
FY3451 Astrophysics II Home Exam 26.–07.10.2024

Formalities.
Solutions should be handed in Monday 07.10., latest 14.00, by Inspera. If Inspera doesn’t
work, put your solutions in my mailbox (in D5-166), sent them by email or hand them in
in the lectures.

1. Scaling relation for main-sequence (MS) stars.
a.) Write down the four equations of stellar structure and the three “material relations”,
assuming radiative energy transfer (i.e. no convection), an ideal gas law, a power law for
the energy generation rate ∝ ρT n, and a constant opacity.
b.) Introduce the mass fraction x = M(r)/M and characteristic quantities (i.e. character-
istic radius R∗, pressure P∗, . . . ). Show that by introducing r = f1(x)R∗, P = f2(x)P∗, . . . ,
you can split these equations into non-linear differential equations for the dimensionless
functions and algebraic equations for the characteristic quantities.
c.) Derive from the algebraic equations the following scaling relations:

L ∝ M3 and R ∝ M
n−1

n+3 .

d.) Derive the slope of the MS in the Hertzsprung-Russel diagram for stars generating
energy mainly by i) the pp chain (n = 4) and ii) the CNO cycle (n = 16).
e.) The minimmal temperature for the ignition of the pp chain is Tmin = 4 × 106K. Show
that the central temperature scales as Tc ∝ M4/(n+3). Use the Sun to fix the proportionalty
constant and derive the lower end of the MS.
f.) How does the expected life-time of MS stars scale?
g.) How does your results in d.) and e) compare to observations?

a.) We write the equations differentiating w.r.t. the enclosed mass M(r) ≡ Mr. Then

dr

dMr
=

1

4πr2ρ
(1)

dP

dMr
= −

GMr

4πr4
(2)

dT

dMr
= −

3κ

4ac

L

(4πr2)2T 3
(3)

dL

dMr
= ε0ρT

n (4)

P = R/µρT (5)

b.) Introducing characteristic quantities, it is

r = f1(x)R∗, P = f2(x)P∗, ρ = f3(x)ρ∗, , T = f4(x)T∗, L = f5(x)L∗. (6)

The starred quantities, R∗, P∗, . . ., carry the dimension of the original functions. We consider the
hydrostatic equilibrium equation as an example for this procedure: Introducing x and P∗ leads
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to
P∗

M

df2
dx

= −
GMx

4πf4
1R

4
∗

. (7)

The unknown P∗ has to be proportional to GM2/R4
∗. Choosing the proportionalty constant as

one, we obtain
df2
dx

= −
x

4πf4
1

, P∗ = GM2/R4
∗ (8)

and similarly

df1
dx

= 1
4πf2

1
f3
, ρ∗ = M/R3

∗ (9)

f2 = f3
1f4, T∗ = µP∗/(Rρ∗) (10)

df4
dx

= −
3f5

4f3
4
(4πf2

1
)2

L∗ =
ac
κ

T 4
∗
R4

∗

M (11)

df5
dx

= f3f
n
4 , L∗ = ε0ρ∗T

n
∗ M (12)

c.) Using P∗ = GM2/R4
∗ and ρ∗ = M/R3

∗ in T∗ = µP∗/(Rρ∗), it follows

T∗ =
µGM

RR∗

. (13)

Inserting this into (11) gives

L∗ =
ac

κ

T 4
∗R

4
∗

M
=

ac

κ

(

Gµ

R

)4

M3
∝ µ4M3 . (14)

Thus the luminosity at a given x in stars with the different mass scales as the cube of their mass
ratios. In particular, for x = 1, we obtain L ∝ M3. Additionally, we see the µ4 dependence as in
the Eddington model.
Combine next the two relations for L∗,

L∗ =
ac

κ

T 4
∗R

4
∗

M
= ε0ρ∗T

n
∗ M. (15)

Inserting then ρ∗ = M/R3
∗ and T∗ = µP∗/(Rρ∗) gives

R4
∗ ∝ ρ∗T

n−4
∗ M2

∝
M

R3
∗

(

M

R∗

)n−4

M2 (16)

or
R∗ ∝ M

n−1

n+3 .

The relation holds again in particular for x = 1, implying R ∝ M
n−1

n+3 .

d.) We use in L = 4πR2σT 4
eff first R ∝ M

n−1

n+3 and then M ∝ L1/3, obtaining

L1− 2n−2

3n+9 ∝ T 4
eff .
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Taking the log, we find
logL ≃ 5.5 log Teff + const., n = 4,

logL ≃ 8.4 log Teff + const., n = 16.

e.) We use T∗ =
µGM
RR∗

and R∗ ∝ M
n−1

n+3 to get Tc ∝ M4/(n+3) at x = 0. For n = 4, it is Tc ∝ M4/7.
Using the Sun for calibration and requiring Tc > Tmin, we obtain

M

M⊙

>

(

Tmin

Tc,⊙

)7/4

∼ 0.1.

This gives Lmin ≃ 10−3L⊙ as lower end of the MS.

f.) Use e.g. the values given in the appendix of the script to plot the HR diagramm for the MS

and compare to the slopes endpoint obtained.

You should find that our result deviates from reality: the main reason is the temperature depen-

dence of the opacity.

g.) Neglecting the fact that the fraction of hydrogen converted into helium depends on convection,
it is

τ ∝
M

L
∝ M−2

2. Chandrasekhar theory for white dwarf stars.
Assume that the pressure of white dwarf (WD) stars is given by completely degen-
erate (non-interacting) electrons. In the general case, where the relativity parameter
x = pF/(mc) is neither zero or one, the E.o.S. is not a polytrope and the Lane-Emden
equation has to be generalised. Chandrasekhar showed that writing the pressure and the
density of degenerate electrons as function of the relativity parameter x as P (x) = Af(x)
and ρ(x) = Bx3, one can derive

1

r2
d

dr

(

r2
dz

dr

)

= −
πGB2

2A
(z2 − 1)3/2. (17)

with z2 = x2 + 1.
a.) Make this equation dimensionless, introducing xc ≡ x(r = 0) and zc ≡ z(r = 0), and
new variables

r = αη and z = zcφ

satisfying

α2 =
2A

πG

1

(Bzc)2
and z2c = x2

c + 1
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and show that it can be written as

1

η2
d

dη

(

η2
dφ

dη

)

= −

(

φ2
−

1

z2c

)3/2

. (18)

b.) Specifiy the boundary conditions.
c.) Solve this equation numerically for ten values of 1/z20 btween zero and one, find the
resulting M-R relation of WDs, and plot it. Give a short interpretation: existence of
minimal/maximal masses, how reliable is the result?

b.) The relation y = ycφ implies φ = 1 at the center. Moreover, as for x = 0, the derivative of

φ has to be zero at the center. Finally, the radius of the star is defined by ρ(R) = 0 and thus

x(R) = 0. Hence z(R) = 1 and φ(η(R)) = z/zc = 1/zc.

Thus the integration starts with φ(0) = 1, and φ′(0) = 0 at the center η = 0 of the star, choosing

a value of zc, until one reaches the stellar radius R = r(η1) when φ = 1/zc.

c.) The stellar radius is given by R = αη0 or

R =

√

2A

πG

1

Bzc
η1,

where η1 is defined by φ = 1/zc. As in the case of the “ordinary” Lane-Emden equation, we
express first ρ by φ,

ρ(x) = Bx3 = B(z2 − 1)3/2 = Bz3c

(

φ2
−

1

z2c

)3/2

.

Then we replace r and ρ in

M = 4π

∫ R

0
drr2ρ = 4πα3Bz3c

∫ φ1

0
dηη2

(

φ2
−

1

z2c

)3/2

. (19)

Then we replace (· · · )3/2 using the generalised Lane-Emden equation,

M = 4πα3Bz3c

(

−η2
dφ

dη

)
∣

∣

∣

∣

η1

(20)

In the last step, we insert the definition of α and zc, obtaining

M =
4π

B2

(

2A

πG

)3/2 (

−η2
dφ

dη

)∣

∣

∣

∣

η1

. (21)

Now we can evaluate numerically M and R for a given value of zc, see the table for some results.

Interpretation: There exist solutions between M = 0 and MCh ≃ 5.84M⊙. The upper limit

corresponds to x = 1 (ultra-relativistic limit), which is unstable according to the virial theorem.

Reliability: Main assumption is that interactions can be neglected. This is not true in particular

for low masses: For M → 0, we expect ρ ≃ const. instead of ρ → 0 allowing for the existence of

planets—their stability is caused by electrostatic interactions between electrons and ions. In the

other extreme, M → MCh implies ρ → ∞ and at some point weak interactions may play a role.
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Table 1: Numerical constants from the integration of the generalised Lane-Emden equation.

1/z2c zc ξ1 −η2 (dφ/dη)η1 ρc/µe µ2
eMg/cm3 µeR/km

0 ∞ 6.70 2.02 ∞ 5.84 0
0.01 9.95 5.36 1.93 9.48e8 5.60 4.17
0.02 7 4.99 1.86 3.31e8 5.41 5.50
0.05 4.36 4.46 1.71 7.98e7 4.95 7.76
0.1 3 4.07 1.52 2.59e5 4.40 10.0
0.2 2 3.73 1.24 7.70e6 3.60 13.0
0.3 1.53 3.58 1.03 3.43e6 2.99 16.0
0.5 1 3.53 0.707 9.63e5 2.04 19.5
0.8 0.5 4.04 0.309 1.21e5 0.89 28.2
1 0 ∞ 0 0 0 ∞


