NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I

Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables

1. Procca equation.

A massive spin-1 particle satisfies the Procca equation,

$$
\begin{equation*}
\left(\eta^{\mu \nu} \square-\partial^{\mu} \partial^{\nu}\right) A_{\nu}+m^{2} A^{\mu}=0 \tag{1}
\end{equation*}
$$

a.) "Derive" the Procca equation combining Lorentz invariance with your knowledge how many spin states a massive spin-1 particle contains.
b.) Derive the propagator $D_{\mu \nu}(k)$ of a massive spin-1 particle. [You don't have to care how the pole is handeled.]
c.) Why is the limit $m \rightarrow 0$ in your result for b.) ill-defined? [max. 50 words]
d.) Write down the generating functional $Z[J]$ for this theory.
e.) How does one obtain connected Green functions $G\left(x_{1}, \ldots, x_{n}\right)$ from the generating functional $Z[J]$?

2. Gauge invariance.

~ 17 points
Consider a local gauge transformation

$$
\begin{equation*}
U(x)=\exp \left[\mathrm{i} g \sum_{a=1}^{m} \vartheta^{a}(x) T^{a}\right] \tag{2}
\end{equation*}
$$

which changes a vector of fermion fields $\boldsymbol{\psi}$ with components $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ as

$$
\begin{equation*}
\psi(x) \rightarrow \psi^{\prime}(x)=U(x) \psi(x) \tag{3}
\end{equation*}
$$

Assume that U are elements of a non-abelian gauge group.
a.) Derive the transformation law of $A_{\mu}=A_{\mu}^{a} T^{a}$ under a gauge transformation. One way is to require that i) the covariant derivatives transform in the same way as ψ,

$$
\begin{equation*}
D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi(x)\right]^{\prime}=U(x)\left[D_{\mu} \psi(x)\right] . \tag{4}
\end{equation*}
$$

and ii) that the gauge field should compensate the difference between the normal and the covariant derivative,

$$
\begin{equation*}
D_{\mu} \psi(x)=\left[\partial_{\mu}+\mathrm{i} g A_{\mu}(x)\right] \psi(x) . \tag{5}
\end{equation*}
$$

b.) Writing down the generating functional $Z[J]$ for this theory in the same way as in 1.d) results in an ill-defined expression. Why? Which solution do you suggest? [max. 50
words]
c.) Draw the Feynman rules (only the diagrams, no specific rules like $\left(p^{\mu}-p^{\prime \mu}\right) \gamma_{\mu} \ldots$, group or other factors) for this theory. (The number of diagrams depends on your suggested solution in b.))

3. Scale invariance.

~ 15 points
Consider a massless scalar field with ϕ^{4} self-interaction,

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{\lambda}{4!} \phi^{4} . \tag{6}
\end{equation*}
$$

in $d=4$ space-time dimensions.
a.) Find the equation of motion for $\phi(x)$.
b.) Assume that $\phi(x)$ solves the equation of motion and define a scaled field

$$
\begin{equation*}
\tilde{\phi}(x) \equiv \mathrm{e}^{D a} \phi\left(\mathrm{e}^{a} x\right), \tag{7}
\end{equation*}
$$

where D is a constant. Show that the scaled field $\tilde{\phi}(x)$ is also a solution of the equation of motion, provided that the constant D is choosen appropriately.
c.) Bonus question: Argue, if the classical symmetry (7) is (not) conserved on the quantum level. [max. 50 words]

4. Dirac (quiz).

a.) Helicity of a free massive particle is invariant under Lorentz transformations:
yes \square, no
Chirality of a free massive particle is invariant under Lorentz transformations
yes \square, no
b.) Helicity of a free massive particle is a conserved quantity

Chirality of a free massive particle is a conserved quantity

```
yes }\square,\quadn
```

Cher yes \square, no
c.) Decompose a Dirac spinor ψ_{D} into Majorana spinors ψ_{M}.
d.) The bilinear $\phi_{R}^{\dagger} \sigma^{\mu} \phi_{R}$ transforms as \ldots under proper Lorentz transformations, as ... under parity (where ϕ_{R} is a Weyl spinor).

