
FY3452 Gravitation and Cosmology Final exam 14.05.2024

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology
Contact: M. Nödtvedt, tel. 400 59 736
Allowed tools: –

Note:
You can obtain 75 points answering all questions correctly. Marks are based on a maximum
of 67 points, so 8 of the 75 are bonus points.

1. Generalities & understanding.
Give concise answers.
a.) Name four experimental tests favouring General Relativity as a correct description of
gravity. (2 pts)
b.) Explain why the Christoffel symbols are not tensors and what is their meaning instead.
(2 pts)
c.) What are Riemannian normal coordinates? Does the scalar curvature R vanish in such
a system? (2 pts)
d.) By which property is a stationary limit surface defined? What is the special property
(implied by the name) of the ergoregion of a Kerr black hole? (2 pts)
e.) Do geodesics with dφ = dϑ = 0 in the Kerr metric exist? If yes, where? If no, why
not? (2 pts)
f.) Which form of energy/curvature is in a spacetime with Rαβ = 0 and Λ = 0 allowed? (2
pts)

a.) Perihelion precession, light deflection, Shapiro time delay, gravitational redshift, energy loss

due GW emission in binaries (Hulse-Taylor pulsar), detection of GWs with c = 1.

b.) In ∇µV ν = ∂µV ν + Γν
σµV σ, the LHS is a tensor, but ∂µV ν is not. This implies that Γν

σµ is

also not a tensor; more specificly, it has to transform such to compensate the non-tensorial term

of ∂µV ν .

The Christoffel symbols specify how the base vectors change, ∂ρe
µ = −Γµ

ρσe
σ.

c.) In a (pseudo-) Riemaninan manifold without torsion, we can introduce at any given point P a

coordinate system such that gµν = ηµν , and Γν
σµ = 0, i.e. only second- (tidal effects) and higher-

order derivatives of the metric are non-zero. This corresponds to the idea of the equivalence

principle that locally the effects of gravity can be eleminated choosing a freely falling inertial

system.

Since we cannot set the second derivatives of gµν to zero, the scalar curvature in P is in a general

(i.e. curved) spacetime non-zero.

d.) A stationary limit surface is defined by gtt = 0, since the normalisation condition u · u = 1 is

inconsistent with uα = (1, 0, 0, 0) and gtt ≤ 0.
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The ergosphere is the region between the stationary limit surface and the outer horizon of a Kerr

black hole: It is the region where one can extracts the rotational energy of the Kerr black hole

by an appropriate splitting process 1 → 2 + 3.

e.) The gtφ term in the Kerr metric leads to “frame-dragging”, and thus in general the answer is

no. An exception is the radial infall from the south or north pole: there, the “frame-dragging”

leads to a spin of the particle/gyroscope. (Both possibilities give full points.)

f.) All forms of matter except gravity are contained in Tµν and thus absent. What is left is

gravity: propagating modes (i.e. gravitational waves) and static curvature (i.e. the curvature

outside a star).

More formally: The Riemann tensor has 20 independent components, 10 can be associated to

the Ricci tensor and are fixed by the (local) matter distribution. The other 10 correspond to

gravitational waves and/or “non-local” gravitational effects.

2. Test particle and geodesics.
Consider S = α

∫

dτ as action for a free, massive relativistic particle.
a.) Determine the constant α requiring the correct non-relativistic limit. (3 pts)
b.) Show that the Lagrangian L = gµν ẋµẋν with ẋµ = dxµ/dτ leads to the same geodesics.
(3 pts)
c.) How is the Lagrangian for a massless particle defined? (2 pts)

a.) We ask that the action has the correct non-relativistic limit. Then

S0 = α

∫ b

a
dτ = α

∫ b

a
dt

√

1 − v2 =

∫ b

a
dt

(

−m +
1

2
mv2 + O(v4)

)

, (1)

if we set α = −m. The mass m corresponds to a potential energy in the non-relativistic limit and

has therefore a negative sign in the Lagrangian. Moreover, a constant drops out of the equations

of motion, and thus the term −m can be omitted in the non-relativistic limit.

b.) The action S0 is invariant under reparametrisations

S0 = −m

∫ b

a
dτ = −m

∫ b

a
dτ

(

gµν
dxµ

dτ

dxν

dτ

)1/2

= −m

∫ σ(b)

σ(a)
dσ

(

gµν
dxµ

dσ

dxν

dσ

)1/2

(2)

and thus we can absorb the numerical value of −m by an appropriate change σ → σ′.
Next we show that L = L2

0 gives the same geodescics as L0. Using the Lagrange equations, it is

0 =
d

dτ

∂L

∂ẋµ
− ∂L

∂xµ
=

d

dτ

[

2L0
∂L0

∂ẋµ

]

− 2L0
∂L0

∂xµ
. (3)

Since L0 = 1 does not depend on τ , we can divide by 2L0. Thus the two Lagrangians give the

same equations of motion for a free relativistic particle.
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c.) For a massless particle, dτ = 0, and we have to use another quantity to parameterise their
geodesics. Any parameter which ensures that dxµ(λ)/dλ = const. is suited (set of “affine param-
eters” λ → aλ + b). Thus the Lagrangian is

L = gµν
dxµ

dλ

dxν

dλ
.

3. Kerr black hole (BH).
In Boyer–Lindquist coordinates, the metric of a Kerr black hole is given by

ds2 =

(

1 − 2Mr

ρ2

)

dt2 +
4Mar sin2 ϑ

ρ2
dφdt − ρ2

∆
dr2 − ρ2dϑ2

−
(

r2 + a2 +
2Mra2 sin2 ϑ

ρ2

)

sin2 ϑdφ2,

(4)

with the abbreviations

a = L/M , ρ2 = r2 + a2 cos2 ϑ, ∆ = r2 − 2Mr + a2. (5)

The only non-zero quadratic curvature invariant of this metric is

RµνλκRµνλκ =
48M2(r2 − a2 cos2 ϑ)[(r2 + a2 cos2 ϑ)2 − 16r2a2 cos2 ϑ]

(r2 + a2 cos2 ϑ)6

a.) Name the Killing vectors and the corresponding conserved quantities of this spacetime.
(2 pts)
b.) What are the physical, what the coordinate singularities of this metric? (5 pts)
c.) Find the position of the two event horizons. (5 pts)
d.) Calculate the area of the outer event horizon. (6 pts)

a.) The metric gµν does not depend on t and φ, i.e. it is time-independent and axially symmetric.

Hence the two Killing vectors are ξµ = (1, 0, 0, 0) and ηµ = (0, 0, 0, 1), ordering coordinates

as {t, r, ϑ, φ}. The conserved quantities are the energy and the φ component of the angular

momentum.

b.) The metric is singular for ρ = 0 and ∆ = 0. In the first case, RµνλκRµνλκ ∝ ρ−6 diverges and

thus r = 0 and ϑ = π/2 is a physical singularity. In the second case, the curvature invariants are

finite and thus ∆ = 0 is a coordinate singularity.

c.) The two surfaces defined by the coordinate singularity, ∆ = r2 −2Mr +a2 = 0 are candidates
for horizons. These are null surface satisfying

0 = gµν(∂µf)(∂νf) = grr(∂rf)2 + gϑϑ(∂ϑf)2 (6)
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for an axially symmetric metric. The quadratic equation ∆ = 0 has for a < M two solutions,

r± = M ±
√

M2 − a2, (7)

which depend only on the coordinate r. The condition defining a horizons becomes simply grr = 0

or grr = 1/grr → ∞. Hence, r− and r+ define an inner and outer horizon around a Kerr black

hole.

d.) The line-element of the outer horizon follows from inserting r+ together with dr = dt = 0
into the metric,

ds2 = ρ2
+dϑ2 +

(

r2
+ + a2 +

2Mr+a2 sin2 ϑ

ρ2
+

)

sin2 ϑdφ2, (8)

Using r2
± + a2 = 2Mr±, we obtain

ds2 = ρ2
+dϑ2 +

(

2Mr+

ρ+

)2

sin2 ϑdφ2. (9)

Hence the metric determinant g2 restricted to the angular variables is given by
√

g2 =
√

gϑϑgφφ =
2Mr+ sin ϑ. Integrating gives the area A of the horizon as

A =

∫ 2π

0
dφ

∫ π

0
dϑ

√
g2 = 8πMr+ = 8πM(M +

√

M2 − a2). (10)

4. Gravitational waves (GW).
a.) Consider a GW in the harmonic gauge, ∂αh̄αβ = 0. How many independent elements
has its polarisation tensor εαβ? (2 pts)
b.) Decide for each of the three following expressions for a GW, if they are valid in the TT
gauge; if yes, state the type of polarisation (linear/circular/...) and the direction of wave
propagation. . (6 pts)

h̄αβ(t, x) = h0









0 0 0 0
0 cos ωt sin ωt 0
0 sin ωt − cos ωt 0
0 0 0 0









.

h̄αβ(t, x) = h0









0 0 0 0
0 cos ωt sin ωt 0
0 sin ωt cos ωt 0
0 0 0 0









.

h̄αβ(t, x) = h0









0 0 0 0
0 0 0 0
0 0 − cos ωt 0
0 0 0 cos ωt









.
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c.) Derive the smallest spacetimes dimension D where GW can exist. . (4 pts)
d.) Estimate the amplitude of a gravitational wave produced by a black hole-black hole
merger in our Galaxy by dimensional analysis; (you can assume as distance d = 10 kpc and
M = 30M⊙ as mass for the black holes.) (6 pts)

a.) The polarisation tensor is symmetric, εµν = ενµ, and has thus in general 10 independent

components. The harmonic gauge condition imposes 4 constraints, leading to 6 independent

components.

b.) In the TT gauge, the polarisation tensor is traceless and transverse. In case i), the polarisation

tensor is traceless and transverse, it is a right-handed circularly polarized wave propagating in

the z direction. Case ii) is not traceless and thus not a valid expression in the TT gauge. In case

iii), the polarisation tensor is traceless and transverse, it is a linear polarized wave propagating

in the x direction.

b.) In D = 3, we have using the transverse condition,

εαβ =





0 0 0
0 0 0
0 0 εyy



 .

Imposing the traceless condition implies εyy = 0 and the polarisation tensor is identically zero.

Thus no propagating gravitational waves exist in D < 4.

Alternatively, you can compare the number n of independent elements of the Ricci tensor (or field

equations) to the number m of independent elements of the Riemann tensor. Only for D ≥ 4, it

is m > n and thus in empty space, Rµν = 0, the Riemann tensor is not completely fixed and can

allow the presence of GWs.

c.) The amplitude has to satisfy h ∼ 1/d and h ∼ 1/an, where a is the separation; the leading
term has hopefully n = 1. The scale has to be set by Rs. Thus by dimensional reasons, the
amplitude can be approximated by

h ≃ R2
s

da
.

The signal is maximal at coalesence, a ≃ RS , or

h ≃ Rs

d
≃ 3 × 106cm

3 × 1022cm
≃ 10−16.

5. Inflation.
Consider in a flat FLWR metric a real scalar field φ which has in Minkowski space the
Lagrange density

L =
1

2

(

∂µφ)2 − V (φ).
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a.) Write down the action S and derive the field equation of φ(t, x) in a flat FLWR metric.
Interprete the terms of the field equation. (8 pts)
b.) Find the stress tensor Tµν and the equation-of-state w = P/ρ neglecting spatial gradi-
ents of φ. (8 pts)
c.) Explain briefly (without derivation) under which conditions this field can drive infla-
tion, i.e. a period with accelerated expansion in the early universe. (3
pts)

a.) For a flat FRW metric, it is gµν = diag(1, −a2, −a2, −a2) and thus gµν =
diag(1, −a−2, −a−2, −a−2), and

√

|g| = a3. Thus the action becomes

S =

∫

Ω
d4x

√

|g|
{

1

2
gµν∇µφ∇νφ − V (φ)

}

=

∫

Ω
d4x a3

{

1

2
φ̇2 − 1

2a2
(∇φ)2 − V (φ)

}

. (11)

Varying the action, exchanging derivatives and variation, and using Gauss’ theorem for a partial
integration gives

δSKG =

∫

Ω
d4x a3

{

φ̇δφ̇ − 1

a2
(∇φ) · δ(∇φ) − V ′δφ

}

=

∫

Ω
d4x

{

− d

dt
(a3φ̇) + a∇2φ − a3V ′

}

δφ

=

∫

Ω
d4x a3

{

−φ̈ − 3Hφ̇ +
1

a2
∇2φ − V ′

}

δφ
!

= 0 . (12)

Thus the field equation for a Klein-Gordon field in a FRW background is

φ̈ + 3Hφ̇ − 1

a2
∇2φ + V ′ = 0 . (13)

The term 3Hφ̇ acts in an expanding universe as a friction term for the oscillating φ field. Moreover,

the gradient of φ is also suppressed for increasing a; this term can be therefore often neglected

in an expanding universe.

b.) Using the relation from the formula section, it is

Tµν = 2
∂L

∂gµν
− gµνL = ∇µφ∇νφ − gµν

[

1

2
gρσ∇ρφ∇σφ − V (φ)

]

. (14)

We can describe the scalar field also as an ideal fluid. Equating the two expressions for the stress
tensor gives

Tµν = ∇µφ∇νφ − gµνL
!

= (ρ + P )uµuν − Pgµν . (15)

Comparing the two independent tensor structures we can identify P = L and

∇µφ∇νφ = (ρ + P )uµuν . (16)

Contracting the indices with gµν , remembering uµuµ = 1 and using ∇µφ∇µφ = 2L + 2V results
in

ρ = P + 2V. (17)

page 6 of 3 pages



FY3452 Gravitation and Cosmology Final exam 14.05.2024

Now we have to calculate only the energy density ρ = T00 in order to determine the (isotropic)
pressure P and the equation of state w = P/ρ. In an FLRW background, the energy density of
the field φ is given by

ρ = T00 = φ̇2 −
[

1

2
φ̇2 − 1

2a2
(∇φ)2 − V (φ)

]

=
1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ). (18)

Thus the pressure follows as

P =
1

2
φ̇2 +

1

2a2
(∇φ)2 − V (φ). (19)

Neglecting the (∇φ)2 term, the equation of state simplifies to

w =
P

ρ
=

φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
∈ [−1 : 1]. (20)

c.) To have long enough inflation, φ̇2 ≪ 2V (φ), we need large V (φ), small slope V ′/V and
curvature V ′′/V , where the relevant scale is set by the Planck mass. Thus

V ′

(8πG)1/2V
≪ 1 and

V ′′

8πGV
≪ 1. (21)

Some formula:

ẍc + Γc
abẋ

aẋb = 0

Rµ
νλκ = ∂λΓµ

νκ − ∂κΓµ
νλ + Γµ

ρλΓρ
νκ − Γµ

ρκΓρ
νλ,

0 = δL = ∂µ

(

∂L

∂(∂µφa)
δφa − Kµ

)

.

Tµν = 2
∂L

∂gµν
− gµνL

null surface: 0 = gµν(∂µf)(∂νf) (22)

Rµν − 1

2
Rgµν − Λgµν = κTµν

e2 − 1

2
=

ṙ2

2
+ Veff

H2 =
8π

3
Gρ − k

R2
+

Λ

3
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R̈

R
=

Λ

3
− 4πG

3
(ρ + 3P )

E(z) = (1 + z)E0

1Mpc ≃ 3.1 × 1024cm

RS ≃ 3km
M

M⊙
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