2 Symmetries

Symmetries are central to our understanding of particle physics. They lead to conservation
laws and allow us to see order principles in the “particle zoo” of meson and baryon states.
Even more importantly, symmetry principles are also crucial to describe the interactions of
particles.

We can divide symmetries into space-time symmetries and internal symmetries that mix
a certain group of fields. Both types of symmetries can be discrete or continuous. Another
important distinction is between global and local symmetries: In the former case, we perform
at each space-time point the same symmetry transformation, e.g. a rotation by a fixed angle
. In the case of a local symmetry, the rotation angle could change from point to point,
a = a(z"). A list of symmeties is shown in Table 2.1.

The symmetries of Minkowski space-time require that field equations respect Lorentz and
translation symmetry. The interactions carried by spin-1 bosons are characterised by local
symmetries: electromagnetic interactions by the symmetry group U(1), weak interactions by
SU(2), and strong interactions by SU(3). Often the standard model (SM) of particle physics
is therefore summarised as a U(1)® SU(2)® SU(3) gauge theory. We come latter back to this
local symmetries, considering now global continuous ones.

2.1 Symmetries in Quantum Mechanics

Emmy Noether showed in 1917 that every global continuous symmetry of a system described
by a Lagrangian leads classically to a (local) conservation law. Thus the experimental obser-
vation of a conserved quantity informs us that the interaction has to satisfy the corresponding
symmetry. This helps us to constrain possible interaction terms.

In quantum mechanics, the relation between symmetries and conservation laws is similar:

conserved quantity symmetry non-observable
continuous

energy F time translation ¢ — ¢ + ¢ absolute time
momentum p space translation  — a + absolute space

angular momentum L rotation z; — R;;(a)z; absolute orienation
cm velocity boost z# — A%, (n)z” absolute velocity
charges q, gauge transformation ¢; — e”“T" ¢, | relative phases
discrete

parity spatial inversion distinction left-right helix
time inversion invariance | time inversion time arrow

charge parity charge conjugation absolute sign of charge

Table 2.1: Conservation laws, underlying global symmetries and corresponding “non-
observables”.
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2 Symmetries

Let us assume that the two set of states |¢,,) and [¢],) = U |¢,) predict the same measure-
ments. Then

| <¢n| "/)m>|2 = | <'I/);L‘ "/);n>|2 = | <U¢n| U¢m>|2 = | <"/)n| Ut |¢m> |2 (2-1)

and thus U is unitary, UTU = 1 (or anti-unitary). If valid at the fixed time #(, then it remains
valid at arbitrary time ¢, if [H,U] = 0:

[#/(1)) = U (1)) = U exp[H (¢ — t0)] b (t0)) (22)
= exp[—iH(t - tO)]U |'¢(t0)>
= exp[—iH(t - to)] "‘/’,(t0)> :

where we used HU = UH in the second step'. Thus a symmetry implies the existence of an
unitary operator which commutes with H.

For a continuous transformation, we can expand U = 1 + ieG + O(e?), keeping only the
linear term. From

1=0U"=(1+ie@)(1 —ieGH) =1+ ie(G - G1) + O(?)

we see that the generator G of the symmetry transformation is hermitian and thus corresponds
to an observable. Moreover, [H,U] = [H,1 + ieG] = 0 implies [H,G] = 0 and thus the
expectation value of G is constant.

We conclude that a continuous symmetry transformation leads in QM to a conservation
law for the corresponding generator which is an observable.

Ex.: Translation operator: Consider as example that a system is invariant under a
translation a in space. Thus its wave function satisfies

T(a)y(x) = ¢(z +a) = P(z).

We can determine T' performing a Taylor expansion of ¢ (x + a),

Yo ta) =Y (@ V)@ =Y. (e p)i(@) = exp(—ia-p)ple).  (25)
n=0 n=0

Thus the the momentum operator generates space translation, which in turn implies that
momentum is conserved, if the system is invariant under translations. Finally, we show that
the eigenfunctions of the translation operator are plane-waves,

T(a)eik-a: —(l+a-V+-- )eik~:z: — plakikw _ Jik(zt+a) (2.6)

Using a relativistic notation, translation ¢ in spacetime are generated by

T(a") = exp(iatp,). (2.7)

1We are only interested in time-independent H; moreover U is also time-independent, since we consider global
symmetries.
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2.2 Groups

Manifestations How do symmetries manifest themselves? First, we note that conservation
laws lead to selection rules. Consider the example that the system is invariant under rotations,
[H,L?| =[H,L,] =0. Then

0= (Im|[H,L*[I'm) = [I'"(' + 1) = I(l + )] (Im| H |I'm) (2.8)
0= (Im|[H, L] [lm') = [m' — m)] (Im| H |I'm)

and thus transition elements are diagonal in the conserved quantum numbers,
(Im| H [I'm') = 61y (Im| H [Im) . (2.10)

In other words: If certain processes do not occour, a corresponding symmetry should forbid
them.

Second, a symmetry may manifest itself via degenerated states: Multiplying from the left
the Schrodinger equation H |1),) = Ey |1ha) with U and using [H, U] = 0 as well as |¢)') = U |4))
gives H |¢)) = Eq |¢,). If |4L) and |1)],) are linear independent, the energy F, is degenerated.
For free particles at rest, this implies that their masses are degenerated.

Often, the symmetry is hidden or slightly broken. In this case, we should look for a set of
particles with approximately the same mass and similar interactions as sign for a symmetry.

2.2 Groups

A set of elements {a,b,c,...} is called a group G, if the following four properties are satisfied:

e For every pair a,b the product ab = ¢ € G is defined (“closure property”).
e A unit element e exists in G such that for every a, ae = ea = a.

e The associative law holds: (ab)e = a(be).

e Each group element has an inverse, aa~' = a 'a = e.

Symmetry transformations in physics satisfy the group axioms. (As an example, think at
translations z — = 4 a.) Therefore symmetries can be described by groups, which may be
discrete or continuous. An example for a discrete, finite group is the Zy symmetry ¢ — —¢
which has only two elements. An example for a continuous symmetry is the phase (or gauge)
transformation ¢ — exp(i)¢ with the symmetry group U(1).

We consider mostly matrix representations of groups. Using then matrix multiplication as
group operation, the associative law holds automatically. Note that there exist typically an
infinite number of different representation of a given group.

The invertible n x n matrices satisfy all four conditions and form therefore a group, called
GL(n, R) or GL(n, C) depending on if the matrix elements are real or complex. More specific
examples are orthogonal (O7 = O~') and unitary (U' = U~') matrices. Here we have to
check the closure property. If Oy and O3 are orthogonal, then their product O = 0103 is
orthogonal too, since

070 = (0102)70,0, = 050 0,0, = 1. (2.11)

The corresponding group of n-dimensional orthogonal matrices is called O(n). In the same
way, one shows that the product of unitary matrices is again a unitary matrix. The corre-
sponding group of n-dimensional unitary matrices is called U(n). Adding the restriction that
the determinant of the matrices is one, one obtains the special orthogonal groups SO(n) and
the special unitary groups SU(n).
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2 Symmetries

Lie groups A Lie group G is a continuous group which depends analytically on a finite num-
ber n of real parameters: The neighbourhood of any group element g € G can be parametrised
by these parameters, and a group element g can be expanded as a power series,

n
g(¥) = 1+ > " T" + O(9?) = 1 +i0"T" + O(9%). (2.12)
a=1
The linear transformation in the arbitrary direction 9% is called an infinitesimal transforma-
tion, the T'* the (infinitesimal) generators of the transformation. The generators T can be
obtained by differentiation, 7% = —idg(9)/d¥*|y—o. Conversely, analyticity implies that the
group element g(J) can be obtained by exponentiation,

g(0) = Tim [1+ 0T /n]" = exp(i°T"). (2.13)

Note that a Lie group can consist of disconnected pieces. In this case, we can generate via
Eq. (2.13) only the group elements in the piece containing the unit element.

The generators T'* form an algebra g called the Lie algebra. Three operations are defined in
this algebra: Addition, multiplication by real numbers, and the Lie bracket [A, B] = AB—BA.
One can express the commutator as a linear combination of generators,

[T°, T?) = ifebere (2.14)

where the real numbers f%¢ are called structure constants. In general, it is easier to work
out first the Lie algebra and then to construct finite transformation via Eq. (2.13).

Ex: Lorentz group SO(1,3): As an example, consider the Lorentz group SO(1,3). We
can construct the Lie algebra of the Lorentz group differentiating the finite transformations,
T = —idg(¥)/d¥%|9y—9, in an arbitrary representation. Applied to the finite boost By(n)
along the z direction given in (1.6) we find as generator K,

coshn sinhn 0 0 0100

_ | sinhnp coshnp 0 0 1 0B;(n) B 1 000
Batm =1 o 10| T, o 0000 (2.15)

0 0 0 1 0 00O

and similiarly for the other two boosts. The 4-dim. generators of rotations are obtained
simply by adding (1,0,0,0) as zeroth colum and raw to the known 3-dim. rotations, e.g.

1 0 0 O 0 0 00
| 0 cosa sina 0 . O0R,(a) .10 0 10
R.(a) = 0 sina cosa 0 |’ Jo(e) = - oo |,y 1o -100
0 O 0 1 0 0 00
(2.16)
Calculating then their commutation relations, one finds
[Ji, Jj] = ieiijk s (2.17&)
[Ji, K;j] = igiju Ky (2.17b)
[Ki, Kj] = _igijkjk . (2.170)

Note that the algebra of the rotation generators J is closed. Thus the rotations SO(3) form a
subgroup of the Lorentz group. In contrast, the algebra of the boost generators is not closed
(it contains J) and thus boost do not form a subgroup of the Lorentz group.
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2.3 Groups U(n) and SU(n)

2.3 Groups U(n) and SU(n)

The n x n complex matrices satisfying UTU = 1 form a representation of the unitary group
U(n). Setting U = exp(iH), the matrix H is hermitian, H = H' or Hj; = Hj; for
i,5 = 1,,...,n. Thus unitarity implies n? constraints. In general, a n X n complex ma-
trix has 2n? real parameters. Accounting for the n? unitarity conditions, an element of U(n)
is parametrised by n? real numbers. Since there are n? linear independent hermitian complex
n X n matrices, we can choose them as generators.

From UTU = 1, we find
1 = det(U) det(U)* = |det(U)|?.

Thus det(U) corresponds to a phase e”. The matrices V of the special unitary group SU(n)
satisfy det(V) = 1. Extracting the phase e’°, we can write

U ="V = el exp(i(9°T%)) .

Thus the unitary group is the product of a U(1) factor and the group SU(n), implying that
SU(n) has n? — 1 parameters.
Next we use

1 =det(V) = exptrV = exp(itr(9°7T?))

to find tr(9*T*) = 0. Since the ¥* are arbitrary, the trace of each individual generator has
to vanish, tr(7%) = 0. Thus the generators of SU(n) are n? — 1 traceless, hermitian matrices.
By convention, physicists use as normalisation tr(7%T?) = %5“1’.

SU(2) The three Pauli matrices o* provide a set of n? — 1 = 3 traceless, hermitian matrices.
They satisfy o'o? = §% +ic¥*o*. To comply with the normalisation convention, we have to
set T = 0%/2. Knowing the T, we can calculate the structure constants,

[Ta, Tb] — igabcTC_

Note that they agree with those of the angular momentum operators given in Eq. (2.17a).
Thus SO(3) and SU(2) agree locally, since their Lie algebra coincide. Physically, this corre-
sponds to the fact that SU(2) generates rotations for two-spinors.

Finite transformations which we can apply on two-spinors are then given by U =
exp(iao/2).

SU(3) The eight generators of SU(3) can be chosen as the Gell-Mann matrices, T% = A% /2,
with

01 0 0 —i 0 1 0 0
=100, x=[i0o0], x=[0-10],
000 0 0 0 0 0 0
00 1 00 —i L {100
M=l000]|, Xx=[0001], X=—[01 0 |,
100 i 0 0 AN
00 0 00 0
=001}, x=[00 -i].
010 0 i 0
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2 Symmetries

Note that the A\; with i« = 1,4,6 and i = 2,5,7 can be obtained from the Pauli matrices o
and o9 adding a raw and a column with zeros. This reflects the fact that SU(3) contains as
subgroups three SU(2) factors (of which only two are independent).

2.4 Flavor symmetries and the quark model

Isospin and SU(2); see Griffiths 4.3.

Hypercharge and Deltas see Griffiths 4.3.

Remark 2.1: We use non-relativistic QM to descibe hadrons as bound-states of quarks. Since
My,q <K My, quarks inside a hadron are however relativistic. Therefore (virtual) processes like ¢ —
q9 — qqq@ — ... are possible. They create a “sea” of quark-antiquark pairs and gluons which total
quantum numbers cancel to zero. This cancellation means that some aspects of hadrons can be
described reasonbably well with the naive non-relativistic quark model we are using; however it fails
in other aspects.

Experimental evidence for the colour FEarly evidence for colour was
e Decays like 7% — 27 are proportional to the squared number of light quarks, I' oc N2.

e The cross section ete™ — hadrons depends on the number of kinematically accessible
quark states. It is convinient to consider the ratio

o(ete” — hadrons)  o(ete” — qq)

R = :
olete” = ptp~)  olete” = ptp™)

(2.18)

In o(ete” — hadrons) we have to include all quarks with mass s > 4mg. If we neglect
my, the Feynman amplitude for the process ee™ — ff with the exchange of a virtual
photon depends on the type of fermion only via its electric charge. Thus the ratio R is

202
R= Zqu =N. Y @ (2.19)

where ¢; measures the electic charge of the quark with flavour 7 in umits of the electron
charge e, and N. = 3 counts the number of colors. If only the u,d,s quarks can be
produced, then

1 4 1

9 9
If additionally ¢ quarks can be produced, then
1 4 4 1
R=3|-+-+-+4+-| =10/3
[9 + 9 + 9 * 9] /

etc. In Fig. 2.1, experimental data are compared with this prediction (and a more
precise higher-order calculation). Several spikes can be seen when a new production
channel opens, s > 4m3. They correspond to the mass of mesons containing this quark
type. After that the cross section becomes smooth and approaches the predicition.
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2.4 Flavor symmetries and the quark model
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Figure 2.1: The ratio R as function of 1/s/GeV [PDG].

Quark model On a fundamental level, the SU(2) symmetry between light baryons and
mesons corresponds to a SU(2) symmetry between the u and down quark. The latter is
caused by the flavor symmetry of QCD: A gluon couples to color while the flavor of the quark
does not enter at all. The symmetry is only approcximate, because of the very small mass
difference of the u and down quark, m, ~ 2MeV and mg ~ 5 MeV.

Since also the s quark mass is comparable to the masses of light mesons, and much lighter
than the one of baryons, an extension to a SU(3) symmetry connecting the u, d and s quark
seems appropriate.

On the meson level, “strangeness” was introduced to explain the proprties of K mesons:
they are produced via strong interactions, but decay much slower via e.g. Kt — ut + v,.
This suggests that the decay is induced by weak interactions, and thus the flavor of a quarks
is changed.

SU(3)s Our construction of the Gell-Mann matrices suggests that SU(3) contains three
SU(2) factors. First, we set F; = \;/2 to obtain correctly normalised generators. Then we
introduce

T.=F +iF,, T3=F (2.20)
. 2

Vi =F, +iF;, Y:V?g (2.21)

Uy = Fg +iF;. (2.22)
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2 Symmetries

The ladder operators T and T3 generate the standard SU(2) algebra,
[T,,T- ] =2T;5 [T5,Ty] = £T4 (2.23)

Calculating the corresponding comutation relations for Vi and UL, one finds,
[U+, U_] = %Y — T3y =2U;3, [V_|_, V_] = ;Y + T3 = 2V3. (224)

With these two definitions, we see that SU(3) contains indeed 3 closed SU(2) subgroups,
generated by 7;, U; and V;. The only non-zero commutators are

[T, Y]=0 and [T3,Y]=0
Ty, Vi) = [Ty, U] = [Ug, V4] = 0.

Thus there only two generators which we can diagonalise at the same time. Choosing them as
Y and T3, the remaining six generators are ladder operators which connect the states inside
a multiplet. Thus we classify states by Y and T3, calling them |T5,Y).

Next we determine the action of U and V4 on these states. First we calculate

(T3, Us] = F50s,  [T3,Va] = %3Va. (2.25)
Applying then e.g. [T3,Vi] = i%Vi on this ket, we obtain
(FyVa = Vo) Ty, ¥) = +5 VT3, V) (2.26)
Using Ty |T5,Y) =T5|T3,Y), we arrive at
BV |T5,Y) = (T + 5)V T3, ) (2.27)

Hence Vi changes T3 by +1/2. Since [T3,U1] = :F%Ui, it follows immediately that Ui
changes T3 by F1/2. Finally, we have to determine how Vi and Uy change Y. Repeating
the same argument for the commutator [Y,Ux| and [Y, V4], you find that Vi changes Y by
41 and Uy changes Y by F1. Thus we can visualize the action of Vi and Uy in the T3 — Y
plane as shown in Fig. 2.2.

Quarks should sit in the fundamental (i.e. the smallest non-trivial) representation. We
assume that the Gell-Mann-Nishima relation @) = %Y + T3 holds. Then @ is a conserved
quantum number of the states |T5,Y’). The smallest representations are triangles, where one
side is a X = {T3,Us, V3} doublet and the oppossite corner is as X = {T3,Us, V3} singlet, cf.
with Fig. 2.3.

We now show as illustration how one can determine the quantum numbers of the states in
this representation. The T3 quantum numbers of the representation shown on the left are

1 1
T |q1) = +§ lg1) T3 |q2) = —3 lg2) , T3 |q3) = 0. (2.28)

We determine the Y quantum numbers as follows: ¢; is a Us singlet, Us|gs) = 0. It is
Us = %Y — %Tg and thus

2

4 1
Yq) = <§U3 + §T3> lq1) = 3 lq1) -
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2.4 Flavor symmetries and the quark model
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Figure 2.2: The action of the ladder operators on the state |T5,Y").
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Figure 2.3: The fundamental represenation of SU(3) for quarks aand antiquarks.
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Since |g1) and |g2) have the same quantum number Y, it is

4 2 1
Vi = (304 30 le) = 3l

and thus Us = 1/2. Next we find

Vi) = (500+ 278 ) o) = (517204 0) o) = =3 ).

giving
Qash = (57 + 78 ) la) = (5-2/3) +0) la) = 3 ).

Similarly we find ¢; = 2/3, qo = —1/3, and ¢3 = 2/3, corresponding to the u, d and s quark.

Larger multiplets can be analysed in the same way: The action of T, Vi and UL generates
the six sides of an hexagon. Thus larger multipletts are hexagons centered around Y = 75 = 0.
The states predicted by the smallest ¢4 and qgq representations which correspond to meson
and baryon states have been found. In principle, additional states like ggqq or “penta-quarks”
qq qqq might exist. Some evidence for the existence of such penta-quarks have been found in

the last years?.

2 After a first “discovery” in 2003, the 2008 Review of Particle Physics wrote: “ There are two or three recent
experiments that find weak evidence for signals near the nominal masses, but there is simply no point in
tabulating them in view of the overwhelming evidence that the claimed pentaquarks do not exist...The
whole story—the discoveries themselves, the tidal wave of papers by theorists and phenomenologists that
followed, and the eventual ”undiscovery” —is a curious episode in the history of science.” Finally, the LHCb
experiment identified pentaquarks in 2015.
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