5.1

a=(-2,0,0,1),
b=(5,0,3,4).

a) To find out if a is timelike, spacelike, or null-like, we compute a® = a - a = a,ak.

a’ = Nuwat'a” =

—(-2)2+12=-3<0,
thus «a is timelike. For the case of b;
b =-52+3"+42=-254+9+16=0,

so b is null-like (lightlike).

g a—5b=(-2-25,0,-5-3,1-5-4)=(-27,0, —15, —19)
c)
a-b=nua'a =10+4=14
5.3
% ~ vV, 2(0)=0.

We wish to express z# as a function of the proper time 7. We use the relation
A(dr)? = (edt)? — (dz)?,

and this gives us

c? 2 2
= U—l)v(d:p)
SO
dt 1
dr 1_%2
dz v
dr Lo

We integrate this up, and choose t(7 = 0) = 0, in order to obtain:

.
Hr) = = =17,
Vi-g
x(T)zim— = = VYT .
Vi-4



5.4

The four-velocity is given by

u=(v,7V). (14)
The four-acceleration is defined by
ou
=—. 15
0= (15)

We will now express this in terms of the three-velocity V and the three-acceleration A =

%—Y. The first step is to change derivation variable and then apply the product rule for

differentiation:

ot du
A% A 16
=5, — 1 (H AV HA) . (16)
We also need to calculate +:
. Oy 0 n-1/2 3-2V-A
and we are done.
Next, we will compute the inner product of a and u:
a-u=—-yy+47V>++°V-A. (18)
Insertation of the explicit expression for 7, enables us to write
a-u=9V-A(-++2V24+1) =V - A[* (-1+V?) +1] =0. (19)
The two four-vectors are orthogonal.
5.6
a) The velocity is given by
d t
V= w9 (20)

dt /1 + g2t2
As |gt| is always less than /1 4 g2t2, the speed never exceeds 1; the speed of the light.
The speed of the particle approaches this as t — oo.
b) According to Hartle, the four-velocity is given by
1

u= (v, vVzi), ’Y:ﬁ

It would be nice to simplify this expression. To do this, we take a closer look at ~

1 _ V2 \/1+92t2 2t2 =V 1 + 92t2 . (22)
v 1+92t2 - 1+g2t2

The four-velocity can then be written

= (Vi+e, gti) . (23)

(21)




c) Using the zero component of the four-velocity, we can derive an expression for the proper

time 7: . , .

dt dt

— = /1 + g2t2 :>/—/d7".

dr to 1+ g2tl2 70
The above integral is a standard integral, which can be evaluated by substitution; set ¢t =
%sinh u. (check this!) The result is

(24)

1
7= ~sinh™!(gt), (25)
g

where we have defined a coordinates such that tg = 79 = 0. The four-velocity can now be
expressed in terms of the proper time:

u = (cosh(g7), sinh(g7)i) (26)

Next, we also wish to derive an expression for x as a function of the proper time. This is
simple at this point, we apply the expression for the three-velocity:

d 1
& sinh(¢g7) == x = —cosh(g7) + zo. (27)
dr g

Setting x(0) = 0, this becomes z = % [cosh(gT) — 1].

d) Using relation (5.41) in Hartle, we find the four-momentum :

p = mu = (mcosh(gr), msinh(g7)i) (28)
The four-force is then d
u= d—f = <ZL sinh(g7), Zcosh(gﬂi) . (29)

The three-force is given by

dd 3t2 2t2
S G — 3i:m<1—g)i. (30)

m—— =
de dt 7/ 1+ 92t2 ( ,71 T g2t2> gy

5.7

We first look at the four-force exerted in the instantaneous rest frame (with propert time 7)
of the particle. (we neglect the i in this excercise). It is given by

f'=(0,mg) (31)
As this is a four-vector it can be Lorentz-transformed
fu = L/w ;7 (32)

and we get

f = (—sinh @, cosh #mg)

dz
= (vgmg, ymg) . (33)



The generalization of Newton’s law is

du

me- = I, (34)

where u = (v, 7%) is the four-velocity. For the spatial component this yields

d dz d dz

E’YEZEE:’YQ- (35)

We wish to solve this for & expressed in terms of 7, we should thus find an expression for 7,

which does not depend on t:
g L (dr)*
d 2 \dr

We now return to (35) and write d—m =

%Vzg 1+V?2 = /ﬁdj:w =g/d7 (37)
This integral is straightforward to evaluate ( using v = sinh z), and the result is
v = sinh g7, (38)
where we have chosen 7 such that V(0) = 0. Integration with respect to 7, gives us
x = ; [cosh(gT) — 1] . (39)

Here we have chosen coordinates such that 2(0) = 0. For v we now have

:\/1—V2:coshg7':ﬁ. (40)

dr
Integrating this, we get
1
t = —sinh (g7) (41)
g

The equation for the world-line z(¢) is found by plugging (41) into (39)

x:;[\/1+sinh2g7—1]:x:;[m—l} (42)

The world-line is plotted in Fig. 1.



