Neutrinos in Astrophysics and Cosmology

Michael Kachelrieß

NTNU Trondheim & MPI für Physik, München

200

Neutrino opportunities:

Michael Kachelrieß Neutrinos in Astrophysics and Cosmology

Structure formation:

- structure formation operates via gravitational instability
- primordial spectrum from inflation is adiabatic, Gaussian, nearly scale-invariant with density contrast $\delta(x) \equiv (\rho(x) \bar{\rho})/\bar{\rho}$:

$$\delta_k \propto \int d^3x \, e^{-ikx} \delta(x) \propto k^{n_s}$$
 with $n_s \approx 1$

• transfer function T(k) describes nonlinear evolution of primordial power spectrum $P_0(k) = |\delta_k|^2$,

$$P(k) = T(k)P_0(k)$$

・ロッ ・回 ・ ・ ヨ ・ ・ ロ ・

Neutrinos as Hot Dark Matter:

- light neutrinos are relativistic at decoupling (T \sim MeV)
- free-streaming erases perturbations on scales $<\lambda_{FS}=30Mpc/(\Omega_v h^2)$

・ロ・ ・ 日・ ・ 日・ ・ 日・

-1

Neutrinos as Hot Dark Matter:

- light neutrinos are relativistic at decoupling $(T \sim {\sf MeV})$
- free-streaming erases perturbations on scales $<\lambda_{FS}$
- on small scales,

Neutrinos as Hot Dark Matter:

- light neutrinos are relativistic at decoupling $(T \sim {\sf MeV})$
- free-streaming erases perturbations on scales $< \lambda_{FS}$
- on small scales,

$$\frac{\delta T}{T}\approx-\frac{8\Omega_{\rm V}}{\Omega_m}$$

- most sensitive data for $m_{
 m v}$ probe $k^{-1} \lesssim 10 \, {
 m Mpc}$
- to fix normalization and exclude parameter degeneracies also data at larger scales needed

(D) (A) (A) (A)

Power spectrum and data sets:

Michael Kachelrieß Neutrinos in Astrophysics and Cosmology

Present neutrino mass limits:

limits depend on

- opriors
- free/fixed parameters
- chosen data-samples (LSS+CMB+Ly α +...)
- systematic uncertainties

typical values

- CMB+LSS: $\sum m_i \lesssim 1.0 \, \text{eV}$
- CMB+LSS+Lya: $\Sigma m_i \lesssim 0.6 \,\mathrm{eV}$
- allowing for more free parameters: back $\Sigma m_i \lesssim 1.0 \, {
 m eV}$

$w-m_v$ degeneracy:

æ

Future of neutrino mass limits: weak lensing:

Future of neutrino mass limits: weak lensing:

measure ellipticity of galaxies

• predicted sensitivity, $\sum m \lesssim 0.03 \, \mathrm{eV}$

(日) ・ モン・ ・ モン

Neutrino emission from SN cores:

problem

SN neutrino spectra are model dependent:

how can mixing parameters be determined reliably?

solution

use only features in which you are sure:

- shock wave
- Earth matter effect
- neutronization burst

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Neutrino oscillations and matter effects

more

・ロッ ・回 ・ ・ ヨ ・ ・ ロ ・

Example: SN shock wave propagation

- inverted hierarchy: "atm. resonance" in anti-neutrino sector
- large θ_{13} : "atm. resonance" is adiabatic for progenitor profile
- shock waves passing through resonance break adiabaticity
- position of resonance is energy dependent
 - \Rightarrow energy binned $\bar{\nu}_e$ spectra allows tomography of SN

Sensitivity to $\sin^2 \theta_{13}$: HyperKamiokande

SN neutrino summary

Hierarchy	$\sin^2 \theta_{13}$	Earth effects	Shocks	v_e burst
Normal	$\gtrsim 10^{-3}$	$\bar{\mathbf{v}}_e$	v_e	absent
Inverted	$\gtrsim 10^{-3}$	v_e	\bar{v}_e	present
Any	$\lesssim 10^{-5}$	v_e and \overline{v}_e		present

galactic SN & water Cherenkov/scintillation detector allows

- identification of neutrino mixing scenario
- a lot of astrophysics

イロト イヨト イヨト イヨト

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Neutrino telescopes and neutrino mixing

• neutrino telescopes can distinguish muon neutrinos from electron and tau neutrino events:

(ロ) (同) (E) (E)

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Neutrino telescopes and neutrino mixing

- neutrino telescopes can distinguish muon neutrinos from electron and tau neutrino events:
- but maximal mu-tau mixing washes-out flavor information for $l \gg l_{\rm osc}$:

$$\phi_e: \phi_\mu: \phi_\tau = 1:2:0 \quad \Rightarrow \quad \phi_e: \phi_\mu: \phi_\tau = 1:1:1$$

- exception: e.g. beta beam from neutron decay
- example: galactic CR source near Cygnus region, if nuclei are accelerated

・ロト ・回ト ・ヨト ・ヨト

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Galactic anisotropy around $E = 10^{18}$ eV: significance

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Galactic anisotropy around $E = 10^{18} \text{eV}$: interpretation

• charged particles with $E = 10^{18}$ eV are strongly deflected by Galactic *B*-field

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Galactic anisotropy around $E = 10^{18}$ eV: interpretation

- charged particles with $E = 10^{18}$ eV are strongly deflected by Galactic *B*-field
- neutron lifetime $c\gamma au \sim$ few kpc at $E = 10^{18} {
 m eV}$
- likely source: photo-dissociation of nuclei
- neutrons with $E < 10^{18} \text{eV}$ are source of pure $\bar{\nu}_e$ flux
- cosmic beta beam for free

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Neutrino telescopes and neutrino mixing: $R = \phi^{\mu}/\phi^{e+\tau}$

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Neutrino telescopes and neutrino mixing: $R = \phi^{\mu}/\phi^{e+\tau}$

Neutrino telescopes and non-standard neutrinos

- neutrino telescopes can measure nucleon-neutrino cross section independent from neutrino flux
- constrains neutrino decays, decoherence, Lorentz invariance violation,...
- Ex. decoherence:

space-time foam could lead to non-unitary time-evolution

$$\frac{\partial \rho}{\partial t} = -i[H,\rho] + D[\rho]$$

- measuring the flavor ratio improves by
 - 14 orders limits for decoherence,
 - 4 orders limits for decays, ...

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Z-bursts: UHE $\nu + \nu_{BR} \rightarrow Z \rightarrow$ hadrons

• orginal idea: explanation of UHECRs beyond GZK cutoff

Cosmology Neutrino telescopes and neutrino mixing SN neutrinos Neutrino telescopes and non-standard neutrinos High-energy neutrinos Z-burst spectroscopy

Z-bursts: UHE $\nu + \nu_{BR} \rightarrow Z \rightarrow$ hadrons

- orginal idea: explanation of UHECRs beyond GZK cutoff
- for $E_{\rm V}\sim 10^{23}$ eV, the mass of the relic neutrino should be $m_{\rm V}=m_Z^2/(2E_{\rm V})\sim 0.1$ eV
- excluded by diffuse MeV-GeV photons and UHE neutrinos

Cosmology Neutrino telescopes and neutrino mixing SN neutrinos Neutrino telescopes and non-standard neutrinos High-energy neutrinos Z-burst spectroscopy

Z-bursts: UHE $\nu + \nu_{BR} \rightarrow Z \rightarrow$ hadrons

- orginal idea: explanation of UHECRs beyond GZK cutoff
- for $E_{\rm V}\sim 10^{23}$ eV, the mass of the relic neutrino should be $m_{\rm V}=m_Z^2/(2E_{\rm V})\sim 0.1$ eV
- excluded by diffuse MeV-GeV photons and UHE neutrinos
- possibility to detect relic neutrinos or even to measure $m_{\rm V}$?

・ロン ・同と ・ヨン ・ヨン

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Z-burst spectroscopy: Survival probability

Neutrino telescopes and neutrino mixing Neutrino telescopes and non-standard neutrinos Z-burst spectroscopy

Z-burst spectroscopy: Diffuse neutrino flux

Can hidden sources of UHE neutrinos be constructed?

- hidden sources: $\tau \gg 1$
- evade limits from UHECR and γ-ray oberservations

• $\tau \gg 1$: UHE pions+muons scatter before decaying

ロト (日) (王) (王)

Summary

. .

- Cosmic neutrinos encompass 24 orders in energy from 2.7 K relic background to UHE neutrinos with 10^{20} eV
- Relic neutrinos allow to test the absolute neutrino masses (LSS, Z-Burst model)
- $\bullet~SN$ neutrinos may identify mass hierarchy and small/large θ_{13}
- Cygnus neutrinos as test for δ_{CP} and θ_{13}
- HE neutrinos as test for SUSY DM, new interactions, decoherence, Lorentz invariance violation
- UHE neutrinos test superheavy dark matter or topological defects

essential: interplay between particle physics, astrophysics and cosmology

・ロト ・回ト ・ヨト ・ヨト