
FY3451 Astrophysics II Final Exam 12.12.2022

NTNU Trondheim, Institutt for fysikk

Examination for FY3451 Astrophysics II
Contact: M. Linares, tel. 957 54 811
Allowed tools: officially approved pocket calculator

1. Multiple choice (answer in Inspera).

A stellar cluster looses continuously the fastest stars with velocities v > vesc. As result,
the cluster becomes (2 pts)
a.) hotter
b.) cooler
c.) smaller
d.) larger

2. Knowledge and basic understanding.
Answer concise, keywords are enough; for the compactness problem, maximal 5 phrases.

• Name the main source(s) of (internal) pressure in a (4 pts)
a.) main-sequence star,
b.) white dwarf,
c.) neutron star.

a.) Ideal gas pressure of nuclei (i.e. essentially hydrogen and helium) and free electrons contributes

roughly equally, while radiation pressure is subdominant.

b.) Degeneracy pressure of electrons.

c.) Degeneracy pressure of neutrons.

• Name the main source of energy generation in a (4 pts)
a.) proto-star,
b.) main-sequence star,
c.) red giant,
d.) active galactic nucleus.

a.) Release of gravitational potential energy during contraction.

b.) Conversion of mass into energy via hydrogen burning, 4p → 4He + 2e+ + 2νe.

c.) Conversion of mass into energy, in addition burning of heavier elements (He, CNO, . . . ).

d.) Release of gravitational potential energy during the accretion of matter.

• Name two observations suggesting the existence of dark matter. (2 pts)

Rotation curves of galaxies, applying virial theorem to galaxy clusters, growth of large-scale

structure, aniostropies of the cosmic microwave backgroumd.
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• Explain the “compactness problem” of Gamma-Ray Bursts and how it is resolved. (2
pts)

Time variability constrains the source size. Combined with the observed (assumed to be isotropic)

luminosity, one can derive the density of photons, and thus the optical depth of multi-MeV

photons for pair production, τ ∼ 1013 ≫ 1. The “compactness problem” problem is how the

observed photons escaped from such a dense source.

Solution: The threshold energy for γ + γBB → e+ + e− increases as the angle between the three-

momentum of 2 photons decreases. Thus a source with a large Gamma factor, which is beamed

with ϑ ∼ 1/Γ, solves the compactness problem for large enough Γ.

3. The Sun.
a.) Derive a lower limit on the central pressure of the Sun. (5 pts)
b.) Estimate the central temperature of the Sun using the virial theorem. (5 pts)

a.) For an estimate of the central pressure Pc = P (0) of a star in hydrostatic equilibrium, we
integrate (??) and obtain with P (R) ≈ 0,

Pc = −

∫ R

0

dP

dr
dr = G

∫ M

0
dM

M

4πr4
, (1)

where we used the continuity equation to substitute dr = dM/(4πr2ρ) by dM . If we replace
furthermore r by the stellar radius R ≥ r, we obtain a lower limit for the central pressure,

Pc = G

∫ M

0
dM

M

4πr4
> G

∫ M

0
dM

M

4πR4
=

GM2

8πR4
. (2)

For the Sun, it follows

Pc >
GM2

8πR4
= 4 × 108bar

(

M

M⊙

)2(R⊙

R

)4

. (3)

b.) The Sun consists mainly of (ionized) hydrogen. Thus we can estimate the average gravitational
potential energy of a single particle inside the Sun as

〈Egrav〉 ∼ −
GM⊙mp

R⊙

≈ −3.2keV/c2 .

For a thermal velocity distribution of a Maxwell-Boltzmann gas we obtain

〈Ekin〉 =
3

2
kT = −

1

2
〈Egrav〉 ≈ 1.6 keV/c2 .

Hence our estimate for the central temperature of the Sun is Tc ≈ 1.1 keV/c2 ≈ 1.2 × 107 K

(compared to Tc ∼ 1.3 keV/c2 in the so-called Solar Standard Model).

4. Peak of a SN light-curve.
Light can escape efficiently from the hot ejecta produced in a supernova (SN) only for
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times larger than the diffusion time τdiff .
a.) Estimate the peak time as tpeak = τdiff and find the corresponding shock radius using
M = 1.4M⊙ for the ejected mass, vsh = 7000km/s for the shock velocity, and κ ≃ 0.1cm2/g
for the opacity. (8 pts)
b.) Estimate the drop in the total energy contained in radiation, assuming that the ra-
diation expands adiabatically from the initial radius r = RWD ≃ 7000 km at the time of
explosion to tpeak. (7 pts)

a.) In the random-walk picture, the number N of steps of size lint needed to reach the distance
Rsh equals N = R2

sh/l2int. Thus

t = τdiff =
Nlint

c
=

R2
sh

clint
=

R2
shκρ

c
.

Next we use for the density the average ρ = 3M/(4πR3
sh), and that the shock expands initially

freely, Rsh = vsht. Combining everything, it follows

t =
3κM

4πvshtc

or

t =

(

3κM

4πvshc

)1/2

≃ 1.8 × 106s ≃ 20 days.

The shock radius at peak luminosity is Rsh = vsht ≃ 1.2 × 1015 cm .

b.) The energy E stored in radiation is E = uV = aT 4V . If the radiation contained in the
volume V = 4πR3/3 expands adiabatically, dU = −PdV , it follows

R3du = −3(1 + w)uR2dR, (4)

where we used also P = wu with w = [aT 4/3]/[aT 4] = 1/3 for radiation. Separating variables
and integrating, it follows u ∝ R−3(1+w) = R−4. Thus the energy in radiation scales as

E = uV ∝ 1/R (5)

With Rsh ≃ 106RWD, we see that the energy initially transferred to radiation is reduced by a

factor 10−6.

5. Accretion disks, Eddington accretion and growth of BHs.
a.) Derive the following approximation for the temperature profile T (r) of an accretion
disk, (6 pts)

T (r) =

(

GMṀ

8πσr3

)1/4

.

b.) Find the corresponding luminosity due to the mass infall Ṁ . (4 pts)
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c.) Find the typical time-scale for the growth of BHs accreting at the Eddington rate, if
the fraction ξ of the rest mass is converted into radiation. (5 pts)

a.) Consider a mass element dM falling from a Keplerian orbit at r + dr to r due to viscous
interactions. Half of the gain in potential energy heats up the environment,

dEheat =
1

2

(

GMdM

r
−

GMdM

r + dr

)

. (6)

Assuming that the accretion is stationary, the produced heat equals the emitted radiation. Thus
the luminosity of the accretion disk emitted by the shell at radius r is given by

dL =
dEheat

dt
= 2(2πr)drσT 4 =

1

2

GMṀ

r
[1 − (1 − dr/r + . . .)] =

1

2

GMṀdr

r2
, (7)

where we used the Stefan-Boltzmann law and the factor two accounts for the “top” and “bottom”
side of the disk. The temperature profile follows as

T (r) =

(

GMṀ

8πσr3

)1/4

. (8)

b.) The total luminosity can be obtained integrating Eq. (??) from the inner to the outer edge
of the disc,

Ltot =
1

2
GMṀ

∫ rout

rin

dr

r2
=

1

2
GMṀ

(

1

rin
−

1

rout

)

≈
1

2

GMṀ

rin
for rin ≪ rout . (9)

c.) The accretion rate is limited by radiation pressure,

L = ξṀc2 < LEdd =
4πcGM

κ
.

Setting L = LEdd, it is Ṁ/M = const and thus the BH mass grows exponentially, M = M0 exp(τ)
with time-scale

τ =
M

Ṁ
=

ξcκ

4πG
≃ 4.5 × 107yr

ξ

0.1

LEdd

L

6. Synchrotron radiation.
Electrons accelerated in a supernova remnant have an energy spectrum dN/dE ∝ E−α.
What is the slope of the resulting synchrotron intensity Iν , how does Iν scale with the
magnetic field strength B? You can assume that a relativistic electron with energy E
emits photons with ωs = ωcr = 3γ2ω0/2 and ω0 = eB/mc. (10 pt)
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The emitted intensity is proportional to

Iνdν ∝ Psyn
dN

dE
.

For ultrarelativistic electrons, we can use Psyn ∝ E2B2, and thus

Iνdν ∝ E2−αB2dE.

With γ = E/m, we obtain a relation between E and ω = 2πν, or differentiated

dωs ∝ 2EdE B

Inserting everything gives

Iνdν ∝ E2−αB2 dν

EB
= E1−αBdν = ν

1−α

2 B
1+α

2 .

Good luck!

1 Some formulas

dM(r)

dr
= 4πr2ρ(r),

dP

dr
= −

GM(r)ρ(r)

r2
, (10a)

dT

dr
= −

3L(r)〈κ〉ρ

16πr2 acT 3
,

dL

dr
= 4πr2ερ . (10b)

P = aT 4/3, P = nkT P = Kργ . (11)

LEdd =
4πcGM

κ
, κes = 0.2(1 + X)cm2/g (12)

F = σT 4, u = aT 4 (13)

Psyn =
dE

dt
=

2

3
αm2

(

p⊥

m

eB

m2

)2

(14)
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2 Physical constants and measurements

Gravitational constant G = 6.674 × 10−11m3 kg−1 s−2 = 6.674 × 10−8cm3 g−1 s−2

Planck’s constant ~ = h/(2π) = 1.055 × 10−27erg s
velocity of light c = 2.998 × 108 m/s= 2.998 × 1010 cm/s
Boltzmann constant k = 1.381 × 10−23 J/K = 1.38 × 10−16 erg/K

electron mass me = 9.109 × 10−28 g = 0.5110 MeV/c2

proton mass mp = 1.673 × 10−24 g = 938.3 MeV/c2

Fine-structure constant α = e2/(~c) ≈ 1/137.0
Fermi’s constant GF /(~c)3 = 1.166 × 10−5 GeV−2

Stefan-Boltzmann constant σ = (2π5k4)/(15c2h3) ≈ 5.670 × 10−5 erg s−1 cm−2 K−4

Radiation constant a = 4σ/c ≈ 7.566 × 10−15 erg cm−3 K−4

Rydberg constant R∞ = 1.10 × 105 cm−1

Thomson cross-section σT = 8πα2
em/(3m2

e) = 6.652 × 10−25 cm2

3 Astronomical constants and measurements

Astronomical Unit AU = 1.496 × 1013 cm
Parsec pc = 3.086 × 1018 cm = 3.261 ly
Tropical year yr = 31 556 925.2 s ≈ π × 107 s
Solar radius R⊙ = 6.960 × 1010 cm
Solar mass M⊙ = 1.998 × 1033 g
Solar luminosity L⊙ = 3.84 × 1033 erg/s
Solar apparent visual magnitude m = −26.76
Earth equatorial radius R⊕ = 6.378 × 108 cm
Earth mass M⊕ = 5.972 × 1027 g
Age of the universe t0 = (13.7 ± 0.2) Gyr
present Hubble parameter H0 = 73 km/(s Mpc) = 100 h km/(s Mpc)
present CMB temperature T = 2.725 K
present baryon density nb = (2.5 ± 0.1) × 10−7 cm3

Ωb = ρb/ρcr = 0.0223/h2 ≈ 0.0425
dark matter abundance ΩDM = Ωm − Ωb = 0.105/h2 ≈ 0.20

4 Other useful quantities

cross section 1 mbarn = 10−27 cm2

flux conversion L = 3.02 × 1028W × 10−0.4M

energy conversion erg = 624 GeV


