8.2

a) A distance S on the sphere is given by

s= [ afwrcsinar = [uf(2) vaeo(2) 0 )

We identify the Lagrangian:
o> dg\”

The Euler-Lagrange equations (Eq. 8.10 in Hartle) give us

d [, 1d8]
= [Sln Lda] =0, (3)
d [1d0] 1 de\ 2
i it I 1 =0. 4
e [Lda] Lsm90059<d0> 0 (4)
As in the examples in Hartle, we use that
dS(o)
=L
do ’ (5)
since this enables us to simplify our equations with a change of differentation variable
d [. 2,do]
a5 [sm edS] =0, (6)
2o . deo
d52_81n90080<dS> =0. (7)

By performing the differentiation, these equations can be written in a form suited for identi-
fying the Christoffel symbols. For the first one:

d? d¢ do
. 2,479 . ag av _
sin 0dS2+81n06059deS 0 (8)
d%¢ d¢ do

The second is already in the suited form. Using Eq. (8.14) in Hartle, we can read of the
Christoffel symbols:

Iy, =cotd, Tgy=0, 9 =0, (10)

and
Fg¢:0, Fgez(), de):—sinGcosG. (11)

b) To fully describe the movement of a particle we need to specify the initial velocity and
position, we therefore choose a coordinate system (or starting position) such that ¢(0) =0 ,
6(0) = Z, and 6(0) = 0, $(0) = a.

By inspection we, see that §(S) = 7, is a solution to Eq. (7). Using this, Eq. (9) becomes

d?¢

where we have imposed the initial conditions.



8.5
The metric is
gr=-1, gw=1, guo=0b"+r", gss=(b*+7%)sin’0, (13)

and all other terms are zero. We see that all differentiation with respect to ¢t and ¢ gives zero.
The general formula for the Christoffel symbols is

1 aga,@’ aga'y 8967
2 (8307 0x8  ze ) (14)

ga(yl—‘%,y =

First, we set § = t, then the first and third term in Eq. (14) vanishes as g4 is a constant,
and all other contribution are zero due to the diagonal metric. The second term vanishes
because no part of the metric depend on ¢. By the symmetry of the Christoffel symbols, it is
the same for v = t.

We also set § = ¢, and this means we must set o = ¢ due to the diagonal metric. All terms
vanish by the same argument as above. No nonzero Christoffel symbols refer to .

Second, we set § =1 = «;

r _ 1 (093 0Ogry 0Ogpy
Irriby T 3 <8x7 + 0P or )~ (15)

If r = (, this is zero, because g, is a constant, and this is the only part of the metric
contributing. By symmetry, the same goes for r = ~.

Next we choose § = 6. The two first terms in (15) vanish as the metric is diagonal, and
the last term only contributes if v = 6. So,

10ggp 1

Grrl g 00 2 or 2( r) r (16)
In a similar manner
10 1

[y = —5 522 = =3 (~2rsin?6) = —rsin’6. (17)

Third, we set d =60 = a;

1 (Oges  Ogey Ogg

rf, == v 28 18
906757 = 5 < 0z 0aP 08 (18)

For r = 3, the first term will not contribute as the metric is diagonal, and the last term will
not contribute as g, is a constant. The only contribution comes when v = . Thus,

1 0gpg
¥, =_-2=% — 19
999 r9 2 87" T, ( )
and r r
0 _ _ _ 19
Fr@ - go0 - b2 —i—’l”2 - F@T' (20)

The last equality comes from the symmetry of the lower indices. When setting 8 = 6, the
only unexplored option is v = ¢. Differentiation with respect to ¢ vanish for the first term,
the two last vanish as the metric is diagonal.



For 6 = ¢, we have

1 9gg
ré, =-—-—=%2, 21
900567 = T 99 (21)
Thus,
11
FZ¢ = —@g(bZ +1r%)2sinf cosf = —sinfcos b, (22)
the other terms vanish.
Fourth, and finally, we set 6 = ¢ = a
1 (Oges  Ogg
rf, == y 23
9ool gy = 5 (8957 + O0xP (23)
If B # ¢, then v = ¢, for non vanishing contributions, also § = v = ¢ vanish. If § = r;
11/ dg r
o =19 =—_( =2)= . 24
ré " pe 2 < or b2 + r? (24)
If g =0,
1 1 (0g¢s sin § cos 0
ry = —- = = cotf. 25
0¢ g¢¢ 2 ( 80 sin20 «© ( )
8.9

The Lagrangian for the geodesic is given by

pey o A0V (35 2

T

Using the Euler-Lagrange equations (Eq. 8.10 in Hartle), and the fact that L = g—g, we get
the geodesic equation

d dT
—(X*—=)=0 27
dr ( d7'> (27)
42X ar\?
—4+X|— )] =0 28
dr? * <dT> (28)
The first line gives us
dT A
a _ 4 2
dr X2 (29)
It is often useful to use the conservation law u - u = —1;
dar\?  /dx\?
X% (= — ) =-1.
We insert Eq (29) into this and obtain
ax _ + A72 1 (31)
dr X2 )



This can be integrated (absorbing the constant in 7):
XdX
r=x | = =4/A2 X2, 32
e (32)

X =+VA2 - 72, (33)

To find an equation for 7T', we insert this into 29, and obtain

then

A
We try the substitution 7 = A tanh u:
dr 9
T A(1—tanh®u) . (35)

and we find that T+ B = u, so that 7 = Atanh(T). Thus,

X=dA2 2= (36)

cosh(T + B)
To show that this is timelike, we compute
dSs? = —X2d71?% + dX?. (37)
We first look at q " <nh(T 1 B)
dX:de—Tm:(Al)m T, (38)

and this gives us

h?(T + B)  sinh®(T + B 1
482 = (A')? <_COS L+ B) , sl (T4 )>dT2: AP <0, (39)
cosh®(T'+ B)  cosh™(T' + B) cosh™(T + B)
which shows that it is timelike.
8.12
a) We investigate the metric
1
dS? = = (dz* + dy?) . (40)

A given point on the x-axis is given by a = (x9,0) and given point on the upper half-plane is
given by b = (x1,y1). The distance between these two point is given by

l—/dS / \/m—/y1 1/1+ dx dy (41)

Y1 1
l> dy —, (42)
0 Yy

and this is logarithmic divergent. Therefore the distance between any point on the x-axis to
any point on the positive half-plane is infinite.

It is obvious that



2
b) Using Euler-Lagrange equations and 1 = u - u = y% [(3@)2 + (%) } we find

d 1 dz
< (yds) 0. (43)

d /1dy 1
B B N 44
d5<yzd5>+y 4

c) First of all, it is cleat that « = const is a solution to Eq. (43). From v -u = 1,

and

dy _

= +u. 4
s Yy (45)

The solution is y = Ae™, where A is some constant, and therefore y can take any value. We
have found the vertical lines.

Eq. (43) can also be written
dx

— = By?, 46
ds Y (46)
this is found by integrating on both sides. B is some constant. Inserting this into u -u =1,
we get
2 4 dy 2 2
B = a7

changing variables, this can also be written

ds\? /dy\?
B2+ (B2 [ 22 ayy _ e
v+ By ) g y
2
B2y? + B2 <y> —1, (48)
x
which gives us
B
/ydy = /dx.
/1 — B%y?
This integration is straightforward, and the result is

1
——+v/1-B?y2 =1 —x, (50)

B

where xq is some integration constant. Squaring on both sides yields the equation for a circle
cantered on the z-axis:
1 = B%(z — 20)*> + B%>. (51)



d) For the vertical lines, we found the solutions in ¢) . For the circles it is natural to begin
with (46):

d

a%:Bf:1—B%x—mﬁ, (52)

which gives us

S:/dxl—B2(1z:—xo)2 :;/dx (1_3&_%)*”3&—%))

11 N 1+ B(xz — x0)
_2Bl<1—3u—x@>’ (53)

solving this for x yields
1 e(QBS') -1

T=x0+ —

R (54)

In turn this gives us

L[, (e -1 S 4¢2BS 2 eBS .
y=5\" e2B5) 1) ~ B\ (e2BS+1)2  Be2BS+1° (55)

This result is in accordance with a). Only when S — +o00 is y = 0.




