NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I

Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables

1. Procea equation.

A massive spin-1 particle satisfies the Procca equation,

$$\left(\eta^{\mu\nu}\Box - \partial^{\mu}\partial^{\nu}\right)A_{\nu} + m^{2}A^{\mu} = 0.$$
⁽¹⁾

a.) "Derive" the Procca equation combining Lorentz invariance with your knowledge how many spin states a massive spin-1 particle contains.

b.) Derive the propagator $D_{\mu\nu}(k)$ of a massive spin-1 particle. [You don't have to care how the pole is handled.]

c.) Why is the limit $m \to 0$ in your result for b.) ill-defined? [max. 50 words]

d.) Write down the generating functional Z[J] for this theory.

e.) How does one obtain connected Green functions $G(x_1, \ldots, x_n)$ from the generating functional Z[J]?

2. Gauge invariance.

Consider a local gauge transformation

$$U(x) = \exp[ig\sum_{a=1}^{m} \vartheta^a(x)T^a]$$
(2)

which changes a vector of fermion fields $\boldsymbol{\psi}$ with components $\{\psi_1, \ldots, \psi_n\}$ as

$$\psi(x) \to \psi'(x) = U(x)\psi(x) \,. \tag{3}$$

Assume that U are elements of a non-abelian gauge group.

a.) Derive the transformation law of $A_{\mu} = A^{a}_{\mu}T^{a}$ under a gauge transformation. One way is to require that i) the covariant derivatives transform in the same way as ψ ,

$$D_{\mu}\psi(x) \to [D_{\mu}\psi(x)]' = U(x)[D_{\mu}\psi(x)].$$
(4)

and ii) that the gauge field should compensate the difference between the normal and the covariant derivative,

$$D_{\mu}\psi(x) = [\partial_{\mu} + igA_{\mu}(x)]\psi(x).$$
(5)

b.) Writing down the generating functional Z[J] for this theory in the same way as in 1.d) results in an ill-defined expression. Why? Which solution do you suggest? [max. 50

page 1 of 2 pages

 ~ 25 points

 ~ 17 points

words]

c.) Draw the Feynman rules (only the diagrams, no specific rules like $(p^{\mu} - p'^{\mu})\gamma_{\mu}\ldots$, group or other factors) for this theory. (The number of diagrams depends on your suggested solution in b.))

3. Scale invariance.

Consider a massless scalar field with ϕ^4 self-interaction,

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\lambda}{4!} \phi^4 \,. \tag{6}$$

in d = 4 space-time dimensions.

a.) Find the equation of motion for $\phi(x)$.

under parity (where ϕ_R is a Weyl spinor).

b.) Assume that $\phi(x)$ solves the equation of motion and define a scaled field

$$\tilde{\phi}(x) \equiv e^{Da} \phi(e^a x) , \qquad (7)$$

where D is a constant. Show that the scaled field $\tilde{\phi}(x)$ is also a solution of the equation of motion, provided that the constant D is choosen appropriately.

c.) Bonus question: Argue, if the classical symmetry (7) is (not) conserved on the quantum level. [max. 50 words]

4.	Dirac (quiz).	~ 10 g	points
a.)	elicity of a free massive particle is invariant under Lorentz transformations:		
		yes \Box ,	no \square
	Chirality of a free massive particle is invariant under Lorentz transformations		
		yes \Box ,	no \square
b.)	Helicity of a free massive particle is a conserved quantity		
		yes \Box ,	no \square
	Chirality of a free massive particle is a conserved quantity		
		yes \Box ,	no \Box
c.)	Decompose a Dirac spinor ψ_D into Majorana spinors ψ_M .		
d.)	The bilinear $\phi_R^{\dagger} \sigma^{\mu} \phi_R$ transforms as under proper Lorentz transform	nations,	as

 ~ 15 points