
9.1

To determine the coordinate r, we use Eq. (9.5) in Hartle:

r =
√

A/(4π) (1)

This tells us that rmax = 10M and rmin = 6M . The spatial part of the metric is, after setting
dθ = dφ = 0:

dS2 =
1

1 − 2M
r

dr2 . (2)

The physical thickness is then

a =

∫ 10M

6M
dr

√

1

1 − 2M
r

. (3)

We have seen a similar integral previously in exercise 7.18. Following the same steps, we end
up with

a = M [sinh(2y) + 2y]
∣

∣

∣

cosh−1(
√

5)

cosh−1(
√

3)

= M4
(√

6 −
√

5
)

+ 2M
(

cosh−1(
√

5) − cosh−1(
√

3)
)

. (4)

9.6

We start with Eq. (9.29) in Hartle (l = 0):

E =
1

2

(

dr

dτ

)2

− M

r
(5)

Since the particle has zero momentum at infinity E = 0, thus

dr
√

r = ±
√

2Mdτ , (6)

Therefore the time it takes for the observer to pass between 6M and 3M is

−
√

2M∆τ =

∫ 2M

6M
dr

√
r , (7)

where the negative sign is chosen to get a positive time. The result is

∆τ =

√

1

2M

2

3

[

(6M)3/2 − (2M)3/2
]

= 4M

(√
3 − 1

3

)

. (8)

9.7

In this exercise we will calculate the speed at which the particle pass by a stationary observer
at r = 6M , we will do this by calculating the energy measured by the observer, as E = −p·uobs.
First, to find the four-velocity of the observer, we note the observer is spatially at rest, and
use the fact that

uobs · uobs = gtt

(

u0
obsu

0
obs

)

= −1 , (9)

1



and we find

uobs =





1
√

1 − 2M
6M

, 0



 =
(

√

3/2, 0
)

. (10)

Second, to find the zero component of the four-momentum of the paricle we use Eq. (9.21)
in Hartle:

e =

(

1 − 2M

r

)

dt

dτ
, =⇒ m

3e

2
= mu0 = p0 . (11)

Then the observed energy is
E = −p · uobs = me

√

3/2 (12)

Finally, we use the relation E = γm to find the speed of the particle

1

1 − v2
= e2 3

2
, =⇒ v =

√

1 − 2

3e2
(13)

The first particle, e = 1, has the speed v1 = 1
√

3
, while the second e = 2 has v2 =

√

5
6 , and

therefore v2

v1
=

√

5
2 .

9.8

a) The angular velocity is given by Eq. (9.46) in Hartle

Ω =

√

M

r3
=

1

73/2

1

M
, (14)

this gives us the period (2π = ∆TΩ):

δT = 14π
√

7M (15)

If we know l, we can calculate the angular speed by use of Eq. (9.22) in Hartle. To find
the l wich corresponds to a circular orbit, we differentiate the effective potential:

dVeff

dr
=

M

r2
− l2

1

r3
− 3M

r4
= 0 (16)

This can be rearranged into

l2 =
Mr2

r − 3M
=

772

4
M2 =⇒ l =

√
7
7

2
M . (17)

We can calculate the angular velocity. We assume that θ = π/2, so that θ̇ = 0. (A choice
of coordinate system). Then,

l = r2 sin2 θ
dφ

dτ
= 72M2 dφ

dτ
, (18)

so √
7

14M
=

dφ

dτ
, (19)

and we find the period as measured by the observer

δτ =
2π
dφ
dτ

= 4π
√

7M . (20)
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9.9

Actually, most of the steps in this excercise has been performed in the previous excercise. We
use that (assuming θ = π

2 )
dφ

dτ
=

l

r2
, (21)

and the condition that we are in the minimum of the effective potential (hence circular orbits);

l2 =
Mr2

r − 3M
, (22)

and we obtain
dφ

dτ
=

1

r

√

M

r − 3M
=

(

M

r3

)1/2 1
√

1 − 3M/r
. (23)

9.10

We solve this exercise with the same approach as in exercise 9.7. We first find the four-velocity
of the stationary observer

uobs · uobs = gtt
(

u0
obsu

0
obs

)

= −1 , =⇒ u0
obs =

1
√

1 − 2M/r
. (24)

The four-velocity of the particle is

p = m

(

dt

dτ
, 0, 0 ,

dφ

dτ

)

. (25)

Then E = p · uobs yields

E = m
√

1 − 2M/r
dt

dτ
. (26)

To find dt
dτ , we use that dφ

dτ = dt
dτ Ω. Using the result of the previous exercises we find that

dt

dτ
=

1
√

1 − 3M/r
, (27)

so

E = γm = m

√

r − 2M

r − 3M
, (28)

and this gives us
1

γ2
= 1 − v2 =

r − 3M

r − 2M
. (29)

Solving this for the linear velocity we obtain

v2 = 1 − r − 3M

r − 2M
=

M

r − 2M
. (30)

At ISCO, r = 6M :

vISCO =
1

2
. (31)
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