FY3452 Gravitation and Cosmology Final exam 20.05.2023

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology
Contact: M.Kachelrief3, tel. 99 89 07 01
Allowed tools: —

Note:
You can obtain 75 points answering all questions correctly. Marks are based on a maximum
of 67 points, so 8 of them are bonus points.

1. Gravitational waves (GW).

a.) Write down the polarisation tensor ¢,, for a GW h,, o €,,e7** in the TT gauge for
D = 5 spacetime dimensions, where the wave is propagating in the z! direction. How
many polarisation states has the GW? (4 pts)
b.) In general, a GW in TT gauge can be obtained by applying an appropriate operator
to a wave in a more general gauge. Show that the operator

S 1 .
PR = S PuP?

ikz

constructed out of Pij = (5Z-j — n;n’ has the desired properties. (8 pts)
c.) Explain why gravitational waves do not exist in D < 3 spacetime dimensions. (2 pts)
d.) Estimate the amplitude of a gravitational wave produced by a black hole-black hole
merger in our Galaxy by dimensional analysis; (you can assume as distance d = 10 kpc and
M = 10M,, as mass for the black holes.) (5 pts)

a.) The polarisation tensor is always symmetric, €, = €,,,. In the TT (=transverse-traceless)
gauge, the tensor is transverse, €y, = €1, = 0, and traceless, €99 + £33 + €44 = 0. It has therefore
only five independent components,

0 0 O 0 0
0 0 O 0 0
€ap =] 0 0 e22 €23 €94
0 0 e23 €33 €34
0 0 e24 €34 —€92 —€33

b.) First, we show that Pij = 5ij — nyn’ projects on the two-dimensional subspace orthogonal to
the unit vector m and satisfies P2 = P,

PZ-ijk = (67 — nmj)(éjk —nn®) = §F —nn* = PF. (1)
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Morover, it is nZPZ] v; = 0 for all vectors v; Thus P projects indeed any vector on the subspace
orthogonal to n. Since a tensor is a multi-linear map, we have to apply a projection operator on
each of the two indices of the polarisation tensor,

en = PPy (2)

The tensor egl is transverse, nkegl = nlsgl = 0, but in general not traceless

Egk = Pkipkj&“ij = PliEil. (3)

Subtracting the trace, we obtain the transverse, traceless part of ¢,

1 .
el = (P;P/ - 5PMPW> Eij- (4)

c.) In D = 3, we have using the transverse condition,
0 0 O
cag=1| 0 0 O
0 0 eyy

Imposing the traceless condition implies £,, = 0 and the polarisation tensor is identically zero.

Thus no propagating gravitational waves exist in D < 4.
Alternatively, you can remember that the Riemann tensor vanishes in empty space for D < 4.

d.) The amplitude has to satisfy h ~ 1/d and h ~ 1/a™, where a is the separation; the leading
term has hopefully n = 1. (n = 1 is suggested also by the virial theorem, 1/a  v2.) The scale
has to be set by Rs;. Thus by dimensional reasons, the amplitude can be approximated by
h ~J R_g
~ -

The signal is maximal at coalesence, a ~ Rg, or

hN&N 3 x 10%cm ~ 10-16
T d T 3 x10%2cm ’

2. Einstein-de Sitter universe as symmetric space.
Maximally symmetric spactimes are spacetimes with constant curvature, satisfying

R,u,u)\n = K(g,u)\gw@ - g;mgu)\)

with K = const. Note that we allow in this exercise for an arbitrary spacetime dimension
D.
a.) Find the Ricci tensor R, and the scalar curvature R. (6 pts)
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b.) Show that a maximally symmetric spacetime satisfies the vacuum Einstein equation
with a cosmological constant A. (This was the first cosmological model, suggested by de
Sitter and Einstein.) Derive the connection between A, K and D. (6 pts)

a.) Contracting Rgp.q with ¢*¢, we obtain with 6/, = D in D dimensions for the Ricci tensor

Rod = 9% Raved = K 9" (gacGod — Gadgoc) = K(Dgpa — gba) = (D — 1)K gpa - (5)
A final contraction gives as curvature R of a D-dimensional maximally symmetric space

R=g"Ry =K(D-1)6 =D(D - 1)K. (6)

b.) Inserting the results into the vacuum Einstein equation,
1
R,uz/ - ERg,UJJ - Ag,uz/ =0

gives
1
(D-1)Kgu, — §D(D - 1)Kgu —Agu =0

or

K
—5[D2 — 3D+ 2+ 2A/K]gu, = 0.

The bracket has to be zero,
0=D%-3D+2+2A/K = (D —1)(D —2)+2A/K

or 1
A= —§(D —-1)(D -2)K.

(For D = 4, it follows A/3 = —K. A comparison with the Friedmann eqaution shows then that

H? = 0 implies K = —k/R2.)

3. Schwarschild metric.
The metric outside a spherically symmetric mass distribution with mass M is given in
Schwarzschild coordinates by

2M dr?
ds? = dt? (1 -= ) - o — r2(d9? + sin® 0dg?)
a.) Specifiy the Killing vector fields admitted by this metric. [No calculation needed.] (4
pts)
b.) What is the meaning of the surface » = 2M and r = 07 [No calculation needed.] (4
pts)

c.) Two particles fall radially from infinity towards the point mass M. One starts with
e = 1, the other with e = 2, where e is the energy per unit mass. A stationary observer at
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r = 6M measures their speed when they pass by. How much faster is the second particle?
(10 pts)

a.) The metric is isotropic, i.e. invariant under rotations. Thus the three vector field K; = ;52,0
are Killing vector fields.

The metric is static, i.e. invariant under time translations. Thus the vector field Ky = J; is the
fourth Killing vector field.

b.) The surface r = 2M is an infinite redshift surface and an event horizon. The singularity in the
Schwarschild metric is just a coordinate singularity. In contrast, » = 0 is a physical singularity:
the curvature and thus tidal forces become infinite for » — 0.

c.) An observer with u,,s measure as energy E and velocity v

m

V12

E:p'uobs:

for a particle with four-momentum p* and mass m.

If the observer is stationary, u, . = ugbs = ufbs = 0, the normalisation condition wgps * Uehs = 1

gives
-1/2
ul, = <1 — %> /
obs r :

Thus /2
2M
E=mu-ugs = mgaguo‘ugbs =m <1 — —> ut = n

r V1—2

Now we replace u! by the conserved energy,

e:<1_y>ﬁ:<1_%>ut’
r ) dr r

to obtain

The ratio of the velocities at r = 6 M follows as

v(2) 1 (4—1+1/3>1/2_ V10
1-1+1/3

2

v(l) 2

4. 2d-Cosmology.
Consider a universe in D = 2 dimensions with metric

ds? = dt* — a*(t)da?

and filled with a perfect fluid.
a.) Calculate the Christoffel symbols for this metric. (4 pts)
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b.) Show that the metric is conformally flat. Consider an observer with a finite life-time.
Draw a possible world-line for this observer; indicate the part of the spacetime visible to
the observer. (4 pts)
c.) The stress tensor of an ideal fluid is

T = (p+ P)uyu, — Py

with p = p(z,t) and P = P(z,t). Use local energy-momentum conservation to show that
in the fluid rest-frame

p= g(p+P) and P =0
holds, where f = df /dt and f' = df /dz. (6 pts)

a.) We use either the definition or the Euler-Lagrange equation for L = g, @& to determine
the Christoffel symbols for this metric.

t+aai?=0=T", =aa

and . .
i+2%ii=0=r7, =2
a a

b.) Introducing conformal time, dn = dt¢/a, the metric becomes
ds? = dt? — a?(t)dz? = a?(n)[dn? — dz?],

i.e. is conformally equivalent to R(1,1). Thus the light-cone structure is the same as in Minkowski
space. Drawing an arbitrary time-like geodesics of finite length as representation of our observer,
the area enclosed by the past-light cones starting from birth and death is visible.

c.) We find first the non-vanishing components of T/,
T =p+P—-P=p and T'=Pg' =P/d?
Next we evaluate the two equations contained in V,T*” = 0 using the Christoffel symbols,

VT = gyT% + T4, T® + 10, T" = p+ Hp+ HP = p+ H(p+ P) =0
1
VI =T +04 0= —08,P =0.
a

5. Symmetries.
Consider in Minkowski space a complex scalar field ¢ with Lagrange density

2= 0,610% — (00
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and the photon field with

1 v

.;S/ﬂg - _EFHVFH .
a.) Name the symmetries of the Langrangians. [No calculation needed.] (4 pts)
b.) Derive one conserved current of your choice of the system (4 pts)
c.) Specify the (locally gauge invariant) interaction term .%,; between the complex scalar
and the photon field. (4 pts)

a.) 2 : space-time symmetries: Translation, Lorentz, (scale invariance). internal: global SO(2)
/ U(1) invariance. .%: space-time symmetries: Translation, Lorentz, (scale invariance). internal:
local U(1) invariance.

b.) i) Translations: From ¢q(x) — ¢a(x — ) = ¢o(x) — e#0u¢(x) we find the change
dpa(x) = —e0u¢(x). The Lagrange density changes similiarly, £ (z) — Z(z —¢) or 6.Z(x) =
-0, L (x) = —0,(e*ZL(x)). Thus K#* = —e/.Z(x) and inserting both in the Noether current
gives

" 0L i _ v
J 5 Onde) [—e"0,¢(x)] + e L (x) = e, T

with 7" as (canonical) energy-momentum stress tensor and four-momentum as Noether charge.
or
ii) Charge conservation: We can work either with complex fields and U(1) phase transformations

o(x) = dp(x)e® ,  ¢l(x) = ¢l (x)e™

or real fields (via ¢ = (¢ + i¢2)/v/2) and invariance under rotations SO(2). With d¢ = iag,
d¢f = —iad!, the conserved current is

=i |0l — (96"

c.) Replacing the normal with gauge-invariant derivatives in %7, the Lagrangian is
i Lot — Lp2
Z = (D) Do — [N 0)* — 1.
or expanded with D,, = d,, +iqA,,

L = 0,00~ %A(aﬁ*aﬁ)? —igA,dT 9 ¢ + ig A" (9,016 + 2 A, A 6T ¢ _i 72
Zr
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Some formula:

i+ 1,2 =0

Rul/)\li = 8)\F“w£ o a‘fruz/)\ + Fup)xrpwi - FHPHFPV)H

Raﬂ = Rp()épﬂ

0L

oz(sz:au(ia%—w).

9(9u¢a)

1
R, — ing, — Agu = KT, .
D, =0, +iqA,

e2—1 72
=S4V
2 g Vet

&1 k A
2—_ _— —
H—ng R2+3

4G

~Z(p+3P)
3
E(z)=(1+2)E

1Mpec ~ 3.1 x 10**cm

M
~ 3km——
Rs 3 mM®
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