Formalities.

Solutions should be emailed latest Friday 27.03, at 15.00.

Executive summary.

Write a 3-4 page executive summary of the lectures (ending [and including] with spin $1 / 2$). Omit derivations.

Higgs decay into fermions and the optical theorem.

In the Standard Model, the Higgs particle h is a scalar particle that interacts with all fermions via a Yukawa coupling y proportional to the fermion mass $m, y=\frac{1}{2} g m / m_{W}$,

a.) Calculate the decay width $\Gamma(h \rightarrow \bar{f} f)$ of a Higgs particle with mass M into a antifermion-fermion pair (at tree-level).
b.) Show that a fermion loop leads to an additional minus sign in the Feynman amplitude.
c.) Consider the following contribution of fermions to the self-energy $\Sigma\left(p^{2}\right)$ of the Higgs,

Use dimensional regularisation to calculate $\Sigma^{\bar{f} f}$ and show that

$$
\Sigma^{\overline{f f} f}=\frac{A}{\varepsilon}+B\left[C+\int_{0}^{1} \mathrm{~d} z a^{2} \ln \left(a^{2} / \mu^{2}\right)\right]
$$

with $a^{2}=m^{2}-p^{2} z(1-z)-\mathrm{i} \varepsilon$. Note: In d spacetime dimensions, the Clifford algebra becomes $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} I_{d}$ with I_{d} as the d-dimensional unit matrix. Thus contractions change to

$$
\begin{equation*}
\gamma^{\mu} \gamma_{\mu}=d I_{d}, \quad \gamma^{\mu} \phi \gamma_{\mu}=(2-d) \phi, \quad \gamma^{\mu} \phi \phi b \gamma_{\mu}=4 a \cdot b I_{d}-(d-4) \phi \phi . \tag{1}
\end{equation*}
$$

However, it is standard to define $\operatorname{tr}\left(I_{d}\right)=4$, which has the advantage that trace relations like $\operatorname{tr}[d\langle b]=4 a \cdot b$ are unchanged.
d.) Determine the imaginary part $\Im \Sigma^{\bar{f} f}$ of the self-energy and show that the optical theorem holds, i.e. that $\Im \Sigma^{\bar{f} f}=M \Gamma(h \rightarrow \bar{f} f)$ for $p^{2}=M^{2}$.
e.) Obtain $\Im \Sigma^{\bar{f} f}$ directly by "cutting the self-energy": Consider

$$
\mathrm{i} \Sigma^{\bar{f} f}\left(p^{2}\right)=\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \cdots
$$

for $p=(M, \mathbf{0})$; find the poles and apply the identity

$$
\frac{1}{x \pm \mathrm{i} \varepsilon}=P\left(\frac{1}{x}\right) \mp \mathrm{i} \pi \delta(x)
$$

to the q^{0} integral in order to obtain the imaginary part.

Good luck!
a.) The Feynman amplitude is

$$
\mathrm{i} \mathcal{A}=-\mathrm{i} y \frac{m}{m_{W}} \bar{u}\left(q_{1}, s_{1}\right) v\left(q_{2}, s_{2}\right) .
$$

Squaring and summing over final spins gives

$$
\sum_{s 1, s 2}|\mathcal{A}|^{2}=y^{2} \sum_{s 1, s 2} \bar{u}\left(q_{1}, s_{1}\right) v\left(q_{2}, s_{2}\right) \bar{v}\left(q_{2}, s_{2}\right) u\left(q_{1}, s_{1}\right)=y^{2} \operatorname{tr}\left[\left(\phi_{1}+m\right)\left(q_{2}-m\right)\right]
$$

with $\operatorname{tr}\left[\left(\phi_{1}+m\right)\left(q_{2}-m\right)\right]=4\left(q_{1} q_{2}-m^{2}\right)$. In the cms frame, the momenta are

$$
p^{\mu}=(M, \mathbf{0}), \quad q_{1}^{\mu}=\left(M / 2, \boldsymbol{q}_{\mathrm{cms}}\right), \quad q_{2}^{\mu}=\left(M / 2,-\boldsymbol{q}_{\mathrm{cms}}\right)
$$

with

$$
q_{\mathrm{cms}}=\frac{M}{2}\left(1-\frac{4 m^{2}}{M^{2}}\right)^{1 / 2}=\frac{M}{2} \beta^{1 / 2} \quad \text { and } \quad 4\left(q_{1} q_{2}-m^{2}\right)=4\left(\frac{M^{2}}{4}+q_{\mathrm{cms}}^{2}-m^{2}\right)=2 M^{2} \beta
$$

Here, β denotes the velocity of the fermions in the cms frame. Since $|\overline{\mathcal{A}}|^{2}$ is a scalar, the remaining angular integration in $\mathrm{d} \Phi^{(2)}$ gives a trivial factor 4π. Assembling everything, the total decay width in one fermion type follows as

$$
\Gamma=N_{c} \frac{y^{2}}{8 \pi} M\left(1-\frac{4 m^{2}}{M^{2}}\right)^{3 / 2}=N_{c} \frac{g^{2}}{32 \pi} \frac{M^{3}}{m_{W}^{2}} \beta^{3 / 2}
$$

where $N_{C}=\{1,3\}$ for leptons/quarks takes into account the 3 quark colors.
b.) See the paragraph "fermion loops" in the notes.
c.) Applying the Feynman rules and DR gives

$$
\mathrm{i} \Sigma\left(p^{2}\right)=-(-\mathrm{i} y)^{2}\left(\mu^{2}\right)^{4-d} \int \frac{\mathrm{~d}^{d} q}{(2 \pi)^{d}} \frac{\operatorname{tr}[\mathrm{i}(\not q+m) \mathrm{i}(q-\not p+m)]}{\left(q^{2}-m^{2}+\mathrm{i} \varepsilon\right)\left[(q-p)^{2}-m^{2}+\mathrm{i} \varepsilon\right]},
$$

where the first minus sign comes from the fermion loop. (We used also that the symmetry factor is 1 , and forget for the moment N_{c}.) Next use

$$
\begin{equation*}
\frac{1}{a b}=\int_{0}^{1} \frac{\mathrm{~d} z}{[a z+b(1-z)]^{2}} \tag{2}
\end{equation*}
$$

to combine the two denominators, and eliminate the terms linear in q in the denominator \mathcal{D} by substituting $q^{\prime 2}=[q-p(1-z)]^{2}$,

$$
\begin{equation*}
\mathcal{D}=q^{\prime 2}-m^{2}+p^{2} z(1-z)=q^{\prime 2}-a^{2} . \tag{3}
\end{equation*}
$$

Since $\mathrm{d}^{d} q=\mathrm{d}^{d} q^{\prime}$, we can drop the primes. Shifting then the nominator and dropping terms linear in q, we arrrive at

$$
\Sigma^{\overline{f f}}=-4 y^{2}\left(\mu^{2}\right)^{4-d} \int_{0}^{1} \mathrm{~d} z \int \frac{\mathrm{~d}^{d} q}{(2 \pi)^{d}} \frac{q^{2}+a^{2}}{\left(q^{2}-a^{2}\right)^{2}}=-4 y^{2}\left(\mu^{2}\right)^{4-d} \int_{0}^{1} \mathrm{~d} z\left[a^{2} I_{0}(d, 2)+I_{2}(d, 2)\right] .
$$

Looking up the I functions, expanding in ε and collecting terms gives

$$
\Sigma^{\bar{f} f}=N_{c} \frac{12 y^{2}}{(4 \pi)^{2}}\left[\mu^{2 \varepsilon}\left(m^{2}-\frac{q^{2}}{6}\right) \frac{1}{\varepsilon}+\left(-\frac{m^{2}}{3}+\frac{q^{2}}{18}+\int_{0}^{1} \mathrm{~d} z a^{2} \ln \left(a^{2} / \tilde{\mu}^{2}\right)\right)\right]
$$

where we added N_{c} and absorbed the constants in $\tilde{\mu}$.
d.) Only the log term can generate an imaginary part for $q^{2} \geq 4 m^{2}$,

$$
\begin{equation*}
F=\left[m^{2}-q^{2} z(1-z)\right] \int_{0}^{1} \mathrm{~d} z \ln \left[m^{2}-q^{2} z(1-z)\right] . \tag{4}
\end{equation*}
$$

The argument of the logarithm becomes negative for

$$
\begin{equation*}
z_{1 / 2}=\frac{1}{2}\left[1 \pm \sqrt{1-4 m^{2} / q^{2}}\right] . \tag{5}
\end{equation*}
$$

Using now $\Im[\ln (-x-\mathrm{i} \varepsilon)]=-\pi$, the imaginary part follows as

$$
\begin{equation*}
\Im(F)=-\pi \int_{z_{1}}^{z_{2}} \mathrm{~d} z\left[m^{2}-q^{2} z(1-z)\right]=\frac{1}{6} \sqrt{1-\frac{4 m^{2}}{q^{2}}}\left(q^{2}-4 m^{2}\right)=\frac{1}{6}\left(1-\frac{4 m^{2}}{q^{2}}\right)^{3 / 2} . \tag{6}
\end{equation*}
$$

Adding the prefactor $N_{c} 12 y^{2} /(4 \pi)^{2}$, we find

$$
\begin{equation*}
\Im(\Sigma)=N_{c} \frac{y^{2}}{8 \pi} q^{2}\left(1-\frac{4 m^{2}}{q^{2}}\right)^{3 / 2} \tag{7}
\end{equation*}
$$

what agrees for $q^{2}=M^{2}$ with the prediction of the optical theorem, $M \Gamma=\operatorname{Im} \Sigma$.
e.) Consider in

$$
\mathrm{i} \Sigma=-y^{2} \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}} \frac{\left.4\left[q^{2}-q p+m^{2}\right)\right]}{\left(q^{2}-m^{2}+\mathrm{i} \varepsilon\right)\left[(q-p)^{2}-m^{2}+\mathrm{i} \varepsilon\right]}
$$

the denominator. Setting $p=(M, 0)$ and $E_{q}=+\sqrt{q^{2}+m^{2}}$, we find as poles of the integrand $q^{0}=E_{q}-\mathrm{i} \varepsilon, q^{0}=-E_{q}+\mathrm{i} \varepsilon, q^{0}=M+E_{q}-\mathrm{i} \varepsilon$, and $q^{0}=M-E_{q}+\mathrm{i} \varepsilon$. We can choose the integration contour either in the upper or lower half-plane. Choosing the lower one, we pick up the two residues at $q^{0}=E_{q}-\mathrm{i} \varepsilon$ and $q^{0}=M+E_{q}-\mathrm{i} \varepsilon$. Hence we obtain

$$
\Sigma=-y^{2} \int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \frac{1}{2 M E_{q}}\left(\frac{M E_{q}-2 m^{2}}{M-2 E_{q}+\mathrm{i} \varepsilon}+\frac{A}{M+2 E_{q}-\mathrm{i} \varepsilon}\right)
$$

The second denominator never vanishes and thus gives no contribution to the imaginary part. For the first one, we obtain using the given identity

$$
\operatorname{Im} \Sigma=4 y^{2} \pi \int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \frac{M E_{q}-2 m^{2}}{2 M E_{q}} \delta\left(M-2 E_{q}\right)
$$

As $E_{q}=+\sqrt{q^{2}+m^{2}} \geq m$, the argument of the delta function is never zero for $M \leq 2 m$ and the imaginary part of the amplitude vanishes thus. For $M>2 m$, we can set $E_{q}=M / 2$ and perform then the integral,

$$
\operatorname{Im} \Sigma=\frac{y^{2}}{16 \pi} \sqrt{1-\frac{4 m^{2}}{M^{2}}}
$$

Thus we confirmed again the relation $M \Gamma=\operatorname{Im} \Sigma$.

