
5.1

a = (−2, 0, 0, 1) ,

b = (5, 0, 3, 4) .

(1)

a) To find out if a is timelike, spacelike, or null-like, we compute a2 = a · a = aµaµ.

a2 = ηµνa
µaν = −(−2)2 + 12 = −3 < 0 , (2)

thus a is timelike. For the case of b;

b2 = −52 + 32 + 42 = −25 + 9 + 16 = 0 , (3)

so b is null-like (lightlike).

b)
a − 5b = (−2 − 25, 0, −5 · 3, 1 − 5 · 4) = (−27, 0, −15, −19) (4)

c)
a · b = ηµνa

µaν = 10 + 4 = 14 (5)

5.3

dx

dt
= V , x(0) = 0. (6)

We wish to express xµ as a function of the proper time τ . We use the relation

c2(dτ)2 = (cdt)2 − (dx)2 , (7)

and this gives us

c2(dτ)2 =
(

c2 − v2
)

(dt)2

=

(

c2

v2
− 1

)

v2(dx)2 (8)

so

dt

dτ
=

1
√

1 − v2

c2

, (9)

dx

dτ
=

v
√

1 − v2

c2

. (10)

(11)

We integrate this up, and choose t(τ = 0) = 0, in order to obtain:

t(τ) =
τ

√

1 − v2

c2

= γτ , (12)

x(τ) =
vτ

√

1 − v2

c2

= vγτ . (13)
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5.4

The four-velocity is given by
u = (γ, γV) . (14)

The four-acceleration is defined by

a =
∂u

∂τ
. (15)

We will now express this in terms of the three-velocity V and the three-acceleration A =
∂V

∂t . The first step is to change derivation variable and then apply the product rule for
differentiation:

a =
∂t

∂τ

∂u

∂t
= γ (γ̇, γ̇V + γA) . (16)

We also need to calculate γ̇:

γ̇ =
∂γ

∂t
=

∂

∂t

(

1 − V2
)

−1/2
= γ3−2V · A

−2
= γ3V · A, (17)

and we are done.
Next, we will compute the inner product of a and u:

a · u = −γγ̇ + γ̇γV2 + γ2V · A . (18)

Insertation of the explicit expression for γ̇, enables us to write

a · u = γ2V · A
(

−γ2 + γ2V2 + 1
)

= γ2V · A
[

γ2
(

−1 + V2
)

+ 1
]

= 0 . (19)

The two four-vectors are orthogonal.

5.6

a) The velocity is given by

Vx =
dx

dt
=

gt
√

1 + g2t2
(20)

As |gt| is always less than
√

1 + g2t2, the speed never exceeds 1; the speed of the light.
The speed of the particle approaches this as t → ∞.

b) According to Hartle, the four-velocity is given by

u = (γ, γVx i) , γ =
1

√

1 − V 2
x

(21)

It would be nice to simplify this expression. To do this, we take a closer look at γ:

γ =

√

1

1 − V 2
x

=

√

1
1+g2t2

1+g2t2
− g2t2

1+g2t2

=
√

1 + g2t2 . (22)

The four-velocity can then be written

u =
(

√

1 + g2t2, gt i
)

. (23)
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c) Using the zero component of the four-velocity, we can derive an expression for the proper
time τ :

dt

dτ
=

√

1 + g2t2 =⇒
∫ t

t0

dt′
√

1 + g2t′2
=

∫ τ

τ0

dτ ′ . (24)

The above integral is a standard integral, which can be evaluated by substitution; set t =
1

g sinhu. (check this!) The result is

τ =
1

g
sinh−1(gt) , (25)

where we have defined a coordinates such that t0 = τ0 = 0. The four-velocity can now be
expressed in terms of the proper time:

u = (cosh(gτ), sinh(gτ)i) (26)

Next, we also wish to derive an expression for x as a function of the proper time. This is
simple at this point, we apply the expression for the three-velocity:

dx

dτ
= sinh(gτ) =⇒ x =

1

g
cosh(gτ) + x0 . (27)

Setting x(0) = 0, this becomes x = 1

g [cosh(gτ) − 1].

d) Using relation (5.41) in Hartle, we find the four-momentum :

p = mu = (m cosh(gτ), m sinh(gτ)i) (28)

The four-force is then

u =
dp

dτ
=

(

m

g
sinh(gτ),

m

g
cosh(gτ)i

)

. (29)

The three-force is given by

m
d

dt

dx

dt
= m

g
√

1 + g2t2
i − g3t2

(

√

1 + g2t2
)3

i =
m

gγ

(

1 − g2t2

γ2

)

i . (30)

5.7

We first look at the four-force exerted in the instantaneous rest frame (with propert time τ)
of the particle. (we neglect the i in this excercise). It is given by

f ′ = (0, mg) (31)

As this is a four-vector it can be Lorentz-transformed

fµ = Lµνf
′

ν , (32)

and we get

f = (− sinh θ, cosh θmg)

= (γ
dx

dt
mg, γmg) . (33)
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The generalization of Newton’s law is

m
du

dτ
= f , (34)

where u = (γ, γ dx
dt ) is the four-velocity. For the spatial component this yields

d

dτ
γ

dx

dt
=

d

dτ

dx

dτ
= γg . (35)

We wish to solve this for x expressed in terms of τ , we should thus find an expression for γ,
which does not depend on t:

1

γ2
= 1 −

(

dx

dt

)2

= 1 − 1

γ2

(

dx

dτ

)2

=⇒ γ =

√

1 +

(

dx

dτ

)2

(36)

We now return to (35) and write dx
dτ = V :

d

dτ
V = g

√

1 + V 2 =⇒
∫

dV√
1 + V 2

= g

∫

dτ (37)

This integral is straightforward to evaluate ( using v = sinh z), and the result is

v = sinh gτ , (38)

where we have chosen τ such that V (0) = 0. Integration with respect to τ , gives us

x =
1

g
[cosh(gτ) − 1] . (39)

Here we have chosen coordinates such that x(0) = 0. For γ we now have

γ =
√

1 − V 2 = cosh gτ =
dt

dτ
. (40)

Integrating this, we get

t =
1

g
sinh (gτ) (41)

The equation for the world-line x(t) is found by plugging (41) into (39)

x =
1

g

[

√

1 + sinh2 gτ − 1

]

= x =
1

g

[

√

g2t2 + 1 − 1
]

. (42)

The world-line is plotted in Fig. 1.
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