
12.3

The Schwarzshild metric is given by

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)

−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (1)

We change variables as suggested by Hartle

t = v − r − 2M log
∣

∣

∣

r

2M
− 1

∣

∣

∣
, (2)

the differential of this is

dt = dv +

(

2M

2M − r
− 1

)

dr = dv +
r

2M − r
dr = dv − 1

1 − 2M/r
dr . (3)

Then we have

(

1 − 2M

r

)

dt2 =

(

1 − 2M

r

)

dv2 + 2dvdr −
(

1 − 2M

r

)

−1

dr2 , (4)

and this gives us the Schwarschild geometry in Eddington-Finkelstein coordinates:

ds2 = −
(

1 − 2M

r

)

dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2) . (5)

12.4

We consider

ds2 = −
(

1 − M

r

)2

dt2 +

(

1 − M

r

)

−2

dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (6)

a) Motivated by the previous excercise we try the following change of variables

t = v − r − f(r), (7)

and insert [dt = dv − 1 − f ′(r)dr] into

−
(

1 − M

r

)2

dt2 +

(

1 − M

r

)

−2

dr2

= −
(

1 − M

r

)2

dv2 + 2(1 + f ′(r))

(

1 − M

r

)2

dvdr

+

[

(1 + f ′(r))2
(

1 − M

r

)2

−
(

1 − M

r

)

−2
]

dr2 (8)

We want the last line above to vanish and therefore set

(1 + f ′(r))2
(

1 − M

r

)2

−
(

1 − M

r

)

−2

= 0 , (9)
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which leads to

f ′(r) =
r2

(r − M)2
− 1 =

r2

(r − M)2
− r2 − 2Mr + 2M2 − M2

(r − M)2
(10)

= 4M
r − M

(r − M)2
+

M2

(r − M)2
= 2

( r

M
− 1

)

−1

+
( r

M
− 1

)

−2

. (11)

Integrating up, we find (we are free to choose the integration constant):

f(r) = 2M log
∣

∣

∣

r

M
− 1

∣

∣

∣
− M

( r

M
− 1

)

−1

. (12)

Using this change of variables, the second term in the line-element becomes

2(1 + f ′(r))

(

1 − M

r

)2

dvdr = 2dvdr . (13)

At this point, it is thus clear that the geometry is not singular at r = M . The geometry is
now specified by

ds2 = −
(

1 − M

r

)2

dv2 + 2dvdr + r2
(

dθ2 + sin2 θdφ2
)

. (14)

12.5

For purely radial movement, we have according to Eq. (9.29) in Hartle:

E =
1

2

(

dr

dτ

)2

− M

r
(15)

At r = R = 10M , the observer is at rest, thus

E = − 1

10
, (16)

and we must therefore solve the equation

dr

dτ
= −

√

2M

r
− 2M

R
(17)

where the negative sign is chosen as we are dealing a fall towards the singularity. We write τ
as the integral

∆τ = −
∫

0

R
dr

1
√

2M
r − 2M

R

=

√

R

2M

∫ R

0

dr

√

r

R − r
. (18)

We now make the substitution r = R sin2(θ) and get

∆τ =

√

R

2M
R

∫ π/2

0

dr 2 sin2(θ) =
π

2

√

R

2M
R = 5

√
5πM = 35.1M . (19)
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12.14

It is clear that the trajectory must be some form of geodesic, as this gives the extremal values
of the proper time. Our starting point for this problem is Eq. (9.29) in Hartle

1

2

(

dr

dτ

)2

= E +
M

r
− l2

(

1

2r2
− M

r3

)

. (20)

As we are inside the Schwarschild radrius (r < 2M), the part proportional to l2 is negative.
Thus, with larger l the change in radial position increases, and we infer that the choice of
l = 0 gives the longest time iside the black hole.

1

2

(

dr

dτ

)2

= E +
M

r
. (21)

Next, we wish to minimize E + M
r , but our choice of E is restricted, as E = (e2 − 1)/2, and e

is a real number. It is clear that E = −1

2
is the best choice, as this makes the change in radial

position as small as possible. This means that the observer begins at rest rest at R = 2M .
The situation is nearly identical with the case in problem 12.5, and we can follow the same

steps in our calculation, and this leads to

∆τ =
π

2

√

R

2M
R = πM (22)

12.15

We will solve this problem by using energy-momentum conservation. The initial four mo-
mentum is given by p, the remaining four momentum is given by pf , and the ejected four
momentum is given by pe.

p = pe + pf . (23)

To get the most out of the ejected four-momentum, it should be lightlike. Thus

0 = p2

e = p · p + pf · pf − 2pf · p = −m2 − m2

f −−2pf · p . (24)

We now need to calculate the above product.
The four velocity of the hovering spaceship is stationary with respect to the spatial

Schwarschild coordinates
u =

(

ut , 0
)

. (25)

Normalization of the four velocity, u · u = gttu
tut = −1, gives us

(

1 − 2M

R

)

u2

t = −1 , =⇒ ut =
1

√

1 − 2M
R

. (26)

The four momentum is given by p = mu.
At this point, we see that we only need to the zero component of the four-momementum

pf . We utilize Eq. (9.21) in Hartle:

e =

(

1 − 2M

r

)

dt

dτ
. (27)
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As we are interested in minimum energy, the particle should be at rest when r → ∞, thus
dt
dτ = γ = 1 and e = 1. This is a relativistic invariant, and we find that

1
(

1 − 2M
R

) =
dt

dτ
= ut

f (R) . (28)

Then, the product pf · p is given by

pf · p = (mmf )uf · u = gttu
tut

f

= −(mmf )

(

1 − 2M

r

)

1
√

1 − 2M
R

1
(

1 − 2M
R

) = −(mmf )
1

√

1 − 2M
R

(29)

The fraction f is given by mf = fm. Finally, Eq. (24) can be solved

f2 − 2f
1

√

1 − 2M
R

+ 1 = 0 , (30)

and the solution is,

f =
1 −

√

2M/R
√

1 − 2M/R
, (31)

where the − sign, comming from the ± arising when solving this second order equation, is
chosen. This is to ensure that the fraction f does not exceed 1. This expression gives us the
maximum fraction to escape to infinity.

To find the limit as R → 2M , we can parameterize it by 1−x = 2M
R , and let x → 0. Then,

f = lim
x→0

1 −
√

1 − x√
x

= lim
x→0

1 − (1 − 1

2
x)√

x
= lim

x→0

√
x = 0 (32)

So, nothing can escape to infinity if the starpoint is at the horizon.

12.22

b) The singularity is parameterized by

V =
√

U2 + 1. (33)

In this problem the particle is destroyed in the singularity when U = 0, thus V = 1. The
starting position is described by the equation for the howering observer

( r

2M
− 1

)

er/2M =
1

4
= U2 − V 2 . (34)

Accoring to Eq. (12.17) in Hartle, the time t is given by

tanh

(

t

4M

)

=
U

V
. (35)

At t = 0, V = 0, therefore U = 1

2
, at the event when the observer leaves the spaceship. So

the straight line in the Kruskal-Szerkes diagram is given by

V = 1 − 2U . (36)

This means that
∣

∣

dV
dU

∣

∣ = 2 > 1, and therefore the observer is following a timelike trajectory.
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