
FY3452 Gravitation and Cosmology Final exam 20.05.2023

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology
Contact: M.Kachelrieß, tel. 99 89 07 01
Allowed tools: –

Note:
You can obtain 75 points answering all questions correctly. Marks are based on a maximum
of 67 points, so 8 of them are bonus points.

1. Gravitational waves (GW).
a.) Write down the polarisation tensor εµν for a GW hµν ∝ εµνe−ikx in the TT gauge for
D = 5 spacetime dimensions, where the wave is propagating in the x1 direction. How
many polarisation states has the GW? (4 pts)
b.) In general, a GW in TT gauge can be obtained by applying an appropriate operator
to a wave in a more general gauge. Show that the operator

P i
k P j

l − 1

2
PklP

ij

constructed out of P j
i = δ j

i − nin
j has the desired properties. (8 pts)

c.) Explain why gravitational waves do not exist in D ≤ 3 spacetime dimensions. (2 pts)
d.) Estimate the amplitude of a gravitational wave produced by a black hole-black hole
merger in our Galaxy by dimensional analysis; (you can assume as distance d = 10 kpc and
M = 10M⊙ as mass for the black holes.) (5 pts)

a.) The polarisation tensor is always symmetric, εµν = ενµ. In the TT (=transverse-traceless)
gauge, the tensor is transverse, ε0ν = ε1ν = 0, and traceless, ε22 + ε33 + ε44 = 0. It has therefore
only five independent components,

εαβ =









0 0 0 0 0
0 0 0 0 0
0 0 ε22 ε23 ε24

0 0 ε23 ε33 ε34

0 0 ε24 ε34 −ε22 − ε33









.

b.) First, we show that P j
i = δ j

i − nin
j projects on the two-dimensional subspace orthogonal to

the unit vector n and satisfies P 2 = P ,

P j
i P k

j = (δ j
i − nin

j)(δ k
j − njnk) = δ k

i − nin
k = P k

i . (1)
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Morover, it is niP j
i vj = 0 for all vectors v; Thus P projects indeed any vector on the subspace

orthogonal to n. Since a tensor is a multi-linear map, we have to apply a projection operator on
each of the two indices of the polarisation tensor,

εT

kl = P i
k P j

l εij . (2)

The tensor εT

kl is transverse, nkεT

kl = nlεT

kl = 0, but in general not traceless

εT k
k = P i

k P kjεij = P i
l εil. (3)

Subtracting the trace, we obtain the transverse, traceless part of ε,

εTT

kl =

(

P i
k P j

l − 1

2
PklP

ij

)

εij . (4)

c.) In D = 3, we have using the transverse condition,

εαβ =





0 0 0
0 0 0
0 0 εyy



 .

Imposing the traceless condition implies εyy = 0 and the polarisation tensor is identically zero.

Thus no propagating gravitational waves exist in D < 4.

Alternatively, you can remember that the Riemann tensor vanishes in empty space for D < 4.

d.) The amplitude has to satisfy h ∼ 1/d and h ∼ 1/an, where a is the separation; the leading
term has hopefully n = 1. (n = 1 is suggested also by the virial theorem, 1/a ∝ v2.) The scale
has to be set by Rs. Thus by dimensional reasons, the amplitude can be approximated by

h ≃ R2
s

da
.

The signal is maximal at coalesence, a ≃ RS , or

h ≃ Rs

d
≃ 3 × 106cm

3 × 1022cm
≃ 10−16.

2. Einstein-de Sitter universe as symmetric space.
Maximally symmetric spactimes are spacetimes with constant curvature, satisfying

Rµνλκ = K(gµλgνκ − gµκgνλ)

with K = const. Note that we allow in this exercise for an arbitrary spacetime dimension
D.
a.) Find the Ricci tensor Rµν and the scalar curvature R. (6 pts)

page 2 of 3 pages



FY3452 Gravitation and Cosmology Final exam 20.05.2023

b.) Show that a maximally symmetric spacetime satisfies the vacuum Einstein equation
with a cosmological constant Λ. (This was the first cosmological model, suggested by de
Sitter and Einstein.) Derive the connection between Λ, K and D. (6 pts)

a.) Contracting Rabcd with gac, we obtain with δµ
µ = D in D dimensions for the Ricci tensor

Rbd = gacRabcd = Kgac(gacgbd − gadgbc) = K(Dgbd − gbd) = (D − 1)Kgbd . (5)

A final contraction gives as curvature R of a D-dimensional maximally symmetric space

R = gabRab = K(D − 1)δa
a = D(D − 1)K . (6)

b.) Inserting the results into the vacuum Einstein equation,

Rµν − 1

2
Rgµν − Λgµν = 0

gives

(D − 1)Kgµν − 1

2
D(D − 1)Kgµν − Λgµν = 0

or

−K

2
[D2 − 3D + 2 + 2Λ/K]gµν = 0.

The bracket has to be zero,

0 = D2 − 3D + 2 + 2Λ/K = (D − 1)(D − 2) + 2Λ/K

or

Λ = −1

2
(D − 1)(D − 2)K.

(For D = 4, it follows Λ/3 = −K. A comparison with the Friedmann eqaution shows then that

H2 = 0 implies K = −k/R2.)

3. Schwarschild metric.
The metric outside a spherically symmetric mass distribution with mass M is given in
Schwarzschild coordinates by

ds2 = dt2

(

1 − 2M

r

)

− dr2

1 − 2M
r

− r2(dϑ2 + sin2 ϑdφ2)

a.) Specifiy the Killing vector fields admitted by this metric. [No calculation needed.] (4
pts)
b.) What is the meaning of the surface r = 2M and r = 0? [No calculation needed.] (4
pts)
c.) Two particles fall radially from infinity towards the point mass M . One starts with
e = 1, the other with e = 2, where e is the energy per unit mass. A stationary observer at
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r = 6M measures their speed when they pass by. How much faster is the second particle?
(10 pts)

a.) The metric is isotropic, i.e. invariant under rotations. Thus the three vector field Ki = εijkxj∂k

are Killing vector fields.

The metric is static, i.e. invariant under time translations. Thus the vector field K0 = ∂t is the

fourth Killing vector field.

b.) The surface r = 2M is an infinite redshift surface and an event horizon. The singularity in the

Schwarschild metric is just a coordinate singularity. In contrast, r = 0 is a physical singularity:

the curvature and thus tidal forces become infinite for r → 0.

c.) An observer with uobs measure as energy E and velocity v

E = p · uobs =
m√

1 − v2

for a particle with four-momentum pµ and mass m.
If the observer is stationary, ur

obs
= uϑ

obs
= uφ

obs
= 0, the normalisation condition uobs · uobs = 1

gives

ut
obs =

(

1 − 2M

r

)−1/2

.

Thus

E = mu · uobs = mgαβuαuβ
obs

= m

(

1 − 2M

r

)1/2

ut =
m√

1 − v2
.

Now we replace ut by the conserved energy,

e =

(

1 − 2M

r

)
dt

dτ
=

(

1 − 2M

r

)

ut,

to obtain

v(e) =
1

e

(

e2 − 1 +
2M

r

)1/2

.

The ratio of the velocities at r = 6M follows as

v(2)

v(1)
=

1

2

(
4 − 1 + 1/3

1 − 1 + 1/3

)1/2

=

√
10

2
.

4. 2d-Cosmology.
Consider a universe in D = 2 dimensions with metric

ds2 = dt2 − a2(t)dx2

and filled with a perfect fluid.
a.) Calculate the Christoffel symbols for this metric. (4 pts)
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b.) Show that the metric is conformally flat. Consider an observer with a finite life-time.
Draw a possible world-line for this observer; indicate the part of the spacetime visible to
the observer. (4 pts)
c.) The stress tensor of an ideal fluid is

Tµν = (ρ + P )uµuν − P gµν

with ρ = ρ(x, t) and P = P (x, t). Use local energy-momentum conservation to show that
in the fluid rest-frame

ρ̇ =
ȧ

a
(ρ + P ) and P ′ = 0

holds, where ḟ = df/dt and f ′ = df/dx. (6 pts)

a.) We use either the definition or the Euler-Lagrange equation for L = gµν ẋµẋν to determine
the Christoffel symbols for this metric.

ẗ + aȧẋ2 = 0 ⇒ Γ0
xx = aȧ

and

ẍ + 2
ȧ

a
ṫẋ = 0 ⇒ Γx

tx =
ȧ

a

b.) Introducing conformal time, dη = dt/a, the metric becomes

ds2 = dt2 − a2(t)dx2 = a2(η)[dη2 − dx2],

i.e. is conformally equivalent to R(1, 1). Thus the light-cone structure is the same as in Minkowski

space. Drawing an arbitrary time-like geodesics of finite length as representation of our observer,

the area enclosed by the past-light cones starting from birth and death is visible.

c.) We find first the non-vanishing components of T µν ,

T 00 = ρ + P − P = ρ and T 11 = Pg11 = P/a2

Next we evaluate the two equations contained in ∇µT µν = 0 using the Christoffel symbols,

∇µT µ0 = ∂0T 00 + Γ1
10T 00 + Γ0

11T 11 = ρ̇ + Hρ + HP = ρ̇ + H(ρ + P ) = 0

∇µT µ1 = ∂1T 11 + 0 + 0 =
1

a2
∂xP = 0.

5. Symmetries.
Consider in Minkowski space a complex scalar field φ with Lagrange density

L1 = ∂aφ†∂aφ − 1

4
λ(φ†φ)2
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and the photon field with

L2 = −1

4
FµνF µν .

a.) Name the symmetries of the Langrangians. [No calculation needed.] (4 pts)
b.) Derive one conserved current of your choice of the system (4 pts)
c.) Specify the (locally gauge invariant) interaction term Lint between the complex scalar
and the photon field. (4 pts)

a.) L1: space-time symmetries: Translation, Lorentz, (scale invariance). internal: global SO(2)

/ U(1) invariance. L2: space-time symmetries: Translation, Lorentz, (scale invariance). internal:

local U(1) invariance.

b.) i) Translations: From φa(x) → φa(x − ε) ≈ φa(x) − εµ∂µφ(x) we find the change
δφa(x) = −εµ∂µφ(x). The Lagrange density changes similiarly, L (x) → L (x − ε) or δL (x) =
−εµ∂µL (x) = −∂µ(εµL (x)). Thus Kµ = −εµL (x) and inserting both in the Noether current
gives

Jµ =
∂L

∂(∂µφa)
[−εν∂νφ(x)] + εµ

L (x) = ενT µν

with T µν as (canonical) energy-momentum stress tensor and four-momentum as Noether charge.
or
ii) Charge conservation: We can work either with complex fields and U(1) phase transformations

φ(x) → φ(x)eiα , φ†(x) → φ†(x)e−iα

or real fields (via φ = (φ + iφ2)/
√

2) and invariance under rotations SO(2). With δφ = iαφ,
δφ† = −iαφ†, the conserved current is

Jµ = i
[

φ†∂µφ − (∂µφ†)φ
]

c.) Replacing the normal with gauge-invariant derivatives in L1, the Lagrangian is

L = (Dµφ)†Dµφ − 1

4
λ(φ†φ)2 − 1

4
F 2 .

or expanded with Dµ = ∂µ + iqAµ,

L = ∂µφ†∂µφ − 1

4
λ(φ†φ)2 −iqAµφ†∂µφ + iqAµ(∂µφ†)φ + q2AµAµφ†φ

︸ ︷︷ ︸

LI

−1

4
F 2 .
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Some formula:

ẍc + Γc
abẋ

aẋb = 0

Rµ
νλκ = ∂λΓµ

νκ − ∂κΓµ
νλ + Γµ

ρλΓρ
νκ − Γµ

ρκΓρ
νλ,

Rαβ = Rρ
αρβ

0 = δL = ∂µ

(
∂L

∂(∂µφa)
δφa − Kµ

)

.

Rµν − 1

2
Rgµν − Λgµν = κTµν .

Dµ = ∂µ + iqAµ

e2 − 1

2
=

ṙ2

2
+ Veff

H2 =
8π

3
Gρ − k

R2
+

Λ

3

R̈

R
=

Λ

3
− 4πG

3
(ρ + 3P )

E(z) = (1 + z)E0

1Mpc ≃ 3.1 × 1024cm

RS ≃ 3km
M

M⊙
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