Formalities.

Solutions should be submitted via Inspera Monday 18.03., latest 12.00. Only if adminstration fails to set up this in time, you can hand in your solutions into my mailbox (D5-166), by email or in the lectures.

Lense-Thirring effect.

In this home exam, you will derive the Lense-Thirring effect, i.e. the rate of precession of a gyroscope freely-falling towards the Earth induced by the rotation of the Earth.
a.) Consider the Kerr metric in Boyer-Lindquist coordinates. Verify that the metric satisfies the vacuum Einstein equations using a computer program of your choice. Determine the singularity(ies) of the metric. (Add the input/output you used.)
b.) Show that at lowest order in the angular momentum $J=a M$, the metric simplifies to

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} s_{\text {Schwarzschild }}^{2}+\frac{4 G J}{r} \sin ^{2} \vartheta \mathrm{~d} \phi \mathrm{~d} t . \tag{1}
\end{equation*}
$$

Introduce then the Newtonian gravitational potential, take the weak-field limit, change to Cartesian coordinates and go back to units keeping explicitly c and G.
c.) A gyroscope can be modelled as a spinning rigid body of negligible extension. Thus the gyroscope is decribed completely by its four-velocity u^{α} and spin vector s^{α}. The latter is in the rest-system of the gyroscope a space-like vector. Show that this implies that

$$
\begin{equation*}
\boldsymbol{u}(\tau) \cdot \boldsymbol{s}(\tau)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D s^{\alpha}}{\mathrm{d} \tau}=\frac{\mathrm{d} s^{\alpha}}{\mathrm{d} \tau}+\Gamma^{\alpha}{ }_{\mu \nu} s^{\mu} u^{\nu}=0 \tag{3}
\end{equation*}
$$

d.) Write out the last equation for a gyroscope falling along the z azis, i.e. along the rotation axis of the Earth. Calculate the non-zero Christoffel symbols using the "Lagrange approach": In order to simplify calculation keep i) only the lowest order term (in $1 / c$) required in $\mathrm{d} s^{2}$, ii) use that Christoffel symbols $\propto x, y$ vanish on the rotation axis.
e.) Assume the non-relativistic limit for the velocity of the gyroscope and keep again only the leading term. Show that the rotation velocity in the system of the gyroscope is

$$
\omega_{\mathrm{LT}}=\frac{2 G J}{c^{2} z^{3}} .
$$

Interpretation? What is the rotation velocity measured by an observer at Earth?
a.) A vacuum solution has to satisfy $R_{\mu \nu}=0$ for $r>0$. The singularities can be determined from $R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma} \rightarrow \infty$.
b.) The Kerr metric in Boyer-Lindquist coordinates is given by

$$
\begin{align*}
\mathrm{d} s^{2}= & \left(1-\frac{2 M r}{\rho^{2}}\right) \mathrm{d} t^{2}+\frac{4 M a r \sin ^{2} \vartheta}{\rho^{2}} \mathrm{~d} \phi \mathrm{~d} t-\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}-\rho^{2} \mathrm{~d} \vartheta^{2} \\
& -\left(r^{2}+a^{2}+\frac{2 M r a^{2} \sin ^{2} \vartheta}{\rho^{2}}\right) \sin ^{2} \vartheta \mathrm{~d} \phi^{2}, \tag{4}\\
a=J / M, \quad \rho^{2}=r^{2}+ & a^{2} \cos ^{2} \vartheta=r^{2}+\mathcal{O}\left(a^{2}\right), \quad \Delta=r^{2}-2 M r+a^{2}=r^{2}(1-2 M / r)+\mathcal{O}\left(a^{2}\right) .
\end{align*}
$$

A short inspection shows that all corrections are of $\mathcal{O}\left(a^{2}\right)$ except for the linear term in

$$
g_{t \phi}=\frac{4 J \sin ^{2} \vartheta}{r} \mathrm{~d} \phi \mathrm{~d} t+\mathcal{O}\left(a^{2}\right) .
$$

Moreover, neglecting the $\mathcal{O}\left(a^{2}\right)$ terms, all terms except $g_{t \phi}$ reduce to the ones in the Schwarzschild metric.
We will consider the movement of the gyroscope along the rotation (i.e. the z axis), where spherical coordinates are ill-defined. Therefore, we change to Cartesian coordinates. forming first the differential of $\phi=\arctan (y / x)$, obtaining

$$
\mathrm{d} \phi=-\frac{y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{x}{x^{2}+y^{2}} \mathrm{~d} y .
$$

With $r^{2} \sin ^{2} \vartheta=x^{2}+y^{2}$, it follows

$$
\sin ^{2} \vartheta \mathrm{~d} \phi=(x \mathrm{~d} y-y \mathrm{~d} x) / r^{2} .
$$

Introducing the Newtonian potential $\Phi=G M / r$ and taking the limit $\Phi / c^{2} \ll 1$, the metric becomes

$$
\begin{equation*}
\mathrm{d} s^{2}=\left(1-\Phi / c^{2}\right)(c \mathrm{~d} t)^{2}-\left(1+\Phi / c^{2}\right) \mathrm{d} l^{2}+\frac{4 G J}{(c r)^{3}}(x \mathrm{~d} y-y \mathrm{~d} x) c \mathrm{~d} t \tag{5}
\end{equation*}
$$

where r is implicitely defined by $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
c.) In the rest-frame of the gyroscope, it is $u^{\alpha}=\left(u^{t}, \mathbf{0}\right)$ and $s^{a}=(0, s)$. Thus $\boldsymbol{u} \cdot \boldsymbol{s}=0$ holds in the rest-frame and, since $\boldsymbol{u} \cdot \boldsymbol{s}$ is a scalar, in all frames.
The four-velocity is parallel transported along the geodesics of the gyroscope, $D u^{\alpha} / \mathrm{d} \tau=0$. In order that $\boldsymbol{u} \cdot \boldsymbol{s}=0$ continues to hold along the geodesics, also s^{α} has to be parallel transported. Thus

$$
\begin{equation*}
\frac{D s^{\alpha}}{\mathrm{d} \tau}=\frac{\mathrm{d} s^{\alpha}}{\mathrm{d} \tau}+\Gamma^{\alpha}{ }_{\mu \nu} s^{\mu} u^{\nu}=0 . \tag{6}
\end{equation*}
$$

d.) With $u^{\alpha}=\left(u^{t}, 0,0, u^{z}\right)$ and $s^{z}=0$, it is

$$
\begin{equation*}
\frac{\mathrm{d} s^{x}}{\mathrm{~d} \tau}+\Gamma^{x}{ }_{x t} s^{x} u^{t} \Gamma^{x}{ }_{x z} s^{x} u^{z}+\Gamma^{x}{ }_{y t} s^{y} u^{t}+\Gamma^{x}{ }_{y z} s^{y} u^{z}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} s^{y}}{\mathrm{~d} \tau}+\Gamma^{y}{ }_{x t} s^{x} u^{t} \Gamma^{y}{ }_{x z} s^{x} u^{z}+\Gamma_{y t}^{y} s^{y} u^{t}+\Gamma^{y}{ }_{y z} s^{y} u^{z}=0 . \tag{8}
\end{equation*}
$$

The Lagrangian on the z-axis, where $r=z$ and $\Phi=\Phi(z)$, is

$$
\begin{equation*}
L=\left(1-\Phi / c^{2}\right)(c \dot{t})^{2}-\left(1+\Phi / c^{2}\right)\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{4 G J}{(c z)^{3}}(x \dot{y}-y \dot{x}) c \dot{t} . \tag{9}
\end{equation*}
$$

The Φ terms would lead to $\mathcal{O}\left(1 / c^{2}\right)$ corrections relative to the result neglecting them. Evaluating the x and y Lagrange equations for

$$
\begin{equation*}
L=(c \dot{t})^{2}-\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{4 G J}{c^{2} z^{3}}(x \dot{y}-y \dot{x}) \dot{t} \tag{10}
\end{equation*}
$$

gives then as the non-vanishing Christoffel symbols

$$
\begin{equation*}
\Gamma^{x}{ }_{x t}=\frac{2 G J}{c^{2} z^{3}} \quad \text { and } \quad \Gamma_{x t}^{y}=-\frac{2 G J}{c^{2} z^{3}} . \tag{11}
\end{equation*}
$$

e.) Inserting these Christoffel symbols gives

$$
\begin{equation*}
\frac{\mathrm{d} s^{x}}{\mathrm{~d} \tau}=-\frac{2 G J}{c^{2} z^{3}} s^{x} u^{t} \quad \text { and } \quad \frac{\mathrm{d} s^{y}}{\mathrm{~d} \tau}=+\frac{2 G J}{c^{2} z^{3}} s^{x} u^{t} \tag{12}
\end{equation*}
$$

Using then $u^{t}=\mathrm{d} t / \mathrm{d} \tau$, it follows

$$
\begin{equation*}
\frac{\mathrm{d} s^{x}}{\mathrm{~d} t}=-\frac{2 G J}{c^{2} z^{3}} s^{x} \quad \text { and } \quad \frac{\mathrm{d} s^{y}}{\mathrm{~d} t}=+\frac{2 G J}{c^{2} z^{3}} s^{x} \tag{13}
\end{equation*}
$$

Thus the gyroscope precesses on circle in the $x y$ plane with the angular velocity

$$
\omega_{\mathrm{LT}}=\frac{2 G J}{c^{2} z^{3}}
$$

in the same direction as the Earth rotates. Our calculation was done in the frame of the gyroscope. A Lorentz transformation to the frame of an observer on Earth does not affect the transverse spin components s^{x} and s^{y}, while the time-dilatation effect gives a $1 / c^{2}$ correction, i.e. is of the size as the already neglected Φ corrections.
Interpretation: Einstein developed GR partly under the influence of Mach's ideas. For an discussion of the interpretation of the Lense-Thirring effect within Mach's principle(s) see e.g. Ref. [1].
[1] Hermann Bondi and Joseph Samuel. The Lense-Thirring effect and Mach's principle. Physics Letters A, 228(3):121-126, 1997.

