
2 Symmetries

Symmetries are entral to our understanding of partile physis. They lead to onservation

laws and allow us to see order priniples in the \partile zoo" of meson and baryon states.

Even more importantly, symmetry priniples are also ruial to desribe the interations of

partiles.

We an divide symmetries into spae-time symmetries and internal symmetries that mix

a ertain group of �elds. Both types of symmetries an be disrete or ontinuous. Another

important distintion is between global and loal symmetries: In the former ase, we perform

at eah spae-time point the same symmetry transformation, e.g. a rotation by a �xed angle

�. In the ase of a loal symmetry, the rotation angle ould hange from point to point,

� = �(x

�

). A list of symmeties is shown in Table 2.1.

The symmetries of Minkowski spae-time require that �eld equations respet Lorentz and

translation symmetry. The interations arried by spin-1 bosons are haraterised by loal

symmetries: eletromagneti interations by the symmetry group U(1), weak interations by

SU(2), and strong interations by SU(3). Often the standard model (SM) of partile physis

is therefore summarised as a U(1)
 SU(2)
 SU(3) gauge theory. We ome latter bak to this

loal symmetries, onsidering now global ontinuous ones.

2.1 Symmetries in Quantum Mehanis

Emmy Noether showed in 1917 that every global ontinuous symmetry of a system desribed

by a Lagrangian leads lassially to a (loal) onservation law. Thus the experimental obser-

vation of a onserved quantity informs us that the interation has to satisfy the orresponding

symmetry. This helps us to onstrain possible interation terms.

In quantum mehanis, the relation between symmetries and onservation laws is similar:

onserved quantity symmetry non-observable

ontinuous

energy E time translation t! t+ t

0

absolute time

momentum p spae translation x! x+ x

0

absolute spae

angular momentum L rotation x

i

! R

ij

(�)x

j

absolute orienation

m veloity boost x

�

! �

�

�

(�)x

�

absolute veloity

harges q

a

gauge transformation �

i

! e

i#

a

T

a

�

i

relative phases

disrete

parity spatial inversion distintion left-right helix

time inversion invariane time inversion time arrow

harge parity harge onjugation absolute sign of harge

Table 2.1: Conservation laws, underlying global symmetries and orresponding \non-

observables".
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2 Symmetries

Let us assume that the two set of states j 

n

i and j 

0

n

i = U j 

n

i predit the same measure-

ments. Then

j h 

n

j 

m

ij

2

= j




 

0

n

�

�

 

0

m

ij

2

= j hU 

n

jU 

m

ij

2

= j h 

n

jU

y

U j 

m

i j

2

(2.1)

and thus U is unitary, U

y

U = 1 (or anti-unitary). If valid at the �xed time t

0

, then it remains

valid at arbitrary time t, if [H;U ℄ = 0:

�

�

 

0

(t)

�

= U j (t)i = U exp[�iH(t� t

0

)℄ j (t

0

)i (2.2)

= exp[�iH(t� t

0

)℄U j (t

0

)i (2.3)

= exp[�iH(t� t

0

)℄

�

�

 

0

(t

0

)

�

: (2.4)

where we used HU = UH in the seond step

1

. Thus a symmetry implies the existene of an

unitary operator whih ommutes with H.

For a ontinuous transformation, we an expand U = 1 + i"G + O("

2

), keeping only the

linear term. From

1 = UU

y

= (1 + i"G)(1� i"G

y

) = 1 + i"(G�G

y

) +O("

2

)

we see that the generator G of the symmetry transformation is hermitian and thus orresponds

to an observable. Moreover, [H;U ℄ = [H; 1 + i"G℄ = 0 implies [H;G℄ = 0 and thus the

expetation value of G is onstant.

We onlude that a ontinuous symmetry transformation leads in QM to a onservation

law for the orresponding generator whih is an observable.

Ex.: Translation operator: Consider as example that a system is invariant under a

translation a in spae. Thus its wave funtion satis�es

T (a) (x) =  (x+ a) =  (x):

We an determine T performing a Taylor expansion of  (x+ a),

 (x+ a) =

1

X

n=0

1

n!

(a �r)

n

 (x) =

1

X

n=0

1

n!

(�ia � p)

n

 (x) = exp(�ia � p) (x): (2.5)

Thus the the momentum operator generates spae translation, whih in turn implies that

momentum is onserved, if the system is invariant under translations. Finally, we show that

the eigenfuntions of the translation operator are plane-waves,

T (a)e

ik�x

= (1 + a �r+ � � � )e

ik�x

= e

ia�k

e

ik�x

= e

ik�(x+�a)

: (2.6)

Using a relativisti notation, translation a

�

in spaetime are generated by

T (a

�

) = exp(ia

�

p

�

): (2.7)

1

We are only interested in time-independentH; moreover U is also time-independent, sine we onsider global

symmetries.
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2.2 Groups

Manifestations How do symmetries manifest themselves? First, we note that onservation

laws lead to seletion rules. Consider the example that the system is invariant under rotations,

[H;L

2

℄ = [H;L

z

℄ = 0. Then

0 = hlmj [H;L

2

℄

�

�

l

0

m

�

= [l

0

(l

0

+ 1)� l(l + 1)℄ hlmjH

�

�

l

0

m

�

(2.8)

0 = hlmj [H;L

z

℄

�

�

lm

0

�

= [m

0

�m)℄ hlmjH

�

�

l

0

m

�

(2.9)

and thus transition elements are diagonal in the onserved quantum numbers,

hlmjH

�

�

l

0

m

0

�

= Æ

ll

0

Æ

mm

0

hlmjH jlmi : (2.10)

In other words: If ertain proesses do not oour, a orresponding symmetry should forbid

them.

Seond, a symmetry may manifest itself via degenerated states: Multiplying from the left

the Shr�odinger equationH j 

�

i = E

�

j 

�

i with U and using [H;U ℄ = 0 as well as j 

0

i = U j i

givesH j 

0

�

i = E

�

j 

0

�

i. If j 

0

�

i and j 

0

�

i are linear independent, the energy E

�

is degenerated.

For free partiles at rest, this implies that their masses are degenerated.

Often, the symmetry is hidden or slightly broken. In this ase, we should look for a set of

partiles with approximately the same mass and similar interations as sign for a symmetry.

2.2 Groups

A set of elements fa; b; ; : : :g is alled a group G, if the following four properties are satis�ed:

� For every pair a; b the produt ab =  2 G is de�ned (\losure property").

� A unit element e exists in G suh that for every a, ae = ea = a.

� The assoiative law holds: (ab) = a(b).

� Eah group element has an inverse, aa

�1

= a

�1

a = e.

Symmetry transformations in physis satisfy the group axioms. (As an example, think at

translations x ! x + a.) Therefore symmetries an be desribed by groups, whih may be

disrete or ontinuous. An example for a disrete, �nite group is the Z

2

symmetry � ! ��

whih has only two elements. An example for a ontinuous symmetry is the phase (or gauge)

transformation �! exp(i#)� with the symmetry group U(1).

We onsider mostly matrix representations of groups. Using then matrix multipliation as

group operation, the assoiative law holds automatially. Note that there exist typially an

in�nite number of di�erent representation of a given group.

The invertible n� n matries satisfy all four onditions and form therefore a group, alled

GL(n, R) or GL(n, C) depending on if the matrix elements are real or omplex. More spei�

examples are orthogonal (O

T

= O

�1

) and unitary (U

y

= U

�1

) matries. Here we have to

hek the losure property. If O

1

and O

2

are orthogonal, then their produt O = O

1

O

2

is

orthogonal too, sine

O

T

O = (O

1

O

2

)

T

O

1

O

2

= O

T

2

O

T

1

O

1

O

2

= 1 : (2.11)

The orresponding group of n-dimensional orthogonal matries is alled O(n). In the same

way, one shows that the produt of unitary matries is again a unitary matrix. The orre-

sponding group of n-dimensional unitary matries is alled U(n). Adding the restrition that

the determinant of the matries is one, one obtains the speial orthogonal groups SO(n) and

the speial unitary groups SU(n).
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2 Symmetries

Lie groups A Lie group G is a ontinuous group whih depends analytially on a �nite num-

ber n of real parameters: The neighbourhood of any group element g 2 G an be parametrised

by these parameters, and a group element g an be expanded as a power series,

g(#) = 1 +

n

X

a=1

i#

a

T

a

+O(#

2

) � 1 + i#

a

T

a

+O(#

2

) : (2.12)

The linear transformation in the arbitrary diretion #

a

is alled an in�nitesimal transforma-

tion, the T

a

the (in�nitesimal) generators of the transformation. The generators T

a

an be

obtained by di�erentiation, T

a

= �i dg(#)=d#

a

j

#=0

. Conversely, analytiity implies that the

group element g(#) an be obtained by exponentiation,

g(#) = lim

n!1

[1 + i#

a

T

a

=n℄

n

= exp(i#

a

T

a

) : (2.13)

Note that a Lie group an onsist of disonneted piees. In this ase, we an generate via

Eq. (2.13) only the group elements in the piee ontaining the unit element.

The generators T

a

form an algebra g alled the Lie algebra. Three operations are de�ned in

this algebra: Addition, multipliation by real numbers, and the Lie braket [A;B℄ = AB�BA.

One an express the ommutator as a linear ombination of generators,

[T

a

; T

b

℄ = if

ab

T



; (2.14)

where the real numbers f

ab

are alled struture onstants. In general, it is easier to work

out �rst the Lie algebra and then to onstrut �nite transformation via Eq. (2.13).

Ex: Lorentz group SO(1,3): As an example, onsider the Lorentz group SO(1,3). We

an onstrut the Lie algebra of the Lorentz group di�erentiating the �nite transformations,

T

a

= �i dg(#)=d#

a

j

#=0

, in an arbitrary representation. Applied to the �nite boost B

x

(�)

along the x diretion given in (1.6) we �nd as generator K

x

B

x

(�) =

0

B

B

�

osh � sinh � 0 0

sinh� osh � 0 0

0 0 1 0

0 0 0 1

1

C

C

A

; K

x

=

1

i

�B

x

(�)

��

�

�

�

�

�=0

= �i

0

B

B

�

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

(2.15)

and similiarly for the other two boosts. The 4-dim. generators of rotations are obtained

simply by adding (1; 0; 0; 0) as zeroth olum and raw to the known 3-dim. rotations, e.g.

R

z

(�) =

0

B

B

�

1 0 0 0

0 os� sin� 0

0 sin� os� 0

0 0 0 1

1

C

C

A

; J

z

(�) = �i

�R

z

(�)

��

�

�

�

�

�=0

= �i

0

B

B

�

0 0 0 0

0 0 1 0

0 �1 0 0

0 0 0 0

1

C

C

A

:

(2.16)

Calulating then their ommutation relations, one �nds

[J

i

; J

j

℄ = i"

ijk

J

k

; (2.17a)

[J

i

;K

j

℄ = i"

ijk

K

k

; (2.17b)

[K

i

;K

j

℄ = �i"

ijk

J

k

: (2.17)

Note that the algebra of the rotation generators J is losed. Thus the rotations SO(3) form a

subgroup of the Lorentz group. In ontrast, the algebra of the boost generators is not losed

(it ontains J) and thus boost do not form a subgroup of the Lorentz group.
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2.3 Groups U(n) and SU(n)

2.3 Groups U(n) and SU(n)

The n � n omplex matries satisfying U

y

U = 1 form a representation of the unitary group

U(n). Setting U = exp(iH), the matrix H is hermitian, H = H

y

or H

�

ij

= H

ji

for

i; j = 1; ; : : : ; n. Thus unitarity implies n

2

onstraints. In general, a n � n omplex ma-

trix has 2n

2

real parameters. Aounting for the n

2

unitarity onditions, an element of U(n)

is parametrised by n

2

real numbers. Sine there are n

2

linear independent hermitian omplex

n� n matries, we an hoose them as generators.

From U

y

U = 1, we �nd

1 = det(U) det(U)

�

= jdet(U)j

2

:

Thus det(U) orresponds to a phase e

i#

0

. The matries V of the speial unitary group SU(n)

satisfy det(V ) = 1. Extrating the phase e

i#

0

, we an write

U = e

i#

0

V = e

i#

0

exp(i(#

a

T

a

)) :

Thus the unitary group is the produt of a U(1) fator and the group SU(n), implying that

SU(n) has n

2

� 1 parameters.

Next we use

1 = det(V ) = exp trV = exp(i tr(#

a

T

a

))

to �nd tr(#

a

T

a

) = 0. Sine the #

a

are arbitrary, the trae of eah individual generator has

to vanish, tr(T

a

) = 0. Thus the generators of SU(n) are n

2

� 1 traeless, hermitian matries.

By onvention, physiists use as normalisation tr(T

a

T

b

) =

1

2

Æ

ab

.

SU(2) The three Pauli matries �

i

provide a set of n

2

�1 = 3 traeless, hermitian matries.

They satisfy �

i

�

j

= Æ

ij

+ i"

ijk

�

k

. To omply with the normalisation onvention, we have to

set T

a

= �

a

=2. Knowing the T

a

, we an alulate the struture onstants,

[T

a

; T

b

℄ = i"

ab

T



:

Note that they agree with those of the angular momentum operators given in Eq. (2.17a).

Thus SO(3) and SU(2) agree loally, sine their Lie algebra oinide. Physially, this orre-

sponds to the fat that SU(2) generates rotations for two-spinors.

Finite transformations whih we an apply on two-spinors are then given by U =

exp(i��=2).

SU(3) The eight generators of SU(3) an be hosen as the Gell-Mann matries, T

a

= �

a

=2,

with

�

1

=

0

�

0 1 0

1 0 0

0 0 0

1

A

; �

2

=

0

�

0 �i 0

i 0 0

0 0 0

1

A

; �

3

=

0

�

1 0 0

0 �1 0

0 0 0

1

A

;

�

4

=

0

�

0 0 1

0 0 0

1 0 0

1

A

; �

5

=

0

�

0 0 �i

0 0 0

i 0 0

1

A

; �

8

=

1

p

3

0

�

1 0 0

0 1 0

0 0 �2

1

A

;

�

6

=

0

�

0 0 0

0 0 1

0 1 0

1

A

; �

7

=

0

�

0 0 0

0 0 �i

0 i 0

1

A

:
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2 Symmetries

Note that the �

i

with i = 1; 4; 6 and i = 2; 5; 7 an be obtained from the Pauli matries �

1

and �

2

adding a raw and a olumn with zeros. This reets the fat that SU(3) ontains as

subgroups three SU(2) fators (of whih only two are independent).

2.4 Flavor symmetries and the quark model

Isospin and SU(2)

f

see GriÆths 4.3.

Hyperharge and Deltas see GriÆths 4.3.

Remark 2.1: We use non-relativisti QM to desibe hadrons as bound-states of quarks. Sine

m

u;d

� m

�

, quarks inside a hadron are however relativisti. Therefore (virtual) proesses like q !

qg ! qq�q ! : : : are possible. They reate a \sea" of quark-antiquark pairs and gluons whih total

quantum numbers anel to zero. This anellation means that some aspets of hadrons an be

desribed reasonbably well with the naive non-relativisti quark model we are using; however it fails

in other aspets.

Experimental evidene for the olour Early evidene for olour was

� Deays like �

0

! 2 are proportional to the squared number of light quarks, � / N

2



.

� The ross setion e

+

e

�

!hadrons depends on the number of kinematially aessible

quark states. It is onvinient to onsider the ratio

R �

�(e

+

e

�

! hadrons)

�(e

+

e

�

! �

+

�

�

)

=

�(e

+

e

�

! �qq)

�(e

+

e

�

! �

+

�

�

)

: (2.18)

In �(e

+

e

�

! hadrons) we have to inlude all quarks with mass s � 4m

2

q

. If we neglet

m

f

, the Feynman amplitude for the proess e

+

e

�

!

�

ff with the exhange of a virtual

photon depends on the type of fermion only via its eletri harge. Thus the ratio R is

R =

P

q

2

i

e

2

e

2

= N



X

avor

q

2

i

(2.19)

where q

i

measures the eleti harge of the quark with avour i in umits of the eletron

harge e, and N



= 3 ounts the number of olors. If only the u,d,s quarks an be

produed, then

R = 3

�

1

9

+

4

9

+

1

9

�

= 2:

If additionally  quarks an be produed, then

R = 3

�

1

9

+

4

9

+

4

9

+

1

9

�

= 10=3

et. In Fig. 2.1, experimental data are ompared with this predition (and a more

preise higher-order alulation). Several spikes an be seen when a new prodution

hannel opens, s

>

�

4m

2

q

. They orrespond to the mass of mesons ontaining this quark

type. After that the ross setion beomes smooth and approahes the prediition.
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2.4 Flavor symmetries and the quark model

49. Plots of cross sections and related quantities

in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 49.6: in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 49.5. Note: CLEO data above Υ(4 ) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Figure 2.1: The ratio R as funtion of

p

s/GeV [PDG℄.

Quark model On a fundamental level, the SU(2) symmetry between light baryons and

mesons orresponds to a SU(2) symmetry between the u and down quark. The latter is

aused by the avor symmetry of QCD: A gluon ouples to olor while the avor of the quark

does not enter at all. The symmetry is only approximate, beause of the very small mass

di�erene of the u and down quark, m

u

� 2MeV and m

d

� 5MeV.

Sine also the s quark mass is omparable to the masses of light mesons, and muh lighter

than the one of baryons, an extension to a SU(3) symmetry onneting the u, d and s quark

seems appropriate.

On the meson level, \strangeness" was introdued to explain the proprties of K mesons:

they are produed via strong interations, but deay muh slower via e.g. K

+

! �

+

+ �

�

.

This suggests that the deay is indued by weak interations, and thus the avor of a quarks

is hanged.

SU(3)

f

Our onstrution of the Gell-Mann matries suggests that SU(3) ontains three

SU(2) fators. First, we set F

i

� �

i

=2 to obtain orretly normalised generators. Then we

introdue

T

�

= F

1

� iF

2

; T

3

= F

3

(2.20)

V

�

= F

4

� iF

5

; Y =

2

p

3

F

8

(2.21)

U

�

= F

6

� iF

7

: (2.22)
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2 Symmetries

The ladder operators T

�

and T

3

generate the standard SU(2) algebra,

[T

+

; T

�

℄ = 2T

3

[T

3

; T

�

℄ = �T

�

(2.23)

Calulating the orresponding omutation relations for V

�

and U

�

, one �nds,

[U

+

; U

�

℄ =

3

2

Y � T

3

� 2U

3

; [V

+

; V

�

℄ =

3

2

Y + T

3

� 2V

3

: (2.24)

With these two de�nitions, we see that SU(3) ontains indeed 3 losed SU(2) subgroups,

generated by T

i

, U

i

and V

i

. The only non-zero ommutators are

[T

�

; Y ℄ = 0 and [T

3

; Y ℄ = 0

[T

�

; V

�

℄ = [T

�

; U

�

℄ = [U

�

; V

�

℄ = 0:

Thus there only two generators whih we an diagonalise at the same time. Choosing them as

Y and T

3

, the remaining six generators are ladder operators whih onnet the states inside

a multiplet. Thus we lassify states by Y and T

3

, alling them jT

3

; Y i.

Next we determine the ation of U

�

and V

�

on these states. First we alulate

[T

3

; U

�

℄ = �

1

2

U

�

; [T

3

; V

�

℄ = �

1

2

V

�

: (2.25)

Applying then e.g. [T

3

; V

�

℄ = �

1

2

V

�

on this ket, we obtain

(

^

T

3

^

V

�

�

^

V

�

^

T

3

) jT

3

; Y i = �

1

2

^

V

�

jT

3

; Y i : (2.26)

Using

^

T

3

jT

3

; Y i = T

3

jT

3

; Y i, we arrive at

^

T

3

^

V

�

jT

3

; Y i = (T

3

�

1

2

)

^

V

�

jT

3

; Y i : (2.27)

Hene V

�

hanges T

3

by �1=2. Sine [T

3

; U

�

℄ = �

1

2

U

�

, it follows immediately that U

�

hanges T

3

by �1=2. Finally, we have to determine how V

�

and U

�

hange Y . Repeating

the same argument for the ommutator [Y;U

�

℄ and [Y; V

�

℄, you �nd that V

�

hanges Y by

�1 and U

�

hanges Y by �1. Thus we an visualize the ation of V

�

and U

�

in the T

3

� Y

plane as shown in Fig. 2.2.

Quarks should sit in the fundamental (i.e. the smallest non-trivial) representation. We

assume that the Gell-Mann{Nishima relation Q =

1

2

Y + T

3

holds. Then Q is a onserved

quantum number of the states jT

3

; Y i. The smallest representations are triangles, where one

side is a X = fT

3

; U

3

; V

3

g doublet and the oppossite orner is as X = fT

3

; U

3

; V

3

g singlet, f.

with Fig. 2.3.

We now show as illustration how one an determine the quantum numbers of the states in

this representation. The T

3

quantum numbers of the representation shown on the left are

T

3

jq

1

i = +

1

2

jq

1

i ; T

3

jq

2

i = �

1

2

jq

2

i ; T

3

jq

3

i = 0: (2.28)

We determine the Y quantum numbers as follows: q

1

is a U

3

singlet, U

3

jq

3

i = 0. It is

U

3

=

3

4

Y �

1

2

T

3

and thus

Y jq

1

i =

�

4

3

U

3

+

2

3

T

3

�

jq

1

i =

1

3

jq

1

i :
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2.4 Flavor symmetries and the quark model
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Figure 2.2: The ation of the ladder operators on the state jT
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; Y i.
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Figure 2.3: The fundamental represenation of SU(3) for quarks aand antiquarks.
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2 Symmetries

Sine jq

1

i and jq

2

i have the same quantum number Y , it is

Y jq

2

i =

�

4

3

U

3

+

2

3

T

3

�

jq

2

i =

1

3

jq

2

i

and thus U

3

= 1=2. Next we �nd

Y jq

3

i =

�

4

3

U

3

+

2

3

T

3

�

jq

2

i =

�

4

3

(�1=2) + 0

�

jq

2

i = �

2

3

jq

2

i ;

giving

Q jq

3

i =

�

1

2

Y + T

3

�

jq

2

i℄ =

�

1

2

(�2=3) + 0

�

jq

3

i = �

1

3

jq

3

i :

Similarly we �nd q

1

= 2=3, q

2

= �1=3, and q

3

= 2=3, orresponding to the u, d and s quark.

Larger multiplets an be analysed in the same way: The ation of T

�

, V

�

and U

�

generates

the six sides of an hexagon. Thus larger multipletts are hexagons entered around Y = T

3

= 0.

The states predited by the smallest q�q and qqq representations whih orrespond to meson

and baryon states have been found. In priniple, additional states like q�qq�q or \penta-quarks"

q�q qqq might exist. Some evidene for the existene of suh penta-quarks have been found in

the last years

2

.

2

After a �rst \disovery" in 2003, the 2008 Review of Partile Physis wrote: \ There are two or three reent

experiments that �nd weak evidene for signals near the nominal masses, but there is simply no point in

tabulating them in view of the overwhelming evidene that the laimed pentaquarks do not exist. . . The

whole story|the disoveries themselves, the tidal wave of papers by theorists and phenomenologists that

followed, and the eventual "undisovery"|is a urious episode in the history of siene." Finally, the LHCb

experiment identi�ed pentaquarks in 2015.
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