FY3452 Gravitation and Cosmology Final exam 27.05.2025

NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology
Contact: M. Nodtvedt, tel. 400 59 736
Allowed tools: —

Note:
You can obtain 75 points answering all questions correctly. Marks are based on a maximum
of 67 points, so 8 are bonus points.

1. Generalities & understanding.
Give concise answers.
a.) Name four experimental tests favouring General Relativity as a correct description of

gravity. (2 pts)
b.) Explain why the Christoffel symbols are not tensors and what is their meaning instead.
(2 pts)

c.) What are Riemannian normal coordinates? Does the scalar curvature R vanish for
such coordinates? (2 pts)
d.) How is the Lagrangian for a free, massless particle defined? (2 pts)

e.) Consider a non-static, isotropic spacetime with metric
ds? = A(t,r)dt* — B(t,r)dr?* — r*(d9? 4 sin® 9d¢?)

describing, e.g., a pulsating or collapsing star. Does such a star emit gravitational waves?

(2 pts)
f.) By which property is the event horizon of a black hole defined? (2 pts)
g.) Is a spacetime with R,s = 0 and A = 0 flat? (2 pts)

a.) Perihelion precession, light deflection, Shapiro time delay, gravitational redshift, cosmological
redshift, energy loss due to GW emission in binaries (Hulse-Taylor pulsar), detection of GWs
with ¢ = 1.

b.) In V, V¥ =0,V" + I',, V7, the LHS is a tensor, but 9,V" is not. This implies that IV, , is
also not a tensor; more specifically, it has to transform in such a way that the non-tensorial term
of 9,V" is compensated.

The Christoffel symbols specify how the base vectors change, d,e/ = —T" ;€.

Alternative: They are a specific case of an affine connection which is torsion-free and metric
compatible.

c.) In a (pseudo-) Riemaninan manifold without torsion, we can introduce at any given point P a
coordinate system such that g, = 1, and IV, , = 0, i.e. only second- (tidal effects) and higher-
order derivatives of the metric are non-zero. This corresponds to the idea of the equivalence
principle that locally the effects of gravity can be eleminated choosing a freely falling inertial
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system.
Since we cannot set the second derivatives of g,,, to zero, the scalar curvature in P is in a general
(i.e. curved) spacetime non-zero.

d.) For a massless particle, d7 = 0, and we have to use another quantity to parameterise
their geodesics. Any parameter which ensures that da*(\)/dA = const. is suited (set of “affine
parameters” A — aX 4+ b). Thus the Lagrangian can be chosen as

dx? dz¥

=g,
I "IN "an

e.) The metric is spherically symmetric and thus the quadrupole moment vanishes. Thus the
star does not emit GWs.

f.) The event horizon of a BH is a three-dimensional hypersurface formed by light-rays and
thus a null surface. The condition for a null surface defined by the constraint f(z#) = 0 is

0= g"(9uf)(9u f)-

g.) Since the Riemann tensor has 20 independent components, of which 10 are associated to the
Ricci tensor and fixed by the (local) matter distribution, 10 more components are left arbitrary in
a Ricci-flat spacetime. They correspond to gravitational waves and/or “non-local” gravitational
effects. Thus in general a Ricci-flat spacetime is not flat.

2. Fluid dynamics.

a.) Show that dust, i.e. the fluid elements of a pressureless fluid, moves along geodesics.
(4 pts)

b.) Consider an ideal (or perfect) fluid. Assume that in the rest-frame of each fluid element,
the fluid has the energy density p and the isotropic pressure tensor P;; = Pd;;. Derive from

this the stress tensor 7% in an arbitrary frame. (2 pts)
c.) Use local energy-momentum conservation to obtain the equation of motion of an ideal
fluid in the form (4 pts)
a du® af a, B
uA—l—d—B+(g —uu”)Cs = 0.
T

d.) Show that this equation corresponds to two independent equations, one expressing
local energy conservation and one local momentum conservation. [You don’t have to show
the meaning (i.e. local energy and momentum conservation) of the two equations.] (4 pts)

a.) We first show that flow mass flow 57 = pu? is conserved: Use the product rule,
0=V, 1% = Va(puo‘)uﬁ + puaVauB.
Then eleminate «? in the first term by contracting with ug and using uguﬁ =1,

0 = Va(pu®) + puauﬁvauﬁ.
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Finally note that V, (ugu®) = 0 = 2ugV,u”. Thus the second term is zero, and the conservation
of j# = pu® follows.
Now we use Vg(pu”) = 0 in the first line,

0=V T = pu®Vau?,

and remember that u® = dz®/dr is the tangent vector at the trajectory x*(7). Thus

which is the condition for a geodesics.

b.) We set first P = 0. Then p = Tpp and u® = (1,0) in a local inertial rest frame. This becomes
a valid tensor equation setting 7% = pu®u?.
Alternatively, use the tensor method: Express T®? as a linear combination of all relevant tensors,
which are in our case the four-velocity u® plus the invariant tensors of Minkowski space, i.e. the
metric tensor and the Levi-Civita symbol. Additionally, we impose the constraint that T is
symmetric, leading to

7% = Apu®u® + Bpn®® (1)

In the rest-frame, u® = (1,0), the condition 7% = p leads A — B = 1, while 7' = 0 implies
B = 0. Thus the stress tensor of dust is

T = puul. (2)

Next we include the effect of pressure. We know that the pressure tensor coincides with the o;;
part of the stress tensor. Moreover, for a perfect fluid in its rest-frame, the pressure is isotropic
P;; = Pé;j. This corresponds to P;; = —Pmn;; and adds —P to T 00, Compensating for this gives

T = (p+ P)uauﬁ — PP (3)

c.) Local energy-momentum conservation means Vg7’ a8 — 0. Applied to an ideal fluid, this leads

to
(7

dp Du
Rl P)V gu” P
u | L+ o+ PV’ | + 0+ P
Next we recall from b.) that u® and the acceleration Du®/dr are perpendicular. Thus we
have only to show that P = ¢ — y*uP projects the pressure gradient V3P on the subspace
orthogonal to the fluid velocity u®, as it should be for a pure force:

First, we verify that the operator Pl =6 - nen® with m an unit vector satisfies P? = P,

— (¢°F —uuP)VsP = 0. (4)

PQBPB = (5045 - nanﬁ)(éﬁﬁ/ o nﬁn’\/) = 507 - nanfy = PC‘:/' (5)

Morover, it is naPaB n® = 0 for all unit vectors m; Thus P projects indeed any vector on the
subspace orthogonal to n.
Thus we obtain two independent equations, one multiplying with u® for the component parallel

to u®,
dp
—_ P o @ pr—
dT+(p+ )Vau® =0 (6)
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and one multiplying with 7757 for the components perpendicular to u®,

Du®

(p+P) I

= —(¢g*% + uu?)V 3 P. (7)

3. Kerr black hole (BH).

In Boyer—Lindquist coordinates, the metric of a Kerr black hole is given by
2M 4Mar sin® 9 2
ds? = (1 - 27") d? + — 8 Dagdt — ar? — pai?
p p A
( s o 2Mra*sin®9
—|\rta+
p

) sin? ¥d¢?,
with the abbreviations
a=L/M, p? =1+ a’®cos 0, A =1r*—2Mr +a’.

The only non-zero quadratic curvature invariant of this metric is

A8M?(r? — a® cos® ¥)[(r® + a® cos® ¥)? — 16ra® cos® V]

Rul/)\nR e =
A (r2 + a? cos? )b
a.) What are the physical, what the coordinate singularities of this metric? (2 pts)
b.) Find the position of the stationary limit surface. (3 pts)

c.) Consider now the limit ot a Schwarzschild black hole. Two particles fall radially from
infinity towards a point mass M, one starting with energy per unit mass e = 1, the other

one with e = 2. How big is the ratio of their velocities measured by a stationary observer
at r =6M7 (7 pts)

a.) The metric is singular for p = 0 and A = 0. In the first case, R’“’)‘“RWM x p~ % diverges
and thus the ring » = 0 and ¢ = 7/2 is a physical singularity. In the second case, the curvature
invariants are finite and thus A = 0 is a coordinate singularity.

b.) A stationary limit surface is defined by gy = 0, since the normalisation condition u-u =1 is
inconsistent with u® = (u?,0,0,0) and gy < 0. Solving

2Mr
gt =1— 2 =0, (8)
we find two solutions,
T2 = M £/ M? — a? cos? V. 9)

where the outer one corresponds to the position of the stationary limit surface.

c.) An observer with w5 measure as energy E and velocity v

m

V12
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for a particle with four-momentum p# and mass m. If the observer is stationary, u}, . = ugbs =
¢

Uy = 0, the normalisation condition ugps - Ueps = 1 gives

. oM\ /2
Uohs = 1—— .

T

Thus /2
2M
E=mu-ugps = mgaguo‘ugbs =m <1 — —> ut = n

r V1—02

Now we replace u! by the conserved energy,

e:<1_y>ﬁ:<1_%>ut’
r Jdr r

1/2
U(e):%<e2—1—l—¥> .

The ratio of the velocities at »r = 6 M follows as

v(2) 1 (4—1+1/3>1/2_ V10
1-1+1/3

to obtain

2

v(l) 2

4. Gravitational waves (GW).

a.) Consider a GW in the harmonic gauge, ,h*’ = 0. How many independent elements
has its polarisation tensor £*/? (2 pts)
b.) Write down the form of h.s(t, &) for a GW travelling in the positive y direction for
the possible physical linear polarisation states. (4 pts)
c.) Estimate the amplitude of a gravitational wave produced by a neutron star-neutron
star merger at redshift z = 0.1 by dimensional analysis. (6 pts)

a.) The polarisation tensor is symmetric, £, = €,,, and has thus in general 10 independent
components. The harmonic gauge condition imposes 4 constraints, leading to 6 independent
components.

b.) In order to obtain the physical polarisation states, we have to impose the TT gauge. Then
the polarisation tensor is traceless and transverse. The two linear polarisation states of a GW

along the y direction are obtained by setting either hyy or hi3 to zero,

0 0
. 0
hap(t, @) = hy o | coslwt—v) + M)+ ng coslw(t —y) +¢*],

o O O O
O O = O
o O O O
o O O O
= o o o
O O = O

0
0
-1 0

where hf are the amplitudes and ¢ the phases of the two waves with polarisation a.
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c.) The amplitude has to satisfy h ~ 1/d and h ~ 1/a™, where a is the separation; the leading
term has hopefully n = 1. The scale has to be set by Rs;. Thus by dimensional reasons, the
amplitude can be approximated by

G

~ o

Let us assume that a BH is formed in the merger. The signal is maximal at coalesence, a ~ Rg,
or h ~ R,/d. Finally, we need to estimate the distance using Hubble’s law z ~ dHy/c or

h

i~ 20 |3 10Y%m/s

~ 0.1=———""Mpc ~ 430Mpc ~ 10*"
Hy 7 x 10%cm/s pe = 430Mpe = 107 cm

Thus
_Rs 3x 10°cm

h ~ ~2 T T~ 3x 1022,
d 1027cm %

5. FLRW cosmologies.
Consider a FLWR spacetime with metric

d 2
ds? = df? — R2(t) | —— + r2(sin2 9d¢? + dv?)
1 — kr?

and Ricci tensor.

R,, = diag{3R/R, — € rsin?e,—C 2

uy — dlag s m, TSI s T

with C' = (RR + 3R? + 2k).
a.) Calculate the scalar curvature R of this spacetime. (4 pts)
b.) Explain why R is non-zero even in the “flat” k = 0 case. (2 pts)
c.) Consider now the “flat” k = 0 case of this metric. Name the Killing vectors and derive
the “redshift formula” for a photon. (4 pts)

d.) Consider now the spatial part of the FLRW metric for general k. The Ricci tensor
satisfies Ry, = 2K g, What is the property such a spacetime has to satisfy? Write down
the Riemann tensor R4 for the spatial part of the FLRW metric. (2 pts)

a.) We use that for a diagonal metric " = diag{1/g,,.}, i.e,
g" = diag{1, —(1 — kr?)/R? —1/(Rrsin®)?, —1/(Rr)*}
Thus

6(RR+ R* + k)
RZ

R=¢g"R,, =3R/R+3C/R*=

b.) The spacetime is due to the R(t) term still curved; only 3-space becomes flat for k£ = 0.
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c.) The 3-spaces at t = const. and k = 0 are R®: Thus there 3 Killing vectors connected to
spatial translations, §; = 0;, and 3 Killing vectors connect to rotations, J; = €;jpx;j0;. [The
three Killing vectors leading to cms movement with constant velocity can be omitted.] With p
as four-momentum of the photon, it follows &, - p = const. Consider e.g. the z component,

&, - P = guéhip" = —R*p® = const.
and thus p* oc 1/R?. Next we use that p is a null vector,
() —a*(p*)* =0
or pt o< ap® oc 1/R. An observer at rest, u = (1,0,0,0) measures thus as frequency

w=p-u=p «x1/R

d.) Such spaces are maximally symmetric, i.e. they have constant scalar curvature. Then R, =
2K gab and Raped = K (JacGbd — Jad9be)-

6. Field theory.
Consider a free, complex scalar field ¢ in Minkowski space.

Lo = A, 0T0"p + Bl

a.) Explain your choice for A and B. (3 pts)
b.) Find the Noether current of this Lagrangian (4 pts)
c.) Find the interaction terms between the complex field ¢ and the photons A*, promoting
the global symmetry of % into a local gauge symmetry. (4 pts)

a.) The relativistic eenergy-momentum relation requires —Am? = B. The requirement that
energy is bounded from below requires A > 0 and B < 0. Canonically normalised real fields ¢
have A = 1/2. Combining them into ¢ = (¢ + ip2)/v/2 gives A = 1 for the complex field ¢.

b.) From the formulas given, we have for the Noether current j*,

0L
= = _ — H = T
0=02 =0, <8(au,¢a) 0pg — K > Oug" .

We can work either with complex fields and U(1) phase transformations
$(x) = dp(x)e® ,  ¢l(z) = ¢l (x)e™

or real fields (via ¢ = (¢ + i¢2)/v/2) and invariance under rotations SO(2). With d¢ = iag,
d¢t = —iag!, the conserved current is

It =i|glomg — (991
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We perform the replacement 0, D,, = 9, +igA,, in the kinetic term of the Lagrangian,
& = (D,¢) DV g.
Expanding gives

L = 0,0' " p—iqA, b 0" b +iqg A" (0,0T) b + A AP ST p

1
Some formula:
V.,V =0,V + F”WV”
D dax®
—TH = —V T =0
dU V... dU V...

i+ T, =0

RN = a)\l—wl/n - a’iruu)\ + Fup)xrpl/n - FMPHFPV)H

VAR

0Z
O:(sgza“<m5¢a—f{“) .

0L
T,ul/ = 2@ — gwjg

D, =0, +iqA,

null surface: 0= ¢""(9,.f)(0,f)

1
R, — ing, — Ag = KT,

g — g Tl
YL k A
H2=22Gp— — 4+ —
3P t3
R A 4nG
= _ T4 3pP
7= 3 3@+ )
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(- Hod
E(z) = (14 2)E,
Hy ~ 70km/s/Mpc

IMpc ~ 3.1 x 10**cm

M
~ 3km—
RS 3 mM®
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