9.1

To determine the coordinate r, we use Eq. (9.5) in Hartle:
r = /AJ(4r) (1)

This tells us that 74, = 10M and 7,3, = 6M . The spatial part of the metric is, after setting

40 = d¢ = 0:
1
2M

T

10M 1
6 M \/ -

We have seen a similar integral previously in exercise 7.18. Following the same steps, we end
up with

ds? = dr?. (2)

The physical thickness is then

cosh™1(V/5)
cosh™1(v/3)
= M4 (\/6 — \/5> +2M (coshfl(\/g) — coshfl(\/g)) . (4)

a = M [sinh(2y) + 2y]

9.6
We start with Eq. (9.29) in Hartle (I = 0):
1/dr\> M
E=-|—) —— 5
2 (dT) r (5)
Since the particle has zero momentum at infinity £ = 0, thus
dry/r = £V2Mdr, (6)
Therefore the time it takes for the observer to pass between 6M and 3M is
2M
—\/QMAT:/ dr /1, (7)
6M

where the negative sign is chosen to get a positive time. The result is

At = \/Ez [(6M)3/2 - (2M)3/2} = 4M <\/§ - ;) . (8)

9.7

In this exercise we will calculate the speed at which the particle pass by a stationary observer
at r = 6 M, we will do this by calculating the energy measured by the observer, as £ = —p-ups.
First, to find the four-velocity of the observer, we note the observer is spatially at rest, and
use the fact that

Uobs * Uobs = Jtt (ugbsugbs) =-1, (9)



and we find

1
Ugps = | —F——, 0| = (\/ 3/27 O) . (10)
1_2M
6M

Second, to find the zero component of the four-momentum of the paricle we use Eq. (9.21)

in Hartle: o1\ d 5
t e
— 1 _— = — . 11
e ( . > a7 == m 5 mug = po (11)
Then the observed energy is
E = —p-uops =mey/3/2 (12)
Finally, we use the relation F2 = ym to find the speed of the particle
1 23 2
— = =e"= =4/1—-—— 1
-2 ‘20 = 3¢? (13)

The first particle, e = 1, has the speed v; = while the second e = 2 has vy = \/g, and

f’

therefore 2 = %
v1

9.8

a) The angular velocity is given by Eq. (9.46) in Hartle

M 1 1
0= TR (14)
this gives us the period (2m = ATQ):
6T = 147V TM (15)

If we know [, we can calculate the angular speed by use of Eq. (9.22) in Hartle. To find
the [ wich corresponds to a circular orbit, we differentiate the effective potential:

= _ 2 _ T 1
dr r2 r3 ot 0 (16)
This can be rearranged into
Mr? 772 7
I? = — M? L= V7M. 1
r—3M — v (17

We can calculate the angular velocity. We assume that 6 = 7/2, so that § = 0. (A choice
of coordinate system). Then,

d d
I = r%sin? de 72 M* d¢ (18)
SO v
7 d
< (19)
UM ~ dr’
and we find the period as measured by the observer
27
0T = = 4V TM . (20)
dr



9.9

Actually, most of the steps in this excercise has been performed in the previous excercise. We

use that (assuming 6 = 7)

do 1

and the condition that we are in the minimum of the effective potential (hence circular orbits);

Mr?
2=_-— 22
r—3M’ (22)
and we obtain

¢ 1 [ M M2 1
d¢ _ ( ) (23)

’ ) VI=sMr

dr r r—3M:

9.10

We solve this exercise with the same approach as in exercise 9.7. We first find the four-velocity
of the stationary observer

Uobs * Uobs = gt (ugbsugbs) =-1, - U Y (24)

The four-velocity of the particle is

dt do¢
= - . 2
Then E = p - uyps yields
dt
E = 1—-2M/r—. 2
m /Td’T (26)

To find g—j, we use that % = %Q. Using the result of the previous exercises we find that

dt 1 (27)
dr /1 -3M/r’
SO
r—2M
E= = —— 28
=y [ (28)
and this gives us
1 r—3M
—=1-*= . 29
2 v r—2M (29)
Solving this for the linear velocity we obtain
9 r—3M M
! r—2M r—2M (30)
At ISCO, r = 6M:
1
vIsCo = 5 - (31)



