Formalities.

Solutions should be handed in Monday 13.03., latest 15.15, in my mailbox (D5-166), by email or in the lectures.

Relativistic Stars.

In this home exam, you will derive step-by-step the equations of stellar structure for a relativistic, compact star. Typical examples like neutron stars have a polytropic equation of state, $P=P(\rho(r))$, and are therefore described by only two equations: i) the continuity equation and ii) the hydrostatic equilibrium equation.
a.) Argue that a static, isotropic metric can be written as

$$
\begin{align*}
\mathrm{d} s^{2} & =A(r) \mathrm{d} t^{2}-B(r) \mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right) \tag{1}\\
& =\mathrm{e}^{\sigma(r)} \mathrm{d} t^{2}-\mathrm{e}^{\lambda(r)} \mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right) \tag{2}
\end{align*}
$$

b.) Show that the non-zero components of the Ricci tensor in this metric are given by

$$
\begin{align*}
& R_{00}=-\frac{A^{\prime \prime}}{2 B}+\frac{A^{\prime}}{4 B}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)-\frac{A^{\prime}}{r B}, \tag{3}\\
& R_{11}=\frac{A^{\prime \prime}}{2 A}-\frac{A^{\prime}}{4 A}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)-\frac{B^{\prime}}{r B}, \tag{4}\\
& R_{22}=\frac{1}{B}-1+\frac{r}{2 B}\left(\frac{A^{\prime}}{A}-\frac{B^{\prime}}{B}\right), \tag{5}\\
& R_{33}=R_{22} \sin ^{2} \vartheta, \tag{6}
\end{align*}
$$

where we order coordinates as $x^{\mu}=(t, r, \vartheta, \phi)$ and primes denote differentiation w.r.t. r. You may use a program of your choice to do this calculation; if so, attach the code/output you used/produced. If you do the calculation "by hand", it is sufficient to calculate one of the 4 non-zero elements.
c.) Write down the Einstein equations for this metric and the case of an ideal fluid,

$$
\begin{equation*}
T^{\alpha \beta}=(\rho+P) u^{\alpha} u^{\beta}-P g^{\alpha \beta} . \tag{7}
\end{equation*}
$$

[Note: You have two options, using either i) $G_{\mu \nu}=\ldots$ or ii) $R_{\mu \nu}=\ldots$. The first one requires the calculation of R, but has the advantage that ρ and P are decoupled. The second (recommended) option requires the calculation of the simpler trace T, but you have to find in e) a combination of the equations such that ρ decouples.]
d.) The conservation law for the stress tensor should be connected to the hydrostatic equilibrium condition. Evaluate therefore next $\nabla_{\alpha} T^{\alpha \beta}=0$. Show that the "constraint"

$$
\begin{equation*}
P^{\prime}+\frac{1}{2}(P+\rho) \sigma^{\prime}=0 \tag{8}
\end{equation*}
$$

for $\sigma^{\prime}=A^{\prime} / A$ follows.
e.) The metric (1) becomes equal to the Schwarzschild solution ar $r \geq R$. This is ensured by setting

$$
\begin{equation*}
B(r)=\mathrm{e}^{\lambda}=\left(1-\frac{2 m(r)}{r}\right)^{-1} \tag{9}
\end{equation*}
$$

and $m(R)=M$. (At the moment, $m(r)$ is just a different way to label r.) If you used option 1), you can use this to rewrite the 00 equation as

$$
\frac{2}{r^{2}} \frac{\mathrm{~d} m}{\mathrm{~d} r}=8 \pi \rho
$$

Then

$$
m(r)=4 \pi \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime 2} \rho\left(r^{\prime}\right)
$$

If you used option ii), show that the linear combination

$$
\frac{R_{00}}{A}+\frac{R_{11}}{B}+\frac{2 R_{22}}{r^{2}}
$$

depends only on ρ and B, while it is independent of P and A. Using this expression, you can perform the same steps as for option i).
f.) Finally we note that in the 22 equation A and A^{\prime} enter only via their ratio. Using the constraint to eliminate A^{\prime} / A and (9) for B, you obtain an expression for the pressure gradient, the hydrostatic equilibrium equation ("TOV equation").
g.) Interpretation: Look up the corresponding non-relativistic equations and explain briefly differences/correction terms.

