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Abstract

This thesis is written with the main purpose of deriving the pressure in pure SU(3) gauge theory
to two-loop, before fitting a running coupling to lattice data in the deconfined phase, computed by
Boyd et al.

The pressure and the fitted coupling were extrapolated to 50Tc = 7500MeV. At high tempera-
tures the pressure slowly converged towards the ideal-gas pressure, just as expected. The coupling
was found to be small enough for the theory to be treated perturbatively at the end of this temper-
ature range. Here, it was approximately g2

4π � 3 · αe = 3
137 at T = 7500MeV.

The problem was solved by first deriving the functional representation of the partition function,
and showing that the corrections could be found in terms of Feynman diagrams, at weak coupling.
Moreover, the finite-temperature Feynman rules were shown to be obtainable by modifying the ones
representing the S-matrix elements. This was first used to derive the pressure in QED to two-loop
to make some aquaintance with the theory, before finding the pressure in a hot gluon plasma to two-
loop. Both these derivations are found to order g3 in the coupling by including dressed propagators.

Finally, MatLab was used to fit the pressure to lattice data.
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Preface

This thesis is written with the main purpose of deriving the pressure in pure-gluon plasma
to a two-loop approximation. It represents 20 weeks of work at the Norwegian University
of Science and Technology, corresponding to 30 study points. Before this semester I had
only taken one introductory course in quantum field theory. This was soon found to be
insufficient for starting directly on the QCD calculations. I tried to read several books on
finite-temperature field theory to become acquainted with the imaginary-time formalism.
Each time I failed to fully understand the concepts, due to the overwhelming notational
simplifications the authors had introduced, and lack of explicit calculations. All the exam-
ples found were on scalar field theory, and not at all easy to transfer to gauge theories. The
books were simply not written for undergraduates.

As most physicists, I always aspire to understand the underlying concepts of the theories I
work with. To be able to understand the concepts on which the imaginary-time formalism
was built, I simply had to go back to scratch and re derive the functional representation of
the partition function in chapter four and five. Furthermore, all the Feynman rules emerg-
ing from the weak-coupling expansion are also found in these chapters. Chapter four and
five are the foundation on which this thesis is built, and represent my own little guide to
thermal field theory. After deriving these chapters, thermal field theory finally made sense.
It has during the rest of this semester, become my one and only favourite theory!

All my previous work on quantum field theory had been done at zero temperature. More-
over, the only Feynman diagrams i had calculated were scattering amplitudes corresponding
to S-matrix elements. Due to this, I somehow thought that the calculations were easier to
perform in the real-time formalism using Minkowski vectors, before converting the expres-
sions back to Euclidean space. Unfortunately I seemed to clinch on to what was already
familiar to me. However, at the end of the semester, I started using the modified Feynman
rules for the imaginary-time diagrams directly, and found that they made all the calcula-
tions considerably simpler and easier to interpret. This is why the last section of chapter
three, four, five and six are made using the imaginary-time Feynman rules. I wish I had
five more months to proceed with further work on this theory.

Tormod Gjestland
17.06.2007
Trondheim
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Introduction

The main purpose of this thesis is to derive the pressure in a pure-glue plasma in a two-
loop approximation, and fit this pressure to lattice data, using a temperature-dependent
coupling. To do so, the modern approach to the theory of statistical physics at finite tem-
perature will be used, namely the functional representation of the partition function.

In the first chapter, the concepts of quasiparticles and quasiparticle models are introduced.
The first section is written with the purpose of introducing the idea behind the quasiparti-
cles, discussing their origin and field of use. This is done to become more acquainted with
the idea behind the models which are introduced later in the chapter. The rest of chapter
one is a summary of the article found in the reference [1]. Some quasiparticle models are
here introduced, to make the reader more comfortable with the concepts of quasiparticle
descriptions of pure gauge theories.

The second chapter is a calculation of frequently appearing sums, when working with fi-
nite temperature field theory. They appear in all the Feynman diagrams emerging from
the imaginary-time formalism, and are in this chapter found explicitly by the method of
contour integration in the complex plane.

Chapter three consists of a one-loop calculation of the photon self-energy tensor, both
at finite temperature representing corrections to the imaginary-time photon propagator,
and zero temperature representing both corrections to the real-time photon propagator and
the vacuum part of the imaginary-time propagator1. The finite temperature result is used
explicitly in both the chapters four and five. It is also indirectly used in chapter six. The
concept of dimensional regularization is also introduced in chapter three.

Chapter four and five are dedicated to the concepts and derivations of the imaginary-time
formalism. The functional representation of the partition function will be found. It will
also be shown that it can be expanded in terms of Feynman diagrams (vacuum diagrams).
These two chapters represent a foundation for the rest of the thesis, and contain all the
rules used when calculating finite temperature quantities. In chapter five, the functional
representation of the partition function will be used to derive a two-loop approximation to
the pressure in a gas of interacting photons and fermions. This is done to become more
acquainted with the calculations concerning gauge theories. At the end of chapter five,
a quasiparticle description of the pressure in such a gas is also found to order e3 in the
coupling by introducing effective propagators.

1Imaginary-time diagrams represent corrections to the partition function, and real-time diagrams rep-
resent transition amplitudes at T = 0. Why they are given these names will be made clear in chapter
four.
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Finally, in chapter six, the two-loop approximation to the partition function in pure-glue
will be found. This will be done by using all the rules derived for gauge fields and finite-
temperature sums in chapter two through five. Moreover, dressed propagators are at the
end of this chapter introduced to find the complete two-loop approximation to the pressure
in a gas of pure-glue to order g3 in the coupling. This result is in chapter seven, used to fit
a running coupling constant to lattice data, by using simple programming in MatLab. The
running coupling will again be used to extrapolate the relative pressure to high tempera-
tures. Note, all the calculations in this thesis are made in natural units, i.e �, c, ε0, μ0, kb = 1.

A summary and a conclusion will be given in chapter eight.
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Chapter 1

Quasiparticle models

1.1 Quasiparticles

When bare particles propagate through a medium, they acquire different properties than
they would have had as freely propagating particles in vacuum, at zero temperature. What
is meant by a bare particle, is a particle in vacuum when all interactions are switched off.
When particles at finite temperature propagate in a medium consisting of interacting par-
ticles, several interaction processes take place. This makes the properties of the system
differ from that of an ideal gas, where all particles are looked upon as though they were
completely independent of eachother, thus freely propagating bare particles. These interac-
tions are called medium effects [7], since they are due to the medium in which the particles
propagate.

A way to incorporate these interaction-related properties into the collective description
of a given system, is to modify the dispersion relation of the bare particles by adding differ-
ent quantities. The dispersion relation gives the possible excitation of each particle within
the system. Since the modified dispersion relations differ from the original ones, the new
”particles”, which possible excitations are described by the modified dispersion relations are
called quasiparticles. In this way, possible excitations of the total system can be obtained
from the one-quasiparticle excitations.

These modifications, no matter how simple they are, can help describing rather complex
quantum systems that seems close to unsolveable when looking at for instance all the Feyn-
man diagrams representing the interaction contributions to the free energy.

Later in this thesis, it is shown that the massless gauge boson in U(1) gauge theory gains
an effective mass due to medium effects, when propagating through a cloud of electrons and
positrons at finite temperature. The interactions taking place when the photons propagate
through a system in presence of fermions, give rise to different terms in the perturbation
series describing the system. Many of these terms can be reproduced by modifying the
photon propagator, and from the poles of the propagator one can obtain the modified dis-
persion relation [4].

Such observations lead to a quasiparticle description of many-body systems, where col-
lective excitations of systems consisting of bare particles which interact, are described by

15



CHAPTER 1. QUASIPARTICLE MODELS 16

excitations of the corresponding freely propagating quasiparticles. In this way, both the
energy emerging from the inertia of the particles themselves, and the medium effects, is im-
plemented into the dispersion relation. This can be illustrated mathematically by expressing
the Hamiltonian of a system of gauge bosons in natural units as follows

H = g
∑

i

|k|ini +Hint → g
∑

i

√
k2

i +m2 · ni, (1.1)

where g is the degeneracy factor, ni and ki is the number of particles and the energy of
the one-particle state i. The right-hand side is given in terms of the modified dispersion
relation of the quasiparticles. The interaction term on the left-hand side is parametrized
by the effective mass on the right-hand side.

From the above, one can see that the quasiparticles are not fundamental particles as for
example the electrons and positrons, but rather a mathematical tool to help describing the
behaviour of relatively complex many-body quantum systems in an elegant way.

In QCD, non-perturbative or residual interaction processes take place due to confinement
below the critical temperature Tc � 150MeV . To describe these efffects, a thermal mass
is not sufficient to reproduce the Monte Carlo lattice simulations, which are up until this
date, the most successful tools when describing such systems below or close to Tc, due to
confinement. These strong interactions can be taken care of by introducing a bag pressure,
−B(T ), which concept is based on the MIT bag model. It is looked upon as the external
pressure that keep the quarks and gluons confined to a finite region of space (in small bags),
representing the particles of the standard model. This term is inserted into the Hamiltonian
as a temperature dependent vacuum-energy density.

1.2 Pure-glue plasma

This section is a recapitulation on some of the already existing quasiparticle descriptions
of pure glue in the deconfined phase. It is a summary to get aquainted with some of the
different models, their advantages and disadvantages. It is based on the articles found in
the references [1, 7].

Pure-glue plasma with a temperature dependent degeneracy factor

The gluons are as one knows, massless vector bosons. Such bosons have two helicity states.
However, in QCD the gauge bosons interact with eachother. This means that one does not
need the presence of fermions to obtain interactions within a system consisting of gluons.
From the introduction to this chapter one can then imagine that the gluons will aquire ther-
mal masses at finite temperature due to medium effects. Moreover, massive vector bosons
have three helicity states, S = 0,±1. One can then try to see if the thermal mass makes
the gluons act as a massive vector boson.

A way to make an effective gluon description out of this idea, is to implement these
temperature-dependent variations of the degeneracy factor G, by assuming that it is a
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function of T . G → G(T ). Consequently, the effective mass is also temperature dependent.

Given the above, the dispersion relation for a gluon propagating through a medium in
thermal equilibrium at temperature T becomes [1]:

ω(k, T ) =
√

k2 +m2(T ). (1.2)

The grand-canonical partition function, Z, for a system of gluons omitting zero net chemical
potential1, given the dispersion relation above is [5]

Z = Tr
{

e−βĤ
}

. (1.3)

The pressure in such a gas is according to [5],

P (T ) =
T

V
lnZ. (1.4)

From this, one obtains [1, 5]

P (T ) =
G(T )
(2π)3

∫ ∞

0
d3k

k2

3ω(k, T )
n(k, T ), (1.5)

where G(T ) is the generalized temperature-dependent degeneracy factor and n(k, T ) is the
boson distribution function,

n(k, T ) =
1

eβω − 1
. (1.6)

When the pressure and temperature are given, the net energy density ε(T ) can be found
from the thermodynamic relations,

U(S, V ) = TS − PV

F (T, V ) = U − TS = −PV. (1.7)

where U is the internal energy, S is the entropy and T, V is the temperature and volume
of the system, respectively. It is assumed that the net chemical potential, μ = 0. By
differentiating the two expressions in Eq. (1.7), one can identify the relations

dU = TdS − PdV

dF = dU − TdS − SdT = −SdT − PdV. (1.8)

From the last differential, one can find that the entropy is given by

S = −
(

∂F

∂T

)
V

=
(

dP

dT

)
V

V. (1.9)

Now, by inserting this into the internal energy and dividing by the constant volume on each
side, one obtains the energy density,

U

V
= ε(T ) = T

dP

dT
− P (T ). (1.10)

1This implies that there are as many particles as there are anti-particles within the system. Since the
gluons are represented by real scalar fields, they are their own anti-particles. This means that the chemical
potential is always zero in pure gauge theories.
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However, there is another expression for the energy density via the grand canonical partition
function [2, 5], namely

ε(T ) = − 1
V

∂

∂β
lnZ =

1
V Z

Tr{He−βH}. (1.11)

For the Eqs. (1.10) and (1.11) to be thermodynamically consistent, meaning that they are
equal to eachother, a constraint arises as will be shown later on [1]. From Eq. (1.5), Eq.
(1.10) takes the form

ε(T ) =
G(T )
(2π)3

∫
d3k

[
ω(k, T )n(k, T )− TM(T )

dM

dT

1
ω(k, T )

n(k, T )
]
+ T

P (T )
G(T )

dG

dT
. (1.12)

However, from Eq. (1.11), the internal energy density is defined to be

ε(T ) =
G(T )
(2π)3

∫
d3kω(k, T )n(k, T ). (1.13)

This is where the previously mentioned constraint appears. A relation between the temper-
ature dependent mass and the degeneracy factor must be established to make Eq. (1.10)
consistent with Eq. (1.11). It follows that

−
∫

d3kTM(T )
dM

dT

1
ω(k, T )

n(k, T ) + T
P (T )
G(T )

dG

dT
= 0

⇒ dG

dT

∫
d3k

k2

ω
n(k, T ) = M(T )

dM

dT
3G(T )

∫
d3k

1
ω

n(k, T ). (1.14)

Here, the last line can be integrated with respect to T on both sides, and solved for G(T ).
If G(T ) and M(T ) satisfy this constraint, also referred to as the self-consistency condition,
the quasiparticle picture is said to be thermodynamically consistent. This must of course
be fulfilled, or the theory will break down. It would not make sence if one could obtain two
different answers by using two different approaches to find the energy density. Eq. (1.14),
can then be used to check whether the functions extracted from lattice data are thermo-
dynamically consistent. From Eqs. (1.5) and (1.13), given that Eq. (1.14) is fulfilled, the
functions M(T ) and G(T ) can be extracted given the energy density ε(T ) and the pressure
P (T ) from lattice data for a pure SU(3) gauge theory.

As seen from Fig. 1.1, the degeneracy factor G(T ) does not converge towards 3
2 · 16 = 24

in either the high- or low-temperature limit. This means that an originally massless vector
boson does not behave like a massive one even if it gains a thermal mass due to medium
effects. In fact, both the mass and the degeneracy factor have a rather unphysical behaviour
close to the phase transition T = Tc. However, in the high temperature limit, its deviation
from G = 16, is rather small. One would expect the degeneracy factor to converge towards
16 for high temperatures, since this is the degeneracy factor of a free massless gluon (there
are eight different kinds of gluons, with two polarizations), and the mass seems to drop to
zero on the temperature scale, i.e M

T → 0.

Because of the high degeneracy factor expected from this previous model, there is a reason
to believe that there are some non-perturbative effects, affecting the system in the region
close to Tc. In fact, one of the main reasons for the degeneracy factor to obtain such a
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Figure 1.1: M(T ) and G(T ) extracted from lattice data via Eqs. (1.11) (1.5) and (1.10).
This figure is taken from [1].

strange behaviour in the low temperature limit, is because the gluons in this region gener-
ate large thermal masses compared to the temperature, as can also be seen from Fig. (1.1).
This leads to Boltzmann suppression. Since the energy density is given from lattice data,
Eq. (1.11) explains one of the reasons why the degeneracy factor increases rapidly when
the ratio M(T )

T increases.

1.3 Pure-glue plasma with a temperature dependent mass
and bag constant

To get rid of the unphysical behaviour of the degeneracy factor G(T ) for low temperatures,
one can recall the introduction to this chapter. It was stated that non-perturbative effects
can be taken care of by introducing a bag pressure −B(T ). Now, another model can be
obtained. In this model, the degeneracy factor will be kept constant at G = 16 due to the
fact that there are eight gluons with two helicity states. The reason for why it is assumed
to be constant is because of its almost constant level at temperatures T > 2.3Tc, obtained
from Fig. 1.1. Furthermore, one can assume that the increase in degeneracy in the previous
model was due to non-perturbative corrections only.

Now, the bag constant gives a pressure contribution, Pbag = −B(T ). The Hamiltonian
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describing the system is
H = G

∑
i

ω(ki, T )ni + V ·B(T ), (1.15)

where the sum goes over all single-particle states i, occupied by ni particles with energy ωi.
G is a temperature independent degeneracy factor. This results in an energy density from
Eq. (1.11)

ε(T ) =
U

V
=

G

(2π)3

∫
d3kω(k, T )n(k, T ) +B(T ) (1.16)

The pressure comes out to be

P (T ) = −T

V
lnZ =

G

(2π)3

∫ ∞

0
d3k

k2

3ω(k, T )
n(k, T )−B(T ) (1.17)

The thermodynamic identity takes care of the self-consistency condition to make the system
thermodynamically consistent. Via, Eq. (1.7), the constraint appearing is:

dB

dT
=

G

(2π)3
M(T )

dM

dT

∫
d3k

n(k, T )
ω(k, T )

. (1.18)

Now, Eq. (1.16) and Eq. (1.17) can be used to extract the functions M(T ) and B(T ), given
the self-consistency contraint in Eq. (1.18). In Fig. 1.2, one can see that the data seem

Figure 1.2: The functions B(T )
ε(T ) and M(T ) extracted from lattice data via Eq. (1.16) and

Eq. (1.17). Figure taken from [1].

to fit better than in Fig. 1.1. In the low temperature limit, the mass does not increase
as rapidly as it did in Fig. 1.1. At Tc, the thermal mass reaches a value of approximately
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3.15Tc, while it was greater than 6Tc in the case where the bag constant was omitted. One
can also remark that the masses in the high-temperature limit is slightly larger in Fig. 1.2
than in Fig. 1.1. This is partly because the degeneracy factor was said to be 16 and not
� 14.5 as the high temperature limit of Fig. 1.1 implied [1]. B(T )

ε(T ) is also a well behaved
continous fuction with finite values for all temperatures within the region.

This implies that there are effects taking place near Tc that are non-perturbative and
therefore cannot be described by the thermal masses of the gluons, but should rather be
parametrized via an extra term B(T ).
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Chapter 2

Matsubara sums

The calculations appearing in finite-temperature field theory are very similar to the calcu-
lations of S-matrix elements in perturbative quantum field theory at T = 0. As one knows,
the S-matrix elements can be represented by Feynman diagrams, so can the elements of the
partition function. The close relation between these two theories will be made clearer later
in this thesis. One of the main differences between the two formalisms, is the substitution
it in the functional representation of the transition amplitude goes to the real quantity τ in
the partition function. This is why the two are referred to as the real-time and imaginary-
time representations, respectively. Another difference is that the fields which the partition
function is represented by, have to be (anti-) periodic1 in τ with a periode β = 1

T . This leads
to a modification of the zeroth component of the 4-momentum in the real-time formalism
(S-matrix calculations), p0. To get from the real-time diagrams to the ones representing the
imaginary-time (Partition function) calculations, the substitution p0 → iωn must be made,
where ωn = 2πnT for bosons, ωn = 2π(n+ 1

2)T for fermions and n = 0± 1± 2...±∞. ωn

is called the Matsubara frequency.

When calculating Feynman diagrams in the real-time formalism, integrals on the form∫
d4p

(2π)4
1

p2 −m2
, (2.1)

are constantly appearing. In the imaginary-time formalism, these integrals, given the sub-
stitution p0 → iωn, become

−i

∫
d3pdωn

(2π)4
1

ω2
n + 	p2 +m2︸ ︷︷ ︸

ω2

. (2.2)

This however, is only valid in the limit T → 0, since

2πnT = ωn,

Δωn

2π
= ΔnT → 0. (2.3)

1Periodic for bosons and anti-periodic for fermions
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However, at finite T , the integral over ωn in Eq. (2.2) becomes discretizised as ΔnT becomes
finite. The integral in Eq. (2.2) then becomes

−iT

∫
d3p

(2π)3

∞∑
n=−∞

1
ω2

n + ω2
. (2.4)

This means that all integrals on the form∫
dDp

(2π)D
f(p0, 	p) (2.5)

will be substituted with

i

∫
dD−1p

(2π)D−1
T

∞∑
n=−∞

f(p0 = iωn, 	p), (2.6)

to obtain imaginary-time expressions from the real-time Feynman diagrams.

An elegant way to calculate a sum on the form

T

∞∑
n=−∞

1
ω2

n + ω2
= T

∞∑
n=−∞

R(ωn), (2.7)

is to convert the sum into a countour integral in the complex plane by using the residu
theorem. The residue theorem states [14],∮

C
f(z)dz = 2πi

∑
i

Res{(f(z), zi)}, (2.8)

where C is the path of the contour, and {zi} are the residues enclosed by the contour as
shown in Fig. 2.1.

2.1 Bosons

By looking at the bosonic Matsubara frequencies ωn = 2πnT, as the four’th component of
a Minkowski four-vector, ωn → i · z the argument of the sum in Eq. (2.7) becomes

R(iz) = − 1
z2 − ω2

. (2.9)

Now, to rewrite the sum in Eq. (2.7) in terms of a contour integral one should find a proper
function, f(z), to insert into Eq. (2.8) and in this way forces Eq. (2.7) to become the right-
hand side of Eq. (2.8). Furthermore, for a simple pole at z0, which means that f(z) ∝ 1

z−z0

for z close to z0, the residue is defined to be

Res{f(z), z0} = lim
z→z0

(z − z0)f(z). (2.10)
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Figure 2.1: A figure of the contour C. The enclosed residues are drawn as dots in the region
enclosed by C.

Now, if one chooses f(z) = R(iz)·G(z), G(z) has to be a periodic function with simple poles
at the points zn = 2πniT on the imaginary axis, proportional to 1

z−zn
around zn. Given

the properties above, the function G(z) can either be G(z) = 1

sinh β
2
z
or G(z) = coth β

2 z [3].

The last function will be chosen due to the fact that it is bounded for large real values of
z, i.e lim

z→∞G(z) = 1 which will be an important property in further calculations.

Returning to Eq. (2.8), the left-hand side will be some constant Ω, times the contour
integral over R(iz)×G(z), i.e

Ω ·
∮

C

coth β
2 z

z2 − ω2
dz, (2.11)

given the proper path of integration C. To check whether it gives the correct values for
Eq. (2.7) to become the right hand side of the residue theorem, a contour C = Cn can be
placed around the n’th singularity along the imaginary axis z = 2πinT as shown in Fig. 2.3,
and integrated in counter clockwise direction. If the integrand is correct, this should give
the n’th term of the sum in Eq. (2.7).

Figure 2.2: A figure illustrating the positions of the residues of the function f(z).

Ω ·
∮

Cn

coth β
2 z

z2 − ω2
dz = 2πiΩ lim

z→2πinT

(z − 2πinT )
z2 − ω2

cosh β
2 z

sinh β
2 z

. (2.12)
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To evaluate coth β
2 z for z → 2πinT , its periodic properties will be exploited.

lim
z→0

coth(
β

2
z) � lim

z→0

[
2
βz

]
; coth

β

2
(z + 2πinT ) = coth

β

2
z

⇒

lim
z→2πinT

coth
β

2
z � lim

z→2πinT

[
1

β
2 (z − 2πinT )

]
. (2.13)

This turns Eq. (2.12) into

Ω ·
∮

Cn

coth β
2 z

z2 − ω2
dz = 2πiΩ lim

z→2πinT

(z − 2πinT )
z2 − ω2

1
β
2 (z − 2πinT )

= −4πiΩ
[

1
(2πnT )2 + ω2

]
·T.

(2.14)
Comparing this to Eq. (2.7), one finds that Ω = −1

2 · 1
2πi .

This means that the matsubara sum can be converted into a contour integral via the residu
theorem given the proper contour, L,

− 1
2πi

∮
L

1
z2 − ω2

1
2
coth

β

2
zdz = T

∑
n

1
ω2

n + ω2
. (2.15)

where the sum now runs over all n corresponding to singularities enclosed by L. The inte-
gral along L is made in the counter clockwise direction. From Fig. 2.2, it is easy to see that
if the contour encloses all the singularities on the imaginary axis, the sum in Eq. (2.7) and
the integral in Eq. (2.15) will be equal.

Figure 2.3: A sketch illustrating the contours.
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It follows from Fig. 2.3 and Eq. (2.14), that

− 1
2πi

∞∑
n=−∞

∮
Cn

1
z2 − ω2

1
2
coth

β

2
zdz = − 1

2πi

∮
L

1
z2 − ω2

1
2
coth

β

2
zdz = T

∞∑
n=−∞

1
ω2

n + ω2
.

(2.16)
Since

lim
n→∞Res{ 1

z2 − ω2
coth

β

2
z, zn} = 0, (2.17)

the singularities at infinity hardly contribute. Moreover, one can see that if one chooses
to complete the ends of the rectangle given by the closed curve L by two line integrals
going from z = ±i∞± ε to z = ±i∞∓ ε, the denominator of the integrand in the integral
on the left hand side of Eq. (2.15), is infinity along these paths, hence the line-integrals
give zero contribution. To be more specific, this is true if one chooses to place the path
of these ends between two singularities on the imaginary axis. To make sure that there
are no corrections to the infinite sum, one can place a closed curve around the next singu-
larity, integrate along this closed path and hence, due to Eq. (2.17) this does not contribute.

From the above, one can draw the conclusion that the integral over the closed curve given
by the rectangle L is equal to the integral over the two vertical lines in Fig. 2.3, given the
direction along the arrows. This gives,

− 1
2πi

∮
L

1
z2 − ω2

1
2
coth

β

2
z︸ ︷︷ ︸

f(z)

dz = − 1
2πi

∫ i∞+ε

−i∞+ε
f(z)dz − 1

2πi

∫ −i∞−ε

i∞−ε
f(z)dz

= T

∞∑
n=−∞

1
ω2

n + ω2
. (2.18)

By simplification,

f(z) = −f(−z)

⇒ − 1
2πi

∫ i∞+ε

−i∞+ε
[f(z)− f(−z)] dz

= −2 1
2πi

∫ i∞+ε

−i∞+ε
[f(z)] dz. (2.19)

This expression is still not easy to handle, but it can be evaluated by calculating the residues
in z = ±ω. The integrals over each of the two lines defining L can be found by integrating
over two semi-circles in the right and left half plane respectively as implied by Fig. 2.4. The
integral along the path shown in Fig. 2.4 is given by∫ i∞+ε

−i∞+ε
[f(z)] dz + lim

R→∞
i

∫ π
2

−π
2

Reiθdθf(ε+Reiθ) = 2πiRes{f(z), ω}, (2.20)

since z = ε+Reiθ along the circular path. Now, the last integral on the left hand side has
to be evaluated and is eventually found to be zero by the following argument:

|
∫ π

2

−π
2

Reiθdθf(ε+Reiθ)| = |Ri

∫ π
2

−π
2

1
(Reiθ)2 − ω2

coth
β

2
(ε+Reiθ)dθ|
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Figure 2.4: Closing the contour in the right half plane.

≤ |Ri|
∫ π

2

−π
2

| 1
(Reiθ)2 − ω2

| · | coth β

2
(ε+Reiθ)| · |dθ|

� 1
R

∫ π
2

−π
2

| coth β

2
(ε+Reiθ)| · |dθ|

=
1
R

∫ π
2

−π
2

∣∣∣∣
[
1 +

2
eβ(ε+Reiθ) − 1

]∣∣∣∣ dθ

≤ 1
R

∫ π
2

−π
2

[
|1|+

∣∣∣∣ 2
eβ(ε+Reiθ) − 1

∣∣∣∣
]

dθ

= 0 +
1
R

∫ π
2

−π
2

2√
1 + eβ(ε+R cos θ)(eβ(ε+R cos θ) − 2 cos(βR sin θ))

dθ

= 0, (2.21)

for all ε > 0 in the limit R →∞. This means that the part of the integral, L, that lays in
the right half plane can be expressed in terms of the residue in z = ω:∫ i∞+ε

−i∞+ε
f(z)dz = −2πi

1
4ω

[
1 +

2
eβω − 1

]
(2.22)

From Eq. (2.19), the total integral along the rectangle L, given the above, can be expressed
in terms of the residue in the right half plane. One then obtains the final result,

T
∑

n

1
ω2

n + ω2
= − 2

2πi

∫ i∞+ε

−i∞+ε
f(z)dz =

1
2ω

[
1 +

2
eβω − 1

]
. (2.23)

The first expression of the right hand side, is the pure vacuum contribution, i.e the zero-
temperature part. The second part is

1
ω

nb(ω, T ), (2.24)

where nb is the boson distribution function.
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2.2 Fermions

For fermions, it was stated in the introduction to this chapter, that the fermion fields in the
imaginary-time formalism had to be anti-periodic in β. This leads to the possible Matsubara
frequencies ωn = 2π(n + 1

2), n = 0,±1,±2... ±∞. This gives another G(z) over which the
argument in Eq. (2.9) is integrated. In fact, since the only difference is that the possible
frequencies are shifted by

[ωn]fermions − [ωn]bosons =
1
2
2πT, (2.25)

G(z) = tanh β
2 z. This function is also bounded for large real values of z, and the exact

same procedure as for the bosons is followed to find the sum.

The integrand of the contour integral has the singularities shown in Fig. 2.5, and the con-
tour is taken along the same path as for the bosons in Fig. 2.4. It follows from Eqs. (2.22)
and (2.23) that

T
∑

n

1
ω2

n + ω2
=

−2
2πi

∮
dz

z2 − ω2

1
2
tanh

β

2
z =

1
2ω

tanh
β

2
ω =

1
2ω

[
1− 2

eβω + 1

]
.(2.26)

Here, the first part is to be interpreted as the first part in the expression for bosons. The
second part is

1
ω

nf (ω, T ), (2.27)

where nf is the fermion distribution function.

Figure 2.5: A figure illustrating the singularities of the function 1
z2−ω2 tanh

β
2 z in the com-

plex plane.
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Chapter 3

The photon polarization tensor

In a system of propagating interacting particles at finite temperature, the particles acquire
somewhat different properties than they would have had if they were independent and freely
propagating in vacuum at T = 0. They can be looked upon as a set of freely propagating
quasiparticles. These quasiparticles are treated as though they were real particles, but as
implied have some interaction related properties incorporated. These properties can for
instance be such as charge screening or effective thermal masses.

As seen from the first chapter of this thesis, the quasiparticle models open up for the
possibility to describe collective behaviour of many-particle systems in a simple way, quite
successfully. These models are the modern description of the quantum many-body problem,
and is applicable to systems with a large number of degrees of freedom. Such systems are
far too complex to solve using ordinary quantum mechanics. It is in this field of physics,
where the number of particles, N , within a given system is large and varying, that the quasi-
particle descriptions are the most successful models when describing the collective physical
behaviour.

The collective modes of the system can be found directly from the poles of the effective
propagators of its constituents, sometimes obtainable from perturbation theory. In gauge
theories, there are as many particles as anti-particles. This means that the net chemical
potential is zero. Moreover, the masses of the bare gauge bosons are zero. This makes it
possible to characterize the collective excitations by two quantities, namely the coupling
constant g and the temperature of the system, T [12]. For perturbation theory to be ap-
plicable, the coupling must be small, i.e g 	 1. In QED the coupling is weak, but in low
temperature QCD perturbation theory breaks down due to the strong coupling. However,
at extremely high temperatures the theory can be treated perturbatively due to asymptotic
freedom.

To get aquainted with the finite temperature formalism, and to establish a foundation
of intuition when working with gauge theories, the better established and less complicated
theory, QED will be used.

Firstly, a gas of electrons, positrons and photons will be considered. The photon propagator
iDμν acquires corrections due to interaction processes both at finite and zero temperature.
This is where one goes from the description of bare particles, to physically observable par-
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ticles. The theory might not describe how the particles really look when they are separated
from all and everything and all interactions are shut off, but still; this is how the particles
behave in an interacting environment, thus how one observes them.

The photon propagator in an interacting environment recieves corrections due to inter-
action with the fermions. The correction is in the real-time formalism described by the
Feynman diagrams algebraically written as

iD(q)μν → iD(q)μν + iD(q)μλiΠλγiD(q)γν+

+iD(q)μλiΠλγiD(q)γδiΠδρiD(q)ρν + ........+

+iD(q)μλiΠλγiD(q)γδiΠδρiD(q)ρζ .........iΠξπD(q)πν , (3.1)

where iΠλγ is called the photon polarization tensor [4], or the self-energy tensor. The one-
loop diagram approximation to this tensor is simply expressed using the Feynman diagrams
in Fig. 3.1. The diagrams imply that a photon recieves corrections due to creation and
annihilation processes of virtual fermion-anti fermion pairs. To go from the first diagram

Figure 3.1: The free photon propagator, the second order correction and a correction of
arbitrary order.

in Fig. 3.1 to the second one, one includes a factor

iΠμν(q2) = −(−ie)2
∫

d4pTr
{

γμ i

p/−m
γν i

p/′ −m

}

= −e2

∫
d4p

(2π)4
Tr
{

γμ(p/+ q/+m)γν(p/+m)
}

[(p+ q)2 −m2 + iε] [p2 −m2 + iε]
, (3.2)

as the first correction in the series described in Eq. (3.1). Here, p is the four-momentum
running through the lower half of the bubble, p′ = p + q is the four momentum running
through the upper half and q is the external four momentum. This tensor is everything
one needs to find the corrected poles and other properties of the photon propagator, and
represents the fermion loops in Fig. 3.1. The interpretation of Eq. (3.1) is illustrated in
terms of its Feynman diagram in Fig. 3.1. It is simply the propagator plus the propagator
with one loop, two loops, three loops etc. etc., where all the diagrams are expressed using
the one-loop diagram in Fig. 3.1. I.e the two-loop diagram in Fig. 3.2 and higher order
contributions to the self-energy tensor are neglected.
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Figure 3.2: Two-loop contribution.

Firstly, to simplify the expression for the polarization tensor, the trace in the numerator of
Eq. (3.2) will be found explicitly. This is done by rewriting the traces via the relations [4],

Tr
{

γμγν
}

= 4ημν

Tr
{

γμγλγδγν
}

= 4(ημληδν − ημδηλν + ημνηλδ). (3.3)

All traces containing an odd number of γ-matrices vanish, since all the matrices γμ are
antisymmetric. Furthermore, the Feynman slash notation is defined as

p/ = γμpμ, (3.4)

where the notation indicates Einstein’s sum convention. Now, by using Eq. (3.3), the trace
in Eq. (3.2) can be written as

Tr{γμ(p/+ q/︸ ︷︷ ︸
r/

+m)γν(p/+m)} = Tr
{

γμr/γνp/
}
+m2Tr{γμγν}

= 4(pμrν − ημν(p · r −m2) + pνrμ)

= 4(pμqν + 2pνpμ − ημν(p · q −m2) + pνqμ). (3.5)

There are no obvious symmetries manifested by the integrand of Eq. (3.2). This makes the
integral very hard to solve directly. Since symmetric integration can simplify the expression
considerably, the denominator of Eq. (3.2) is rewritten by the use of the parametrization
[4],

1
AB

=
∫ 1

0

∫ 1

0
dxdy

δ(x+ y − 1)
[Ax+By]2

. (3.6)

This ”trick” is in many books referred to as Feynman’s trick, and is exploited here to find
a suitable change of integration variables, which again makes one able to solve the integral
in Eq. (3.2) by symmetric integration. By defining

A ≡ (p2 −m2 + iε),

B ≡ ((p+ q)2 −m2 + iε), (3.7)

and inserting this into Eq. (3.6), it follows after a little re-organizing of the terms in the
denominator that

1
AB

=
∫ 1

0

dx

((p+ (1− x)q)2 − a2)2
, (3.8)
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where
−a2 = (1− x)xq2 −m2 + iε. (3.9)

Now, making the substitution

Kα = pα + (1− x)qα ⇒ dDK = dDp, (3.10)

which is allowed without changing the limits in dimentional regularization (there is no
defined cutoff parameter in the system). This substitution makes the denominator of Eq.
(3.2) become ∫ 1

0

dx

(K2 − a2)2
. (3.11)

Furthermore, by inserting the parametrization of the denominator into Eq. (3.2) and recall-
ing the substitution defined by Eq. (3.10), the expression for the polarization tensor takes
the form

iΠμν = lim
D→4

De2

∫
dDK

(2π)4
(2KμKν − 2qμqνx(1− x)− ημν(K2 −m2 − x(1− x)q2))

(K2 − a2)2
,

(3.12)
which is much more convenient to work with than Eq. (3.2). Hence the notation implies
integration over x from zero to one.

3.1 Zero-temperature calculations

At T = 0, p0 takes on continuous values −∞ ≤ p0 ≤ ∞. Eq. (3.12) can therefore easily
be integrated by the use of some simple considerations and dimensional regularization. To
make the integral in Eq. (3.12) as easy to solve as possible one can introduce the integrals:

Jμν
2,D =

∫
dDK

(2π)D
KμKν

(K2 − a2)2

=
ημν

D

∫
K2

(2π)D
1

(K2 − a2)2

J2,D =
∫

dDK

(2π)D
K2

(K2 − a2)2

IN,D =
∫

dDK

(2π)D
1

(K2 − a2)N
(3.13)

Now, Eq. (3.12) can be written in terms of I2,D. The exact expression for IN,D is obtained
from the arguments:

IN,D =
∫ ∞

−∞
dK0

∫
dD−1K

(2π)D
1

(K2 − a2)N︸ ︷︷ ︸
f(K0)

= −
∫

3+3′
f(K0)dK0 −

∫
2+2′

f(K0)dK0

=
∫
−(3+3′)

f(K0)dK0 +
∫
−(2+2′)

f(K0)dK0. (3.14)
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Figure 3.3: A figure illustrating the positions of the residues and contours of the function
f(K0).

Fig. 3.3 is an illustration of how the path of integration over the function f(K0) can be de-
formed in the complex plane. The integral over the quarter of a circle in the third quadrant
as R →∞, goes to zero by the argument

=
∫

3
dK0

∫
dD−1K

(2π)D
1

(K2 − a2)N
.

= lim
R→∞

∫
dD−1K

(2π)D
i

∫ −π

−π
2

Reiθdθ
1

((R2e2iθ)− ( 	K2 + a2))N

� lim
R→∞

∫
dD−1K

(2π)D
i

∫ −π

−π
2

Rdθ
1

R2N

= 0, for N >
1
2
. (3.15)

This means that for N > 1
2 , a Wick rotation in the complex plane leaves IN,D invariant.

The line integral over K0 ∈ [−∞,∞] goes to iK0 ∈ [−∞,∞], where K0 ∈ R which means
that the path of integration is rotated by the angle π

2 in the complex plane (Along the
negative direction of the line composited by (2+2’) in Fig. 3.3). This is done to be able to
treat K2 as the negative length of an ordinary Euclidian vector (K ′2 = −((K0)2 + (Ki)2)),
instead of a Minkowski vector (K2 = (K0)2 − (Ki)2). One can now convert the integral
into a D- dimensional integral in spherical coordinates. The integral is converted according
to ∫ ∞

−∞
dK0

∫
dD−1K

(2π)D
1

(K2 − a2)N
= i

∫
dDK ′

(2π)D
1

(−K ′2 − a2)N

= i(−1)N
∫

dDK ′

(2π)D
1

(K ′2 + a2)N

= i(−1)N
∫

dΩ
∫

K ′D−1dK ′

(2π)D
1

(K ′2 + a2)N
, (3.16)

where the integral over dΩ is the D-dimensional angular integral.
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This integral is found by the use of[∫ ∞

−∞
dxe−x2

]D

=
∫

dΩ
∫

XD−1dXe−X2

π
D
2 =

∫
dΩ · 1

2
Γ(

D

2
)

⇒
∫

dΩ· = 2π
D
2

1
Γ(D

2 )
, (3.17)

where D is the number of dimensions. Now, the last integral in Eq. (3.16) can be written
as

IN,D = i(−1)N 2π
D
2

Γ
(

D
2

) ∫ K ′D−1dK ′

(2π)D
1

(K ′2 + a2)N

=
i(−1)N
(4π)

D
2

Γ(N − D
2 )

Γ(N)
(a2)

D
2
−N , (3.18)

where the last line was obtained by recognizing the Beta function [8]. By rewriting IN,D,
one obtains

IN−1,D =
N − 1

(D
2 −N + 1)

a2IN,D. (3.19)

Now, Eq. (3.13) can be expressed in terms of I2,D:

Jμν
2,D =

ημν

D
J2,D

J2,D =
∫

dDK

(2π)D
K2 − a2 + a2

(K2 − a2)2

= I1,D + a2I2,D

=

[
a2

(D
2 − 1)

+ a2

]
I2,D (3.20)

Furthermore, Eq. (3.12) can be expressed in terms of I2,D via the relations in Eq. (3.20)

iΠμν = lim
D→4De2

∫
dx
[
2
ημν

D

[
a2

(D
2 − 1)

+ a2

]
− 2qμqνx(1− x)−

ημν

[[
a2

(D
2 − 1)

+ a2

]
−m2 − x(1− x)q2

]
I2,D

= −De2
[
2qμqν − 2ημνq2

] ∫ 1

0
dxx(1− x)I2,D(q, x)

= −De2
[
2qμqν − 2ημνq2

] ∫ 1

0
dxx(1− x)

i

(4π)
D
2

Γ(2− D
2 )

Γ(2)
(a2)

D
2
−2. (3.21)
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Our world is assumed to contain roughly four dimensions, so the limit of the expression
above has to be taken as D approaches four. I.e:

lim
ε→0

i
[
Πμν(q2)

]
D=4−ε

= −4e2
[
2qμqν − 2ημνq2

] ∫ 1

0
dxx(1− x)

i

(4π)
4−ε
2

Γ(2− 4−ε
2 )

Γ(2)
(a2)

4−ε
2
−2

= −i
[
qμqν − ημνq2

] 8e2

(4π)2

∫ 1

0
dxx(1− x)

(
2
ε
− ln a2 + γe

)
︸ ︷︷ ︸

Π(q2)

, (3.22)

where γe is the Euler-Mascheroni constant [4], from the Taylor expansion

Γ
(ε

2

)
=
2
ε
− γe +O(ε). (3.23)

As ε → 0, this expression is clearly divergent due to the first term, which is proportional
to 1

ε . To interpret what this divergence means physically, the effective propagator given by
Eq. (3.1) must be found. By writing the polarization tensor on the form

Πμν(q2) = − [qμqν − ημνq2
]
Π(q2) (3.24)

Now, in Feynman gauge Eq. (3.1) becomes

iDμν(q) = −i
ημν

q2
− i

ημλ

q2
iΠλρ(−i)

ηρν

q2︸ ︷︷ ︸
Γλ

ν

−i
ημλ

q2
Γλ

ρΓ
ρ
ν + ..., (3.25)

where

Γρ
ν =

(
ηρ

ν −
qρqν

q2

)
Π(q2),

Γλ
ρΓ

ρ
ν = Γλ

νΠ(q
2)2. (3.26)

It follows from the last line that it is easy to rewrite Eq. (3.25) in terms of a geometric
series

iDμν(q) = −i
ημν

q2
− i

ημλ

q2
(Γλ

ν )(1 + Π(q2) + Π2(q2) + Π3(q2) + ....)

= −i
ημν

q2
− i

ημλ

q2
(
(

ηρ
ν −

qρqν

q2

)
(Π(q2) + Π2(q2) + Π3(q2) + ...)

= −i
1

q2(1−Π(q2))

(
ημν − qμqν

q2

)
− i

qμqν

q4
. (3.27)

A propagator in general gauge is

iDμν = −i
1
q2
(ημν − (1− α)

qμqν

q2
). (3.28)

All physically observable quantities are gauge invariant. Gauge invariance is one of the
fundamental symmetries of the QED Lagrangian. From the generalized propagator, it
means that all terms proportional to (1 − α) disappear. This means that when one sums
over all qμqν when connecting the propagator to two vertices, this term should vanish
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and hence, the result would be the same if one neglected the term completely. Now, the
total propagator in Eq. (3.27), neglecting all terms that does not contribute to observable
quantities, can be written as follows

iDμν =
−i

q2(1−Π(q2))
ημν . (3.29)

Since Π(q2) does not have a singularity at q2 = 0, the propagator’s pole is unchanged thus
the photon remains massless [4]. Anyway, the divergence in Π(q2) due to the 1

ε term, is
not really a physically interesting quantity, because it is not observable. It simply means
that the observable charge of the electron is infinitely much larger than its bare charge.
However, a quantity that is measureable is the momentum dependency. To find an explicit
expression for this, one has to compare it to a reference frame. A suitable frame is the value
of Π when the photon is on its mass shell, i.e q2 = 0 [4]. This means that one renormalize
the problem, by requiring the condition that the effect should disappear when the photon
is on its mass shell. Now, one can define

Π(q2)→ F (q2) = Π(q2)−Π(0). (3.30)

Given this substitution, Eq. (3.22) becomes

iΠμν = −i
[
qμqν − ημνq2

] [
Π(q2)−Π(0)

]
,

= i
2α
π

[
qμqν − ημνq2

] ∫ 1

0
dxx(1− x)

(
ln

a2

m2

)
, (3.31)

where alpha is the fine structure constant [4], and a is defined in Eq. (3.9). Now, if one
looks at the scattering process in Fig. 3.4 where two electrons scatter via emission and
absorption of a photon, the expression contains a factor e for each vertex, and one photon

Figure 3.4: One of the Feynman diagrams illustrating electron-electron scattering.

propagating from one vertex to the other. If one now substitute the propagator with the
effective propagator one described by Eq. (3.29), one sees that

−ie2 ημν

q2
→ −ie2

q2(1− F (q2))
ημν . (3.32)

From this, it follows that the substitution gives rise to an effective momentum-related charge
e(q2), given by

e2 → e2

(1− F (q2))
. (3.33)
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Eq. (3.33) implies that the effective charge is momentum dependent which is very interest-
ing. In fact this effect has been measured at CERN. The effect is called charge screening
and is due to polarization of vacuum. Due to quantum fluctuations, vacuum behaves like a
dielectricum. This is because virtual electron-positron pairs pop out of vacuum and align
themselves in a way similar to the charges in a dielecticum thus screens the charge under
consideration.

From the validity of Wick rotation, one can see from Eq. (2.2) that this is in fact equivalent
to the zero-temperature part of the imaginary-time polarization tensor. This means that
at T = 0, given that the expression for the Feynman diagrams allows Wick rotation, the
zero-temperature part of the imaginary-time representation diagrams and the correspond-
ing real-time S-matrix elements are equivalent.

3.2 The zero-momentum polarization tensor at finite tem-
perature

At finite temperature, the phase-space integral is substituted according to Eq. (2.6), re-
membering that the formalism used in the expression requires Euclidean D-dimensional
vectors (imaginary-time formalism). From Eq. (2.6), one can see that the substitution from
real-time to imaginary-time Feynman diagrams is really nothing but a Wick rotation and
a discretization of p0. The latter turns Eq. (3.12) into the following expression,

iΠ00(q0 = 0, 	q → 0) = lim
D→4

−De2i

∫
dD−1K

(2π)D−1
T
∑

n

2ω2
n − (K2 +m2)
(K2 +m2)2

, (3.34)

where K2 = ω2
n + 	K2, and ωn = 2πT (n+ 1

2) since the fermion fields are anti-periodic in τ

with a periode β. 	K is defined to be the spatial-momentum vector. This can be simplified,
and one obtains

iΠ00(q0 = 0, 	q → 0) = lim
D→4

De2i

∫
dD−1K

(2π)D−1
T
∑

n

[
2ω2

(K2 +m2)2
− 1
(K2 +m2)

]
, (3.35)

where ω2 = 	K2 +m2. One can now define the sums,

T
∑

n

1
ω2

n + ω2
=

1
2ω

tanh
β

2
ω = I ′1

T
∑

n

1
(ω2

n + ω2)2
=

1
4ω3

[
tanh

β

2
ω − βω

2 cosh2 β
2 ω

]
= I ′2 = −

d

dω2
I ′1. (3.36)

By renaming the spatial momentum 	K → K, since this is the only variable left in the
integrand, Eq. (3.35) can be written as

iΠ00(q0 = 0, 	q → 0) = lim
D→4

De2i

∫
dD−1K

(2π)D−1

[
I ′1(K)− 2ω2I ′2(K)

]
= lim

D→4

De2i

(2π)D−1

∫
dΩ

∫
dKKD−2

[
β

4 cosh2 β
2 ω

]
. (3.37)
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This integral is not possible to solve in general, but by assuming zero fermion mass it turns
into

iΠ00 = lim
D→4 −

De2i

(2π)D−1

∫
dΩ

∫
dKKD−2

[
β

4 cosh2 β
2 K

]

= −4 e2i

(2π)3
4πβ

∫
dKK2 1

e
β
2
K + e−

β
2
K

= − i16πe2

(2π2)3
β

∫
dKK2 eβK

(eβK + 1)2
. (3.38)

Since the integral is solveable in exactly four dimensions using, D → 4 has been inserted
directly before integrating. One integration by parts and the substitution βK → x, leads
to

iΠ00(q0 = 0, 	q → 0) = − i4e2

π2β2

∫
dxx

∞∑
n=1

e−nx(−1)n+1

= − i4e2

π2β2

1
2
ζ(2)

= −i
1
3
e2T 2, (3.39)

where ζ(n) is Riemann’s zeta function. The only arguments of the zeta used in this thesis
is for n = 2 and 4. These are given by [5]

ζ(2) =
π2

6
, ζ(4) =

π4

90
. (3.40)

Furthermore, the transverse modes

iΠij(q0 = 0, 	q → 0) ∝ δij

∫ ∞

0
dD−1K

[
2

D − 1
K2I ′2 − I1

]
, (3.41)

can be found assuming zero fermion mass, by using the identity−I ′2 =
d

dK2 I ′1 ⇒
∫
2KI ′2dK =

−I ′1,

iΠij(q0 = 0, 	q → 0) ∝ δij

∫ ∞

0
dKKD−2

[
2

D − 1
K2I ′2 − I1

]

∝ δij

[∫ ∞

0
dK

1
D − 1

KD−12KI2 −
∫ ∞

0
KD−2I1dK

]
= 0. (3.42)

The last line followed from the second by integration by parts. Now, the corrected photon
propagator iDμν at finite temperature can be written down. The photon propagator in
the real-time formalism is essentially the expectation value of a product of two gauge-field
components on the form

iDμν = 〈Aμ(	p)Aν(	p)〉 = −i
ημν

p2
, (3.43)
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in the Feynman gauge. In the following chapters, it will be made clear that in the imaginary-
time formalism the propagator in Feynman gauge is

Mμν =
δμν

P 2
, (3.44)

where P is a Euclidean four-component vector and P0 = ωn. This means that the dressed
imaginary-time propagator in this gauge is

δμν

P 2
→ δμν

P 2
+

δμλ

P 2
Πλρ δρν

P 2
+ ... =

δμν

P 2 +m2δμ0δν0δωn0
, (3.45)

where
m2 = −Π00. (3.46)

From Eq. (3.43) and (3.45), it follows that the propagator of the gauge field component
A0 recieves a correction in form of a mass insertion. It results in Debye screening [3] of
the static electric field, thus it gives rise to a temperature-dependent, screened effective
potential between two point charges in a hot medium [3, 12]. Since all Ais are unaffected
by the medium effects, the magnetic field

	B = ∇× 	A, (3.47)

remains unchanged.

The modified propagator opens up for a quasiparticle description of QED at finite tem-
perature where infra red (IR) divergences (divergences given by poles as 	P → 0) related
to the zero Matsubara frequency mode are removed for the longitudinal photons, due to
the thermal mass generated by medium effects. This will be made clearer in the following
chapters. It is important to know that this is not a pure quantum effect as the charge
screening in the scattering amplitude at T = 0, but rather a statistical effect due to interac-
tion processes between the particles in a gas of gauge bosons and fermions. This means that
the interpretation of the fermion bubbles in Fig. (3.1) is at finite temperature real fermion
anti-fermion pairs rather than virtual ones. Consequently, if there is more than one flavour
of fermions in the gas Π00 → −Nf

1
3e2T 2, since one has to sum over all the fermion flavours

present. Since all the fermion masses were said to be negligible, this sum only contributes
with a factor Nf . The reason for why the fermion masses are negligible, is because they are
always associated with the fermion Matsubara frequencies, which for fermions are always
nonzero due to the fact that the fields have to be anti-periodic in τ . This means that as
long as the fermion mass mf 	 T , it can be neglected.
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Chapter 4

The partition function

The partition function can be obtained, using a path integral representation of field theory
similar to the S-matrix expansion. By representing it in this way, the corrections follow
naturally by expansion in terms of Feynman diagrams. First, the imaginary-time approach
will be justified by starting with the transition amplitude defined by the matrix element

〈φ′|e−iĤ t
2 e−iĤ t

2 |φ〉 = 〈φ′|φ (t)〉, (4.1)

where Ĥ is the Hamiltonian operator, and the vectors |φ〉 are eigenvectors of the field oper-
ator φ̂(x) defined below in Eq. (4.4). The right hand side follows from the time-dependent
Scho dinger equation. Eq. (4.1) is defined as the amplitude for a system to change from
state |φ〉 to |φ′〉 during a time interval t, without any information about which intermediate
states the system has occupied during the time interval itself.

To make an interesting theory out of this amplitude, from a thermodynamic point of view,
a set of convenient basis vectors must first be defined for the operators involved.

First the eigenvalue problem

φ̂(xi, 0)|φ(xi)〉 = φ(xi)|φ(xi)〉, (4.2)

will be considered. Here φ̂(xi, 0) is the time-independent Schrødinger-picture field operator
at lattice point xi in space. This implies that the vectors |φi〉 that satisfy Eq. (4.2) and
generate the eigenvalues φ(xi) form a complete set of eigenvectors for the field operator
at the point xi. These vectors can only describe the field at point i, and is not really
convenient to use for evaluating a system of finite size. However, if one goes to the equal-
time commutators [

φ̂(x1), φ̂(x2)
]
= 0, (4.3)

it is possible to define set of vectors |φ〉 that satisfies the equation

φ̂(x)|φ〉 = φ(x)|φ〉, (4.4)

where
|φ〉 ≡ |φ(x1)〉 · |φ(x2)〉 · · · |φ(xN )〉, (4.5)

since the vectors representing the states are independent of eachother and therefore find
themselves in different spaces, i.e they represent independent degrees of freedom. The

43
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complete set of vectors, satisfying Eq. (4.4) gives the relation of completeness,

∏
i

∫
dφ(xi)|φ〉〈φ| = 1, (4.6)

given that the states are properly normalized.

The Euler-Lagrange equations for a classical field system are obtained by finding the ex-
trema of the action,S, when varying the fields and their derivatives independentently [9]. S
is defined to be

S =
∫

dt

∫
d3xL, (4.7)

where L is the Lagrangian density. In a classical one-particle system, the extrema of the
action is found by varying the spatial coordinates (time dependent), and their time deriva-
tives. This gives a close relation between the spatial coordinates in a discrete system and
the fields in quantum field theory (in quantum theory the solutions of the classical Euler-
Lagrange equations are quantized by requiring the validity of the canonical commutators).

By looking at the properties of the coordinate operators in the Schrödinger picture (time-
independent operators), one can see that they are not parametrized by an internal param-
eter, i.e x,y and z are totally independent of all other quantities. One has the eigenvalue
problem [6]

x̂|x〉 = x|x〉, (4.8)

which leads to the relation of completeness∫
d3x|x〉〈x| = 1, (4.9)

which is a three dimensional integral. A field in the Schödinger picture has the relation of
completeness given by Eq. (4.6), which is an infinite dimensional integral. From this, one
can picture the analogy that the fields can be looked upon as coordinates in an infinite-
dimensional space. It can also be seen directly from Eq. (4.4) that there are an infinite
number of degrees of freedom in quantum field theory. This is because there is a complete
set of solutions for the eigenvalue problem in Eq. (4.4) at each point in space and as far as
one knows, space is continuous.

The same arguments as above are repeated for the eigenstates of the conjugate momen-
tum operator π̂(x), |π〉. The conjugate momentum is defined from the Lagrangian density
as

π(x) =
∂L

∂0φ(x)
. (4.10)

Only the results will be listen below ∫ ∏
i

dπi

2π
|π〉〈π| = 1, (4.11)

〈πa|πb〉 =
∏
x

δ(πa(x)− πb(x)). (4.12)
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Now, by dividing the total time interval t into N equal time intervals, i.e Δt = t
N , the

transition amplitude in Eq. (4.1) can be rewritten as follows

〈φ′|e−iĤΔte−iĤΔte−iĤΔt · · · e−iĤΔt|φ〉. (4.13)

Furthermore, for every exponential operator at time tn insert on the left side, a relation
of completeness for the conjugate momentum vectors, and on the right side a relation of
completeness for the field vectors. One can look at these operations as if one assumes
that the system is in state |φN 〉, |πN 〉 at time tn, then take the expectation value of the
exponential operator between the conjugate- and the field vector at this time, then project
the field vector at this time onto the congugate momentum vector at time tn−1, then do
the same procedure at this instantaneous point in time, before integrating over all possible
instantenous states at each point in time to find the total overlap.

These projections allows one to evaluate the exponential operators at a single point in time
[7]. All such operations leave the system invariant since a relation of completeness only
contributes with a factor 1, per definition. Assuming that |φ′〉 = |φ〉 = |φa〉, Eq. (4.1) de-
scribes the transition amplitude for a system to return to its initial state after a given time t.

By performing the operations described above, Eq. (4.13) given that |φ′〉 = |φ〉 = |φa〉,
becomes [7]

=
∫
〈φa|(

∏
i

dπi
N

2π
dφi

N )|πN 〉〈πN |e−iĤΔt|φN 〉

×〈φN |(
∏

i

dπi
N−1

2π
dφi

N−1)|πN−1〉〈πN−1|e−iĤΔt|φN−1〉〈φN−1| · ··

· ·
∏

i

dπi
k

2π
dφi

k|πk〉〈πk|e−iĤΔt|φk〉〈φk| · ·

· ·
∏

i

dπi
1

2π
dφi

1|π1〉〈π1|e−iĤΔt|φ1〉〈φ1|φa〉. (4.14)

The expression is completely equivalent to Eq. (4.1) given that |φ′〉 = |φ〉, because the only
difference between the two representations is that Eq. (4.14) is Eq. (4.1) multiplied by one.

From quantum mechanics (QM) one has the relation [6]

〈x|p〉 = eipx. (4.15)

As previously stated, the Lagrangian formalism implies a close relation between the coor-
dinates in single-particle theory and the fields in field theory. Moreover, in field theory the
Lagrangian density, L, is varied with respect to the fields and their derivatives to find the
extrema of the action, while in discrete (single-particle) systems the Lagrangian itself L is
varied with respect to the coordinates and their time-derivatives. The relation between the
two is

L =
∫

d3xL. (4.16)

In a discrete system, the conjugate momentum is defined as

pi =
∂L

∂oxi
. (4.17)
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By looking at the two definitions above and Eq. (4.10), one can draw the conclusion
that the field theoretical analogy to the argument of the exponential in Eq. (4.15), is the
conjugate momentum at space-time point x times the corresponding coordinate represented
by the field at the same point integrated over all space, since the conjugate momentum is
represented as a density. One can easily see that it has to represent a density, since it is
defined from the Lagrangian density via Eq. (4.10). It is easier to see the relation when
writing it as follows

∂L

∂oxi(t)
· xi(t)︸ ︷︷ ︸

Mechanics

→
∫

d3x
∂L

∂0φ(x, t)
φ(x, t)︸ ︷︷ ︸

Field theory

, (4.18)

where the right hand side is summed over all the fields if there are more than one field
present in the theory. From this, and the fact that the states are eigenvectors of the time-
independent field and conjugate momentum operators, the projection of a field vector onto
a conjungate-momentum field vector becomes [3],

〈φk+1|πk〉 = ei
∫

d3xπk(x)φk+1(x). (4.19)

Moreover, as Δt → 0, the approximation

〈πi|e−iĤΔt|φi〉 � 〈πi|1− iĤΔt|φi〉 = e−iΔt
∫

d3xHi+
πi(x)φi(x)

Δt , (4.20)

can be made, where H is the Hamiltonian density (Note that this is no longer an operator,
but the expectation value of an operator). Now, Eq. (4.14) can be rewritten as

〈φa|e−iĤt|φa〉 =
∫ ∏

i,k

dφi
kdπi

k

2π
eiΔt

∑
k

∫
d3xπk

(φk+1−φk)

Δt
−Hkδ(φi

a − φi
1), (4.21)

where the deltafunction gives the constraint φ1 = φa, and the first projection in Eq. (4.14)
(to the left on the right-hand side), gives the constraint φN+1 = φa. Now, one has obtained
a smart simplification by inserting the complete sets of states. It simply opened up for the
possibility to evaluate the Hamiltonian at a simple point in time, in stead of doing the full
evaluation of the transition amplitude with time-dependent fields. Taking the continuum
limit of Eq. (4.21) as Δt → 0, leads to

Γ = 〈φa|e−iHt|φa〉 =
∫ ∏

i,k

dφi
kdπi

k

2π
ei
∫ t
0 dt

∫
d3xπ(x,t)

dφ(x,t)
dt

−Hδ(φi
a − φi

1)

=
∫ ∏

x,t

dφ(x, t)dπ(x, t)
2π

ei
∫ t
0 dt

∫
d3xπ(x,t)

dφ(x,t)
dt

−Hδ(φa(x)− φ(x, 0)) (4.22)

As stated previously, there is a restriction in Eq. (4.21) and that is φN+1 = φ1 = φa. In a
continuous theory, this is simply φ(x, 0) = φ(x, t) = φa(x).

From [3], the partition function for a system with net zero chemical potential can be written
as

Z = Tr
{

e−βĤ
}
=
∫ ∏

x

dφa(x)〈φa|e−βĤ |φa〉, (4.23)

When looking at the first expression in Eq. (4.22), one can see that there is a remarkable
resemblance between the transition amplitude and Eq. (4.23). If one let it → τ = β in
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the first expression for Γ in Eq. (4.22), and integrate over all possible states |φa〉 they are
in fact equivalent. The functional representation of the transition amplitude must then
be equivalent to the partition function if the same substitutions are made. One can just
let the integration variable in the exponent i

∫ t
0 dt → ∫ β

0 dτ and integrate over all possi-
ble configurations |φa〉. This only changes the constraints in the functional representation.
From before, they were φ(x) = φ(x, 0) = φa(x, t). Now after integrating over all φ(x), and
changing the time variable they become φ(x, 0) = φ(x, β) hence the only constraint left is
that the fields must be periodic in β, thus they must not be in a specific state |φa〉 at the
imaginary times τ = 0, τ = β.

From the above, one obtains the general formula

Z =
∫ ∏

x

dφa(x)Γ

=
∫

periodic

∏
x

dφ(x, τ)dπ(x, τ)
2π

e
∫ β
0 dτ

∫
d3xπ(x,τ)

dφ(x,τ)
−idτ

−H, (4.24)

for the partition function, where the delta function in Eq. (4.22) was integrated over to give
the periodic constraint. The most important formula for further calculations in this thesis
is finally identified, and only some simplifications are required to make it more compact
and elegant.

From Eq. (4.14) it can be seen that the functional integration over the πs does not have
any constraints, thus they are simply integrated over all space. This observation leads to
the conclusion that the π dependencies in Eq. (4.22) can be integrated over and removed
from the functional representation of the partition function, i.e

H =
1
2
(π)2 +

1
2
(∇φ)2 +

1
2
m2φ2 (4.25)

Z =
∫

periodic

∏
x,t

dφ(x, τ)dπ(x, τ)
2π

e
∫ β
0 dτ

∫
d3xπ(x,τ)

dφ(x,τ)
−idτ

−( 1
2
π2+ 1

2
(∇φ)2+ 1

2
m2φ2), (4.26)

Returning to the case where the time was discrete, only now it is not the time, but the
imaginary-time variable τ which is discretizised, i.e φ(x, τi) ≡ φi, one obtains

Z =
∫

periodic

∏
x,i

dφ(x)idπ(x)i
2π

eΔτ
∑

i

∫
d3xπ(x)i

φ(x)i+1−φ(x)i
−iΔτ

− 1
2
(π(x)2i +(∇φ(x)i)

2+m2φ(x)2i ). (4.27)
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Furthermore, let the space under consideration extend a cubic box of total volume L3. This
box is again divided into M3 infinitesimal boxes of volume a3 at the lattice points denoted
by k. The time (imaginary-time) is as before divided into N intervals. Moreover, the field
at lattice point k at ”time” i is denoted by φk

i .

Z =
∫

periodic

⎡
⎣∏

k′,i′
dφk′

i′
dπk′

i′

(2π)

⎤
⎦ eΔτ

∑
i,k a3πk

i (−i
φk

i+1−φk
i

Δτ
)− 1

2
(πk

i )2)−G(φi
k),

=
∫

periodic

∏
k′,i′

dφk′
i′ e
−Δτa3

∑
i,k G(φi

k)×

×(dπk′
i′ )

2π
e
−Δτ

∑
i,k a3

⎡
⎣ 1

2

⎛
⎝πk 2

i −2iπ 1
Δτ

(φk
i+1−φk

i )−
(

(φk
i+1−φk

i )

Δτ

)2
⎞
⎠+ 1

2

(
(φk

i+1−φk
i )

Δτ

)2
⎤
⎦
,(4.28)

Z =
∫

periodic

∏
k,i

dφk
i e
−Δτa3G(φi

k) · (dπk
i )

2π
e
−Δτa3

⎡
⎣ 1

2
(πk

i −i 1
Δτ

(φk
i+1−φk

i ))2+ 1
2

(
φk

i+1−φk
i

Δτ

)2
⎤
⎦
,(4.29)

where G(φ) is defined to be

G =
1
2
(∇φ)2 +

1
2
m2φ2. (4.30)

Now, by performing the linear shift πi
k
′ → Δτa3

(
πk

i − i
Δτ (φ

k
i+1 − φk

i )
)

Z =
∫

periodic

∏
k,i

dφk
i e
−Δτa3G(φi

k) (dπ′ki )
2π
√
Δτa3

e−
1
2
(π′

i
k)2−a3Δτ 1

2
(
(φk

i+1−φk
i )

Δτ
)2 (4.31)

= (
1√

2πΔτa3
)NM

∫
periodic

∏
k,i

dφk
i e
−Δτa3G(φi

k)e−a3Δτ 1
2
(
(φk

i+1−φk
i )

Δτ
)2

= Constant ·
∫

periodic

∏
x,τ

dφ(x, τ)e−
∫ β
0 dτd3x( 1

2(
∂φ
∂τ )

2
+ 1

2
(∇φ)2+ 1

2
m2φ2) (4.32)

=
∫

periodic

∏
x,τ

dφ(x, τ)e
∫ β
0 dτd3xL, (4.33)

since

L(it→ τ) = −
[(

∂φ

∂τ

)2

+
1
2
(∇φ)2 +

1
2
m2φ2

]
. (4.34)

All in all, Eq. (4.33) is the most commonly used form of Eq. (4.23) [3]. Moreover, it was
stated that since Eq. (4.23) implies integration over all possible configurations |φa〉, the
constraint does not require the field at τ = 0 and τ = β to take one specific value at the end
points. It simply requires the fields to be periodic in τ with a periode β. This means that
φ(x, 0) = φ(x, β). From now on, the point (x, τ) will from now on be incorrectly referred
to as the space-time coordinate x.
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The partition function is to be identified as a statistical distribution. All physical quan-
tities defined from it are averaged over the ensemble defined by the Lagrangian density.
This is why the normalization constant denoted by constant is irrelevant for all the physics
obtained by Z and is set to one in the last line of Eq. (4.33).

4.1 The partition function for a pure U(1) gauge theory

For a pure U(1) gauge theory defined by the Lagrangian L in Eq. (4.42), the partition
function is essentially defined by Eq. (4.33). What is meant by essentially, is that there
are some restrictions on the fields related to the fact that all Aμ are not independent of
eachother.

The observables in electro-magnetic quantum theory is the electric field E and the magnetic
field B. For each set of observables E and B there are within a given class of gauges, an
infinite number of Aμ which give the exact same observables [11]. This can be seen from
Eq. (4.36), since the Lagrangian density and also Maxwells equations [11] are invariant when
gauge transforming Aμ → Aμ+∂μα(x) [11]. Due to this, one must introduce a deltafunction
that single out one of the gauges which correspond to a set E and B, and simply factor out
the gauge volume as an irrelevant constant in front of the partition function.

This is in [4] taken care of by introducing a gauge condition as an integral over a deltafunc-
tion. In this thesis, the generalized covariant Lorentz gauge is used througout the following
chapters. It states [4]

F = ∂μAμ − ω(x) = 0, (4.35)

where ω(x) is some arbitrary scalar function. This is referred to as a gauge fixing function
[4]. For the QED Lagrangian to be invariant under local U(1) phase transformations on
the Dirac fields, a corresponding transformation must be applied to the gauge fields. The
Lagrangian is invariant if the fields transform according to [10]

Ψ→ Ψ′ = eieα(x)Ψ

Aμ → Aμ′ = Aμ + ∂μα(x). (4.36)

This means that the gauge condition under such a transformation becomes

F ′ = ∂μAμ + ∂μ∂μα(x)− ω(x). (4.37)

Now, one can define the integral∏
x

∫
dα(x)δ(∂μAμ + ∂μ∂μα(x)− ω(x)). (4.38)

Since α(x) is some arbitrary scalar function, it does not have any constraints defining the
path of integration. It is simply integrated over all possible values in every point. This
means that both its derivative and second derivative can take on any value for all x. This
allows for the change of variables

α(x)′ = ∂μ∂μα(x)

dα(x)′ = det(∂μ∂μ)dα(x)
(4.39)
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This leads to ∏
x

∫
dα(x)′

1
det(∂μ∂μ)

δ(∂μAμ + α′ − ω(x)) =
1

det(∂μ∂μ)
. (4.40)

Now, Eq. (4.33) can be given the gauge constraint by inserting a simple integral which value
is unitary.

Z =
∫

periodic

∏
xλ

dAλ(x)dαδ(∂μAμ + ∂μ∂μα(x)− ω(x)) det(∂μ∂μ)e
∫ β
0 dτ

∫
d3xL. (4.41)

L is defined as

L = −1
4
FμνF

μν = −1
4
(∂νAμ − ∂μAν)(∂νAμ − ∂μAν). (4.42)

By performing a linear shift on the gauge fields

Aμ → Aμ − ∂μα(x), (4.43)

all Aμs related to one-another by the linear shift leaving the observables invariant, are
substituted with the new field Aμ, over which one integrate. Now, one obtains the partition
function

Z =
∫

periodic

∏
xλ

dα(x)dAλ(x)δ(∂μAμ − ω(x)) det(∂μ∂μ)e
∫ β
0 dτ

∫
d3xL, (4.44)

where the integral over all α(x) only contribute with an infinite normalization constant,
which is to be interpreted as the gauge volume. If this was not done, too many degrees
of freedom would have been counted for the system, since it is the observables that are of
interest. Moreover, the deltafunction takes care of the gauge-fixing and makes the system
obey the Lorentz gauge condition.

To make this equation consistent with Eq. (4.23), the substitution A0 → iA0 must also
be made according to [3]. An alternative approach to justify this substitution will be made
below. It follows from the argument that the imaginary-time Lagrangian density must be
equal to the negative real-time Hamiltonian density (−H(t = τ) = L(t = −iτ)) when
making the substitution it → τ and expressing the conjugate-momentum fields πμ in the
Hamiltonian density in terms of the fields Aμ. For a scalar field theory, the it → τ substi-
tution was the only thing one had to do, but in a U(1) gauge theory, some other peculiar
substitutions must be made. By looking at Eq. (4.33), the exponent is

L(t = −iτ) = −1
2

[
(∂τφ(x))2 + (∇φ)2 +

1
2
m2φ2

]
. (4.45)

The Hamiltonian describing such a system is

H(t) = 1
2
[
π2 + (∇φ)2 +m2φ2

]
(4.46)

In the canonical formalism,

π =
∂L
∂0φ

= ∂0φ. (4.47)
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The Hamiltonian becomes

H(t = τ) =
1
2
[
(∂τφ)2 + (∇φ)2 +m2φ2

]
= −L(iτ). (4.48)

To make the QED Lagrangian consistent with this observation, one can start with the
Lagrangian density in the real-time formalism

L = −1
4
(∂νAμ − ∂μAν) (∂νAμ − ∂μAν) =

1
2
[
E2 −B2

]
H =

1
2
[
E2 +B2

]
, (4.49)

where

Ei(t) = −(∂0A
i +∇iA

0)

Bi(t) = εijk∂jA
k (4.50)

It follows from these relations, that

−Ei 2(t = −iτ) = (−i∂τA
i −∇iA

0)(i∂τA
i +∇iA

0) =
A0→iA0Ei 2(t = τ). (4.51)

Again, from this it follows that

L(t = −iτ, A0 = iA0) = −H(t = τ). (4.52)

This is why the substitution A0 → iA0 must be made. Now, according to [3, 12], the
integral

Z =
∫

periodic

∏
xμ

dAμ(x)δ(F )det

(
∂F

∂α

)
e
∫ β
0 dτ

∫
d3xL, (4.53)

where F is the gauge fixing function in Eq. (4.37), is the proper expression for the partition
function. Moreover, they state that the conversion from the real-time Lagrangian is done
by making the substitutions

A0 → iA0, k0 → ik0. (4.54)

This is exactly the same expression as Eq. (4.44), and the substitutions from the real-time to
the imaginary-time Lagrangian are stated for in the Eqs. (4.24) and (4.45) through (4.52).
The substitution of the zeroth component of the four momenta is equivalent to requiring
periodicity in τ , after the substitution it → τ has been made.

Because my previous work in field theory was done in Minkowski space, all the calcula-
tions concerning differentials within the Lagrangian densities, and Feynman diagrams will
be calculated in the real-time formalism before converting back to the imaginary-time for-
malism.

Returning to the partition function in Eq. (4.44),

Z =
∫

periodic

∏
x

dAμ(x)δ (∂μAμ + ω(x)) det (∂μ∂μ) e
∫ β
0 dτ

∫
d3xL. (4.55)

These integrals are not at all easily calculable. Problems arise mostly due to the function
ω(x), which is an arbitrary function of the space-time coordinate x. As long as one does
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not know anything about the form of this function, it is trivial that the expression for the
partition function cannot be solved. To get rid of this problem, one can simply integrate
over all possible functions ω(x), assuming a gaussian distribution around ω(x) = 0 for all x
[4],

Z =
∫

periodic

∏
xμ

dAμ(x)dω(x)δ (∂μAμ + ω(x)) det (∂μ∂μ) e
∫ β
0 dτ

∫
d3xLe−

∫ β
0 dτ

∫
d3x

ω(x)2

2α ,

=
∫

periodic

∏
x

dAμ(x) det (∂μ∂μ) e
∫ β
0 dτ

∫
d3xL− (∂μAμ)2

2α . (4.56)

Now, by defining the action

S =
∫ β

0
dτ

∫
d3xL − (∂μAμ)2

2α
, (4.57)

where all fields contained in L are periodic, and transformed according to the previously
mentioned constraints.

For a free U(1) gauge theory in the real-time formalism, the Lagrangian density is defined
to be

L = −1
4
(∂νAμ − ∂μAν)(∂νAμ − ∂μAν)

= −1
2
((∂μAν)2 − ∂μAν∂

νAμ). (4.58)

From the construction of Euler-Lagrange equations defining the equations of motion for the
free gauge fields, the Hamilton principle assumes that the fields vanish at the boundaries
confining the region in which the fields are defined. This means that the fields vanish in the
limit x, y, z = ±∞. One must also remember the required periodicity in β. Taking these
statements into consideration, one integration by parts turns the action in Minkowski space
into

Seff = −12
∫ β

0
dτ

∫
d3xAλ(−∂μ∂μηαλ +

α− 1
α

∂α∂λ)Aα. (4.59)

For notational convenience, a matrix M will according to the previous expression be defined
as

M ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 A3

A0 −�+ α−1
α ∂0∂0 α−1

α ∂0∂1 α−1
α ∂0∂2 α−1

α ∂0∂3

A1
α−1

α ∂0∂1 �+ α−1
α ∂1∂1 α−1

α ∂1∂2 α−1
α ∂1∂3

A2
α−1

α ∂0∂2 α−1
α ∂1∂2 �+ α−1

α ∂2∂2 α−1
α ∂2∂3

A3
α−1

α ∂0∂3 α−1
α ∂1∂3 α−1

α ∂2∂3 �+ α−1
α ∂3∂3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.60)

where � = ∂μ∂μ = ∂2
t −

∑
i ∂

2
i . Now, to make the matrix consistent with the imaginary time

formalism, all 0’th components of the Minkowskian operators involved are made imaginary.



CHAPTER 4. THE PARTITION FUNCTION 53

According to [3], the right signs of the new imaginary variables are: ix0 → x4 ≡ τ, A0 → iA0.

M ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 A3

A0 �+ α−1
α ∂τ∂τ −α−1

α ∂τ∂1 −α−1
α ∂τ∂2 −α−1

α ∂τ∂3

A1 −α−1
α ∂τ∂1 �+ α−1

α ∂1∂1
α−1

α ∂1∂2
α−1

α ∂1∂3

A2 −α−1
α ∂τ∂2

α−1
α ∂1∂2 �+ α−1

α ∂2∂2
α−1

α ∂2∂3

A3 −α−1
α ∂τ∂3

α−1
α ∂1∂3

α−1
α ∂2∂3 �+ α−1

α ∂3∂3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.61)

where � now is represented by
� ≡ −∂2

τ − ∂2
i . (4.62)

Now, the effective integral can be written on the compact form

Seff = −12
∫ β

0

∫
d3xAλMλαAα. (4.63)

And
Z ∝

∫
periodic

∏
xμ

dAμ(x) det(�)e−
1
2

∫ β
0

∫
d3xAλMλ,αAα . (4.64)

SinceM is a symmetric matrix, it can be diagonalized by a simple orthogonal transformation
[2]. This means that the basis in which the four vector A is defined, can be transformed
by an orthogonal transformation into a system A′ where M is diagonal. By rewriting the
exponent of the partition function,

ATMA = ATOTOMOTOA, (4.65)

nothing is changed since all orthogonal matrices obey the relation OT = O−1. Furthermore,
by defining A’=OA, this can be rewritten as follows

A′TOMOTA′. (4.66)

By doing the proper transformation, the new vector A′ is expressed in terms of the eigen-
vectors of the matrix M , with the corresponding eigenvalues represented by the diagonal
matrix D. This turns the expression above into

A′TDA′. (4.67)

Since an orthogonal transformation does not change the measure dAμ(x), one can sim-
ply change the integration variables directly and hence,

∫
dAμ(x) = const

∫
dAμ′. If the

orthogonal matrix is in the subgroup SO(4), the constant is unitary.
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Now it follows directly that

Z ∝
∫

periodic

∏
xμ

dA′μ(x) det(�)e−
1
2

∫ β
0

∫
d3xAT′OTMOA′

=
∫

periodic

∏
xμ

dA′μ(x) det(�)e−
1
2

∫ β
0

∫
d3xAT′DA′

= det(�)
∫

periodic

∏
xλ

dA′λ(x)e
− 1

2

∫ β
0

∫
d3xA′

λDλλA′
λ , (4.68)

where, D is the diagonal matrix OT MO. Furthermore, the Fourier expansion of the fields
can be defined as [3]

A(x) =
√

1
βV

∑
n,�p

ei(ωnτ−�p·�x)An(	p)

A′(x) =
√

1
βV

∑
n,�p

ei(ωnτ−�p·�x)OTAn(	p)

=
√

1
βV

∑
n,�p

ei(ωnτ−�p·�x)A′
n(	p). (4.69)

To switch from integration over the field variables on the left-hand side of Eq. (4.69)
(From now referred to as the space-time representation ), to the ones on the right-hand side
(From now referred to as the energy-momentum representation), the differentials must be
conserved. This change of integration variables leads to the new differentials

∣∣dAμ(x)|2 =
∑
n,�p

∣∣∣∣dAμ(x)
dAμ

n(	p)

∣∣∣∣2 |dAμ
n(	p)|2

=
1

βV

∑
n,�p

|dAμ
n(	p)|2

dS2 =
∑

x

|dAμ(x)|2

=
1

βV

∑
x

∑
n,�p

|dAμ
n(	p)|

∑
x

|dAμ(x)|2 =
βV

ba3βV

∑
n,�p

|dAμ
n(	p)|2

∏
x

dAμ(x) =
∏
n�p

1√
ba3

dAμ
n(	p), (4.70)

where the last line followed from a discretization of space-time. Space is divided into
M3 = L3

a3 cubes of volume a3 and the imaginary-time into N = β
b intervals of length b. Thus

taking the continuous limit, the measure is conserved, and the prefactor only contributes
with an infinite normalization constant which of reasons that were previously mentioned,
does not affect the physics.



CHAPTER 4. THE PARTITION FUNCTION 55

Now, it is finally time to find the partition function

Z ∝
∫

periodic

∏
xμ

dA′μ(x) det(�)e−
1
2

∫ β
0

∫
d3xA′

ρ(x)DρρA′(x)ρ

∝
∫

periodic

∏
λn′ �k′

dA′λn′(	k′) det(�)e−
1
2

∑
n,�k

A′
λ−n(−�k)Dλλ(ωn,�k)A′

λn(�k)

∝
∏

λ,n,�k

∫
periodic

dA′λn(	k) det(�)e−
1
2
A′

λ−n(−�k)Dλλ(ωn,�k)A′
λn(�k)

∝
∏

λ,n,�k

1√
Dλλ(ωn,	k)

∫ ∏
x

dC(x)dC(x)e−
∫ β
0 dτ

∫
d3xC�C

= N
∏
n,�k

1√
det(D(ωn,	k))

∫
periodic

∏
x

dC(x)dC(x)e−
∫ β
0 dτ

∫
d3xC(x)�C(x). (4.71)

Since the determinant of a given matrix is invariant under orthogonal transformations, this
can be expressed as

Z = N · det(�) ·
∏
n,�k

1√
det(M(ωn,	k))

, (4.72)

where the Eqs. (4.61) and (4.69) define the matrix,

M(	k, n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2
n

α + k2
1 + k2

2 + k2
3 − (α−1)

α ωnk1 − (α−1)
α ωnk2 − (α−1)

α ωnk3

− (α−1)
α ωnk1 ω2

n +
k2
1

α + k2
2 + k2

3 − (α−1)
α k1k2 − (α−1)

α k1k3

− (α−1)
α ωnk2 − (α−1)

α k1k2 ω2
n + k2

1 +
k2
2

α + k2
3 − (α−1)

α k2k3

− (α−1)
α ωnk3 − (α−1)

α k1k3 − (α−1)
α k2k3 ω2

n + k2
1 + k2

2 +
k2
3

α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.73)
In Eq. (4.71), N is just some irrelevant normalization contant. Moreover C and C are
complex normalized Grassmann fields usually referred to as ghost-fields, introduced to define
the determinant [4],

det(�) =
∫

dCdCe−
∫ β
0 dτ

∫
d3xC(x)�C(x) =

∏
n,�k

(ω2
n + 	k2). (4.74)

The right hand side followed from the fact that the ghosts are defined in the same basis
as the gauge fields, to subtract the extra bosonic degrees of freedom. Since the ghosts are
bosonic fields with Grassmann commutators, they violate the laws of spin statistics [4].
Eq. (4.74) followed from the rules for Grassmann integration found in the references [4, 7].
Grassmann variables are anti-commuting quantities, i.e

{Ci, Cj} = {Ci, Ci} = {Ci, Cj} = {Ci, Cj} = {Ci, Ci} = 0. (4.75)
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Furthermore, if the ghost fields are properly normalized,∫ ∏
i

dCiCi = 1∫ ∏
i

dCi = 0 (4.76)

and from Eq. (4.75) it follows that higher powers of Cn
i = 0 for all n > 1. Now, the only

integral one needs to be able to determine the determinant in the partition function is

det(L) ≡
∫ ∏

i

dCidCie
−CaLabCb . (4.77)

This can be solved by considering the simple integral with two independent two-dimensional
Grassmann vectors∫

dC1dC1dC2dC2e
−CiCi =

∫
dC1dC1dC2dC2C2C2C1C1 = 1. (4.78)

By changing variables Ci = LijC ′j , and remembering the anticommuting relations, the
integral above becomes

Constant

∫
dC1dC ′1dC2dC ′2(L

21C ′1 + L22C ′2)C2((L11C ′1 + L12C ′2)C1

= ConstantdetL
∫

dC1dC ′1dC2dC ′2C
′
2C2C

′
1C1 = 1, (4.79)

where the determinant was obtained from anticommuting the variables into their proper
position. For this equation to be satisfied, i.e for the differential to be conserved, constant =

1
detL . By defining C ′a = LabCb, Eq. (4.77) can be written as

det(L) = detL
∫ ∏

i

dCidC ′ie
−CiC

′
i = detL. (4.80)

4.2 Final expression for the pure U(1) gauge theory partition
function

Finally, the partition function can be obtained. It becomes

Z = N
∏
n,�k

(ω2
n + 	k2)√

((ω2
n + 	k2))4

ln(Z) = −
∑
n,k

ln(ω2
n + 	k2) + constants, (4.81)

hence the zeroth order contribution is gauge invariant, despite the gauge variance of the
matrix M. This expression will be calculated explicitly in the following chapter. However,
in presence of fermions at finite temperature, the photon propagator has a correction which
results in an effective squared mass Πμν due to statistical effects. This was shown in the
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last section of chapter three. The polarization tensor only has one component that is
nonzero, namely Π00. This means that the field A0 is adressed a mass m = eT√

3
at finite

temperature. In this case, the matrix M recieves a correction, more prezicely M00 →
M00′ = M00 + m2δωn,0. This results a different contribution from the ”free” photons,
namely

ln(Z) = konst− 1
2

∑
n,k

[
ln(ω2

n + 	k2) + ln(ω2
n + 	k2 +m2δωn,0)

]
. (4.82)

For a large volume V , with periodic boundaries this becomes

ln(Z) = −V

2

∫
d3k

(2π)3

⎡
⎣∑

n

[2 ln(ω2
n + 	k2)] + ln(	k2)︸ ︷︷ ︸

P

+ ln(	k2 +m2)).

⎤
⎦ (4.83)

The term denoted by P does not contribute, since it only gives an infinitely large constant
without T or m dependence and is set to zero througout the entire report. It does nothing
more than to shift the vacuum energy by a constant and is not a measurable quantity.

The effect described above, where the longitudinal photons acquire thermal masses, does
not exist without the presence of fermions. It is only stated here to show that the photons
at finite temperature acquire thermal masses due to interactions with the fermions. This
again opens up for a quasiparticle description of the free photon partition function.
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Chapter 5

The QED partition function at
finite temperature

In QED, the photons are represented by the gauge field from the previous chapter. In this
chapter, the theory already worked out for the gauge field will be exploited to make the
calculations considerably simpler. The theory adopted is mostly the rules for Grassmann
integration in Eqs. (4.74)-(4.80), the transformations in Eqs.(4.65)-(4.70), and the final
expression for the free U(1) gauge field partition function in Eqs. (4.81)-(4.83).

When working at weak coupling, one can expand the expression for Z in powers of the
coupling constant. It was in the previous chapter shown that the partition function can be
obtained by modifying the transition amplitude for a system to return to its initial state
after a given time interval t. It is well known that at weak coupling, this transition ampli-
tude can be found by perturbation theory. The perturbation series describing the transition
amplitude can again be represented in terms of Feynman diagrams. In this chapter, it will
first be shown that the perturbative terms of the partition function also can be represented
by a series of Feynman diagrams. The only difference between the two theories are some
small modifications of the Feynman rules. Finally, a two-loop approximation of the QED
partition function will be found.

For a non interacting system of photons and fermions, the Lagrangian density is

L0 = Ψ(iγμ∂μ −m)Ψ− 1
4
FμνF

μν ≡ Ψ(i∂/−m)Ψ− 1
4
FμνF

μν , (5.1)

where as before,
Fμν = ∂νAμ − ∂μAν . (5.2)

The Lagrangian above does not contain any cross terms involving both A’s and Ψ’s. That
is why it is called a free theory. Both the fields can be treated as though they found them-
selves in two different spaces with no overlap. The Lagrangian is clearly invariant under
global U(1) phase transformations on the fermion fields, i.e it has a conserved charge current
[2, 4, 10].

However, to make the theory invariant under local phase transformations as described in
Eq. (4.36), the covariant derivative must be introduced. The interacting description of this
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theory is given by

L = Ψ(iγμ(∂μ − ieAμ)−m)Ψ− 1
4
FμνF

μν ≡ Ψ(iD/−m)Ψ− 1
4
FμνF

μν , (5.3)

where D = ∂μ − ieAμ [10]. This Lagrangian only describes a theory consisting of one
fermion flavour, but all the interesting calculations in this chapter are made by assuming
that the fermion mass is negligible on the temperature scale. In this limit, the final result
is obtained from the single-flavour contribution, by multiplying the latter with the extra
degrees of freedom one obtains from introducing additional flavours.

The Lagrangian can then be written in terms of a noninteracting part L0 and an inter-
acting part as follows

L = L0 + eΨγμAμΨ. (5.4)

As is well-known, e 	 1 thus the introduction to this chapter implies that the last term
can be treated perturbatively.

5.1 The partition function for gas consisting of free fermions
and photons

By returning to the previous chapter, adopting Eq. (4.64) and re-introducing the ghost
fields, the non interacting partition function becomes

Z0 =
∏
x

∫
dC(x)dC(x)dΨ(x)dΨ(x)dAμ(x)×

e
∫ β
0 dτ

∫
d3x(− 1

4
FμνF μν− 1

2σ
(∂μAμ)2−C(x)�C(x)+Ψ(iγμ∂μ−m)Ψ), (5.5)

underlying that the notation implies∏
α,μ

∫
dΨα(x)dΨα(x)dAμ(x) ≡

∫
dΨ(x)dΨ(x)dAμ(x), (5.6)

where α is the spinor index.

The part of this expression containing the gauge fields can be represented by the ma-
trix M(ωn, 	p) defined by Eq. (4.73). This representation will be adopted here to make the
notation more compact. Moreover, the change of integration variables from the space-time
representation of the fields, to the energy-momentum representation will be made. This is
consistent with Eq. (4.70).

The partition function can then be written as follows

Z0 = det(�)
∏
n,�p

∫
dAμn(	p)e−

1
2
Aμ−n(−�p)MμνAνn(�p)

∫
dΨn(	p)dΨn(	p)eΨn(�p)(p/−m)Ψn(�p), (5.7)

where the Fourier expansions of the spinor fields used are

Ψ(x) =
1√
βV

∑
n,�p

e−i(ωnτ−�p·�x)Ψn(	p)
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Ψ(x) =
1√
βV

∑
n,�p

ei(ωnτ−�p·�x)Ψn(	p). (5.8)

From these Fourier expansions and Eq. (5.7), one can also see that p/ must be redefined by
substituting γ0 → iγ0 and p0 = ωn to make the notation consistent with the actual meaning
of the expression.

The first integrals over Aμ, C and C in Eq.(5.7) were according to Eq. (4.81) found to
be

Zg =
∏
n,�p

(ω2
n + 	p2)√

det(M(n, 	p))
. (5.9)

Furthermore, the second term in Eq. (5.7) is evaluated in the following way: Ψ and Ψ are
two independent Grassmann fields due to their anti-commutation relations. The rules for
Grassmann integration are stated in Eq. (4.80). The fermion term in Eq. (5.7) looks quite
messy, but one can make a convenient substitution of variables as was previously made
to obtain Eq. (4.80). When transforming Ψn(	p), the ”Grassmann Jacobian” follows from
Eq. (4.80)

−(p/−m)Ψn(	p) = ηn(	p)⇒ dΨ→ det(−(p/−m))dηn(	p). (5.10)

This, and the fact that it follows from integration over normalized Grassmann variables
that

∫
dαdαe−αα = 1, makes the last term in Eq.(5.7) become∏

n,�p

∫
dηn(	p)dηn(	p)e−ηn(�p)ηn(�p) det(−(p/−m)) = −1D det(p/−m) = det(p/−m). (5.11)

Hence, the negative sign in the determinant does not affect the answer, since it can be
pulled outside the determinant and multiplied with itself an even number of times, since all
γ’s are even-even matrices and D represents their dimension.

This means that for a system consisting of freely propagating photons and Nf flavours
of fermions, the partition function is given by the expression

ln(Z0) =

⎡
⎣∑

n,�p

ln(ω2
n + 	p2)− 1

2
ln(det(M(n, 	p)))

⎤
⎦+Nf

∑
{n},�p

ln(det(p/−m)), (5.12)

where the first two and the last term requires bosonic and fermionic values of p0 = ωn,
respectively. Fermionic and bosonic sums will from now on be denoted by∑

{n}∑
n

, (5.13)

respectively.

In the limit mf → 0, this becomes

ln(Z0) = −
⎡
⎣∑

n,�p

ln(ω2
n + 	p2)

⎤
⎦+Nf

4
2

∑
{n},�p

ln(ω2
n + 	p2), (5.14)
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where the factor 4
2 followed from the determinant det(p/) =

√
det(p/2). Since all the follow-

ing functional integrals assumes one flavour of fermions for notational simplification, the
partition function is

Z0 =
∏
n,�p

(ω2
n + 	p2)√

det(M(n, 	p))
det(p/−m), (5.15)

and will be used in the perturbative expansion later in this chapter.

5.2 Two-loop approximation to the QED partition function

Now, as stated previously γ0 is now defined to be iγ0. This means that the term involving
A0 in the interacting part of the Lagrangian does not require the substitution A0 → iA0 as
is neccessary in the non-interacting part, since A0 is associated with γ0.

By looking at Eq. (5.7), it is easy to se that if one adds the interaction term in the La-
grangian as described in Eq. (5.4), the complete partition function takes the form

Z =
∏
x

∫
dC(x)dC(x)dΨ(x)dΨ(x)dAμ(x)×

e
∫ β
0 dτ

∫
d3x(− 1

4
FμνF μν− 1

2σ
(∂μAμ)2−C(x)�C(x)+Ψ(iγμ∂μ−m)Ψ)×

exp
[
e

∫ β

0
dτ

∫
d3xΨ(x)A/Ψ(x)

]
. (5.16)

By expanding the last part in terms its Taylor series, the above is equivalent to

Z =
∏
x

∫
dC(x)dC(x)dΨ(x)dΨ(x)dAμ(x)×

e
∫ β
0 dτ

∫
d3x(− 1

4
FμνF μν− 1

2σ
(∂μAμ)2−C(x)�C(x)+Ψ(iγμ∂μ−m)Ψ)×∑

l

el

[∫ β

0
dτ

∫
d3xΨ(x)A/Ψ(x)

]l
1
l!

=
∏
n,�p

∫
dCn(	p)dCn(	p)dΨn(	p)dΨn(	p)dAnμ(	p)

[
e
∫ β
0 dτ

∫
d3xL0+LI

]
⇒ ln(Z) = ln(Z0) + ln(ZI),

ln(ZI) = ln

⎛
⎝1 + 1

Z0

∑
l

el

l!

∏
n,�p

∫
dCn(	p)dCn(	p)dΨn(	p)dΨn(	p)dAμn(	p)eS0 · Sl

I

⎞
⎠ ,

(5.17)

where S = S0 + SI =
∫ β
0 dτ

∫
d3x[L0 + LI ].

Since S0 only contains second-order terms in the gauge field, i.e eS0 is symmetric around
Aμ = 0, the only terms contributing to the correction are even powers of SI . All other
terms vanish by (anti-) symmetric integration. The lowest order contributions are then of
second order in the coupling, e. Now, the logarithm in Eq. (5.17) is expanded in terms of
its Taylor series. The second order correction to the partition then becomes

ln(ZI) =
e2

2
〈(Ψ(x)A/(x)Ψ(x))2〉. (5.18)
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The latter means the mean value of S2
I over the distribution

1
Z0

eS0 generated by the unper-
turbed ensemble.

By inserting explicit expressions for all the terms contained in Eq. (5.18), it follows that

ln(ZI) =
1
Z0

⎡
⎣∏

n′,�p′

(ω2
n′ + 	p′

2
)

⎤
⎦∫ dτ1dτ2

∫
d3x1d

3x2×

∏
n,�p

∫
dΨn(	p)dΨn(	p)dAμn(	p)×

eS0Ψα(x1)A/α,β(x1)Ψβ(x1)Ψδ(x2)A/δ,ρ(x2)Ψρ(x2). (5.19)

The indices on the Ψs and A/s are spinor indices and are as previously stated left out on the
differentials, due to notational simplifications. They are, however, explicitly written on the
fields in the integrand to obtain correct matrix multiplication. The integrations over the
ghosts were made directly, since they are not involved in the interaction term.

By integrating over the space-time coordinates and once again change integration variables
from space-time to the energy-momentum representation of the fields, this becomes

ln(ZI) =
1

Z0βV

⎡
⎣∏

n′,�p′
(ω2

n′ + 	p′
2
)

⎤
⎦ ·∑

ni,�pi

∏
n,�p

∫
dΨn(	p)dΨn(	p)dAμ n(	p)eS0×

Ψαn1(	p1)A/αβn2(	p2)Ψβn3(	p3)Ψδn4(	p4)A/δρn5(	p5)Ψρn6(	p6). (5.20)

The sum in the expression above goes over all n and 	p carrying indices. Moreover, it is not
indicated whether the sums are fermionic or bosonic due to notational convenience.

From the integration over the space-time coordinates, some constraints in form of delta-
functions arise. These constraints are n1+n2 = n3, 	p1+	p2 = 	p3, n4+n5 = n6, 	p4+	p5 = 	p6.
The physical interpretation of these constraints is conservation of four momentum.

Firstly the factor 1
βV comes from the normalization constants of the fields and the delta-

functions obtained when integrating over all space-time coordinates.

Moreover, to reduce this problem into smaller pieces, the integrals over all Aμ(	p) are cal-
culated first. Since all Aμ(x)s are real fields, Aμ−n(−	p) = Aμn(	p)∗. This means that the
integral over Aμ only contributes if n2 = −n5 and 	p2 = −	p5 in Eq. (5.20).

A useful integral to help evaluate Eq. (5.20) is

∑
n1, �p1

∫
dAμn(	p)e−

1
2
Aμ−n(−�p)MμνAνn(�p)Aλ−n1(−	p1)Aζn1(	p1) (5.21)

In the previous chapter, it was shown that by applying an orthogonal transformation to the
gauge field, one could diagonalize the exponent in the integral above. It was shown that
Aλ = OγλA′γ , diagonalized the problem given that the matrix O is chosen to transform A
in terms of the eigenvectors of the matrix M.
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By using this, the expression above becomes

∑
n1, �p1

OγλOδζ

∫
dA′μn(	p)e−

1
2
Dνν |A′

νn(�p)|2Aγ−n1(−	p1)A′δn1(	p1)

=
∑
n1,�p1

δδγOγλOδζ

(
−2 ∂

∂Dγγ(n1, 	p1)

)∏
νn�p

1√
Dνν(n, 	p)

= OγλOγζ [D−1(n1 	p1)]γγ
∏
νn�p

1√
Dνν(n, 	p)

=
∑
n1,�p1

[
OTD−1(ωn1 , 	p1)O

]ζλ ·
∏
n,�p

1√
det(M(ωn, 	p))

=
∑
n1,�p1

M−1ζλ
∏
n,�p

1√
detM(ωn, 	p)

. (5.22)

One can next evaluate the fermionic part of the expression in Eq. (5.20). By making
the substitution described in Eq. (5.10), one can define a useful integral for solving the
Grassmann integral over the Ψs in Eq. (5.20). By considering the integral: (This time the
spinor indices are written on both the differentials and fields, to make the mathematics
easier to handle. The spinor indices are always the left most index.)

∑
{n′},�p′

∏
n,�p,α

∫
dΨα,ndΨα,n(	p)eΨα,n(�p)(p/−m)αβΨβ,n(�p)Ψρ,n(	p′)Ψλ,n(	p′), (5.23)

one can in general find the contributions from the fermionic part of Eq. (5.20). These in-
tegrals are the only contributions from the fermionic part, since the rules for Grassmann
integration stated that integration over constants or higher powers of one spinor compo-
nents vanish. The only way for the spinors to contribute is then when they appear on the
form Ψn(	p)Ψn(	p).

By substituting

Ψn(	p) → ηn(	p)

Ψρn(	p) → −(p/−m)−1ρδηδn(	p), (5.24)

Eq. (5.23) becomes

−
∑
{n′},�p′

∏
α,n,�p

det(p/−m)
∫

dηαndηαn(	p)e−ηαn(�p)ηα(�p)ηρn′(	p′)(p/′ −m)−1λ,δηδn′(	p′)

=
∑
{n′},�p′

⎡
⎣∏

n,�p

det(p/−m))

⎤
⎦ (p/′ −m)−1λδδδρ

=
∑
{n′},�p′

⎡
⎣∏

n,�p

det(p/−m))

⎤
⎦[ 1

(p/′ −m)

]λρ

, (5.25)
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where the negative sign vanishes due to permutations of ηρn′(	p′) and ηδn′(	p′) to get them
into the proper integration order with the variable missing a bar first.

Now, Eq. (5.20) can be evaluated by using the Eqs. (5.22), (5.15) and (5.25). By nor-
malizing with Eq. (5.15) as required by Eq. (5.20), most of the terms appearing in Eqs.
(5.22) and (5.25) cancel from Eq. (5.20).

Now, two expressions for the correction can be found. When 	p1 = 	p3 and 	p4 = 	p6, one
obtains ∑

{n1},{n4}

∑
�p1,�p4

e2

2
(p/1 −m)βαγλ

αβ(p/4 −m)ρδγα
δρ

(
M−1

)λσ (0, 0). (5.26)

(M−1)λσ is recognized as the imaginary-time photon propagator, and ((p/−m)−1)ρδ as the
fermion propagator. This can be written as

ln(ZI)1 =
e2V

2β

⎡
⎣ ∑
{n1},{n2}

∫
d3p1

(2π)3
Tr
{

γλ(p/1 −m)−1
}∫ d3p2

(2π)3
Tr
{

γσ(p/2 −m)−1
}⎤⎦(M−1

)λσ (0, 0),

(5.27)

However, when 	p1 = 	p6 and 	p3 = 	p5, one obtains by proper permutation of the spinors, the
diagram

ln(ZI)2 = −e2V

2β

∑
{n1},{n2}

∫
d3p1d

3p2

(2π)6
Tr
{

γμ(p/1 −m)−1γν(p/2 −m)−1
}(

M−1
)μν (ωn1 − ωn2 , 	p1 − 	p2),

(5.28)

and the complete second order correction is

ln(ZI) = ln(ZI)1 + ln(ZI)2. (5.29)

Figure 5.1: The two contributions to the second order correction can be illustrated by these
two Feynman diagrams.

Now, one must recall from earlier in this chapter that the notation implied that γ0 was
renamed iγ0, and p0 = ωn. Furthermore, the four vector product p/ = iγ0ωn − γipi

1.
1Several articles let p0 = −ωn to get the product Euclidian. However, this does not change the physics

because ωn is summed over both positive and negative frequencies.
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When looking at the components inside M, one can see that all the diagonal elements are
in fact the Euclidian length of the four-vector P = (ωn, 	p). Consequently, since the new
anti-commutation relations for the gamma matrices are

{γμ, γν} = −2δμν , (5.30)

the metric is also Euclidean.

The theory is now established and here comes the justification of the previously used Wick
rotation, to get from the real-time Feynman diagrams to the corresponding imaginary-time
diagrams.

If one wants to express the diagrams in terms of the real-time gamma-matrices, one can
remove the imaginary is from the γ0s representing the vertices in Eq. (5.28). These can be
absorbed by M−1. By looking at the diagonal elements of M, which are the only elements
in Feynman gauge, one can see that this absoption leads to M−1 00 → −M−1 00. Fur-
thermore, the imaginary γ0s in the fermion propagator can be converted back by renaming
p0 → ip0. This however changes the matrix M and does not leave the expression invariant.
This is fixed by writing the propagator as M−1 → ημν

p2 where p is a Minkowski vector. When
p0 → ip0, it reproduduces M−1 when M−1 00 → −M−1 00.

Now, only the imaginary is in the real-time propagators and vertices must be accounted
for. There is always one i associated with each vertex in the real-time QED diagrams.
Each vertex is in vaccuum diagrams always associated with one fermion propagator. In the
sunset diagram this gives no i4 and no sign change. However, there is an i associated with
the Wick rotation for each indefinite four momentum. For the sunset diagram this gives a
factor −1. This factor is simply removed by placing −i in front of the matrix with which
the imaginary-time propagator was replaced and hence, it becomes the real-time photon
propagator. When calculating real-time Feynman diagrams, one always find iF where F
is the quantity the diagram represents. This removes the additional i emerging from the
photon propagator.

This means that the Feynman diagrams can be worked out in Minkowski space with the
real-time representations of the propagators, and then transformed back to the imaginary-
time formalism by a Wick-rotation.

The first diagram in Fig. 5.1, represents ln(ZI)1 and does not contribute according to
Furry’s theorem [10]. This means that the only contribution to the second-order correction
of the partition function is minus one half the second diagram, i.e

ln(ZI)2 = −e2V

β

∑
{n1},{n2}

∫
d3p1d

3p2

(2π)6
Tr{γμ(p/1 −m)−1γν(p/2 −m)−1} (M−1

)μν (ωn1 − ωn2 , 	p1 − 	p2),

(5.31)

in the imaginary-time representation.

From the information stated from the beginning of this chapter, until now, one can draw
the conclusion that the corrections to the partition function, represented by the series in
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Eq. (5.17), are nothing but a perturbative expansion represented by the sum of all pos-
sible connected Feynman diagrams, since the Eqs. (5.22) and (5.25) represent contrac-
tions of gauge fields and fermion spinors respectively when they are divided (normalized) by
Eq. (5.15).

Returning to Eq. (5.31) to finish the calculations of the two-loop approximation. Eq. (5.31)
will be rewritten in terms of the real-time matrices and operators, as stated previously.

By using the relations in Eq. (3.3), remembering the volume factors from the periodic
boundary conditions of the spatial momentum, this becomes

i ln(ZI) = i
(ie)2V 2

2βV

∫
d4p1d

4p2

(2π)8
Tr{γμ(p/1 −m)−1γν(p/2 −m)−1}×

1
(p1 − p2)2

[
ημν − (1− α)

(p1 − p2)μ(p1 − p2)ν
(p1 − p2)2

]

ln(ZI) ≡ −e2V 2

2βV

∫
d4p1d

4p2

(2π)6
A(p0i, 	pi). (5.32)

Here, A(p0i, 	pi) contains four expressions. The trace over two gamma matrices proportional
to m2, and the trace over four gamma matrices, both combined with the two factors within
the photon propagator. In a hot plasma, the fermion masses, mf 	 T so the fermion mass
is negligible. This reduces A(p0i, 	pi) down to

A = Tr{γμ(p/1)−1γν(p/2)−1} 1
q2
(ημν − (1− α)

qμqν

q2
), (5.33)

where q = p1 − p2. The gauge-dependent term is

R(p1, p2) = −(1− α)Tr{γμ(p/1)−1γν(p/2)−1 qμqν

q4
, (5.34)

where q = (p1− p2) and hence q0 is bosonic since the difference between two half integers is
an integer. It will now be shown that this term vanishes, thus the correction to the partition
function is gauge invariant within the class of Lorentz gauges. Since the partition function
is an observable physical quantity, it is important that it is gauge invariant just like other
physical observables.

By using the relations stated in Eq. (3.3), Eq. (5.34) becomes

R(p1, p2) = −4(1− α)
1

p2
1p

2
2q

4

(
2(q · p1)(q · p2)− q2(p1 · p2)

)
. (5.35)

To find the gauge-dependent contribution to the correction, this term is Wick rotated,
summed over all P 0

1 , P 0
2 and integrated over all (	p1, 	p2) as previously done. The operator

meaning sum over zero’th components and integration over the vector components will from
now on be denoted by

T 2
∑

p0, q0

∫
dD−1q

(2π)D−1

dD−1p

(2π)D−1
≡∑∫

p,q
(5.36)

with subscripts pointing out the variables over which the ”sum-integral” is taken. Further-
more, all Euclidean vectors will be denoted by large letters, i.e p1 → P1. This means that
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the gauge-dependent part of the correction is written as follows

βV
∑∫
{P1},{P2}

4(1− α)
1

P 2
1 P 2

2 Q4

(
2(Q · P1)(Q · P2)−Q2(P1 · P2)

)
. (5.37)

One can now change integration and summation variables from P1, P2 to P1, Q. In dim-reg,
which the definition of the sumintegral indicates, this is allowed without changing the limits
because there are no cut-off parameters limiting the integrals. From now on, if there is no
explicit notation indicating the dimension of the problem, it is underlying that D → 4. By
making the substitutions, one obtains

βV (1− α)
∑∫
{P1},Q

8
(Q · P1)2

P 2
1 (P1 −Q)2Q4

− 4
Q · P1

P 2
1 (P1 −Q)2Q2

− 4
(P1 −Q)2Q2

. (5.38)

This expression is not very convenient to work with, but by exploiting the relation

Q · P1 = −12
[
(P1 −Q)2 − P 2

1 −Q2
]
, (5.39)

it becomes

βV (1− α)
∑∫
{P1},Q

2
P 2

1

(P1 −Q)2Q4
+ 2

(P1 −Q)2

P 2
1 Q4

− 4
Q4

− 2
Q2P 2

1

− 2
(P1 −Q)2Q2

. (5.40)

The first and the last term in Eq. (5.40) are converted by substituting P ′1 = P1 −Q. Since
the sums over Q0 and P 0

1 goes from −∞ to ∞, P1 −Q can take all values for each Q thus
the variables P ′1 and Q can be treated as independent integration variables and the limits
are again unchanged due to dim-reg. The same argument is used to convert the integral.
Eq. (5.40) can then be written as follows

βV (1−α)

[∑∫
{P ′

1},Q

[
2
(P ′1 +Q)2

P ′21 Q4

]
+
∑∫
{P1},Q

[
2
(P1 −Q)2

P 2
1 Q4

− 4
Q4

− 2
Q2P 2

1

]
−∑∫

{P ′
1},Q

[
2

P ′21 Q2

]]
.

(5.41)
Now, by renaming P ′1 → P1 this becomes

βV (1− α)
∑∫
{P1},Q

[
4
(P 2

1 +Q2)
P 2

1 Q4
− 4

Q4
− 2

Q2P 2
1

− 2
P 2

1 Q2

]
= 0. (5.42)

The terms over which the sum-integral is taken cancel algebraically and hence the two-loop
correction to the partition function is gauge-invariant within the class of Lorentz gauges.

The only thing remaining is to explicitly work out the gauge-independent terms of the
correction in Eq. (5.32). By starting with

ln(ZI) = − e2

2V β
V 2

∫
d4p1d

4p2Tr{γμp/−1
1 γνp/−1

2 }ημν

q2
, (5.43)

Wick rotating and using the relations in Eq. (3.3), one obtains

ln(ZI) =
4βV

2
e2∑∫

{P1},{P2}
1

(P1 − P2)2P 2
2

+
1

(P1 − P2)2P 2
1

− 1
P 2

1 P 2
2

, (5.44)
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where the notation implies that both P1 and P2 are fermionic and Euclidian. By making
the substitution Q = (P1 − P2) in the first two terms, this becomes

ln(ZI) = 2e2βV

[∑∫
{P1},Q

[
1

Q2P 2
1

]
+
∑∫
{P2},Q

[
1

Q2P 2
2

]
−∑∫

{P1},{P2}

[
1

P 2
1 P 2

2

]]
. (5.45)

Now there are two integrals of particular interest, these are

χ(T ) =
∑∫
{P1}

[
1

P 2
1

]
= lim

D→4

∫
dD−1P

(2π)D−1

1

2
∣∣∣	P ∣∣∣ tanh

β

2

∣∣∣	P ∣∣∣ = E0 − 1
24

T 2

Ω(T ) =
∑∫

Q

[
1

Q2

]
= lim

D→4

∫
dD−1Q

(2π)D−1

1

2| 	Q| coth
β

2
| 	Q| = E0 +

1
12

T 2 (5.46)

where E0 = V
∫

d3P
(2π)3

1
2|�P | . This UV-divergent quantity is set to zero, because it only

contributes by shifting the vacuum energy. Since the vacuum energy is a non-observable
quantity, it can be redefined without changing the physics of the problem under considera-
tion.

This means that the final expression for Eq. (5.45) is

ln(ZI) = 2βV e2
[
2χ(T )Ω(T )− χ(T )2

]
= − 5V

288
e2T 3. (5.47)

As stated previously, one has to multiply the above with Nf number of fermion flavours to
get the total contribution. From this, and Eq. (5.14) one obtains the final expression

ln(Z) = −
∑
n,�p

ln(ω2
n + 	p2) +Nf

4
2

∑
{n},�p

ln(ω2
n + 	p2)− 5NfV

288
e2T 3.

= 2V
π2

90
T 3 + 4NfV

7
8

π2

90
T 3 − 5V

288
e2T 3. (5.48)

5.3 The complete two loop partition function

In this chapter, the bare propagator has been used to obtain an expression for the partition
function up to a two-loop approximation. The rest of this chapter will be made in the Eu-
clidean space, since some of the calculations are considerably simpler in the imaginary-time
representation.

When expanding the partition function to higher loop-order, one gets contributions go-
ing like

∝∑∫
Q

[
1

(Q2)N

]
(5.49)

from the bare photonic propagators. These contributions are clearly IR-divergent for all
N > 1, i.e they are divergent in the region where the spatial momentum goes to zero. These
divergences come from the zero bosonic frequency mode ωn = 0. When the logarithm in
Eq. (5.17) was expanded in terms of its taylor series, only the first order contribution was
taken into account. This leads to the fact that only connected Feynman diagrams con-
tributes to ln(Z), since all the others would be cancelled by equal terms with opposite signs
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in the higher order expansion of the logarithm [4].

First one can consider the ring diagrams in Fig. 5.2. They can be obtained by connect-
ing several of the one-loop diagrams in Fig. 3.1. They give rise to IR-divergences, due
to conservation of four momentum at each vertex. This means that the photon propaga-
tors give a factor 1

Q2 each. Furthermore, the fermion bubbles can be expressed in terms
of the polarization tensor Πμν , derived in chapter three. The cofactor in the first diagram

Figure 5.2: The IR divergent terms, where the bubbles represent fermion anti-fermion
propagators.

recieves a factor of 1 1
4! from the denominator of 〈S

4
i 〉

4! , and there are 3! ways to connect four
fermion-photon vertices to get equivalent diagrams. This means that the cofactor is 3!

4! . The
next cofactors are 5!

6! =
1
6 and 1

8 etc etc. The leading contributions from the zero bosonic
Matsubara frequency modes of these diagrams come from the divergeces where the photon
momentum 	Q→ 0. Assuming Feynman gauge, the sum of all these divergences is

Δ ln(Z) = lim
D→4

lim
�Q→0

V

∫
dD−1Q

(2π)D−1

[1
4
(M−1)λνΠνμM−1μδΠδλ+

+
1
6
(M−1)λνΠνμ(M−1)μδΠδρ(M−1)ρλ +++

]
Q0=0

= lim
�Q→0

∫
d3Q

(2π)3
1
4
ΠλμΠμλ

( 	Q2)2
+
1
6
ΠλμΠμρΠρλ

( 	Q2)3
+
1
8
ΠλμΠμρΠρηΠηλ

( 	Q2)4
+++ .(5.50)

According to Eq. (3.42), only one component of Πμν is nonzero in this limit, and that is the
longitudinal mode Π00 = −m2, as 	Q→ 0. By inspection, Eq. (5.50) becomes

Δ ln(Z) = lim
D→4

V

∫
dD−1Q

(2π)D−1

∞∑
n=2

1
2n

Π00n

	Q2n

= V

∫
d3Q

(2π)3

∞∑
n=2

1
2n
(−1)n m2n

	Q2n

= V

∫
d3Q

(2π)3

[
−1
2
ln(1 +

m2

	Q2
) +

1
2

m2

	Q2

]
. (5.51)

The last term is UV-divergent and vanishes by dim-reg, thus it does not contribute to
the correction. The first integral is convergent in dim-reg. Now one has summed an infi-
nite series of divergent terms, and found a convergent answer. Furthermore, by adopting
Eq. (5.14), the complete partition function, taking into account the contributions from these
leading order IR-divergences, is

ln(Z)
V

= −1
2

∑
n, �Q

[
ln(Q2) + ln(Q2 + δωn,0m

2)
]
+
4Nf

2

∑
{n}, �P

[
ln(P 2)

]− 5
288

e2T 3. (5.52)
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By comparing the contribution from the vector bosons in Eq. (5.52) to Eq. (4.82), this is
exactly the same result as one obtains when adding m2 to the zeroth component of the
inverse imaginary-time propagator M00. After this modification, the new propagator is
referred to as the dressed propagator. This however, changes the system and one is forced
to subtract the same quantity in some way. It can be obtained by modifying the Lagrangian
defining system by giving A0 an effective thermal mass, adding this term to the free part
of the Lagrangian, and subtracting it from the interacting part as follows

L0 → L0 +
1
2
m2A0A

0δωn,0

Lint → Lint − 1
2
m2A0A

0δωn,0. (5.53)

This leads to a modified real-time propagator in Feynman gauge, α = 1

iDμν(q) = − i

q2
(ημν)(1− δωn,0δμ0δν0)− i

q2 −m2
δωn,0δμ0δν0, (5.54)

and the modified imaginary-time propagator

Mμν =
δμ0δν0

P 2 +m2δωn0
+

δiμδiν

P 2
. (5.55)

Now, one must recall that the free Lagrangian required A0 → iA0, which means that the
signs in front of the mass terms in Eq. (5.53) are changed as one goes from the real-time
to the imaginary-time Lagrangian. The new free partition function now reproduces the
first sum in Eq. (5.52). This is a method constructed to resum all the IR-divergent terms
expressable by Π00 an insert them into the propagator as a thermal mass. Hence, the lon-
gitudinal photons have now become dressed due to medium effects, i.e they are treated as
quasiparticles, and the propagator can be referred to as the quasiparticle propagator.

The perturbation series one obtains from modifying the theory is

∑
n

〈Sn
int〉

1
n!

=
∑

n

1
n!

〈(m2

2
A0A0δωn0 + eΨA/Ψ

)n 〉
. (5.56)

Note that δωn0 only fixes the zeroth component of the bosonic four momenta related to A0.
By expanding Eq. (5.56), the first diagram appearing is of the order e3. It is

m2

2
〈A0A0δωn,0〉 = lim

D→4

1
2

∫
dD−1Q

(2π)D−1

m2

( 	Q2 +m2)
, (5.57)

and is the counterterm illustrated as the left most Feynman diagram in Fig. 5.3.

The second contribution comes from the second diagram in Fig. 5.3. It is the diagram
previously referred to as the sunset diagram, only now the photon propagator has been
modified. It gives explicitly

1
2
〈(eΨA/Ψ

)2〉 = − 5
288

e2T 3 − lim
D→4

1
2

∫
dD−1Q

(2π)D−1

m2

( 	Q2 +m2)
+ higher order, (5.58)
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Figure 5.3: The resummed propagator connected with a coupling strength m2, and the
sunset diagram with a resummed propagator. Resummed propagators are characterized by
a hard dark square.

where the fermion bubble has been Taylor expanded with respect to the external momentum
	Q when Q0 = 0. Since the zero matsubara frequency component of the dressed photon
propagators give most of their contributions when 	Q ∼ eT 	 T when Q0 = 0, and the
fermion momentum is always associated with T � 1 in the fermion propagators, integrals
involving both these momenta can be Taylor expanded in | �Q|

|�P | and
�Q
T , where 	P is the fermion

momentum. Only the lowest order contributions are accounted for in these considerations,
i.e where 	P − 	Q � 	P and P − 	Q � P when Q0 = 0. Mathematically, this can be seen by
considering the integral

∫
d3Pd3Q

[
1

(P 2
0 + 	P 2)(P 2

0 + (	P − 	Q)2)

][
1

( 	Q2 +m2)

]
. (5.59)

As P0 is always proportional to T , the first fraction is suppressed by the temperature. In
other words, it is small, but gives approximately the same values for all 	P 	 T , since the
value of the denominator is mostly fixed by T in this region. The last fraction gives most
of its contribution for small 	Q since m ∝ eT 	 T , and contributes much more to the total
value of the integral than the first fraction. Here, when both 	Q and 	P 	 T , the first
fraction remains close to unchanged since P0 is the dominating term, and one might as well
neglect 	Q from the first fraction, and the integrals over the two momenta decouple. When
	Q is of the order T , which it must be to affect the first fraction, the second fraction, thus
the integrand, is a factor e2 smaller than when 	Q ∼ eT , and the contribution from this
region is disappearingly small. Moreover, for 	P to affect the first fraction, it must be of the
order T . Given the above, the total value of the integral remains close to unchanged if one
makes the approximation 	P − 	Q � 	P in the region where both 	P and 	Q ≥ T , since the
second fraction suppresses the total contribution in this region. When 	Q ∼ eT and 	P ≥ T ,
it is trivial that 	Q can be neglected from the first fraction. This all means that a good first
approximation to such integrals, is to assume that 	P − 	Q � 	P and P0− 	Q � P0 not only for
small 	Q, but for all 	P and 	Q. It was previously done for the sunset diagram in Eq. (5.58).
When Taylor expanding the first fraction in Eq. (5.59) around 	Q = 0, the integral over 	Q
gives higher order contributions in m. Since m ∝ eT , this gives higher order expansions in
the coupling.

From the above, one can draw the conclusion that to lowest order in the coupling e, the
fermion bubbles decouple from the external momentum from the photon propagators when
the photon propagators’ Matsubara frequency is zero, thus they can be represented by the
polarization tensor Πμν(Q0 = 0, 	Q→ 0), from chapter three.
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The first contribution in Eq. (5.58) is equivalent to the previously calculated sunset di-
agram without dressed propagators. This is because the zero frequency mode had before
mass insertion been set to zero by dim-reg, thus this term emerges from the diagram when
Q0 �= 0. The second contribution from Eq. (5.58) is exactly canceled by the counterterm
in Eq. (5.57), and is due to the dressing of the zero Matsubara frequency mode of the
propagators. This contribution comes from the Q0 = 0 mode, and is the lowest order con-
tribution from the Taylor expansion of the fermion bubble. This means that the next order
contribution from these diagrams are higher order than e3 as implied by Eq. (5.58) thus
omitted. Hence, the complete two-loop partition function to the order e3 can be obtained
from the above.

First, one can see what happens to the previously mentioned three-loop ring diagram 2

which was in the case without dressed propagators, IR divergent. It was the zero Matsub-
ara frequency mode of this diagram, in the limit where the photon propagator momentum
went to zero, that caused problems.

Figure 5.4: The three loop diagram with resummed propagators.

With dressed propagators, it is the contraction illustrated in Fig. 5.4. Due to the combi-
natorics of the problem, it has as previously stated a factor of 1

4 in front. The contribution
now, when Q0 = 0, is

lim
D→4

1
4

∫
dD−1Q

(2π)D−1

(Π00)2

( 	Q2 +m2)2
+higher order = lim

D→4

1
4

∫
dD−1Q

(2π)D−1

(m2)2

( 	Q2 +m2)2
+higher order,

(5.60)
hence this term is no longer IR divergent. It simply results in a term proportional to e3 for
the leading order contribution.

2Only the previously IR divergent terms are considered here, to show that the divergences disappear.
The three loop discussed is not at all the only three loop diagram, but it is the only one giving rise to IR
divergences without dressed propagators.
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By going to second and third order in the action in Eq. (5.56), the contractions cracking
the leading order term in Eq. (5.60) are

2
8
δωn,0〈m4(A0A0)2〉 = lim

D→4

1
4

∫
dD−1Q

(2π)D−1

m4

( 	Q2 +m2)2
(5.61)

1
3!
3 · 2
2

δωn,0〈A0A0m
2(ΨA/Ψ)2〉 = lim

D→4

1
2

∫
dD−1Q

(2π)D−1

m2Π00

( 	Q2 +m2)2
+ higher order

= − lim
D→4

1
2

∫
dD−1Q

(2π)D−1

m4

( 	Q2 +m2)2
+ higher order,

(5.62)

where the prefactors are the combinatorical factors and the factors 1
n! emerging from

Eq. (5.56). Since 1
4 − 1

2 = −1
4 the e3 contribution from these two counterterms cancel

exactly the lowest order (e3) contribution from the three-loop diagram. Higher order ex-
pansions in the external momentum for the fermion bubbles in the three-loop diagram when
Q0 = 0 give higher order contributions in the coupling as implied by Eq. (5.60). This is also
stated below Eq. (5.59). Moreover, when Q0 �= 0 the three-loop diagram is of the order e4.

All the contributions from higher loop-order diagrams, proportional to e3, get cracked one
by one by corresponding counterterms, and hence the only contribution to order e3 comes
from the modified free Lagrangian.

Now, from Eq. (5.53) one can see that the only thing one has done when introducing the
thermal mass is to add zero to the Lagrangian in a clever way. This means that the theory
should remain unchanged, and one can draw the conclusion that no other e3 contributions
should arise since the IR divergences emerging from the ring diagrams in Fig. 5.2 are al-
ready summed up inside the modified free Lagrangian. After this recapitulation on higher
loop-orders, one can return to the two-loop and lower diagrams with dressed propagators.
It is now time to find the complete two-loop partition function to order e3 in the coupling,
which was the main purpose of this chapter.
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The only diagrams contributing to two-loop are the resummed sunset diagram and the
corresponding counterterm. Both are illustrated in Fig. 5.3. Moreover, the contractions
are calculated in the Eqs. (5.57) and (5.58). By taking into account the modified zeroth
order partition function, and these two diagrams, the two-loop partition function to order
e3 becomes3

ln(Z) =
∑

n

∫
V

d3P

(2π)3

[
−1
2
ln(P 2 + δωn,0m

2)− 1
2
lnP 2

]

− 5V
288

e2T 3 + 2Nf

∑
{n}

V

∫
d3P

(2π)3
[
ln(P 2)

]
= −1

2

∑
n

∫
d3P

(2π)3
[
2 ln(P 2)− δωn,0 ln(	P 2) + δωn,0 ln(	P 2 +m2)

]
+

+2V Nf

∑
{n}

∫ [
d3P

(2π)3
ln(P 2)

]
− 5V
288

e2T 3

= V

∫
d3P

(2π)3
−
[
2 ln(1− e−β|�P |) +

1
2
ln(	P 2 +m2)

]
− 5V
288

e2T 3+

+2V
∫

d3P

(2π)3
2 ln(1 + e−β|�P |)

= 2V
π2

90
T 3 + 4NfV

7
8

π2

90
T 3 +

V

12π
m3 − 5V ·Nf

288
e2T 3. (5.63)

From the partition function, one can obtain the pressure [5]. It simply becomes,

P =
T

V
ln(Z) =

π2

45
T 4(1 + 2Nf

7
8
) +

1
12π

m3T − 5Nf

288
e2T 4, (5.64)

where m2 = Nf

3 e2T 2. The next contributions to the pressure are of the order e4.

3d3P here implies dD−1P as D → 4.
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Chapter 6

QCD

Now, to transfer the already known expression for the partition function in QED to QCD
there are for the free theory just a few group-theoretical constants one needs to consider.
These appear because one goes from a U(1) gauge theory to an SU(3) gauge theory. There
are also some extra corrections due to the fact that the colour mediators, the gluons1, unlike
the neutral gauge boson, the photon, also carry colour. They are said to be colour charged.
This makes the gluons able to interact with each other. In a pure SU(3) gauge theory,
which is the theory that the rest of this thesis is about, the gluons do not only interact with
themselves, but also with the ghosts introduced to explicitly write out the meaning of the
determinant appearing in Eq. (4.53). The partition function will also here be found up to
two-loop.

In QCD, there is a diagram with one vertex (with four legs) and two loops that contribute,
in addition to the two-vertex diagrams, analogous to the sunset diagram from the previous
chapter. All these diagrams are illustrated in Figs. 6.4 through 6.6. They will be found
both with and without dressed propagators, neglecting all terms of higher order than g3.
Furthermore, the last section of the previous chapter told that the divergent terms of all
the higher-order diagrams could be summed using an effective mass, m. This will also be
done here, but this time an ansatz will be made instead of working out the polarization
tensor. The ansatz will be that the thermal mass goes like

m = mogT. (6.1)

Now, to find Z0 for a gas consisting of gluons and fermions, the Lagrangian defining a
non-abelian Gauge theory in presence of fermions, is the Yang-Mills Lagrangian [4]

L = −1
4
F a

μνF
μν
a +Ψ(iD/−m)Ψ (6.2)

where a is summed over the states within the colour octet. Consequently,

Dμ = ∂μ − igAa
μta3

F a
μν = ∂μAa

ν − ∂νA
a
μ + gfabcAb

μAc
ν , (6.3)

and ta3 are the matrices of the fundamental matrix representation of SU(3) (The Gell-
Mann matrices), and will from now on be denoted by ta. The spinors do not only have

1The gluons are the mediating bosons of the strong force.
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components in the regular spin and coordinate space, but also in colour space in which the
SU(3) matrices represent the operators defining the basis. Moreover, fabc are the structure
constants of the representation [4], just as the levi-civita tensor in SU(2). It is defined by[

ta, tb
]
= ifabctc, (6.4)

and all its properties used througout this chapter will be stated when they are used for
the first time. For now it is sufficient to see from the commutation relation between two
matrices that this tensor is totally antisymmetric.

When there are no fermions present, one can completely neglect the terms involving the
Dirac spinors. This turns the Yang-Mills Lagrangian into the following expression:

L = L0 − gfabc∂μAa
λAμbAλc − 1

4
g2
(
feabAa

μAb
λ

)(
fecdAμcAλd

)
,where

L0 = −14(∂μAa
ν − ∂νA

a
μ)(∂

μAaν − ∂νAaμ). (6.5)

L0 is very similar to the one in the U(1) gauge theory. The only difference is that they carry
an additional index, a. The upper left-most latin index on the vector field components Aa

ν

is the the index related to the Gell-Mann matrices thus it is a colour-space configuration
index. The action can from the above be written as follows

S = S0 + gS1 + g2S2. (6.6)

To make the Lagrangian invariant under local SU(3) transformations, i.e local rotations of
the spinors in colour space, the relation

Ψe−iαrtr(iD/′)eiαptpΨ = Ψ(iD/)Ψ (6.7)

must be valid for all αi(x) [4]. For this to be satisfied, the transformation neccessary on the
gauge field is

Aa
μ
′ta = eαrtr(Aata +

i

g
∂μ)e−αctc . (6.8)

Summed up, this means that the fields, when both fermions and gauge bosons are present,
must transform according to [4]

Ψ→ Ψ′ = eiαb(x)tbΨ

Aa
μ → Aa

μ
′ = Aa

μ +
1
g
∂μαa + fabcAb

μαc.

= Aa
μ +

1
g

[
∂μδac + gfabcAb

μ

]
αc, (6.9)

for the system to be invariant under local SU(3) phase transformations.

From the previous chapters, the partition function is essentially known to be the an ex-
ponential distribution of the action integral integrated over the volume extended by all the
independent fields. However, there are some constraints in SU(3) gauge theory similar to
the ones in U(1), related to the gauge conditions. These constraints appear again, be-
cause all the components of the gauge field are not independent. Just as in QED, all the
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fields related to one-another by a gaugetransformation should only be counted once, and
the total should be multiplied with the gauge volume. Moreover, the components within
the integrand must obey the gauge condition and the periodicity in β. This means that if
one integrates over the volume extended by all Aa

μ(x), and restrited by the constraints, one
obtains for the pure-glue partition function, an expression on the form

Z = N
∏
a

∫
constraints

DAaeS , (6.10)

where the measure DAa =
∏

x,μ dAa
μ(x). Notational simplification is crucial in QCD, and

the reader is assumed to be familiar with the notation from the previous chapters on QED.
All additional indices that do not appear in QED will be written explicitly.

Now, Aa
0 = iAa

0 for the same reasons as explained in QED. For the covariant Lorentz
gauge condition G = ∂μAaμ − ωa(x) = 0 to be valid under the gauge transformation de-
scribed in Eq. (6.9), G → G′ = ∂μAaμ + ∂μ

1
g

[
∂μδac + gfabcAb

μ

]
αc(x) − ωa(x) = 0 for all

functions αc(x). Now, one can do as before and evaluate the integral

∏
c

∫
Dαcδ(∂μAaμ + ∂μ

1
g

[
∂μδac + gfabcAbμ

]
αc − ωa(x)). (6.11)

First, one makes a change of integration variables from α to α′ by indentifying the matrix

Rac =
1
g
∂μ(∂μδac + gfabcAμb)

α′a = Racαc

1
det(R)

∏
a

Dα′a =
∏
a

Dαa. (6.12)

Now, Eq. (6.11) can be rewritten as follows

∏
a

∫
Dα′a det(R−1)δ(∂μAμa + α′a − ωa(x)) = det(R−1), (6.13)

from the definition of the deltafunction. To obtain a unitary integral, one can simply
multiply each side with detR. This means that Eq. (6.11) can be written as

∏
a

∫
Dα′aδ(∂μAμa + α′a − ω(x)) det(R) = 1. (6.14)

By inserting this into the partition function, it becomes

Z = N
∏
a

∫
DAaDαaδ(∂μAμa +Racαc(x)− ωa(x)) det(R)eS . (6.15)

To factor out the gauge volume, one can see that if the substitution ∂μAμa → ∂μAμa′ =
∂μAμa + Racαc(x) is made, one has not done anything but to give the gauge field a linear
shift related to α and rotated it in colour space by a unitary rotation [4]. Now, all the fields
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related to one-another by a gauge transformation are renamed A′μ. The justification for
why the measure is unchanged is because the transformation

eiαptpAatae−iαrtr (6.16)

represents a unitary, orthogonal rotation of the matrices ta. It leaves their determinant
unchanged. Since the set of SU(3) matrices defining the operators in colour space are
the generators for all possible rotations in this space, an arbitrary rotation matrix can be
constructed from a linear combination of these matrices. When rotating such a matrix, the
resulting matrix can be written as a linear combination of components of the set defining
the basis. This means that a rotation of an arbitrary Gell-mann matrix ta results in a linear
combination on the form

ta →
∑

b

cbtb, (6.17)

where ca are some constants chosen to leave the determinant of the resulting matrix invari-
ant under the transformation.

Now, by defining a vector Aμ in colour space consisting of Aμ = (A1, A2.....A8)μ, and
a vector consisting of the 3×3 Gell-Mann matrices T = (t1, t2, .......t8)T , one can see that it
is possible to perform a unitary transformation on the matrix Aμ instead of rotating each
ta internally. The transformation leaves the determinant of AT unchanged and represents
a rotation of the field components in colour space. Furthermore, this matrix must be an
8 × 8 matrix, due to the dimension of Aμ thus it can be paramterized by the eight pa-
rameters per field component. According to Eqs. (6.16) and (6.17) such a transformation
must exist. By applying a unitary rotation to the vector representing the gauge fields, the
Jacobian is unitary and the measure is unchanged. It is analogous to rotating a vector in
three dimensions, which clearly preserve the measure. Finally, the measure∏

x,a,μ

DAa
μ(x) =

∏
x,a,μ

DAa
μ
′(x). (6.18)

The Lagrangian is also invariant under the transformation Aa
μ → Aa

μ
′ according to Eq. (6.7)

and Eq.(6.9), since this is the exactly transformation one had to do to make the Lagrangian
invariant under local SU(3) rotations. This can also be seen from Eq. (6.8). Finally, the
partition function becomes

Z = N
∏
a

∫
DA′aDαaδ(∂μA′aμ − ωa(x)) det(R)eS

= N
∏
a

∫
DA′aδ(∂μA′aμ − ωa(x)) det(R)eS . (6.19)

The integrals over all αa now give the gauge volume, represented by an infinite normalization
constant and is as previously stated irrelevant for the physics contained in Z, and simply
absorbed by N . The deltafunction now preserves the gauge condition. This expression is
identical to Eq. (4.44), but was rederived here to identify in which space the determinant
of the matrix defined by R is taken.

The complete expression for the partition function can now be written as follows

Z = N
∏
a

∫
DAa det(R)eS0− 1

2α
(∂μAμa)2+gS1+g2S2 , (6.20)
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where the unknown function ω(x) has been integrated over all possible functions assuming

that the possible functions are gaussian distributed with a weight e−
ω(x)2

2α around ω(x) = 0
for all x. By remembering the meaning of the determinant of the matrix R, and recalling
the rules for Grassmann integration, the determinant can be expressed as an integral over
the Faddeev-Popov ghost fields C

a and Ca via Eq. (4.80) [4],

det(R) =
∏
a

∫
DC

a
DCae−

∫ β
0 dτ

∫
d3xC

a
RacCc

. (6.21)

This turns the partition function into

Z = N
∏
a

∫
DAaDC

a
DCae−

∫ β
0 dτ

∫
d3xC

a
(∂μ∂μδac+gfabcAb

μ)Cc · eS− 1
2α

(∂μApμa)2 . (6.22)

The factor 1
g in front of the argument in the matrix R is absorbed by N , hence only

contributes with an irrelevant normalization constant. From the above, it follows that the
effective Lagrangian, also known as the Faddeev-Popov Lagrangian [4], can be written as

L = L0 − gfabc∂μAa
λAbμAcλ − 1

4
g2
(
feabAa

μAb
λ

)(
fecdAcμAdλ

)
− 1
2α

(∂μAaμ)2 − C
a
RacCc.

(6.23)
Now, the zeroth order partition function can be found by first going from space-time to
the energy-momentum representation of the fields, then redefining the measure DAa ≡∏

n,�p,μ dAa
nμ(	p) and adopting the matrix M from the QED partition function. It simply

becomes

Z0 =
∏
a

∫
DAaDC

a
DCae−

1
2
Aa

μMaμνAa
ν−C

a
[R]ac

g=0Cc

=

⎡
⎣∏

n′,�k

detR(ω′n,	k)

⎤
⎦
⎡
⎣∏

a,n,�p

1√
detMa(ωn, 	p)

⎤
⎦

ln(Z0) =
∑
n,�p

[
8 ln(ω2

n + 	p2)− 16 ln(ω2
n + 	p2)

]
= −8

∑
n,�p

ln
[
ω2

n + 	p2
]
, (6.24)

where Ma(ωn, 	p) is the matrix defined earlier in QED and R is the 8× 8 matrix defined in
Eq. (6.12), dropping the first g since it is absorbed in N , and let the internal coupling g → 0.
The only difference between Ma(ωn, 	p) and M(ωn, 	p) is that there are eight of these matri-
ces, and they are all identical according to the definition of L0 in Eq. (6.5). This is implied
by the colour index, a, which runs over all a = [1, N2

c −1] where Nc is the number of colours.
The dimension of the colour space in the adjoint representation of SU(Nc) is d = N2

c −1 [4].

This tells us that the only difference between a noninteracting gas of gluons, and that
of a gas of photons are the internal degrees of freedom. It comes from the fact that there
are eight different gluons, but only one photon. More generally, the answer can be written
as

ln(Z0) = −
∑
n,�p

(N2
c − 1) ln

[
ω2

n + 	p2
]
, (6.25)

for a SU(Nc) gauge theory. In QCD Nc = 3 since there are three colours, thus Eq. (6.25)
becomes Eq. (6.24) when Nc = 3.
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6.1 Interaction terms

From Eq. (6.23) one can see that there are three different interaction terms in the Faddeev-
Popov Lagrangian. Two of them are proportional to g, and one is proportional to g2. Since
S0 is quadratic in the fields Aa

nμ(	p), only the terms proportional to even powers of A con-
tribute to the expansion of the partition function due to (anti) symmetric integration. As
already shown in QED, the corrections can be expressed as vacuum Feynman diagrams,
similar to the S-matrix expansion. The corrections to the partition function simply de-
scribes the vacuum-vacuum transition amplitude, modified by introducing imaginary-time
Feynman rules.

Now, by looking closer at Eq. (6.23), the first corrections are of the order O(g2).

L = L0 − gfabc∂μAa
λAbμAcλ − 1

4
g2
(
feabAa

μAb
λ

)(
fecdAcμAdλ

)
− 1
2α

(∂μAaμ)2 − C
a
RacCc.

(6.26)
By redefining L0 → L0 − C

a
∂μ∂μCa − 1

2α(∂μAaμ)2, the Lagrangian can be rewritten as

L = L0 − g fabc∂μAa
λAbμAcλ︸ ︷︷ ︸

3G

− 1
4
g2
(
feabAa

μAb
λ

)(
fecdAcμAdλ

)
︸ ︷︷ ︸

4G

−g C
a
∂μfabcAb

μCc︸ ︷︷ ︸
GG

= L0 + Lint. (6.27)

The terms are given the names 3G, 4G and GG which stands for three-gluon, four-gluon
and ghost-gluon vertices. The names are due to the way the terms contribute to the par-
tition function. In terms of Feynman diagrams, they are associated with a 3G vertex with
coupling strength g, a 4G vertex with strength g2 and a ghost-gluon vertex with strength
g respectively. Why these are the contributions can be seen directly from Eq. (6.27) by
remembering that the corrections to the partition function is nothing but all possible con-
tractions of the fields contained in the interacting part of the Lagrangian to different orders,
n in Sn

int. This was shown explicitly in the previous chapter. The vertices are illustrated in
Figs. 6.1 through 6.3.

Figure 6.1: The ghost gluon vertex.

Once more one can write the partition function on the form

Z =
∏
a

∫
DAaDCaDCaeS0+Sint

=
∞∑
l=0

∏
a

∫
DAaDCaDCaeS0

(Sint)l

l!
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Figure 6.2: The three-gluon vertex.

Figure 6.3: The four-gluon vertex.

ln(Z) = ln

[
Z0(1 +

1
Z0

∞∑
l=1

∏
a

∫
DAaDCaDCaeS0

Sl
int

l!
)

]

� ln(Z0) +
∞∑
l=1

1
l!
〈Sl

int〉. (6.28)

From this it can be seen that when l = 1 only one of the terms contained in Sint contribute,
and that is the four-gluon vertex term. This is because it is the only term giving rise to
an even number of gauge-field operators at first order in Sint. The four gluon vertex gives
us the double-bubble diagram illustrated in Fig. 6.4. This is a four-gluon vertex with two

Figure 6.4: The double-bubble diagram.

gluon propagators. To find the explicit expression for this diagram, the four gluon vertex
in Fig. 6.3 has a factor of

−ig2
[
fabef cde(ημρηνσ − ημσηνρ)

facef bde(ημνηρσ − ημσηνρ)
fadef bce(ημνηρσ − ημρηνσ)

]
, (6.29)
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in the real-time formalism [4]. The gluon-propagator in the imaginary-time representation
follows from the derivations in the previous chapter. It is simply

〈Aλa′
n (	p)Aρb′

n (	p)〉 = 1∫
DAbe−

1
2
Ab

μMμνbAb
ν

∫
DAbAρb′

−n(−	p)An(	p)λa′
e−

1
2
Ab

μMμνbAb
ν = M−1(ωn, 	p)λρδa′b′ .

(6.30)
Since most of the calculations in this thesis are made in the real-time formalism before
Wick rotating, the real-time propagator can be found directly from this by substituting
δμν → −iημν , as was shown in QED. This substitution was first made by inspecting the
real-time vs the imaginary-time photon propagator. In Feynman gauge, α = 1 and the
matrix Ma = δμν

P 2 is diagonal. This simply turns the real-time propagator into

−iηλρδa′b′ 1
p2

. (6.31)

To find the correct symmetryfactor, 1
S , one has to recall that the meaning of this vertex

and its cofactors is: when two gluons interact with each other, they interact with a coupling
strength g2 and two other gluons propagate from that point2. Since there are 4! ways to
couple the four legs with four external particle lines, the four-gluon vertex has to be mul-
tiplied with a factor of 1

4! times the number of ways one can construct equivalent diagrams
corresponding to the process under consideration. By doing this, one can see that the pro-
cess where two gluons interact and two ”‘new”’ gluons come out has a factor 1

4! · 4! = 1.
Equivalently, the three gluon vertex has a factor of 1

3! in front. The number of equivalent
diagrams corresponding to the process in Fig. 6.4 is 3!. The symmetryfactor is then found
to be 1

S = 3!
4! =

1
8 . The contribution to the partition function from the process in Fig. 6.4,

follows from the above

i ln(ZI)4G = −1
8

∫
dDp

(2π)D

∫
dDq

(2π)D
ig2
[
fabef cde(ημρηνσ − ημσηνρ)

+ facef bde(ημνηρσ − ημσηνρ)

+ fadef bce(ημνηρσ − ημρηνσ
](
−i

ημνδ
ab

p2

)(
−i

ηρσδcd

q2

)

= i
1
8
g2 fabefabe︸ ︷︷ ︸

d(g)C2(G)

(N2
c − 1)Nc2D(D − 1)

(∫
dDp

(2π)4
1
p2

)2

. (6.32)

Then by performing a Wick rotation and a discretization of p0, and using the identity [4]

fabcfabc = d(G)C2(G), (6.33)

where d(g) is the dimension of the adjoint representation of SU(Nc), and C2(G) = Nc [4].

ln(ZI)4G = −1
4
g2(N2

c − 1)NcD(D − 1)
[∑∫

P

1
P 2

]2

. (6.34)

Large letters for the four vectors still represent Euclidian vectors.

2The process with the highest number of symmetries related to the vertex, defines the coupling.
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Now, by returning to Eq. (6.28) one can see that when l = 2 one gets two more con-
tributions. First one can consider the 3G term. Two of these multiplied together give an
even number of Aa

μs. Since the two 3G terms are associated with different independent
points in space, for example x1 and x2, they give two separated vertices. Furthermore, two
fields related to the same structure constant cannot be contracted due to the antisymmetric
properties of fabc. From this, it follows that the 3G term cannot couple with the GG term
to second order in Sint. Another reason for the 3G-GG coupling not to contribute is due
to the fact that there are no diagonal elements in the GG term resulting in terms propor-
tional to CaCa. Once again, the structure constant is the reason for this coupling not to
contribute to the second-order correction. This means that the only contribution related
to the 3G vertex of second order in Sint, is the sunset diagram in Fig. 6.5, and there are
3! ways to contract the fields to get equivalent diagrams. This means that the symmetry
factor 1

S = 3!
3!3! =

1
6 . In addition there is a factor

1
2! from the expansion the exponential.

Figure 6.5: The sunset diagram.

There is a factor

gfabc
[
ημν(k − p)ρ + ηνρ(p− q)μ

+ηρμ(q − k)ν
]
,

(6.35)

for each 3G vertex corresponding to Fig. 6.2 [4]. This follows from contracting the two 3G
terms in the Faddeev-Popov Lagrangian. Furthermore, there are three gluon propagators
connecting the two vertices. These can as previously implied be connected in 3! ways. The
diagram is drawn using two of the vertices in Fig. 6.2 and changing the sign on q. This
gives a contribution

i ln(ZI)3G = − 1
12

∫
dDp

(2π)D
dDk

(2π)D
gfabc

[
ημν(k − p)ρ + ηνρ(p+ q)μ − ηρμ(q + k)ν

]
×

×gfa′b′c′
[
ημ′ν′

(k − p)ρ
′
+ ην′ρ′(p+ q)μ

′ − ηρ′μ′
(q + k)ν

′]×
×(−iημμ′)

k2
δaa′ (−iηνν′)

p2
δbb′ (−iηρρ′)

q2
δcc′

= −i
1
12

g2fabcfabc

∫
dDp

(2π)D
dDk

(2π)D
1

p2q2k2

[
ημν(k − p)ρ + ηνρ(p+ q)μ − ηρμ(q + k)ν

]
×[

ημν(k − p)ρ + ηνρ(p+ q)μ − ηρμ(q + k)ν
]

= −i
1
12

g2fabcfabc

∫
dDp

(2π)D
dDk

(2π)4
1

p2q2k2

[
D
(
(k − p)2 + (p+ q)2 + (q + k)2

)
+

+2(k − p)(p+ q)− 2(k − p)(q + k)− 2(p+ q)(q + k)
]
, (6.36)
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where q = (k+p). Moreover, the relation 2kp = (p+k)2−p2−k2 will be exploited frequently
throughout the following calculation

i ln(ZI)3G = −i
1
12

g2fabcfabc

∫
dDp

(2π)D
dDk

(2π)D
1

p2(p+ k)2k2

[
D
(
(k − p)2 + (p+ q)2 + (q + k)2

)
−2(p+ q)2 − (k − p)(2k + p)

]
= −i

1
12

g2fabcfabc

∫
dDp

(2π)D
dDk

(2π)D
1

p2(p+ k)2k2

[
3D

(
(p+ k)2 + p2 + k2

)
−3(p+ k)2 − 3p2 − 3k2

]
= −i

1
12

g2fabcfabc

∫
dDp

(2π)D
dDk

(2π)D
1

p2(p+ k)2k2

[
3(D − 1)

(
(p+ k)2 + p2 + k2

) ]
.

(6.37)

By performing a Wick rotation, this becomes

i ln(ZI)3G = i
1
12

g2fabcfabc∑∫
P,K

[
3(D − 1)

(
1

(P +K)2P 2
+

1
(P +K)2K2

+
1

K2P 2

)]
.

(6.38)

Now, by making the substitutions K ′ = (P +K)2, P ′ = (P +K)2, in the first and second
integral respectively, this becomes

i ln(ZI)3G = i
1
12

g2fabcfabc3(D − 1)
(∑∫

P,K′

[ 1
K ′2P 2

]
+
∑∫

P ′,K

[ 1
P ′2K2

]
+
∑∫

P,K

[ 1
K2P 2

])
.

(6.39)

Since all the parameters are bosonic, the resulting K ′, P ′ are also bosonic. From Eq. (6.33),
the final expression becomes

ln(ZI)3G =
3
4
g2Nc(N2

c − 1)(D − 1)
[∑∫

P

1
P 2

]2

. (6.40)

Now, one more diagram which is topologically distinct from the two others, remain when
neglecting all terms of higher order than 〈S2

int〉. This contribution is also a second order
contribution in Sint, and it comes from the GG term. As previously implied, the only
contribution from this term comes from the double-GG vertex diagram shown in Fig. 6.6.
In QED, it was shown that the sunset diagram recieved a negative cofactor. This was due
to the Grassmann nature of the fermion fields. The ghost fields are also Grassmann fields,
hence the diagram in Fig. 6.6 has a negative cofactor. There is only one way to connect the
two vertices to one-another thus the symmetryfactor is 1. Since Eq. (6.28) gives a factor of
1
2! in front just as the previous sunset diagram, the cofactor must be − 1

2! . The ghost-gluon
vertex in Fig. 6.1 gives a factor [4]

−gfabcpμ. (6.41)
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Figure 6.6: The ghost-gluon sunset diagram.

Since one has two of these vertices connected with two ghost propagators and a virtual
gluon propagating from one vertex to the other, the contribution becomes

i ln(ZI)GG = −g2 1
2
fabcf c′b′a′

∫
dDp

(2π)D
dDk

(2π)D
pμkν iδaa′

p2

−iημνδ
bb′

(k − p)2
iδcc′

k2

= −ig2

∫
dDp

(2π)D
dDk

(2π)D
1
2
fabcf cba p · k

p2(k − p)2k2

= i
1
2
g2fabcfabc

∫
dDp

(2π)D
dDk

(2π)D
1

p2(k − p)2k2

[
−1
2
(p− k)2 +

p2 + k2

2

]
.(6.42)

Again, by performing a Wick rotation and discretisize k0, p0 as before, this becomes

i ln(ZI)GG = −i
1
4
g2fabcfabc∑∫

P,K

[
− 1

P 2K2
+

1
K2(K − P )2

+
1

P 2(K − P )2

]
.(6.43)

Now, by choosing the proper substitutions, this becomes

i ln(ZI)GG = −i
1
4
g2fabcfabc

[∑∫
P

1
P 2

]2

ln(ZI)GG = −1
4
g2(N2

c − 1)Nc

[∑∫
P

1
P 2

]2

(6.44)

Finally, the partition function can be found. By taking into account the corrections
ln(ZI)4G, ln(ZI)3G, ln(ZI)GG, multiplying them with βV for reasons that were worked out
in QED3 and adopting the zeroth order contribution from Eq. (6.25), the final partition
function after neglecting all terms higher than O(g2) becomes

ln(Z) = −V (N2
c − 1)

∑
n

∫
d3P

(2π)3
ln(P 2)− g2βV

[1
4
(N2

c − 1)Nc − 3
4
Nc(N2

c − 1)(D − 1)+

+
1
4
(N2

c − 1)NcD(D − 1)
] [∑∫

P

1
P 2

]2

ln(Z)
V

= 16
π2

90
T 3 − 1

6
g2T 3, (6.45)

where the last line has been obtained by letting D → 4 and Nc = 3. This is on the expected
form. There are eight gluons, each having two independent spin polarizations, hence their

3This can also be seen from dimensional analysis. In QED it was shown that this came from the normal-
ization constants of the field expansions, and the periodic constraints of the spatial momentum.
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zeroth order contribution are 16 times the ideal Bose gas contribution [2]. Due to interac-
tions between the gluons, a negative contribution is given by the coupling-dependent term.

6.2 The complete two-loop partition function

By inserting the thermal mass into the theory in the same way as was done Eq. (5.53) and
substituting A0 → Aa0, one can see that each Ma00 recieves a correction due to the mass
insertion.

The polarization tensor is somehow different in pure-glue since the gluons interact with
both eachother and the ghosts. The diagrams contributing to the one-loop self-energy, thus
the polarization tensor are the Feynman diagrams in Fig. 6.7. Anyway, as stated in the
introduction to this chapter, this contribution will not be found explicitly.

After inserting the thermal mass, the gluon propagator becomes modified. This again,
changes the contributions from the Feynman diagrams due to the presence of dressed prop-
agators. All the two-loop diagrams have to be recalculated. In addition a one-loop diagram
will appear due to the mass insertion. The two-loop diagrams will be Taylor expanded in
the thermal mass since it is assumed to be proportional to the coupling constant. Moreover,
all terms higher than the order of g3 will be neglected. Diagrams higher than two-loop will
also be neglected. The partition function can then be written on the form

ln(Z) = 16V
π2

90
T 3 +

2V
3π

m3 + g2Δ1 + g3Δ2, (6.46)

where all terms proportional to g3 are due to the thermal mass in the dressed propagator.
First, the one-loop diagram with dressed propagator in Fig. 6.8 will be found. Since one
now has become aquainted with the imaginary-time formalism, all the following calculations
will be made in Euclidean space just as in the last section of the previous chapter. The one
loop diagram is simply

W 1G =
m2

2
〈Aa

0A
a
0δP00〉 = m2

2
δaa∑∫

P

δP0,0

P 2 +m2
= −m3T

π
. (6.47)

The last line followed from dimensional regularization. In fact, one can find it by defining
the integral

J ′N
D =

∫
dDP

(2π)D
1

P +m2
=

1

(4π)
D
2

Γ(N − D
2 )

Γ(N)
(m2)

d
2
−N

J ′N−1
D = m2 N − 1

N − D
2 − 1

J ′N
D

∑∫
P

δP0,0

P 2 +m2
= T

∫
d3P

(2π)3
1

	P 2 +m2
= −T lim

D→4
m22J ′2

D−1 = −mT

(4π)
. (6.48)
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Figure 6.7: The one-loop contributions to the polarization tensor in a gluon plasma.

The next diagram is the two loop diagram related to the four-gluon vertex, with dressed
propagators. It is

W 4G = −g2

8
faceface∑∫

P,Q
(2δμνδρσ − 2δμσδνρ)

×
[

δμ0δν0

P 2 +m2δP00
+

δμiδνi

P 2

] [
δρ0δσ0

Q2 +m2δQ00
+

δρjδσj

Q2

]

= −g2

4
faceface∑∫

P,Q
2

(D − 1)
Q2(P 2 +m2δP00)

+
(D − 1)(D − 2)

P 2Q2
. (6.49)

The integral ∑∫
P,Q

2
(D − 1)

Q2(P 2 +m2δP00)
(6.50)

can be rewritten, since only the P0 = 0 mode recieves a mass correction. Due to dimentional
regularization, all integrals

∫
d3P
�P 2

= 0. This is also obtainable from Eq. (6.48). This allows
one to rewrite Eq. (6.50) as follows

∑∫
P,Q

2
(D − 1)

Q2(P 2 +m2δP00)
=
∑∫

P,Q
2
(D − 1)
Q2P 2

+ 2
(D − 1)δP0,0

Q2(P 2 +m2)
. (6.51)

Now, this two-loop correction becomes

W 4G = −g2

4
facefaceD(D − 1)

[∑∫
P

1
P 2

]2

− g2

2
faceface(D − 1)

∑∫
P,Q

δP0,0

Q2(P 2 +m2)
. (6.52)

The next contribution comes from the ghost-gluon sunset diagram with a dressed gluon
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Figure 6.8: The resummed diagrams contributing to the partition function, thus the pressure
at two-loop or lower. Resummed propagators are again denoted by a hard dark square just
as in QED.

propagator. This correction can be written as follows

WGG = −1
2
g2fabcfabc∑∫

PQ

Pμ(P −Q)μ
′

P 2(P −Q)2

[
δμ0δμ′0

Q2 +m2δQ00
+

δμjδμ′j

Q2

]

= −1
2
g2fabcfabc∑∫

P,Q

P 0(P −Q)0

(Q2 +m2δQ00)P 2(P −Q)2
+

	P (	P − 	Q)
Q2P 2(P −Q)2

. (6.53)

Again due to dimentional regularization, and the fact that the integral over 1
�Q2+m2

when

Q0 = 0 gives most of its contribution when 	Q ∼ m, the first term of the integral above can
be Taylor expanded in 	Q for P0 �= 0. This follows from the considerations below Eq. (5.59).
If both P0 = 0 and Q0 = 0, this term vanishes. This means that the first integral above can
be expanded as follows

∑∫
P,Q

P 0(P −Q)0

(Q2 +m2δQ00)P 2(P −Q)2
=
∑∫

P,Q

(P 0)2δQ0,0

(Q2 +m2)P 4
+
∑∫

P,Q

P 0(P −Q)0

Q2P 2(P −Q)2
+O(g2).

(6.54)
Furthermore the sum integral ∑∫

P

	P 2

P 4
=
3
2
∑∫

P

1
P 2

, (6.55)

is found from integration by parts. The contribution from the ghost-gluon sunset diagram
neglecting terms of the order O(g4) and higher, is

WGG = −1
2
g2fabcfabc∑∫

P,Q

[
(P 0)2δQ0,0

(Q2 +m2)P 4
+

P (P −Q)
Q2P 2(P −Q)2

+O(g2)
]

= −1
4
g2fabcfabc

[∑∫
P,Q

1
P 2

]2

+
1
4
g2fabcfabc∑∫

P,Q

δQ0,0

P 2(Q2 +m2)
. (6.56)
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The only diagram remaining now, is the slightly more complicated gluon-gluon sunset dia-
gram. It is

W 3G =
1
12

g2fabcfabc∑∫
K,P

(δμν(K − P )ρ + δνρ(2P +K)μ − δρμ(2K + P )ν)

×
(
δμ′ν′

(K − P )ρ
′
+ δν′ρ′(2P +K)μ

′ − δρ′μ′
(2K + P )ν

′)

×
[

δμ0δμ′0

K2 +m2δK00
+

δμiδμ′i

K2

]

×
[

δν0δν′0

P 2 +m2δP00
+

δνjδν′j

P 2

]

×
[

δρ0δρ′0

(P +K)2 +m2δ(P+K)00
+

δρlδρ′l

(P +K)2

]
. (6.57)

By using the Eqs. (6.48), (6.51), (6.55) and (6.54) and neglecting integrals such as

g2∑∫
K,P

δK0,0δP0,0

(P 2 +m2)(K2 +m2)
(6.58)

since they contribute to corrections of order O(g4), the correction becomes

W 3G =
1
4
g2fabcfabc∑∫

K,P

[
(K − P )2 + (2P +K)2 + (2K + P )2

P 2K2(K + P )2

]

+
1
12

g2fabcfabc∑∫
K,P

[
6	P 2δK0,0

P 4(K2 +m2)
+

36(P 0)2δK0,0

P 4(K2 +m2)

]

=
1
4
g2fabcfabc∑∫

K,P

[
(K − P )2 + (2P +K)2 + (2K + P )2

P 2K2(K + P )2

]

+
1
12

g2fabcfabc∑∫
K,P

[
36δK0,0

P 2(K2 +m2)
− 30

3
2

δK0,0

P 2(K2 +m2)

]

=
3
4
g2fabcfabc3

[∑∫
P

1
P 2

]2

− 3
4
g2fabcfabc∑∫

K,P

δK0,0

P 2(K2 +m2)
. (6.59)

Finally by multiplying W 1G,W 3G,W 4G and WGG with βV , let D → 4, Nc = 3, using Eq.
(6.48) and insert them into Eq. (6.46), the total two loop partition function can be found
to the order of g3 in the coupling. It becomes

ln(Z)
V

= 16
π2

90
T 3 − 1

3π
m3 + g2 mT 2

π
− g2

6
T 3, (6.60)

where m is defined in Eq. (6.1).
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Chapter 7

Pressure in pure SU(3) gauge
theory

7.1 The complete two-loop pressure

The pressure in a pure SU(3) gauge theory can be obtained directly from the pure-glue
partition function in the previous chapter. From [2], the correct expression for the pressure
in a gas with zero chemical potential1 is

P =
T

V
ln(Z), (7.1)

where Z was obtained in Eq. (6.46). This gives the pressure as a function of the temperature
and the thermal mass stated in Eq. (6.1). It is given by

P = 16
π2

90
T 4 − 1

3π
m3

0g
3T 4 − g2 1

6
T 4 + g3 m0

π
T 4. (7.2)

7.2 A brief recapitulation

The gluons are as mentioned in the previous chapter, the mediating vector bosons of the
strong force. These particles behave quite differently from their QED ”lookalikes” the pho-
tons. This is mostly due to the fact that the gauge fields carry an additional index which
in this thesis is referred to as the colour index. This extra index makes the gluons able
to interact with each other unlike the photon. It represents the gluon colour state. Since
they are charged, they are also confined due to spatial confinement. The gluons form a
colour octet2, thus they must be confined at low temperatures. This means that they are
trapped in what the MIT bag model describes as small bags representing the particles in
the standard model. However, at very high temperatures, asymptotic freedom is a fact. It
means that the gluons can be said to propagate as nearly freely propagating particles (they
still interact with each other) just as the photons are at all temperatures. This phase is
called the deconfinement phase. In this phase, at sufficiently high temperatures, perturba-
tion theory is applicable since the coupling goes to zero.

1The gauge fields are real vector fields, thus the gluons are their own anti-particles
2The concept of colour confinement requires that only colour singlets can exist as free particles.
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Now, to discuss some of these ideas in context of Eq. (7.2), one can see that the pres-
sure should go as an ideal bose gas with a degeneracy of 16 at high temperatures since the
coupling goes to zero. The 16 degrees of freedom comes from the eight different gluons with
two different polarization states.

In context of the above, it is much more convenient to introduce a relative pressure, i.e
the pressure divided by the ideal-gas pressure, to see how it behaves relatively. By dividing
Eq. (7.2), by the ideal gas contribution, one obtains

P

P0
= 1 +

15
16π2

[(
6m0 − 3m3

0

π

)
g3 − g2

]
. (7.3)

As stated above, the pressure should decrease relative to the ideal bose gas pressure as the
temperature decreases. This means that the coupling-constant dependent term in Eq. (7.3)
should give a negative contribution when the temperature decreases. In fact, with the
proper values of the coupling constant, Eq. (7.3) should reproduce the graph in Fig. 7.1,
given the substitution T → T

Tc
. The critical temperature Tc is defined to be the temperature

where one finds the deconfinement phase transition. It was found to be 150 MeV at the time
the lattice data was made. When taking a closer look at Fig. 7.1 one can see that the slope
has a little kink just below T = Tc. This indicates that there are some non-perturbative
effects affecting the system close to Tc, which again result in a phase transition between the
confined and the deconfined phase.

To fit the expression in Eq. (7.3) to the lattice data, the coupling must be a function
of T

Tc
. If it was not, P

P0
would be temperature independent and the whole theory would’ve

broken down.

In this quasiparticle description, Eq. (7.3) is therefore modified by introducing a temperature-
dependent coupling. This means that the particles in this model interact with a temperature-
dependent coupling. One then obtains the expression for the relative pressure in a gas of
pure-glue,

P

P0
= 1 +

15
16π2

[
(6m0 − 3m3

0)
π

g3
(

T

Tc

)
− g2

(
T

Tc

)]
. (7.4)

7.3 Data fitting

Now, MatLab is used to fit the running coupling as a function of
(

T

Tc

)
for a well suited value

of m0. To make the fitting as easy as possible to handle, a new scaled coupling g′ = 1√
24

g,

will be introduced together with the constant m0 = 1
60 . This constant is chosen at random

within the region where it allows the coupling-dependent term to take on negative values.
Now, Eq. (7.4) becomes

P

P0
= 1 +

15
4π2

[
3
√
6

5π
7197
3600

g′3
(

T

Tc

)
− 6g′2

(
T

Tc

)]
. (7.5)

This function is fitted to the lattice data given by Fig. 7.1, and the result for the running
coupling g′

(
T

Tc

)
is given by Fig. 7.2.
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The error, ΔP
P at each value of T

Tc
is found by inserting the coupling in Fig. 7.2 into Eq. (7.5),

and compare it to the pressure given by the lattice data in Fig. 7.1 at each point. The result
is given by Fig. 7.3. From Fig. 7.3 one can see that the accuracy is high in the deconfined
phase, i.e above T = Tc. However, the fitted pressure cannot reproduce the lattice data
below the critical temperature.

Now, from Fig. 7.2 one can see that the coupling decreases as the temperature increases
just as predicted.

The coupling in Fig. 7.2 is now fitted to an analytic expression, using the ansatz

1
g′
= c+ a ln

(
b

T

Tc

)
, (7.6)

where the constants a,b and c are found by using a non-linear least square fit. They are
found to be

a � 1, 9557

b � 0, 95141

c � 1, 4250,

(7.7)

and the plot in Fig. 7.4 shows the fit to the numerically estimated inverse coupling given
by Eq. (7.6).

Now, the coupling calculated from lattice data given by Fig. 7.2, is compared to the coupling
given by Eqs. (7.6) and (7.7) in Fig. 7.5 for T ≥ Tc.

By remembering that the relative pressure is defined by Eq. (7.5), and inserting Eq. (7.6)
given the constants in Eq. (7.7), the pressure can be found. It is plotted for T ≥ Tc in
Fig. 7.6.

An analytic expression for the pressure is now obtained. This function is then used to
give a prediction of how the pressure behaves at higher temperatures than T = 4.5Tc. It
should increase towards the ideal gas or P

P0
= 1. This extrapolation gives the plot in Fig. 7.7

for T ≥ Tc, which clearly indicates that the pressure increases towards the ideal gas pressure
from below as the temperature increases.

The coupling in Eq. (7.2) is given by

g =
√
24g′

(
T

Tc

)
. (7.8)

By using this, the Eqs. (7.6) and (7.7), can be used to find an estimate of the temperature
region in which g can be treated as a perturbation parameter. The running ”finestructure”
is found from

αg =
g2
(

T

Tc

)
4π

. (7.9)
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This is compared to the finestructure constant in QED, in Fig. 7.8. From Fig. 7.8, one can see
that for temperatures around 50Tc, the strong coupling αg � 3αe = 3

137 . The QED coupling
is also temperature dependent as was shown in chapter three. It was shown that it was
momentum dependent, hence it will also be temperature dependent. It is only kept constant
here to see when the strong coupling reaches low enough values for perturbation theory to
become applicable. One knows that low-energy QED can be treated perturbatively, hence
the coupling g can be treated as a perturbation parameter in pure-glue at temperatures
around 50Tc. The slope of the coupling levels out around 25Tc. This means that one could
probably apply perturbation theory to pure-glue at these temperatures. However, to be
certain that the coupling is small enough to give satisfying results at low-order perturbation
theory, temperatures T ≥ 50Tc would be recommended by this model.

7.4 Figures

Figure 7.1: Lattice data for pressure vs ideal bose-gas pressure in pure glue.
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Figure 7.2: Fitted coupling in pure glue as a function of temperature.

Figure 7.3: Estimated error in fitted pressure at each lattice point.
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Figure 7.4: The inverse coupling (minus c) and its logarithmic best fit.

Figure 7.5: The coupling calculated from lattice data, and the estimated logarithmic func-
tion in Eq. (7.6).
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Figure 7.6: Pressure from the lattice data, and the pressure when inserting Eq. (7.6) into
Eq. (7.5).

Figure 7.7: Pressure for high T by inserting Eq. (7.6) into (7.5).
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Figure 7.8: The finestructure constant, αg = ( (
√

24g′)2
4π ), versus the finestructure constant in

QED.



Chapter 8

Summary and conclusion

In my project report [2], ordinary quantum statistics was used to obtain the equations of
state for ideal Fermi and Bose-gases. In this formalism it is very hard to implement correc-
tions due to interactions, and they simply do not seem to follow naturally from the theory
itself. A way to include weak couplings between the particles was in chapter one found to
be to include thermal masses generated by medium effects.

In the chapters four and five, I gave a description of a more modern approach to the
area of quantum statistics, namely the functional representation of the partition function.
It was obtained by starting with the diagonal transition amplitude, comparing it to the
expression for the partition function, and making the substitutions necessary for them to
be equivalent. From this approach, corrections from the ideal Bose and Fermi gases followed
naturally, if not beautifully, by expansions in terms of Feynman diagrams. It must be the
ultimate way to calculate thermodynamical quantities in quantum systems at weak coupling.

In chapter three, it was found that the longitudinal photons in QED acquire effective ther-
mal masses as they propagate through a medium. This was consistent with the introduction
to the first chapter which was about quasiparticle models. The rest of the first chapter,
which was a summary of the article found in reference [1], implied that systems could be
described in terms of these effective particles. It was also in chapter three found that the
coupling in QED was momentum dependent due to vacuum polarization at zero tempera-
ture.

In the aftermath of chapter one through four, both a two-loop approximation to the pressure
in high temperature QED and pure-glue (QCD without fermions) of order g3 in the coupling
were obtained in the last part of the chapters five and six. The latter coincides with the
corrections listed in reference [13]. The two-loop approximation was in QED found to be
gauge invariant within the class of Lorentz gauges. The pressure in the two gases were ob-
tained by using effective propagators, meaning the propagators of the quasiparticles. They
were found to be

PQED =
π2

45
T 4

(
1 + 2Nf

7
8

)
+

1
12π

m3 − 5Nf

288
e2T 4, (8.1)

and

PPG = 16
π2

90
T 4 − 1

3π
m3T + g2 mT 3

π
− g2

6
T 4, (8.2)
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where the masses denoted by m in PQED and PPG are the thermal masses of the longitudi-
nal photons and gluons, respectively. The reason for why they acquire such effective masses
was found to be due to medium effects.

The pressure in QED is simply the ideal gas contribution plus some small corrections due
to interactions between the fermions and the photons.

In pure-glue, the pressure was used to fit a running temperature-dependent coupling to
lattice data. This approach to data fitting of the pressure has, to the best of my knowledge,
never been done before. It gave tremendously good results. This fitted pressure was again
extrapolated to higher temperatures than 4.5Tc which was the highest values for the lattice
data. It was found that the pressure in such a gas slowly increased towards the ideal gas
pressure, as one would expect due to asymptotic freedom. It showed that weak- coupling
expansion of the partition function could not successfully be applied to pure-glue below
approximately 50Tc = 7500MeV . The critical temperature at the time the lattice data was
computed was 150MeV.

In the region below 4.5Tc, the fitted pressure fitted nicely to the lattice data except from
close to and below Tc, i.e the fitted pressure could not describe the deconfinement phase-
transition.

Unfortunately, as i only had lattice data for the pressure, the data fitting is not made
in a thermodynamically consistent way as the models described in chapter one.
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