## Formalities.

Solutions should be submitted via Inspera Monday 18.03., latest 12.00. Only if adminstration fails to set up this in time, you can hand in your solutions into my mailbox (D5-166), by email or in the lectures.

## Lense-Thirring effect.

In this home exam, you will derive the Lense-Thirring effect, i.e. the rate of precession of a gyroscope freely-falling towards the Earth induced by the rotation of the Earth.
a.) Consider the Kerr metric in Boyer-Lindquist coordinates. Verify that the metric satisfies the vacuum Einstein equations using a computer program of your choice. Determine the singularity(ies) of the metric. (Add the input/output you used.)
b.) Show that at lowest order in the angular momentum $J=a M$, the metric simplifies to

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} s_{\text {Schwarzschild }}^{2}+\frac{4 G J}{r} \sin ^{2} \vartheta \mathrm{~d} \phi \mathrm{~d} t . \tag{1}
\end{equation*}
$$

Introduce then the Newtonian gravitational potential, take the weak-field limit, change to Cartesian coordinates and go back to units keeping explicitly $c$ and $G$.
c.) A gyroscope can be modelled as a spinning rigid body of negligible extension. Thus the gyroscope is decribed completely by its four-velocity $u^{\alpha}$ and spin vector $s^{\alpha}$. The latter is in the rest-system of the gyroscope a space-like vector. Show that this implies that

$$
\begin{equation*}
\boldsymbol{u}(\tau) \cdot \boldsymbol{s}(\tau)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D s^{\alpha}}{\mathrm{d} \tau}=\frac{\mathrm{d} s^{\alpha}}{\mathrm{d} \tau}+\Gamma^{\alpha}{ }_{\mu \nu} s^{\mu} u^{\nu}=0 \tag{3}
\end{equation*}
$$

d.) Write out the last equation for a gyroscope falling along the $z$ azis, i.e. along the rotation axis of the Earth. Calculate the non-zero Christoffel symbols using the "Lagrange approach": In order to simplify calculation keep i) only the lowest order term (in $1 / c$ ) required in $\mathrm{d} s^{2}$, ii) use that Christoffel symbols $\propto x, y$ vanish on the rotation axis.
e.) Assume the non-relativistic limit for the velocity of the gyroscope and keep again only the leading term. Show that the rotation velocity in the system of the gyroscope is

$$
\omega_{\mathrm{LT}}=\frac{2 G J}{c^{2} z^{3}} .
$$

Interpretation? What is the rotation velocity measured by an observer at Earth?

