NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology

Contact: J.-O. Andersen
Allowed tools: -

1. Gravitational waves.

a.) Write down the polarisation tensor $\varepsilon_{\mu \nu}$ for a gravitational wave $h_{\mu \nu} \propto \varepsilon_{\mu \nu} \mathrm{e}^{-\mathrm{i} k x}$ in the TT gauge propagating in the x direction.
b.) Explain why gravitational waves do not exist in $d \leq 3$ spacetime dimensions. (2 pts)
a.) The polarisation tensor is always symmetric, $\varepsilon_{\mu \nu}=\varepsilon_{\nu \mu}$. In the TT (=transverse-traceless) gauge, the tensor is-not surprisingly-transverse, $\varepsilon_{0 \nu}=\varepsilon_{1 \nu}=0$, and traceless, $\varepsilon_{y y}=-\varepsilon_{z z}$. It has therefore only two independent components,

$$
\varepsilon_{\alpha \beta}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \varepsilon_{y y} & \varepsilon_{y z} \\
0 & 0 & \varepsilon_{y z} & -\varepsilon_{y y}
\end{array}\right)
$$

They correspond to linear polarisation states.
b.) In $d=3$, we have using the transverse condition,

$$
\varepsilon_{\alpha \beta}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \varepsilon_{y y}
\end{array}\right) .
$$

Imposing the traceless condition implies $\varepsilon_{y y}=0$ and the polarisation tensor is identically zero. In $d=2$, we can not even satisfy the transverse condition.

2. Empty universe.

Show that the Ricci tensor of an empty universe ($T_{\mu \nu}=0$ and $\Lambda=0$) vanishes, $R_{\mu \nu}=0$. [Hint: Trace-reverse the Einstein equation.]

Taking the trace of the Einstein equation, it follows

$$
\begin{equation*}
R_{\mu}^{\mu}-\frac{1}{2} g_{\mu}^{\mu}(R+2 \Lambda)=R-2(R+2 \Lambda)=-R-4 \Lambda=\kappa T_{\mu}^{\mu} \tag{1}
\end{equation*}
$$

Defining $T \equiv T_{\mu}^{\mu}$, we can perform the replacement $R=-4 \Lambda-\kappa T$ in the Einstein equation and obtain

$$
\begin{equation*}
R_{\mu \nu}=\kappa\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)-g_{\mu \nu} \Lambda . \tag{2}
\end{equation*}
$$

[This is a special case of the rule $\overline{\bar{A}_{\mu \nu}}=A_{\mu \nu}$.] Thus an empty universe has a vanishing Ricci tensor, $R_{\mu \nu}=0$.

3. Black holes.

The metric outside a spherically symmetric mass distribution with mass M is given in Schwarzschild coordinates by

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}\left(1-\frac{2 M}{r}\right)-\frac{\mathrm{d} r^{2}}{1-\frac{2 M}{r}}-r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right)
$$

a.) Use the "advanced time parameter"

$$
p=t+r+2 M \ln |r / 2 M-1|
$$

to eliminate t in the line-element (i.e. introduce Eddington-Finkelstein coordinates) and show that in the new coordinates the singularity at $R=2 M$ is absent.
b.) Consider radial light-rays in these coordinates.
c.) Introducing a new time-like coordinate $t^{\prime} \equiv p-r$,one ontains

$$
\begin{align*}
& t^{\prime}=-r+\text { const. } \tag{3}\\
& \left.t^{\prime}=r+4 M \ln |r / 2 M-1|\right)+ \text { const. }
\end{align*}
$$

Draw a space-time diagram showing the light-cone structure and explain why $r=2 M$ is an event horizon.
a.) Forming the differential,

$$
\mathrm{d} p=\mathrm{d} t+\mathrm{d} r+\left(\frac{r}{2 M}-1\right)^{-1} \mathrm{~d} r=\mathrm{d} t+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r
$$

we can eliminate $\mathrm{d} t$ from the Schwarzschild metric and find

$$
\mathrm{d} s^{2}=\left(1-\frac{2 M}{r}\right) \mathrm{d} p^{2}-2 \mathrm{~d} p \mathrm{~d} r-r^{2} \mathrm{~d} \Omega
$$

This metric is regular at $2 M$ and valid for all $r>0$.
b.) For radial light-rays, $\mathrm{d} s=\mathrm{d} \phi=\mathrm{d} \vartheta=0$, it follows

$$
0=\left(1-\frac{2 M}{r}\right) \mathrm{d} p^{2}-2 \mathrm{~d} p \mathrm{~d} r
$$

There exist three types of solutions: i) light-rays with $\mathrm{d} p=0$ and thus $p=$ const.; ii) dividing by $\mathrm{d} p$,

$$
0=\left(1-\frac{2 M}{r}\right) \mathrm{d} p+2 \mathrm{~d} r
$$

we separate variables and integrate,

$$
p-2(r+2 M \ln |r / 2 M-1|)=\text { const. }
$$

iii) additionally, light-rays for $r=2 M$ satisfy $\mathrm{d} s^{2}=0$.
c.) The light-rays of type i) are ingoing: as t increases, r has to increase to keep p constant. The light-rays of type ii) are ingoing for $r<2 M$ and outgoing for $r>2 M$. Thus for $r<2 M$ both radial light-rays moves towards $r=0$; all wordlines of observers are inside such light-cones and have to move towards $r=0$ too. Hence $r=2 M$ is an event horizon.

4. Cosmology.

Consider a flat universe dominated by one matter component with E.o.S. $w=P / \rho=$ const.
a.) Use that the universe expands adiabatically to find the connection $\rho=\rho(R, w)$ between the density ρ, the scale factor R and the state parameter w.
b.) Find the age t_{0} of the universe as function of w and the current value of the Hubble parameter, H_{0}.
(4 pts)
c.) Comment on the value of t_{0} in the case of a positive cosmological constant, $w=-1$. (2 pts)
d.) Find the relative energy loss per time, $E^{-1} \mathrm{~d} E / \mathrm{d} t$, of relativistic particles due to the expansion of the universe for $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.
a.) For adiabatic expansion, the first law of thermodynmaics becomes $\mathrm{d} U=-P \mathrm{~d} V$ or

$$
\mathrm{d}\left(\rho R^{3}\right)=-3 P R^{2} \mathrm{~d} R
$$

Eliminating P with $P=P(\rho)=w \rho$,

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} R} R^{3}+3 \rho R^{2}=-3 w \rho R^{2}
$$

Separating the variables,

$$
-3(1+w) \frac{\mathrm{d} R}{R}=\frac{\mathrm{d} \rho}{\rho}
$$

we can integrate and obtain $\rho \propto R^{-3(1+w)}$.
b.) For a flat universe, $k=0$, with one dominating energy component with $w=P / \rho=$ const. and $\rho=\rho_{\text {cr }}\left(R / R_{0}\right)^{-3(1+w)}$, the Friedmann equation becomes

$$
\begin{equation*}
\dot{R}^{2}=\frac{8 \pi}{3} G \rho R^{2}=H_{0}^{2} R_{0}^{3+3 w} R^{-(1+3 w)} \tag{4}
\end{equation*}
$$

where we inserted the definition of $\rho_{\text {cr }}=3 H_{0}^{2} /(8 \pi G)$. Separating variables we obtain

$$
\begin{equation*}
R_{0}^{-(3+3 w) / 2} \int_{0}^{R_{0}} \mathrm{~d} R R^{(1+3 w) / 2}=H_{0} \int_{0}^{t_{0}} \mathrm{~d} t=t_{0} H_{0} \tag{5}
\end{equation*}
$$

and hence the age of the Universe follows as

$$
t_{0} H_{0}=\frac{2}{3+3 w}
$$

c.) Models with $w>-1$ need a finite time to expand from the initial singularity $R(t=0)=0$ to the current value of the scale factor R_{0}, while a Universe with only a Λ has no "beginning", $t_{0} H_{0} \rightarrow \infty$.
d.) The connection between the energy E_{0} today and the energy at redshift z is

$$
E(z)=(1+z) E_{0}
$$

and thus $\mathrm{d} E=\mathrm{d} z E_{0}$. Differentiating $1+z=R_{0} / R(t)$, we obtain with $H=\dot{R} / R$

$$
\mathrm{d} z=-\frac{R_{0}}{R^{2}} \mathrm{~d} R=-\frac{R_{0}}{R^{2}} \frac{\mathrm{~d} R}{\mathrm{~d} t} \mathrm{~d} t=-(1+z) H \mathrm{~d} t
$$

Combining the two equations, we find $\mathrm{d} E=-(1+z) H \mathrm{~d} t E_{0}=-H \mathrm{~d} t E$ or

$$
\frac{1}{E} \frac{\mathrm{~d} E}{\mathrm{~d} t}=-H(z)
$$

Numerically, we find for the current epoch

$$
\frac{1}{E} \frac{\mathrm{~d} E}{\mathrm{~d} t}=-H_{0} \simeq \frac{7.1 \times 10^{6} \mathrm{~cm}}{\mathrm{~s} 3.1 \times 10^{24} \mathrm{~cm}} \simeq 5.2 \times 10^{-36} \mathrm{~s}^{-1}
$$

5. Symmetries.

Consider in Minkowski space a complex scalar field ϕ with Lagrange density

$$
\begin{equation*}
\mathscr{L}=\partial_{a} \phi^{\dagger} \partial^{a} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2} . \tag{3pts}
\end{equation*}
$$

a.) Name the symmetries of the Langrangian. [No calculation needed.]
b.) Derive Noether's theorem in the form

$$
\begin{equation*}
0=\delta \mathscr{L}=\partial_{\mu}\left(\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}-K^{\mu}\right) \tag{6pts}
\end{equation*}
$$

for a Lagrangian $\mathscr{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)$.
c.) Derive one conserved current of your choice for the given complex scalar field. (4 pts)
a. space-time symmetries: Translation, Lorentz, (scale invariance). internal: global SO(2) / U(1) invariance.
b.) We assume that the collection of fields ϕ_{a} has a continuous symmetry group. Thus we can consider an infinitesimal change $\delta \phi_{a}$ that keeps $\mathscr{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)$ invariant,

$$
\begin{equation*}
0=\delta \mathscr{L}=\frac{\partial \mathscr{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \partial_{\mu} \phi_{a} \tag{6}
\end{equation*}
$$

Now we exchange $\delta \partial_{\mu}$ against $\partial_{\mu} \delta$ in the second term and use then the Lagrange equations, $\delta \mathscr{L} / \delta \phi_{a}=\partial_{\mu}\left(\delta \mathscr{L} / \delta \partial_{\mu} \phi_{a}\right)$, in the first term. Then we can combine the two terms using the Leibniz rule,

$$
\begin{equation*}
0=\delta \mathscr{L}=\partial_{\mu}\left(\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \delta \phi_{a}+\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial_{\mu} \delta \phi_{a}=\partial_{\mu}\left(\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}\right) . \tag{7}
\end{equation*}
$$

Hence the invariance of \mathscr{L} under the change $\delta \phi_{a}$ implies the existence of a conserved current, $\partial_{\mu} J^{\mu}=0$, with

$$
\begin{equation*}
J_{1}^{\mu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a} . \tag{8}
\end{equation*}
$$

If the transformation $\delta \phi_{a}$ leads to change in \mathscr{L} that is a total four-divergence, $\delta \mathscr{L}=\partial_{\mu} K^{\mu}$, and boundary terms can be dropped, then the equation of motions are still invariant. The conserved current is changed to

$$
J^{\mu}=\delta \mathscr{L} / \delta \partial_{\mu} \phi_{a} \delta \phi_{a}-K^{\mu}
$$

c. i) Translations: From $\phi_{a}(x) \rightarrow \phi_{a}(x-\varepsilon) \approx \phi_{a}(x)-\varepsilon^{\mu} \partial_{\mu} \phi(x)$ we find the change $\delta \phi_{a}(x)=-\varepsilon^{\mu} \partial_{\mu} \phi(x)$. The Lagrange density changes similiarly, $\mathscr{L}(x) \rightarrow \mathscr{L}(x-\varepsilon)$ or $\delta \mathscr{L}(x)=$ $-\varepsilon^{\mu} \partial_{\mu} \mathscr{L}(x)=-\partial_{\mu}\left(\varepsilon^{\mu} \mathscr{L}(x)\right)$. Thus $K^{\mu}=-\varepsilon^{\mu} \mathscr{L}(x)$ and inserting both in the Noether current gives

$$
J^{\mu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\left[-\varepsilon^{\nu} \partial_{\nu} \phi(x)\right]+\varepsilon^{\mu} \mathscr{L}(x)=\varepsilon_{\nu} T^{\mu \nu}
$$

with $T^{\mu \nu}$ as (canonical) energy-momentum stress tensor and four-momentum as Noether charge. or
ii) Charge conservation: We can work either with complex fields and $U(1)$ phase transformations

$$
\phi(x) \rightarrow \phi(x) \mathrm{e}^{\mathrm{i} \alpha} \quad, \quad \phi^{\dagger}(x) \rightarrow \phi^{\dagger}(x) \mathrm{e}^{-\mathrm{i} \alpha}
$$

or real fields (via $\phi=\left(\phi+\mathrm{i} \phi_{2}\right) / \sqrt{2}$) and invariance under rotations $\mathrm{SO}(2)$. With $\delta \phi=\mathrm{i} \alpha \phi$, $\delta \phi^{\dagger}=-\mathrm{i} \alpha \phi^{\dagger}$, the conserved current is

$$
J^{\mu}=\mathrm{i}\left[\phi^{\dagger} \partial^{\mu} \phi-\left(\partial^{\mu} \phi^{\dagger}\right) \phi\right]
$$

Some formula:

$$
\begin{gathered}
\ddot{x}^{c}+\Gamma^{c}{ }_{a b} \dot{x}^{a} \dot{x}^{b}=0 \\
R_{b c d}^{a}=\partial_{c} \Gamma^{a}{ }_{b d}-\partial_{d} \Gamma^{a}{ }_{b c}+\Gamma^{a}{ }_{e c} \Gamma^{e}{ }_{b d}-\Gamma^{a}{ }_{e d} \Gamma^{e}{ }_{b c},
\end{gathered}
$$

$$
\begin{gathered}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}-\Lambda g_{\mu \nu}=\kappa T_{\mu \nu} \\
\frac{e^{2}-1}{2}=\frac{\dot{r}^{2}}{2}+V_{\mathrm{eff}} \\
H^{2}=\frac{8 \pi}{3} G \rho-\frac{k}{R^{2}}+\frac{\Lambda}{3} \\
\frac{\ddot{R}}{R}=\frac{\Lambda}{3}-\frac{4 \pi G}{3}(\rho+3 P) \\
E(z)=(1+z) E_{0}
\end{gathered}
$$

$$
1 \mathrm{Mpc}=3.1 \times 10^{24} \mathrm{~cm}
$$

