NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I

Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables
Feynman rules and some formulas can be found on p. 3 .

1. Miscellaneous and quiz

(Several answers could be correct.)
a.) Write down A^{*} for

$$
A=\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right)
$$

Starting from

$$
A^{*}=A^{\dagger}=\left(u^{\dagger}\left(p_{2}\right) \gamma^{0} \gamma^{\mu} u\left(p_{1}\right)\right)^{\dagger}=u^{\dagger}\left(p_{1}\right) \gamma^{\mu \dagger} \gamma^{0 \dagger} u\left(p_{2}\right)
$$

and using $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and $\left(\gamma^{0}\right)^{2}=1$, we arrive at

$$
A^{*}=\bar{u}\left(p_{1}\right) \gamma^{\mu} u\left(p_{2}\right) .
$$

b.) The covariant derivative of a Yang-Mills theory transforms under a local gauge transformation $U(x)$ as:
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=D_{\mu}$
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x)$
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x)+\frac{\dot{i}}{g}\left(\partial_{\mu} U(x)\right) U^{\dagger}(x)$
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=D_{\mu}+\left[F_{\mu \nu}, D^{\nu}\right]$
The covariant derivative should satisfy $D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi(x)\right]^{\prime}=U(x)\left[D_{\mu} \psi(x)\right]$ for $\psi(x) \rightarrow \psi^{\prime}(x)=$ $U(x) \psi(x)$. Combining both equations gives

$$
D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi\right]^{\prime}=U D_{\mu} \psi=U D_{\mu} U^{-1} U \psi=U D_{\mu} U^{-1} \psi^{\prime}
$$

and thus the covariant derivative transforms homogenously, $D_{\mu}^{\prime}=U D_{\mu} U^{-1}$.
c.) A fermionic propagator $S_{F}\left(x-x^{\prime}\right)$ is:
\square an even function of distance $x-x^{\prime}$.
\square an odd function of distance $x-x^{\prime}$.
A bosonic propagator is:
\square an even function of distance $x-x^{\prime}$.
\square an odd function of distance $x-x^{\prime}$.

Bosonic fields should commute, fermionic fields anticommute. Thus the propagtor (= 2-point function) of a boson is even, of a fermion odd. This comes out automatically, since bosons (fermions) satisfy 2 .nd (1.st) order wave equations, leading to a polarisation sum in the propagator which is quadratic (linear) in the momentum.
d.) A Faddev-Popov ghost is a:
\square spin $s=0$ particle
$\square \operatorname{spin} s=1 / 2$ particle
$\square \operatorname{spin} s=1$ particlegauge fixing parameter
\square boson
\square fermion.
A fermionic spin $s=0$ particle.
e.) QCD is a Yang-Mills theory with gauge group $\operatorname{SU}(3)$. How many degrees of freedom have the Faddev-Popov ghosts in QCD?

The $N^{2}-1=8$ generators of $\operatorname{SU}(3)$ correspond to 8 massless gluons. A massless spin- 1 field has two spin degree of freedom, i.e. two (time-like and longitudinal) out of four degrees of freedom in A_{μ} are unphysical. The Faddev-Popov ghosts are introduced to cancel these 16 unphysical degrees of freedom: the ghost live as the gluons in the same (adjoint) representation of $\mathrm{SU}(3)$, $c^{a}, \bar{c}^{a}, a=1 . .8$, summing up to 16 ghosts.

2. The $\lambda \phi^{3}$ theory.

Consider the theory of a real scalar field ϕ with mass m and a $\frac{\lambda}{3!} \phi^{3}$ self-interaction in $d=6$ dimensions.
a.) Write down the Lagrange density \mathscr{L} and explain your choice of signs.
b.) Write down the corresponding generating functional for disconnected Green functions. (3 pts)
c.) Determine the dimension of the field ϕ and of the coupling λ.
d.) Draw the Feynman diagram(s) and write down the analytical expression for the selfenergy i Σ (i.e. the loop correction for the free propgator) at order $\mathcal{O}\left(\lambda^{2}\right)$ in momentum space.
e.) Determine the symmetry factor of $i \Sigma$.
f.) Calculate the self-energy i Σ using dimensional regularisation, split the result into divergent pole terms and finite reminder.
g.) Draw the primitive divergent diagrams in this theory and determine their superficial degree of divergence. [primitive divergent $=$ divergent 1PI one-loop graphs]
a.) The free Lagrangian is

$$
\mathscr{L}_{0}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

the relative sign is fixed by the relativistic energy-momentum relation, the overall sign by the requirement that the Hamiltonian is bounded from below. As the self-interaction is odd, adding $+\frac{\lambda}{3!} \phi^{3}$ or $-\frac{\lambda}{3!} \phi^{3}$ is equivalent: both choices will lead to an unstable vacuum. In order to reproduce the Feynman rule, we should choose $\mathscr{L}_{I}=-\frac{\lambda}{3!} \phi^{3}$.
b.) The generating functional $Z[J]$ of disconnected Green functions is obtained from the path integral by i) adding a linear coupling to an external source J, ii) taking the limit $t,-t^{\prime} \rightarrow \infty$ with $m^{2}-\mathrm{i} \varepsilon$,

$$
Z[J]=\langle 0 \mid 0\rangle_{J}=\mathcal{N} \int \mathcal{D} \phi \exp \mathrm{i} \int_{\Omega} \mathrm{d}^{4} x\left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{3!} \phi^{3}+J \phi\right)
$$

c.) The action $S=\int \mathrm{d}^{6} x \mathscr{L}$ has to be dimensionless. Thus $[\mathscr{L}]=m^{6},[\phi]=m^{2}$, and thus the coupling is dimensionless, $[\lambda]=m^{0}$. [That's the reason why we do this exercise in $d=6$.]

Using the Feynman rules gives for

in momentum space

$$
\mathrm{i} \Sigma\left(k^{2}\right)=S(-\mathrm{i} \lambda)^{2} \int \frac{\mathrm{~d}^{6} p}{(2 \pi)^{6}} \frac{\mathrm{i}}{(p+k)^{2}-m^{2}+\mathrm{i} \varepsilon} \frac{\mathrm{i}}{p^{2}-m^{2}+\mathrm{i} \varepsilon}
$$

where the symmetry factor S is determined in e.) and the vertex -i λ was used.
e.) The self-energy is a second order diagram, corresponding to the term

$$
\frac{1}{2!}\left(\frac{-\mathrm{i} \lambda}{3!}\right)^{2} \int \mathrm{~d}^{4} y_{1} \mathrm{~d}^{4} y_{2}\langle 0| T\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi^{3}\left(y_{1}\right) \phi^{3}\left(y_{2}\right)+\left(y_{1} \leftrightarrow y_{2}\right)\right.
$$

in the perturbative expansion in coordinate space. The exchange graph $y_{1} \leftrightarrow y_{2}$ is identical to the original one, canceling the factor $1 / 2$! from the Taylor expansion. We count the number of possible ways to combine the fields in the time-ordered product into four propagators. We have three possibilities to contract $\phi\left(x_{1}\right)$ with a $\phi\left(y_{1}\right)$. Similiarly, there are three possibilities for $\phi\left(x_{2}\right) \phi\left(y_{2}\right)$. The remaining pairs of $\phi\left(y_{1}\right)$ and $\phi\left(y_{2}\right)$ can be contracted in 2 ! ways. Thus the symmetry factor is

$$
S=\left(\frac{1}{2!} \times 2\right)\left(\frac{1}{3!}\right)^{2}(3 \times 3 \times 2!)=\frac{1}{2}
$$

[The symmetry factor is given for the vertex $-\mathrm{i} \lambda$.]
f.) We combine the two propagators (suppressing the ie) using (9),

$$
\frac{1}{(p+k)^{2}-m^{2}} \frac{1}{p^{2}-m^{2}}=\int_{0}^{1} \mathrm{~d} x \frac{1}{D^{2}}
$$

with

$$
\begin{aligned}
D & =x\left[(p+k)^{2}-m^{2}\right]+(1-x)\left(p^{2}-m^{2}\right) \\
& =(p+x k)^{2}+x(1-x) k^{2}-m^{2}=q^{2}+f,
\end{aligned}
$$

where we introduced $q=p+x k$ as new integration variable and set $f=x(1-x) k^{2}-m^{2}$. We go now to $d=2 \omega=6-\varepsilon$ dimensions,

$$
\mathrm{i} \Sigma\left(k^{2}\right)=\frac{1}{2} \lambda^{2} \int_{0}^{1} \mathrm{~d} x \int \frac{\mathrm{~d}^{d} q}{(2 \pi)^{d}} \frac{1}{(q+f)^{2}} .
$$

Evaluating the integral with (10), using $\Gamma(2)=1$ and $\omega=3-\varepsilon / 2$ gives

$$
\Sigma\left(k^{2}\right)=-\frac{\lambda^{2}}{2} \frac{\Gamma(-1+\varepsilon / 2)}{(4 \pi)^{3}} \int_{0}^{1} \mathrm{~d} x f\left(\frac{4 \pi \mu^{2}}{f}\right)^{\varepsilon / 2} .
$$

Here, we added a mass scale μ in order to make the ε dependent term dimensionless such that we can expand it using (11),

$$
\left(\frac{4 \pi \mu^{2}}{f}\right)^{\varepsilon / 2}=1+\frac{\varepsilon}{2} \ln \left(\frac{4 \pi \mu^{2}}{f}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

Expanding also

$$
\Gamma(-1+\varepsilon / 2)=-\left[\frac{2}{\varepsilon}+1-\gamma+\mathcal{O}(\varepsilon)\right]
$$

we arrive at

$$
\Sigma\left(k^{2}\right)=\frac{\alpha}{2}\left[\left(\frac{2}{\varepsilon}+1-\gamma\right)\left(\frac{k^{2}}{6}-m^{2}\right)+\int_{0}^{1} \mathrm{~d} x f \ln \left(\frac{4 \pi \mu^{2}}{f}\right)\right]
$$

where we used $\int_{0}^{1} \mathrm{~d} x f=k^{2} / 6-m^{2}$ and set $\alpha=\lambda^{2} /(4 \pi)^{3}$. The obtained expression for the self-energy has the UV divergence isolated into an $1 / \varepsilon$ pole which is ready for subtraction.
g.) The primitive divergent diagrams are the divergent 1PI 1-loop diagrams. We can order them by the number E of external legs and determine the superficial degree of divergence D by naive power-counting,

$$
\int \mathrm{d}^{6} p\left(p^{-2}\right)^{I} \sim \int^{\Lambda} \mathrm{d} p p^{5}\left(p^{-2}\right)^{I} \sim \Lambda^{D}
$$

where I is the number of internal lines; see the last page for the Feynman diagrams.
$E=0$ and $D=6$ corresponding a contribution to the cosmological constant,
$E=1$ and $D=4$ corresponding to a tadpole diagram,
$E=2$ and $D=2$ corresponding to the self-energy.
$E=3$ and $D=0$ corresponding to the vertex correction.
(The vacuum graph $E=0$ is optional - you may prefer to "hide" them by asking for a properly normalized generating functional.)

3. Spin-1 propagator

a.) Use the tensor method to determine the propagator $D_{\mu \nu}(k)$ of a massive spin- 1 field described by the Proca equation

$$
\begin{equation*}
\left(\eta^{\mu \nu} \square-\partial^{\mu} \partial^{\nu}\right) A_{\nu}+m^{2} A^{\mu}=0 . \tag{8pts}
\end{equation*}
$$

b) Give one argument why this method does not work for $m=0$.
a.) We write frist $m^{2} A^{\mu}=m^{2} \eta^{\mu \nu} A_{\nu}$. The propagator $D_{\mu \nu}$ for a massive spin- 1 field is determined by

$$
\begin{equation*}
\left[\eta^{\mu \nu}\left(\square+m^{2}\right)-\partial^{\mu} \partial^{\nu}\right] D_{\nu \lambda}(x)=\delta_{\lambda}^{\mu} \delta(x) . \tag{1}
\end{equation*}
$$

Inserting the Fourier transformation of the propagator and the delta function gives

$$
\begin{equation*}
\left[\left(-k^{2}+m^{2}\right) \eta^{\mu \nu}+k^{\mu} k^{\nu}\right] D_{\nu \lambda}(k)=\delta_{\lambda}^{\mu} . \tag{2}
\end{equation*}
$$

We will apply the tensor method to solve this equation: In this approach, we use first all tensors available in the problem to construct the required tensor of rank 2 . In the case at hand, we have at our disposal only the momentum k_{μ} of the particle - which we can combine to $k_{\mu} k_{\nu}$-and the metric tensor $\eta_{\mu \nu}$. Thus the tensor structure of $D_{\mu \nu}(k)$ has to be of the form

$$
\begin{equation*}
D_{\mu \nu}(k)=A \eta_{\mu \nu}+B k_{\mu} k_{\nu} \tag{3}
\end{equation*}
$$

with two unknown scalar functions $A\left(k^{2}\right)$ and $B\left(k^{2}\right)$. Inserting this ansatz and multiplying out, we obtain

$$
\begin{align*}
{\left[\left(-k^{2}+m^{2}\right) \eta^{\mu \nu}+k^{\mu} k^{\nu}\right]\left[A \eta_{\nu \lambda}+B k_{\nu} k_{\lambda}\right] } & =\delta_{\lambda}^{\mu}, \\
-A k^{2} \delta_{\lambda}^{\mu}+A m^{2} \delta_{\lambda}^{\mu}+A k^{\mu} k_{\lambda}+B m^{2} k^{\mu} k_{\lambda} & =\delta_{\lambda}^{\mu}, \\
-A\left(k^{2}-m^{2}\right) \delta_{\lambda}^{\mu}+\left(A+B m^{2}\right) k^{\mu} k_{\lambda} & =\delta_{\lambda}^{\mu} . \tag{4}
\end{align*}
$$

In the last step, we regrouped the LHS into the two tensor structures δ_{λ}^{μ} and $k^{\mu} k_{\lambda}$. A comparison of their coefficients gives then $A=-1 /\left(k^{2}-m^{2}\right)$ and

$$
B=-\frac{A}{m^{2}}=\frac{1}{m^{2}\left(k^{2}-m^{2}\right)}
$$

Thus the massive spin- 1 propagator follows as

$$
\begin{equation*}
D_{F}^{\mu \nu}(k)=\frac{-\eta^{\mu \nu}+k^{\mu} k^{\nu} / m^{2}}{k^{2}-m^{2}+\mathrm{i} \varepsilon} . \tag{5}
\end{equation*}
$$

b.) There's a mismatch of degrees of freedom, $3 \leftrightarrow 2$, between the massive and massless case/The longitudinal part $k^{\mu} k^{\nu} / m^{2}$ which blows up for $m \rightarrow 0$ does not contribute to the massless propagator/The projection operator in (5) has an eigenvalue 0 and is thus not invertible.

Primitive divergent diagrams for $2 . \mathrm{g}$):

$$
E=0, D=G
$$

$$
E=1, \quad D=4
$$

$$
E=2, D=2
$$

$$
E=3, D=0
$$

I used a non-standard choice of the Feynman rule which is normally given as $-\mathrm{i} \lambda$. Possible confusion caused by this was interpreted in your favor.

Some formulas

$$
\begin{align*}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} . \tag{6}\\
& \sigma^{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{7}\\
& \bar{\Gamma}=\gamma^{0} \Gamma^{\dagger} \gamma^{0} \tag{8}\\
& \frac{1}{a b}=\int_{0}^{1} \frac{\mathrm{~d} z}{[a z+b(1-z)]^{2}} . \tag{9}\\
& I(\omega, \alpha)=\int \frac{\mathrm{d}^{2 \omega} k}{(2 \pi)^{2 \omega}} \frac{1}{\left[k^{2}+2 p k+M^{2}+\mathrm{i} \varepsilon\right]^{\alpha}} \\
& =\mathrm{i} \frac{(-\pi)^{\omega}}{(2 \pi)^{2 \omega}} \frac{\Gamma(\alpha-\omega)}{\Gamma(\alpha)} \frac{1}{\left[M^{2}-p^{2}+\mathrm{i} \varepsilon\right]^{\alpha-\omega}} . \tag{10}\\
& f^{-\varepsilon / 2}=1-\frac{\varepsilon}{2} \ln f+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{11}\\
& \Gamma(n+1)=n! \tag{12}\\
& \Gamma(-n+\varepsilon)=\frac{(-1)^{n}}{n!}\left[\frac{1}{\varepsilon}+\psi_{1}(n+1)+\mathcal{O}(\varepsilon)\right], \tag{13}\\
& \psi_{1}(n+1)=1+\frac{1}{2}+\ldots+\frac{1}{n}-\gamma, \tag{14}\\
& \frac{\mathrm{i}}{p^{2}-m^{2}+\mathrm{i} \varepsilon}
\end{align*}
$$

