Meson synchrotron radiation threshold for ultra-high energy cosmic ray protons:
 Work in progress

Douglas Fregolente*
Universidade Federal de Campina Grande, UACEN, Campus de Cajazeiras R. Sérgio M. de Figueiredo s/n, 58900-000, Cajazeiras, PB, Brazil.

[^0]
I. MOTIVATION

- Curvature and synchrotron radiation emitted by CR particles plays a important role in understanding the energy losses that it can suffer inside the acceleration mechanisms[1].
- Protons are the main component of the CR spectra up to $10^{15} \mathrm{eV}$ and beyond $10^{18} \mathrm{eV}[2]$
- Following the analysis of [4-7] one can argue that the strong coupling of mesons with protons can generate synchrotron emission radiation composed by π 's and ρ 's.
- The strong channels we consider here are

$$
\begin{align*}
& p^{+}+A_{\mu} \rightarrow p^{+}+A_{\mu}+\pi^{0}, \tag{1}\\
& p^{+}+A_{\mu} \rightarrow p^{+}+A_{\mu}+\rho^{0}, \tag{2}
\end{align*}
$$

II. GENERAL OUTLINE

- We set the conditions and the ranges of validity of the formalism in terms of the classical and dimensional proper acceleration $a=\sqrt{-a_{b} a^{b}}$ (frame independent).
- The non recoil condition reads

$$
\begin{equation*}
a<M, \tag{3}
\end{equation*}
$$

where M is the mass of the accelerated source.

- The processes will be favoured when $a \geq m$, where m is the mass of the emitted particle. Then

$$
\begin{align*}
m_{\pi} & \leq a \ll m_{p} \tag{4}\\
m_{\rho} & \leq a \ll m_{p} \tag{5}
\end{align*}
$$

for the scalar case (1) and for the vector meson emission (2), respectively.

- The proper acceleration of a proton of mass m in circular motion in a magnetic field B is given by

$$
\begin{align*}
a & \approx \gamma \frac{e B}{m} \\
& \sim 100\left(\frac{\gamma}{10^{7}}\right)\left(\frac{B}{10^{13} \mathrm{Gauss}}\right) \mathrm{MeV} \tag{6}
\end{align*}
$$

- Then, protons with $E \geq 10^{16} \mathrm{eV}\left(\gamma \geq 10^{7}\right)$ has proper acceleration higher than 100 MeV .
- As $m_{\pi}, m_{\rho} \sim \mathcal{O}(100 \mathrm{MeV})$ this is the threshold of meson emission from the protons in circular motion.

III. EMITTED POWERS

A. The Formalism

- We have adopted a formalism where a classical source

$$
\begin{equation*}
j^{a}(x)=q \frac{\delta^{3}[\mathbf{x}-\mathbf{x}(\tau)]}{\sqrt{-g} u^{0}(\tau)} u^{a}(\tau), \tag{7}
\end{equation*}
$$

follow a prescribed trajectory $x^{a}(\tau)$ in the spacetime. The sources are coupled to the quantized meson fields,

$$
\begin{equation*}
\hat{\Phi}(x)=\int d^{3} \mathbf{k}\left[\hat{a}_{\mathbf{k}} \phi_{\mathbf{k}}^{(+\omega)}(x)+\hat{c}_{\mathbf{k}}^{\dagger} \phi_{-\mathbf{k}}^{(-\omega)}(x)\right] . \tag{8}
\end{equation*}
$$

being $\Phi(x)$ de scalar and

$$
\begin{equation*}
\hat{A}_{b}^{\lambda}(x)=\int d^{3} \mathbf{k}\left[\hat{d}_{\mathbf{k}} u_{\mathbf{k} b}^{\lambda(\omega)}(x)+\hat{d}_{\mathbf{k}}^{\dagger \lambda} u_{-\mathbf{k} b}^{\lambda(-\omega)}(x)\right], \tag{9}
\end{equation*}
$$

the massive vector field. The actions that couple the fields and the source are

$$
\begin{equation*}
\hat{S}_{I}^{(s)}=\int d^{4} x j(x)\left[\hat{\Phi}(x)+\hat{\Phi}^{\dagger}(x)\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{S}_{I}^{(v)}=\int d^{4} x j^{a}(x)\left[\hat{A}_{a}(x)+\hat{A}_{a}^{\dagger}(x)\right] \tag{11}
\end{equation*}
$$

- The power associated to the emission are obtained from

$$
\begin{equation*}
W_{s, v}^{p^{+} \rightarrow p^{+}}=\int d^{3} \tilde{\mathbf{k}} \tilde{\omega} \frac{d R_{s}^{p^{+} \rightarrow p^{+}}}{d^{3} \tilde{\mathbf{k}}} \tag{12}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{d R_{s}^{p^{+} \rightarrow p^{+}}}{d^{3} \tilde{\mathbf{k}}}=\frac{1}{T}\left|\mathcal{A}_{k}\right|^{2} \tag{13}
\end{equation*}
$$

and $T=\int d s$ is the total coordinate time. The invariant amplitude is given by

$$
\begin{equation*}
\mathcal{A}_{\mathbf{k}}=\left\langle p^{+}\right| \otimes\left\langle\pi^{0}\right| \hat{S}_{I}^{(s)}|0\rangle \otimes\left|p^{+}\right\rangle . \tag{14}
\end{equation*}
$$

B. Results

- In a magnetic field, a charged particle follow a circular trajectory which is, in terms of the inertial coordinates (t, \mathbf{x}) in a rest reference frame,

$$
\begin{equation*}
x^{a}(\tau)=(t, R \cos (\Omega t), R \sin (\Omega t), 0) . \tag{15}
\end{equation*}
$$

- In the ultra-relativistic limit, $\gamma \gg 1$ and $a / m_{\pi} \gg 1$, that the associated power given by (12) is,

$$
\begin{gather*}
W_{s}^{p^{+} \rightarrow p^{+}} \approx \frac{G_{\mathrm{eff}}^{(s) 2} a^{2}}{12 \pi} \tag{16}\\
W_{(v)}^{p^{+} \rightarrow p^{+}} \approx \frac{2 G_{\mathrm{eff}}^{(v) 2} a^{2}}{3 \pi} \tag{17}
\end{gather*}
$$

where $2 G_{\text {eff }} \equiv g^{\prime}=\sqrt{14}$

IV. DISCUSSION

- The power emitted in the ordinary synchrotron radiation is

$$
\begin{equation*}
W_{\mathrm{L}}=\frac{2 \alpha^{2} a^{2}}{3} \tag{18}
\end{equation*}
$$

- Then the massive vector emission and the electromagnetic one differs only by the coupling constants,

$$
\begin{equation*}
\frac{g^{\prime 2}}{\alpha^{2}} \sim 10^{3} \tag{19}
\end{equation*}
$$

- One should expect then, that the ρ emission could dominate over the ordinary synchrotron radiation.
- Some remarks are in order:

Curvature radiation is still the main mechanism of energy losses of CR protons in high magnetic fields;

Proton decay can be favoured in the high acceleration regime. The general case should be

$$
\begin{equation*}
N^{+}+A_{\mu} \rightarrow N^{+(0)}+A_{\mu}+\pi^{0(+)}\left(\rho^{0(+)}\right) . \tag{20}
\end{equation*}
$$

In the decay case the formalism developed in $[8,9]$ must be employed.
[1] V. S. Berezinsky, S. V. Bulanov, V. A. Dogiel, V. L. Ginzburg, V. S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam) (1990).
[2] Kampert, K.-H, Nucl. Phys. B (Proc. Suppl.) 165, 294 (2007).
[3] V. L. Ginzburg and S. I. Syrovatskii, Ann. Rev. Astron. Astrophys. 3297 (1965). Usp. Fiz. Nauk. 87, 65 (1965).
[4] G.F. Zharkov, Sov. J. Nucl. Phys. 1, 120 (1965).
[5] V.L. Ginzburg and G.F. Zharkov, Sov. Phys. JETP 20, 1525 (1965).
[6] V. Berezinsky, A. Dolgov and M. Kachelriess, Phys. Lett. B 351, 261 (1995).
[7] A. Tokuhisa and T. Kajino, Ap. J. 525, L117 (1999).
[8] T. Herpay, S. Razzaque, A. Patkós and P. Mészáros, JCAP 0808025 (2008).
[9] T. Herpay and A. Patkós, J. Phys. G 35, 025201 (2008).

[^0]: *Electronic address: douglasfregolente@gmail.com

