via P (k),

Gaussian random fields Gaussian random variable – qm
Gaussian random fields – free qft
ergodic hypothesis

Problems

13.1 Dynamical stress tensor. Show that the def-
inition of the dynamical stress tensor can be sim-
plified to

Tµν =
2√
|g|

δSm

δgµν
= 2

∂L

∂gµν
− gµνL . (13.91)

13.2 Variation δgµν . The variation of SEH w.r.t.
gµν will lead to different signs in Eq. (8.42). Ex-
plain why one obtains the same Einstein equation.

13.3 Cosmological constant Λ ♣. a.) Compare
the stress density Tµν = κΛgµν of the cosmological
constant to the one of an ideal fluid and determine
thereby its EoS w = PΛ/ρΛ. b.) Confirm the EoS
using U = V ρΛ and thermodynamics. c.) Es-
timate a bound on ρΛ using that the observable
universe with size ∼ 3000Mpc looks flat.

13.4 Expansion of SEH. Expand g
µν and

√
|g| up

to O(λ3) around Minkowski space. Show that the
O(λ) term of LEH is a total derivative which can
be dropped.

13.5 Riemann tensor. Derive the symmetry prop-

erties of the Riemann tensor and the number of its
independent components for an arbitrary number
of dimensions. (Hint: Use an inertial system.)

13.6 Helicity. Show that the unphysical degrees of
freedom of an electromagnetic wave transform as
helicity 0, and of a a gravitational wave as helicity
0 and 1.

13.7 GWs from a binary system. Consider a bi-
nary system of two stars with equal mass M on
circular orbits. a.) Calculate the quadrupole mo-
ments Iab. b.) Determine the amplitude of the
gravitational wave h̄αβ(t,x). c.) Estimate the
strength for a Galactic neutron star-neutron star
binary with a separation of r = 0.1AU.

13.8 GWs from a binary system. The energy flux

F of a GW is F = c3

32πGω
2(a2+b2), where a and b

are the amplitudes of the two polarisation states.
a.) Estimate the energy flux for the binary system
in 8. b.) Estimate how much energy is dissipated
if a GW crosses the interstellar or intergalactic
medium: Which processes might be relevant? Use
simple dimensional analysis for your estimate.
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Index

accretion efficiency, 54

advanced time parameter, 70

affine parameter, 31

affine transformation, 31

area theorem, 81

auto-correlation function, 214

back reaction, 153

Bianchi identity, 113, 119, 144

Birkhoff’s theorem, 71

black hole

entropy, 82

ergosphere, 78

eternal, 75

event horizon, 72, 78

extremal, 75

Kerr, 76–82

merger, 143, 157

Reissner-Nordström, 75–76

Schwarzschild, 68–75, 82, 83

stationary limit surface, 80

blackbody radiation

cosmic, see cosmic microwave back-
ground

Bogolyubov transformation, 85, 86

Boltzmann equation, 188

Buchdahl’s theorem, 135

candle, 168

chirp mass, 156

Christoffel symbols, 40, 42

conformal time, 163

conformal transformation, 89

conformally flat, 73, 84

connection

affine, 46–47

coefficients, 39

coordinate

cyclic, 25

coordinates

Boyer–Lindquist, 77

comoving, 142, 162

Eddington–Finkelstein, 69–72

Kruskal, 73–75

light-cone, 74, 83, 84

Riemannian normal, 44

Schwarzschild, 51

tortoise, 69

cosmic censorship, 70, 71, 81

cosmological constant, 118, 160, 170, 215

cosmological principle, 162

covariant derivative, 38

abelian, 100

gravity, 38–39

critical density, 170

current

conserved Noether, 100

curvature scalar, 113

d’Alembert operator, 15, 139

curved spacetime, 125

five-dimensional, 124

dark energy, 195

dark matter

cold, 189

hot, 189

derivative

convective, 97

directional, 43, 97

Lie, 49

distance

angular diameter, 169

luminosity, 168

Doppler effect, 85

Einstein angle, 64

Einstein equation, 118

linearised, 137–139
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Index

Einstein equations, 70

Einstein tensor, 118
Einstein-Hilbert action

quadratic, 144

energy conditions, 122
energy-momentum tensor, see stress tensor

entropy

Bekenstein, 82
Boltzmann, 87

entanglement, 87

equation of state
inflaton, 195

equilibrium

chemical, 181
kinetic, 181

equivalence principle, 32, 45

ergodic hypothesis, 215
ergosphere, 78, 80

Euler equation, 97, relativistic129

event horizon, 69
extra dimensions

large, 124

field-strength tensor, 102
dual, 102

fluid

ideal, 194
force

Lorentz, 105, 106

pure, 17, 129

four-vector, 15
friction term

harmonic oscillator, 31

Friedmann equation, 169–171

Gamma function

reflection formula, 86

Gamov criterion, 185
gauge

harmonic, 138, 139

Lorenz, 103
transverse traceless, 140

gauge field

as connection, 107
gauge loop, 107

gauge transformation

abelian, 104

gravity, 137, 138, 140
non-abelian, 100

Gaussian random fields, 215
Gaussian random variable, 215
geodesic equation, 41–142
geodesics

time-like as maxima, 42
geometrical optic, 125
grand unified theories (GUT)

phase transition, 200
gravitational wave, 142
graviton, 142
gravity

extra dimensions, 124
f(R), 201
Newtonian limit, 139
Starobinsky model, 201
wave equation, 138, 139

Green function, 159–160
advanced, 71
retarded, 71, 146

growth function, 205

Hamilton’s principle, 23
Harisson-Zel’dovich spectrum, 199, 207
Hawking radiation, 83, 86
heat capacity, black hole, 83
Helicity, 141
horizon, 68

event, 72, 78
thermal spectrum, 73

Hubble, 178
particle, 177

Hubble parameter, 165
Hubble’s law, 164

inertial frame, 9, 34, 35, 38
dragging, 78

inflation, 193
chaotic, 200
large field models, 200
small field models, 200
stochastic, 200

inflaton, 195, 199–201
irreducible mass, 82
isometry, 48

Jeans length, 180
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Index

Kaluza–Klein particles, 124
Kepler problem, 29–30
Killing equation, 49
Killing vector field, 51

Killing vector fields, 48–50
Klein-Gordon equation, 98

five-dimensional, 124
in a FRW background, 195

Kronecker delta, 15, 37

ΛCDM model, 175
Laplace operator, 139
Lemaitre’s redshift formula, 166
lens equation, 63
Lense-Thirring effect, 57

Levi–Civita connection, 40, 42
Levi–Civita tensor, 15
Lie derivative, 49
light-cone

coordinates, 74, 83, 84

line-element, 11
Liouville’s theorem, 87

metric
Friedmann-Robertson-Walker, 163

metric tensor, 37
in general spacetime, 33, 36–37, 41

in Minkowski space
perturbations, 143

Noether charge, 116
Noether’s theorem, 100

classical mechanics, 27

observer, 43

ordering ambiguity, 114, 125

Page curve, 88
Page time, 88
parallel transport, 43, 108
Penrose process, 81
photon, 142

polarisation
circular, 142, 145
linear, 150
tensor, 145, 150
vector, 103, 104, 142

power spectrum, 85, 86, 199, 215

power spectrum, 214
power spectrum, 215
pressure

scalar field, 194
principle of equivalence, 33
projection operator, 129, 157

transverse, 129, 157
proper-time

maxima, 42

quadrupole formula, 148, 158

rank
tensor, 36

recombination, 180
redshift

accelerated observer, 85
gravitational, 72

reduced mass, 28
reflection formula, 86
renormalisation

scale, 201
Ricci flat, 119
Ricci tensor, 113

linearized, 138
maximally symmetric space, 163

Riemann tensor, 111, 138, 215
linearized, 138
maximally symmetric space, 163
wave equation, 139

ruler, 168

Schwarzschild metric, 51
Schwarzschild radius, 74
Shapiro effect, 58
Silk damping, 209
singularity

coordinate, 69, 77
physical, 70, 71, 75, 77

singularity theorem, 72, 122
sirene, 168
slow-roll, 195

conditions, 200
spaces

maximally symmetric, 163
spacetime

isotropic, 51
Rindler, 73, 83
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Index

static, 51
stationary, 51, 77

Starobinsky model, 201
stationary limit surface, 80
stress tensor

canonical, 94
dynamical, 118
electromagnetic field, 105
erfect fluid, 98
gravity, 144
ideal fluid, 194
Noether, 94
scalar field, 99, 194
trace-reversed, 139

surface, 72
infinite redshift, 52
stationary limit, 80

symmetry
gauge, 104

tensor
in general spacetime, 36
in Minkowski space, 15
irreduicible, 17
reduicible, 17

torsion tensor, 47
TOV equation, 134
trace-reversed, 139
transfer function, 205
two-body problem, 27–30

Unruh effect, 86

vacuum
Bunch–Davies, 198

variation
infinitesimal, 23

virial theorem, 30

wave operator, see d’Alembert operator
Weyl tensor, 120
Weyl’s postulate, 162
white hole, 70, 73, 75
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