
8.2

a) A distance S on the sphere is given by

S =

∫ 2

1
a

√

(dθ)2 + sin2 θ(dφ)2 =

∫ σ2

σ1

a

√

(

dθ

dσ

)2

+ sin2 θ

(

dφ

dσ

)2

dσ . (1)

We identify the Lagrangian:

L = a

√

(

dθ

dσ

)2

+ sin2 θ

(

dφ

dσ

)2

. (2)

The Euler-Lagrange equations (Eq. 8.10 in Hartle) give us

d

dσ

[

sin2 θ
1

L

dφ

dσ

]

= 0 , (3)

d

dσ

[

1

L

dθ

dσ

]

− 1

L
sin θ cos θ

(

dφ

dσ

)2

= 0 . (4)

As in the examples in Hartle, we use that

dS(σ)

dσ
= L , (5)

since this enables us to simplify our equations with a change of differentation variable

d

dS

[

sin2 θ
dφ

dS

]

= 0 , (6)

d2θ

dS2
− sin θ cos θ

(

dφ

dS

)2

= 0 . (7)

By performing the differentiation, these equations can be written in a form suited for identi-
fying the Christoffel symbols. For the first one:

sin2 θ
d2φ

dS2
+ sin θ cos θ

dφ

dS

dθ

dS
= 0 (8)

=⇒ d2φ

dS2
+ cot θ

dφ

dS

dθ

dS
= 0 (9)

The second is already in the suited form. Using Eq. (8.14) in Hartle, we can read of the
Christoffel symbols:

Γφ
θφ = cot θ , Γφ

θθ = 0 , Γφ
φφ = 0 , (10)

and
Γθ

θφ = 0 , Γθ
θθ = 0 , Γφ

φφ = − sin θ cos θ . (11)

b) To fully describe the movement of a particle we need to specify the initial velocity and
position, we therefore choose a coordinate system (or starting position) such that φ(0) = 0 ,
θ(0) = π

2 , and θ̇(0) = 0, φ̇(0) = α.
By inspection we, see that θ(S) = π

2 , is a solution to Eq. (7). Using this, Eq. (9) becomes

d2φ

dS2
= 0 , =⇒ φ = αS , (12)

where we have imposed the initial conditions.
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8.5

The metric is

gtt = −1 , grr = 1 , gθθ = b2 + r2 , gφφ = (b2 + r2) sin2 θ , (13)

and all other terms are zero. We see that all differentiation with respect to t and φ gives zero.
The general formula for the Christoffel symbols is

gαδΓ
δ
βγ =

1

2

(

∂gαβ

∂xγ
+

∂gαγ

∂xβ
− ∂gβγ

∂xα

)

. (14)

First, we set β = t, then the first and third term in Eq. (14) vanishes as gtt is a constant,
and all other contribution are zero due to the diagonal metric. The second term vanishes
because no part of the metric depend on t. By the symmetry of the Christoffel symbols, it is
the same for γ = t.

We also set δ = t, and this means we must set α = t due to the diagonal metric. All terms
vanish by the same argument as above. No nonzero Christoffel symbols refer to t.

Second, we set δ = r = α;

grrΓ
r
βγ =

1

2

(

∂grβ

∂xγ
+

∂grγ

∂xβ
− ∂gβγ

∂r

)

. (15)

If r = β, this is zero, because grr is a constant, and this is the only part of the metric
contributing. By symmetry, the same goes for r = γ.

Next we choose β = θ. The two first terms in (15) vanish as the metric is diagonal, and
the last term only contributes if γ = θ. So,

grrΓ
r
θθ = Γr

θθ = −1

2

∂gθθ

∂r
= −1

2
(2r) = −r . (16)

In a similar manner

Γr
φφ = −1

2

∂gφφ

∂r
= −1

2
(−2r sin2 θ) = −r sin2 θ . (17)

Third, we set δ = θ = α;

gθθΓ
θ
βγ =

1

2

(

∂gθβ

∂xγ
+

∂gθγ

∂xβ
− ∂gβγ

∂θ

)

. (18)

For r = β, the first term will not contribute as the metric is diagonal, and the last term will
not contribute as grr is a constant. The only contribution comes when γ = θ. Thus,

gθθΓ
θ
rθ =

1

2

∂gθθ

∂r
= r , (19)

and
Γθ

rθ =
r

gθθ
=

r

b2 + r2
= Γθ

θr . (20)

The last equality comes from the symmetry of the lower indices. When setting β = θ, the
only unexplored option is γ = φ. Differentiation with respect to φ vanish for the first term,
the two last vanish as the metric is diagonal.
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For β = φ, we have

gθθΓ
θ
φγ = −1

2

∂gφγ

∂θ
. (21)

Thus,

Γθ
φφ = − 1

gθθ

1

2
(b2 + r2)2 sin θ cos θ = − sin θ cos θ , (22)

the other terms vanish.
Fourth, and finally, we set δ = φ = α;

gφφΓφ
βγ =

1

2

(

∂gφβ

∂xγ
+

∂gφγ

∂xβ

)

(23)

If β 6= φ, then γ = φ, for non vanishing contributions, also β = γ = φ vanish. If β = r;

Γφ
rφ = Γφ

φr =
1

gφφ

1

2

(

∂gφφ

∂r

)

=
r

b2 + r2
. (24)

If β = θ;

Γφ
θφ =

1

gφφ

1

2

(

∂gφφ

∂θ

)

=
sin θ cos θ

sin2 θ
= cot θ . (25)

8.9

The Lagrangian for the geodesic is given by

L =

√

−X2

(

dT

dσ

)2

+

(

dX

dσ

)2

. (26)

Using the Euler-Lagrange equations (Eq. 8.10 in Hartle), and the fact that L = dτ
dσ

, we get
the geodesic equation

d

dτ

(

X2 dT

dτ

)

= 0 (27)

d2X

dτ2
+ X

(

dT

dτ

)2

= 0 (28)

The first line gives us
dT

dτ
=

A

X2
. (29)

It is often useful to use the conservation law u · u = −1;

−X2

(

dT

dτ

)2

+

(

dX

dτ

)2

= −1 . (30)

We insert Eq (29) into this and obtain

dX

dτ
= ±

√

A2

X2
− 1 . (31)
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This can be integrated (absorbing the constant in τ):

τ = ±
∫

X dX√
A2 − X2

= ±
√

A2 − X2 , (32)

then
X = ±

√

A2 − τ2 . (33)

To find an equation for T , we insert this into 29, and obtain

T =

∫

dτ
A

A2 − τ2
. (34)

We try the substitution τ = A tanhu:

dτ

du
= A

(

1 − tanh2 u
)

. (35)

and we find that T + B = u, so that τ = A tanh(T ). Thus,

X = ±
√

A2 − τ2 =
A′

cosh(T + B)
(36)

To show that this is timelike, we compute

dS2 = −X2dT 2 + dX2 . (37)

We first look at

dX = dT
d

dT

A′

cosh(T + B)
= (A′)

sinh(T + B)

cosh2(T + B)
dT , (38)

and this gives us

dS2 = (A′)2
(

−cosh2(T + B)

cosh4(T + B)
+

sinh2(T + B)

cosh4(T + B)

)

dT 2 = −A′2 1

cosh4(T + B)
< 0 , (39)

which shows that it is timelike.

8.12

a) We investigate the metric

dS2 =
1

y2

(

dx2 + dy2
)

. (40)

A given point on the x-axis is given by a = (x0, 0) and given point on the upper half-plane is
given by b = (x1, y1). The distance between these two point is given by

l =

∫ b

a

dS =

∫ b

a

1

y

√

dx2 + dy2 =

∫ y1

0

1

y

√

1 +

(

dx

dy

)2

dy . (41)

It is obvious that

l >

∫ y1

0
dy

1

y
, (42)

and this is logarithmic divergent. Therefore the distance between any point on the x-axis to
any point on the positive half-plane is infinite.
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b) Using Euler-Lagrange equations and 1 = u · u = 1
y2

[

(

dx
dS

)2
+

(

dy
dS

)2
]

, we find

d

dS

(

1

y2

dx

dS

)

= 0 , (43)

and
d

dS

(

1

y2

dy

dS

)

+
1

y
= 0 . (44)

c) First of all, it is cleat that x = const is a solution to Eq. (43). From u · u = 1;

dy

dS
= ±y . (45)

The solution is y = Ae±S , where A is some constant, and therefore y can take any value. We
have found the vertical lines.

Eq. (43) can also be written
dx

dS
= By2 , (46)

this is found by integrating on both sides. B is some constant. Inserting this into u · u = 1,
we get

B2y4 +

(

dy

dS

)2

= y2 , (47)

changing variables, this can also be written

B2y4 + (By2)2
(

dS

dx

)2 (

dy

dS

)2

= y2

B2y2 + B2y2

(

dy

dx

)2

= 1 , (48)

which gives us
∫

By
√

1 − B2y2
dy =

∫

dx . (49)

This integration is straightforward, and the result is

− 1

B

√

1 − B2y2 = x − x0 , (50)

where x0 is some integration constant. Squaring on both sides yields the equation for a circle
cantered on the x-axis:

1 = B2(x − x0)
2 + B2y2 . (51)
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d) For the vertical lines, we found the solutions in c) . For the circles it is natural to begin
with (46):

dx

dS
= By2 = 1 − B2(x − x0)

2 , (52)

which gives us

S =

∫

dx
1

1 − B2(x − x0)2
=

1

2

∫

dx

(

1

1 − B(x − x0)
+

1

1 + B(x − x0)

)

=
1

2

1

B
ln

(

1 + B(x − x0)

1 − B(x − x0)

)

, (53)

solving this for x yields

x = x0 +
1

B

e(2BS) − 1

e(2BS) + 1
. (54)

In turn this gives us

y =
1

B

√

1 −
(

e(2BS) − 1

e(2BS) + 1

)2

=
1

B

√

4e2BS

(e2BS + 1)2
=

2

B

eBS

e2BS + 1
. (55)

This result is in accordance with a). Only when S → ±∞ is y = 0.
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