NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology

Contact: M.Kachelrieß, tel. 99890701
Allowed tools: -

Note:

You can obtain 75 points answering all questions correctly. Marks are based on a maximum of 67 points, so 8 of them are bonus points.

1. Gravitational waves (GW).

a.) Write down the polarisation tensor $\varepsilon_{\mu \nu}$ for a GW $h_{\mu \nu} \propto \varepsilon_{\mu \nu} \mathrm{e}^{-\mathrm{i} k x}$ in the TT gauge for $D=5$ spacetime dimensions, where the wave is propagating in the x^{1} direction. How many polarisation states has the GW?
b.) In general, a GW in TT gauge can be obtained by applying an appropriate operator to a wave in a more general gauge. Show that the operator

$$
\begin{equation*}
P_{k}^{i} P_{l}^{j}-\frac{1}{2} P_{k l} P^{i j} \tag{8pts}
\end{equation*}
$$

constructed out of $P_{i}^{j}=\delta_{i}^{j}-n_{i} n^{j}$ has the desired properties.
c.) Explain why gravitational waves do not exist in $D \leq 3$ spacetime dimensions. (2 pts)
d.) Estimate the amplitude of a gravitational wave produced by a black hole-black hole merger in our Galaxy by dimensional analysis; (you can assume as distance $d=10 \mathrm{kpc}$ and $M=10 M_{\odot}$ as mass for the black holes.)
a.) The polarisation tensor is always symmetric, $\varepsilon_{\mu \nu}=\varepsilon_{\nu \mu}$. In the TT (=transverse-traceless) gauge, the tensor is transverse, $\varepsilon_{0 \nu}=\varepsilon_{1 \nu}=0$, and traceless, $\varepsilon_{22}+\varepsilon_{33}+\varepsilon_{44}=0$. It has therefore only five independent components,

$$
\varepsilon_{\alpha \beta}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \varepsilon_{22} & \varepsilon_{23} & \varepsilon_{24} \\
0 & 0 & \varepsilon_{23} & \varepsilon_{33} & \varepsilon_{34} \\
0 & 0 & \varepsilon_{24} & \varepsilon_{34} & -\varepsilon_{22}-\varepsilon_{33}
\end{array}\right)
$$

b.) First, we show that $P_{i}^{j}=\delta_{i}^{j}-n_{i} n^{j}$ projects on the two-dimensional subspace orthogonal to the unit vector \boldsymbol{n} and satisfies $P^{2}=P$,

$$
\begin{equation*}
P_{i}^{j} P_{j}^{k}=\left(\delta_{i}^{j}-n_{i} n^{j}\right)\left(\delta_{j}^{k}-n_{j} n^{k}\right)=\delta_{i}{ }^{k}-n_{i} n^{k}=P_{i}{ }^{k} . \tag{1}
\end{equation*}
$$

Morover, it is $n^{i} P_{i}^{j} v_{j}=0$ for all vectors \boldsymbol{v}; Thus P projects indeed any vector on the subspace orthogonal to \boldsymbol{n}. Since a tensor is a multi-linear map, we have to apply a projection operator on each of the two indices of the polarisation tensor,

$$
\begin{equation*}
\varepsilon_{k l}^{\mathrm{T}}=P_{k}{ }^{i} P_{l}{ }^{j} \varepsilon_{i j} . \tag{2}
\end{equation*}
$$

The tensor $\varepsilon_{k l}^{\mathrm{T}}$ is transverse, $n^{k} \varepsilon_{k l}^{\mathrm{T}}=n^{l} \varepsilon_{k l}^{\mathrm{T}}=0$, but in general not traceless

$$
\begin{equation*}
\varepsilon_{k}^{\mathrm{T} k}=P_{k}^{i} P^{k j} \varepsilon_{i j}=P_{l}^{i} \varepsilon_{i l} . \tag{3}
\end{equation*}
$$

Subtracting the trace, we obtain the transverse, traceless part of ε,

$$
\begin{equation*}
\varepsilon_{k l}^{\mathrm{TT}}=\left(P_{k}^{i} P_{l}^{j}-\frac{1}{2} P_{k l} P^{i j}\right) \varepsilon_{i j} . \tag{4}
\end{equation*}
$$

c.) In $D=3$, we have using the transverse condition,

$$
\varepsilon_{\alpha \beta}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \varepsilon_{y y}
\end{array}\right)
$$

Imposing the traceless condition implies $\varepsilon_{y y}=0$ and the polarisation tensor is identically zero. Thus no propagating gravitational waves exist in $D<4$.
Alternatively, you can remember that the Riemann tensor vanishes in empty space for $D<4$.
d.) The amplitude has to satisfy $h \sim 1 / d$ and $h \sim 1 / a^{n}$, where a is the separation; the leading term has hopefully $n=1$. ($n=1$ is suggested also by the virial theorem, $1 / a \propto v^{2}$.) The scale has to be set by R_{s}. Thus by dimensional reasons, the amplitude can be approximated by

$$
h \simeq \frac{R_{s}^{2}}{d a}
$$

The signal is maximal at coalesence, $a \simeq R_{S}$, or

$$
h \simeq \frac{R_{s}}{d} \simeq \frac{3 \times 10^{6} \mathrm{~cm}}{3 \times 10^{22} \mathrm{~cm}} \simeq 10^{-16} .
$$

2. Einstein-de Sitter universe as symmetric space.

Maximally symmetric spactimes are spacetimes with constant curvature, satisfying

$$
R_{\mu \nu \lambda \kappa}=K\left(g_{\mu \lambda} g_{\nu \kappa}-g_{\mu \kappa} g_{\nu \lambda}\right)
$$

with $K=$ const. Note that we allow in this exercise for an arbitrary spacetime dimension D.
a.) Find the Ricci tensor $R_{\mu \nu}$ and the scalar curvature R.
b.) Show that a maximally symmetric spacetime satisfies the vacuum Einstein equation with a cosmological constant Λ. (This was the first cosmological model, suggested by de Sitter and Einstein.) Derive the connection between Λ, K and D.
a.) Contracting $R_{a b c d}$ with $g^{a c}$, we obtain with $\delta_{\mu}^{\mu}=D$ in D dimensions for the Ricci tensor

$$
\begin{equation*}
R_{b d}=g^{a c} R_{a b c d}=K g^{a c}\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)=K\left(D g_{b d}-g_{b d}\right)=(D-1) K g_{b d} . \tag{5}
\end{equation*}
$$

A final contraction gives as curvature R of a D-dimensional maximally symmetric space

$$
\begin{equation*}
R=g^{a b} R_{a b}=K(D-1) \delta_{a}^{a}=D(D-1) K \tag{6}
\end{equation*}
$$

b.) Inserting the results into the vacuum Einstein equation,

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}-\Lambda g_{\mu \nu}=0
$$

gives

$$
(D-1) K g_{\mu \nu}-\frac{1}{2} D(D-1) K g_{\mu \nu}-\Lambda g_{\mu \nu}=0
$$

or

$$
-\frac{K}{2}\left[D^{2}-3 D+2+2 \Lambda / K\right] g_{\mu \nu}=0 .
$$

The bracket has to be zero,

$$
0=D^{2}-3 D+2+2 \Lambda / K=(D-1)(D-2)+2 \Lambda / K
$$

or

$$
\Lambda=-\frac{1}{2}(D-1)(D-2) K
$$

(For $D=4$, it follows $\Lambda / 3=-K$. A comparison with the Friedmann eqaution shows then that $H^{2}=0$ implies $K=-k / R^{2}$.)

3. Schwarschild metric.

The metric outside a spherically symmetric mass distribution with mass M is given in Schwarzschild coordinates by

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}\left(1-\frac{2 M}{r}\right)-\frac{\mathrm{d} r^{2}}{1-\frac{2 M}{r}}-r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right)
$$

a.) Specifiy the Killing vector fields admitted by this metric. [No calculation needed.] (4 pts)
b.) What is the meaning of the surface $r=2 M$ and $r=0$? [No calculation needed.] pts)
c.) Two particles fall radially from infinity towards the point mass M. One starts with $e=1$, the other with $e=2$, where e is the energy per unit mass. A stationary observer at
$r=6 M$ measures their speed when they pass by. How much faster is the second particle? (10 pts)
a.) The metric is isotropic, i.e. invariant under rotations. Thus the three vector field $K_{i}=\varepsilon_{i j k} x_{j} \partial_{k}$ are Killing vector fields.
The metric is static, i.e. invariant under time translations. Thus the vector field $K_{0}=\partial_{t}$ is the fourth Killing vector field.
b.) The surface $r=2 M$ is an infinite redshift surface and an event horizon. The singularity in the Schwarschild metric is just a coordinate singularity. In contrast, $r=0$ is a physical singularity: the curvature and thus tidal forces become infinite for $r \rightarrow 0$.
c.) An observer with $\boldsymbol{u}_{\text {obs }}$ measure as energy E and velocity v

$$
E=\boldsymbol{p} \cdot \boldsymbol{u}_{\mathrm{obs}}=\frac{m}{\sqrt{1-v^{2}}}
$$

for a particle with four-momentum p^{μ} and mass m.
If the observer is stationary, $u_{\mathrm{obs}}^{r}=u_{\mathrm{obs}}^{\vartheta}=u_{\mathrm{obs}}^{\phi}=0$, the normalisation condition $\boldsymbol{u}_{\mathrm{obs}} \cdot \boldsymbol{u}_{\mathrm{obs}}=1$ gives

$$
u_{\mathrm{obs}}^{t}=\left(1-\frac{2 M}{r}\right)^{-1 / 2}
$$

Thus

$$
E=m \boldsymbol{u} \cdot \boldsymbol{u}_{\mathrm{obs}}=m g_{\alpha \beta} u^{\alpha} u_{\mathrm{obs}}^{\beta}=m\left(1-\frac{2 M}{r}\right)^{1 / 2} u^{t}=\frac{m}{\sqrt{1-v^{2}}} .
$$

Now we replace u^{t} by the conserved energy,

$$
e=\left(1-\frac{2 M}{r}\right) \frac{\mathrm{d} t}{\mathrm{~d} \tau}=\left(1-\frac{2 M}{r}\right) u^{t}
$$

to obtain

$$
v(e)=\frac{1}{e}\left(e^{2}-1+\frac{2 M}{r}\right)^{1 / 2}
$$

The ratio of the velocities at $r=6 M$ follows as

$$
\frac{v(2)}{v(1)}=\frac{1}{2}\left(\frac{4-1+1 / 3}{1-1+1 / 3}\right)^{1 / 2}=\frac{\sqrt{10}}{2}
$$

4. 2d-Cosmology.

Consider a universe in $D=2$ dimensions with metric

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \mathrm{d} x^{2}
$$

and filled with a perfect fluid.
a.) Calculate the Christoffel symbols for this metric.
b.) Show that the metric is conformally flat. Consider an observer with a finite life-time. Draw a possible world-line for this observer; indicate the part of the spacetime visible to the observer.
c.) The stress tensor of an ideal fluid is

$$
T_{\mu \nu}=(\rho+P) u_{\mu} u_{\nu}-P g_{\mu \nu}
$$

with $\rho=\rho(x, t)$ and $P=P(x, t)$. Use local energy-momentum conservation to show that in the fluid rest-frame

$$
\begin{equation*}
\dot{\rho}=\frac{\dot{a}}{a}(\rho+P) \quad \text { and } \quad P^{\prime}=0 \tag{6pts}
\end{equation*}
$$

holds, where $\dot{f}=d f / d t$ and $f^{\prime}=d f / d x$.
a.) We use either the definition or the Euler-Lagrange equation for $L=g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}$ to determine the Christoffel symbols for this metric.

$$
\ddot{t}+a \dot{a} \dot{x}^{2}=0 \Rightarrow \Gamma_{x x}^{0}=a \dot{a}
$$

and

$$
\ddot{x}+2 \frac{\dot{a}}{a} \dot{t} \dot{x}=0 \Rightarrow \Gamma^{x}{ }_{t x}=\frac{\dot{a}}{a}
$$

b.) Introducing conformal time, $\mathrm{d} \eta=\mathrm{d} t / a$, the metric becomes

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \mathrm{d} x^{2}=a^{2}(\eta)\left[\mathrm{d} \eta^{2}-\mathrm{d} x^{2}\right],
$$

i.e. is conformally equivalent to $\mathbb{R}(1,1)$. Thus the light-cone structure is the same as in Minkowski space. Drawing an arbitrary time-like geodesics of finite length as representation of our observer, the area enclosed by the past-light cones starting from birth and death is visible.
c.) We find first the non-vanishing components of $T^{\mu \nu}$,

$$
T^{00}=\rho+P-P=\rho \quad \text { and } \quad T^{11}=P g^{11}=P / a^{2}
$$

Next we evaluate the two equations contained in $\nabla_{\mu} T^{\mu \nu}=0$ using the Christoffel symbols,

$$
\begin{gathered}
\nabla_{\mu} T^{\mu 0}=\partial_{0} T^{00}+\Gamma^{1}{ }_{10} T^{00}+\Gamma^{0}{ }_{11} T^{11}=\dot{\rho}+H \rho+H P=\dot{\rho}+H(\rho+P)=0 \\
\nabla_{\mu} T^{\mu 1}=\partial_{1} T^{11}+0+0=\frac{1}{a^{2}} \partial_{x} P=0
\end{gathered}
$$

5. Symmetries.

Consider in Minkowski space a complex scalar field ϕ with Lagrange density

$$
\mathscr{L}_{1}=\partial_{a} \phi^{\dagger} \partial^{a} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

and the photon field with

$$
\begin{equation*}
\mathscr{L}_{2}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{4pts}
\end{equation*}
$$

a.) Name the symmetries of the Langrangians. [No calculation needed.]
b.) Derive one conserved current of your choice of the system
c.) Specify the (locally gauge invariant) interaction term $\mathscr{L}_{\text {int }}$ between the complex scalar and the photon field.
a.) \mathscr{L}_{1} : space-time symmetries: Translation, Lorentz, (scale invariance). internal: global $\mathrm{SO}(2)$ / U(1) invariance. \mathscr{L}_{2} : space-time symmetries: Translation, Lorentz, (scale invariance). internal: local U(1) invariance.
b.) i) Translations: From $\phi_{a}(x) \rightarrow \phi_{a}(x-\varepsilon) \approx \phi_{a}(x)-\varepsilon^{\mu} \partial_{\mu} \phi(x)$ we find the change $\delta \phi_{a}(x)=-\varepsilon^{\mu} \partial_{\mu} \phi(x)$. The Lagrange density changes similiarly, $\mathscr{L}(x) \rightarrow \mathscr{L}(x-\varepsilon)$ or $\delta \mathscr{L}(x)=$ $-\varepsilon^{\mu} \partial_{\mu} \mathscr{L}(x)=-\partial_{\mu}\left(\varepsilon^{\mu} \mathscr{L}(x)\right)$. Thus $K^{\mu}=-\varepsilon^{\mu} \mathscr{L}(x)$ and inserting both in the Noether current gives

$$
J^{\mu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\left[-\varepsilon^{\nu} \partial_{\nu} \phi(x)\right]+\varepsilon^{\mu} \mathscr{L}(x)=\varepsilon_{\nu} T^{\mu \nu}
$$

with $T^{\mu \nu}$ as (canonical) energy-momentum stress tensor and four-momentum as Noether charge. or
ii) Charge conservation: We can work either with complex fields and $U(1)$ phase transformations

$$
\phi(x) \rightarrow \phi(x) \mathrm{e}^{\mathrm{i} \alpha} \quad, \quad \phi^{\dagger}(x) \rightarrow \phi^{\dagger}(x) \mathrm{e}^{-\mathrm{i} \alpha}
$$

or real fields (via $\phi=\left(\phi+\mathrm{i} \phi_{2}\right) / \sqrt{2}$) and invariance under rotations $\mathrm{SO}(2)$. With $\delta \phi=\mathrm{i} \alpha \phi$, $\delta \phi^{\dagger}=-\mathrm{i} \alpha \phi^{\dagger}$, the conserved current is

$$
J^{\mu}=\mathrm{i}\left[\phi^{\dagger} \partial^{\mu} \phi-\left(\partial^{\mu} \phi^{\dagger}\right) \phi\right]
$$

c.) Replacing the normal with gauge-invariant derivatives in \mathscr{L}_{1}, the Lagrangian is

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}-\frac{1}{4} F^{2} .
$$

or expanded with $D_{\mu}=\partial_{\mu}+\mathrm{i} q A_{\mu}$,

$$
\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2} \underbrace{-\mathrm{i} q A_{\mu} \phi^{\dagger} \partial^{\mu} \phi+\mathrm{i} q A^{\mu}\left(\partial_{\mu} \phi^{\dagger}\right) \phi+q^{2} A_{\mu} A^{\mu} \phi^{\dagger} \phi}_{\mathscr{L}_{I}}-\frac{1}{4} F^{2} .
$$

Some formula:

$$
\begin{gathered}
\ddot{x}^{c}+\Gamma_{a b}^{c} \dot{x}^{a} \dot{x}^{b}=0 \\
R_{\nu \lambda \kappa}^{\mu}=\partial_{\lambda} \Gamma^{\mu}{ }_{\nu \kappa}-\partial_{\kappa} \Gamma^{\mu}{ }_{\nu \lambda}+\Gamma_{\rho \lambda}^{\mu} \Gamma_{\nu \kappa}^{\rho}-\Gamma_{\rho \kappa}^{\mu} \Gamma_{\nu \lambda}^{\rho}, \\
R_{\alpha \beta}=R_{\alpha \rho \beta}^{\rho} \\
0=\delta \mathscr{L}=\partial_{\mu}\left(\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}-K^{\mu}\right) . \\
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}-\Lambda g_{\mu \nu}=\kappa T_{\mu \nu} . \\
D_{\mu}=\partial_{\mu}+\mathrm{i} q A_{\mu} \\
\frac{e^{2}-1}{2}=\frac{\dot{r}^{2}}{2}+V_{\mathrm{eff}} \\
H^{2}=\frac{8 \pi}{3} G \rho-\frac{k}{R^{2}}+\frac{\Lambda}{3} \\
\ddot{R} \\
\frac{\Lambda}{R}=\frac{4 \pi G}{3}(\rho+3 P) \\
E(z)=(1+z) E_{0}
\end{gathered}
$$

$$
1 \mathrm{Mpc} \simeq 3.1 \times 10^{24} \mathrm{~cm}
$$

$$
R_{S} \simeq 3 \mathrm{~km} \frac{M}{M_{\odot}}
$$

