
2 Symmetries

Symmetries are 
entral to our understanding of parti
le physi
s. They lead to 
onservation

laws and allow us to see order prin
iples in the \parti
le zoo" of meson and baryon states.

Even more importantly, symmetry prin
iples are also 
ru
ial to des
ribe the intera
tions of

parti
les.

We 
an divide symmetries into spa
e-time symmetries and internal symmetries that mix

a 
ertain group of �elds. Both types of symmetries 
an be dis
rete or 
ontinuous. Another

important distin
tion is between global and lo
al symmetries: In the former 
ase, we perform

at ea
h spa
e-time point the same symmetry transformation, e.g. a rotation by a �xed angle

�. In the 
ase of a lo
al symmetry, the rotation angle 
ould 
hange from point to point,

� = �(x

�

). A list of symmeties is shown in Table 2.1.

The symmetries of Minkowski spa
e-time require that �eld equations respe
t Lorentz and

translation symmetry. The intera
tions 
arried by spin-1 bosons are 
hara
terised by lo
al

symmetries: ele
tromagneti
 intera
tions by the symmetry group U(1), weak intera
tions by

SU(2), and strong intera
tions by SU(3). Often the standard model (SM) of parti
le physi
s

is therefore summarised as a U(1)
 SU(2)
 SU(3) gauge theory. We 
ome latter ba
k to this

lo
al symmetries, 
onsidering now global 
ontinuous ones.

2.1 Symmetries in Quantum Me
hani
s

Emmy Noether showed in 1917 that every global 
ontinuous symmetry of a system des
ribed

by a Lagrangian leads 
lassi
ally to a (lo
al) 
onservation law. Thus the experimental obser-

vation of a 
onserved quantity informs us that the intera
tion has to satisfy the 
orresponding

symmetry. This helps us to 
onstrain possible intera
tion terms.

In quantum me
hani
s, the relation between symmetries and 
onservation laws is similar:


onserved quantity symmetry non-observable


ontinuous

energy E time translation t! t+ t

0

absolute time

momentum p spa
e translation x! x+ x

0

absolute spa
e

angular momentum L rotation x

i

! R

ij

(�)x

j

absolute orienation


m velo
ity boost x

�

! �

�

�

(�)x

�

absolute velo
ity


harges q

a

gauge transformation �

i

! e

i#

a

T

a

�

i

relative phases

dis
rete

parity spatial inversion distin
tion left-right helix

time inversion invarian
e time inversion time arrow


harge parity 
harge 
onjugation absolute sign of 
harge

Table 2.1: Conservation laws, underlying global symmetries and 
orresponding \non-

observables".
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2 Symmetries

Let us assume that the two set of states j 

n

i and j 

0

n

i = U j 

n

i predi
t the same measure-

ments. Then

j h 

n

j 

m

ij

2

= j




 

0

n

�

�

 

0

m

ij

2

= j hU 

n

jU 

m

ij

2

= j h 

n

jU

y

U j 

m

i j

2

(2.1)

and thus U is unitary, U

y

U = 1 (or anti-unitary). If valid at the �xed time t

0

, then it remains

valid at arbitrary time t, if [H;U ℄ = 0:

�

�

 

0

(t)

�

= U j (t)i = U exp[�iH(t� t

0

)℄ j (t

0

)i (2.2)

= exp[�iH(t� t

0

)℄U j (t

0

)i (2.3)

= exp[�iH(t� t

0

)℄

�

�

 

0

(t

0

)

�

: (2.4)

where we used HU = UH in the se
ond step

1

. Thus a symmetry implies the existen
e of an

unitary operator whi
h 
ommutes with H.

For a 
ontinuous transformation, we 
an expand U = 1 + i"G + O("

2

), keeping only the

linear term. From

1 = UU

y

= (1 + i"G)(1� i"G

y

) = 1 + i"(G�G

y

) +O("

2

)

we see that the generator G of the symmetry transformation is hermitian and thus 
orresponds

to an observable. Moreover, [H;U ℄ = [H; 1 + i"G℄ = 0 implies [H;G℄ = 0 and thus the

expe
tation value of G is 
onstant.

We 
on
lude that a 
ontinuous symmetry transformation leads in QM to a 
onservation

law for the 
orresponding generator whi
h is an observable.

Ex.: Translation operator: Consider as example that a system is invariant under a

translation a in spa
e. Thus its wave fun
tion satis�es

T (a) (x) =  (x+ a) =  (x):

We 
an determine T performing a Taylor expansion of  (x+ a),

 (x+ a) =

1

X

n=0

1

n!

(a �r)

n

 (x) =

1

X

n=0

1

n!

(�ia � p)

n

 (x) = exp(�ia � p) (x): (2.5)

Thus the the momentum operator generates spa
e translation, whi
h in turn implies that

momentum is 
onserved, if the system is invariant under translations. Finally, we show that

the eigenfun
tions of the translation operator are plane-waves,

T (a)e

ik�x

= (1 + a �r+ � � � )e

ik�x

= e

ia�k

e

ik�x

= e

ik�(x+�a)

: (2.6)

Using a relativisti
 notation, translation a

�

in spa
etime are generated by

T (a

�

) = exp(ia

�

p

�

): (2.7)

1

We are only interested in time-independentH; moreover U is also time-independent, sin
e we 
onsider global

symmetries.
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2.2 Groups

Manifestations How do symmetries manifest themselves? First, we note that 
onservation

laws lead to sele
tion rules. Consider the example that the system is invariant under rotations,

[H;L

2

℄ = [H;L

z

℄ = 0. Then

0 = hlmj [H;L

2

℄

�

�

l

0

m

�

= [l

0

(l

0

+ 1)� l(l + 1)℄ hlmjH

�

�

l

0

m

�

(2.8)

0 = hlmj [H;L

z

℄

�

�

lm

0

�

= [m

0

�m)℄ hlmjH

�

�

l

0

m

�

(2.9)

and thus transition elements are diagonal in the 
onserved quantum numbers,

hlmjH

�

�

l

0

m

0

�

= Æ

ll

0

Æ

mm

0

hlmjH jlmi : (2.10)

In other words: If 
ertain pro
esses do not o

our, a 
orresponding symmetry should forbid

them.

Se
ond, a symmetry may manifest itself via degenerated states: Multiplying from the left

the S
hr�odinger equationH j 

�

i = E

�

j 

�

i with U and using [H;U ℄ = 0 as well as j 

0

i = U j i

givesH j 

0

�

i = E

�

j 

0

�

i. If j 

0

�

i and j 

0

�

i are linear independent, the energy E

�

is degenerated.

For free parti
les at rest, this implies that their masses are degenerated.

Often, the symmetry is hidden or slightly broken. In this 
ase, we should look for a set of

parti
les with approximately the same mass and similar intera
tions as sign for a symmetry.

2.2 Groups

A set of elements fa; b; 
; : : :g is 
alled a group G, if the following four properties are satis�ed:

� For every pair a; b the produ
t ab = 
 2 G is de�ned (\
losure property").

� A unit element e exists in G su
h that for every a, ae = ea = a.

� The asso
iative law holds: (ab)
 = a(b
).

� Ea
h group element has an inverse, aa

�1

= a

�1

a = e.

Symmetry transformations in physi
s satisfy the group axioms. (As an example, think at

translations x ! x + a.) Therefore symmetries 
an be des
ribed by groups, whi
h may be

dis
rete or 
ontinuous. An example for a dis
rete, �nite group is the Z

2

symmetry � ! ��

whi
h has only two elements. An example for a 
ontinuous symmetry is the phase (or gauge)

transformation �! exp(i#)� with the symmetry group U(1).

We 
onsider mostly matrix representations of groups. Using then matrix multipli
ation as

group operation, the asso
iative law holds automati
ally. Note that there exist typi
ally an

in�nite number of di�erent representation of a given group.

The invertible n� n matri
es satisfy all four 
onditions and form therefore a group, 
alled

GL(n, R) or GL(n, C) depending on if the matrix elements are real or 
omplex. More spe
i�


examples are orthogonal (O

T

= O

�1

) and unitary (U

y

= U

�1

) matri
es. Here we have to


he
k the 
losure property. If O

1

and O

2

are orthogonal, then their produ
t O = O

1

O

2

is

orthogonal too, sin
e

O

T

O = (O

1

O

2

)

T

O

1

O

2

= O

T

2

O

T

1

O

1

O

2

= 1 : (2.11)

The 
orresponding group of n-dimensional orthogonal matri
es is 
alled O(n). In the same

way, one shows that the produ
t of unitary matri
es is again a unitary matrix. The 
orre-

sponding group of n-dimensional unitary matri
es is 
alled U(n). Adding the restri
tion that

the determinant of the matri
es is one, one obtains the spe
ial orthogonal groups SO(n) and

the spe
ial unitary groups SU(n).
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2 Symmetries

Lie groups A Lie group G is a 
ontinuous group whi
h depends analyti
ally on a �nite num-

ber n of real parameters: The neighbourhood of any group element g 2 G 
an be parametrised

by these parameters, and a group element g 
an be expanded as a power series,

g(#) = 1 +

n

X

a=1

i#

a

T

a

+O(#

2

) � 1 + i#

a

T

a

+O(#

2

) : (2.12)

The linear transformation in the arbitrary dire
tion #

a

is 
alled an in�nitesimal transforma-

tion, the T

a

the (in�nitesimal) generators of the transformation. The generators T

a


an be

obtained by di�erentiation, T

a

= �i dg(#)=d#

a

j

#=0

. Conversely, analyti
ity implies that the

group element g(#) 
an be obtained by exponentiation,

g(#) = lim

n!1

[1 + i#

a

T

a

=n℄

n

= exp(i#

a

T

a

) : (2.13)

Note that a Lie group 
an 
onsist of dis
onne
ted pie
es. In this 
ase, we 
an generate via

Eq. (2.13) only the group elements in the pie
e 
ontaining the unit element.

The generators T

a

form an algebra g 
alled the Lie algebra. Three operations are de�ned in

this algebra: Addition, multipli
ation by real numbers, and the Lie bra
ket [A;B℄ = AB�BA.

One 
an express the 
ommutator as a linear 
ombination of generators,

[T

a

; T

b

℄ = if

ab


T




; (2.14)

where the real numbers f

ab


are 
alled stru
ture 
onstants. In general, it is easier to work

out �rst the Lie algebra and then to 
onstru
t �nite transformation via Eq. (2.13).

Ex: Lorentz group SO(1,3): As an example, 
onsider the Lorentz group SO(1,3). We


an 
onstru
t the Lie algebra of the Lorentz group di�erentiating the �nite transformations,

T

a

= �i dg(#)=d#

a

j

#=0

, in an arbitrary representation. Applied to the �nite boost B

x

(�)

along the x dire
tion given in (1.6) we �nd as generator K

x

B

x

(�) =

0

B

B

�


osh � sinh � 0 0

sinh� 
osh � 0 0

0 0 1 0

0 0 0 1

1

C

C

A

; K

x

=

1

i

�B

x

(�)

��

�

�

�

�

�=0

= �i

0

B

B

�

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

(2.15)

and similiarly for the other two boosts. The 4-dim. generators of rotations are obtained

simply by adding (1; 0; 0; 0) as zeroth 
olum and raw to the known 3-dim. rotations, e.g.

R

z

(�) =

0

B

B

�

1 0 0 0

0 
os� sin� 0

0 sin� 
os� 0

0 0 0 1

1

C

C

A

; J

z

(�) = �i

�R

z

(�)

��

�

�

�

�

�=0

= �i

0

B

B

�

0 0 0 0

0 0 1 0

0 �1 0 0

0 0 0 0

1

C

C

A

:

(2.16)

Cal
ulating then their 
ommutation relations, one �nds

[J

i

; J

j

℄ = i"

ijk

J

k

; (2.17a)

[J

i

;K

j

℄ = i"

ijk

K

k

; (2.17b)

[K

i

;K

j

℄ = �i"

ijk

J

k

: (2.17
)

Note that the algebra of the rotation generators J is 
losed. Thus the rotations SO(3) form a

subgroup of the Lorentz group. In 
ontrast, the algebra of the boost generators is not 
losed

(it 
ontains J) and thus boost do not form a subgroup of the Lorentz group.
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2.3 Groups U(n) and SU(n)

2.3 Groups U(n) and SU(n)

The n � n 
omplex matri
es satisfying U

y

U = 1 form a representation of the unitary group

U(n). Setting U = exp(iH), the matrix H is hermitian, H = H

y

or H

�

ij

= H

ji

for

i; j = 1; ; : : : ; n. Thus unitarity implies n

2


onstraints. In general, a n � n 
omplex ma-

trix has 2n

2

real parameters. A

ounting for the n

2

unitarity 
onditions, an element of U(n)

is parametrised by n

2

real numbers. Sin
e there are n

2

linear independent hermitian 
omplex

n� n matri
es, we 
an 
hoose them as generators.

From U

y

U = 1, we �nd

1 = det(U) det(U)

�

= jdet(U)j

2

:

Thus det(U) 
orresponds to a phase e

i#

0

. The matri
es V of the spe
ial unitary group SU(n)

satisfy det(V ) = 1. Extra
ting the phase e

i#

0

, we 
an write

U = e

i#

0

V = e

i#

0

exp(i(#

a

T

a

)) :

Thus the unitary group is the produ
t of a U(1) fa
tor and the group SU(n), implying that

SU(n) has n

2

� 1 parameters.

Next we use

1 = det(V ) = exp trV = exp(i tr(#

a

T

a

))

to �nd tr(#

a

T

a

) = 0. Sin
e the #

a

are arbitrary, the tra
e of ea
h individual generator has

to vanish, tr(T

a

) = 0. Thus the generators of SU(n) are n

2

� 1 tra
eless, hermitian matri
es.

By 
onvention, physi
ists use as normalisation tr(T

a

T

b

) =

1

2

Æ

ab

.

SU(2) The three Pauli matri
es �

i

provide a set of n

2

�1 = 3 tra
eless, hermitian matri
es.

They satisfy �

i

�

j

= Æ

ij

+ i"

ijk

�

k

. To 
omply with the normalisation 
onvention, we have to

set T

a

= �

a

=2. Knowing the T

a

, we 
an 
al
ulate the stru
ture 
onstants,

[T

a

; T

b

℄ = i"

ab


T




:

Note that they agree with those of the angular momentum operators given in Eq. (2.17a).

Thus SO(3) and SU(2) agree lo
ally, sin
e their Lie algebra 
oin
ide. Physi
ally, this 
orre-

sponds to the fa
t that SU(2) generates rotations for two-spinors.

Finite transformations whi
h we 
an apply on two-spinors are then given by U =

exp(i��=2).

SU(3) The eight generators of SU(3) 
an be 
hosen as the Gell-Mann matri
es, T

a

= �

a

=2,

with

�

1

=

0

�

0 1 0

1 0 0

0 0 0

1

A

; �

2

=

0

�

0 �i 0

i 0 0

0 0 0

1

A

; �

3

=

0

�

1 0 0

0 �1 0

0 0 0

1

A

;

�

4

=

0

�

0 0 1

0 0 0

1 0 0

1

A

; �

5

=

0

�

0 0 �i

0 0 0

i 0 0

1

A

; �

8

=

1

p

3

0

�

1 0 0

0 1 0

0 0 �2

1

A

;

�

6

=

0

�

0 0 0

0 0 1

0 1 0

1

A

; �

7

=

0

�

0 0 0

0 0 �i

0 i 0

1

A

:
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2 Symmetries

Note that the �

i

with i = 1; 4; 6 and i = 2; 5; 7 
an be obtained from the Pauli matri
es �

1

and �

2

adding a raw and a 
olumn with zeros. This re
e
ts the fa
t that SU(3) 
ontains as

subgroups three SU(2) fa
tors (of whi
h only two are independent).

2.4 Flavor symmetries and the quark model

Isospin and SU(2)

f

see GriÆths 4.3.

Hyper
harge and Deltas see GriÆths 4.3.

Remark 2.1: We use non-relativisti
 QM to des
ibe hadrons as bound-states of quarks. Sin
e

m

u;d

� m

�

, quarks inside a hadron are however relativisti
. Therefore (virtual) pro
esses like q !

qg ! qq�q ! : : : are possible. They 
reate a \sea" of quark-antiquark pairs and gluons whi
h total

quantum numbers 
an
el to zero. This 
an
ellation means that some aspe
ts of hadrons 
an be

des
ribed reasonbably well with the naive non-relativisti
 quark model we are using; however it fails

in other aspe
ts.

Experimental eviden
e for the 
olour Early eviden
e for 
olour was

� De
ays like �

0

! 2
 are proportional to the squared number of light quarks, � / N

2




.

� The 
ross se
tion e

+

e

�

!hadrons depends on the number of kinemati
ally a

essible

quark states. It is 
onvinient to 
onsider the ratio

R �

�(e

+

e

�

! hadrons)

�(e

+

e

�

! �

+

�

�

)

=

�(e

+

e

�

! �qq)

�(e

+

e

�

! �

+

�

�

)

: (2.18)

In �(e

+

e

�

! hadrons) we have to in
lude all quarks with mass s � 4m

2

q

. If we negle
t

m

f

, the Feynman amplitude for the pro
ess e

+

e

�

!

�

ff with the ex
hange of a virtual

photon depends on the type of fermion only via its ele
tri
 
harge. Thus the ratio R is

R =

P

q

2

i

e

2

e

2

= N




X


avor

q

2

i

(2.19)

where q

i

measures the ele
ti
 
harge of the quark with 
avour i in umits of the ele
tron


harge e, and N




= 3 
ounts the number of 
olors. If only the u,d,s quarks 
an be

produ
ed, then

R = 3

�

1

9

+

4

9

+

1

9

�

= 2:

If additionally 
 quarks 
an be produ
ed, then

R = 3

�

1

9

+

4

9

+

4

9

+

1

9

�

= 10=3

et
. In Fig. 2.1, experimental data are 
ompared with this predi
tion (and a more

pre
ise higher-order 
al
ulation). Several spikes 
an be seen when a new produ
tion


hannel opens, s

>

�

4m

2

q

. They 
orrespond to the mass of mesons 
ontaining this quark

type. After that the 
ross se
tion be
omes smooth and approa
hes the predi
ition.
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2.4 Flavor symmetries and the quark model

49. Plots of cross sections and related quantities

in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 49.6: in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 49.5. Note: CLEO data above Υ(4 ) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Figure 2.1: The ratio R as fun
tion of

p

s/GeV [PDG℄.

Quark model On a fundamental level, the SU(2) symmetry between light baryons and

mesons 
orresponds to a SU(2) symmetry between the u and down quark. The latter is


aused by the 
avor symmetry of QCD: A gluon 
ouples to 
olor while the 
avor of the quark

does not enter at all. The symmetry is only appro
ximate, be
ause of the very small mass

di�eren
e of the u and down quark, m

u

� 2MeV and m

d

� 5MeV.

Sin
e also the s quark mass is 
omparable to the masses of light mesons, and mu
h lighter

than the one of baryons, an extension to a SU(3) symmetry 
onne
ting the u, d and s quark

seems appropriate.

On the meson level, \strangeness" was introdu
ed to explain the proprties of K mesons:

they are produ
ed via strong intera
tions, but de
ay mu
h slower via e.g. K

+

! �

+

+ �

�

.

This suggests that the de
ay is indu
ed by weak intera
tions, and thus the 
avor of a quarks

is 
hanged.

SU(3)

f

Our 
onstru
tion of the Gell-Mann matri
es suggests that SU(3) 
ontains three

SU(2) fa
tors. First, we set F

i

� �

i

=2 to obtain 
orre
tly normalised generators. Then we

introdu
e

T

�

= F

1

� iF

2

; T

3

= F

3

(2.20)

V

�

= F

4

� iF

5

; Y =

2

p

3

F

8

(2.21)

U

�

= F

6

� iF

7

: (2.22)
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2 Symmetries

The ladder operators T

�

and T

3

generate the standard SU(2) algebra,

[T

+

; T

�

℄ = 2T

3

[T

3

; T

�

℄ = �T

�

(2.23)

Cal
ulating the 
orresponding 
omutation relations for V

�

and U

�

, one �nds,

[U

+

; U

�

℄ =

3

2

Y � T

3

� 2U

3

; [V

+

; V

�

℄ =

3

2

Y + T

3

� 2V

3

: (2.24)

With these two de�nitions, we see that SU(3) 
ontains indeed 3 
losed SU(2) subgroups,

generated by T

i

, U

i

and V

i

. The only non-zero 
ommutators are

[T

�

; Y ℄ = 0 and [T

3

; Y ℄ = 0

[T

�

; V

�

℄ = [T

�

; U

�

℄ = [U

�

; V

�

℄ = 0:

Thus there only two generators whi
h we 
an diagonalise at the same time. Choosing them as

Y and T

3

, the remaining six generators are ladder operators whi
h 
onne
t the states inside

a multiplet. Thus we 
lassify states by Y and T

3

, 
alling them jT

3

; Y i.

Next we determine the a
tion of U

�

and V

�

on these states. First we 
al
ulate

[T

3

; U

�

℄ = �

1

2

U

�

; [T

3

; V

�

℄ = �

1

2

V

�

: (2.25)

Applying then e.g. [T

3

; V

�

℄ = �

1

2

V

�

on this ket, we obtain

(

^

T

3

^

V

�

�

^

V

�

^

T

3

) jT

3

; Y i = �

1

2

^

V

�

jT

3

; Y i : (2.26)

Using

^

T

3

jT

3

; Y i = T

3

jT

3

; Y i, we arrive at

^

T

3

^

V

�

jT

3

; Y i = (T

3

�

1

2

)

^

V

�

jT

3

; Y i : (2.27)

Hen
e V

�


hanges T

3

by �1=2. Sin
e [T

3

; U

�

℄ = �

1

2

U

�

, it follows immediately that U

�


hanges T

3

by �1=2. Finally, we have to determine how V

�

and U

�


hange Y . Repeating

the same argument for the 
ommutator [Y;U

�

℄ and [Y; V

�

℄, you �nd that V

�


hanges Y by

�1 and U

�


hanges Y by �1. Thus we 
an visualize the a
tion of V

�

and U

�

in the T

3

� Y

plane as shown in Fig. 2.2.

Quarks should sit in the fundamental (i.e. the smallest non-trivial) representation. We

assume that the Gell-Mann{Nishima relation Q =

1

2

Y + T

3

holds. Then Q is a 
onserved

quantum number of the states jT

3

; Y i. The smallest representations are triangles, where one

side is a X = fT

3

; U

3

; V

3

g doublet and the oppossite 
orner is as X = fT

3

; U

3

; V

3

g singlet, 
f.

with Fig. 2.3.

We now show as illustration how one 
an determine the quantum numbers of the states in

this representation. The T

3

quantum numbers of the representation shown on the left are

T

3

jq

1

i = +

1

2

jq

1

i ; T

3

jq

2

i = �

1

2

jq

2

i ; T

3

jq

3

i = 0: (2.28)

We determine the Y quantum numbers as follows: q

1

is a U

3

singlet, U

3

jq

3

i = 0. It is

U

3

=

3

4

Y �

1

2

T

3

and thus

Y jq

1

i =

�

4

3

U

3

+

2

3

T

3

�

jq

1

i =

1

3

jq

1

i :
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2.4 Flavor symmetries and the quark model
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Figure 2.2: The a
tion of the ladder operators on the state jT

3

; Y i.
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Figure 2.3: The fundamental represenation of SU(3) for quarks aand antiquarks.
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2 Symmetries

Sin
e jq

1

i and jq

2

i have the same quantum number Y , it is

Y jq

2

i =

�

4

3

U

3

+

2

3

T

3

�

jq

2

i =

1

3

jq

2

i

and thus U

3

= 1=2. Next we �nd

Y jq

3

i =

�

4

3

U

3

+

2

3

T

3

�

jq

2

i =

�

4

3

(�1=2) + 0

�

jq

2

i = �

2

3

jq

2

i ;

giving

Q jq

3

i =

�

1

2

Y + T

3

�

jq

2

i℄ =

�

1

2

(�2=3) + 0

�

jq

3

i = �

1

3

jq

3

i :

Similarly we �nd q

1

= 2=3, q

2

= �1=3, and q

3

= 2=3, 
orresponding to the u, d and s quark.

Larger multiplets 
an be analysed in the same way: The a
tion of T

�

, V

�

and U

�

generates

the six sides of an hexagon. Thus larger multipletts are hexagons 
entered around Y = T

3

= 0.

The states predi
ted by the smallest q�q and qqq representations whi
h 
orrespond to meson

and baryon states have been found. In prin
iple, additional states like q�qq�q or \penta-quarks"

q�q qqq might exist. Some eviden
e for the existen
e of su
h penta-quarks have been found in

the last years

2

.

2

After a �rst \dis
overy" in 2003, the 2008 Review of Parti
le Physi
s wrote: \ There are two or three re
ent

experiments that �nd weak eviden
e for signals near the nominal masses, but there is simply no point in

tabulating them in view of the overwhelming eviden
e that the 
laimed pentaquarks do not exist. . . The

whole story|the dis
overies themselves, the tidal wave of papers by theorists and phenomenologists that

followed, and the eventual "undis
overy"|is a 
urious episode in the history of s
ien
e." Finally, the LHCb

experiment identi�ed pentaquarks in 2015.
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