
Introduction to Group Theory

for Physicists

Marina von Steinkirch

State University of New York at Stony Brook

steinkirch@gmail.com

January 12, 2011



2



Preface

These notes started after a great course in group theory by Dr. Van Nieuwen-
huizen [8] and were constructed mainly following Georgi’s book [3], and other
classical references. The purpose was merely educative. This book is made
by a graduate student to other graduate students. I had a lot of fun put-
ing together my readings and calculations and I hope it can be useful for
someone else.

Marina von Steinkirch,

August of 2010.
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Chapter 1

Finite Groups

A finite group is a group with finite number of elements, which is called the
order of the group. A group G is a set of elements, g ∈ G, which under some
operation rules follows the common proprieties

1. Closure: g1 and g2 ∈ G, then g1g2 ∈ G.

2. Associativity: g1(g2g3) = (g1g2)g3.

3. Inverse element: for every g ∈ G there is an inverse g−1 ∈ G, and
g−1g = gg−1 = e.

4. Identity Element: every groups contains e ∈ G, and eg = ge = g.

1.1 Subgroups and Definitions

A subgroup H of a group G is a set of elements of G that for any given
g1, g2 ∈ H and the multiplication g1g2 ∈ H,G, one has again the previous
four group proprieties. For example, S3 has Z3 as a subgroup1. The trivial
subgroups are the identity e and the group G.

Cosets

The right coset of the subgroup H in G is a set of elements formed by the
action of H on the left of a element of g ∈ G, i.e. Hg. The left coset is gH.
If each coset has [H] elements2 and for two cosets of the same group one has
gH1 = gH2, then H1 = H2, meaning that cosets do not overlap.

1These groups will be defined on the text, and they are quickly summarized on table
A.1, in the end of this notes.

2[G] is the notation for number of elements (order) of the group G.

9



10 CHAPTER 1. FINITE GROUPS

Lagrange’s Theorem

The order of the coset H, [H] is a divisor of [G],

[G] = [H]× ncosets,

where ncosets is the number of cosets on G.

For example, the permutation group S3 has order N ! = 3! = 6, conse-
quently it can only have subgroups of order 1, 2, 3 and 6. Another direct
consequence is that groups of prime order have no proper (non-trivial) sub-
groups, i.e. prime groups only have the trivial H = e and H = H subgroups.

Invariant or Normal or Self-conjugated Subgroup3

If for every element of the group, g ∈ G, one has the equality gH = Hg,
i.e. the right coset is equal to the left coset, the subgroup is invariant. The
trivial e and G are invariant subgroups of every group.

If H is a invariant coset of a group, we can see the coset-space as a group,
regarding each coset as a element of the space. The coset space G/H, which
is the sets of cosets, is a factor group given by the factor of G by H.

Conjugate Classes

Classes are the set of elements (not necessary a subgroup) of a group G that
obey g−1Sg = S, for all g ∈ G. The term gSg−1 is the conjugate of S. For
a finite group, the number of classes of a group is equal to the number of
irreducible representations (irreps). For example, the conjugate classes of
S3 are [e, (a1, a2), (a3, a4, a5)].

An invariant subgroup is composed of the union of all (entire) classes of
G. Conversely, a subgroup of entire classes is an invariant of the group.

Equivalence Relations

The equivalence relations between two sets (which can be classes) are given
by

1. Reflexivity: a ∼ a.

2. Symmetry: if a ∼ b, then b ∼ a.

3. Transitivity: if a ∼ c and b ∼ c, then a ∼ b.
3We shall use the term invariant in this text.
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Quotient Group

A quotient group is a group obtained by identifying elements of a larger group
using an equivalence relation. The resulting quotient is written G/N4, where
G is the original group and N is the invariant subgroup.

The set of cosets G/H can be endowed with a group structure by a
suitable definition of two cosets, (g1H)(g2H) = g1g2H, where g1g2 is a new
coset. A group G is a direct product of its subgroups A and B written as
G = A×B if

1. All elements of A commute to B.

2. Every element of G can be written in a unique way as g = ab with
a ∈ A, b ∈ B.

3. Both A and B are invariant subgroups of G.

Center of a Group Z(G)

The center of a group G is the set of elements of G that commutes with all
elements of this group. The center can be trivial consisting only of e or G.
The center forms an abelian 5 invariant subgroup and the whole group G is
abelian only if Z(G) = G.

For example, for the Lie group SU(N), the center is isomorphic to the
cyclic group Zn, i.e. the largest group of commuting elements of SU(N) is
' Zn. For instance, for SU(3), the center is the three matrices 3 × 3, with

diag(1, 1, 1), diag(e
2πi
3 , e

2πi
3 , e

2πi
3 ) and diag(e

4πi
3 , e

4πi
3 , e

4πi
3 ), which clearly is a

phase and has determinant equals to one. On the another hand, the center
of U(N) is an abelian invariant subgroup and for this reason the unitary
group is not semi-simple6.

Concerning finite groups, the center is isomorphic to the trivial group
for Sn, N ≥ 3 and An, N ≥ 4.

Centralizer of an Element of a Group cG(a)

The centralizer of a, cG(a) is a new subgroup in G formed by ga = ag, i.e.
the set of elements of G which commutes with a.

4This is pronounced G mod N .
5An abelian group is one which the multiplication law is commutative g1g2 = g2g1.
6We will see that semi-simple Lie groups are direct sum of simple Lie algebras, i.e.

non-abelian Lie algebras.
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An element a of G lies in the center Z(G) of G if and only if its conjugacy
class has only one element, a itself. The centralizer is the largest subgroup
of G having a as it center and the order of the centralizer is related to G by
[G] = [cG(a)] × [class(a)].

Commutator Subgroup C(G)

The commutator group is the group generated from all commutators of the
group. For elements g1 and g2 of a group G, the commutator is defined as

[g1, g2] = g−1
1 g−1

2 g1g2.

This commutator is equal to the identity element e if g1g2 = g2g1, that
is, if g1 and g2 commute. However, in general, g1g2 = g2g1[g1, g2].

From g1g2g
−1
1 g−1

2 one forms finite products and generates an invari-
ant subgroup, where the invariance can be proved by inserting a unit on
g(g1g2g

−1
1 g−1

2 )g−1 = g′g′−1.

The commutator group is the smallest invariant subgroup of G such that
G/C(G) is abelian, which means that the large the commutator subgroup
is, the ”less abelian” the group is. For example, the commutator subgroup
of Sn is An.

1.2 Representations

A representation is a mapping D(g) of G onto a set, respecting the following
rules:

1. D(e) = 1 is the identity operator.

2. D(g1)D(g2) = D(g1g2).

The dimension of a representation is the dimension of the space on where
it acts. A representation is faithful when for D(g1) 6= D(g2), g1 6= g2, for all
g1, g2.

The Schur’s Lemmas

Concerning to representation theory of groups, the Schur’s Lemma are

1. If D1(g)A = AD2(g) or A−1D1(g)A = D2(g), ∀g ∈ G, where D1(g)
and D2 are inequivalent irreps, then A = 0.
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2. If D(g)A = AD(g) or A−1D(g)A = D(g), ∀g ∈ G, where D(g) is a
finite dimensional irrep, then A ∝ I. In other words, any matrix A
commutes with all matrices D(g) if it is proportional to the unitary
matrix. One consequence is that the form of the basis of an irrep is
unique, ∀g ∈ G.

Unitary Representation

A representation is unitary if all matrices D(g) are unitary. Every represen-
tation of a compact finite group is equivalent to a unitary representation,
D† = D−1.

Proof. Let D(g) be a representation of a finite group G. Constructing

S =
∑
g∈G

D(g)†D(g),

it can be diagonalized with non-negative eigenvalues S = U−1dU , with d di-
agonal. One then makes x = S1/2 = U−1

√
dU , from this, one defines the uni-

taryD′(g) = xD(g)x−1. Finally, one hasD′(g)†D′(g) = x−1D(g)†SD(g)x−1 =
S.

Reducible and Irreducible Representation

A representation is reducible if it has an invariant subspace, which means
that an action of a D(g) on any vector in the subspace is still a subspace,
for example by using a projector on the regular representation (such as
PD(g) = P,∀g). An irrep is a representation that has no nontrivial invariant
subspaces.

Every representation of a finite group is completely reducible and it is
equivalent to the block diagonal form. For this reason, any representation
of a finite or semi-simple group can breaks up into a direct sum of irreps.
One can always construct a new representation by a transformation

D(g)→ D′(g) = A−1D(g)A, (1.2.1)

where D(g) and D′(g) are equivalent representations, only differing by choice
of basis. This new representation can be made diagonal, with blocks repre-
senting its irreps. The criterium of diagonalization of a matrix D(g) is that
it commutes to D(g)†.
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Characters

The character of a representation of a group G is given by the trace of
this representation. The application of the theory of characters is given by
orthogonality relation for groups,∑

g

Di(g−1)νµD
j(g)σρ = δσµδ

ρ
νδ
ij [G]

ni
, (1.2.2)

where ni is the dimension of the representation Di(g). An alternative way
of writing (1.2.2) is∑

g

D∗i(g)νµD
j(g)σρ = δσµδ

ρ
νδ
ij [G]

ni
. (1.2.3)

The character on this representation is given by

χi(g) = Di(g)µµ, (1.2.4)

and using back (1.2.2), δσµδ
ρ
ν = δijδij = δii = ni, one can check that charac-

ters of irreps are orthonormal

1

[G]

∑
g

χi(g)χj∗(g) = δij . (1.2.5)

Because of the cyclic propriety of the trace, χ is the same for all equiva-
lent representations, given by (1.2.1). The character is also the same for con-
jugate elements tr [D(hgh−1)] = tr [D(h)D(g)D(h)−1] = tr D(g). There-
fore, we just proved the statement that the number of irreps is equal to the
number of conjugate classes.

For finite groups, one can construct a character table of a group:

1. The number of irreps are equal to the number of conjugacy classes,
therefore, one can label the table by the irreps D1(g), D2(g), ... and
the conjugacy classes of elements of this group.

2. In the case of an abelian groups, all irreps are one-dimensional and
from Schur’s theorem, all matrices are diagonal. If the representation
is greater than one-dimensional, the representation is reducible.

3. To complete the columns, one can use the that (from the orthogonally
relation), [G] =

∑
c nc, where the sum is over all classes c and nc is

the dimension of the classes.
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Regular Representations

The Caley’s theorem says that there is an isomorphism between the group
G and a subgroup of the symmetric group S[G]. The [G]× [G] permutation
matrices D(g) form a representation of the group, the regular representation.
The dimension of the regular representation is the order of the group.This
representation can be decomposed on N blocks 7,

Dreg = Dp ⊗ ...⊗Dp. (1.2.6)

Each irrep appears in the regular representation a number times equal to its
dimension, e.g. if the dimension of a Dp1 is 2, then Dreg has the two blocks
Dp1 ⊗Dp1 .

One can take the trace in each block to find the character of the regular
representation

χreg(g) = a1χp + a2χp... (1.2.7)

=

p∑
apχ

p(g), (1.2.8)

giving the important result,

χreg(g) = [G], if g = e;

χreg(g) = 0, otherwise.

Therefore, it is possible to decompose (1.2.6) as

Dreg =
∑
⊕
apDp, (1.2.9)

where ap is giving by (1.2.8), thus

ap =
1

[G]

∑
g

χreg(g)χp(g−1). (1.2.10)

One consequence of the orthogonality relation is that the order of the
group G is the sum of the square of all irreps (or classes) of this group,

[G] =
∑
p

n2
p, (1.2.11)

where np is the dimension of the of each irrep. The number of one-dimensional
irreps of a finite group is equal to the order of G/[C(G)], where C(G) is the
commutator subgroup.

7The index p denotes irreps.
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1.3 Reality of Irreducible Representations

For compact groups, irreps can be classified into real, pseudo-real and com-
plex using the equivalence equation (1.2.1), with the following definitions:

1. An irrepD(g) is real if for some S, D(g) can be made real by SD(g)S−1 =
D(g)real. In this case S is symmetric. The criterium using character
is that

∑
g χ(g2) = [G],

2. An irrep is pseudoreal if on making SD(g)S−1 = D(g)complex, the
equivalent D(g)complex is complex. In this case, S is anti-symmetric.
The character criterion is

∑
g χ(g2) = 0.

3. An irrep is complex if one cannot find a D(g)′ which is equivalent to
D(g). The character criterium them gives

∑
g χ(g2) = −[G]

Example: C3

For the cyclic group C3 = (e, a, a2), a3 = e, one representations is given by

e = 1, a = e
2πi
3 , a2 = e

4πi
3 . Calculating the characters,∑

g

χ(g2) = χ(1) + χ(e
4πi
3 ) + χ(e

8πi
3 ) = 0

thus the representation is pseudo-real.

1.4 Transformation Groups

The transformation groups are the groups that describe symmetries of ob-
jects. For example, in a quantum mechanics system, a transformation takes
the Hilbert space into an equivalent one. For each group element g, there
is a unitary D(g) that maps the Hilbert space into an equivalent represen-
tation and these unitary operators form a representation of the symmetric
group for the Hilbert space (and the new states have the same eigenvalue,
[H,D(g)] = 0). Again here, the dimension of a representation is the dimen-
sion of the space on which it acts.

Permutation Groups, Sn

Any element of a permutation (or symmetric) group Sn can be written in
terms of cycles where a cycle is a cyclic permutation of a subset. Permu-
tations are even or odd if they contain even or odd numbers of two-cycles.
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For example, S3 is the permutation on 3 objects, [e, a1 = (1, 2, 3), a2 =
(3, 2, 1), a3 = (1, 2), a4 = (2, 3), a5 = (3, 1)], and (123)→ (12)(23) is even.

The order of Sn is N !. There is a simple N-dimensional representation of
Sn called the defining representation, where permuted objects are the basis
of a N vector space. Permutation groups appears on the relation of the
special orthogonal groups as

Sn =
SO(n+ 1)

SO(n)
.

Dihedral Group, D2n

The dihedral group is the group symmetry of a regular polygon, and the
group has two basic transformations (called isometries), rotation , with
det=1,

gk =

(
cos2πk

n −sin2πk
n

sin2πk
n cos2πk

n

)
,

and reflection, with det= -1,

σ =

(
−1 0
0 1

)
.

The dihedral group is non-abelian8 if N > 2. A polyhedra in according
to its dimension is categorized on table 1.1. The transformation groups acts
on vertices, half of vertices and cross-lines of symmetrical objects.

Dimension Object

d=0 Point
d=1 Line
d=2 D2N

d=3 Polyhedra
d=4 Polytopes

Table 1.1: Geometric objects related to their dimensions.

8For non-abelian groups, at least some of the representations must be in a matrix form,
since only matrices can reproduce non-abelian multiplication law.
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Cyclic Groups, Zn

A cyclic group is a group that can be generated by a single element, g
(called the generator of the group), such that when written multiplicatively,
every element of the group is a power of g. For example, for the group Z3,
described on section 1.3, the regular representation is

D(e) =

 1 0 0
0 1 0
0 0 1

 , D(a) =

 0 0 1
1 0 0
0 1 0

 , D(a2) =

 0 1 0
0 0 1
1 0 0

 .

One can see that for both, this above representation and the regular
representation of Zn, they can be made cyclic by the multiplication of the
generator.

Another example is the parity operator on quantum mechanics [e, p],
where p2 = 1. This group is Z2 and has two irreps, the trivial D(p) = 1
and one in which D(e) = 1, D(p) = −1. On one-dimensional potentials
that are symmetric on x = 0, their eigenvalues are either symmetric or anti-
symmetric under x→ −x, corresponding to those two irreps respectively.

Alternating Groups, An

The alternating group is the group of even permutations of a finite set. It
is the commutator subgroup of Sn such that Sn/An = S2 = C2.



Chapter 2

Lie Groups

A Lie Group is a group which is also a manifold, thus there is a small
neighborhood around the identity which looks like a piece of RN , where
N is the dimension of the group. The coordinate unit vector Ta are the
elements of the Lie algebra and an arbitrary element g close to the identity
can be always expanded into these coordinates as in (2.1.1). A Lie group
can have several disconnected pieces and the Lie algebra specifies only the
connected pieces containing the identity.

2.1 Lie Algebras

In compact1 Lie Algebras, that are the interest here, the number of gen-
erators T a is finite and the structure constant on the (2.1.2) are real and
antisymmetric. Any infinitesimal group element g close to the identity can
be written as

g(a) = 1 + iaaTa +O(a2), (2.1.1)

where the multiplication of two group elements g(a), g(b),

[T a, T b] = ifabcT c, (2.1.2)

1In general, a set is compact if every infinite subset of it contains a sequence which
converges to an element of the same set. A closed group, whose parameters vary over a
finite range, is compact, every continuous function defined on a compact set is bounded.
It defines a connected algebras, for example SO(4) is compact but SO(3,1) is not, or for
instance, a region of finite extension in an euclidian space is compact. The integral of a
continuous function over the compact group is well defined and every representation of a
compact group is equivalent to a unitary representation.

19
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is given by the non-abelian generators commutation relation. All the four
proprieties defined for finite groups verify for this continuous definition of
elements of groups. For instance, the closure is proved by making

eiλ
a
1Taeiλ

b
2Tb = eiλ

c
3Tc = ei(λ

a
1Ta+λb2Tb+

1
2

[λa1Taλ
b
2Tb]).

U(N) Group of all N ×N unitary matrices.
Lie algebra Set of N2 − 1 hermitians N ×N -matrices.

SO(N) Group of all N ×N orthogonal matrices.
Lie algebra Set of 2N2 ±N complex antisymmetric N ×N matrices.

Table 2.1: Distinction among the elements of the group and the elements of
the representation (the generators), for Lie groups.

Semi-Simple Lie Algebra

If one of the generators of the algebra commutes with all the others, it
generates an independent continuous abelian group ψ → eiθψ, called U(1).
If the algebra contains this elements it is semi-simple. This is the case of
algebras without abelian invariant subalgebras, but constructed by putting
simple algebras together. Invariant subalgebras (as defined before) are sets
of generators that goes into themselves under commutation. A mathematical
way of expressing it is by means of ideals. A normal/invariant subgroup is
generated by an invariant subalgebra, or ideal, I, where for any element of
the algebra, L, [I, L] ⊂ I. A semi-simple group has no abelian ideals.

Non semi-simple Algebra Contains ideals I where [I, L] ⊂ I
Semi-simple Algebra All ideals I are non-abelian [I, L] 6= 0 ⊂ I

Simple Algebra No Ideals, only trivial invariant subalgebra.

Table 2.2: Definition algebras in terms of ideals.

A generic element of U(1) is eiθ and any irrep is a 1× 1 complex matrix,
which is a complex number. The representation is determined by a charge
q, with the group element g = eiθ represented by eiqθ. In a lagrangian with
U(1) symmetry, each term on the lagrangian must have the charges add up
to zero.
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Every complex semi-simple Lie algebra has precisely one compact real
form. In semi-simple Lie algebras every representation of finite degrees is
fully reducible. The necessary and sufficient condition for a algebra to be
semi-simple is that the Killing metric is non-singular, (2.4.4), gαβ 6= 0, i.e.
it has an inverse gαβgβν = δαν . If gαβ is negative definite, the algebra is
compact, thus it can be rescaled in a suitable basis gαβ = −δαβ.

Non Semi-Simple Lie Algebra

A non semi-simple Lie algebra A is a direct sum of a solvable Lie algebra
(P) and a semi-simple Lie algebra (S). The definition of solvable Lie algebra
is giving by the relation of commutation of the generators,

[A,A] = A1

[A1, A1] = AK ,

....

where if at some point one finds [An, An] = An+1 = 0, the algebra is solvable.

Example: The Poincare Group

Recalling the generators of the Poincare group SO(1,3), one has the semi-
simple (simple + abelian) and the solvable:

[M,M ] = M, Simple,

[P, P ] = 0, Abelian,

[M,P ] = P, Solvable sector.

Simple Lie Algebra

A simple Lie algebra contains no deals (it cannot be divided into two mu-
tually commuting sets). It has no nontrivial invariant subalgebras.

The generators are split into a set {H}, which commutes to each other,
and the rest, {E}, which are the generalized raising and lowering operators.
The classification of the algebra is specified by the number of simple roots,
whose lengths and scalar products are restricted and can be summarized by
the Cartan matrix and the Dynkin diagrams.
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For simple compact Lie groups, the Lie algebra gives an unique simply
connected group and any other connected group with same algebra must be
a quotient of this group over a discrete identification map. For instance,
the Lie algebra of rotations SU(2) and the group SO(3) have the same Lie
algebra but they differ by 2π, which is represented in SU(2) by diag (-1,1)2.

The condition that a Lie Algebra is compact and simple restricts it to 4
infinity families (An, Bn, Cn, Dn) and 5 exceptions (G5, F4, E6, E7, E8). The
families are based on the following transformations:

Unitary Transformations of N-dimensional vectors For η, ξ, N-vectors,
with linear transformations ηa → Uabηb and ξa → Uabξb, this subgroup
preserves the unitarity of these transformations, i.e. preserves η∗aξ

a.
The pure phase transformation ξae

iαξa is removed to form SU(N),
consisting of all N ×N hermitian matrices satisfying det(U)=1. The
N2 − 1 generators of the group are the N ×N matrices T a under the
condition tr[T a] = 0.

Orthogonal Transformations of 2N-dimensional vectors The subgroup
of orthogonal 2N × 2N transformations that preserves the symmetric
inner product: ηaEabξb with Eab = δab, which is the rotation group in
2N dimensions, SO(n) (we will use n = 2N and n = 2N + 1). There
is an independent rotation to each plane in n dimensions, thus the
number of generators are n(n−1)

2 , or 2N2 ±N .

Symplectic Transformations of N-dimensional vectors The subgroup
of unitary N × N transformations where for N even, it preserves the
antisymmetric inner product ηaEabξb, where

Eab =

(
0 1
−1 0

)
.

The elements of the matrix are N
2 ×

N
2 blocks, defining the symplectic

group Sp(n), with n(n+1)
2 or 2N2 +N generators.

2.2 Representations

Matrices associated with elements of a group are a representation of this
group. Every group has a representation that is singlet or trivial, in which

2SO(3)/SU(2) ' Z2.
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Group Number of generators Rule for Dimension

SU(2) 3
SU(3) 8
SU(4) 15 N → N2 − 1
SU(5) 24
SU(6) 35

SO(3) 3
SO(5) 10 2N + 1→ 2N2 +N

SO(4) 6
SO(6) 15 2N → 2N2 −N
SO(10) 45

Sp(2) 3
Sp(4) 10 2N → 2N2 +N
Sp(6) 21

Table 2.3: Number of generators for the compact and simple families on the
Lie Algebra.

D(g) is the 1×1 matrix for each g and Ta = 0. The invariance of a lagrangian
under a symmetry is equivalent to the requirement that the lagrangian trans-
forms under the singlet representation.

If the Lie algebra is semi-simple, the matrices of the representation, T ar ,
are traceless and the trace of two generator matrices are positive definite
given by

tr [T ar , T
b
r ] = Dab.

Choosing a basis for T a which has Dab ∝ I for one representation means
that for all representations one has

tr [T ar , T
b
r ] = αδab. (2.2.1)

From the commutation relations (2.1.2), one can write the anti-symmetric
structure constant as

fabc = − i

C(r)
tr
[
[T ar , T

b
r ]T cr

]
, (2.2.2)

where C(r) is the quadratic Casimir operator, defined on section 2.7. For
each irrep r of G, there will be a conjugate representation r̄ given by

T ar̄ = −(T ar )∗ = −(T ar )T , (2.2.3)



24 CHAPTER 2. LIE GROUPS

if r̄ ∼ r then T ar̄ = UT ar U
† and the representation is real or pseudo-real, if

there is no such equivalence, the representation is complex.
The two most important irreducible representations are the fundamental

and the adjoint representations:

Fundamental In SU(N) the basic irrep is the N-dimensional complex vec-
tor, and for N > 2, this irrep is complex. In SO(N) it is real and in
Sp(N) it is pseudo-real.

Adjoint It is the representation of the generators, [r] = [G], and the repre-
sentation’s matrices are given by the structure constants (Ta)bc = −fabc
where ([T bG, T

c
G])ae = if bcd(T dG)ae. Since the structure constants are

real and anti-symmetric, this irrep is always real.

2.3 The Defining Representation

A subset of commuting hermitian generators which is as large as possible is
called the Cartan subalgebra, and it is always unique. The basis are called
defining (fundamental) representation and are given by the colum -vectors
(1, 0, 0, .., 0)N , etc. In an irrep, D, there will be a number of hermitian
generators, Hi for i = 1 to k, where k is the rank of the algebra, that are
the Cartan Generators:

Hi = H†i ,

[Hi, Hj ] = 0. (2.3.1)

The Cartan generators commute with every other generator and form
a linear space. One can choose a basis satisfying the normalization (from
(2.2.1)),

tr (HiHj) = λδij ,

for i, j = 1 to N − 1. For the group SU(N) λ = 1
2 . The states of the

representation D can be written as

Hi|µ, x,D〉 = µi|µ, x,D〉, (2.3.2)

where µi are the weights. The number of weights the fundamental represen-
tion is equal to the number of vectors on the fundamental representation,
but their dimension is the dimension of the rank. For example on SU(3),
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one has 3 orthogonal vectors (v1 = (1, 0, 0), for instance) on the fundamental
representation and 3 weights (µ1 = (1

2 ,
1

2
√

3
), for instance).

The contraction of a fundamental and an anti-fundamental field form as
singlet is N̄ ⊗N = (N2 − 1)⊕ 1.

2.4 The Adjoint Representation

The adjoint representation of the algebra is given by the structure constants,
which are always real,

[Xa, Xb] = ifbcdXc. (2.4.1)

[Xa, [Xb, Xc]] = ifbcd[Xa, Xd] = −fbcdfadeXe.

If there are N generators, then we find a N ×N matrix representation
in the adjoint representation. From the Jacobi identity,

[Xa[Xb, Xc]] + [Xb[Xc, Xa]] + [Xc[Xa, Xb]] = 0, (2.4.2)

one has similar relation for the structure constants,

fbcdfade + fabdfcde + fcadfbde = 0.

Defining a set of matrices Ta as

[Ta]bc ≡ −ifabc,

it is possible to recover (2.1.2):

[Ta, Tb] = ifbcdTc.

The states of the adjoint representation correspond to the generators
|Xa〉. A convenient scalar product is:

〈Xa|Xb〉 = λ−1 tr (X†aXb).

The action of a generator in a state is:

Xa|Xb〉 = |Xc〉〈Xc|Xa|Xb〉
= |Xc〉[Ta]cb
= ifabc|Xc〉
= |ifabcXc〉
= |[Xa, Xb]〉.
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The Killing Form

The Killing form is the scalar product of the algebra, defined in terms of the
adjoint representation. Applying it to the generators themselves, it gives the
metric gαβ of the Cartan matrices. The anti-symmetrical structure constants

fαβγ = fγ
′

αβgγ′γ have the Killing metric given by

gγ′γ = fpγ′f
p
γ (2.4.3)

= tr T adjγ′ T
adj
γ , (2.4.4)

recalling (T adjα )γβ = fγβα, the trace is independent of the choice of basis.

Application on Fields

A good way of seeing the direct application of this theory on fields is, for
example, the covariant derivative acting on a field in the adjoint represen-
tation:

(Dµφ)a = ∂µφa − igAbµ(taG)bcφ
c,

= ∂µφa + gfabcA
b
µφ

c,

and the vector field transformation is

Aaµ → Aaµ +
1

g
(Dµ)a.

2.5 The Roots

The roots are weights (states) of the adjoint representation, in the same way
they were defined to the Cartan generators, (2.3.2), where from (2.3.1), we
see that

Hi|Hj〉 = |[Hi, Hj ]〉 = 0.

Therefore, all states in the adjoint representation with zero weight vectors
are Cartan generators (and they are orthonormal). The other states have
non-zero weight vectors α,

Hi|Eα〉 = αiEα. (2.5.1)
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The non-zero roots uniquely specify the corresponding states, Eα, and they
are the non-hermitian raising/lowering operators:

[Hi, Eα] = αiEα, (2.5.2)

[Hi, E
†
α] = −αiE†α, (2.5.3)

E†α = E−α, (2.5.4)

[Eα, E−α] = −αH, (2.5.5)

where we can set the normalization (in the same fashion as (2.4.3)) as

〈Eα|Eβ〉 = λ−1 Tr (E†αEβ) = δαβ.

From (2.5.5), for any weight µ of a representation D, setting H = E3,
one has

E3|µ, x,D〉 =
αµ

|α|2
|µ, x,D〉, (2.5.6)

which are always integers or half-integers and it is the origin of the Master
Formula. From this equation, we can see that all roots are non-degenerated,

2
α.µ

α2
= −p+ q, (2.5.7)

where p is the number of times the operator Eα may raise the state and q,
the number of times the operator E−α may lower it.

Roots α

The roots can be directly calculated from the the weights of the Cartan
generators by ±αij = µi ± µj .

Positive Roots

When labeling roots in either negative or the positive, one can set the whole
raising/lowering algebra. It is convention, for instance one can set for SU(N)
the positive root to be the first non-vanishing entry when it is positive.

One can define an ordering of roots in the way that if µ > ν than µ− ν
is positive, and from this finde the highest weight of the irrep. In the adjoint
representation, positive roots correspond to raising operators and negative
to lowering operators.
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Simple Roots ~α

Some of the roots can be built out of others, and simple roots are the positive
roots that cannot be written as a sum of other positive roots. A positive
root is called a simple root if it raises weights by a minimal amount. Every
positive root can be written as a positive sum of simple roots. If a weight is
annihilated by the generator of all the simple roots, it is the highest weight,
ν, of an irreducible representation. From the geometry of the simple roots,
it is possible to construct the whole algebra,

• If ~α and ~β are simple roots, then ~α− ~β is not a root (the difference of
two roots is not a root).

• The angles between roots are π
2 ≤ θ < π.

• The simple roots are linear independent and complete.

Fundamental Weights ~q

Every algebra has k (rank of the algebra) fundamental weights that are a
basis orthogonal to the simple roots α, and they can be constructed from
the master formula, (2.5.7), with a metric gij , (2.4.4), to be defined,

2
qIi g

ijαJj

αJj g
ijαJj

= δIJ , (2.5.8)

If we use of the Killing metric defined on (??), for SU(N), the relation
becomes

2
qjαk

|αk|2
= δjk. (2.5.9)

All irreps can be written in terms of the fundamental weight and the
highest weight as

νHW =
k∑
i=1

aiq
i = a1q

1 + a2q
2 + ...+ aNq

k, (2.5.10)

where ai are the Dynkin coefficients, ai = qi − pi.
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The Master Formula

We have already seen the role of the master formula on equations (2.5.6)
and (2.5.7), now let us derive it properly. Supposing that the highest state
is j, there is some non-negative integer p such that (E+)p|µ, x,D〉 6= 0, with
weight µ + pα, and which (E+)p+1|µ, x,D〉 = 0. The former is the highest
state of the algebra.The value of E3 is then

α(µ+ pα)

α2
=
αµ

α2
+ p = j. (2.5.11)

On another hand, there is a non-negative integer q such that (E−)q|µ, x,D〉 6=
0, with weight µ − qα, being the lowest state, with (E−)q+1|µ, x,D〉 = 0.
The value of E3 is then

α.(µ− qα)

α2
=
α.µ

α2
− q = −j. (2.5.12)

Adding (9.2.2) and (9.3.4) one has the formulation of the master formula,
as in (2.5.7),

α.µ

α2
= −1

2
(p− q).

Subtracting (9.2.2) from (9.3.4) one have the important relation

p+ q = 2j. (2.5.13)

Construction of Irreps of SU(3) from the Highest Weight ν 3

It is possible to construct all representations of an irrep of any Lie algebra
represented by its highest weight. One needs only to know a basis for the
fundamental weights and their orthogonal simple roots of the group and to
make use of the theory of lowering and raising operators. Let us show an
example of a irrep of SU(3) with highest weight ν = q1 + 2q2, where q1, q2

are the fundamental weight of SU(3).
Recalling from table 3.4, the simple roots and the fundamental weights

of SU(3), the highest weight of the irrep we are going to construct is

ν = q1 + 2q2 = (
3

2
,− 1

2
√

3
).

3Exercise proposed by Prof. Nieuwenhuizen[?].
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From the master formula, (2.5.7), for each of the two simple roots (where
we consider them normalized |α1|2 = 1 = |α2|2),

2αiν =
1

2
q,

where p = 0 since this is the highest weight. Calculating for the both simple
roots,

α1ν = q1 = 1,

α2ν = q2 = 2.

The first vectors are then

|ν〉, |ν − α1〉, |ν − α2〉, |ν − 2α2〉.

We now lower, in the same fashion, |ν − α1〉, with E−α2 , and |ν − α2〉,
|ν − 2α2〉 with E−α1 ,

2α2(ν − α1) = q12 = 3,

giving 3 more vectors, |ν − α1 − α2〉, |ν − α1 − 2α2〉, |ν − α1 − 3α2〉.

2α1(ν − α2) = q21 = 2,

giving 2 more vectors, but only one new, |ν − α1 − 2α2〉.

2α1(ν − 2α2) = q211 = 2,

giving two more new vectors, |ν − 2α1 − 2α2〉, ν − 3α1 − 2α2〉.
The weights will sum up 15, which is exact the dimension of this irrep

on SU(3).

2.6 The Cartan Matrix and Dynkin Diagrams

The Cartan matrices represent directly the proprieties of the algebra of each
Lie family and are constructed from the master formula, (2.5.7), multiplying
all simple roots αi among themselves,

Aij = 2
αiαj

|αi|2
. (2.6.1)

The off-diagonal elements can only be 0, -1, -2 and -3. If all roots have
the same length, A is symmetric, and if Aij 6= 0 then Aji 6= 0. The rows
of the Cartan matrix are the Dynkin coefficients (labels) of the simple root,
and are directly used on the constructed of the algebra.
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The Dynkin diagram is a diagram of the algebra of the groups in terms
of angles and size of the roots. Multiplying the master formula by itself,
and using the Schwartz inequality4, we can define the angles between the
product of two simple roots as

cos θ12 =
α1α2

|α2
1||α1

1|
=

1

4

√
n1n2,

with the limited possibilities on n1n2 < 4. The conditions for the two roots
are then

1. n1 = n2 = 0, θ = π
2 , the two roots are orthogonal and there is no

restriction of length. Aij = 0, the roots are not connected.

2. n1 = n2 = 1, θ = π
3 , and |α1| = |α2|. Aij = −1, the roots have the

same length.

3. n1 = 2, n2 = 1, θ = π
4 , |α2| =

√
2|α1|. Aij = −2, the roots have value

2 and 1.

4. n1 = 3, n2 = 1, θ = π
6 , |α2| =

√
3|α1|. Aij = −3, the highest root has

value 3.

Summarizing, the rules to construct the Dynkin diagram for some Lie
algebra are the following:

1. For every simple root, one writes a circle.

2. Connect the circles by the number of lines given by Aij of (2.6.1). Two
circle are joined with one line if θ = π

3 , two lines if θ = π
4 , and three

lines if θ = π
6 .

3. For a semi-simple algebra the diagram will have disjoint pieces, for
example, SO(4) ' SU(2) × SU(2), which is not simple, is giving by
two disconnected circles.

4. When the length are unequal, one can either write an arrow pointing
to the root of smaller length, or write all small roots as a black dot.

From the Dynkin diagrams it is possible to check if two groups are locally
isomorphic and the sequence for compact and simple Lie groups is

4The Cauchy-Schwarz inequality states that for all vectors x and y of an inner product
space, |〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉.
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Groups Dynkin Diagram

SO(3) ' SU(2)'USp(2) ◦
SO(4) 'SU(2)×SU(2) ◦ ◦

SO(5)'USp(4) ◦ = ◦
SO(6)' SU(4) ◦ − ◦ − ◦

Table 2.4: Local isomorphism among the Cartan families.

A regular subalgebra is obtained by deleting points from the Dynkin
diagram. For example, SU(2)⊕SU(4) ⊂ SU(6) and its six dimensions give
a regular representation of the regular subalgebra of SU(2) (1,2) and SU(4)
(4,1). The non-regular subalgebra SU(3)⊕ SU(2) gives an irrep (3,2).

There is a symmetric invariant bilinear form for the adjoint representa-
tion

SU(N) ⊂ SO(N2 − 1). (2.6.2)

2.7 Casimir Operators

If the Lie algebra is semi-simple, then the metric (2.4.4) has determinant
non-zero (detgαβ 6= 0). In this case, an irrep R has the Casimir operator
defined as

C̃2(R) = gαβTRα T
R
β , (2.7.1)

where TR are the chosen generators and the metric has the compactness
condition

gαβ = f qαβf
p
pq ≤ 0,

and the commutation relation of the Casimir operator to all other generators
is zero,

[C̃2(R), TRa ] = 0.

Proof.

[gαβTαTβ, Tγ ] = gαβTα[Tβ, Tγ ] + gαβ[Tα, Tγ ]Tβ

= fαδγ (TRα T
k
δ + T kδ T

R
α )

= 0.
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Using the Schur’s lemma on (2.7.1), it is clear that since C̃2(R) commutes
to all other generators, it must be proportional to the identity,

C̃2(R) = C2(R)I,

where C2(R) is the Quadratic Casimir Invariant of each irrep, which is an
invariant of the algebra. It has a meaning only for representations, not as
an element of the Lie algebra, since the product (2.7.1) are not defined for
the algebra itself, but only for the representations.

For compact groups, the Killing form is just the Kronecker delta, for
example on SU(2), the Casimir invariant is then simply the sum of the
square of the generators Lx, Ly, Lz of the algebra, i.e., the Casimir invariant
is given by L2 = L2

x + L2
y + L2

z. The Casimir eigenvalue in a irrep is just
L2 = l(l + 1). For example for the adjoint irrep,

facdf bcd = C2(G)δab,

a symmetric invariant two-indice tensor δαβ = δβα is unique up rescaling

(T adjγ )βα, therefore it is possible to write tr TRα T
R
β = δRαβ = δαβT (R).

To compute explicitly T(R), one starts with any Lie algebra tr TαTβ =
T (R)gαβ, and the Casimir operators can be found from knowing the dimen-
sion of the irrep R and the group G,

C2(R)× dim R = dim G× T (R), or, (2.7.2)∑
a

Ta(R)2 = C2(R)× 1d(R)×d(R). (2.7.3)

For the fundamental representation of SU(N), C2(R) = N2−1
2N . For the

adjoint representation C2(G) = C(G) = N . For the spinorial representation
of SO(2N), C2(G) = 2N−4. The number of generators required to give a
complete set of these invariants is equal to the rank.

Harish-Chandra Homomorphism

The center of the algebra of the semi-simple Lie algebra is a polynomial alge-
bra. The degrees of the generated algebra are the degree of the fundamental
invariants. The number of invariants on each family is shown on table 2.5.

Example: The fundamental irrep 3 of SU(3)

For the irrep 3 of SU(3), one has the generators given by

Ta(3) =
λa
2
,
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An I2, I3, ..., In+1

Bn I2, I4, ..., I2n

Cn I2, I4, ..., I2n

Dn I2, I4, ..., I2n−2

Table 2.5: Order of the independent invariants for the four Lie families.

and the dimension of the group is N2 − 1 = 8 resulting

tr
∑
a

(
λa
2

)2 =
∑
a

1

2
δaa =

1

2
× 8→ 3C2(3),

the quadratic Casimir invariant is then

C2(3) =
4

3
.

Example: The adjoint irrep 8 of SU(3)

Now one has

Ta(8) = ifabc,

where

−
∑
a

fabcfdbc = C2(8)δad.

The quadratic Casimir invariant is given by

8C2(8) = f2
abc = 6(1 +

6

4
+

23

24
) = 24,

C2(8) = 3.

2.8 *Weyl Group

For every root m there is a state with −m: large algebras have reflection
symmetries and the group generated by those reflections are the Weyl group.
This group maps weights to weights.
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2.9 *Compact and Non-Compact Generators

The number of compact generators less the number of non-compact is the
rank of the Lie Algebra, which is the maximum number of commuting gener-
ators. On table 2.6 the Cartan series are separated in terms of their compact
and non-compact generators, which is given by the following algebra.

[C,C] = C,

[C,NC] = NC,

[NC,NC] = C.

An, SU(N+1) N compact Ti where [Ti, Tj ] = εijkTk.

An, SL(N,C) SL(N,R), non-compact: all generators of SU(N) times i.

SU(p,q), non-compact,
∑p

i=1(xi)∗xi =
∑N

j=p+1(xj)∗xj .

Bn, SO(2N+1,C) SO(2N+1,R), real, compact.

SO(p,q,R), non-compact,
∑p

i=1(xi)
2 =

∑N
j=p+1(xj)2.

Dn, SO(2N,C) SO(2N,R), real, compact.
SO(p,q), p+1=2N, non-compact.

Examples: Anti-deSitter superalgebra, SO(4,1), SO(2,N)∗,
deSitter superalgebra SO(3,2), SO(N).

Table 2.6: The Lie groups in terms of the compact and non-compact gener-
ators.

Example of non-compact groups are SU(p,q) (which preserves the form
x†1p,qy) and SL(N,R), which is the group of N×N real matrices with unitary
determinant. One can go from compact groups to non-compact versions by
judiciously multiplying some of the generators by i (or equivalently, letting
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some generators become pure imaginary). The general procedure for associ-
ating a non-compact algebra with a compact one is first to find the maximal
subalgebra and then multiply the remaining non-compact generators by i.

2.10 *Exceptional Lie Groups

The process of constructing the algebra for the five Cartan exceptional
groups G2, F4, E6, E7, E8, consists basically on the following method:

1. Choose an easy subgroup H of G and a simple representation of this
H. This should be the Maximal Regular subgroup, i.e. an algebra
which has the same rank thus we can write the Cartan generators
of the group as a linear combination of the Cartan generators of the
subgroup, and there is no large subalgebra containing it except the
group itself.

2. Decompose the representation R into irreps Ri of H, and how it acts
in Ri. An irrep of an algebra becomes a representation of the subal-
gebra when its is embedded by a homomorphism that preserves the
commutation relations.

3. Construct the Lie algebra of G starting with the Lie algebra of H and
Ri of H.

For example, mainly from (2.6.2) one can find the following: E6 has a
maximal regular subalgebra in SU(6) ⊗ SU(2), E7 has a maximal subal-
gebra in SU(8), and and E8 has a maximal regular subalgebra in SO(16).
The lowest dimensional irrep of E8 is the adjoint irrep with 24-dimensional
generators, which can be used on the above process.

As a remark, before these exceptional families, the first groups are ac-
tually locally isomorphic to the four Lie families, E5 ' SO(10), E4 '
SU(3)× SU(2), and E3 ' SU(2)× SU(2).
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SU(N), the An series

SU(N) is the group of N × N unitary matrices, U †U = 1 with det U = 1.
The rank of SU(N) is N − 1 and the number of generators is N2 − 1. The
traceless constraint tr(ααTα) = 0 is what gives the determinant a unitary
value.

Proof. Any element of the group can be represented as

U(α)→ eiαT

and can be diagonalized by

UαTU−1 = D,

Now, taking the determinant,

det U(α) = det (eiD)

= ei tr D

= ei tr αT .

= 1.

3.1 The Defining Representation

SU(N) has N objects φi, i = 1, ..., N that transform under φi → φ′i = U ijφ
j .

The complex conjugate transforms as φ∗i → φ′∗i = (U ij)
∗φ∗j = (U †)jiφ

∗j .
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There are higher representations, for example, the tensor φijk , transform
as they were equal to multiplication of the vectors, φiφjφk,

φijk → U ilU
j
m(U †)nkφ

lm
n .

The trace is always a singlet and it can be separated by setting the
upper index equals to the lower index, φijj → U il φ

lm
m , and subtracting it

from the original tensor. In this way, the tensor φijk can be decomposed into
sets containing 1

2N
2(N + 1)−N symmetric traceless and 1

2N
2(N − 1)−N

anti-symmetric traceless components. More examples can be seen on table
3.1.

Element Dimension Description Dimension on SU(5)

φi N Defining Irrep 5

φij N2 N ⊗N Defining 25
φij N2 − 1 N ⊗ N̄ − U(1), Adjoint irrep 24

φij N(N+1)
2 Symmetric 15

φij N(N−1)
2 Anti-symmetric 10

φijk N3 N ⊗N ⊗N , Defining 125

φijk
1
2N

2(N + 1)−N Symmetric traceless 70

φijk
1
2N

2(N − 1)−N Anti-symmetric traceless 45
φikk 2N Trace 10

Table 3.1: The decomposition of SU(N) into its irreps.

3.2 The Cartan Generators H

The Cartan-Weyl basis for the group SU(N) are the maximally commutative
basis of N − 1 generators, N − 1, given can given by the following basis of
matrices, which are a generalization of the Gell-Mann matrices:

HI =
1

2


1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ...


N×N
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HII =
1

2
√

3


1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 ...


N×N

HIII =
1√
24


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 ...


N×N

...

HN−1 =
1√

2N(N − 1)


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 ... −(N − 1)


N×N

3.3 The Weights µ

The weights of the defining representation, from the Cartan generators, are
N -vectors with N − 1-entries each, given by

µI = (
1

2
,

1

2
√

3
,

1√
24
, ...,

1√
2N(N − 1)

),

µII = (−1

2
,

1

2
√

3
,

1√
24
, ...,

1√
2N(N − 1)

),

µIII = (0,− 1√
3
,

1√
24
, ...,

1√
2N(N − 1)

),

...

µN = (0, 0, 0, ...,
−(N − 1)√
2N(N − 1)

),

3.4 The Roots α

The roots are the weights of the generators that are not Cartan. There are
N(N−1) roots on SU(N) and together with N weights, they give N2, which
is one plus the number of total generators (given by N2 − 1). The roots on
SU(N) are generated by the commutation between these generators,

[H,Eα] = αiEα,



40 CHAPTER 3. SU(N), THE AN SERIES

[H,Eαij ] = (µi − µj)Eαij ,

± αij = µi − µjj. (3.4.1)

The Positive Roots

The positive roots are given by the first non-vanishing positive entry. There
are N(N−1)

2 positive roots on SU(N).

The Simple Roots ~α

Simple roots are positive roots that cannot be constructed by others. The
number of simple roots is the equal to the rank k of the algebra, where
k = N − 1 in the case of SU(N). In resume, to find the simple roots, one
calculates all possible roots by

~αij = µi − µj , (3.4.2)

= µi − µi+1 → α12, α23, .., αN−1,N , (3.4.3)

finds the positives roots, and then check which are not the sum of others
(totalizing N − 1 simple roots).

When associating roots and fundamental weights to the Dynkin dia-
grams, we see that the fundamental highest weights are the first weight of
the defining representation and its complex conjugate (last weight). The
symmetric product of two vectors (2-fold) gives two HW (2,0,0...), the sym-
metric product of three vectors (3-fold) gives (3,0,0,0..), etc. The 3-fold
anti-symmetric product contains a rep that is the sum of 3 HW, (0,0,1,0...),
the two-fold anti-symmetric (0,1,0,...). To illustrate them, the highest weight
for some representations for SU(6) are shown on table 3.2.

3.5 The Fundamental Weights ~q

The k = N − 1 fundamental weights of a Lie algebra are given by their
orthogonality to the simple roots, relation that can be checked with the
master formula (2.5.7),

2
αI~qJ

|α|2
= δIJ . (3.5.1)

For SU(N), one can also write the fundamental weights in a basis doing

qi = µi − µi+1
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Representation HW on the Dynkin Diagram

Fundamental ◦ − ◦ − ◦ − ◦
1 - 0 - 0 - 0 - 0

Anti-fundamental ◦ − ◦ − ◦ − ◦
0 - 0 - 0 - 0 -1

2-fold Symmetric ◦ − ◦ − ◦ − ◦
2 - 0 - 0 - 0 -0

2-fold Anti-symmetric ◦ − ◦ − ◦ − ◦
0 - 1 - 0 - 0 - 0

Adjoint ◦ − ◦ − ◦ − ◦
1 - 1 - 0 - 0 - 0

Table 3.2: The highest weight of all irreps of SU(6).

q1 = µ1 − µ2, q2 = µ2 − µ3, q3 = µ3 − µ4....

resulting on

qI = (1, 0, 0, 0...0),

qII = (−1

2
,

√
3

6
, 0, 0...0),

qIII = (0,−
√

3

3
,

√
24

6
, 0...0),

...

3.6 The Killing Metric

The Killing metric for SU(N) is

gij = tr HiHj ,

=
1

2
δij .

3.7 The Cartan Matrix

The Cartan matrix, calculated from the equation 2.6.1, from last chapter,

Aij = 2
αiαj

|αi|2
.
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has the form following form on SU(N):

A =



2 −1 0 ... 0 0 0
−1 2 −1 ... 0 0 0
0 −1 2 ... −1 0 0
0 0 −1 ... 2 −1 0
0 0 0 ... −1 2 −1
0 0 0 ... 0 −1 2

 .

3.8 SU(2)

In the special unitary subgroup of two dimensions, any element can be writ-
ten as

g =

(
a −b
b a

)
,

where |a2| + |b2| = 1. The elements of the group are represented by eλaTa ,
with Ta antihermitian and given by the Pauli matrices,

Ta =
1

2
σa.

Since in SU(2) the structure constant εij carries only two indices, it
suffices to consider only tensors with upper indices, symmetrized. As a
consequence, we are going to see that SU(2) only has real and pseudo real
representations.

The Defining Representation

The Cartan generator is given by the maximal hermitian commutating basis,
composed only of H, since the rank is 1. Recalling the traditional algebra
from Quantum Mechanics, for the vectors that spam the fundamental defin-
ing representation, (1,0) and (0,1), and making H = J3, we have

[J3, J±] = ±J±,

H = J3 =
1

2
σ3.

The Weights µ

The eigenvalue of H are the weights

• H
(

1
0

)
= 1

2

(
1
0

)
, µI1 = 1

2 .
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• H
(

0
1

)
= −1

2

(
0
1

)
, µII1 = −1

2 .

The Raising/ Lowering Operators

The Raising/ Lowering Operators are given by

E+ = J1 + iJ2 =
1

2
(σ1 + iσ2),

E− = J1 − iJ2 =
1

2
(σ1 − iσ2).

Extending these results, we see that for each non-zero pair of root vector
±α, there is a SU(2) subalgebra with generators

E± ≡ |α|−1E±α,

E3 ≡ |α|−2αH.

The generators, the weights and the simple root of the defining (funda-
mental) representation are shown on table 3.3.

Cartan generator H 1
2σ3

Raising operator E+ 1
2(σ1 + iσ2)

Lowering operator E− 1
2(σ1 − iσ2)

Weight I µI 1
2

Weight II µII −1
2

Simple Root I ~α12 1
Fundamental Weight I ~q 1

Table 3.3: The generators, weights, simple root and fundamental weight of
the defining representation of SU(2).

3.9 SU(3)

The elements of SU(3) are given by ebaTa , with ba real and Ta traceless and
antihermitian that can be constructed from the original Gell-Mann matrices,
λa,

Ta =
1

2
λa.
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From these matrices one has three compact generators, which are those
from SU(2) plus five extra non-compact generators. The number of compact
generators less the number of non-compact is the rank of the Lie Algebra,
k, which is the maximum number of commuting generators. In this case
k = 3− 1 = 2, giving the two Cartan generators

H1 =
1

2

 1 0 0
0 −1 0
0 0 0

 =
1

2
λ3

H2 =
1

2
√

3

 1 0 0
0 1 0
0 0 −2

 =
1

2
√

3
λ8

The other N2 − 1− k = 6 generators of SU(3), are

λ1,2,3 =

 σi 0
0

0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

λ5 =

 0 0 −i
0 0 0
−i 0 0



λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 −i 0

 , λ8 =
1

2
√

3

 1 0 0
0 1 0
0 0 −2


The Defining Representation

The vectors

1
0
0

,

0
1
0

 and

0
0
1

 are the basis of the defining representa-

tion.

The Weights µ

The eigenvalues of the Cartan generators on the defining representation give
the threes weights of this algebra,

µI = (
1

2
,

1

2
√

3
),

µII = (−1

2
,

1

2
√

3
),

µIII = (0,− 1√
3

).
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The Raising/ Lowering Operators

The raising/ lowering operators of SU(3) are

EIα = i(λ1 + iλ2) =

 0 1 0
0 0 0
0 0 0

 ,

EIIα = i(λ4 + iλ5) =

 0 0 1
0 0 0
0 0 0

 ,

EIIIα = i(λ6 + iλ7) =

 0 0 0
0 0 1
0 0 0

 ,

EI−α = i(λ1 − iλ2) =

 0 0 0
1 0 0
0 0 0

 ,

EII−α = i(λ4 − iλ5) =

 0 0 0
0 0 0
1 0 0

 ,

EIII−α = i(λ6 − iλ7) =

 0 0 0
0 0 0
0 1 0


The Roots α

The roots are the weight (states) of the adjoint representation. The first
generator can be written as

[H1, EαI ] = EIα,

[H2, EαI ] = 0,

concluding that the roots is αI+ = (1, 0), and the root of (EIα)† = EI−α is just
the same vector with opposite sign, αI− = (−1, 0) . For the second generator
and its complex conjugate,

[H1, EαII ] =
1

2
EIIα ,
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[H2, EαII ] =

√
3

2
EIIα ,

thus the root are ±αII = ±(1
2 ,
√

3
2 ). For the third generator, the roots are

±αIII = ±(−1
2 .
√

3
2 ).

The Simple Roots ~α

The simple roots of SU(3) are those that cannot be constructed by summing
any two positive roots,

~αI = (
1

2
,

√
3

2
)

~αII = (
1

2
,−
√

3

2
).

The Fundamental Weights ~q

The two fundamental weights on SU(3) represent the 3 and 3̄ irreps. By
applying (3.5.1) one gets (1

2 ,
1

2
√

3
) and (1

2 ,−
1

2
√

3
).

The Cartan Matrix

From (2.6.1), the product of the two simple roots are given by

cos θ11 = 2~α1~α1 = −2,

cos θ12 = 2~α1~α2 = −1,

cos θ22 = 2~α2~α2 = −2.

ASU(3) =

(
2 −1
−1 2

)
.

The group SU(3) has an important role on phenomenology of elementary
particles. For instances one can represents mesons (quark and anti-quark)
as 3 ⊗ 3̄ = 8 ⊕ 1, ψa ⊗ ψb = (ψaψ̄

b − 1
3δ
b
aψcψ̄

c) + 1
3δ
b
aψcψ̄

c, and baryons (3
quarks) as 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1, ψa ⊗ ψb = 1

2(ψ(aψb) + ψ[aψb]).

Example2: Working out in another Representation of SU(3)

Let us suppose another (natural) way of choosing Hj and E±α, given by

2Exercise proposed by Prof. Nieuwenhuizen.
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Cartan generators H3, H8
1
2λ3, 1

2λ8

Raising operator E+αi , i = 1, 2, 4, 5, 6, 7 1
2(λi + λj)

Lowering operator E−αi , i = 1, 2, 4, 5, 6, 7 1
2(λi − λj)

Weight I µI (1
2 ,

1
2
√

3
)

Weight II µII (−1
2 ,

1
2
√

3
)

Weight III µIII (0, −1√
3
)

Simple Root I ~αI (1
2 ,
√

3
2 )

Simple Root II ~αII (1
2 ,−

√
3

2 )
Fundamental Weight I qI (1

2 ,
1

2
√

3
)

Fundamental Weight II qII (1
2 ,−

1
2
√

3
)

Table 3.4: The generators, weights, simple roots and fundamental weights
of the defining representation of SU(3).

H1 =
1

2

 1 0 0
0 −1 0
0 0 0

 , H2 =
1

2

 0 0 0
0 1 0
0 0 −1

 ,

Eα =

 0 1 0
0 0 0
0 0 0

 , Eβ =

 0 0 1
0 0 0
0 0 0

 , Eγ =

 0 0 0
0 0 1
0 0 0

 ,

with E−α = (Eα)†. The weights of the defining representation are then
giving by

µI = (
1

2
, 0),

µII = (−1

2
,
1

2
),

µIII = (0,−1

2
).

and the six roots are given by

α = (1,−1

2
),

β = (
1

2
,
1

2
),

γ = (−1

2
, 1),
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and their negative values. The positive roots are given by the roots with
first entry non-negative,

α = (1,−1

2
),

β = (
1

2
,
1

2
),

−γ = (
1

2
,−1).

The quantity of simple roots are given by the rank of the algebra, in this
case, k = 2, from (3.4.3), one has

α12 = α− β = (
1

2
, 1),

α23 = β − (−γ) = (0,−3

2
).

The fundamental highest weights qj is given by using the Killing metric
gij = tr (HiHj),

2
αIi g

ijqJj

αIi g
ijαIi

= 2
αJµI

αJ2
= δIJ ,

giving

qI = (
1

2
, 0) and qII = (0,−1

2
).
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SO(2N), the Dn series

SO(2N) is the group of matrices O that are orthogonal: OTO = 1 and have
det O = 1. The group is generated by the imaginary antisymmetric 2N×2N
matrices, which only 2N2−N are independent (which is exactly the number
of generators, table 2.3). The explicitly difference to the group SU(N) is that
there the group was represented by both upper and lower indices, however,
on SO(2N), this distinction of indices has no meaning. The rank of SO(2N)
is N = n.

4.1 The Defining Representation

The defining representation is the 2N vectors ~v = {vi, i = 1..., 2N} which
transforms as vi → v′i = Oijvj . Possible representations for the tensors
are the (2N)2 objects given by T ij , the (2N)3 given by T ijk → T ′ijk =
OilOjmOknT lmn, etc. It is possible to decompose any tensor into symmet-
rical and antisymmetrical subsets, for example for T ij , one has 1

2N(N + 1)
and 1

2N(N − 1), respectively:

S → Sij =
1

2
(T ij + T ji) (4.1.1)

A→ Aij =
1

2
(T ij − T ji). (4.1.2)

Giving the symmetrical tensor T ij and considering its trace as T = δijT ij

49
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then

T → δijT ′ij = δilOijOjmT lm,

= (OT )liδijOjmT lm,

= (OT )ljOjmT lm,

= δlmT lm,

= T,

which means that the trace transforms to itself (singlet). Therefore, it
is possible to subtract it from the original tensor, forming the traceless
Qij = T ij − 1

N δ
ijT which are 1

2N(N + 1)− 1 elements transforming among
themselves.

To summarize it, given two vectors v and w, their product can be de-
compose into a symmetric traceless, a trace and an anti-symmetric tensor:

N ⊗N = [
1

2
N(N + 1)− 1]⊕ 1⊕ 1

2
N(N − 1). (4.1.3)

For example, for SO(3), 3⊗ 3 = 5⊕ 1⊕ 3.

4.2 The Cartan Generators H

For the group SO(2N), the N Cartan generators can be represented generi-
cally by the 2N × 2N following matrices

[Hm]jk = −i(δj,2m−1δk,2m − δk,2m−1δj,2m), (4.2.1)

H1 = −i


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


2N×2N

,

H2 = −i


0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0


2N×2N

,
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...

HN = −i


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0


2N×2N

.

4.3 The Weights µ

The 2N weights of the defining representation, for the previous Cartan gen-
erators, are ± the unit vector ek with components [ek]m = δkm,

µ1 = (1, 0, 0, ..., 0)N ,

µ2 = (−1, 0, 0, ..., 0),

µ3 = (0, 1, 0, ..., 0),

µ4 = (0,−1, 0, ..., 0),

...

µ2N−1 = (0, 0, 0, ..., 1),

µ2N = (0, 0, 0, ...,−1).

4.4 The Raising and Lowering Operators E±

In the group SO(2N), the raising and lowering operators are given by a
collection of 2N2 − 2N operators represented by

Eα = Eηη
′

IJ , (4.4.1)

where η = ±1, η′ = ±1 (giving four possibilities), and IJ = 1, ..., N . These
operators can be explicitly written as

Eηη
′

12 =
1

2


0 0 1 iη′ 0
0 0 iη −ηη′ 0
−1 −iη′ 0 0 0
−iη ηη′ 0 0 0

0 0 0 0 0


2N×2N

.

Eηη
′

N−1,N =
1

2


0 0 0 0 0
0 0 0 1 iη′

0 0 0 iη −ηη′
0 −1 −iη′ 0 0
0 −iη ηη′ 0 0


2N×2N

.
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4.5 The Roots α

The 2N2− 2N roots are given by the N-size positive roots such as ±ej ± ek,
for k 6= j,

α1 = (1, 1, 0, ..., 0)N ,

α2 = (−1, 1, 0, ..., 0),

α3 = (0, 1, 1, 0, ..., 0),

α4 = (0,−1, 1, 0, ..., 0),

α5 = (1, 0, 1, ..., 0),

α6 = (−1, 0, 1, ..., 0),

...α2N2−2N = (0, 0,−0, ...,−1,−1),

Positive Roots

The positive roots on SO(2N) are defined by the roots with first positive
non-vanishing entry, α = (0, 0, .., 0,+1, 0...), i.e. ej ± ek for j < k.

Simple Roots ~α

The N simple roots are given by N − 1 vectors ej − ej+1, j = 1...N − 1 and
one eN−1 + eN ,

~α1 = (1,−1, 0, ..., 0),

~α2 = (0,−1,−1, ..., 0),

...

~αN−1 = (0, 0, .., 1,−1),

~αN = (0, 0, ..., 1, 1).
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4.6 The Fundamental Weights ~q

The N fundamental weights of SO(2N) are

~q1 = (1, 0, 0, ..., 0),

~q2 = (1, 1, 0, ..., 0),

~q3 = (1, 1, 1, ..., 0),

...

~qN−1 =
1

2
(1, 1, 1, ...,−1),

~qN =
1

2
(1, 1, 1, ..., 1),

where the last two are the spinor representation and the conjugate spinor
representation. The complex representation is characterized by charge con-
jugation, so all weights change sign.

4.7 The Cartan Matrix

The Cartan Matrix in SO(2N) is given by (2.6.1),

A =



2 −1 0 0 ... 0 0 0
−1 2 −1 0 ... 0 0 0
0 −1 2 −1 ... 2 0 0
0 0 −1 2 ... 2 −1 −1
0 0 0 −1 ... −1 2 0
0 0 0 0 ... −1 0 2

 .
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Chapter 5

SO(2N+1), the Bn series

The algebra of SO(2N+1) is the same as SO(2N) with an extra dimension.
The group is generated by the imaginary antisymmetric 2N × 2N matri-
ces, which only 2N2 + N are independent (which is exactly the number of
generators, table 2.3).

5.1 The Cartan Generators H

The defining representation is 2N + 1-dimensional, therefore the N Cartan
generators are given by the following (2N+1)×(2N+1) matrices, where one
just adds zeros on the last collum and row of the previous SO(2N) Cartan
generators. The ranking of SO(2N+1) is N.

H1 = −i


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


2N+1×2N+1

,

H2 = −i


0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0


2N+1×2N+1

,
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...

HN = −i


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0


2N+1×2N+1

,

5.2 The Weights µ

The 2N + 1 weights of SO(2N+1) are the N-sized vectors from SO(2N) plus
an extra vector with zero entries, all them given by

µ1 = (1, 0, 0, ..., 0)N ,

µ2 = (−1, 0, 0, ..., 0),

...

µ2N = (0, 0, ..., 0,−1),

µ2N+1 = (0, 0, ..., 0, 0).

5.3 The Raising and Lowering Operators E±

The raising and lowering operators are the same as in SO(2N), Eα = Eηη
′

IJ ,
equation (4.4.1), where η = ±1, η′ = ±1, I, J = 1, ..., N , plus N more
operators respecting

[EηI , E
η′

J ] = −Eηη
′

IJ .

These new 1
2(2N + 1)2N operators EηI are given by

Eη1 =
1√
2


0 0 0 0 1
0 0 0 0 iη
0 0 0 0 0
0 0 0 0 0
−1 iη 0 0 0


2N+1×2N+1

.

...

EηN =
1√
2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 iη
0 0 −1 iη 0


2N+1×2N+1

.
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5.4 The Roots α

The roots of SO(2N+1) are the same of SO(2N) plus 2N vectors for the new
raising/lowering operators, given by ±ej ,

αIJηη
′

= (...,±1, ...0,±1, 0...)N ,

and

αIη = (..., ηJ , ...).

Positive Roots

Again, the positive roots on SO(2N+1) are the same as on SO(2N), defined
by the left entry, plus a new positive root ej ,

α1i = (0, 0, 1, ...,±1, 0, ..., 0).

Simple Roots ~α

The N simple roots of SO(2N+1) are given by ej − ej+1 for j = 1, ..., n− 1
and eN (the last one is different from the SO(2N) case, since eN−1 + eN is
not simple simple here).

~α1 = (1,−1, 0, ..., 0),

~α2 = (0, 1,−1, ..., 0),

...

~αN−1 = (0, 0, .., 1,−1),

~αN = (0, 0, 0, ..., 1).

5.5 The Fundamental Weights ~q

The N fundamental weights of SO(2N+1) are

~q1 = (1, 0, 0, ..., 0)N ,

~q2 = (1, 1, 0, ..., 0),

...

~qN−1 = (1, 1, 1..., 1, 0),

~qN =
1

2
(1, 1, 1..., 1),

where the last is the self-conjugated spinor representation.



58 CHAPTER 5. SO(2N+1), THE BN SERIES

5.6 The Cartan Matrix

The Cartan matrices is different from SO(2N) and identifies this family, Bn,

A =



2 −1 0 0 ... 0 0 0
−2 2 −1 0 ... 0 0 0
0 −1 2 −1 ... 2 0 0
0 0 −1 2 ... 2 −1 0
0 0 0 −1 ... −1 2 −2
0 0 0 0 ... 0 −1 2

 .
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Spinor Representations

Spinor representations are irreps of the orthogonal group, SO(2N+2) and
SO(2N+1). One can write these generators in a basis formed of gamma-
matrices γi, respecting the Clifford Algebra, {γi, γj} = 2δij . The hermitian
generators of the rotational group will be then the matrices formed by Mij =
1
4i [γi, γj ] = σij .

A way of visualizing it is that, for groups SO(2N+2), one has the spinor
(S) irrep, σij = {γij , ...,−iγij} and the conjugate (S̄) irrep, σ̄ij = {γij , ..., iγij}.An
example for SO(4=2.1+1) is constructed on table 6.1. For groups SO(2N+1),
the spinor is its conjugate, so the representation is always real.

Spinor (S) Complex (S̄)

Representation |12〉 ⊗ |
1
2〉 |12〉 ⊗ | −

1
2〉

Cartan Generators HS
1 = σ3 ⊗ σ3 HC

2 = −σ3 ⊗ σ3

Ladder Generators ES1 = σ1 ⊗ 1 EC2 = σ2 ⊗ 1

Table 6.1: Example of spinor representation for SO(4), an euclidian space
of dimension 4. This representation is pseudo-real, which is not a surprise
since SO(4) ' SU(2)⊗ SU(2) and SU(2) is pseudo-real.
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6.1 The Dirac Group

The Dirac matrices (composed from the Pauli matrices) form a group. For
instance, let us consider an euclidian four-dimensional space. We can write
the Dirac matrices as γ4 = iγ0. The Dirac group is then of order 2N+1 = 32
and the elements of this group are G = +I,−I,±γµ, γµν , γµνρ, γ1234. There
are 17 classes, given by the orthogonality relation, (1.2.5),

32 =
17∑

( dim Ri)2 = 16× 12 + 42,

where 16 are one-dimensional irreps that do not satisfy the Clifford Algebra
given by (6.1.1), i.e. only the four-dimensional irrep does so. Other examples
are shown on table (6.2).

γµγν + γνγµ = ηµν . (6.1.1)

6.2 Spinor Irreps on SO(2N+1)

In the 2N + 1 dimension of the defining representation that we have just
constructed last chapter, we had the fundamental weights for j = 1, ..., N−1
given by

~qj =

j∑
k=1

ek, (6.2.1)

and Nth-fundamental weight was

~q =
1

2

N∑
k=1

ek. (6.2.2)

The last is the spinor irrep and by Weyl reflections in the roots ej , it
gives the set of weights

1

2
(±e1,±e2, ...,±eN ),

where all of them are uniquely equivalent by rotation to the highest weight of
some 2N -dimensional representation. This representation is a tensor product
of N 2-dimensional spaces, where any arbitrary matrix can be built as a
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Euclidian, d=2

Elements {+I,−I,±γ1,±γ2,±γ3γ2}
Classes 5

Order [G] 8

Orthogonality 8 =
∑5R2

i = 1 + 1 + 1 + 22

Clifford Algebra 1
C+ I
C− σ2

Reality real

Euclidian, d= 3

Elements {+I,−I,±γ1,±γ2,±γ3,±γ1γ2,±γ3γ2,±γ3γ1,−γ123,+γ123}
Classes 10

Order [G] 16

Orthogonality 16 =
∑10R2

i = 16× 1 + 22 + 22

Clifford Algebra 2
C+ No solution
C− σ2

Reality pseudo-real

Euclidian and Minkowski, d=4

Elements {+I,−I,±γµ,±γµγν ,±γµγnuγρ,±γ1γ2γ3γ4}
Classes 17

Order [G] 32

Orthogonality 32 =
∑10R2

i = 16× 1 + 42

Clifford Algebra 1
Reality Euclidian: pseudo-real, Minkowskian: real (Majorana)

Table 6.2: The Dirac group for dimensions 2, 3 and 4 (euclidian and
minkowskian).
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tensor product of Pauli matrices, i.e. the set of states which forms the
spinors irrep is a 2N -dimensional spaces given by

| ± 1

2
〉1 ⊗ | ±

1

2
〉2 ... ⊗ | ± 1

2
〉N .

In this notation, the Cartan generators are

H i =
1

2
σi3,

generalized as the following hermitian generators

M2k−1,2N+1 =
1

2
σ1

3...σ
k−1
3 σk1 , (6.2.3)

M2k,2N+1 =
1

2
σ1

3...σ
k−1
3 σk2 . (6.2.4)

All other generators can be constructed from the relation

Mab = −i[Ma,2N+1,Mb,2N+1],

for a, b 6= 2N − 1. The lowering and raising operators are clearly

E±
e1

=
1

2
σe

1

± ,

E±
e2

=
1

2
⊗ σe13 ⊗ σe

2

± ,

E±
e3

=
1

2
⊗ σe13 ⊗ σe

2

3 ⊗ σe
3

± ,

...

E±
ej

=
1

2
σe

1

3 ⊗ ...⊗ σe
j−1

3 ⊗ σej± .

and because we can only raise the state in this representation once, E2
ej

= 0.

The γ-matrices of the Clifford algebra are generically given by 2N × 2N

matrices

γ2k−1 = 1⊗ 1⊗ ...⊗ 1⊗σ1⊗σ3 ⊗ σ3 ⊗ ...⊗ σ3,

γ2k = 1⊗ 1⊗ ...⊗ 1⊗σ2⊗σ3 ⊗ σ3 ⊗ ...⊗ σ3,

where 1 appears k − 1 times and σ3 appears N − k times. Explicitly they
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are

γ1 = σ1 ⊗ σ3...σ3,

γ2 = σ2 ⊗ σ3...σ3,

γ3 = 1⊗ σ1 ⊗ σ3...σ3,

γ4 = 1⊗ σ2 ⊗ σ3...σ3,

...

γ2N−1 = 1⊗ ...1⊗ σ1

γ2N = 1⊗ ...1⊗ σ2

γ2N+1 = σ3 ⊗ ...⊗ σ3

6.3 Spinor Irreps on SO(2N+2)

For SO(2N+2), besides the fundamental weights given by (6.2.1) we have
two more fundamental weights

~qN =
1

2
(e1 + e2 + ...+ eN − eN+1)→ S,

~qN+1 =
1

2
(e1 + e2 + ...+ eN + eN+1)→ S̄.

In this case one has one more hermitian Cartan generator for each of two
spinor irreps (spinor and complex conjugate of spinor) from the SO(2N+1)
case. Therefore the generators of SO(2N+2) are the the previous generators
of SO(2N+1) plus for each of the two complex spinor representation:

HN+1 =
1

2
σ1

3...σ
N+1
3 → S,

HN+1 =
1

2
σ1

3...σ
N+1
3 → S̄.

The generators of the group are functions of γ-matrices, in the same
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fashion as (6.2.4). Explicitly the 2N × 2N matrices are

γ1 = σ1 ⊗ σ3...σ3,

γ2 = σ2 ⊗ σ3...σ3,

γ3 = 1⊗ σ1 ⊗ σ3...σ3,

γ4 = 1⊗ σ2 ⊗ σ3...σ3,

...

γ2N−1 = 1⊗ ...1⊗ σ1

γ2N = 1⊗ ...1⊗ σ2

Notice that there is a non-trivial matrix that anticommutes to all others,
he γ5 from field theory, in a generalized dimension:

γFIV E = (−1)Nγ1γ2...γ2N (6.3.1)

= σ3 ⊗ σ3 ⊗ ...⊗ σ3, (N-times). (6.3.2)

The projection into left-handed and right-handed spinors cut the number
of components into half, thus the 2-irrep spinor of SO(2N) has dimension
2N−1. For example, SO(10) has 2N−1 = 24 = 16 dimensions.

6.4 Reality of the Spinor Irrep

We have already talked about reality of representations for finite groups,
on section 1.3. Here, again, to test the reality conditions of the spinor
representation, Mij , one needs to find a matrix C that makes a similarity
transformation M ′ij = CMijC

−1, for 1 ≤ i < j ≤ 2N, 2N + 1. The matrix
C has the form

C =
∏
odd

σ2 ⊗
∏
even

σ1,

and we call it the charge conjugate C−1σ∗ijC = −σij , which means that

charges eiθiσ
i

will be charge conjugated by this operation. We resume
these proprieties on table 6.3 and the classification of reality for the groups
SO(2N+2) and SO(2N+1) can be seen at table 6.4. The reality propriety of
spinors can also be analyzed from (6.3.2),

C−1γFIV EC = (−1)NγFIV E . (6.4.1)
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(Mij)
∗ = CMijC

−1 Hermitian Tα satisfies Mij

CT = (−1)
N(N+1)

2 C
Real symmetric C = CT ,

Pseudo-real anti-symmetric C = −CT
(Mij)

∗ 6= CMijC
−1 No Mij solutions, S interchanges to S̄

2n+ 2, n even: complex irrep, S, S̄.

Table 6.3: The definition for reality of spinor irrep for the orthogonal group.

SO(2 + 8k) complex
SO(3 + 8k) pseudoreal
SO(4 + 8k) pseudoreal
SO(5 + 8k) pseudoreal
SO(6 + 8k) complex
SO(7 + 8k) real
SO(8 + 8k) real
SO(9 + 8k) real
SO(10 + 8k) complex

Table 6.4: The classification of reality of spinor irrep for the orthogonal
group.
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6.5 Embedding SU(N) into SO(2N)

The group SO(2N) leaves
∑N

j=1(x′jxj+y
′
jyj) invariant. The group U(N) con-

sists on the subset of those transformations in SO(2N) that leaves invariant
also

∑N
j=1(x′jyj − y′jxj).

The defining representation of SO(2N), a vector representation of dimen-
sion 2N, decomposes upon restriction to U(N) to N, N̄ :

2N → N ⊕ N̄ .

The adjoint representation of SO(2N) which has dimension N(2N − 1)
transforms under restriction to U(N) as

2N ⊗A 2N → (N ⊕ N̄)⊗A (N ⊕ N̄),

where ⊗A is the anti-symmetric product, meaning that SO(2N) decompose
on U(N) as

N(2N − 1)→ N2 − 1(adjoint)⊕ 1⊕ N(N − 1)

2
⊕
(N(N − 1)

2

)∗
.

The embedding of SU(N) into SU(2N) in terms of irreps Di is shown on
table 6.5.

SO(2n+2) D2n+1 =
∑n

j=0[2j + 1] D2n =
∑n

j=0[2j]

SO(4n) D2n =
∑n

j=0[2j] D2n−1 =
∑n−1

j=0 [2j + 1]

Table 6.5: The embedding of SU(N) on the spinor representation of SO(2N).



Chapter 7

Sp(2N), the Cn series

The symplectic groups, Sp(2N), are formed by matrices M that transforms
as

Ω = MΩMT (7.0.1)

MΩ + ΩMT = 0, (7.0.2)

where

Ω =

(
0 1
−1 0

)
.

The rank of Sp(2N) is N and it has 2N2 + N generators. The sub-
group USp(2N) is a simple and compact group formed by the intersection
of SU(2N) and Sp(2N,C), i.e. the compact form of Sp(2N),

USp(2N) = SU(N) ∪ Sp(2N).

From SU(N) we automatically get the additional condition to (7.0.2)
condition M †M = −M . The general form of M of USp(2N) is composed by
the algebra of S(N),

Mij = Ai ⊗ I +
3∑
j=1

iSj ⊗ σj .

If Ai is real, M is anti-symmetric, otherwise, if Sj is real, M is symmet-
ric. The number of non-compact generators minus the number of compact
generator equal to the rank of the Lie algebra, therefore we can decompose
it as

M = (A⊗ I + S2 ⊗ iσ2) + (S1 ⊗ iσ1 + S3 ⊗ iσ3).
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7.1 The Cartan Generators H

The first N-1 generators are the same Cartan subalgebra of SU(N) in the
first block and its complex conjugate on the second (charge conjugation, so
all weights change sign),

H1 =
1

2



1 ...
−1

0
−1

1
0


2N×2N

,

H2 =
1

2



1 ...
1
−2

0
−1

−1
2

0


2N×2N

,

...

HN−1 =
1√

2N(N − 1)



1 ...
1

1
−(N − 1)

−1
−1

−1
(N − 1)


2N×2N

,

The Nth Cartan generator is given by

HN =
1√

2N(N − 1)

(
1 0
0 −1

)
2N×2N

.
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7.2 The Weights µ

The 2N weights of the defining representation of USp(2N) are

µ1 =

(
1

2
,

1

2
√

3
,

1√
24
, ...,

1√
2(N − 1)N

,
1√
2N

)
,

µ2 =

(
− 1

2
,

1

2
√

3
,

1√
24
, ...,

1√
2(N − 1)N

,
1√
2N

)
,

µ3 =

(
0,− 2

2
√

12
,

1√
24
, ...,

1√
2(N − 1)N

,
1√
2N

)
,

...

µN−1 =

(
0, 0, ..., 0,

N − 1√
2(N − 2)(N − 1)

, ...

)
,

µN =

(
0, 0, ..., 0,− N − 1√

2N(N − 1)
,

1√
2N

)
,

µN+1 = −µ1,

...

µ2N = −µN .

7.3 The Raising and Lowering Operators E±

For j < k, one construct the raising operators of USp(2N),

E1,2 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 ,

E1,3 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0


2N×2N

,

E2,3 =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


2N×2N

,
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...

E1,2+N =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


2N×2N

,

E1,3+N =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0


2N×2N

,

E2,3+N =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


2N×2N

,

...

The lowering operators are given by (Eij)
† = −E−ij . The commutation

relation

[HI , Eα] = αIEα,

[HI , Eα] = (HI,jj −HI,kk)Ejk,

shows that Eα are eigenvalues of the H matrices.

7.4 The Roots α

The roots from the raising and lowering operators are give by αj,k = µj−µk
and αj,k+N = µj + µk,

±(µi − µj), 1 ≤ i < j ≤ N,
±(µi + µj), 1 ≤ i, j ≤ N.

Positive Roots

The positive roots are defined as the first positive entry from the right

µi − µj , i < j,

µi + µj , ∀ i , j .
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Simple Roots

The N simple roots of USp(2N) are given by

α1 = (1, 0, 0, ..., 0),

α2 = (
1

2
,

√
3

2
, 0, ..., 0),

...

αN−1 = (0, ..., 0,− N − 2√
2(N − 2)(N − 1)

,
N√

2N(N − 1)
),

αN = (0, ..., 0,− 2(N − 2)√
2N(N − 1)

,

√
2

N
).

7.5 The Fundamental Weights q

The N fundamental weights are

q1 = (
1

2
,

1

2
√

3
, ...,

1√
2N

),

...

qN−1 = (0, 0, ..., 0,

√
N − 1

2N
,
N − 1√

2N
),

qN = (0, 0, ..., 0,

√
N

2
).

7.6 The Cartan Matrix

The Cartan matrices identifies the family Cn,

A =



2 −1 0 0 ... 0 0 0
−1 2 −1 0 ... 0 0 0
0 −1 2 −1 ... 0 0 0
0 0 −1 2 ... 2 −1 0
0 0 0 −1 ... −1 2 −1
0 0 0 0 ... 0 −2 2

 .
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Chapter 8

Young Tableaux

On the Young tableaux theory, each tableau represents a specific process of
symmetrization and anti-symmetrization of a tensor v12...n in which index n
can take any integer value 1 to N.

For instance, lets us recall the defining representation of SU(N), com-
posed of N-dimensional vectors vµ (it represents the usual vectors |µ〉, µ =
1, ..., N). The tensor product is uµ ⊗ vν , with N2 components, is

δ(uµvν) = T νµ′u
µ′vν + uµTµν′v

ν′ .

This tensor product forms irreps, i.e the. uµ⊗vν is reducible into irreps,
and in the case that the representations are identical, the product space can
be separated into two parts, a symmetric and antisymmetric part,

uµ ⊗ vν =
1

2
(uµvν + uµvν)⊕ 1

2
(uµvν − uνvµ). (8.0.1)

The decomposition of the fundamental representation specifies how a
subgroup H is embedded in the general group G, and since all representa-
tions may be built up as products of the fundamental representation, once
we know the fundamental representation decomposition, we know all the
representation decompositions.

The Young tableaux are then the box-tensors with N indices, where first
one symmetrizes indices in each row, and second one antisymmetrizes all
indices in the collums. For example, we can construct the Young diagrams,
from (8.0.1), for the tensorial product uµvν → µ ⊗ ν as

µ ⊗ ν = µ ν +

µ
ν = tµν + tνµ
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Another example, for N > 2, we have the tensor tµρν = vµ ⊗ uρ ⊗ hν ,
and one writes

tµνρ −→ ( µ ⊗ ν ) ⊗ ρ =

( µ ν ⊕
µ
ν ) ⊗ ρ =

µ ν ρ ⊕
µ ρ
ν ⊕

µ ν
ρ ⊕

µ
ν
ρ

where, for example,

tµρν −→
ν ρ
µ → (tµνρ + tµρν)− (tνµρ + tνρµ).

A third example, for N > 4, one can have a tensor of the form tµνργη,
which will be generalized as

µ ⊗ ν ⊗ ρ ⊗ γ ⊗ η = ⊕ ... ⊕

Direct Products of two Irreps

The formal calculation of the direct product of two (or more) irreps is given
by the following rules:

1. On the second tensor in the tensorial multiplication, add to all boxes
of the first row a indices, add to all boxes of the second row b indices,

etc. For example,

a a
b .

2. The process of multiplication is made adding one box of index a each
time to the others boxes, in all allowed ways, until ceasing these boxes.
Then adding one box of index b each time to all, etc. Never put more
than one a or b in the same column. Align the number of a’s ≤ number
of b’s (at any position, number of a above and right must be equal or
smaller than of b, which must be equal or smaller than c, etc). For

example, a a b is not allowed.
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3. If two tableaux of the same shape are produced, they are counted as
different only if the labels are different.

4. Cancel columns with N boxes since they are the trivial representation.

5. Check the dimension of the products to the dimension of the initial
tensors.

Example vµν ⊗ uρ

b b ⊗ a = b b a +

b b
a

Example uρ ⊗ vµν

The last one of this product is forbidden:

b ⊗ a a = b a a +

b a
a +

b
a
a

Example vµ ⊗ uνρ
The first three of this product are forbidden:

c ⊗
a
b = ( c a +

c
a ) ⊗ b

= c a b +

c b
a +

c b
a +

c
a
b

Example vµν ⊗ uρλ

c c ⊗
a
b = ( c a +

c c
a ) ⊗ b
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=

c a
b +

c c
a
b

Group Symmetric tensors, Dimension

SU(N) vµν 1
2N(N + 1)

SO(N) vµν − 1
N δ

µν 1
2N(N + 1)− 1

USp(2N) vµν 1
2(2N)(2N + 1)

Group Anti-symmetric tensors, Dimension

SU(N) vµν 1
2N(N − 1)

SO(N) vµν 1
2N(N − 1)

USp(2N) vµν − Ωµν(Ωρσvρσ) 1
2(2N)(2N − 1)

Table 8.1: Symmetric and anti-symmetric representations of the Lie families.

8.1 Invariant Tensors

A invariant tensor is a scalar (with indices) in an irreps of G, such that
if one transforms the tensor, according to the indices, the invariant tensor
does not change, also called singlet. The trace is usually a singlet, as we had
proved at section 4.1.

Invariant Tensor Group

δµν SO(2N),SU(N)
Ωµν Sp(2N)

(γµ)αβ SO(2N+1)

(σµ)AḂ SO(2N)
eµi−µn SO(N), Sp(N), SU(N)

Table 8.2: The invariant tensors for the Lie families.
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For SO(2N), one can write the symmetric tensor tµν as u(µvν)− 1
N δ

µνuv,
where it was subtracted the trace, with dimension 1

2N(N + 1) − 1. For
the antisymmetric part, the trace is not subtracted and the dimension is
1
2N(N − 1). For the symplectic group Sp(2N), one writes an antisymmetric
vector as uµvν − uνuµ − 2

NΩµνuv, which dimension is 1
2(2N)(2N − 1).

For example, the multiplication in SU(5) of 5̄ and 10 is given by the
tensor tijk = φkη

ij . We separate out the trace φkη
kj which transforms as 5

and we get 5̄⊗ 10 = 5⊕ 45.
Another example the multiplication of 10 and 10, T ijmnh, taking the trace

and separate it out, T ijmij is 5̄, and the traceless, T ijmnj is 4̄5. Therefore
10⊗ 10 = 5̄⊕ 4̄5⊕ 5̄5.

A third example is for Usp(4), where one can decompose the tensor
product of two vectors as

uµvν =
uµvν + uνuµ

2
+ [uµvν − uνvµ − 1

4
Ωνµ(Ωρσu

ρvσ)],

where the last part is the trace. The tableaux representation is

⊗ = + + •.

8.2 Dimensions of Irreps of SU(N)

The general formula to calculate the dimension of irreps of SU(N) is given
by Dimension = Factors/Hooks, where factors are the terms inside the
boxes and hook is the product of number of boxes in each hook. The di-
mensions of the simplest representations are

dim( ) = N, fundamental representation of vµ,

dim( ⊗ ) = + = N2

dim( ) = 1
2N(N + 1), symmetric representation,

dim( )= 1
2N(N − 1), anti-symmetric representation,

dim( ⊗ ⊗ ) = +2 + = N3,

dim ( ) =

(
N + 2

3

)
=
N(N + 1)(N + 2)

3!
,
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dim ( ) =

(
N
3

)
=
N(N − 1)(N − 2)

3!
,

dim( ) = N3 − N(N+1)(N+2)
3! − N(N−1)(N−2)

3! = 2N3

3 −
2N
3 .

For example, for SU(3), one has dim ( ) = 3, represented by vµ,

and dim ( × ) = 32, represented by uµν . For SU(6), dim ( ) = 6,
represented by wµ.

The adjoint representation is the one with N − 1 boxes on first column
and only one box on second collumn. The complex conjugate of a irrep can
be found by replacing the j-column element by the N − j, and reading from
right. For example, for SU(3), one has

( )∗ = ( ).

For SU(4), one has

• ( )∗ = ,

• ( )∗ = ,

• ( )∗ = ,

• ( )∗ = ,

The Tensor Representation for SU(N)

The relation between the Young tableaux, the tensors of the group SU(N)
and the fundamental weight is given by
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µ −→ vµ, µ = 1, ..., N , ~q1 = µ1

1
2 −→ vµν = −vνµ, ~q2 = µ1 + µ2.

1
2
3 −→ vµνρ, ~q3 = µ1 + µ2 + µ3.

...

−→ ~qN−1 = µ1 + ...+ µN−1 = ( )∗

−→ For N boxes, this is a scalar.

When it comes to the complex representation, the highest weight of
∗ is the lowest weight of ,

( )∗ = −µN ,
= µ1 + ...+ µN−1,

= qN−1.

If the highest weight of two representations are vi, v2, the highest weight of
the product of these representations are v1 + v2.

8.3 Dimensions of Irreps of SO(2N)

To count the dimension of a irrep on SO(2N), we write the Young tableau
and fill it with the values of ri, λi (number of box in the i row, counting
from N-1, N-2,...), λi (number of boxes forming a column on the i row), and
Ri (sum of ri and λi), as shown on table 8.3.
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ri (rows) λi (columns) Ri = ri + λi

N-1 +2 N-1 +2

N-2 +2 N-2 +2

... +2 ... +2

1 +1 2
0 0 0

Table 8.3: Calculation of the dimension of irreps on SO(2N).

The dimension of the tensors (without spinors) is then calculated by mul-
tiplying all possible sums of Ri, multiplying all possible differences between
them and dividing by all possible sums of ri times and their differences,

dimension =

∏
Sums (Ri +Rj)∏
Sums (ri + rj)

∏
Differences (Ri −Rj)∏
Differences (ri − rj)

.

For spinors one just needs to make Ri = ri + λi + 1
2 .

Example: SO(6)

Let us calculate an irrep on SO(6). For instance, the multiplication of two
vectors can be written as

vµ ⊗ tν = vµtν + vνtµ − 2

N
gµνvt. (8.3.1)

Considering first of all the symmetrical part, one has the table 8.4.

ri (rows) λi (columns) Ri = ri + λi

2 2 4
1 0 1
0 0 0

Table 8.4: Example of counting dimensions for a symmetric irrep on SO(6).

dimension =
5.4.1× 3.4.1

3.2.1× 1× 2.1
= 20.
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ri (rows) λi (columns) Ri = ri + λi

2 1 3

1 1 2
0 0 0

Table 8.5: Example of counting dimensions for an anti-symmetric irrep on
SO(6).

We then consider the anti-symmetric part, as shown on table 8.5.

dimension =
5.3.1× 1.3.2

3.2.1× 1× 2.1
= 15.

The dimension of the tensorial product given by (8.3.1) is clearly 20+15+1,
where this last part is the trace. Now, let us consider the the dimension of
spinor representation on SO(6), placing a dot inside the tableaux, as on
table 8.6.

ri (rows) λi (columns) Ri = ri + λi

2 . 1 3 1
2

1 0 11
2

0 0 1
2

Table 8.6: Example of counting dimensions for a irrep on SO(6) with spinor
representation.

dimension =
5.4.2× 2.3.1

3.2.1× 1× 2.1
= 20.

8.4 Dimensions of Irreps of SO(2N+1)

Already including spinors (Ri = ri + λi + 1
2) one can count the dimensions

of the irreps with the following rules of table 8.7.

The dimension for the tensor are then again the multiplication of sums
and differences of Ri over the multiplication of sum and differences of ri,

dimension =

∏
Sums (Ri +Rj)∏
Sums (ri + rj)

∏
Differences (Ri −Rj)∏
Differences (ri − rj)
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r2 (rows) λi + 1
2 (columns) Ri = ri + λi

N+ 1
2 +2 N+1

2 +2

... +1 ... 1
1
2 0 1

2

Table 8.7: Calculation of the dimension of irreps on SO(2N+1).

Example: SO(5)

First of all, considering a representation of a symmetric tensor vµ without
spinor, one has the the table 8.8.

ri (rows) λi (columns) Ri = ri + λi
3
2 1 5

2
1
2 0 1

2

Table 8.8: Example of counting dimensions for a irrep on SO(5).

The dimension is obviously 5,

dimension =
5/2.1/2× 3.2

3/2.1/1× 2.1
= 5.

Now let us count the spinor representation, writing the tensor as

vµν = 16
(
vµν − 1

5
(γµν)αβ(γµ)β

)
, (8.4.1)

the dimension is given by table 8.9.

ri (rows) λi (columns) Ri = ri + λi
3
2

. 1 1
2 3

1
2

1
2 1

Table 8.9: Example of counting dimensions for a spinor irrep on SO(5).

dim =
3.1.4.2

3/2.1/2.2.1
= 16.
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8.5 Dimensions of Irreps of Sp(2N)

The calculation of the dimension of irreps of Sp(2N) is slightly different from
the previous process for the orthogonal group. Again one needs to fill the
ri, λi and Ri, as it is shown on table 8.10.

r2 (rows) λi + 1
2 (columns) Ri = ri + λi

N +2 N +2

... +2 ...+2

1 0 1

Table 8.10: Example of counting dimensions for a irrep on Sp(2N).

The dimension for the tensors is then given by the multiplication of all
sums of Ri, all differences of Ri and (this is different) the multiplication of
all Ri, all over the double factorial on (2N − 1)!!.

dimension =

∏
Sums (Ri +Rj)

∏
Differences (Ri +Rj)

∏
Ri

1!3!...(2N − 1)!!

It is useful to check the local isomorphism of USp(4) ' SO(5), which is
clearly seen by their Young tableaux, table 8.11.

Tableau Dimension

4

10

5

16

Table 8.11: Young tableaux from the local isomorphism SU(5) ' USp(4).

8.6 Branching Rules

Restricted representation is a construction that forms a representation of
a subgroup from a representation of the whole group. The rules for de-
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composing the restriction of an irreducible representation into irreducible
representations of the subgroup are called branching rules. In the case of
SU(N) groups, one can decompose it as

SU(N)→ SU(M)× SU(N −M)× U(1),

where the first two are represented by the diagonal matrix(
SU(M) 0

0 SU(N −M)

)
,

and the extra U(1) is embedded as(
diag 1

M 0
0 diag − 1

M−N

)
.

The splitting in the Dynkin diagram is obtained by deleting one node,
the one that connects SU(M) to SU(N-M). For example, for

SU(8)→ SU(4)× SU(4)× U(1),

the fundamental representation is

N ' M ⊕ N−M .



Chapter 9

The Gauge Group SU(5) as a
simple GUT

The idea of the Grand Unified Theories (GUTs) is to embed the Standard
Model (SM) gauge groups into a large group G and try to interpret the
additional resultant symmetries. Currently the most interesting candidates
for G are SU(5), SO(10), E6 and the semi-simple SU(3)× SU(3)× SU(3).
Since the SM group is rank 4, all G must be at least rank N − 1 = 4 and
they also must comport complex representations. The SU(5) grand unified
model of Georgi and Glashow is the simplest and one of the first attempts
in which the SM gauge groups SU(3) × SU(2) × U(1) are combined into
a single gauge group, SU(5). The Georgi-Glashow model combines leptons
and quarks into single irreducible representations, therefore they might have
interactions that do not conserve the baryon number, still conserving the
difference between the baryon and the lepton number (B-L). This allows the
possibility of proton decay whose rate may be predicted from the dynam-
ics of the model. Experimentally, however, the non-observed proton decay
results on contradictions of this simple model, still allowing however super-
symmetric extensions of it. In this paper I tried to be very explicit in the
derivations of SU(5) as a simple GUT.

9.1 The Representation of the Standard Model

The current theory of the electroweak and strong interactions is based on the
group SU(3)×SU(2)×UY (1), henceforth called the Standard Model of Ele-
mentary particles. This theory states that there is a spontaneous symmetry
breaking (SSB) at around 100 GeV, breaking SU(2)×UY (1)→ UEM (1) via

85
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the Higgs mechanism. In the SM, the three generations of quarks are three
identical copies of SU(3) triplet and the right-handed (RH) antiparticles (or
left-handed (LH) particles) are SU(2) doublet. The remaining particles are
singlet under both symmetries. For the first generation, the RH antiparticles
SU(2) doublet are 12

ψ̄† =

(
ū
d̄

)
, l̄† =

(
ē
ν̄e

)
.

The representation of the RH antiparticle creation operators can be seen
in table 9.1. For the LH particle creation one just takes the complex con-
jugate of RH, where for SU(2), 2̄ = 2, since SU(2) is pseudo-real. The
resultant operators are shown in table 9.2.

Creation Op. Dim on SU(3) Dim on SU(2) Y of U(1) Representation

u† Triplet Singlet 2
3 u† : (3, 1)2/3

d† Triplet Singlet −1
3 d† : (3, 1)−1/3

e† Singlet Singlet −1 e† : (1, 1)−1

ψ̄† Triplet Doublet −1
6 ψ̄† : (3̄, 2)−1/6

l̄† Singlet Doublet 1
2 l̄† : (1, 2)1/2

Table 9.1: The representations of the right-handed antiparticle creation op-
erators of the standard model, SU(3) × SU(2) × U(1). ”Dim” stands for
dimension, Y is the hypercharge of the U(1) generators S.

The full SU(3)× SU(2)× U(1) RH representation of the creation oper-
ators is then

u† ⊕ d† ⊕ e† ⊕ ψ̄† ⊕ l̄† = (9.1.1)

(3, 1)2/3 ⊕ (3, 1)−1/3 ⊕ (1, 1)−1 ⊕ (3̄, 2)−1/6 ⊕ (1, 2)1/2. (9.1.2)

The full SU(3)× SU(2)× U(1) LH representation of the creation oper-
ators is then

ū† ⊕ d̄† ⊕ ē† ⊕ ψ† ⊕ l† = (9.1.3)

(3̄, 1)−2/3 ⊕ (3̄, 1)1/3 ⊕ (1, 1)1 ⊕ (3, 2)1/6 ⊕ (1, 2)−1/2. (9.1.4)

1RH neutrinos weren’t experimentally observed. It is possible to have only LH neu-
trinos without RH neutrinos if we could introduce a tiny Majorana coupling for the LH
neutrinos.

2For the antiparticle of the electron, the positron, for convenience we write in this text
e+ = ē.
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Creation Op. Dim on SU(3) Dim on SU(2) Y of U(1) Representation

ū† Triplet Singlet −2
3 ū† : (3̄, 1)−2/3

d̄† Triplet Singlet 1
3 d̄† : (3̄, 1)1/3

ē† Singlet Singlet 1 ē† : (1, 1)1

ψ† Triplet Doublet 1
6 ψ̄† : (3, 2)1/6

l† Singlet Doublet −1
2 l† : (1, 2)−1/2

Table 9.2: The representations of the left-handed particle creation operators
of the standard model, SU(3)×SU(2)×U(1). ”Dim” stands for dimension,
Y is the hypercharge of the U(1) generators S.

The standard similar way of writing the representations of (LH) matter
as representations of SU(3)× SU(2) in the SM is

(u, d) : (3,2); (νe, e
−) : (1,2); (uc, dc) : (3̄,2); (e+) : (1,1). (9.1.5)

9.2 SU(5) Unification of SU(3)× SU(2)× U(1)
The breaking of SU(5) into SU(3)×SU(2)×U(1) can be done in the same
fashion as the breaking of SU(3) into SU(2) × U(1). The SU(5) breaking
occurs when a scalar field (such as the Higgs field) transforming in its adjoint
(dimension N2−1 = 52−1 = 24) acquires a vacuum expectation value (VEV)
proportional to the hypercharge generator,

S =
Y

2
=


−1

3
−1

3
−1

3
1
2

1
2

 . (9.2.1)

These 24 gauge bosons are the double than the usual 12. The additional
gauge bosons are called X and Y and they violate the baryon and lepton
number and carry both flavor and color. As a consequence, the proton can
decay into a positron and a neutral pion3, with a lifetimes given by

τp ∼
1

α2
su(5)

M4
X

m5
p

.

3As we see on the last section of the text, no such decay was observed.
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The SU(5) is then spontaneously broken to subgroups of SU(5) plus
U(1) (the abelian group representing the phase from (9.2.1)). This SSB can
be represented as 5̄⊕10⊕1 to LH particles and 5⊕1̄0⊕1 to RH antiparticles,
as we will prove in the following sections.

Unbroken SU(5)

The fundamental representation of SU(5), let us say the vectorial repre-
sentation |ε1ε2ε3ε4ε5〉, has dimension N=54. The group is complex having
an anti-fundamental representation (complex conjugate representation) 5̄.
The embedding of the standard gauge groups in SU(5) consists in finding
a SU(3)× SU(2)× U(1) subgroup of SU(5). We first look to 5 and try to
fit a 5-dimensional subset of (9.1.2) on it (and the left-handed (9.1.4) on 5̄).
There is two possibilities on (9.1.2) that sum up 5 dimensions:

(3, 1)−1/3 ⊕ (1, 2)1/2, (9.2.2)

and

(3, 1)2/3 ⊕ (1, 2)1/2.

The second one is not allowed because S, the generator of U(1), will
not be traceless5, therefore this group can not be embed in SU(5) in this
case. To verify it just do 2

3 × 3 + 1
2 × 2 6= 0 (not traceless), differently of

−1
3 × 3 + 1

2 × 2 = 0 (traceless).
The first possibility, (9.2.2) is allowed and represents the embedding.

The SU(3) generators, Ta, act on the first indices of the fundamental rep of
SU(5) |ε1ε2ε300〉 and the SU(2) generators, Ra, act on the last two |000ε4ε5〉.
The U(1) generator, S, obviously commutes with the other generators. The
embedding of the first RH subset of fermions on SU(5) is then characterized
by the traceless generators(

Ta 0
0 0

)
5×5

,

(
0 0
0 Ra

)
5×5

,

(
− I

3 0

0 I
2

)
5×5

.

In the same logic, the embedding of the LH subset of fermions on SU(5)
is characterized by the traceless generators(

Ta 0
0 0

)
5×5

,

(
0 0
0 Ra

)
5×5

,

(
I
3 0

0 − I
2

)
5×5

.

4See construction of the Lie groups on reference [?].
5All generators of SU(N) are traceless for definition and construction.
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ψi 5→ (3, 1)−1/3 ⊕ (1, 2)1/2 uc, l̄(ec, νce)

ψi 5̄→ (3̄, 1)1/3 ⊕ (1, 2)−1/2 dc, l(e, νe)

Table 9.3: The SU(3)× SU(2)× U(1) embedding on the fundamental rep-
resentation of SU(5). The index c indicates charge conjugation.

A possible representation of the LH 5̄, rewriting |ε1ε2ε3ε4ε5〉6 is7
dcred
dcblue
dcgreen
e
νe


c

=

(
dc3
l2

)
5

,

and as the RH, given by 5,
ucred
ucblue
ucgreen
ē
ν̄e


c

=

(
uc3
l̄2

)
5

.

The next representation on SU(5) we will use is the antisymmetric in
two indices, 10 and its conjugate 1̄0. The remaining ten-dimensional part
of (9.1.2) and (9.1.4) fits respectively on 1̄0 and 10. To see how it happens,
we observe that 1̄0 = 5̄ ⊗A 5̄ so we can multiply the 5-dimensional subsets
on table 9.3 to form these representations. For instance, the LH particles
(9.1.4) subset forms[
(3̄, 1) 1

3
⊕ (1, 2)− 1

2

]
⊗A

[
(3̄, 1) 1

3
⊕ (1, 2)− 1

2

]
= (6, 1) 2

3
⊕ (−3, 1) 2

3
⊕ (3̄, 2)− 1

6
⊕ (1, 3)−1 ⊕ (1,−2)−1,

= (3, 1) 2
3
⊕ (3̄, 2)− 1

6
⊕ (1, 1)−1.

where we have used 3 ⊗ 3 = 3̄ ⊕ 6 and 2 ⊗ 2 = 1 ⊕ 3 and ⊗A is the
antisymmetric product (the first of each part).

Finally, all the remaining fermions transforming as a singlet (1) under
SU(5)8. The final embedding of fermions of the standard model into the
gauge group SU(5) is shown on table 9.5.

6The index c indicates charge conjugation.
7Here we ignore the Cabibo type mixing.
8This is necessary because of the evidence for neutrino oscillations.
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10→ (3, 2)1/6 ⊕ (3̄, 1)−2/3 q, uc, ec

1̄0→ (3̄, 2)−1/6 ⊕ (̄̄3, 1)2/3 q, dc, e

Table 9.4: The SU(3) × SU(2) × U(1) embedding on the anti-symmetric
representation 10 of SU(5).

SU(5) Decomposition Fermions Similar Notation

ψi 5→ (3, 1)−1/3 ⊕ (1, 2)1/2 uc, l̄(ec, νce) (3,1,-1/3) + (1,2,1/2)

ψij 1̄0→ (3̄, 2)−1/6 ⊕ (̄̄3, 1)2/3 u, dc, e (3,1,2/3) + (3,2,-1/6)+(1,1,1)

• 1→ (1, 1)0 νc

ψi 5̄→ (3̄, 1)1/3 ⊕ (1, 2)−1/2 dc, l(e, νe) (3̄,1,1/3) + (1,2,-1/2)

ψij 10→ (3, 2)1/6 ⊕ (3̄, 1)−2/3 d, uc, ec (3̄,1,-2/3) + (3,2,1/6)+(1,1,1)

• 1→ (1, 1)0 νc

Table 9.5: The 5̄ ⊕ 10 ⊕ 1, LH particles, and 5 ⊕ 1̄0 ⊕ 1, RH antiparticles,
embedding of SM on SU(5).
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Breaking SU(5)

The gauge bosons of the model are given by the adjoint 24 of SU(5), trans-
forming as

24→ (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3, 2)−5/6 ⊕ (3̄, 2)5/6, (9.2.3)

described in detail in table 9.6.

SM GB Add. SU(3) Add. SU(2) Identification

(8, 1)0 (8,1,0) X - - Gαβ
(1, 3)0 (1,3,0) X - - W±,W 0

(1, 1)0 (1,1,0) X - - B
(3, 2)−5/6 (3,2,-5/6) - Triplet Doublet Aτα = (Xα, Yα)

(3̄, 2)5/6 (3̄,2,5/6) - Triplet Doublet Aατ = (Xα, Yα)T

Table 9.6: The gauge bosons of SM fitting on the adjoint representation of
SU(5). SM stands for standard model, ”Add” stands for additional, and
GB for gauge boson.

As we already mentioned, the fermions have to acquire mass in SU(5)
by a SSB, which also must happen in the GUT theory. For making this
to happen, the product of the representations containing the fermions and
antifermions (table 9.5), must contain a component which transforms as the
SU(3) × SU(2) × U(1) Higgs field, represented by (1, 2)1/2 and (1, 2)−1/2.
It is easy to understand it because the particles and antiparticles of the
fermions appears in both 5, 1̄0 for RH (and 10, 5̄ for LH).

First, for the RH antiparticles, the product of these representations are

1̄0⊗ 5 = ⊗ = ⊕ = 5̄⊕ 4̄5
From (9.2.2) we see that 5 contains (1, 2)1/2, it is also contained on 45,

therefore both representations can give mass to d, ē. For the LH particles,
the product of these representations are

10⊗ 10 = ⊗ = ⊕ ⊕ = 50⊕ 45⊕ 5.
Again 5 and 45 contains (1, 2)−1/2, giving mass to u, however 50 does

not contain (1, 2)−1/2.
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9.3 Anomalies

If the creation generator for all the right hand operators of spin-1/2 particles
transform according to a representation generated by TRa , we nee to have

tr
[
{T aR, T bR}T cR

]
= 0. (9.3.1)

In fact it is true for all simple Lie algebra with exception of SU(N)
for N ≤ 3. Therefore, the anomaly in any representation of SU(N) is
proportional to

Dabc = tr
[
{T aR, T bR}T cR

]
=

1

2
A(R)dabc, (9.3.2)

where
2dabcLc = {La, Lb}. (9.3.3)

A(R) is independent of the generators allowing us to choose one gener-
ator and calculate it. In our case it is useful to use the generator as the
charge operator

Q = R3 + S, (9.3.4)

and looking at (9.2.1), one has

A(5̄)

A(10)
=

tr Q3(ψi)

tr Q3(ψii)
= −1. (9.3.5)

It is clear now that the fermions in these representations have their
anomalies canceled

A(5̄) +A(10) = 0. (9.3.6)

9.4 Physical Consequences of using SU(5) as a GUT
Theory

• The charge of the quarks can be deduced from the fact that there
are three color states and from the fact that the charge operators is
(9.3.4), Q = R3 +S = I3 + Y

2 , and it must be traceless. The multiplet
of the 5 representation gives

Q(νe) +Q(ē) + 3Q(d) = 0→ Q(d) = −1

3
Q(ē),

which gives an answer to the charge quantization, not explained n the
SM.
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• The Weinberg angle,

sin 2(θW ) =
g′2

g2 + g′2
,

g, g′ the coupling constants of gauge bosons in the electroweak theory,
cannot be calculated on SM (it is a free parameter). In SU(5) GUT,
however, the Weinberg angle is accurately predicted, giving sin2θW ∼
0.21.

• If a group is simple then its GUT has only one coupling constant before
SSB. The three coupling constants of the SM are energy dependent and
in SU(5) they unit at ∼ 1015 GeV. However, a supersymmetric SU(5)
is needed to get an exact unification in a single point. Remember
that in the SM the strong, weak and electromagnetic fine structure
constants are not related in any fundamental way.

• No proton decay was observed, which is a contradiction to its lifetime
estimated in SU(5), (9.2.2). In a supersymmetric SU(5) the proton
lifetime is longer, being apparently experimentally consistent.

• Finally, it is actually clear that the SU(5) might be incomplete when
one considers the fact that neutrinos were observed to carry small
masses and there might exist extra RH Majorana neutrinos. As we just
learned, it is not possible to introduce RH neutrinos trivially in this
simple model. One solution is going to the next (complex) gauge group
SO(10), where the spinor representation can accommodate sixteen LH
fields, or even to E6, which motivates string theories.
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Chapter 10

Geometrical Proprieties of
Groups and Other Nice
Features

10.1 Covering Groups

In defining representations of continuous groups, we require the matrix
elements of the representation to be continuous functions on the group
manifold. Among the continuous functions which are multi-valued there
are possibility of multiply valued representations. A representation of a
group G will be called an m-valued representation if m-different operations
D1(R), .., Dm(R) are associated with each elements of the group and all
these operations must be retained if the group is continuous. For all pos-
sible closed curves of the manifold, looking to the values of some function
along these curves, if on returning to the initial point we find m-different
values of the function, we say that the function is m-valued. A group is
simple connected if every continuous function on the group is single valued,
and it is m-connected if there are m closed curves which cannot be deformed
into one another, i.e. m-valued continuous functions can exist, some of the
irreps of the manifold are m-valued.

For example, for the rotation group em two-dimensions, a function f(θ) =
eiaθ is single valued if a is integer, t-valued if a is rational and multi-valued
if a is irrational. The difficult related to multiply valued function and irreps
is overcome by considering universal covering group.

A covering group of a topological group H is a covering space G of H
such that G is a topological group and the covering map f : G → H is a
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continuous group homomorphism. The group H always contains a discrete
invariant subgroup N such that

G ' H/N.

From last example, the functions eiaθ will be single valued on H. Every irrep
of G, single or multi-valued, is single valued on H (and then all definitions
of multiplication and the orthogonality theorems hold).

A double covering group is a topological double cover in which H has two
in G, and includes, for instance, the orthogonal group. If G is a covering
group of H then they are locally isomorphic1.

A universal covering group is always simple connected, any closed curve
in this group can be shrunk or contracted to a point. If the group is already
simple connect, its universal covering group is itself. The universal cover is
always unique and always exist.

It easy to see that the rotation group SO(3) has as a universal cover the
group SU(2)2 which is isomorphic to the group to Sp(2). The group SO(N)
has a double cover which is the spin group Spin(N) and for N ≥ 3, the spin
group is the universal cover of SO(N). A closed curve contractible to a point
has components in spinor representation that are single valued (a closed
curve that is not contractible to a point can be defined as double-valued).
For N ≥ 2 the universal cover of the special linear group SL(N, R) is not
a matrix group, i.e. it has no faithful finite-dimensional representations.
Besides the fact that Sl(2,C) is simple connected, the group Gl(2,C) is not
simple connect, and one can see it remembering that Gl(2,C) = U(1)Sl(2,C),
where the unitary group, which is only a phase, is infinitely connected.

For instance, the annulus and the torus are infinity connected. The
sphere (N > 1) is simple connected. The simple circumference S1 is infinite
connected. The N-euclidian space is simple connected even when removing
some single points from space.

If one can set up a 1-1 continuous correspondence between the points of
two spaces, then they have the same connectivity. For example, SN , N ≥
2,
∑N

i=1 x
2
i = 1, is simple connected since can use stereographic projection to

set a 1-1 correspondence with the (N − 1)-dimension euclidian space.

1The Lie algebra are isomorphic but the groups are locally isomorphic: the proprieties
of the groups are globally different but locally isomorphic.

2Any 2 × 2 hermitian traceless matrix can be written as X = ~x~σ. For any element U
of SU(2), X ′ = UXU† is hermitian and traceless so X ′ = ~x′~σ and tr X2 = tr X2. Thus
~x rotate into ~x′ and we can associate a rotation to any U . Since U and −U are associated
to the same rotation, this gives a double covering of SO(3) by SU(2).
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Example: Addition Group for S1 and R

Let us construct the sum of the infinitely connected group S1 and the line
R, which is simple connected,

• R: −∞ < x <∞.

• S1 : e2πix with 0 ≤ θ < 1.

The map is in the form R→ S1, which means x→ e2πiθ, which is the group
U(1). From this example, we resume covering group relation on table 10.1.

H → G
H/N ' G

The kernel N lies in the center of H and its a invariant subgroup.

Table 10.1: Diagram for covering groups.

A trivial example is the case of SU(2), which center is diag(1,-1), this is
exactly Z2.

Example: SU(2) ' S3

The elements of SU(2) are given by g,

g = e
i
2
ωiσj = cos(

ω

2
) +

iω

2
sin

ω

2
,

with proprieties g†g = 1 and det g = 1. All points at ω = 2π has to be
identified. The surface of B3 is a S2. One wraps it and the point in the
bottom is identified as the superficies ω = 2π.

Isomorphism

It is a 1-1 mapping f of one group onto another, G1 → G2 , preserving the
multiplication law. It has the same multiplication table. For example, every
finite group is isomorphic to a permutation group. A relation of locally
isomorphic groups is shown on table 10.2.
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SU(2) ' SO(3)
SU(1, 1) ' SO(2, 1)

SU(2)× SU(2) ' SO(4)
Sl(2, C) ' SO(3, 1)

SU(2)× Sl(2, 2) ' SO(4)∗

USP (4) ' SO(5)
USP (2, 2) ' SO(4, 1)
Sp(4, R) ' SO(3, 2)
SU(4) ' SO(6)
SU(4)∗ ' SO(5, 1)
SU(2, 3)∗ ' SO(4, 2) (AdS/CFT)
Sl(4, R) ' SO(3, 3)
Sl(3, 1) ' SO(6)

Table 10.2: Table of covering groups for the Lie groups.

Homomorphism

It is a 1-1 mapping f to the same point, G → G′, preserving the metric
structure. The image f(G) forms a subgroup of G′, the kernel K forms a
subgroup of G.

The first isomorphism theorem says that any homomorphism f(G) with
kernel K is isomorphic to G/K. The kernel of a homorphism is an invariant
subgroup.

10.2 Invariant Integration

Groups can be seen as curved manifolds and the Haar measure is a way to
assign an invariant volume to subsets of locally compact topological groups
and define an integral for functions on these groups. It possible to have a
measure when ∑

g∈G
f(g) =

∑
g

f(g ◦ g),

and the left measure is then∫
f(α)µL(α)dα =

∫
f(β ◦ α)µL(α)dα. (10.2.1)
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We want to associate to a set of elements in the neighborhood of a
element A a volume (measure) τA such that the measure of the elements
obtained from these elements by left translation with B is the same, dτA =
dτBA.

The generalization of this for continuous groups is giving by writing the
elements as g(α) = eα

µTµ . Clearly g(α)g(β) = g(α ◦ β), which is the group
composition law and it is exactly (10.2.1). In this representation, the unitary
element e is g(0). The invariant integration has also the propriety of internal
translation invariance,∫

f(x)dx =

∫
f(x− q)dx.

The right invariant measure is given by∫
g∈µ

f(α)µR(α)dα =

∫
f(−β ◦ α)µR(α)dα.

For compact, for infinite and for discrete groups, µL = µR, the left
measure is equivalent to the right. A pragmatic way of finding the measure
of a group is defining a density function ρ(a) such that

dτA = ρ(A)dA = ρ(BA)dAB = dτBA.

Isomorphic groups always have the same density function. In the neighbor-
hood of the identity, we can make

dB = J(B)dA,

where J(B) is the jacobian, i.e. the left measure can be defined as the
determinant of the matrix of all changes (the jacobian).

Trivial Examples

For the group g′ = a + g, one defines the function φ(a, b) = a + b. The
jacobian is given by

∂φ(a, b)

∂a

∣∣∣
a=0

= 1.

Then J(b) = 1, ρ(b) = 1 and the measure is
∫
dbf(b).

For the group g′ = ag, one defines the function φ(a, b) = ab and

∂φ(a, b)

∂a

∣∣∣
a=1

= b.

Then J(b) = b, ρ(b) = 1
b and the measure is

∫
1
bdbf(b).
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A Pathological Example3

For the group given by the representation element

g(α) =

(
eα

1
α2

0 1

)
.

one has, from g(β)g(α) = g(β ◦ α),

g(α)g(β) =

(
eβ

1
β2

0 1

)
.

(
eα

1
α2

0 1

)
=

(
eα

1+β1
eβ

1
α2 + β2

0 1

)
.

Writing as

ψ1(β, α) = β1 + α1,

ψ2(β, α) = eβ
1
α2 + β2,

we have (
eψ

i
ψ2

0 1

)
.

The left measure is then given by

∂ψ1,2(β, α)

∂α2

∣∣∣
α2=1,α1=0

= eβ
1 → µL(β) = eβ

1
,

the right measure is given by

∂ψ1,2(β, α)

∂α1

∣∣∣
α2=0,α1=1

= 1→ µR(β) = 1.

Therefore we see that these two measures are different for this non semi-
simple space.

Theorem: The left measure is equal to the right measure if the structure
constant of the Lie algebra has trace equal to zero fµµα = 0.

3Exercise proposed by Prof. van Nieuwenhuizen.
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Invariant measure in Lie Groups

In SU(2) (also Sl(2,R), Sl(2,C) or Gl(2,R)), one has

g = a0 + aki σk = ei
ωiσi
2 ,

where

σ2
0 +

∑
σ2
k = 1.

The Haar measure can then be written as∫
f(α)µL(α)d1

αd
2
αd

3
α.
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Appendix A

Table of Groups

Group Name Dim Def irrep Section

Sn Symmetric group N, finite 1.4
Zn, Cn Cyclic group N, finite 1.4
An Alternating group N, finite 1.4
D2N Dihedral group 2N, finite 1.4

U(N) Unitary group N, Infinite 3
SU(N) Special Unitary group N, Infinite 3
SO(2N) Special Orthogonal group 2N, Infinite 4
Sp(2N) Symplectic group 2N, Infinite 7

GL(N,C) General Linear group N, Infinite 10.1
SL(N,C) Special Linear group N, Infinite 10.1

Table A.1: Summary of groups.
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