Exercise sheet 7

Hartle 12-14.

Once across the event horizon of a black hole, what is the longest proper time an observer can spent before being destroyed in the singularity?

Static spherically symmetric metric.

i) Write down the most general static spherically symmetric metric.

ii) Find the nine non-zero connection coefficient $\Gamma^a_{\ bc}$ from

$$\Gamma^a{}_{bc} = \frac{1}{2}g^{ad}(\partial_b g_{dc} + \partial_c g_{bd} - \partial_d g_{bc})$$

or

iii) use the Lagrange equations for $L = g_{ab} \dot{x}^a \dot{x}^b$ to read off the connection coefficient from the geodesic equation.

Scale invariance

Consider the effect of a scale transformation $x \to e^{\alpha} x$ on a scalar field with Lagrange density

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2 - \frac{1}{4} \lambda \phi^4$$

assuming that it acts linearly on the fields,

 $\phi(x) \to \exp(D\alpha)\phi(e^{\alpha}x).$

i) Write down the infinitesimal version of the scale transformation and show that \mathcal{L} is invariant, if m = 0. Determine the value of D.

ii) Find the corresponding conserved current s^{μ} .

iii) [For the dedicated student] Show that the current s^{μ} can be written as $s^{\mu} = x^{\nu} \tilde{T}_{\mu\nu}$, where $\tilde{T}_{\mu\nu}$ is an "improved" energy-momentum tensor. Hint: Proceed similar as in the case of the angular momentum tensor.

Solutions are discussed Monday, 08.03.10