
Chapter 1

Stars

1.1 Generalities

This book was not meant to be about stars. But stars are the most

familiar, best studied, and arguably most important objects in the

astrophysicist’s universe. They are therefore the building blocks of

many theories of more exotic objects. More fundamentally, the study

of stars is the study of the competition between gravity and pressure.

Astrophysics is distinguished from nearly all of the rest of physics by

the importance of gravity, so that an understanding of the principles

of stellar structure is necessary in order to understand most other

astronomical objects.

The study of stellar structure and evolution is an elaborate and

mature subject. The underlying physical principles are mostly well-

known, and have been developed in great detail. Powerful numerical

methods produce quantitative results for the properties and evolution

of stars. Numerous texts and a very extensive research literature doc-

ument this field. I refer the reader to three standard texts; although

not new they have aged very well, and it would be both pointless

and presumptuous to attempt to improve on them. Chandrasekhar

(1939) reviews the classical mathematical theory of stellar structure,

whose beginnings are now more than a century old. Schwarzschild
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(1958) presents a less mathematical description of the physical princi-

ples of stellar structure and evolution, with more attention to the ob-

served phenomenology. This is probably the best book for a general

introduction to the properties of stars and their governing physics.

I recommend it (supplemented by any of the numerous recent de-

scriptive astronomy books) as a reference for the physicist without

astronomical background. Clayton (1968) is particularly concerned

with processes of nucleosynthesis and thermonuclear energy genera-

tion.

There are still a number of outstanding problems in the theory

of ordinary stars. Many of these arise from a single area of theoretical

difficulty: the problem of quantitatively describing turbulent flows.

This problem arises in the formation of stars from diffuse gas clouds,

in stellar atmospheres, for rotating stars and accretion discs (which

may be thought of as the limiting case of rapidly rotating stars),

in interacting binary stars, in stars with surface abundance anoma-

lies, and in stellar collapse and explosion. If turbulent flows have a

material effect on the properties of a star, quantitative theory must

usually be supplemented by rough approximations, and confident cal-

culation becomes uncertain and approximate phenomenology. This

is even more true of the more exotic objects which are the subject of

this book.

The problems of turbulent flow appear in two distinct forms. In

the first form, a turbulent flow arises in an otherwise well-understood

configuration, and may even resemble the turbulent flows known to

hydrodynamicists; the problem is the calculation of some property,

usually an effective transport coefficient, of the flow. The most fa-

miliar example of this is turbulent convection in the solar surface

layers. In the second form, the initial or boundary conditions of a

flow are not known; it may not be turbulent in the hydrodynami-

cist’s sense of eddies or nonlinear wave motion on a broad range of

length scales, but quantitative calculation is still impossible. The
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formation of stars is an example of this kind of flow. A variety of

assumptions, approximations, and models, generally of uncertain va-

lidity and unknown accuracy, are used to study turbulent flows in

astrophysics.

This chapter on stars has two purposes. One is to illustrate some

of those physical principles of stellar structure which are useful in un-

derstanding stars and other astrophysical objects. The other is to

develop the kind of rough (often order-of-magnitude) estimates and

dimensional analysis which are widely used in modelling novel as-

trophysical phenomena. Some of this material follows Schwarzschild

(1958).

1.2 Phenomenology

Hundreds of years of observations of stars have produced an enor-

mous body of data and revealed a wide variety of phenomena which

are discussed in numerous texts and monographs and a voluminous

research literature. Here we will summarize only the tiny fraction of

those data essential to the astrophysicist who wishes to use stars in

models of high energy astrophysical phenomena.

The luminosities and surface temperatures of stars are often de-

scribed by their place on a Hertzsprung-Russell diagram, such as that

shown in Figure 1.1. In this theoretician’s version the abscissa is the

stellar effective surface temperature Te, defined as the temperature

of a black body which radiates the same power per unit area as the

actual stellar surface; the ordinate is the stellar photon luminosity in

units of the Solar luminosity L⊙ = 3.9×1033 erg/sec. There are also

observers’ versions in which the abscissa is a “color index,” a directly

observable measure of the spectrum of the emitted radiation, and the

ordinate may be the absolute or apparent stellar magnitude in some

observable part of the spectrum. Accurate conversion between these
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Figure 1.1. Hertzsprung-Russell diagram.

two versions requires a quantitative knowledge of the spectrum of

emitted radiation, which is approximately (but not exactly) that of

a black body.

Most stars are found to lie on a narrow strip called the main

sequence. These stars (occasionally referred to as dwarves) produce

energy by the thermonuclear transmutation of hydrogen into helium

near their centers. Their positions along the main sequence are deter-
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mined by their masses, which vary monotonically from about 30M⊙

(where the solar mass M⊙ = 2×1033 gm) at the upper left to 0.1M⊙

in the lower right. The Sun lies on the main sequence near its middle.

Stars found above and to the right of the main sequence are

called giants and supergiants; their higher luminosities (and their

names) are accounted for by large radii, ranging in extreme cases

up to 1014 cm, about 1000 times that of the Sun. These stars

have exhausted the hydrogen at their centers and produce energy by

thermonuclear reactions in shells close to, but outside, their centers.

Stars of nearly equal ages (such as the members of a single cluster

of stars, formed nearly simultaneously) will be distributed along a

narrow track in the giant and supergiant region, a track whose form

reflects their complex evolutionary path. Stars of a broad range of

ages, such as the totality of stars in the solar neighborhood, will

mostly be found on the main sequence; those in the giant and su-

pergiant regions will be broadly distributed rather than lying on a

narrow track. There are no sharp distinctions among main sequence

(dwarf) stars, giants, and supergiants, and intermediate cases are

found.

Degenerate (traditionally called white) dwarves are faint, dense

stars in whose interiors the electrons are Fermi-degenerate, resem-

bling the state of an ideal metal or metallic liquid. They gener-

ally produce negligible thermonuclear energy, having converted es-

sentially all their hydrogen (and probably also their helium) to heav-

ier elements. Their meager luminosity is supplied by their thermal

energy content, possibly augmented by the latent heat of crystal-

lization, the gravitational energy released by the sedimentation of

their heavier elements, and other minor sources. They cool steadily

as these energy sources are exhausted. Degenerate dwarves move to

the lower right along a track parallel to lines of constant radius as

they cool. Their radii depend on their masses (roughly as their re-

ciprocals), but because their masses are believed to span a moderate
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range (perhaps 0.4M⊙ to 1.2M⊙) they all lie in a strip of moderate

width. These masses are less than those which these stars had when

young, but the amount of mass lost is controversial and may range

from a few percent of to nearly all the initial mass. It is not known

whether the mass in the degenerate dwarf stage is a monotonic func-

tion of or even determined by the mass at birth; it may be random

and unpredictable. Very few stars other than degenerate dwarves

are found much below and to the left of the main sequence; most of

these few are probably evolving rapidly into degenerate dwarves.

An extrapolation of the main sequence to the lower right leads

to stars of mass too low to produce thermonuclear energy, generally

called brown dwarves. These objects slowly evolve into degenerate

dwarves of very low mass and lie near (but above, because of their

low masses) an extrapolation of the degenerate dwarf strip. Jupiter

may be regarded as an extreme case. These objects are nearly unob-

servable because of their low luminosities, and only a few, if any, can

be identified with confidence. Their properties are uncertain because

the properties of matter under brown dwarf conditions are not well

known; few data are available to test the uncertain calculations.

Objects at the upper left end of the main sequence are very rare,

with their rarity increasing with increasing mass and luminosity. As a

consequence, extrapolation beyond masses of 50M⊙ is largely limited

to theory.

1.3 Equations

A star may be defined as a luminous self-gravitating gas cloud. If it

is also spherical, in hydrostatic equilibrium, and in thermal steady

state it is described by the classical equations of stellar structure:

dP (r)

dr
= −ρ(r)GM(r)

r2
(1.3.1)



Equations 7

dM(r)

dr
= 4πr2ρ(r) (1.3.2)

dL(r)

dr
= 4πr2ρ(r)ǫ(r) (1.3.3)

dT (r)

dr
= −3κ(r)ρ(r)L(r)

16πacT 3(r)r2
. (1.3.4)

Here P (r) is the pressure, M(r) is the mass enclosed by a sphere of

radius r, ρ(r) is the density, L(r) is the luminosity produced within

a sphere of radius r, ǫ(r) is the rate of nuclear energy release per

gram, T (r) is the temperature, κ(r) is the Rosseland mean opacity

(defined in 1.7.2) in cm2/gm, and a is the radiation constant. The

first three of these equations are elementary; (1.3.4) is derived in 1.7.

Numerous assumptions and approximations have been made:

spherical symmetry, Newtonian gravity, a star in a stationary (un-

changing) state, and a flow of energy by the diffusion of radiation

only. Various of these assumptions may be relaxed if the equations

are appropriately modified. It is frequently necessary to allow for

the transport of energy by turbulent convection (most familiarly, in

the outer layers of the Sun) or by conduction (in electron-degenerate

matter).

These equations must be supplemented by three constitutive

relations, derived from the microscopic physics of the stellar material.

For any given chemical composition they take the form:

P = P (ρ, T ) (1.3.5)

ǫ = ǫ(ρ, T ) (1.3.6)

κ = κ(ρ, T ). (1.3.7)

These equations of stellar structure may be solved numerically,

which is necessary to obtain quantitative results. It is illuminating,

however, to make order-of-magnitude estimates. If we did not have

computers available (and were unwilling to integrate these equations
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numerically by hand), or did not know the quantitative form of the

constitutive relations, these rough estimates would be the best that

we could do. Until the development of quantitative theories of ther-

monuclear reactions and opacity, no detailed calculation was possi-

ble. Even today, rough estimates are the basis of most qualitative

understanding. In novel circumstances they are the first step toward

building a quantitative model.

1.4 Estimates

1.4.1 Order of Magnitude Equations In order to make rough ap-

proximations to the differential equations (1.3.1–4) we replace them

by algebraic equations in which the variables P , M , L, and T rep-

resent their mean or characteristic values in the star, the continuous

variable r is replaced by the stellar radius R, and the derivative d/dr

is replaced by the multiplicative factor 1/R. In most cases this level

of approximation produces useful rough results, although it is occa-

sionally disastrous; with intelligent choice of the numerical constants

it can be remarkably accurate, though usually only when a quanti-

tative solution is available as a guide.

The equations become:

P = ρ
GM

R
(1.4.1)

M =
4

3
πR3ρ (1.4.2)

L =
4

3
πR3ρǫ (1.4.3)

T 4 =
3κρL

16πacR
. (1.4.4)
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We now assume the perfect nondegenerate gas constitutive relation

for pressure
P = Pg + Pr

=
ρNAkBT

µ
+
aT 4

3
,

(1.4.5)

where Pg and Pr are the gas and radiation pressures respectively, µ

is the mean molecular weight (the number of atomic mass units per

free particle), NA is Avogadro’s number per gram, kB is Boltzmann’s

constant, and a is the radiation constant. Combination of (1.4.1),

(1.4.2), and (1.4.5) (ignoring the radiation pressure term in 1.4.5, an

excellent approximation for stars like the Sun) yields results for the

characteristic values of ρ, P , and T :

ρ =
3M

4πR3
(1.4.6)

P =
3GM2

4πR4
(1.4.7)

T =
GM

R

µ

NAkB
. (1.4.8)

1.4.2 Application to the Sun In Table 1.1 we compare the numeri-

cal estimates for ρ, P , and T obtained by substituting the solar mass,

radius, and molecular weight, to the quantitative values found for the

center of the Sun in a numerical integration (Schwarzschild 1958) of

the equations (1.3.1)–(1.3.7). More recent calculations (Bahcall, et

al. 1982) produce slightly different numbers, but the difference is

of no importance when we are examining the validity of order-of-

magnitude estimates. We use R = 6.95×1010 cm, M = 2×1033 gm,

and µ = 0.6.

The estimated value of T is remarkably accurate (probably for-

tuitously so), while the estimates of ρ and P are low by two orders of
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Table 1.1

Estimate Solar Center

ρ (gm/cm3) 1.42 134

P (dyne/cm2) 2.73 × 1015 2.24 × 1017

T (◦K) 1.39 × 107 1.46 × 107

κ (cm2/gm) 2.18 × 103 1.07

ǫ (erg/gm/sec) 1.95 14

magnitude (note that the estimated ρ is nothing more than the mean

stellar density). This large discrepancy reflects the concentration of

mass towards the center of a star, and is a consequence of the com-

pressibility of gases and the inverse-square law of Newtonian gravity.

The discrepancy also reflects a deliberate obtuseness on our part in

comparing the estimated values of ρ and P to the calculated central

values. Had we been more cunning we could have chosen to compare

to a suitable chosen “mean” point in the numerical integration, and

would have obtained truly impressive (but deceptive) agreement.

In all stars the central density greatly exceeds the mean density.

In stars of similar structure this ratio is nearly constant, and the

greatest use of eqs. (1.4.6–8) is as scaling relations among stars of

differing mass and radius. Rough estimates and qualitative under-

standing may be obtained readily; numerical integrations are always

possible when quantitative results are needed.

For giant and supergiant stars the ratio of central to mean den-

sity may be as much as 1016. Such enormous ratios indicate a com-
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plete breakdown of the approximations (1.4.1–4); the interior struc-

ture of such stars is very different from that of stars like the Sun; it

can be roughly described by simple relations, but requires an under-

standing of their peculiar structure. In fact, their condensed central

cores and very dilute outer layers may each be separately described

by equations (1.4.6–8) with reasonable accuracy; disaster strikes only

when one attempts to describe both these regions together.

Equations (1.4.3) and (1.4.4) may also be used to estimate κ

and ǫ given the estimates for ρ, P , and T . For the Sun we use

L = 3.9× 1033 erg/sec. These numerical values are also compared in

Table 1.1 to quantitative values at the Solar center (Schwarzschild,

1958). The estimated value of ǫ is just the Solar (mass-weighted)

mean; the actual central value is several times higher because ther-

monuclear reaction rates are steeply increasing functions of temper-

ature, which peaks at the center. The estimated value of κ is far

wrong; this is in part because of the hundredfold concentration of

density at the center, and in part because of the concentration into

a small central core of thermonuclear energy generation. Equation

(1.3.4) shows that using an erroneously low estimated ρ and high R

produces an erroneously large estimate for κ.

Except for temperature, our rough estimates have been very in-

accurate. Approximations like those of equations (1.3.6) and (1.3.7)

are still useful, particularly when only scaling laws are needed for a

qualitative understanding. They can also produce semiquantitative

results when some additional understanding is inserted into the equa-

tions in the form of intelligently chosen numerical coefficients. We

have deliberately refrained from doing so in order to show the pitfalls

as well as the utility of rough estimates; when aided by intuition and

guided by experience they can do much better.
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1.4.3 Minimum and Maximum Stellar Surface Temperatures The

observed range of stellar surface temperatures is approximately

2500◦K to 50, 000◦K. These limits each have simple explanations.

The continuum opacity of stellar atmospheres is largely at-

tributable to bound-free (photoionization) and free-free (inverse

bremsstrahlung) processes. For the visible and near-infrared photons

carrying most of the black-body flux at low stellar temperatures the

most important bound-free transition is that of the H− ion, which

has a threshold of 0.75 eV. At temperatures of a few thousand degrees

matter consists largely of neutral atoms and molecules, and the small

equilibrium (Saha equation) free-electron density is very sensitive to

temperature, dropping precipitously with further decreases in tem-

perature. The H− abundance, in equilibrium with the free electrons,

drops nearly as steeply. The atmosphere approaches the very trans-

parent molecular gas familiar from the Earth’s atmosphere. As a

consequence of this steep drop in opacity, the photosphere (the layer

in which the emitted radiation is produced) of a very cool star forms

at a temperature around 2500◦K, below which there is hardly enough

opacity and emissivity to absorb or emit radiation. This tempera-

ture bound is insensitive to other stellar parameters, and amounts to

an outer boundary condition on integrations of the stellar structure

equations for cool stars.

The maximum stellar surface temperature has a different expla-

nation. In luminous stars the radiation pressure far exceeds the gas

pressure, and the luminosity is nearly the Eddington limiting lumi-

nosity LE (1.11), at which the outward force of radiation pressure

equals the attraction of gravity:

L ≈ LE ≡ 4πcGM

κ
, (1.4.9)

where κ is the opacity. Under these conditions the opacity is pre-

dominantly electron scattering, and κ = 0.34 cm2/gm, essentially
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independent of other parameters. The effective (surface) tempera-

ture Te is then approximately given by

T 4
e =

cGM

κσSBR2
, (1.4.10)

where σSB is the Stefan-Boltzmann constant. In order to estimate

R we approximate the pressure by the radiation pressure

P ≈ a

3
T 4, (1.4.11)

where T is an estimate of the central temperature. Note that here we

neglect the gas pressure; in obtaining equation (1.4.8) we neglected

the radiation pressure. Eliminating P and ρ from (1.4.1), (1.4.6),

and (1.4.11) produces an estimate for R:

R4 =
9GM2

4πaT 4
. (1.4.12)

Substituting this result in (1.4.10) gives

T 4
e =

T 2c

κσSB

√

4

9
πacG. (1.4.13)

Because thermonuclear reaction rates are usually very steeply in-

creasing functions of temperature, the condition that thermonuclear

energy production balances radiative losses acts as a thermostat; de-

tailed calculation shows that T ≈ 4 × 107◦K, nearly independent of

other parameters for these very massive and luminous stars. Numer-

ical evaluation of (1.4.13) then gives

Te ≈ 90, 000◦K. (1.4.14)

This numerical value is about twice as large as the results of de-

tailed calculations, but they confirm the qualitative result of a mass-

independent upper bound to Te for hydrogen burning stars.



14 Stars

1.5 Virial Theorem

For stars (defined as self-gravitating spheres in hydrostatic equilib-

rium) it is easy to prove a virial theorem, so named because it is

closely related to the virial theorem of point-mass mechanics. Begin

with the equation (1.3.1) of hydrostatic equilibrium and assume it is

always valid:

−ρ(r)GM(r)

r2
=
dP (r)

dr
. (1.5.1)

Multiply each side by 4πr3, and integrate over r, integrating by parts:

−
∫ R

0

ρ(r)
GM(r)

r
4πr2dr =

∫ R

0

dP (r)

dr
4πr3dr

= −
∫ R

0

12πr2P (r)dr + 4πr3P (r)

∣

∣

∣

∣

R

0

.

(1.5.2)

The definition of the stellar radius R is that P (R) = 0. Hence

−
∫ R

0

ρ(r)
GM(r)

r
4πr2dr = −3

∫ R

0

P (r)4πr2dr. (1.5.3)

The left hand side is the integrated gravitational binding energy of

the star Egrav. For a gas which satisfies a relation P ∝ ργ for adia-

batic processes we can use the thermodynamic relation (see 1.9.1)

P = (γ − 1)E , (1.5.4)

where E is the internal energy per unit volume. If we denote the

integrated internal energy content of the star by Ein we obtain

Egrav = −3(γ − 1)Ein. (1.5.5)

Denoting the total energy E = Ein +Egrav we have

E = Ein(4 − 3γ) = Egrav

(

3γ − 4

3γ − 3

)

≤ 0. (1.5.6)
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The inequality comes from the requirement that a star be energet-

ically bound. This simple relation is very useful in qualitatively

understanding stellar stability and energetics.

For perfect monotonic nonrelativistic gases (including the fully

ionized material which constitutes most stellar interiors) γ = 5/3;

this applies even if the electrons are Fermi-degenerate. For a perfect

gas of relativistic particles or photons γ = 4/3; this is a good de-

scription of gases whose pressure is largely that of radiation. Gases

in which new degrees of freedom appear as the temperature is raised

(for example, those undergoing dissociation, ionization, or pair pro-

duction) may have still lower values of γ, approaching 1. Interatomic

forces reduce γ if attractive, or increase it if repulsive (as for the

nucleon-nucleon repulsion of neutron star matter).

If γ = 5/3, as is accurately the case for stars like the Sun, and

more roughly so for most degenerate (white) dwarves and for neutron

stars, then E = 1
2Egrav = −Ein < 0. Such a star is gravitationally

bound with a large net binding energy, and resists disruption. It is

also stable and resists dynamical collapse, because in a smaller and

denser state |Egrav| and |E| would be larger. In order to reach such

a state it would have to reduce its total energy E, but on dynamical

time scales energy is conserved. Energy can only be lost by slow

radiative processes (including emission of neutrinos); in most cases

it is stably replenished from thermonuclear sources.

A star with γ > 4/3 may be thought of as having negative spe-

cific heat, because an injection of energy increases E, which reduces

|E|, |Egrav| and Ein (see 1.5.6). Because temperature is a mono-

tonically increasing function of Ein (and depends only on Ein for

perfect nondegenerate matter) this injection of energy leads to a re-

duction in temperature; similarly, the radiative loss of energy from

the stellar surface, if not replenished internally, leads to increasing

internal temperature. The reason for this somewhat surprising be-

havior, described as a negative effective specific heat, is the fixed
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relation (1.5.5) between Ein and Egrav, which holds so long as the

assumption of hydrostatic equilibrium is strictly maintained. The

negative effective specific heat is also the reason thermonuclear en-

ergy release, which increases rapidly with temperature, is usually

stably self-regulating.

In a degenerate star the relation between Ein and temperature

is complicated by the presence of a Fermi energy and the effective

specific heat is positive when thermonuclear or radiative processes

are considered; thermonuclear energy release is either insignificant

or unstable, and radiation produces steady cooling. On dynamical

time scales processes are adiabatic and the star is stable, just as is a

nondegenerate star. Ein is related to the Fermi energy which varies

in proportion to the temperature for adiabatic processes, and the

effective specific heat is again negative.

A star with γ = 4/3 has E = 0; the addition of 1 erg is sufficient

to disrupt it entirely, and the removal of 1 erg to produce collapse.

Of course, stars with γ exactly equal to 4/3 do not exist (and cannot

exist, for this reason), but as γ approaches 4/3 a star becomes more

and more prone to various kinds of instability. Stars with γ very close

to 4/3 include very massive stars whose pressure is almost entirely

derived from radiation, and degenerate dwarves near their upper

mass (Chandrasekhar) limit.

A star with γ < 4/3 would have positive energy and would be

exploding or collapsing. Such stars do not exist, but localized re-

gions with γ < 4/3 do. They are found in cool stellar atmospheres

(especially those of giants and supergiants) in which matter is partly

ionized, and possibly in the cores of evolved stars which are hot

enough for thermal pair production or dense enough for nuclei to un-

dergo inverse β-decay. Such regions tend to destabilize a star, though

the response of the entire star must be calculated to determine if it

is unstable; instability is a property of an entire star in hydrostatic

equilibrium, not of a subregion of it.
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1.6 Time Scales

A star is characterized by a number of time scales. The shortest is

the hydrodynamic time scale th, which is defined

th ≡
√

R3

GM
. (1.6.1)

This is approximately equal to the time required for the star to col-

lapse if its internal pressure were suddenly set to zero. The funda-

mental mode of vibration has a period comparable to th, as does a

circular Keplerian orbit skimming the stellar surface. For phenom-

ena with time scale much longer than th the star may be considered

to be in hydrostatic equilibrium, and eq. (1.3.1) applies. On shorter

time scales the application of (1.3.1) is in general not justified. For

the Sun th ≈ 26 minutes.

The thermal time scale tth is defined

tth ≡ E

L
, (1.6.2)

where E is the total energy (gravitational plus internal) of the star, as

defined in 1.5, and L is its luminosity. This is the time which would

be required for a star to substantially change its internal structure if

its thermonuclear energy supply were suddenly set to zero. For phe-

nomena with time scales longer than tth the star may be considered

to be in thermal equilibrium, and eq. (1.3.3) applies. The applica-

tion of (1.3.3) on shorter time scales is in general not justified. For

the Sun tth ≈ 2 × 107 years.

The longest time scale is the thermonuclear time tn, defined by

tn ≡ Mεc2

L
, (1.6.3)

where εc2 is the energy per gram available from thermonuclear re-

actions of stellar material. This measures the life expectancy of a
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star in a state of thermal equilibrium. After a time of order tn its

fuel will be exhausted and its production of radiant energy will end;

a wide variety of ultimate fates are conceivable, including cooling to

invisibility, explosion, and gravitational collapse. For ordinary stel-

lar composition ε ≈ 0.007; about 3/4 of this is accounted for by the

conversion of hydrogen to helium and about 1/4 by the conversion of

helium to heavier elements. For the Sun tn ≈ 1011 years; its actual

life will be about ten times shorter because after the exhaustion of

the hydrogen in a small region at the center, L will begin to increase

rapidly and its remaining life will be brief. The Sun is presently near

the midpoint of its life.

There is an additional time scale tE which characterizes stars in

general. In 1.4.3 we saw that there is a characteristic luminosity LE

(Eq. 1.4.9) which serves as an upper bound on stellar luminosities.

Define the Eddington time tE as the thermonuclear time tn for a

hypothetical star of luminosity LE . Then

tE ≡ εcκ

4πG
=

2εe4

3Gc3m2
empµe

, (1.6.4)

where we have written the electron scattering opacity κ in terms of

fundamental constants and µe is the mean number of nucleons per

electron. For ordinary stellar composition tE ≈ 3 × 106 years. This

is an approximate lower bound on the lifespan of a star. Because it

nearly four orders of magnitude shorter than the age of the universe,

luminous stars have passed through many generations, manufactur-

ing nearly all the elements heavier than helium. The luminosities of

stars range over at least nine orders of magnitude, so lower luminos-

ity stars have lifetimes very much longer than tE , and even much

longer than the present age of the universe.

A quantity analogous to the Eddington time is also an important

parameter in the study of rapidly accreting masses (for example, in

models of X-ray sources and quasars; Salpeter 1964). The luminosity
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is given by L = Ṁc2ε. The Salpeter time is defined as the e-folding

time of the mass M , if L = LE :

tS ≡ M

Ṁ
=

εcκ

4πG
. (1.6.5)

It is usually estimated that ε ∼ .1, so that tS ∼ 4 × 107 years. This

is the characteristic lifetime of such a luminous accreting object.

Finally, there is a simple “light travel” time scale tlt which may

be defined for any object of size R:

tlt ≡
R

c
. (1.6.6)

It is generally not possible for an object of size R to change substan-

tially (by a factor of ∼ 2) its emission on a time scale shorter than

tlt, because that is the shortest time in which signals from a single

triggering event can propagate throughout the object, and hence the

shortest time on which its emission can vary coherently. A small

change, by a factor 1 + δ with δ ≪ 1, can occur in a time ∼ δtlt. If

the velocity of propagation were the sound speed (or, equivalently,

a free-fall speed) rather than c, then tlt would be the hydrodynamic

time th given by (1.6.1).

The time scale tlt is chiefly used in models of transient or rapidly

variable objects in high energy astrophysics, such as variable quasars

and active galactic nuclei, γ-ray bursts, and rapidly fluctuating X-ray

sources. The observation of a substantial variation in the radiation

of an object in a time tvar is evidence that its size R satisfies

R
<∼ ctvar. (1.6.7)

Such an upper bound on R may then be combined with the luminos-

ity to place a lower bound on the radiation flux and energy density

within the object, and therefore to constrain models of it.



20 Stars

These arguments contain loopholes. It is possible to synchro-

nize clocks connected to energy release mechanisms and distributed

over a large volume so that they all simultaneously trigger a sud-

den release of energy (because the clocks are at rest with respect to

each other there is no difficulty in defining simultaneity). A distant

observer would not see the energy release to be simultaneous, but

rather spread over a time tlt, where R is the difference in the path

lengths between him and the various clocks. However, if the clocks

have appropriately chosen delays which cancel the differences in path

lengths, he will see the signals of all the clocks simultaneously, violat-

ing (1.6.7). This would require a conspiracy among the clocks which

is unlikely to occur except by intelligent design, and would produce

a signal violating (1.6.7) only for observers in a narrow cone.

Other loopholes are more likely to occur in nature. A strong brief

pulse of laser light propagating through a medium with a population

inversion depopulates the excited state at the moment of its passage.

Nearly all of the medium’s stored energy may appear in a thin sheet

of electromagnetic energy, whose thickness may be much less than

R, and whose duration measured by an observer at rest may violate

(1.6.7). This is a familiar phenomenon in the laser laboratory, in

which nanosecond (or shorter) pulses of light may be produced by

arrays of lasing medium more than a meter long.

Analogous to a thin sheet of laser light is a spherical shell of

relativistic particles streaming outward from a central source (Rees

1966). If they produce radiation collimated outward (radiation pro-

duced by relativistic particles is usually directed nearly parallel to

the particle velocity) the shell of particles will be accompanied by a

shell of radiation. This radiation shell will propagate freely, and will

eventually sweep over a distant observer, who may see a rapidly vary-

ing source of radiation whose duration violates (1.6.7). The factor by

which it is violated depends on the detailed kinematics of the radi-

ating particles. In general, (1.6.7) is inapplicable when there is bulk
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relativistic motion, even if only of energetic particles; conversely, its

violation implies bulk relativistic motion.

1.7 Radiative Transport

1.7.1 Fundamental Equations The most important means by

which energy is transported in astrophysics is by the flow of radi-

ation from regions of high radiant energy density to those of lesser;

radiation carries energy from stellar interiors to their surfaces, and

from their surfaces to dark space. The complete theory of this pro-

cess is unmanageably and incalculably complex and cumbersome,

but a variety of approximations make it tractable and useful. Fortu-

nately, these approximations are well justified in most (but not all)

circumstances of interest, so that the theory is not only tractable

but also powerful and successful. Here we will be concerned princi-

pally with the simplest limit, applicable to stellar interiors, in which

matter is dense and opaque, and radiation diffuses slowly. There is

another, even simpler limit, that of vacuum, through which radia-

tion streams freely at the speed c. Between these limits there are the

more complex problems of radiative transport in stellar atmospheres

(by definition, the regions in which the observed photons are pro-

duced). This is a large field of research blessed with an abundance of

observational data; several texts exist (for example, Mihalas 1978).

Consider in spherical coordinates the propagation of a beam of

radiation, so that r measures the distance from the center of the co-

ordinate system and ϑ is the angle between the beam and the local

radius vector. In general, the radiation intensity I will depend on

the point of measurement (r, θ, φ) (note that ϑ must be distinguished

from the polar angle θ), on the polarization, and the the photon fre-

quency ν. In most cases it is possible either to assume spherical

symmetry (so that there is no dependence on θ and φ), or to treat
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the problem at different θ and φ locally, so that these angles enter

only as parameters of the solution, like the chemical composition of

the star being studied. In either case it is not necessary to consider θ

and φ explicitly, and they will be ignored, along with any dependence

of the intensity on the azimuthal angle ϕ of its propagation direc-

tion. Problems in which these approximations are not permissible

are difficult, and generally their solution requires Monte Carlo meth-

ods (in which the paths of large numbers of test photons are followed

on a computer in order to determine the mean flow of radiation). I

also neglect polarization because it does not significantly affect the

flow of radiative energy; it is worth calculating in some stellar atmo-

spheres because it is sometimes observable for nonspherical stars or

during eclipses (symmetry implies that the radiative flux integrated

over the surface of a spherical star is unpolarized). The frequency

dependence of the radiation field is important, although it will not

always be written explicitly.

In travelling a small distance dl a beam loses a fraction κρdl of its

intensity, where κ is the mass extinction coefficient (with dimensions

of cm2/gm), and ρ is the matter density. We consider a beam with

intensity I(r, ϑ) (with dimensions erg/cm2/sec/steradian, where the

element of solid angle refers to the direction of propagation, not to

the geometry of the spherical star); the power crossing an element of

area ds normal to the direction of propagation, and propagating in an

element dΩ of solid angle, is I(r, ϑ)dsdΩ. In the short path dl a power

I(r, ϑ)κρdldsdΩ is removed from the beam by matter in the right

cylinder defined by ds and dl, where we have taken dΩ ≪ ds/dl2.

Matter also emits radiation, and the volume emissivity j is defined so

that the power emitted by the volume dlds into the beam solid angle

dΩ is jρdldsdΩ
4π

. The units of j are erg/gm/sec and the emission is

assumed isotropic, as is the case unless there is a very large magnetic

field.

After travelling the distance dl the radiation field transports



Radiative Transport 23

energy out of the cylinder with a power I(r+dr, ϑ+dϑ)dsdΩ, where it

has been essential to note that a straight ray (we neglect refraction)

changes its angle to the local radius vector as it propagates. In a

steady state the energy contained in the cylinder does not change

with time, so that the sum of sources and sinks is zero:

I(r, ϑ)dsdΩ−I(r, ϑ)κρdldsdΩ+jρdlds
dΩ

4π
−I(r+dr, ϑ+dϑ)dsdΩ = 0.

(1.7.1)

¿From elementary geometry

dr = dl cosϑ (1.7.2a)

dϑ = −dl sinϑ/r. (1.7.2b)

These equations are a complete description of the trivial problem

of the propagation of a ray in vacuum, and may be combined and

integrated to yield the solution

r = r◦ csc ϑ, (1.7.3)

where r◦ is the distance of closest approach of the ray to the center

of the sphere. If the polar axis of the spherical coordinates is chosen

to pass through the point at which the ray is tangent to the sphere

of radius r◦ then the path of the ray in spherical coordinates is given

by

θ = π/2 − ϑ = π/2 − sin−1(r◦/r). (1.7.4)

If we expand I(r, ϑ) in a Taylor series:

I(r+ dr, ϑ+ dϑ) = I(r, ϑ) +
∂I(r, ϑ)

∂r
dr +

∂I(r, ϑ)

∂ϑ
dϑ+ · · · , (1.7.5)

keep only first order terms in small quantities, and substitute this

and the expressions 1.7.2 into 1.7.1, we obtain the basic equation of

radiative transport:

∂Iν(r, ϑ)

∂r
cosϑ− ∂Iν(r, ϑ)

∂ϑ

sinϑ

r
+ κνρIν(r, ϑ) − jνρ

4π
= 0. (1.7.6)
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The subscript ν denotes the dependence of I, κ, and j on photon

frequency; properly Iν and jν are defined per unit frequency interval.

Henceforth we do not make this subscript or the arguments (r, ϑ)

explicit unless they are being discussed.

We are usually more interested in quantities like the energy den-

sity of the radiation field and the rate at which it transports energy

than in the full dependence of I on angle. Fortunately, these quanti-

ties may be represented as angular integrals over I, and are intrinsi-

cally much simpler quantities which satisfy much simpler equations

than (1.7.6). Only in the very detailed study of stellar atmospheres is

the full angular dependence of I significant. The following quantities

are important:

4π

c
J ≡ Erad ≡ 1

c

∫

I dΩ (1.7.7a)

H ≡
∫

I cosϑ dΩ (1.7.7b)

4π

c
K ≡ Prad ≡ 1

c

∫

I cos2 ϑ dΩ. (1.7.7c)

In (1.7.7a) and (1.7.7c) two symbols have been defined because both

are in common use. SometimesH is defined as 1
4π times the definition

in (1.7.7b). The integrals in (1.7.7) are called the angular moments

of I; clearly an infinite number of such moments may be defined, but

these three are usually the only important ones. It is evident that

Erad is the energy density of the radiation field, H is the radiation

flux (the rate at which radiation carries energy across a unit surface

normal to the ϑ = 0 direction), and Prad is the radiation pressure.

As defined these quantities are functions of frequency, but formally

identical relations apply to their integrals over frequency.

In general the n-th moment (where n is the power of cosϑ ap-

pearing in the integrand) is a tensor of rank n; the scalar expressions

of (1.7.7b) and (1.7.7c) refer to the z component of the flux vector
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and the zz component of the radiation stress tensor, where ẑ is the

unit vector along the ϑ = 0 axis. In practice, the z component of H

is usually the only nonzero one and the stress tensor is usually nearly

isotropic so that it may be described by a scalar Prad.

It is now easy to obtain differential equations for the simpler

quantities Erad, H, Prad by taking angular moments of equation

(1.7.6); that is, by applying
∫

cosn ϑ dΩ to the entire equation and

carrying out the integrals. The zeroth and first moments are

dH

dr
+

2

r
H + cκρErad − jρ = 0 (1.7.8a)

dPrad

dr
+

1

r
(3Prad − Erad) +

κρ

c
H = 0. (1.7.8b)

There is an evident problem with this procedure: we have two

equations for the three quantities Erad, H, and Prad. If we obtain a

third equation by taking the second moment of (1.7.6) we must eval-

uate integrals like
∫

I cos3 ϑ dΩ, which introduce a fourth quantity,

the third moment of I. It is evident that this problem will not be

solved exactly by taking any finite number of moments; it arises very

generally in moment expansions in physics.

In practice moment expansions are truncated; only a small finite

number of moments are taken, and some other information, usually

approximate, is used to supply the missing equation. In order to do

this expand I in a power series in cosϑ:

I = I0 + I1 cosϑ+ I2 cos2 ϑ+ · · · . (1.7.9)

We could also expand in Legendre polynomials, which would have

the advantage of being orthogonal functions, but for the argument

to be made here this is unnecessary. Substitute this power series into

(1.7.6), and equate the coefficients of each power of ϑ in the result-

ing expression to zero. There results an infinite series of algebraic
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equations whose first three members are:

I1
r

+ κρI0 =
jρ

4π
(1.7.10a)

∂I0
∂r

+
2I2
r

+ κρI1 = 0 (1.7.10b)

∂I1
∂r

− I1
r

+
3I3
r

+ κρI2 = 0. (1.7.10c)

We now need only to estimate the order of magnitude of the In,

so we may replace ∂
∂r by 1/l and r by l where l is a characteristic

length (noting that ∂
∂r

and −1/r do not cancel because this is only an

order-of-magnitude replacement—instead, their sum is still of order

1/l). Again, we have one more variable than equations. However,

these equations have an approximate solution for which terms in-

volving the extra variable become insignificant. This solution is

I0 ≈ j

4πκ
(1.7.11a)

In ∼ I0(κρl)
−n n ≥ 1. (1.7.11b)

The factor (κρl) is generally very large (∼ 1010 in the Solar inte-

rior) so the higher terms in (1.7.9) become small exceedingly rapidly.

As a result (1.7.11a) holds very accurately, while (1.7.11b) is only

an order of magnitude expression. It is evident that the terms in

(1.7.10) which bring in more variables than equations (those of the

form nIn/r) are smaller than the other terms by a factor of order

(κρl)−2 and are completely insignificant. (1.7.11b) is a rough approx-

imation only because of the replacement of ∂
∂r by 1/l, not because

of the neglect of the terms of the form nIn/r.

Because of (1.7.11b), (1.7.9) may be truncated after the n = 1

term, and Erad, H, and Prad expressed to high accuracy in terms of

I0 and I1 alone, reducing the three variables to two. The important

result is that

Prad =
4π

3c
I0 =

1

3
Erad. (1.7.12)
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This relation between Prad and Erad is known as the Eddington ap-

proximation. By relating two of the moments of the radiation field

it “closes” the moment expansion (1.7.8). It holds to high accuracy

everywhere except in stellar atmospheres (in which κρl ∼ 1).

It might be thought that more accurate results could be ob-

tained by taking more terms in the moment expansions. In stellar

interiors this is unnecessary. Where (1.7.12) is not accurate, taking

higher terms does not lead to rapid improvement. Expansions which

do not converge rapidly often do not converge at all. A numerical

description of the full ϑ dependence of I is a better approach.

The form of (1.7.12) is no surprise; it expresses the relation

between radiation pressure and energy density in thermodynamic

equilibrium, which should hold deep in a stellar interior. Similarly,

if the matter at any point is locally in thermal equilibrium and there

are no photon scattering processes the right hand side of (1.7.11a)

equals (by the condition of detailed-balance) the black-body radia-

tion spectrum (also called the Planck function) Bν :

jν
4πκν

= Bν =
2hν3

c2
1

exp(hν/kBT ) − 1
. (1.7.13)

The condition that the matter is in local thermal equilibrium

(abbreviated LTE) holds to high accuracy in stellar interiors. It

may fail in stellar atmospheres where the radiation field is strongly

anisotropic, being mostly directed upward; such a radiation field is

not in equilibrium (the Planck function is isotropic), and may drive

populations of atomic levels away from equilibrium. This often pro-

duces observable effects in stellar spectra, but does not have signifi-

cant effects on the gross energetics of radiative energy flow.

Scattering presents a different problem. It is simple enough to

include scattering out of the beam in the opacity κ, but the source

term j is more difficult, because radiation is scattered into the beam

from all other directions (and, in some cases, from other frequencies).
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In general, a term of the form

∫

dΩ′dν′
dσ(Ω,Ω′, ν, ν′)

dΩ′
I(Ω′, ν′) (1.7.14)

must be added to jν in (1.7.6), where σ is the scattering cross-section,

and the solid angles Ω and Ω′ describe the pairs of angles (ϑ, ϕ) and

(ϑ′, ϕ′). The azimuthal angles must be included to completely de-

scribe the geometry of scattering. This term is complicated; worse,

it turns the relatively simple differential equation (1.7.6) into an in-

tegral equation which is much harder to solve. If the radiation field

equals the Planck function, as is accurately the case in stellar interi-

ors, then the relation (1.7.13) holds even in the presence of scattering,

and it is not necessary to consider the messy integral (1.7.14).

In stellar interiors we may use the Eddington approximation

(1.7.12) to reduce equations (1.7.8) to the form

d(Hr2)

dr
+ cκρErad − jρ = 0 (1.7.15a)

H +
c

3κρ

dErad

dr
= 0. (1.7.15b)

1.7.2 Spectral Averaging and Energy Flow In stellar interiors we

are concerned with the flow of energy, and not with its detailed fre-

quency dependence. We therefore wish to consider frequency inte-

grals of our previous results. Define the luminosity L ≡
∫

4πr2Hν dν,

and note that in steady state there is no net exchange of energy be-

tween the radiation and the matter, so that
∫

jνdν =
∫

cκνEradνdν.

Then (1.7.15a) states that L is independent of r. For a star in steady

state (as we have assumed) this is just the conservation of energy.

In discussing radiative transport we have neglected nuclear energy

generation; if it were included we would obtain (1.3.3).
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It is more interesting to integrate (1.7.15b) over frequency. De-

fine Hav ≡
∫

Hνdν and Eav ≡
∫

Eradνdν so that

Hav = − c

3ρ

∫

1

κν

dEradν

dr
dν

= − c

3ρ

dEav

dr

∫

1

κν

dEradν

dr
dν

∫

dEradν

dr
dν

.

(1.7.16)

Because the radiation field Iν is very close to that of a black body

Bν we may write Eradν = 4π
c
Bν . Then (1.7.16) may be written in

the simple form

Hav = − c

3κRρ

dEav

dr
, (1.7.17)

where we have defined the Rosseland mean opacity

κR ≡

∫

dBν

dr
dν

∫

1

κν

dBν

dr
dν

=

∫

dBν

dT
dν

∫

1

κν

dBν

dT
dν

. (1.7.18)

These integrals may be computed from the atomic properties of the

matter and the Planck function.

The Rosseland mean κR is a harmonic mean, and therefore is

sensitive to any “windows” (frequencies at which κν is small), but is

insensitive to spectral lines at which κν is large. This behavior is very

different from that of the frequency-integrated microscopic emissivity

of matter (which gives the power radiated by low density matter for

which absorption in unimportant); this emissivity is proportional to

the arithmetic mean of κν so that lines are important but windows

are not. The spectrum of matter usually contains many absorption

lines, but not windows, because there generally are processes which

provide some absorption across very broad ranges of frequency. The

Rosseland mean is therefore not very sensitive to uncertainties in
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κν , which is fortunate, because κν is hard to calculate accurately.

Because of the frequency dependences of dBν

dT
and of typical κν , κR

is most sensitive to the values of κν at frequencies for which hν
kBT ∼

3–10.

¿From (1.7.17) we obtain

Hav = − c

κRρ

dPr

dr
, (1.7.19)

where Pr is the frequency-integrated radiation pressure. This relates

the rate at which radiation carries energy to the gradient of radiation

pressure. If the black body relation Pr = a
3T

4 is substituted in

(1.7.19) and the definition of L is used then (1.3.4) is obtained.

In general 0 > dPr

dr ≥ dP
dr (unless the gas pressure were to in-

crease outward, an unlikely event which would require that the den-

sity also increase outward, an unstable situation; see 1.8.1). The

equation of hydrostatic equilibrium (1.3.1) gives dP
dr

, so that (1.7.19)

implies an upper bound on Hav and on L for a star in hydrostatic

equilibrium. This is the origin of the Eddington limit on stellar lu-

minosities LE used in 1.4.3.

1.7.3 Scattering Atmospheres An interesting application of these

equations is to the problem of an atmosphere in which the opacity is

predominantly frequency-conserving scattering, rather than absorp-

tion. This is a good approximation for hot luminous stars, X-ray

sources, and the hotter parts of accretion discs, but also for visi-

ble radiation in very cool stellar and planetary atmospheres. Define

the single-scattering albedo ̟ of the material as the fraction of the

opacity attributable to scattering; then 1 − ̟ ≪ 1 is the fraction

attributable to absorption.

Begin with equations (1.7.8), assume a nearly isotropic radiation

field and the Eddington approximation (1.7.12), and consider the
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case of a plane-parallel atmosphere of uniform temperature, so that
1
r
≪ d

dr
and B is independent of space. Equations (1.7.8) become

dH

dr
+ cκρErad − jρ = 0 (1.7.20a)

dPrad

dr
+
κρ

c
H = 0. (1.7.20b)

The source term j is now given by

j = 4πκB(1 −̟) + κEradc̟; (1.7.21)

substitution leads to

1

κρ

dH

dr
+ Eradc(1 −̟) − 4πB(1 −̟) = 0. (1.7.22)

Define the optical depth τ by

dτ ≡ −κρdr, (1.7.23)

with τ = 0 outside the atmosphere (above essentially all its material);

this definition is used in all radiative transfer problems. Equations

(1.7.22) and (1.7.20b) become

dH

dτ
= (Eradc− 4πB)(1 −̟) (1.7.24a)

1

3

dE
dτ

=
H

c
. (1.7.24b)

Differentiation of (1.7.24b) and substitution into (1.7.24a) leads to

d2(Erad − 4πB/c)

dτ2
= 3(1 −̟)(Erad − 4πB/c). (1.7.25)

Applying the boundary condition that Erad → 4πB/c as τ → ∞
leads to the solution

Erad =
4πB

c

[

1 − exp
(

−
√

3(1 −̟)τ
)

]

. (1.7.26)
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One consequence of this result is that the radiation field does not

approach the black body radiation field until τ
>∼ [3(1−̟)]−1/2 ≫ 1;

in an atmosphere with largely absorptive opacity the corresponding

condition is τ
>∼ 1.

Another consequence is found when we compute the emergent

radiant power H(τ = 0) from (1.7.24b):

H =
4πB

3

√

3(1 −̟). (1.7.27)

This should be compared to the result for a black body radiator

H = πB, which is obtained from (1.7.7b) if I = B for ϑ ≤ π/2, and

I = 0 for ϑ > π/2. The scattering atmosphere radiates a factor of
4
3

√

3(1 −̟) ≪ 1 as much power as a black body at the same temper-

ature. This may be described as an emissivity ς = 4
3

√

3(1 −̟) ≪ 1

of the scattering atmosphere; by the condition of detailed balance

such an atmosphere has an angle-averaged albedo (the fraction of

incident flux returned to space after one or more scatterings) of

1 − ς. If it has an effective temperature Te, its actual temperature

T ≈ ς−1/4Te ≈ 0.81(1 −̟)−1/8Te, where we have assumed that ̟

and ς are not strongly frequency dependent.

The high albedo of a medium whose opacity is mostly scatter-

ing is observed in everyday life when one adds cream to coffee. The

extract of coffee we drink is a nearly homogeneous substance whose

opacity is almost entirely absorptive; its albedo is very low. The

mixture of coffee and cream is visibly lighter in appearance because

of the high scattering cross-sections of globules of milk fat. The re-

duced emissivity of the mixture is unobservable, because the Planck

function is infinitesimal at visible wavelengths and room tempera-

ture.

Equation (1.7.27) appears to imply ς > 1 if̟ → 0, but this ther-

modynamically impossible result is incorrect because the assumption

of the Eddington approximation is invalid for τ
<∼ 1, which is the
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important region in determining the emergent flux from an absorb-

ing atmosphere. In a scattering atmosphere, optical depths up to

[3(1 −̟)]−1/2 ≫ 1 are important; the Eddington approximation is

valid over most of this range.

1.8 Turbulent Convection

If we heat the bottom and cool the top of a reservoir of fluid at rest,

heat will flow upward. The central regions of stars are heated by

thermonuclear reactions and their surfaces are cooled by radiation.

If the rate of heat flow is low, it will flow by a combination of radi-

ation and conduction. Conduction is usually dominant in everyday

liquids and in degenerate stellar material, and radiation is usually

dominant in gases, at high temperatures, and in nondegenerate stel-

lar interiors. At high heat fluxes a new process appears, in which

macroscopic fluid motions transport warmer material upward and

cooler material downward. This process is called convection. For

limited parameter ranges convection may take the form of a laminar

flow, but in astronomy it is almost always turbulent, if it occurs at

all. We must ask when it occurs and what are its consequences.

1.8.1 Criteria Two criteria must be satisfied in order to have con-

vection. The first is that viscosity not be large enough to prevent

it. This is an important effect in small laboratory systems, and suc-

cessful quantitative theories exist, but in stellar heat transport the

influence of viscosity is negligible; if convection takes place at all

Reynolds numbers usually exceed 1010.

The more important criterion is that the thermodynamic state

of the stellar interior be such that convective motions release energy,
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rather than requiring energy to drive them. In other words, convec-

tion will occur if it carries heat from hotter regions to cooler ones

(given the well-justified assumption that viscosity is a negligible re-

tarding force), but not if it were to carry heat from cooler regions to

hotter ones.

To make this criterion more quantitative we compare the ther-

modyamic state of the star at two radii separated by a small radius

increment dr; at rl the pressure is Pl and the density is ρl, while at ru

the pressure is Pu and the density is ρu. We assume that the chemi-

cal composition is uniform and that densities and opacities are high

enough that radiative transport of energy is negligible on the time-

scales of convective motions; these assumptions are usually (but not

always) justified in stellar interiors, but fail in stellar atmospheres.

We also relate adiabatic variations in the pressure and density of the

fluid by an equation of state of the form

P ∝ ργ . (1.8.1)

Such a fluid is known as a “γ-law” gas; γ is discussed in 1.9.1 and

is usually between 4/3 and 5/3. It is here only necessary to assume

that the form (1.8.1) holds for adiabatic processes over small ranges

of P and ρ; this will be the case for any fluid except near a phase

transition.

Now consider raising an element of fluid from the lower level

to the upper one, with all fluid velocities slow (much slower than

the sound speed) so that the fluid element remains in hydrostatic

equilibrium with its mean surroundings. When it reaches the upper

level it has a density ρ′u given by

ρ′u = ρl

(

Pu

Pl

)
1
γ

≈ ρl

(

1 +
1

γPl

dP

dr
dr

)

. (1.8.2)

If ρ′u > ρu then the raised fluid element is denser than its sur-

roundings and will tend to fall back to its initial position. In this case
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the fluid is stable against convective displacement. A more quanti-

tative analysis would calculate the frequency of sinusoidal perturba-

tions of the horizontal fluid layers (analogous to water surface waves,

but allowing for the continuous variation of P and ρ), and would find

their frequency to be real.

If ρ′u < ρu the raised fluid is less dense than its surroundings,

and experiences a further buoyancy force which accelerates its rise. A

similar calculation of the density of a fluid element descending from

the upper layer shows that for it ρ′l > ρl, so negative buoyancy accel-

erates its descent. In this case the fluid is unstable, and convective

motions begin. In the more quantitative analysis the perturbations

of the horizontally layered structure have imaginary frequencies of

both signs, and grow exponentially.

For small dr we may write ρu ≈ ρl + dρ
dr
dr so that the stability

condition becomes

− 1

γP

dP

dr
< −1

ρ

dρ

dr
. (1.8.3)

This awkward-appearing form with minus signs on each side has been

chosen because the derivatives are both negative.

The definition of an incompressible fluid is that γ → ∞; then

the stability criterion (1.8.3) becomes dρ
dr

< 0, a familiar result. It

is apparent that for compressible fluids as well dρ
dr > 0 would make

stability impossible (because the equation 1.3.1 of hydrostatic equi-

librium requires dP
dr < 0). For an adiabatic equation of state of the

form (1.8.1) the entropy S ∝ ln(P/ργ), and the stability condition

takes the form

0 <
dS

dr
. (1.8.4)

These stability conditions are local; it is clear that if an unstable

interchange is possible between two widely separated layers (1.8.3)

and (1.8.4) will be violated for at least a portion of the region between

the layers.
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The bound (1.8.3) may be transformed into a bound on dT
dr by

use of (1.4.5); the result is messy unless one of the terms in (1.4.5)

is negligible. More generally, if P ∝ ραT β (in contrast to 1.8.1, this

refers to the functional form of P (ρ, T ), and not to its variation under

adiabatic processes) we can readily obtain

−
(

1 − α

γ

)

1

P

dP

dr
> − β

T

dT

dr
. (1.8.5)

This is known as the Schwarzschild criterion for stability.

In this derivation we have assumed uniform chemical composi-

tion and have ignored angular momentum. Either of these may make

the problem much more difficult. For example, if the matter in layer

l has higher molecular weight than that in layer u this will tend to

stabilize the fluid against convection. A more subtle process called

semi-convection may still occur even when ordinary convection does

not; it depends on the ability of energy to flow radiatively out of the

denser fluid, and thus to separate itself from the stabilizing influence

of the higher molecular weight. Semi-convection is one of a large

class of “double-diffusive” and “multi-diffusive” processes known to

astrophysicists and geophysicists.

The criterion (1.8.5) shows that there is instability when
∣

∣

dT
dr

∣

∣ is

large, and (1.3.4) shows that this tends to occur when κ or L/r2 are

large. Detailed calculations show that (1.8.3–5) are violated in the

outer layers of stars with cool surfaces (including the Sun) because at

low temperatures κ is large, and near the energy-producing regions

of luminous stars, where L/r2 is large.
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1.8.2 Consequences Suppose (1.8.3–5) are violated; what then? It

is clear that the interchange of elements of matter which are unstable

against interchange will tend to reduce ρu and to increase ρl, and to

increase Su and to decrease Sl. The limiting state of this process is

to turn the violated inequalities (1.8.3–5) into equalities whch then

describe the variation of P , ρ, T , and S in the star. Any one of these

equalities (they are all equivalent) then replaces (1.3.4) in describing

the thermal structure of the star. In other words, the effect of con-

vective instability is to eliminate the conditions which gave rise to it.

This is a natural and plausible hypothesis which is widely assumed

in turbulent flow problems. It cannot be exactly true; some small

excess
∣

∣

dT
dr

∣

∣ must remain to drive the convective flow.

A crude argument exists to estimate the accuracy of this ap-

proximation; the estimate is based on an adaptation of Prandtl’s

mixing length theory of turbulent flows. Although reality is surely

more complex, imagine that the turbulent flow is composed of dis-

crete fluid elements which rise or fall without drag forces (but remain

in pressure equilibrium with their surroundings) for a distance ℓ from

their origins. After travelling this distance they mix with their new

surroundings and lose their identity. Denote the excess of the temper-

ature gradient over the value given by (1.8.5) (taken as an equality)

by ∆∇T ; it is this quantity (called the superadiabatic temperature

gradient) we must estimate. After a rising fluid element has travelled

a distance dr its temperature exceeds that of its mean surroundings

by an amount ∆∇Tdr; its own thermodynamic state has varied ex-

actly adiabatically and it remains in pressure equilibrium with its

mean surroundings (both by assumption). A falling fluid element is

similarly cooler than its mean surroundings by ∆∇Tdr. The combi-

nation of rising warmer fluid and falling cooler fluid produces a mean

convective heat flux

Hconv ∼ ∆∇TdrcP ρv, (1.8.6)
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where v is a typical flow velocity and cP is the specific heat at con-

stant P .

In order to estimate v we use the assumption that the only forces

acting on fluid elements are those of buoyancy. We have

∆∇ρ
ρ

=

(

β

γ − α

)

∆∇T
T

∼ ρ

T
∆∇T, (1.8.7)

and the buoyancy force (which is proportional to dr) leads to a ve-

locity

v2 =
GM(r)

r2
∆∇ρ
ρ

(dr)2 ∼ GM(r)

r2
∆∇T
T

(dr)2. (1.8.8)

Now evaluate these expressions after fluid elements have travelled

half of the mixing length, so that dr = ℓ/2:

Hconv ∼ cP ρℓ
2

4

√

GM(r)

r2T
(∆∇T )3/2. (1.8.9)

A sensible choice of ℓ is a matter of guesswork; it is usually taken

to be comparable to the pressure scale height
∣

∣

d ln P
dr

∣

∣

−1
. Observations

of the Solar surface show that the convective motions are very com-

plex. The visible surface is divided into a network of small polygonal

cells, called granules, which are columns of rising fluid bounded by

regions of descending fluid. There is also a larger scale pattern of

supergranulation. These observations do not provide direct evidence

concerning the vertical mixing length, and flows in the observable

Solar atmosphere (where the scale height is small) may not resemble

those in deeper layers.

If ℓ is the pressure scale height and Hconv = L/(4πr2) − Hav

(where Hav is the radiative flux calculated in 1.7) then we can eval-

uate ∆∇T and v at various places in a star. Our results may be

manipulated to yield

∆∇T ∼
∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

(

ℓ

r

)−4/3(
th
tth

)2/3

(1.8.10a)
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v2 ∼ c2s

(

Tc

T

)(

ℓ

r

)2/3(
th
tth

)2/3

(1.8.10b)

where the thermal time tth has been redefined (from 1.6.2) to include

only the thermal energy content of the convective region, Tc is the

central temperature, and cs is the sound speed. For the convective

regions of the Sun (but not its surface layers) ∆∇T ∼ 10−6
∣

∣

dT
dr

∣

∣

and v ∼ 10−4cs ∼ 30 m/sec. Thus the adiabatic approximation

to the structure of a convective zone—the adoption of (1.8.3–5) as

equalities—is usually justified to high accuracy, even though the es-

timates (1.8.6–9) are very crude. Similarly, characteristic hydrody-

namic stresses are ∼ ρv2 ∼ 10−8P , which establishes that the as-

sumption that fluid elements remain in hydrostatic equilibrium also

holds to high accuracy. The time for fluid to circulate through the

Solar convective region is ∼ ℓ/v ∼ 1 month, which is short enough

to guarantee complete mixing.

These approximations break down in the surface layers of stars,

as shown by equations (1.8.10). In these layers the scale height and

ℓ become small, as do ρ, T , and tth (tth ≈ cP ρTℓ/H). It is not

possible to calculate quantitatively the structure of these layers. This

problem is most severe for cool giants and supergiants, where T and

especially ρ become very small. Their surfaces may not be spherical

or in hydrostatic equilibrium, but may rather consist of geysers or

fountains of gas which erupts, radiatively cools, and then falls back.

It is important to realize that Hconv (1.8.9) is not directly re-

lated to or limited by the pressure gradient, unlike the radiative Hav

(1.7.17). This means that in stellar interiors convection may carry a

nearly arbitrarily large luminosity, and the Eddington limit LE does

not apply.

Near stellar surfaces this problem is more complicated because

there ∆∇T becomes large for largeHconv. In the low densities of stel-

lar atmospheres convection is incapable of carrying a large heat flux

because the thermal energy content of the matter is low, and energy



40 Stars

must flow by radiation. For hot stars the opacity is essentially con-

stant and radiative transport in the upper atmosphere imposes the

upper bound LE on the stellar luminosity. For cool giants and super-

giants the opacity in the upper atmosphere may be extremely small,

and no simple bound on the luminosity exists. The actual luminosity

of fully convective stars is determined by these surface layers in which

the approximation of nearly adiabatic convection breaks down, and

no satisfactory theory exists.

1.9 Constitutive Relations

Each of the constitutive relations (1.3.5–7) is an extensive field of

research which extends far beyond the scope of this book. This

section presents only the sketchiest overview of a few qualitative

conclusions which should be familiar to every astrophysicist.

1.9.1 Adiabatic Exponent Here we derive a few useful results. Be-

cause stars are large and opaque, and tth is usually long, we are often

concerned with the properties of matter undergoing adiabatic pro-

cesses.

Consider a perfect gas which satisfies the equation of state

(1.4.5)

P =
ρNAkBT

µ
(1.9.1)

where we now neglect radiation pressure. For a gram of gas under-

going a reversible process

dQ = dU + PdV (1.9.2)

where dQ is an infinitesimal increment of heat, U(V, T ) is the inter-

nal energy per gram, and V ≡ 1/ρ is the volume per gram. We
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define a perfect gas by the condition that U depend only on T :

U(V, T ) = U(T ).

The specific heats at constant pressure and at constant volume,

cP and cV respectively, are defined:

cP ≡ dQ

dT

∣

∣

∣

∣

P

(1.9.3a)

cV ≡ dQ

dT

∣

∣

∣

∣

V

, (1.9.3b)

where the subscript denotes the thermodynamic variable to be held

constant. From (1.9.2), using (1.9.1) to eliminate P

cV =
dU
dT

(1.9.4a)

cP =
dU
dT

+
NAkB

µ
. (1.9.4b)

The definition of an adiabatic process is that dQ = 0. From the

preceding equations and definitions we find for such a process

0 = cV dT + (cP − cV )
T

V
dV. (1.9.5)

Defining γ ≡ cP /cV yields

0 = d lnT + (γ − 1)d lnV. (1.9.6)

Integrating this equation, using the definition of V and (1.9.1), yields

P ∝ ργ . (1.9.7)

The ratio of specific heats depends on the atoms or molecules

making up the gas. By explicit calculation of U for a perfect gas it

is easy to see that

γ =
q + 2

q
(1.9.8)
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where q is the number of degrees of freedom excited per atom or

molecule. For a monatomic gas q = 3, for a diatomic gas in which

the vibrational degrees of freedom are not excited (such as air under

ordinary conditions) q = 5, while for a gas of large molecules or one

undergoing temperature-sensitive dissociation or ionization q → ∞.

In stellar interiors we may usually take q = 3 and γ = 5/3, except in

regions of partial ionization or where radiation pressure or relativistic

degeneracy are important.

In this simple derivation it was necessary to assume a perfect gas

and to exclude radiation pressure. These may be included, but lead

to much more complex results. For a gas consisting only of radiation

this derivation is invalid because cP → ∞; T is a unique function

of P so that at fixed P no amount of added energy can raise the

temperature.

¿From the relation (1.9.7) describing adiabatic processes we can

derive a relation between P and the internal energy per volume E .

Taking logarithmic derivatives of (1.9.7) and using the definition of

V we obtain

V dP = −γPdV. (1.9.9)

Adding PdV to each side gives

V dP + PdV = −(γ − 1)PdV (1.9.10a)

d

(

PV

γ − 1

)

= −PdV. (1.9.10b)

In an adiabatic process the work done by the fluid on the outside

world is −PdV , so that (1.9.10b) has the form of a condition of

conservation of energy for the fluid, with the left hand side being

the increment in internal energy. Then the internal energy per unit

volume E is given by

E =
P

γ − 1
. (1.9.11)
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The order of the manipulations between (1.9.7) and (1.9.11) may be

reversed, so that these two relations are equivalent.

It is important to note that the equivalence between (1.9.7) and

(1.9.11) does not require the assumption of a perfect gas or the def-

inition of the specific heats, so that it applies even where it is not

possible to derive γ as a ratio of specific heats. The most important

application of this is to radiation. From (1.7.12) (or 1.7.7), for a

black body radiation field Erad = 3Prad, so that γ = 4/3 and (1.9.7)

describes adiabatic processes in a gas of equilibrium radiation.

1.9.2 Degeneracy The matter in degenerate dwarves, the cores

of some giant and supergiant stars, and in neutron stars is Fermi-

degenerate. By this we mean that the thermal energy kBT is much

less than the Fermi energy ǫF (or, more properly, the chemical po-

tential of the degenerate species), so that states with energies up to

ǫF are nearly all occupied, and those with higher energies are nearly

all empty. This resembles the familiar metallic state of matter. The

degenerate species is usually the electron; in neutron stars free neu-

trons are also degenerate, hence their name.

The density nd of the degenerate fermion species is given by

nd = 2

(

4

3
πp3

F

)

1

h3
, (1.9.12)

where pF is the momentum corresponding to the Fermi energy ǫF .

This is a standard result of elementary statistical mechanics, ob-

tained by counting volumes in phase space, or by calculating the

eigenstates of free particles in a box. The factor of 2 comes from the

statistical weight of spin 1/2 particles.

For noninteracting nonrelativistic particles of mass md we have

ǫF =
p2

F

2md
∝ n

2/3
d , (1.9.13)
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while characteristic Coulomb energies vary with density as ǫC ∝
e2n

1/3
d . Thus at high densities ǫF ≫ ǫC and degenerate electrons

may be accurately treated as non-interacting particles. This makes

the calculation of their equation of state easy and accurate, because

the complex band structure of ordinary metals (for which ǫF ∼ ǫC)

may be neglected. The cohesion of ordinary metals (the fact that

they have P = 0 at finite nd) requires that ǫC be comparable to ǫF .

The pressure and internal energy of noninteracting degenerate

nonrelativistic particles are found by integrating over their distribu-

tion function:

P =

∫ pF

0

pxvx
2

h3
d3p

=
1

3

∫ pF

0

mdv
2 2

h3
d3p

=
8πp5

F

15mdh3

∝ ρ5/3

(1.9.14a)

E =

∫ pF

0

mdv
2

2

2

h3
d3p

=
3

2
P,

(1.9.14b)

where we have used the fact that 〈pxvx〉 = 1
3 〈pxvx + pyvy + pzvz〉 =

1
3
〈pv〉 for a distribution function which is isotropic in 3-dimensional

momentum space; here unsubscripted p and v denote their magni-

tudes. The relation between E and P , which corresponds to γ = 5/3,

depends only on the fact that the particle energy ǫp = 1
2pv, and

not on the form of the distribution function; hence it applies to all

noninteracting gases of nonrelativistic particles, whether degenerate,

nondegenerate, or partially degenerate (ǫF ≈ kBT ).

If the density is very high most of the particles are relativistic,

ǫp ≈ pc and vx ≈ cpx/p. If we assume this relation holds exactly
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over the entire distribution function then

P =

∫ pF

0

p2
xc

p

2

h3
d3p

=
1

3

∫ pF

0

pc
2

h3
d3p

=
2πcp4

F

3h3

∝ ρ4/3

(1.9.15a)

E =

∫ pF

0

pc
2

h3
d3p

= 3P.

(1.9.15b)

The relation between E and P , which corresponds to γ = 4/3, de-

pends only on the relativistic relation ǫp = pc, and not on the form

of the distribution function; hence it applies to all noninteracting rel-

ativistic gases whether degenerate or not; it even applies to bosons,

which is why we recover the relation (1.7.12) for photons.

Between the nonrelativistic and relativistic limits is a regime in

which neither (1.9.14) nor (1.9.15) is accurate, and 4/3 < γ < 5/3.

This transition occurs for pF ≈ mdc, which by (1.9.12) occurs at a

density

nd ≈ 8πm3
dc

3

3h3
. (1.9.16)

For degenerate electrons this corresponds to ρ ≈ 2 × 106 gm/cm3,

while for neutrons ρ ≈ 1016 gm/cm3. These are, to order of magni-

tude, the characteristic densities of degenerate dwarves and neutron

stars respectively.

The regions in the ρ - T plane in which various approximations

to the equation of state hold are shown in Figure 1.2. Quantitative

calculations exist for the intermediate cases. The regions occupied

by the centers and deep interiors of ordinary stars and of degenerate

dwarves are shown.
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Figure 1.2. Equation of State Regimes.

The results (1.9.14) and (1.9.15) are only rough approximations

for degenerate neutrons, because neutrons interact by strong nu-

clear forces, which are attractive at relatively large distances (several

×10−13 cm) but which are strongly repulsive at shorter distances.

1.9.3 Opacity A quantitative calculation of the opacity of stel-

lar material requires elaborate calculations involving the absorption

cross-sections of the ground and many excited states of many ionic

species. Such calculations have been performed, and their results are

available for quantitative work. It is still important to be aware of a

few qualitative principles.
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In all ionized matter free electrons scatter radiation, a process

called Thomson or Compton scattering. For nondegenerate electrons,

in the limits hν ≪ mec
2 and kBT ≪ mec

2 the scattered radiation

has the same frequency as the incident radiation, and carries no net

momentum. The scattering is not isotropic, but for all 0 ≤ ψ ≤ π/2

scattering by angles ψ and by π−ψ is equally likely; for most purposes

it may be treated as if it were isotropic. The total scattering cross-

section (2.6.3) is 8πe4

3m2
ec4 = 6.65 × 10−25 cm2. For matter of the

usual stellar composition (70% hydrogen by mass) this produces an

electron scattering opacity

κes = 0.34 cm2/gm. (1.9.17)

Because this opacity is essentially independent of frequency and tem-

perature in fully ionized matter, (1.9.17) is usually a lower bound on

the Rosseland mean opacity. The only circumstances in which the

opacity of stellar matter may be significantly less than this value are

when it is degenerate (electron scattering is suppressed because most

outgoing electron states are occupied), or when it is cool enough that

most of the electrons are bound to atoms. The total opacity drops

below the value given by (1.9.17) for T
<∼ 6000◦K.

A free electron moving in the Coulomb field of an ion may ab-

sorb radiation; this process is called free-free absorption or inverse

bremsstrahlung. Its quantitative calculation is rather lengthy, but

a simple semiclassical result is informative. This may be obtained

by using the classical expression (2.6.12) or (2.6.15) for the power

radiated by an accelerated charge (an electron in the Coulomb field

of the ion) to calculate the emissivity, and using the condition of

detailed-balance (1.7.13) to obtain from this the opacity. The re-

sulting cross-section per electron is proportional to niv
−1ν−3, where

ni is the ion density, v is the electron velocity, and ν is the photon

frequency. For a typical electron v will be comparable to the ther-

mal velocity, so v ∝ T 1/2, and for a representative photon hν ∝ T .
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Rough numerical evaluation of the Rosseland mean leads to

κR ∼ 1023 ρ

T 7/2
cm2/gm; (1.9.18)

this expression is only approximate. The functional form of (1.9.18)

is known as Kramers’ law.

The photoionization of bound electrons (from both ground and

excited states) produces bound-free absorption. Its frequency de-

pendence above its energy threshold is usually similar to the ν−3

of free-free absorption, but the abundances of the various ions, ion-

ization states, and excitation levels must be considered too. The

resulting mean opacity roughly follows Kramers’ law, and is of the

same order of magnitude as that attributable to free-free absorption.

Any Kramers’ law opacity is large at low temperature and high

density. At high temperature or low density electron scattering is

the principal opacity. The dividing line is approximately given by

T ∼ 5×106ρ2/7 ◦K. At low temperatures (T
<∼ 10000◦K) the number

of free electrons becomes small and most photons have insufficient

energy to ionize atoms; consequently, the opacity drops precipitously

and falls below κes.

The serious user of quantitative opacity information will use

the tables which have been computed, but a few further qualitative

points should be made:

Because the Rosseland mean is a harmonic mean, the various

contributions to the mean opacity are not additive unless they have

the same frequency dependence.

Absorption opacities contain a factor
[

1−exp(−hν/kBT )
]

whose

physical origin is the effect of stimulated emission. This must be

included when the Rosseland mean is computed; it is implied by the

factor of this form contained in Bν in (1.7.13); LTE of the atomic

and ionic levels has been assumed.

Scattering opacities do not contain a stimulated emission factor

if the scattering conserves frequency. The total rate of scattering
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from state i to state f is proportional to ni(1+nf ), where ni and nf

are the occupation numbers of the corresponding photon states; ninf

is the rate of stimulated scattering. ¿From this must be subtracted

the rate nf (1+ni) of scatterings from f to i. The net rate is propor-

tional to ni − nf , where ni gives the scattering rate implied by the

scattering cross-section without any stimulated scattering term, and

nf gives the the scattering contribution to the source term j. The

absence of an explicit stimulated scattering factor is of little impor-

tance in stellar interiors, but may be significant in laser experiments

in which ni and nf may be very large.

Degenerate matter, like ordinary metals, is a good conductor

of heat, and in it the radiative transport of energy is usually in-

significant. Because the conductive heat flux is proportional to the

temperature gradient, a relation like (1.3.4) may be defined in which

κ includes also the effects of conduction.

1.9.4 Thermonuclear Energy Generation Many nuclear reactions

are involved in the thermonuclear production of energy and the trans-

mutation of lighter elements into heavier ones. Each presents special

problems. Here I briefly discuss a few general principles. Quanti-

tative calculation of reaction rates in stellar interiors requires more

careful attention to many details; see, for example, Clayton (1968)

and Harris et al. (1983).

The radius of a nucleus containing A nucleons is approximately

given by

R ≈ 1.4 × 10−13A1/3cm. (1.9.19)

The electrostatic energy required to bring two rigid and unpolarizable

spherical nuclei of radii R1 and R2 and atomic numbers Z1 and Z2
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into contact, if their charges are concentrated at their centers, is

EC =
Z1Z2e

2

R1 +R2
≈ Z1Z2

A
1/3
1 + A

1/3
2

MeV. (1.9.20)

Once the nuclei touch strong attractive nuclear forces take over. In

the centers of main sequence stars kBT is in the range 1
2 – 4 KeV so

that it is evident that conquering the Coulomb barrier is the chief

obstacle to thermonuclear reactions.

The Coulomb barrier is overcome by tunnelling, in a manner

first calculated by Gamow; nuclei with energies much less than EC

may (infrequently) react. We work in the center-of-mass frame of the

two nuclei, so that m = M1M2

M1+M2
is their reduced mass, r their sepa-

ration, and k =
√

2mE◦/h̄ and E◦ are the wave-vector and kinetic

energy at infinite separation. The barrier tunnelling probability P0

is calculated in the W. K. B. approximation as

P0 ∼ exp

(

−2

∫ r◦

R

√

2me2Z1Z2

h̄2r
− k2 dr

)

≡ exp(−I), (1.9.21)

where we write only the very sensitive exponential term, neglecting

more slowly varying factors. Here R = R1 + R2 is the separation

at contact (within which the nuclear interactions make the potential

attractive), r◦ = 2me2Z1Z2

h̄2k2 is the classical turning point (at which the

integrand is zero), and the subscript 0 indicates that we consider only

the l = 0 partial wave. Higher angular momentum states produce

much smaller Pl.

The exponent in (1.9.21) may be calculated:

I = 2k

∫ r◦

R

√

r◦
r

− 1 dr

= 4kr◦

∫ 1

√
R/r◦

√

1 − ζ2 dζ,

(1.9.22)
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where ζ ≡
√

r/r◦. Now
√

R/r◦ ≪ 1 so that we may expand the

integral in a power series in
√

R/r◦ with the result:

I = 4kr◦

(

∫ 1

0

√

1 − ζ2 dζ −
∫

√
R/r◦

0

1 dζ + · · ·
)

= 4kr◦

(

π

4
−
√

R

r◦
+ · · ·

)

.

(1.9.23)

The leading term in (1.9.23) does not depend on R at all; this is

fortunate because it implies that to a good approximation the result

is independent of the nuclear sizes or to the form of the potential

near nuclear contact, where it is poorly known. We now have

I =
πZ1Z2e

2

h̄

√

2m

E◦

− 4
e

h̄

√

2mZ1Z2R + · · · . (1.9.24)

The second term is independent of energy; it affects the reaction rate

but we do not consider it further. The third and higher terms are

small. The first term is large and after exponentiation makes the

reaction rate a sensitive function of E◦.

We now must average the reaction rate over the thermal equi-

librium distribution of nuclear kinetic energies. When we transform

variables from the velocities of the reacting nuclei to the center-of-

mass and relative velocities vcm and vrel, we find that the kinetic

energy 1
2M1v

2
1 + 1

2M2v
2
2 = 1

2 (M1 + M2)v
2
cm + 1

2mv
2
rel, so that the

distribution function of the relative motion of the reduced mass m is

Maxwellian at the particle temperature T . Then the total reaction

rate is given by the average over the distribution function 〈σvrel〉,
where σ is the reaction cross-section and contains the critical factor

exp(−I). Aside from slowly varying factors this leads to

〈σvrel〉 ∼
∫ ∞

0

exp

(

− E

kBT
− B√

E

)

dE, (1.9.25)
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where B ≡ πZ1Z2e
2
√

2m/h̄.

The first term in the exponent in (1.9.25) declines rapidly with

increasing E, while the second increases rapidly. For B2 ≫ kBT

(almost always the case) their sum has a fairly narrow maximum,

and when exponentiated the peak is very narrow. We therefore find

the maximum and expand around it. By elementary calculus

− E

kBT
− B√

E
= −3EG

kBT
− 3

8

B

E
5/2
G

(E − EG)2 + · · · , (1.9.26)

where the Gamow energy EG has been defined

EG ≡
(

BkBT

2

)2/3

. (1.9.27)

Now the integral in (1.9.25) may be carried out by taking only the

first two terms of (1.9.26) and extending the lower limit of integration

to −∞, with the result

〈σvrel〉 ∼

√

8πE
5/2
G

3B
exp

(

−3EG

kBT

)

∼ exp

[

−3

(

π2Z2
1Z

2
2e

4m

2h̄2kBT

)1/3]

,

(1.9.28)

where in the last expression the slowly varying factor has been

dropped, as similar factors were before, leaving only the dominant

exponential dependence. This result gives the dominant temperature

dependence of nonresonant thermonuclear reactions.

Under typical conditions of interest the argument of the cube

root in (1.9.28) is ∼ 104. It is therefore apparent that P0 and 〈σvrel〉
are very small, as must be the case, in order that the nuclei in a

dense stellar interior survive for 106–1010 years before reacting. It is

then evident that the reaction rate is a steeply increasing function of

T , and a steeply decreasing function of Z1Z2. The sensitivity to T
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implies that thermonuclear energy generation acts nearly as a ther-

mostat when in a star whose effective specific heat is negative (see

1.5), and tends to produce rapid instability when the effective spe-

cific heat is positive (as is the case in degenerate matter or for thin

shells). It also means that when energy is produced by a given nuclear

reaction T is a weak function of the other parameters. The sensitiv-

ity to Z1Z2 implies that in most circumstances the reactions which

proceed most rapidly are those with the smallest product Z1Z2.

Real nuclear physics makes the problem more complex. If the

reaction of interest is resonant at near-thermal energies (as some

important ones are) this may increase the reaction rates by a large

factor. The peculiar properties of nuclei with A = 2, 5, and 8 are

also worthy of note:

The only stable nucleus with A = 2 is the deuteron. To produce

it from protons requires the reaction

p+ p→ D + e+ + νe. (1.9.29)

Because this reaction depends on the weak interaction (it amounts to

a β-decay from an unbound diproton state), its rate is many orders

of magnitude lower than would otherwise be the case. Yet there is

no other direct way of combining two protons; the diproton is not

a bound nucleus at all, but is better described as a pole of the p-p

scattering matrix. Were the diproton bound, stars (and the uni-

verse) would be very different. Because (1.9.29) is so slow, a cat-

alytic process known as the CNO cycle proceeds more rapidly in

stars more massive than the Sun, even though it requires reactions

with Z1Z2 = 7.

There are no stable nuclei with A = 5 or 8, so that helium nuclei

cannot react with each other or with protons. More exotic reactions

(such as 3He + 4He, or He + Li) also do not cross the A = 8 barrier.

The only way to build nuclei heavier than A = 8 is by the process

α+ α+ α ⇀↽12 C∗ →12 C + γ + γ′, (1.9.30)
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where the asterisk denotes the 7.654 MeV excited state and the right

hand side indicates two successive radiative decays. This process is

resonant because the energy of 12C∗ is only E∗ = 379 KeV above

that of three α-particles. In (1.9.30) the decay rate Γα of 12C∗ to

the left is much faster than that Γγ to the right; the excited state is

in thermal equilibrium with the α-particles, and its density n∗ may

be calculated from the Saha equation, with the result:

n∗ = n3
α

(

h2

2πkBT

)3 (
3mα

m3
α

)3/2

exp(−E∗/kBT ), (1.9.31)

where nα and mα are the α-particle density mass.

The exponential in (1.9.31) contains the critical temperature

dependence, which is characteristic of resonant reaction rates and

is even steeper than that of (1.9.28). The factor P0 need not be

calculated explicitly because it enters in both directions on the left

hand side of (1.9.30). A steady state abundance of 12C∗ is achieved in

a time ∼ Γ−1
α ∼ 10−15 sec. In practice, (1.9.30) proceeds through the

unbound 8Be nucleus (a scattering resonance only 92 KeV above the

energy of 2 α-particles), rather than through a triple collision, but

this does not affect the thermodynamic argument or the result. The

reaction rate is n∗Γγ . The presence of an excited state of 12C at the

right energy to facilitate (1.9.30) is the reason carbon is a relatively

abundant element in the universe; this is apparently fortuitous unless

one attributes it to divine intervention, or argues that if it were not

there we would not be present to observe its absence.

1.10 Polytropes

The solution of the equations (1.3.1–4) of stellar structure is com-

plicated, because the equation of hydrostatic equilibrium (1.3.1) is
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coupled to the equation of energy flow (1.3.4) through (1.3.3) and the

constitutive relation among P , ρ, and T . This problem is now readily

handled numerically, even if some of the assumptions (most impor-

tantly, that of a thermal steady state) made in deriving (1.3.1–4)

are relaxed. In the early (pre-computer) decades of stellar structure

research this was not possible, and calculations of models simplified

still further were performed. These methods are of more than histor-

ical interest, because the very simplified models which they produced

are still powerful qualitative tools in understanding stars. They can-

not replace modern computational methods of obtaining quantitative

results, but they are much more transparent than a table of num-

bers, and therefore are very helpful to the astrophysicist who needs

a qualitative understanding of the properties of self-gravitating con-

figurations of matter.

A polytrope is a solution of the equation of hydrostatic equi-

librium (1.3.1) under the assumption that the pressure P and the

density ρ are everywhere related by the condition

P = Kρ
n+1

n . (1.10.1)

The quantity n is called the polytropic index.

This relation is formally identical to the adiabatic relation

(1.9.7) if γ = n+1
n , but their meanings are quite different. Equation

(1.9.7) describes the variation of the properties of a fluid element

undergoing an adiabatic process. Equation (1.10.1) constrains the

variations of P and ρ with radius in a star, because if r is introduced

as a parameter it relates P (r) and ρ(r). A star may be described

by (1.10.1) even if the thermodynamic properties of its constituent

matter are described by an adiabatic exponent γ different from n+1
n .

Equations (1.10.1) and (1.9.7) are equivalent if a star is neu-

trally stable (equivalently, marginally unstable) against convection,

so that the actual dependence of P on ρ in the star is the same as
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the adiabatic one. This will be the case in a star which is com-

pletely convectively mixed, as is believed to be the case for very low

mass main-sequence stars (M
<∼ 0.2M⊙). The envelopes of red gi-

ants and supergiants are mixed, and also resemble polytropes if the

gravitational influence of their dense cores may be neglected (a fair

approximation if the envelope is very massive). In each of these cases

n ≈ 3/2; the deep convective envelope is a consequence of the high

radiative opacity in the surface layers. Very luminous and massive

stars also possess extensive mixed inner regions, and their envelopes

are not far from convective instability. For these stars n ≈ 3; con-

vection is a consequence of their large luminosity.

The assumption of (1.10.1) in place of (1.3.4) permits the stellar

structure equations to be reduced to a single nonlinear ordinary dif-

ferential equation characterized by the parameter n. This equation

is readily integrated numerically (even without computers!). Elimi-

nating M from (1.3.1) and (1.3.2), we obtain

1

r2
d

dr

(

r2

ρ

dP

dr

)

= −4πGρ. (1.10.2)

Dimensionless variables are defined: φn ≡ ρ/ρc and ξ ≡ r/α, where

ρc is the central density, and the characteristic length (not the radius)

α ≡
[ (n+1)Kρ(1−n)/n

c

4πG

]1/2
. Substitution of these variables and (1.10.1)

into (1.10.2) yields the Lane-Emden equation:

1

ξ2
d

dξ

(

ξ2
dφ

dξ

)

= −φn. (1.10.3)

The boundary conditions at ξ = 0 are φ = 1 and dφ
dξ = 0. The

surface is defined as the smallest value of ξ for which φ = 0 (the

solution for larger ξ is of no physical significance). Once a numerical

integration in the dimensionless variables has been tabulated, it is

readily applied to a star of specified ρc and K by using the definitions

of φ and ξ.
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Polytropes with certain values of n are of special interest. The

ratios of the central density ρc to the mean density 〈ρ〉 indicate the

degree to which mass is concentrated in their centers, and are a

convenient one-parameter description of their structure.

If n = 0 then (1.10.1) corresponds to an incompressible fluid

(only one value of ρ is permitted) and ρc/〈ρ〉 = 1. The definitions

of φ, α, and K become indeterminate; with a little care they could

be redefined, but there are easier ways of calculating the radius and

pressure distribution of a sphere of incompressible fluid.

If n = 1 (1.10.3) is linear and may be integrated analytically,

with the result φ = sin ξ/ξ. Here ρc/〈ρ〉 = 3.29.

If n = 3/2 (1.10.1) corresponds to an adiabatic star with γ =

5/3, and is therefore a good description of fully convective stars with

this equation of state. The calculated ρc/〈ρ〉 = 5.99 is the lowest such

value which may be obtained for stars composed of perfect gases.

If n = 3 (1.10.1) corresponds to an adiabatic star with γ = 4/3,

and is therefore a good description of fully convective (or nearly

convective) stars with this equation of state. It also turns out that

an n = 3 polytrope is a fair description of the density structure

ρ(r) of stars in the middle and upper main sequence. Their deep

interiors have steeper density gradients than they would if they were

convective, but the adiabatic γ is larger than that of a fully convective

n = 3 polytrope (for which γ must be 4/3); these two effects roughly

cancel. For an n = 3 polytrope ρc/〈ρ〉 = 54.2. In the present-day

Sun this ratio is calculated to be close to 100, while when the Sun was

young it was about 60 (the difference results from the depletion of

hydrogen and the increase in the molecular weight in the core). The

structure and properties of an n = 3 polytrope are widely used when

a rough but convenient model of a star is needed for more complex

calculations.

If n = 5 (1.10.3) may also be solved analytically, with the result

φ = (1 + ξ2/3)−1/2. For n ≥ 5 the radius is infinite because ξ never
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drops to zero.

If n → ∞ (1.10.1) approaches an isothermal equation of state.

The definition of φ becomes improper, but (1.10.2) is readily inte-

grated without using (1.10.3). At large r, ρ ∝ r−2 and M(r) ∝ r,

so that both the radius and the total mass diverge. Such configura-

tions do not describe stars. The upper atmospheres of stars may be

isothermal but their structure does not approach an n = ∞ polytrope

except at very large radii and extremely small density. Long before

this the assumption of hydrostatic equilibrium will have failed be-

cause of the forces applied by the interstellar medium. These n = ∞
polytropes may describe the structure of gravitating clusters of col-

lisionless objects (clusters of stars or of galaxies, for example).

1.11 Mass-Luminosity Relations

In 1.4 we derived scaling relations and made order-of-magnitude es-

timates for the characteristic ρ, P , and T of a star of given mass

M and radius R. We now make similar approximations to estimate

the relation between L and M of a main sequence star. As in 1.4,

our results are not meant to be numerically accurate, but rather to

be an illuminating guide to the governing physics of stars of various

masses.

We begin by defining β, the ratio of the gas pressure to the total

pressure:

Pg = βP (1.11.1a)

Pr = (1 − β)P. (1.11.1b)

The parameter β is a function of T and ρ and, in general, varies

from place to place within a star. Here we assume that it is a con-

stant throughout a given star. This is true for an n = 3 perfect
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gas polytrope, because in such a polytrope the variations in ρ and

T are related by ρ ∝ Tn, so that the two terms in (1.4.5) vary in

proportion. Stars on the middle and upper main sequence are ap-

proximately described as n = 3 polytropes, so that for them our

results, derived assuming a constant β, are fair approximations to

reality.

Now rewrite (1.3.4) or (1.7.19) in the form

dPr(r)

dr
=
κ(r)ρ(r)L(r)

4πcr2
, (1.11.2)

and divide this equation by (1.3.1). The result is

dPr

dP
=

κ(r)L(r)

4πcGM(r)
. (1.11.3)

Drop the explicit dependence on r, and use (1.11.1) to rewrite this

in terms of a constant β:

L =
4πcGM

κ
(1 − β). (1.11.4)

This equation is a fundamental relation among L, M , κ, and β.

Because β > 0 it implies an upper limit on the radiative luminosity

of a star.

In hot, luminous stars κ ≈ κes (1.9.17), so that

L = LE(1 − β), (1.11.5)

where the Eddington limiting luminosity LE is defined

LE ≡ 4πcGM

κes
= 1.47 × 1038 erg

sec M⊙

= 3.77 × 104

(

M

M⊙

)

L⊙.

(1.11.6)
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Therefore, LE is the upper limit to the radiative luminosity of hot

stars. As discussed in 1.8, it does not properly apply to the convec-

tive luminosity; it probably does still limit the luminosity of hot con-

vective stars because their luminosity must flow radiatively through

their atmospheres, where convection is ineffective. Cool supergiants

may perhaps evade the limit (1.11.6) because κ may be very small in

their cool atmospheres, but there is no evidence that they actually

do so.

We can also express β in terms of ρ and T , and by so doing

obtain a unique (though very approximate) relation between L and

M . ¿From the definitions of Pg, Pr, and P (1.4.5) we obtain, after

eliminating T ,

P =

[

3

a

(

NAkB

µ

)4
1 − β

β4

]1/3

ρ4/3. (1.11.7)

Now use the relations (1.4.6,7) to express the dependence of P and

ρ on M and R. In order to obtain a more useful numerical result we

take the actual values of the coefficients which have been calculated

for an n = 3 polytrope. The result is

1 − β

β4
= 2.979 × 10−3µ4

(

M

M⊙

)2

. (1.11.8)

This is known as Eddington’s quartic equation. From it we may

obtain β(M) and L(M). Note that β and L do not depend explicitly

on R.

At low masses (Mµ2 ≪ 20M⊙, which includes nearly all stars)

β → 1 and 1 − β ∝ µ4M2. ¿From (1.11.4), dropping the µ depen-

dence, we obtain the mass-luminosity relation for constant κ:

L ∝M3; (1.11.9)

this describes main sequence stars with κ ≈ κes and holds for

M⊙ ≪M ≪ 50M⊙.
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For stars of yet lower mass, κ is roughly described by Kramers’

law (1.9.18). If we use (1.4.6,8) to determine T and ρ in Kramers’

law, then

L ∝M11/2R−1/2 ∝M5, (1.11.10)

where the last relation assumed M ∝ R, which is implied by the

approximation (1.9.4) that thermonuclear energy generation makes

the central temperature nearly independent of M .

The Sun is very near the transition between (1.11.9) and

(1.11.10), and has β ≈ 0.9996. Very low mass stars (M
<∼ 0.2M⊙) are

fully convective and their luminosity is determined by their surface

boundary condition; the relations of this section do not apply.

Although these results are only approximate, it is evident that

L is a steeply increasing function of M ; massive stars are dispro-

portionately luminous and short-lived, and low mass stars are dis-

proportionately faint. Very massive stars are also much rarer in the

Galaxy than low mass stars, so that they do not overwhelmingly

dominate the total luminosity produced by stars; stars of moderate

(Solar) mass are not insignificant. If one picks a photon of visible

starlight in the Galaxy (or, similarly, chooses a star randomly on the

sky), there is a significant chance that it will have come from a star of

moderate mass. Very low mass stars, however, are so faint (1.11.10)

that they contribute little to the starlight of the night sky.

For very large masses (M
>∼ 50M⊙) β ∝ M−1/2 → 0 and

L→ LE , so that

L ∝M. (1.11.11)

Stars this massive are very rare or nonexistent, but (1.11.11) repre-

sents a limiting relation which is approached by the most massive

and luminous stars.

The relations in this section are inapplicable to stars far from the

main sequence. In degenerate dwarfs the pressure is almost entirely

that of electron degeneracy, which was not included in (1.4.5). As
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a result T is much lower than (1.4.8) would suggest for these dense

stars, and L is lower by several orders of magnitude. This was a

puzzle until electron degeneracy pressure was understood. White

dwarfs slowly cool to a state in which T = 0, β = 1, and L = 0, in

complete contradiction to (1.11.8).

The internal structures of giants and supergiants differ drasti-

cally from those of n = 3 polytropes, with ρc/〈ρ〉 larger by many

orders of magnitude. As a result, the approximate relations (1.4.6,7)

fail completely. The structures of these stars are discussed in 1.13.

An analogue of (1.11.8) may be obtained if, instead of (1.4.7), we

write

P ∼ GM

Rc

M

R3
, (1.11.12)

where Rc = ζR is the core radius. Then we obtain

1 − β

β4
∼ µ4M2

ζ3
. (1.11.13)

Because ζ ≪ 1, the limit β → 0 is approached for much smaller M

than would otherwise be the case; this crudely describes the high

luminosity of giant and supergiant stars.

1.12 Degenerate Stars

The basic theory of cold degenerate stars was developed by Chan-

drasekhar, shortly after the development of quantum mechanics and

the Pauli exclusion principle made possible the calculation of de-

generate equations of state. His work was concerned with stars in

which the electrons are degenerate, known to astronomers as white

dwarves, and the discussion of this section generally refers to them.

The results and conclusions are also qualitatively (but not quanti-

tatively) applicable to neutron stars, in which degenerate neutrons

contribute most of the pressure.
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The theory of degenerate stars quantitatively predicts a rela-

tion between their masses and radii. It is possible to consider also

a number of small effects not included in the basic theory, such as

the effect of nonzero temperature, the structure of the nondegenerate

atmosphere, the thermodynamics of the ion liquid and its crystalliza-

tion, gravitational sedimentation in the atmosphere and in the deep

interior, . . . , and to make detailed predictions about luminosities,

spectra, cooling histories, and other properties. Unfortunately, the

quality of the extant data is inadequate to test either the basic mass-

radius relation or these more sophisticated theories. Reliable masses

are known for only a very few degenerate dwarves, and accurate radii

for fewer (if any). Therefore, we are here concerned chiefly with their

most basic properties, for which the theory, based only on quantum

mechanics and Newtonian gravity, may be assumed with confidence.

In order to calculate the relation between the masses and radii of

degenerate stars, we should calculate the zero-temperature equation

of state P (ρ) for arbitrary density, including the important regime of

ρ ∼ 106 gm/cm3 lying between the relativistic (1.9.15) and nonrela-

tivistic (1.9.14) limits. These calculations exist (see Chandrasekhar

1939), but a qualitative approach using the virial theorem may be

more illuminating.

The total energy E of a star is

E = Egrav +Ein. (1.12.1)

The quantitative value of each of these terms depends on the detailed

forms of ρ(r), M(r), and E(r). Their scaling with M and R may be

simply written, using relations like (1.4.6,7)

Egrav = −
∫ R

0

ρ(r)
GM

r
4πr2 dr ≡ −AGM

2

R
(1.12.2a)

Ein =

∫ R

0

E4πr2 dr ≡ BK
(

M

R3

)γ

R3, (1.12.2b)
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where A and B are dimensionless numbers of order unity, and we

have written P = Kργ ∝ (M/R3)γ, as is appropriate for adiabatic

changes. For our qualitative considerations, we will assume that A
and B are independent of changes in R, although this is not accurate

except in the extreme nonrelativistic and extreme relativistic limits.

To compute the dynamical equilibrium radius of the star we

find the minimum of the function E(R). If γ = 5/3 there is a stable

minimum E at

R =
2BK

AGM1/3
. (1.12.3)

This result is strictly applicable only in the limit ρ → 0 (in order

that γ = 5/3 hold exactly), R → ∞, and M → 0.

(1.12.3) describes the mass-radius relation of low mass degener-

ate dwarves, for which γ = 5/3 is a good approximation. (1.12.3)

applies also to any series of n = 3/2 polytropes with a given value

of K (equivalently, with a given specific entropy); if one adds to the

outside of such a star matter with the same K as that inside, it will

shrink. If mass is removed it expands. This is true both of degenerate

dwarves (for which S = 0) and of low mass nondegenerate stars. The

appearance of M in the denominator of (1.12.3) may be surprising;

it is a consequence of the compressibility of matter and the increase

of the gravitational force with increasing mass.

For small bodies, like those of everyday life, the density is set

by their atomic properties, (1.9.14) is inapplicable, and R ∝ M1/3

(this may be taken as the definition of a planet). Jupiter is near the

dividing line between these two regimes, and thus has approximately

the largest radius possible for any cold body.

If γ = 4/3 the condition of minimum E is an equation for M , in

which R does not appear:

M =

(BK
AG

)3/2

. (1.12.4)
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Such a configuration is an n = 3 polytrope, and A and B may be

calculated from the known properties of polytropes. We know (see

1.5) that if γ = 4/3 then E = 0, independently of R, so the absence

of R from (1.12.4) is no surprise. Because the binding energy is zero

and independent of R the radius is indeterminate.

More remarkable is the fact that a solution exists for only one

allowable mass! This mass is called the Chandrasekhar mass MCh.

Numerical evaluation for the relativistic degenerate equation of state

(1.9.15) gives

MCh = 5.75M⊙/µ
2
e

∼
(

h̄c

Gm2
P

)3/2

mP .
(1.12.5)

Calculations of stellar evolution and nucleosynthesis indicate

that real degenerate dwarves will be composed principally of car-

bon and oxygen; in the special case in which they are built up

by the gradual accretion of matter supplied from the outside they

may be principally helium. For all of these elements the molecular

weight per electron µe = 2. MCh is reduced slightly below the value

given in (1.12.5) by some small effects; the final numerical result is

MCh = 1.40M⊙ (Hamada and Salpeter 1961).

The unique mass (1.12.4,5) and indeterminate radius apply only

in the limit R→ 0 and ρ→ ∞, because only in this limit is γ = 4/3

exactly. Between this singular solution and the low density limit

(1.12.3) there are solutions in which 4/3 < γ < 5/3, and the equa-

tion of state is only partly relativistic. These solutions are not poly-

tropes (because γ is not constant within them), but are readily calcu-

lated. Observed degenerate dwarves are believed to lie in the range

0.4M⊙

<∼M
<∼ 1.2M⊙, and to be in this semirelativistic regime. Cal-

culations show that for these masses R ≈ 6000(M⊙/M) km is a fair

approximation; their characteristic density is ρ ∼ 2 × 106 gm/cm3

(1.9.16). By using the virial theorem (1.5) we can also estimate
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the surface gravitational potential GM/R ∼ mec
2 (actual calculated

values are ∼ 100 KeV/amu).

If M > MCh no zero-temperature hydrostatic solutions exist.

This is probably the most important result in astrophysics, because

it means that stars more massive than MCh must either reduce their

masses below MCh, end their lives in an explosion, or ultimately

collapse.

Equations (1.12.3,4) apply to nondegenerate stars as well. For

example, (1.12.4) describes the dependence of K on M for very mas-

sive stars, which approximate n = 3 polytropes because of the im-

portance of radiation pressure. The factor K has larger values for

nondegenerate matter than for degenerate matter, which has the

lowest possible P at a given ρ.

The discussion of this section also applies qualitatively to neu-

tron stars. Their characteristic density is determined by (1.9.16),

and is ∼ (mn/me)
3 times larger than that of degenerate dwarves,

and their radii are ∼ me/mn times as large. Because K is inde-

pendent of md in the relativistic regime (1.9.15), (1.12.4) predicts

essentially the same limiting mass for neutron stars as for degener-

ate dwarves. Their surface gravitational potential GM/R ∼ mnc
2

(actual numerical values are believed to be ∼ 100 MeV/amu). The

strong interactions between neutrons make (1.9.14,15) and (1.12.4)

rough approximations at best; the equation of state of neutron mat-

ter is controversial. However, the conclusion that as ρ → ∞ the

Fermi momentum pF → ∞ and γ → 4/3, which implies an upper

mass limit Mns
Ch, is inescapable. The effects of general relativity are

also significant, and tend to increase the strength of gravity and to

reduce Mns
Ch, though they are not as large as the uncertainties in the

equation of state.

Most calculations agree that for neutron stars R ≈ 10 km, ap-

proximately independent of mass for 0.5M⊙

<∼ M
<∼ Mns

Ch. The

value of Mns
Ch is also controversial, but it is probably in the range
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1.40M⊙ < Mns
Ch

<∼ 2.5M⊙. The lower bound on Mns
Ch is firm, and

is obtained from the observation of neutron stars of this mass in

the binary pulsar PSR 1913+16, for which relativistic orbital effects

permit accurate determination of the the pulsar mass (this is the

only accurately determined neutron star mass). Because it is hard

to imagine the production of neutron stars except as a consequence

of the collapse of degenerate dwarves (or the degenerate dwarf cores

of larger stars), it is likely that most neutron stars have M ≥ MCh,

which also implies Mns
Ch ≥ MCh. The upper bound on Mns

Ch is less

certain, but uncontroversial properties of the equation of state imply

that it cannot much exceed 2.5M⊙.

It is frequently pointed out in nontechnical astronomy books

that a teaspoon (5 cm3) of typical white dwarf matter has a mass

of about 10 tons. It is not usually added that the internal energy of

this teaspoonful is equivalent to that released by about 20 megatons

of high explosive.

1.13 Giants and Supergiants

Main sequence and degenerate stars may be approximately described

as polytropes. For giants and supergiants polytropic models and the

rough approximations of 1.4 fail completely. These stars contain

dense cores, resembling degenerate dwarves, and very dilute extended

envelopes. The ratio ρc/〈ρ〉, which is 54.2 for an n = 3 polytrope,

may be ∼ 1012 (or more, in extreme cases).

The development of giant structure in a star is the outcome of

complex couplings among the equations (1.3.1–7). Their solutions,

obtained numerically, are the only proper explanation of giant struc-

ture, but it is useful to consider rough arguments. If the core and

envelope are considered separately, the approximations of 1.4, and

simple models, may still be qualitatively informative.
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A main sequence star will eventually exhaust the hydrogen at

its center, leaving a core of nearly pure helium. For stars of masses

approximately equal to or exceeding that of the Sun, this happens

in less than the age of the Galaxy. Stars have presumably been

born throughout that time (there are few quantitative data), so that

there now exist stars of a variety of masses which have helium cores.

Because the star continues to radiate energy, in a thermal steady

state hydrogen must continue to be transformed to helium. This will

happen in the hottest part of the star which contains hydrogen, a

thin shell just outside the helium core.

The helium core will be essentially inert. In steady state it

is isothermal at the temperature of the hydrogen burning shell at

its outer surface. Because of the thermostatic properties (1.9.4) of

thermonuclear energy release, we may roughly regard this shell as

having a fixed T◦ ≈ 4 × 107◦K.

Once the core has accumulated a significant fraction (typically

8%) of the stellar mass, its temperature T◦ is insufficient to satisfy the

equation (1.3.1) of hydrostatic equilibrium. Equation (1.4.8) explains

why; T is set by the shell temperature, and hence by the structure of

the outer star, but the core has a larger value of µ (4/3 for helium)

and its higher density leads to a large M/R. It then contracts, pro-

ducing a higher T (this process is stable, by the arguments of 1.5).

Now heat flows outward, which leads to yet higher T (the negative

effective specific heat discussed in 1.5). The heat flow reduces the

entropy of the core, until its equation of state approaches that of

a degenerate electron gas; the core comes to resemble a degenerate

dwarf inside the larger star.

Core contraction will be interrupted when the temperature be-

comes high enough (T
>∼ 108◦K) for reaction (1.9.30) to take place,

and exothermically to convert helium to carbon (auxiliary reactions

also produce oxygen and rarer elements). This leaves an inert carbon-

oxygen core surrounded by a double shell, the outer shell burning hy-
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drogen and the inner shell burning helium. Such double shells have

a complex and unstable evolution, but this is irrelevant to our rough

description of the structure of a giant star.

The combination of a degenerate dwarf core with a thermostatic

boundary condition produces the extended low density envelope of

a giant star. A simple argument uses the scale height of the matter

overlying the core. If L is not close to LE radiation pressure is unim-

portant (see 1.11.5). An isothermal gas, supported in hydrostatic

equilibrium by gas pressure against a uniform acceleration of gravity

g = GMc/R
2
c , has a density which varies as

ρ ∝ exp(−r/h), (1.13.1)

where the scale height h is

h =
R2

cNAkBT

GMcµ

=
RckBT

Ebµ
,

(1.13.2)

and Eb is the gravitational binding energy per nucleon. The matter

is not accurately isothermal and g is not strictly constant, but for

h ≪ Rc these are good approximations. The approximations made

in 1.4 were equivalent to assuming h ∼ R everywhere in the stellar

interior, and fail at the core-envelope boundary where h≪ Rc ≪ R.

For a degenerate core with Mc = 0.7M⊙, at r = Rc we find

h/Rc ≈ 0.055 ≪ 1. As a result, the density drops by a large fac-

tor in the region just outside the core boundary, where g is large.

If the envelope contains a significant amount of mass, as it will in

most giants, then this low density requires it to have a large volume

and a large radius. Very crudely, we might expect the radius to be

larger than that of a main sequence star (which the envelope would

otherwise resemble) by a factor ∼ exp
(

Rc/(3h)
)

∼ 102 – 103, which
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is consistent with the radii of large red giants. If the core is more

massive the density will be yet lower and the radius yet larger. The

actual radius and Te of a red giant are determined by the surface

boundary conditions on its outer convective zone.

This argument is not applicable when L ≈ LE , because then the

scale height is larger by a factor β−1 ≫ 1. Instead, we equate the

pressure of radiation to the pressure produced by the weight of the

overlying matter, so that

a

3
T 4
◦ ∼ GMcρ

Rc
. (1.13.3)

For Mc = 1.2M⊙ (β ≪ 1 only as Mc → MCh) and T◦ = 4 × 107◦K

we estimate ρ ∼ 0.02 gm/cm3. If the envelope roughly resembles an

n = 3 polytrope, as is likely, then its radius will be ∼ 20R⊙. Such a

star is not nearly as large as a red giant or supergiant, but possesses

a less extreme form of their structure of dense core and extended

envelope. Because of its high luminosity and moderate radius its

surface temperature is high. These stars are found in a region of the

Hertzsprung-Russell diagram between the red supergiants and the

upper main sequence, called the horizontal branch (most horizontal

branch stars are produced differently, when rapid helium burning

increases Rc and h).

1.14 Spectra

The study of astronomical spectra is a large field of research. Here

we only draw a few qualitative conclusions useful in modelling novel

objects and phenomena.

The radiation we observe from stars is produced in their at-

mospheres, and its spectrum reflects the physical conditions there.

These atmospheres may usually be approximated as plane-parallel
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layers, so that in the equation (1.7.6) of radiative transfer we may

neglect the term containing 1/r. Then

∂I(τ, ϑ)

∂τ
cosϑ− I(τ, ϑ) + S(τ) = 0, (1.14.1)

where the source function S(τ) ≡ j(τ)/4πκ(τ), and the optical depth

τ is defined by dτ ≡ κρdr, and τ → 0 as r → ∞. I, j, κ, and τ all

implicitly depend on ν. For cosϑ > 0 this equation has the formal

solution

I(τ, ϑ) =

∫ ∞

τ

S(τ ′) exp
[

−(τ ′ − τ) secϑ
]

secϑ dτ ′. (1.14.2)

The emergent flux is that at τ = 0:

I(0, ϑ) =

∫ ∞

0

S(τ ′) exp(−τ ′ secϑ) secϑ dτ ′. (1.14.3)

The emergent flux is a weighted average of S over the atmosphere,

with most of the contribution coming from the range 0 ≤ τ ′
<∼ cosϑ.

The opacity κν of matter typically has the form shown in Figure

1.3, with sharp atomic lines superposed on a slowly varying contin-

uum. The lines are those of the species abundant in the atmosphere,

which depend on its chemical composition, density, and (most sensi-

tively) temperature. In hot stars the strong lines are those of species

like He II and C III, in somewhat cooler stars those of He I or H I,

in yet cooler stars Ca I and Fe I, and in the coolest stars those of

molecules like TiO.

In the simplest stellar atmospheres matter is in thermodynamic

equilibrium, there is no scattering, S = B (the Planck function), and

the temperature increases monotonically inward. Then I reflects the

value of B in the region τ ∼ 1, and we may approximate Iν(τ =

0) ≈ Bν

(

T (τν = 2/3)
)

. At a line frequency νl the opacity κνl
is

large and τνl
= 2/3 high in the atmosphere, where T and B are low,
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Figure 1.3. Varieties of Spectra.

while outside the line κν is small and τν = 2/3 much deeper in the

atmosphere. The result is an absorption line spectrum, as shown in

the figure.

In many stars the upper atmosphere is much hotter than the rest

of the atmosphere. In the Sun the upper atmosphere and corona are

heated by acoustic (or magneto-acoustic) waves generated within the

convective zone. In a few stars a strong radiation flux from a lumi-
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nous binary companion heats the upper atmosphere; this is found in

some companions to strong X-ray sources. When the temperature

profile is inverted in this manner there results an emission line spec-

trum, as shown in the figure. Often a weak emission line spectrum

from the highest levels of the atmosphere is superposed on a stronger

absorption line spectrum.

If line scattering opacity is important it may also produce an

absorption line, regardless of the temperature gradient in the atmo-

sphere. The mechanism is outlined in 1.7.3; the presence of scatter-

ing reduces the emissivity. At such frequencies the diffuse reflectivity

of the atmosphere is significant, so that a fraction of the flux is the

(zero) reflected flux of the dark sky. If there is significant scattering

opacity in the continuum, but the line opacity is absorptive, then the

sky is reflected in the continuum and the line will appear in emission.

These processes are known as the Schuster mechanism.

In a dilute gas cloud the upper limit in the integral (1.14.3) is

τmax, the total optical depth integrated through the cloud. Often the

cloud is so rarefied and transparent that τmax ≪ 1 at all frequencies.

Then (1.14.3) may be approximated

I(0, ϑ) ≈ jν
4π

sec ϑ

∫

ρ dr. (1.14.4)

The frequency dependence of the emergent spectrum is that of the

emissivity jν . Under these conditions LTE is usually inaccurate;

the emergent spectrum qualitatively resembles that of the opacity

κν , although quantitative results require a calculation of the various

atomic and ionic processes. There is an emission line spectrum in

which the lines are extremely strong, carrying a significant fraction

of the total flux. Such spectra are observed from interstellar clouds,

winds flowing outward from stars, the debris of stellar explosions,

stellar coronae, laboratory gas discharge lamps, and in other circum-

stances in which
∫

ρ dr is very small. Because the emitting volume
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may be large, the total mass and radiated power need not be small,

despite the low density.

These classes of spectra are very different, and may often be

identified at a glance, even though they are not usually found in their

pure states. This is useful in attempting to construct a rough model

of a novel astronomical object, because the densities, dimensions,

and directions of energy flow are readily constrained. Images are not

available for many interesting astronomical objects, because of their

small angular sizes, so that the first step in understanding them

is the identification of their components and the construction of a

rough model of their geometry, their physical parameters, and of the

important physical processes.

1.15 Mass Loss

Spectroscopic observations show that many stars lose mass. Typ-

ically, the observations show emission lines whose Doppler widths

indicate the flow velocity. In most cases the line shape does not di-

rectly establish that the mass is flowing outward, only that the star

is surrounded by a dilute cloud of gas with the appropriate distri-

bution of velocities; it is usually not possible to determine from the

data which velocities are found at which points in space, but outflow

is often the only plausible interpretation. In some cases the outflow-

ing gas absorbs an observable amount of the stellar line radiation,

and the resulting complex (P Cygni) line profiles may be interpreted

unambiguously as mass outflow.

Some stars are observed in ordinary photographs (or infrared im-

ages) to be surrounded by luminous gas clouds they have expelled;

in some cases these clouds have visibly expanded since the first pho-

tographs were taken. Many different kinds of stars lose mass by a

variety of mechanisms and at widely varying rates. Even the Sun
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loses mass at the very small rate of ∼ 10−15M⊙/year in the Solar

wind, produced by the thermal expansion of its hot corona. All stars

with convective surface layers are expected to have coronae, whose

mass loss rates should be much greater in larger stars with lower

surface gravity.

It is known that some stars born with M substantially larger

than MCh have evolved into degenerate dwarves; this establishes

that, in some cases, a star may lose the greater part of its mass. In

this section I briefly and qualitatively discuss mass loss mechanisms

which may occur in luminous stars, where the mass loss rate is often

high. Most of these processes are not understood quantitatively.

In a very luminous star the radiation pressure approaches the

total pressure, and β → 0 (1.11.1). How closely a star approaches the

neutrally stable limit β = 0 depends on the detailed calculation of

its structure; we know (see 1.11.8) that very massive stars and giant

stars with dense degenerate cores have small β. ¿From the equation

of hydrostatic equilibrium we have

−βGMρ

r2
=
dPg

dr
, (1.15.1)

so that in this limit the gradient of the gas pressure becomes zero.

Essentially the entire weight of the matter is supported by the gradi-

ent of radiation pressure; in other words, the force of gravity and the

force of radiation pressure cancel. If β = 0 exactly, nothing is left to

resist the gradient of Pg, and the stellar material will float off into

space. This argument suggests that very luminous stars are likely to

lose mass.

This conclusion is at least qualitatively correct, and may be

reached on simple energetic grounds by noting that as β → 0 we

have γ → 4/3, and that if γ = 4/3 the binding energy E = 0 (see

1.5). It is possible to show, by manipulation of the stellar structure

equations, that n = 3 polytropes (which stars approach as β → 0)
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with a constant β are neutrally stable against convection if γ = 4/3

(also approached as β → 0); it is unsurprising that a star with zero

binding energy should be neutrally stable against the interchange of

its parts.

Should L exceed 4πcGM/κ, the star becomes unstable against

convection, and if convection is efficient it carries the excess flux.

The radiative luminosity does not exceed 4πcGM/κ and the gradi-

ent of radiation pressure does not exceed the force of gravity. In fact,

L > 4πcGM/κ in the envelopes of many cool giants and supergiants,

where κ is large; these stars generally do not lose mass rapidly. Only

if convection is incapable of carrying the heat flux does excess radi-

ation pressure drive a mass efflux.

It is comparatively easy to disrupt a star with β ≪ 1 if it can be

disturbed, but reliable calculation is difficult. Possible disturbances

include fluctuations and instability in the nuclear energy generation

rate (known to occur in supergiants with degenerate cores and double

burning shells), and the inefficient convection present in the outer

layers of cool giants and supergiants. Such stars may lose their entire

envelopes in response to modest disturbances (most notably in the

formation of planetary nebulae by supergiant stars), but it is also

necessary to consider less dramatic mass loss processes. These are

easier to observe (because they last longer) and to calculate.

The most important factor leading to steady mass loss is proba-

bly an increase in κ in optically thin regions above the photosphere.

Because the density and optical depth are low, convection cannot

transport heat effectively, and probably does not take place. In-

stead, matter can actually be subject to a force of radiation pressure

exceeding that of gravity (a situation which would not occur in a

stellar interior in hydrostatic equilibrium). At least two kinds of

physical processes, changing ionization balance and grain formation,

may produce such an abrupt jump in κ.

The temperature of a grey body (one whose opacity is indepen-
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dent of frequency) just outside a photosphere will be lower than that

of one just inside by a factor of about 2−1/4 = 0.84; outside, the black

body radiation field only fills the 2π steradians of outward-directed

rays, while the 2π steradians of inward-directed rays have little in-

tensity. The opacity of stellar atmospheres is not accurately grey,

but this is still a reasonable estimate of the temperature drop. Such

a drop may be sufficient to shift substantially the ionization balance,

and therefore the opacity. In addition, the Rosseland mean opacity,

derived for stellar interiors (in which τν
>∼ 1 at all frequencies) is in-

applicable in optically thin regions. In the opposite limit, τν
<∼ 1 at

all frequencies, the radiation force is proportional to
∫

Iνκν dν; the

arithmetic mean opacity exceeds the Rosseland mean. Strong atomic

or ionic lines may now make a large contribution to the force of radi-

ation pressure, and calculations show that in the upper atmospheres

of hot luminous stars the net acceleration may be upward.

A simple argument makes it possible to estimate the mass efflux.

Suppose the matter is accelerated by radiation pressure in a spectral

line of rest frequency ν◦. Radiation between ν◦ and ν◦(1− v/c) may

be absorbed or scattered by the outflowing wind; the total pressure

the radiation field can exert on the matter may be ∼ Hν◦
ν◦v/c

2.

Equate this to the momentum efflux rate per unit area ṁv (where ṁ

is the rate of mass loss per unit area) to obtain the total mass loss

rate Ṁ :

Ṁ = 4πR2ṁ

∼ 4πR2Hν◦
ν◦/c

2

∼ L/c2,

(1.15.2)

where we have approximated L ≡
∫

Hν dν ≈ Hν◦
ν◦. This result is

an upper bound, because not all of the radiation at the frequencies of

the Doppler-shifted line will be absorbed or scattered, and because

gravity has been neglected. Ṁ is independent of v; calculations

usually show that v is a few times the stellar surface escape velocity.
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If N strong lines contribute to the absorption of radiation, then Ṁ

may be larger by a factor N , which may be ≫ 1, but not by orders

of magnitude.

The mass efflux rate (1.15.2) is small, although readily observ-

able spectroscopically. It is roughly the same as the equivalent mass

carried off by the radiation field itself; we know that during a star’s

life thermonuclear reactions convert less than 1% of its mass to en-

ergy. If L ≈ LE then Ṁ
<∼ 10−9M/year.

A luminous star with a very cool surface (a red supergiant) may

lose mass in a related, but more effective way. Above its photosphere

the temperature may be cool enough for carbon (and other elements

or molecules) to condense into grains; this is probably the origin of

interstellar grains. These grains (in particular, those of carbon) are

very effective absorbers of visible and near-infrared radiation across

the entire spectrum (κ ∼ 105 cm2/gm), so that the pressure of the

radiation on the matter may be ∼
∫

Hν dν/c; the Doppler shift factor

v/c≪ 1 does not enter. Then we obtain

Ṁ ∼ L

vc
. (1.15.3)

For a red supergiant v ∼
√

GM/R ∼ 30 km/sec, so this result is

∼ 104 times as large as (1.15.2). The time required to halve M may

be as short as ∼ 30,000 years. Such a large mass loss rate may change

the evolutionary history of the star; for example, it may reduce M

below MCh. Unfortunately, it has not been possible to quantitatively

calculate mass loss by this process, although observations indicate it

does take place.

The highest estimate of mass loss comes if the energy of the

star’s radiation may be efficiently used to overcome the gravitational

binding energy and to provide kinetic energy, so that

Ṁ ∼ L

v2
. (1.15.4)
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In order for this to occur the radiation must be trapped between

an expanding optically thick outflow and the luminous stellar core,

and be the working fluid in a heat engine. The required optical

depth at all frequencies is τ
>∼ c/v ≫ 1; the acceleration occurs in

the stellar interior rather than in the atmosphere. However, such a

radiatively accelerated optically thick shell will probably be unstable

to convection if it is in hydrostatic equilibrium. Mass loss rates as

high as (1.15.4) may be obtained when hydrostatic equilibrium does

not apply; for example if L rises significantly above LE in a time

< th. Such an event resembles an explosion rather than steady mass

loss.

Rapid astronomical processes are hard to observe directly, be-

cause the fraction of objects undergoing then at any time is inversely

proportional to their duration. There is much less direct evidence

for mass loss at the rates of (1.15.3) or (1.15.4) than at the slow rate

(1.15.2), but the more rapid processes may be important in many

objects; the formation of planetary nebulae is a probable example.
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