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Abstract

To ensure manifest Lorentz covariance, longitudinal and timelike polarizations have
to be added to the sum over gauge boson polarizations. The resulting covariant sum
is used as the propagator numerator in the Feynman-t’ Hooft gauge. Unitarity to-
gether with the Cutkosky prescription implies that this numerator can be used also
to sum over final states. This is the textbook approach to computing squared amp-
litudes in QED, given that we sum over polarizations. To apply the method to QCD
the intermediate states with Faddeev-Popov ghosts must be considered as well, com-
plicating the procedure. We consider tree level quark-annihilation into two gluons
and gluon-gluon scattering and apply the method on up to four external gluons,
reproducing the well know results. By treating in detail the Cutkosky prescription
some subtle points of the application to QCD are elucidated. Also the generaliza-
tion to any order in perturbation theory and with any number of external gluons
is made clear. Emphasis is put on the Slavnov-Taylor identities that ensure the can-
cellation of unphysical degrees of freedom in general. These identities also quantify
the large amount of redundancy in the amplitude as calculated from Feynman rules.
The second part of this work considers the modern spinor-helicity approach to cir-
cumvent this redundancy and to obtain more directly gauge invariant on-shell amp-
litudes. This efficient technology is applied to several examples, and compared to
the standard approach.
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Sammendrag

Manifest Lorentz-kovarians krever at man legger til langsgående polarisasjons-
vektorer i summen over polariseringer for justerbosoner. Det resulterende
kovariante utrykket brukes også som teller i Feynman-t’ Hooft propagatoren.
Unitær symmetri sammen med Cutkosky-regelen impliserer at denne telleren kan
brukes også til å summere over sluttilstander. Dette er lærebok-metoden for å
beregne kvadrerte amplituder i QED, gitt at vi summerer over polariseringer. For å
anvende metoden i QCD må mellomliggende tilstander med Faddeev-Popov
spøkelser også tas i betraktning. Vi ser på kvark-annihilasjon og gluon-spredning
ved laveste orden i perturbasjons-teori. Der anvender vi Feynman-t’ Hooft telleren
til å summere over sluttilstander og reproduserer de velkjente resultatene fra
litteraturen. Ved å se på Cutkosky-regelen i detalj, belyser vi flere subtile aspekter
ved annvendelsen i QCD. Generaliseringen til vilkårlig orden i perturbasjons-teori
og med vilkårlig antall eksterne gluoner diskuteres også. Her vektlegges
Slavnov-Taylor identitetene som tilrettelegger kansellasjonen av ufysiske
frihetsgrader generelt. Disse identitetene kvantifiserer også den store graden av
overflødighet i amplituder beregnet fra Feynman-regler. Den andre delen av dette
arbeidet ser på den moderne helisitet-metoden, som unngår noe av denne
overflødigheten. Denne effektive metoden anvendes på flere eksempler, og
sammenlignes med lærebok-metoden.
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Chapter 1

Introduction

To conveniently construct manifestly Poincaré invariant observables in quantum field
theory, we limit our field content to fields transforming under some representation
of the Poincaré Group. Massless spin-1 bosons have two internal degrees of freedom,
often labeled by the helicity quantum number. However the two-component fields
one obtains from the representation theory of the Poincaré group have fermionic
statistics. Instead a vector-field Aµ is used to describe the spin-1 particles, and the
additional degrees of freedom are removed by requiring a specific symmetry. This
gauge symmetry is the defining feature of a gauge theory. It allows a manifestly
Poincaré covariant theory of massless spin-1 particles, and constitutes a core part of
the Standard Model of particle physics.

The gauge symmetry constitutes a redundancy. Two field configurations related
by a gauge transformation are physically equivalent. Then in a physical observable
the gauge symmetry must manifest itself as some identity guaranteeing that the
redundant components do not contribute. For scattering amplitudes these are the
generalized Ward identities, with the first identity of this type discovered by Ward.

If an initial state can evolve into a final state via some set of intermediate states,
then the total probability amplitude is the sum of the amplitudes where each in-
termediate state is visited. This quantum mechanical fact underpins the method of
Feynman diagrams. There the residue of a internal line at the physical momentum
p2 = m2 is recognized as a sum over all possible states for the corresponding particle.
In a gauge theory we include additional states in this sum over intermediate states
in order to express it in a simple way, while the generalized Ward identities ensure
that the addition sums up to zero. The physical requirement that our model includes
all possible states, no more and no less, translates to the mathematical property of
unitarity for the amplitudes. In this way the requirement of unitarity is directly tied
to the existence of generalized Ward identities.

For a massless spin-1 particle like the gluon of quantum chromo-dynamics (QCD)
the two physical degrees of freedom are the two transverse polarization states. In
Chapter 2 we review the theory of polarization and how the amplitude for the evol-
ution of a initial set of polarizations into a final one is constructed. How the residues
of internal lines contain a sum over all states is made precise for the case of a mass-
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2 Magnus N. Malmquist: External Gluons in QCD Scattering Amplitudes

less spin-1 particle. Also we will see how additional states are added to express the
sum in a covariant way. In the Feynman-t’ Hooft gauge this covariant sum is used for
the internal lines.

Chapter 3 considers unitarity, and how it relates the sum over intermediate states
to a sum over final states via Cutkosky’s rule. This is illustrated via two examples;
the QED vacuum polarization and a four fermion process in QCD. Unitarity implies
that the covariant propagator residue of the Feynman-t’ Hooft gauge can be used to
sum over final states. In quantum electro-dynamics (QED) this is the textbook way
to sum a squared amplitude over polarization. At the level of the amplitude the Ward
identity ensures that the additional states in the covariant sum do not contribute.
Since it is based only on the basic physical property of unitarity the same procedure
works also in QCD. There however we must consider that the sum over intermediate
states includes also Faddeev-Popov ghosts. Using the covariant sum over polarization
therefore requires considering also external ghosts. This corresponds to unitarity
being enforced at the amplitude level by a more complex generalized Ward identity.

In Chapter 4 the examples of quark anti-quark annihilation into gluons and
gluon-gluon scattering are used to illustrate the above procedure. For comparison
we also apply the approach of using only the two physical states in the sum over
polarizations, either by inserting these explicitly in a specific frame or by using a
non-covariant gauge. The squared gluon-gluon scattering amplitude summed over
polarization was first computed using the method of replacing the polarization sum
by −ηµν by Cutler and Sivers in Ref. [1]. Their result however differs from the now
accepted result, first found the same year by Combridge, Kripfganz and Ranft using a
different method [2]. Applying the method to QCD is also described briefly in Nacht-
mann’s textbook [3]. However the method as described there does not work when
applying it to more than two external gluons. We apply the procedure to obtain cor-
rect results for up to four external gluons and elucidate the subtle points with more
than two gluons using the experience gained in Chapter 3. The last part of Chapter 4
considers the connection of the above to the generalized Ward identities of QCD; the
Slavnov-Taylor identities. With the help of that connection we show how unitarity
at the amplitude level is ensured in the general case, with any number of external
gluons and at any order in perturbation theory.

The redundancy of the gauge symmetry becomes at the amplitude level the re-
dundancy described by the generalized Ward identities. The end product, the on-
shell scattering amplitude, is however physical and free of any redundancy. When
deriving that on-shell amplitude from Feynman rules the intermediate calculations
are complicated by additional noncontributing terms. The severity of that complica-
tion was put in the limelight as Parke, Taylor, Kleiss, Kuijf and others found surprising
simplicity in the on-shell amplitudes with six and seven external partons [4–7]. The
simplicity emerges in the latter case from cancellations between thousands of Feyn-
man diagrams, each consisting of thousands of terms. In Chapter 5 we review the
technique of writing amplitudes in terms of spinor products, and apply it to quark
annihilation into two gluons. The technique will help us to rediscover some of the
above mentioned simplicity.
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The surprising simplicity of the on-shell amplitudes sparked an endeavor to see if
it is possible to circumvent the complicated intermediate expressions of the Feynman
rules, and to go more directly to the physical amplitude. Chapter 6 considers some
of the techniques that have resulted from that approach. In particular the method of
on-shell recursion is considered. That represents a computational method for tree-
level amplitudes which is completely independent of Feynman rules. To illustrate the
power of this new technique we use it to derive formulas for the n-gluon amplitude
in special helicity configurations.

All computer code created for and referenced in this thesis can be found at ht-
tps://gitlab.com/magnunm/yang-mills-scattering-amplitudes.

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes




Chapter 2

Scattering Amplitudes in
Yang-Mills Theory

The Lagrangian

LYM = −
1
4

F a
µνF aµν, F a

µν = ∂µAa
ν − ∂νA

a
µ − g f abcAb

µAc
ν, (2.1)

describing a non-abelian gauge field Aa
µ was first studied by Yang and Mills in Ref. [8]

for the gauge group SU(2). Its defining feature is its invariance under gauge trans-
formations of the field Aµ = Aa

µT a,

Aµ→ UAµU−1 −
i
g

U∂µU−1, (2.2)

where U is an element of a compact Lie group. Of these we will focus on the phys-
ically important special unitary groups SU(N). The general feature of these theories
is that an infinite class of fields Aµ—those connected via a gauge transformation—
describe the same physics. In this chapter we will review some of the fundamentals
of computing scattering amplitudes in Yang-Mills theory.

2.1 Gauge Fixing

Despite of the great success of the path integral approach in quantizing elec-
trodynamics, a similar application to Yang-Mills theory was for a long time out of
reach. When constructing a path integral over exp(iSYM) the integrand is unchanged
in the orbit generated by the gauge transformation (2.2). The integration over this
orbit can thus be factored out. Since the latter involves an integral over the arbitrary
U it renders the path integral ill-defined. Canceling the redundancy introduced by
the gauge freedom is therefore required to describe the Yang-Mills field in a path
integral formalism. We do this by adding gauge-fixing conditions δ(ga(x)) to the

5



6 Magnus N. Malmquist: External Gluons in QCD Scattering Amplitudes

integrand. These conditions are brought into the action as the gauge-fixing term
∫

d4 x Lgf. However the delta functions may also induce a change in the path integ-
ral measure. In the case of quantum electrodynamics (QED) this amounts to just
a overall constant which does not affect the dynamics. In the non-abelian case on
the other hand the new measure may be a function of the gauge field integration
variable.

Faddeev and Popov [9] were the first to take also this new measure into the
exponent as a term

∫

d4 x LFP. This allowed the derivation of Feynman rules for the
Yang-Mills field, at the cost of introducing new anti-commuting auxiliary fields c and
c̄. We call the auxiliary fields Faddeev-Popov ghosts. With this addition we can define
the generating functional for Yang-Mills theory as follows [10]

Z[Jµ,η, η̄] =

∫

DAµDcDc̄ exp

�

iS + i

∫

d4 x J aµAa
µ + η̄

aca + c̄aηa

�

, (2.3)

S =

∫

d4 x LYM +LFP +Lgf,

where the path integral measure implicitly contains a product over all suppressed
indices.

The gauge-fixing condition considered by Faddeev and Popov was the Lorenz
gauge condition

∂ µAa
µ = 0, (2.4)

which leads to the gauge-fixing term

Lgf = −
1
2
∂ µAa

µ∂
νAa
ν.

In the Yang-Mills case we will call this choice the Feynman-t’ Hooft gauge, a member
of the Rξ family of gauges,

Lgf = −
1

2ξ
∂ µAa

µ∂
νAa
ν. (2.5)

For the Rξ-gauges the Faddeev-Popov ghosts are described by the Lagrangian

LFP = ∂
µ c̄a∂µca + g f abc∂ µ c̄acbAc

µ, (2.6)

leading to interactions between the ghost and gauge fields.
Such interactions can be avoided if one sacrifices manifest Lorentz covariance by

choosing a non-covariant gauge-fixing condition. A set of gauge-fixing conditions of
this type is

nµAa
µ = 0, (2.7)

for some fixed vector nµ. These lead to the gauge-fixing term

Lgf = −
1

2κ
nµAa

µnνAa
ν, (2.8)
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and are known as the generalized axial gauges. In this case LFP contains just a kin-
etic term and can be absorbed in the normalization of the generating functional.
Writing the O(g0) part of LYM +Lgf as 1

2AaνG−1
abνµAbµ we find the propagator in the

generalized axial gauges is

Gµνab (k) =
−iδab

k2 + iε

�

ηµν +
n2 −κk2

(k · n)2
kµkν −

kµnν + kνnµ

k · n

�

. (2.9)

Of these we will use the light-cone gauge, in which κ= 0 and nµ is lightlike.

2.2 Polarization

The gauge fields of a Yang-Mills theory are described by the Lorentz vector
fields Aµa(x). Approximating these vector field solutions via the usual perturbative
approach we start with the non-interacting—free—relativistic solutions. These are
for a massless vector field the solutions to the Maxwell equations without sources

∂µ∂
µAνa − ∂

ν∂µAµa = 0. (2.10)

A particular solution of the above equation is the plane wave

Aµa = ε
µ
a exp(−ikνxν) + h.c. (2.11)

The 4-momentum k is lightlike k2 = 0 and the 4 component object εµa is the polariza-
tion vector of the plane wave. It is a function of the momentum k. The Lorenz gauge
condition (2.4) implies that the polarization vector satisfies kµε

µ
a = 0. We label it

here with the color index a to make explicit that it represents the polarization vector
of the gauge field labeled by a. Since in this non-interacting case the different gauge
fields decouple, the properties of εµa are independent of a. We will for this reason
often omit the color index on the polarization vectors.

The second important property of the polarization vector we argue directly from
gauge symmetry. Apply to the field Aa

µ an infinitesimal gauge transformation

Ãa
µ(x) = Aa

µ(x)− Dac
µ λ

c(x) (2.12)

λc(x) = λc exp(−ikνxν). (2.13)

We see this gauge transformation induces a change in the polarization vectors

ε̃a
µ = ε

a
µ + iλakµ + g f abcλc exp(−ikνxν)ε

b
µ = ε

a
µ + iλakµ, (2.14)

where the second equality is setting g = 0 for the non-interacting case. By the ap-
propriate choice of λa we can induce a part∝ kµ in any of the polarization vectors.
In other words the part of the polarization vector proportional to the 4-momentum
is different within each equivalence class generated by the gauge symmetry. Since
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z z

Figure 2.1: Right and left handed helices: the shape drawn out by the 3-vector of a
vector plane wave with helicity +1 and -1 respectively.

any two states within such a equivalence class are physically identical, the afore-
mentioned part of the polarization cannot contribute to any physical observable.

Consider now the specific 4-momentum kµ = (ω, 0, 0,ω). A general
4-component object can be expressed in terms of 4 basis vectors. We choose these
basis vectors as

ε
µ
R = (0,1, i, 0)/

p
2 (2.15)

ε
µ
L = (0,1,−i, 0)/

p
2 (2.16)

ε
µ
+ = (1,0, 0,1)/

p
2 (2.17)

ε
µ
− = (1,0, 0,−1)/

p
2, (2.18)

for reasons that will become apparent. We see that the vector (2.18) does not satisfy
kµεµ = 0 and it therefore does not contribute to the polarization vector. The second
constraint that the polarization vector should not be proportional to kµ implies that
(2.17) does not contribute. The two constraints have reduced the number of degrees
of freedom of the polarization vector from four to two. Any polarization vector can
be written as a linear combination of the two basis vectors εµR and εµL . These are
called the right- and left-handed transverse polarizations while the two excluded
ones are called longitudinal.

Why the names right- and left-handed? Insert (2.15) and (2.16) in place of
the polarization vector of (2.11) and rewrite the imaginary part as a phase shift
between the x1 and x2 components. Visualizing the propagation of the resulting
vector through 3-dimensional space it traces out the shape of a helix. In the case of
ε
µ
R a right-handed helix and in the case of εµL a left-handed one, see Figure 2.1. We as-

sign a number to express this geometric property of the plane waves, fittingly called
the helicity. For a plane wave we define the helicity as the number h in the acquired
phase hα of the plane wave when subject to a 3-dimensional rotation of angle α
around its axis of propagation. For the present k this is a rotation of angle α around
the z-axis, which we can express as the matrix Rµν(α). A direct computation shows
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that Rµν(α)ενR = exp(iα)εµR and Rµν(α)ενL = exp(−iα)εµL . Thus the right-handed po-
larization vector corresponds to helicity +1 and the left-handed polarization vector
to helicity −1. Looking at the expressions for the left- and right-handed polarization
vectors we see that the helicity can be reversed by complex conjugation. Using our
definition of helicity or the geometric picture of right- and left-handed helices it is
apparent that applying a parity transform k → −k while keeping εµ the same also
reverses the helicity. In other words for a transverse polarization λ

ε
µ

λ
(−k) = εµ

λ
(k)∗. (2.19)

The decomposition into ε
µ
R , εµL , εµ+ and ε

µ
− is not Lorentz invariant.

We can see this by applying a Lorentz boost along the x-direction to get
k̃µ = Λµνkν = (γω,−γvω, 0,ω). If εµR is a 4-vector then ε̃µ = ΛµνενR is the
right-handed polarization vector of k̃µ and so has helicity +1. A 3-dimensional
rotation of angle α around the new axis of propagation (−γv, 0, 1)/γ2 is again
given by a matrix Rµν(α). We can check that Rµν(α)ε̃ν 6= exp(iα)ε̃µ, which implies
that εµR is not a 4-vector.

The polarization vectors appear in scattering amplitudes. After squaring these
amplitudes one often sums over the two polarization states εµR and εµL . This procedure
is applicable when experimentally we are unable to probe the exact helicity states
involved in a process. Thus computing the quantity

Pµν =
∑

λ

ε
µ∗
λ
ενλ = ε

µ∗
R ε

ν
R + ε

µ∗
L ε

ν
L (2.20)

is important in calculating scattering processes. Do not let the notation confuse; since
the physical polarization vectors are not Lorentz vectors the Pµν is not a Lorentz
tensor of rank 2 even though it is written that way. Inserting the expressions (2.15),
(2.16) valid for the momentum pointing along the z-axis we get

Pµν =







0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0






. (2.21)

We use this quantity to calculate Lorentz invariant observables. Then we should find
some way to express the above in a arbitrary frame, preferably in terms of Lorentz
tensors. We cannot express Pµν purely in terms of Lorentz tensors however, as this
would imply the quantity itself transforms as a Lorentz tensor. Another way to see
this is to note that no combination of the available tensors ηµν, kµkν, kνkµ reduce
to (2.21) as we set k to point along the z-axis.

A trick to solving this is to add also a sum involving the longitudinal polarizations
ε
µ
+, εµ−. By inserting the explicit formulas (2.17) and (2.18) we see that

Pµν −
�

ε
µ∗
+ ε

ν
− + ε

µ∗
− ε

ν
+

�

=







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






= −ηµν. (2.22)
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In QED the Ward identity ensures that inserting the second term on the left in place
of Pµν in a squared scattering amplitude gives zero. Then the replacement Pµν →
−ηµν can be made without changing the value of the squared amplitude. We will
investigate whether this procedure is possible also in Yang-Mills theories in the next
chapter.

A alternative way to write Pµν for a arbitrary frame is to introduce another 4-
component object nµ. We already have at our disposal the vector kµ parallel to εµ+
and motivated by (2.22) we then only need a new vector nµ∝ ε

µ
− to again get ηµν.

With this choice we compute

Pµν = −ηµν +
kµnν + nµkν

k · n
. (2.23)

We will see in the next section that the sum over polarizations is connected to the
numerator of the propagator. Then the above corresponds to the light-cone gauge,
the n2 = κ= 0 version of (2.9). The equation (2.23) is not a contradictory expression
of Pµν in terms of Lorentz tensors because choosing the correct vector nµ requires
picking a Lorentz frame.

The description in this section does not consider interactions. In the abelian case
the non-interacting theory is physically relevant and the above description is equival-
ent to the description of polarization in classical electrodynamics. In the non-abelian
case (2.10) is no longer the correct equation of motion for a pure gauge field without
sources. Furthermore the classical theory described by the Yang-Mills Lagrangian
lacks many of the crucial observed properties that are believed to be predicted by
the quantum theory. This inhibits a similar physical interpretation of the polarization
vector in the Yang-Mills case. Yet we can understand their appearance in scattering
amplitudes by looking at the role they play in our formalism for constructing the
amplitudes in perturbation theory.

2.3 The LSZ Reduction Formula

In order to investigate the role of the polarization vectors above in computing
S-matrix elements we aim in this section to write down the LSZ reduction formula
for a Yang-Mills field. We will see how the LSZ reduction formula connects S-matrix
elements to Feynman amplitudes. The latter we compute in perturbation theory via
the usual approach, while the S-matrix elements are what we ultimately connect to
scattering experiments.

Before writing down the reduction formula we derive some results that will be
helpful in its interpretation. Firstly we use the particular solution (2.11) to the non-
interacting equations of motion to write down a expression for the field operator in
the non-interacting case.

Aµa(x) =
∑

h

∫

d3k
Æ

(2π)32ωk

[aλ(k)ε
µ(k,λ)exp(−i(ωk t − k · x)) + h.c.] . (2.24)
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We have here used the shorthand λ = (h, a) for the combination of the helicity and
color state. Also we changed the notation for the color and helicity label of the po-
larization vectors. This to signal that in the following these labels are not used with
the Einstein summation convention, while sub or superscripted indices are. The sum
∑

h is over the two physical helicity states. In (2.24) the a†
λ
(k) and aλ(k) are one

particle creation and annihilation operators satisfying the usual bosonic commuta-
tion relations

�

aλ(k), a†
λ′
(k′)

�

= δ(k− k′)δλλ′ , (2.25)
�

aλ(k), aλ′(k
′)
�

=
�

a†
λ
(k), a†

λ′
(k′)

�

= 0, (2.26)

and the factor
Æ

(2π)32ωk is a convention dependent normalization factor. Using
these relations we can compute the coefficient in the normalization of the vacuum-
to-one particle matrix element. We denote this as the coefficient function

cµab(p, h)≡ 〈0|Aµa(0)|p, h, b〉= 〈0|Aµa(0)a
†
h,b(p)|0〉=

εµ(p, h)δab
q

(2π)32ωp

. (2.27)

Next we want to relate the propagator, the 2-point Green function, to the coeffi-
cient function. This will lead us to a connection between the residues of the propag-
ator and the polarization sums of the previous section. The argument is inspired by
a more general one found in Weinberg’s book [11]. Consider the expression for the
propagator in momentum space

G(q1, q2) =

∫

d4 x1 d4 x2 exp(iq1 · x1)exp(iq2 · x2) 〈0|TA(x1)A(x2)|0〉 . (2.28)

Here we suppressed the two Lorentz and color indices for brevity, since they are not
important for the following discussion. We will show that G has a pole at q2

1 = 0 and
that the residue at this pole is given by the coefficient function. Of the 2 possible
time orderings, look only at the one where x0

1 > x0
2 . Then insert a complete set of

states,

G(q1, q2) =

∫

d4 x1 d4 x2 exp(iq1 · x1)exp(iq2 · x2)θ (x
0
1 − x0

2)

×
∑

λ

∫

d3p 〈0|A(x1)|p,λ〉 〈p,λ|A(x2)|0〉+ . . .

Here the ellipsis represents the other time ordering as well as any multi-particle
states in the complete set of states. For non-interacting fields the latter does not
contribute. Using

〈0|A(x)|p, r〉= exp(−ip · x) 〈0|A(0)|p, r〉 (2.29)

and the integral representation of the step-function

θ (x0
1 − x0

2) =
1

2πi

∫ ∞

−∞

dωexp
�

iω(x0
1 − x0

2)
�

ω− iε
(2.30)
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we see the x1 and x2 integrands are pure phases. The integrations can then be done,
and yields delta functions

G(q1, q2) =− i(2π)7
∑

λ

∫

d3p

∫

dω
ω− iε

δ(3)(p− q1)δ(q
0
1 −ωp +ω)

×δ(3)(p+ q2)δ(q
0
2 +ωp −ω) 〈0|A(0)|p,λ〉 〈p,λ|A(0)|0〉+ . . .

Using the delta functions we can preform the remaining integrals

G(q1, q2) = −i(2π)7δ(4)(q1 + q2)
1

ωq1
− q0

1 − iε

∑

λ

〈0|A(0)|q1,λ〉 〈q1,λ|A(0)|0〉+ . . .

(2.31)
We see that G has a pole at q0

1 = ωq1
. Had we chosen the other time ordering

we would have similarly found a pole at q0
2 = ωq2

. Close to the q0
1 = ωq1

pole we
may neglect the other time ordering, since it is not singular at that point. Also we
can transform

1

ωq1
− q0

1 − iε
=

(ωq1
+ q0

1 + iε)

(ωq1
− q0

1 − iε)(ωq1
+ q0

1 + iε)

= −
ωq1
+ q0

1

q2
1 + iε

q2
1→0
−−−→−

2ωq1

q2
1 + iε

,

where we re-scaled the arbitrary positive infinitesimal ε. Using this we obtain a sim-
plified expression for the propagator close to the pole

Gµνab (q1, q2) = i(2π)4δ(4)(q1 + q2)
2ωq1

(2π)3

q2
1 + iε

∑

h

cµac(q1, h)cνcb(q1, h)∗. (2.32)

In the final expression we reinserted the Lorentz and color indices, and expressed
the result in terms of the coefficient function. Often the variant integrated over q2
is used. Inserting also the expression (2.27) for the coefficient function we get the
expression most commonly used

Gµνab (q) = iδab

∑

h ε
µ(q, h)εν(q, h)∗

q2 + iε
. (2.33)

We are now ready to write down the LSZ formula in momentum space. We cover
here the case where all external particles are gauge bosons. The corresponding ex-
pression for external spin-1/2 and spin-0 particles can be found e.g. in Greiner and
Reinhardt’s book [12]. Consider n incoming particles labeled by αi = (pi , hi , ai) and
m outgoing particles labeled by βi = (qi , h̃i , bi). The ai and bi are indices describ-
ing the color state. These make up the initial and final Fock state describing some
scattering, and their inner product defines the S-matrix element [11]

Sβ1...βm;α1...αn
= 〈β1 . . .βm; out|α1 . . .αn; in〉 . (2.34)
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A common shorthand notation is to represent the lists β1 . . .βm andα1 . . .αn by single
letters. We assume there exists a complete, orthonormal basis for the asymptotic Fock
states, in the sense that

∑

n

|n; out〉 〈n; out|= 1=
∑

n′

�

�n′; in
� 


n′; in
�

� , (2.35)

δn1n2
= 〈n1; out|n2; out〉= 〈n1; in|n2; in〉 . (2.36)

The first relation is a statement that we include in our asymptotic states all pos-
sibilities, and the second that we normalize these properly. Using the completeness
relation (2.35) it follows that

�

�n′; in
�

=
∑

n Snn′ |n; out〉. Then the orthonormality
(2.36) implies that

∑

n |Snn′ |2 = 1. Interpreting the S-matrix element of two basis
states now as the actual matrix element of some abstract operator S the preceding
statement is exactly the statement of unitarity for this operator,

SS† = I. (2.37)

We look only at the connected part of the S-matrix, meaning that all the αi , βi are
different. The connected part we denote by iT ≡ S−I where T is the transition oper-
ator. The reduction formula connects this quantity to the N = n+m -point connec-
ted Green function G(p1, p2, . . . , pN ). It states that the connected Green function has
simple poles when its external momenta satisfy the relativistic energy-momentum
relation. Further the residue of the Green function as all these external momenta go
on-shell is proportional to the connected part of the S-matrix element (2.34). The
correct proportionality is given by the coefficient function (2.27) of all the initial and
final Fock states. In the case of final one-particle states the complex conjugate of the
coefficient function enters. With the convention for the Green function where all the
external momenta flow inward,

Gµ1...µnν1...νm

a′1...a′n b′1...b′m
(p1, . . . , pn,−q1, . . . ,−qm)

n
∏

i=1

c
ai a
′
i

µi
(pi , hi)

m
∏

j=1

c
bi b
′
i

ν j
(q j , h̃ j)

∗ ×

� n
∏

i=1

p2
i

−i

�

 

m
∏

j=1

q2
j

−i

!

p1...pn,q1...qm−−−−−−−−→
on-shell

i Tβ1...βm;α1...αn
. (2.38)

To simplify this expression we define the amputated Green function G as the
connected Green function stripped of its external propagators. Explicitly we have

Gµ1...µnν1...νm

a′1...a′n b′1...b′m
(p1, . . . , pn,−q1, . . . ,−qm) =

� n
∏

i=1

Gµi µ̃i

a′i ãi
(pi)

�

 

m
∏

j=1

Gνi ν̃i

b′i b̃i
(−qi)

!

G ã1...ãn b̃1...b̃m
µ̃1...µ̃nν̃1...ν̃m

(p1, . . . , pn,−q1, . . . ,−qm).

In the limit of on-shell external particles the expression for the propagator close
the pole (2.33) becomes exact. We may insert this expression therefore for the ex-
ternal propagators in the limit of (2.38). Then the contractions with the coefficient
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function factors prepending the connected Green function can be done explicitly.
This allows us to construct a simplified reduction formula in terms of the amputated
Green function G. The basis of polarization vectors is normalized as

εµ(p, h)∗εµ(p, h′) = −δhh′ . (2.39)

Remembering also that the sum over physical polarizations is real, the contractions
reduce to

p2
i

−i
c

ai a
′
i

µi
(pi , hi)G

µi µ̃i

a′i ãi
(pi) =

δai ãi

q

(2π)32ωpi

εµ̃i (pi , hi), (2.40)

q2
j

−i
c

b j b
′
j

νi
(q j , h̃ j)

∗
G
ν j ν̃ j

b′j b̃ j
(−q j) =

δb j b̃ j

Ç

(2π)32ωq j

εν̃ j (q j , h̃ j)
∗
. (2.41)

The second line relies on the identity (2.19) of the polarization vectors. Inserting the
contractions (2.40) and (2.41) into the reduction formula (2.38) we get the version
of the reduction formula used in practical calculations,

iTf i =
n
∏

i=1

[(2π)32ωpi
]
−1/2

εµi (pi , ri)
m
∏

j=1

[(2π)32ωq j
]
−1/2

εν j (q j , r̃ j)
∗×

Ga1...an b1...bm
µ1...µnν1...νm

(p1, . . . , pn,−q1, . . . ,−qm) (2.42)

=(2π)4δ(4)
�

∑

i

pi −
∑

j

q j

� n
∏

i=1

[(2π)32ωpi
]
−1/2

m
∏

j=1

[(2π)32ωq j
]
−1/2

iA.

The equality is for on-shell external momenta. In the final line we defined i times
the Feynman amplitude A by shifting the overall momentum conservation factor out
of the amputated Green function, and contracting it with the polarization vectors. It
is a Lorentz scalar, and can be computed perturbatively by applying Feynman rules.
The success of the reduction formula is that it makes connecting this computation
to S-matrix elements easy by application of (2.42). The preceding discussion also
makes clear the appearance of the polarization vectors εµ in Feynman amplitudes.
They appear in our construction of non-interacting asymptotic states (2.24) required
for the validity of the reduction formula.

2.4 Summing over Color

Experimentally we are not able to probe the actual color states involved in a QCD
process. This phenomenon is called confinement. In computing matrix elements for
these processes we therefore typically sum over the final color states and average
over the initial color states. Also in the internal states of the Feynman diagrams
we sum over color. We should therefore have a efficient way to compute sums over
the color factors that appear in matrix elements. These color factors are expressed
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in terms of the generators of the continuous symmetry group on which the Yang-
Mills theory is based. The appropriate groups are the compact Lie groups, of which
we consider SU(N). We start the section therefore by reviewing some fundamental
properties of these groups.

The defining matrix representation of SU(N) is the set of all N × N complex
unitary matrices with determinant one. We call this the fundamental representation.
It is a Lie group with N2−1 generators which we denote by T a. This means that for
some set of real parameters ϑa we have

U = exp(iϑaT a) ∈ SU(N). (2.43)

Note that both U and T a are matrices and contain therefore two indices U = Ui j ,
that take N values, which we suppress in our notation. Directly from the definition
we can derive some useful properties of the generators. From the unitarity of U it
follows that the generators are Hermitian

1= UU† = exp
�

iϑaT a − iϑaT a†
�

. (2.44)

From the constraint that the determinant is one we find that the generators are
traceless,

1= det U = exp(iϑa tr T a). (2.45)

Since there are also N2 − 1 generators they form a basis for the N × N traceless
Hermitian matrices. Like with any basis there is some ambiguity in our choice. By
convention we fix the normalization by choosing the generators such that

tr
�

T aT b
�

=
1
2
δab. (2.46)

Of great practical importance for computing sums over expressions with SU(N)
generators is the Fierz identity. It allows us to reduce long traces to shorter ones,

T a
i j T

a
kl =

1
2

�

δilδ jk −
1
N
δi jδkl

�

. (2.47)

The identity follows from the fact that the generators T a together with the identity
matrix form a basis for Hermitian matrices. Any Hermitian matrix A can then be
written as

A= c0I+ caT a

for some coefficients ci . Using the fact that the T a are traceless and (2.46), we can
write the coefficients in terms of the matrix entries of A and the generators as

Ai j =
tr A
N
δi j + 2 tr(AT a)T a

i j .

Factoring out the arbitrary Hermitian matrix A,

Aklδikδ jl = Akl
δlkδi j

N
+ 2Akl T

a
lkT a

i j ,

δikδ jl =
δlkδi j

N
+ 2T a

lkT a
i j ,
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the Fierz identity (2.47) follows.
Feynman rules are often expressed using the structure constants f abc defined by

i f abc T c = [T a, T b]. (2.48)

We can rewrite any expression containing the structure constants f abc as an expres-
sion containing the generators T a using the relation

i f abc = 2 tr
�

T aT bT c − T bT aT c
�

, (2.49)

which follows from (2.48) by multiplying with T d and taking the trace. This latter
expression clearly shows the antisymmetry of the structure factors. By application of
(2.49) we can always express our amplitudes in terms of the generators T a and traces
over the generators. In the pure gauge boson case there are no fundamental repres-
entation indices and the amplitude will only contain traces. With external quarks
there will be free fundamental representation indices corresponding to the possible
color states of the external quarks. When squaring the amplitude we sum over these
indices due to confinement making the color states impossible to probe. Then again
only traces over the generators result. We may focus our attention therefore on com-
puting such color traces.

By using the Fierz identity (2.47) we can reduce long traces to shorter ones un-
til we have traces that can be immediately evaluated. This approach of iteratively
applying the Fierz identity straightforwardly translates to a algorithm applicable to
an implementation in a symbolic language [13]. We have implemented such a al-
gorithm in the program color-traces.frm, and apply it to compute some traces we
will need later

tr T aT aT bT b =
(N2 − 1)2

4N
, (2.50)

tr T aT bT aT b = −
N2 − 1

4N
, (2.51)

tr T aT bT c T d tr T d T c T bT a =
N6 − 4N4 + 6N2 − 3

16N2
, (2.52)

tr T aT bT c T d tr T d T c T aT b = −
N4 − 4N2 + 3

16N2
, (2.53)

tr T aT bT c T d tr T d T aT bT c =
N4 + 2N2 − 3

16N2
. (2.54)

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/color-traces.frm


Chapter 3

Unitarity and the Cutting of
Amplitudes

A direct consequence of the unitarity of the S-matrix (2.37) is the following re-
lation for the matrix elements of the transition operator [10, 14]

∑

f

|Tf i |2 = 2 Im{Tii}. (3.1)

This result is known as the optical theorem, and can be derived by inserting the
definition of the transition operator into the unitarity relation (2.37). It relates for
a given initial state the imaginary part of the forward scattering amplitude to the
total probability of scattering into any possible final state. Note that the latter is not
1 because we removed the identity part from the S-matrix in defining T. Using the
LSZ formula in the form (2.42) we can write down the optical theorem for Feynman
amplitudes. We directly insert for the case of two final state particles in (3.1)

2 Im{A(i→ i)}=
∑

ξ1ξ2

∫

|A(i→ ξ1ξ2)|2 dΦ(2) , (3.2)

where ξ1ξ2 are the final state discrete quantum numbers and Φ(2) is the two particle
phase space. The full form of the optical theorem includes all possibilities for the
number of final state particles. However when working to a given order in perturb-
ation theory all amplitudes beyond some maximum number of final states are zero.
We will in this chapter introduce the Cutkosky rule for finding the imaginary part
and through that see how the optical theorem is realized in two specific examples;
one from QED and one from QCD.

17
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3.1 Cutkosky’s Rule

What causes a Feynman graph to gain an imaginary part? It turns out the ima-
ginary part can be traced to the appearance of branch cuts in the amplitude when
considered as a complex function of its external momenta [10, 14]. For each of the
possible final states in equation (3.2) there is some threshold energy sξ1ξ2

below
which the process is kinematically disallowed. Letting s0 be the smallest of these the
right hand side of (3.2) is zero for s < s0. It follows that below this value the forward
scattering amplitude is real. Considering the amplitude as a complex function of s
(which in turn is a function of the external momenta) we have

A(s) =A(s∗)∗.

Analytically continuing this relation into the entire complex plane we have close to
the real axis for s > s0 the relation

Im{A(s+ iε)}= − Im{A(s− iε)}.

Thus starting from the point s = s0 along the positive real axis there is a discontinuity
in the complex functionA(s) as we move across the real axis from negative to positive
imaginary part. This is a branch cut, and when adding ±iε to the denominator of
the propagator of internal lines we are choosing a particular side of the branch cut.
The discontinuity gives the imaginary part of the Feynman graph,

2i Im{A(s+ iε)}= Disc{A(s)}. (3.3)

Using this we will uncover next a efficient tool for computing the imaginary part
of Feynman amplitudes. Furthermore it will enable us to prove the optical theorem
(3.2) for a given order in perturbation theory.

We write the amplitude corresponding to a single Feynman graph in the following
way

A=
∫ L
∏

i=1

d4ki
P({ki}, {pi})

D1 . . . DN
. (3.4)

Here P is some polynomial function of the external momenta pi and the L independ-
ent loop momenta ki . The N denominators correspond to internal lines and are of
the form Dj = q2

j − M2
j with q j being some combination of pi , ki . With a Feynman

parameter integral we can rewrite the denominator as

1
D1 . . . DN

= (N − 1)!

∫ 1

0

dα1 . . .

∫ 1

0

dαN
δ(α1 + . . .+αN − 1)
(α1D1 + . . .+αN DN )N

.

Landau used this to show that the Feynman graph (3.4) has singularities when for
each i = 1, . . . , N

αi Di = 0, (3.5)
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and for each closed loop,
∑

i

αiqi = 0, (3.6)

where the sum runs over the internal lines making up the loop [15].
Next Cutkosky considered the discontinuity across a branch cut starting from a

singularity satisfying the Landau conditions above [16]. He found that given such a
singularity where we order our indices such that Di = 0 for i ≤ m, the discontinuity
across the corresponding branch cut is given by

Disc(A) = (2πi)m
∫ L
∏

i=1

d4ki
P({ki}, {pi})
Dm+1 . . . DN

m
∏

j=1

δ(+)(Dj). (3.7)

The δ(+) means we take only the positive root of q2
i −M2

i = 0. This replacement of
a set of propagators with delta functions we will call a “Cutkosky cut”.

In order to use this result to compute the imaginary part of a graph we should
investigate what kind of Cutkosky cut gives the discontinuity over the specific branch
cut starting at s = s0. Consider a graph where for some subset of the internal propag-
ator momenta we have

(q1 + . . .+ qk)
2 = s,

and where there is a closed loop containing at least the propagators qi for i =
1, . . . , k. Further imagine a singularity satisfying the Landau conditions where Di = 0
for i = 1, . . . , k. The condition (3.5) implies αi = 0 for all other i. Applying the loop
condition (3.6) to the closed loop containing at least the propagators qi for i = 1, . . . k
then gives the condition

k
∑

i=1

αiqi = 0. (3.8)

Multiplying this equation by qk and solving for αk using that q2
k = M2

k we obtain

M2
kαk = −

k−1
∑

i=1

αiqi · qk. (3.9)

Next we multiply (3.8) by q j and rearrange to

αkqk · q j = −
k−1
∑

i=1

αiqi · q j .

Multiplying both sides by M2
k we can insert the relation (3.9) on the left hand side.

Moving everything under one summation we get

k−1
∑

i=1

�

(qi · qk)(qk · q j)−M2
k qi · q j

�

αi = 0.

Since the αi are free to vary independently between 0 and 1 for i = 1, . . . , k the
expression in the square brackets must be zero for all i. Then looking at the term
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p

k

k− p

p

Figure 3.1: QED vacuum polarization diagram.

where i = j we see that (qi ·qk)2 = M2
k M2

i . The ordering of the momenta is arbitrary
and we could have ordered any q j to be the last momentum qk. Thus the relation
(qi · q j)2 = M2

i M2
j holds for any i, j in 1, . . . , k. We can exclude the negative root of

this relation by insertion into the expression in square brackets above, so it follows
that at the singularity in question we have

qi · q j = Mi M j . (3.10)

The argument above does not work for M2
k = 0, however in that case (3.9) gives

qi ·qk = 0 immediately, so (3.10) holds in either case. We can also relax the condition
that all the qi momenta must share a loop. Clearly it is sufficient that every pair qi , q j
with i, j = 1, . . . , k shares at least one closed loop in order for the identity (3.10) to
hold at the singularity. By our choice of cut momenta and using (3.10) the singularity
is then located at

s = (q1 + . . .+ qk)
2 = (M1 + . . .+Mk)

2, (3.11)

the threshold energy for producing the particles corresponding to the cut propagat-
ors as final states. The branch cut starting at this kind of singularity is then of the
type giving rise to a imaginary part of the amplitude via (3.3). Thus we have shown
how the Cutkosky rule (3.7) can be used to compute the discontinuity across this
branch cut, by determining the particular kind of Cutkosky cut required.

3.2 Example: QED Vacuum Polarization

In the remainder of this chapter we will consider the optical theorem (3.2) in
concrete examples. We start with the relatively simple case of the QED vacuum po-
larization. This process is illustrated in Figure 3.1. The fermion in the loop is of Dirac
type, with some mass m f and charge Q f in units of the elementary charge e. The
amplitude for the diagram shown is

iA= −e2Q2
f

∫

d4k
(2π)4

tr
�

/ε(p)∗(/k+m f )/ε(p)(/k− /p+m f )
�

(k2 −m2
f )[(k− p)2 −m2

f ]
,

where the direction of the momenta is as in Figure 3.1. Recall that the fermion loop
introduces a overall minus sign in the above.
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Now we will apply the Cutkosky prescription to compute the imaginary part of
the above amplitude. Remember that the Cutkosky cut giving the imaginary part of
the amplitude satisfies (q1 + . . .+ qk)2 = s for the cut propagators, and that there is
a closed loop containing at least these propagators. For the present case this corres-
ponds to cutting the two fermion propagators. Combining (3.3) and (3.7) we have

2i Im(A) = Disc(A) =− ie2Q2
f

∫

d4k
(2π)2

δ(+)(k2 −m2
f )δ

(+)((k− p)2 −m2
f )

× tr
�

/ε(p)∗(/k+m f )/ε(p)(/k− /p+m f )
�

.

The k0 integral can now be canceled by using

δ(+)(k2 −m2
f ) =

δ(k0 −ωk)
2ωk

. (3.12)

Expecting the loop momentum to become a final state momentum in the optical
theorem we rename k to k1. A new momentum k2 can also be inserted, provided we
cancel it by a delta function,

1=

∫

d4k2

(2π)4
(2π)4δ(4)(k2 + k1 − p).

We chose the new momentum as k2 = p− k1 so that we can use the second δ(+) to
cancel the k0

2 integral in the same way as in (3.12). The imaginary part can then be
written as

2 Im(A) =− e2Q2
f

∫

d3k1

(2π)32ωk1

d3k2

(2π)32ωk2

(2π)4δ(4)(k2 + k1 − p) (3.13)

× tr
�

/ε(p)∗(/k1 +m f )/ε(p)(−/k2 +m f )
�

.

Next we turn our attention to the Dirac trace. Expecting the optical theorem to
hold we want to split it into two parts we can recognize as coming from the two
amplitudes that make up a square. The trick is to use the completeness relation
for Dirac spinors. That relation is equation (C.11), derived in Appendix C. We let s
denote the spin quantum number of the fermions. Writing out the matrix indices in
the trace makes the transformation clearer,

/ε(p)∗i j(/k1 +m f ) jk/ε(p)kl(−/k2 +m f )l i

= /ε(p)∗i j(
∑

s1

us1
(k1)ūs1

(k1)) jk/ε(p)kl(−
∑

s2

vs2
(k2)v̄s2

(k2))l i

= −
∑

s1,s2

�

ūs1
(k1)k/ε(p)kl vs2

(k2)l
�

�

v̄s2
(k2)i/ε(p)

∗
i jus1
(k1) j

�

.

Noting also that the integrals and delta function on the first line of (3.13) is exactly
the two particle phase space we have

2 Im(A) =
∑

s1,s2

∫

dΦ(2)
�

eQ f ūs1
(k1)/ε(p)vs2

(k2)
� �

eQ f v̄s2
(k2)/ε(p)

∗us1
(k1)

�

. (3.14)
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2 Im

�
p

k

k− p

p
�

=

∑

s1,s2

∫

dΦ(2)
�

p
k1

k2

��
p

k1

k2

�

Figure 3.2: The imaginary part of the QED vacuum polarization diagram, as given
by the Cutkosky prescription. Graphical representation of equation (3.14).

We recognize the expressions in the square brackets as the amplitude for a photon
splitting into a fermion anti-fermion pair and the amplitude for that pair annihilating
into a photon. The equation above then has a nice visual representation, shown in
Figure 3.2. We see that the Cutkosky cuts correspond graphically to literally the kind
of cuts one would make with a pair of scissors.

Equation (3.14) is not quite in the form of the optical theorem (3.2). For it to
hold the second bracketed term must be the complex conjugate of the first, so to
together produce a square. Recalling that (γµ)† = γ0γµγ0 the complex conjugate of
the first term is

�

eQ f ε(p)µūs1
(k1)γ

µvs2
(k2)

�∗
= eQ f ε(p)

∗
µ v̄s2
(k2)γ

µus1
(k1),

exactly the second bracketed expression, so that the optical theorem holds.
Note that the transition from the cross-term of Figure 3.2 to the square of the

optical theorem was facilitated by the spinor expression. Complex conjugating a
Dirac chain,

(ūγµ1 . . .γµn v)∗ = v̄γµn . . .γµ1u,

has two effects on the corresponding diagram; a outgoing spinor is turned into a in-
coming one and vice versa and the direction of the charge flow is reversed. Schem-
atically we have A(. . . → . . .φ(p))∗ = A(φ(p) . . . → . . . ), where φ can be both a
photon and a fermion field. By looking at Figure 3.2 we can convince ourselves this
is the relation needed for unitarity in general, with φ a arbitrary field. Assuming
CPT symmetry, and therefore crossing symmetry, the above amplitude relation is
equivalent to A(φ†(−p) . . .→ . . . )∗ = A(φ(p) . . .→ . . . ). Each of these amplitudes
can be written in terms of the vacuum expectation value of a time-ordered product
(see Section 2.3 and (2.28) in particular). Then we see the amplitude relation holds
given that 〈0|. . .φ†(x) . . .|0〉∗ = 〈0|. . .φ(x) . . .|0〉, which is always true for a canon-
ically quantized field. Thus CPT symmetry is sufficient for unitarity to hold, given
that the s-channel discontinuity is 2i Im(A). Additionally the propagator numerators
must give the correct sum over final states. This we will consider in detail in the next
section.
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3.3 Example: qq̄→ qq̄ at O(g4)

As a next example we will use the Cutkosky prescription to compute the ima-
ginary part of a subset of the Feynman graphs for qq̄ → qq̄ at O(g4) in QCD.
The diagrams we will consider are illustrated in figure 3.3. For the diagrams in
figures 3.3a–3.3d we see that the Cutkosky cut giving the imaginary part of the
diagram is the one removing the two gluon propagators in the loop. Using the ex-
pression (2.33) for the propagator we see that after applying the Cutkosky rule the
two gluon propagators will be replaced by a polarization sum and two delta func-
tions. The two delta functions we can use to turn the integral d4k of the free loop
momentum into an integral over dΦ(2) for the two cut momenta, as in the previous
section.

For forward scattering the spinor expression on the right-hand side of the dia-
grams in figures 3.3a–3.3d is simply the complex conjugate of the spinor expression
on the left hand side. In the end the imaginary part of the diagram in figure 3.3a
becomes the square of the s-channel diagram for qq̄→ g g. The square is integrated
over the two particle phase space of the two gluons and their helicity and color is
summed. Similarly the imaginary part of figure 3.3b gives the square of the t- and
u-channel diagrams of qq̄ → g g. Finally the diagrams 3.3c and 3.3d produce the
cross terms between the s and u- or t-channel diagrams for qq̄→ g g. With a similar
line of argumentation for the diagrams of figures 3.3e–3.3h we see that they pro-
duce the squares and cross-terms of the O(g2) diagrams for qq̄ → qq̄. The role of
the imaginary part of the final diagram, figure 3.3i, will be discussed in detail later.

The above suggests applying the procedure outlined to all the diagrams of fig-
ure 3.3 we can prove the optical theorem (3.2) at O(g4) in QCD with two quarks
in the initial state. We repeat therefore the argument in more detail for the case
of diagram 3.3a, keeping now track of all numerical factors. We label the external
momenta and color indices counter-clockwise as (1, i), (2, j), (3, k), (4, l). With q =
p1 + p2 the amplitude corresponding to the diagram can be written

iA(a)(12→ 34) =
Ci jkl

(q2 + iε)2

∫

d4k
(2π)4

SµνPµν(k, q)

(k2 + iε)[(k− q)2 + iε]
. (3.15)

We collect all numerical and color-factors in the term Ci jkl . From the four gluon
propagators, two quark-gluon vertices and two three-gluon vertices we get a nu-
merical factor (−i)6(−1)2 g4 = −g4. There are two ways to connect the two central
vertices with two propagators, both giving a identical amplitude, so we should add
to this the symmetry factor 1/2. Thus we have

Ci jkl =
−g4

2
f acd f ced T a

kl T
e
i j =

g4

2
f acd f ecd T a

kl T
e
i j . (3.16)

For the three-gluon vertex with all momenta incoming, except the factor −g f abc ,
we will write Vµνρ(q1, q2, q3). The gluon propagator numerator, except −iδab, we
write as Nµν(k). For simplicity we set Nµν = ηµν for the two propagators not in the
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(a) Three gluon vertex loop. (b) First fermion and gluon loop.

(c) Second fermion and gluon loop. (d) Third fermion and gluon loop.

(e) Fourth fermion and gluon loop. (f) Fifth fermion and gluon loop.

(g) Sixth fermion and gluon loop. (h) Fermion loop.

(i) Ghost loop.

Figure 3.3: All Feynman graphs with a non-zero imaginary part for qq̄ → qq̄ at
O(g4).
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loop, the calculation being essentially identical in the general case. We collect these
factors in the tensor

Pµν = V νγα(q, k− q,−k)Nαβ(k)Nδγ(k− q)Vµβδ(−q, k,−k+ q) (3.17)

= V νγα(q, k− q,−k)Nαβ(k)Nδγ(k− q)Vµδβ(q, k− q,−k).

Finally the spinor part is

Sµν = ū(4)γµv(3)v̄(2)γνu(1). (3.18)

We will now consider the forward scattering amplitude, and apply the Cutkosky
rule (3.7) to compute the imaginary part. We get

Disc{A(a)(12→ 21)}= i
Ci j ji

(q2)2

∫

d4k
(2π)2

SµνPµνδ(+)(k2)δ(+)((k− q)2), (3.19)

with δ(+) taking only the positive root as before. We use the first delta-function to
cancel the k0-integral, by applying (3.12). Since the generators T a are Hermitian
we can write T a

ji = (T
a
i j)
∗, giving

Ci j ji =
1
2

∑

c,d

�

�

�g2 f acd T a
i j

�

�

�

2
.

For the numerator of the two cut gluon propagators we will put a sum over polariz-
ations, as in (2.33). Then we can write

Nαβ(k)Nδγ(k− q) =
∑

λλ′

εαλ(k)
∗ε
β

λ
(k)εδλ′(q− k)εγ

λ′
(q− k)∗. (3.20)

The spinor part for the special case of forward scattering is

Sµν = [v̄(2)γµu(1)]∗ v̄(2)γνu(1),

and combining this with (3.20) and (3.17) yields

SµνPµν =
∑

λ,λ′

�

�

�v̄(2)γνu(1)Vνγα (q, k− q,−k)εγ
λ′
(q− k)∗εαλ(k)

∗
�

�

�

2
.

Using (3.3) to go from the discontinuity to the imaginary part, and inserting the
expressions of the previous paragraph, we find

2 Im{A(a)(12→ 21)}=
1
2

∑

c,d

∑

λ,λ′

∫

d3k
(2π)22ωk

δ(+)((k− q)2)× (3.21)

�

�

�

�

�

g2
f acd T a

i j

q2
v̄(2)γνu(1)Vνγα (q, k− q,−k)εγ

λ′
(q− k)∗εαλ(k)

∗

�

�

�

�

�

2

.
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Next we rename the integration momentum k = p4 and insert a new momentum
integral d4p3 that we also cancel by a delta-function δ(4)(p3+k−q) = δ(4)(p3+p4−
p1 − p2). These relabelings give an alternative expression for the imaginary part,

2 Im{A(a)(12→ 21)} (3.22)

=
1
2

∑

c,d

∑

λ,λ′

∫

d3p4

(2π)22ωp4

∫

d4p3δ
(4)(p1 + p2 − p3 − p4)δ

(+)(p2
3)×

�

�

�

�

�

g2
f acd T a

i j

(p1 + p2)2
v̄(2)γνu(1)Vνγα (p1 + p2,−p3,−p4)ε

γ

λ′
(3)∗εαλ(4)

∗

�

�

�

�

�

2

=
1
2

∑

c,d

∑

λ,λ′

∫

d3p4

(2π)32ωp4

d3p3

(2π)32ωp3

(2π)4δ(4)(p1 + p2 − p3 − p4) | . . . |2

=
∑

c,d

∑

λ,λ′

∫

| . . . |2 dΦ(2) ,

where we used δ(+)(p2
3) to cancel the p0

3 integral in the same way as in (3.12). In
the phase space integral of the final line we integrate θ only from 0 to π/2 due to
the identical particles in the final state. This is accounted for by the factor 1/2 in the
line above.

With the suggestive labeling of the integration momenta it is apparent that the
expression inside the absolute value of (3.22) is the amplitude corresponding to the
s-channel diagram for q̄q→ g g. Thus we have as advertised

2 Im{A(a)(12→ 21)}=
∑

c,d

∑

λλ′

∫

|As-channel(q̄q→ g g)|2 dΦ(2) . (3.23)

3.3.1 Cutting the Ghost Loop

To obtain the result of the previous section we replaced the numerator of the
cut gluon propagators with a sum over polarizations. However in computing the
amplitude we are free to choose a covariant gauge like the Feynman-t’ Hooft gauge
for the internal lines. Then the numerator is −ηµν, which contains contributions
also from longitudinal polarizations, as seen in (2.22). This signals trouble for the
optical theorem. We can imagine repeating the procedure above for all the dia-
grams 3.3a–3.3d, all the while using a covariant gauge like the Feynman-t’ Hooft
gauge. This would give the sum over twice the imaginary parts as the square of the
amplitude for qq̄→ g g, summed over helicity by replacing the polarization sum by
Pµν→−ηµν and integrated dΦ(2). In QED the Ward identity ensures that this is equi-
valent to using a sum over the transverse polarizations only. However as we will see
in the next chapter the Ward identity no longer holds in QCD. By the optical theorem
(3.2) we would expect the sum over twice the imaginary parts to give the correct
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answer for
∑∫

|A(qq̄→ g g)|2 dΦ(2). This is then not the case if we include only the
diagrams 3.3a–3.3d, as the Pµν→−ηµν replacement gives the wrong answer.

The above issue is resolved by considering that summing all the diagrams in Fig-
ure 3.3 we should get a gauge invariant amplitude. This means the gauge dependent
unphysical parts of the −ηµν gluon propagator numerator must be canceled in the
final answer. Since the Ward identity no longer ensures this, diagrams with internal
ghosts must be added to cancel the unphysical parts. For the same reason the inclu-
sion of the diagram 3.3i also saves the optical theorem. Therefore we next compute
the imaginary part of the ghost diagram explicitly.

The amplitude of the ghost loop diagram is the same as for the gluon loop dia-
gram (3.15) except for a overall factor −1 due to the fermionic nature of the ghosts,
a overall factor 2 since there is no longer a symmetry factor 1/2, and a different Pµν.
Setting again Nµν = ηµν for the two propagators not in the loop we have for the
ghosts

Pµν = kν(k− q)µ. (3.24)

This gives for forward scattering

SµνPµν = v̄(2)/ku(1)
�

v̄(2)(/k− /q)u(1)
�∗

. (3.25)

We repeat now the steps of the previous section, with the new numerical factors
and (3.25). The analogue of equation (3.22) for the ghost loop is then

2 Im{A(i)(12→ 21)}=

− 2

∫

�

g2
i f acd T a

i j

(p1 + p2)2
v̄(2)/p4u(1)

��

g2
i f acd T a

i j

(p1 + p2)2
v̄(2)(−/p3)u(1)

�∗

dΦ(2) .

The above is

2 Im{A(i)(12→ 21)}= 2

∫

trBB′∗ dΦ(2) , (3.26)

where B is one of the two amplitudes for qq̄ into two ghosts and B′ is the other,
where the charge flow is reversed. We will see in the next chapter that this is in
fact exactly what we need to cancel the unphysical parts of the gluon diagram. The
inclusion of ghosts is then required by the optical theorem.

Another consequence of this cancellation is that the Pµν → −ηµν replacement
can still be used in QCD to sum squared amplitudes over polarization, if we also
include ghost terms like the one above. We see that in such a procedure the cross
term between ghost amplitudes with two different charge flow directions should be
used. Alternatively, using the Dirac equation on the B′ term of (3.26),

v̄(2)/p3u(1) = v̄(2)(/p1 + /p2 − /p4)u(1) = −v̄(2)/p4u(1),

we see that in the present example we can also use ordinary squares of ghost amp-
litudes, but then with a additional factor −1. This has lead some authors, like Nacht-
mann in Ref. [3], to believe that squared ghost amplitudes can be used in general,
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only modified with appropriate factors of −1. However this is a particularity of ex-
amples with only two cut propagators and we will see examples where it fails in
the next chapter. In general the cross term between two opposite ghost charge flow
directions should be used, and no additional factor −1 should be added.



Chapter 4

Ghosts, Ward Identities and
Unitarity in QCD

The previous chapter argued based on unitarity that the Pµν → −ηµν replace-
ment could be used also in QCD. Diagrams with internal ghost lines cancel the gauge
dependent part of gluon internal lines. Cutkosky’s rule then gives us a way to cancel
also the unphysical parts of the replacement Pµν→−ηµν by using external ghosts.
In this chapter we will support these statements with explicit calculations of four
parton QCD processes. Additionally the examples will show us how the cancellation
is facilitated at the amplitude level. This will lead us to generalizations of the Ward
identity, that finally will enable us to understand the cancellation in the general case.

4.1 Example: qq̄→ g g

First we consider quark-annihilation into two gluons. There are three diagrams
that contribute to this process at tree level, illustrated in figure 4.1. We use the
convention where all the momenta are incoming. The physically interesting cases
of any two particles outgoing can be obtained by crossing. With the all-in momenta
we define the Mandelstam variables as s = (1+ 2)2, t = (1+ 3)2 and u = (1+ 4)2.
This choice transforms to the correct expressions for the Mandelstam variables for
qq̄→ g g when crossing the two gluons 3, 4 to be outgoing. As already introduced we
will from now on use a notation where we let a number stand for its corresponding
four-momentum. So 1 · 2= p1 · p2 = ηµνpµ1 pν2 and /1= /p1 = γµpµ1 .

We use the relation (2.48) between the structure constants and the generators
to see that the only color factors of the amplitude are T c T d and T d T c . Then we can
rearrange A according to these color factors

A=A1T c T d +A2T d T c .

Writing out the expressions for the factors A1 and A2 we can see that exchanging
3↔ 4 in one of the expressions turns it into the other one. Then after computing

29
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p1

p2

σ, d

ρ, c

(a) s-channel diagram

p1

p2

σ, d

ρ, c

(b) u-channel diagram

p1

p2

σ, d

ρ, c

(c) t-channel diagram

Figure 4.1: Tree level Feynman diagrams for qq̄→ g g

one of these expressions we can obtain the other by a simple exchange of momenta.
To express this we use the suggestive notation

A= A(1234)T c T d + A(1243)T d T c . (4.1)

The amplitude A(1234) is a color-ordered amplitude (CO amplitude), and it is by
itself gauge invariant. For the present case of qq̄→ g g at tree level the CO amplitude
is

iA(1234) =− ig2
�

v̄(2)/ε(3)
/1+ /4+m

u−m2 /ε(4)u(1)−
Nαβ

s

�

ε(3) · ε(4)(3− 4)β

+ εβ(4)(4− 1− 2) · ε(3) + εβ(3)(1+ 2− 3) · ε(4)
�

v̄(2)γαu(1)
�

, (4.2)

where N µν is the gauge dependent numerator of the gluon propagator. For the
Feynman-’t Hooft gauge we have N µν = −ηµν.

Splitting a amplitude into gauge invariant CO components in this way is possible
in general if we require that all polarization vectors are transverse. This we will dis-
cuss in detail in Chapter 6. The fact that we did not need the constraint of transverse
polarizations presently is a peculiarity of our current example.

4.1.1 The Ward Identity

The usual textbook strategy for attacking a gauge invariant amplitude like (4.2)
is to square it and sum over all spins and helicities. In this chapter we will use spin for
the quark degrees of freedom and helicity for the gluon degrees of freedom. Using the
completeness relations (C.11) of the spinors u and v the sum over spins is turned into
a trace over gamma matrices. As already discussed one in QED then typically inserts
for the photons Pµν→−ηµν. The right hand side is obtained by adding to the sum
over polarizations also expressions containing the two longitudinal polarizations, as
in (2.22). The QED Ward identity states that if we replace a polarization vector by
its corresponding 4-momentum the amplitude must vanish. These two facts together
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mean we can replace the polarization sum by −ηµν without changing the value of
the amplitude.

We now investigate how this is changed in our present non-abelian case by
checking the Ward identity explicitly for the qq̄ → g g amplitude. Replace εµ(3)
by εµ+(3) = 3µ/

p
2ω3 in the color ordered amplitude (4.2). Set also Nαβ = −ηαβ in

the numerator of the propagator. The first term in the square brackets in (4.2) can
now be simplified using the Dirac equation (/2+m)v(2) = 0,

v̄(2)/3= v̄(2)(−/1− /2− /4)
= v̄(2)(−/2−m+m− /1− /4)
= v̄(2)(−/1− /4+m).

This gives (−/1 − /4 + m)(/1 + /4 + m) = m2 − u in the numerator of the first term,
canceling the denominator. Inserting and rearranging the terms we find that the
prefactor of the /ε(4) term is 24·3

s − 1= 0. The remaining terms are then

A(1234)
ε(3)→ε+(3)−−−−−−−→

g2

p
2ω3

v̄(2)
�

(3+ 4) · ε(4)
s

/3+
3 · ε(4)

s
/4
�

u(1).

Again using the Dirac equation to transform v̄(2)/4u(1) = −v̄(2)/3u(1) we get

A(1234)
ε(3)→ε+(3)−−−−−−−→ g2 4 · ε(4)

p
2ω3s

v̄(2)/3u(1). (4.3)

We see that unlike the QED case the amplitude for ε(3)→ ε+(3) only vanishes
when ε(4) ·4 is zero. The latter is true for transverse polarizations but not in general
for the longitudinal ones. Looking at the expression for −ηµν in terms of the polar-
ization vectors (2.22) we see that inserting this for the sum over polarizations we
would erroneously add an additional part to the squared amplitude. Inserting the
longitudinal polarization ε−(4) for ε(4) in the center-of-momentum (CoM) frame
we have ε(4) · 4 =

p
2ω4 =

p
2ω3. Then we get the Ward-identity violating part of

the CO amplitude,

A(1234)
ε(3)→ε+(3)−−−−−−−→
ε(4)→ε−(4)

g2

s
v̄(2)/3u(1). (4.4)

Repeating the calculation replacing ε(3)→ ε+(3) and ε(4)→ ε−(4) in A(1243) we
find the total Ward-identity violating part as

A→ g2(T c T d − T d T c)
v̄(2)/3u(1)

s
. (4.5)

4.1.2 Inserting Explicit Polarizations

A way to get the correct amplitude without using the trick of replacing the sum
over polarizations is to instead explicitly insert transverse polarizations into (4.2).
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This requires choosing a particular Lorentz frame in order to have a explicit ex-
pression for the polarization vectors. We may however try to rewrite the resulting
expression using only the frame-independent Mandelstam variables, thus regaining
a manifestly Lorentz invariant expression for the squared amplitude.

In order to have a clearer physical picture we now cross the two gluon momenta
to be outgoing 3 → −3, 4 → −4. Then we use also the usual expressions for the
Mandelstam variables u= (1− 4)2, t = (1− 3)2. We choose the CoM frame defined
by p1 = −p2. In this frame the two gluon 3-momenta are anti-parallel so with trans-
verse polarizations we have ε(3) ·3= ε(3) ·4= 0 and conversely for ε(4). Choosing
also again Nαβ = −ηαβ we get

A(12− 3− 4)
CoM
= −g2

�

v̄(2)/ε(3)∗
/1− /4+m

u−m2 /ε(4)∗u(1)− ε(3)∗ · ε(4)∗ v̄(2)
/3+ /4

s
u(1)

�

.

(4.6)
This expression is no longer Lorentz invariant as we allude to by the CoM text over
the equals sign. Inserting expressions for the polarization vectors in another frame
than the one we have chosen into (4.6) would give the wrong answer.

In the CoM frame we may define the z-axis such that

3µ = (ω, 0, 0,ω) (4.7)

4µ = (ω, 0, 0,−ω)

ε
µ
R (3) = ε

µ
L (4) = (0,1, i, 0)/

p
2

ε
µ
L (3) = ε

µ
R (4) = (0,1,−i, 0)/

p
2.

In total there are 4 possible combinations of gluon helicities L/R. However due to
the vector current vertex the two initial quarks have opposite helicities and it follows
that the two final state gluons must as well (we prove this statement in Chapter 5).
This leaves only 2 options and we can compute directly that the final term in (4.6)
vanishes due to the product ε(3)∗ · ε(4)∗ being zero,

A(12− 3− 4)
CoM
= −g2 v̄(2)/ε(3)∗

/1− /4+m
u−m2 /ε(4)∗u(1). (4.8)

It remains to compute the squared color-ordered amplitudes |A(12−3−4)|2, |A(12−
4 − 3)|2 and the cross term A(12 − 3 − 4)A(12− 4− 3)∗. We define the zero of the
azimuth angle φ = 0 to be the p1 direction. With this definition, we have written the
program explicit-polarisations-spinor-trace.frm that computes the squared
amplitudes and cross term summed over spin in terms of 1·ε(3) and the Mandelstam
variables. Notationally it is convenient to introduce the quantity

υ= 8(1 · ε(3))2
�

s− 4(1 · ε(3))2
�

. (4.9)

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/quark-gluon-scattering/explicit-polarisations-spinor-trace.frm
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The needed squares and the cross-term are then

∑

spin

|A(12− 3− 4)|2 =
g4υ

(u−m2)2
, (4.10)

∑

spin

|A(12− 4− 3)|2 =
g4υ

(t −m2)2
, (4.11)

∑

spin

A(12− 3− 4)A(12− 4− 3)∗ =
g4υ

(t −m2)(u−m2)
. (4.12)

Now in order to correctly square (4.1) we should not get confused by the nota-
tion. The T c and T d are matrices in the fundamental representation of SU(N). Bring-
ing back the indices the color factors are T c

i j T
d
jk, a matrix multiplication leaving two

free indices. Each of the two free indices corresponds to the three possible color
states of the two initial quarks. The indices c, d take 8 possible values, correspond-
ing to the 8 possible gluon color states. When squaring A we also sum over all these
free group indices. For the quark indices we see that this is equivalent to taking the
trace of Ai jA

†
jk, and we therefore sometimes call this procedure tracing over color

which we will denote simply by tr |A|2. Squaring (4.1) we have
∑

spin

tr |A|2 = tr T c T c T d T d
�

|A(12− 3− 4)|2 + |A(12− 4− 3)|2
�

(4.13)

+ 2 tr T c T d T c T dA(12− 3− 4)A(12− 4− 3)∗.

Inserting the expressions for the traces, equations (2.50) and (2.51), we get

∑

spin

tr |A|2 CoM
=

4g4υ

3

�

4

(u−m2)2
+

4

(t −m2)2
−

1
(u−m2)(t −m2)

�

. (4.14)

To simplify the resulting expression we from now on set m= 0 for the two quarks.
Then in the CoM frame we compute

1 · ε(3)R = 1 · ε(3)L =
ω sin(θ )
p

2
=
s

tu
2s

,

where θ is the scattering angle. In the CoM frame sin2 θ = 4tu/s2 which we used
to rewrite the expression in terms of the Mandelstam variables. Inserting this into
(4.9) and (4.14) and expanding we get

∑

spin

tr |A|2 =
64g4

3

�

t
u
+

u
t
−

1
4
− 2

t2 + u2

s2
+

1
2

tu
s2

�

. (4.15)

The equations (4.6)–(4.14) relied on properties of the polarization vectors that only
hold in our particular frame. Also the explicit calculation of υ is only possible by
choosing a Lorentz frame so that we can write down the polarization vectors expli-
citly like in (4.7). On the other hand we know (4.15) is correct in the CoM frame,
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and by writing it in terms of the Lorentz invariant Mandelstam variables the ex-
pression is also manifestly Lorentz invariant. Thus we have by expressing it in this
manner regained a frame independent result, and the CoM text over the equals sign
is removed. The expression is the same for the two possible gluon helicities, so the
sum over helicities just gives a extra factor 2. Removing also the last term in (4.15)
by using tu/s2 = 1/2− (t2 + u2)/2s2 we obtain the final result

∑

helicity

∑

spin

tr |A|2 =
128g4

3

�

t
u
+

u
t
−

9
4

t2 + u2

s2

�

. (4.16)

4.1.3 Using a Non-Covariant Gauge

In the previous section we had to calculate Lorentz products explicitly in a spe-
cific frame in order to compute the squared amplitude. This because we could no
longer use the replacement −ηµν for the sum over physical polarizations without in-
troducing unphysical extra terms. Alternatively we can insert the expression for the
polarization sum in the light cone gauge (2.23). As we saw this expression contains
only the sum over physical, transverse polarizations. Thus inserting it for the polar-
ization sum we do not introduce the erroneous extra terms and we should therefore
re-derive the expression of the previous section.

We are free to make a independent gauge choice for the internal lines and each
of the external polarization vectors. We saw in Section 2.3 how internal propagat-
ors originate with the corresponding Green function derived from the path integral.
Then all the internal propagators must be expressed in the same gauge; the one given
by the gauge fixing term in the Lagrangian. For the case of the light cone gauge this
means that the arbitrary vector nµ must be the same for all internal propagators. On
the other hand the external polarization vectors come from our constructed asymp-
totic states. They are by construction transverse, which is why the replacement −ηµν

is not a equality. The light cone gauge expression (2.23) gives however the correct
sum over transverse polarizations with the proper choice of nµ. This proper choice
depends on the 4-momentum and must therefore be done independently for each
external polarization vector.

We choose the Feynman-’t Hooft gauge for the internal propagator of (4.2), set-
ting N µν = −ηµν. With this choice we have written the program axial-gauge-
compute-square.frm to compute the squared amplitude summed over spin, helicity
and color, using the light cone gauge expression (2.23) for the sum over polariza-
tion. We denote the fixed lightlike vector nµ3 and nµ4 for the gluons with momenta 3
and 4 respectively. The computation is done for the case of zero quark masses and
is simplified by using n4 · 3 = n3 · 4 = 0. This latter fact can most easily be seen
by expressing the n3, n4 vectors explicitly in the CoM frame. With some algebraic
manipulation of the resulting expression, all relying on the s+ t + u = 0 identity of
the Mandelstam variables, we find that all the n3 and n4 dependent terms cancel

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/quark-gluon-scattering/axial-gauge-compute-square.frm
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/quark-gluon-scattering/axial-gauge-compute-square.frm
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p1

p2

p4, d

p3, c

Figure 4.2: Tree -level Feynman diagram for qq̄→ ghosts. There is also a equivalent
diagram with the ghost charge flow reversed.

out. The remaining expression is

∑

helicity

∑

spin

tr |A|2 = g4
�

−96+
128
3

� t
u
+

u
t

�

+ 192
tu
s2

�

(4.17)

=
128g4

3

�

t
u
+

u
t
−

9
4

t2 + u2

s2

�

.

Which as we expected is again the correct expression from the previous section
(4.16).

4.1.4 Using Faddeev-Popov Ghosts

Let us now investigate the possible amplitudes including also external Faddeev-
Popov ghosts for the annihilation of a quark -anti-quark pair. We saw in the previous
chapter that both gauge invariance and the optical theorem relies on these amp-
litudes canceling the unphysical contributions to gluon amplitudes. Specifically the
square of Ward-identity violating contributions to the gluon amplitude like (4.5)
should be canceled by a corresponding ghost term. The ghosts couple only to the
gluons so for qq̄ into ghosts only the s-channel diagram contributes, as shown in
figure 4.2. The amplitude for the diagram shown is the one we denoted B′ in Sec-
tion 3.3.1. Using (2.48) to express it in terms of the SU(3) generators its value is

iB′ = ig2(T c T d − T d T c)
Nαβ

s
3β v̄(2)γαu(1). (4.18)

There is also a corresponding diagram with the ghost charge flow reversed, which
we denote by B. It is related to the one above by replacing 3→ 4.

Notice that for the choice Nαβ = −ηαβ the expression (4.18) is exactly equal
to minus the Ward-identity violating contribution (4.5). This suggests that the can-
cellation works in the way required by the optical theorem in Section 3.3.1. That
means we should again be able to use the prescription of replacing the sum over
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physical polarizations by −ηµν, provided we use the ghosts to cancel the resulting
contributions from unphysical degrees of freedom. We check this explicitly for our
present example.

As seen in Section 3.3.1, the correct ghost term to include is twice the cross term
between the two ghost amplitudes with different charge flow directions. That term
we can compute straightforwardly with standard techniques. Alternatively we have
written the script ghosts-corresponding-amp.frm that will compute it. The result
summed over spin and traced over color is for zero quark masses

∑

spin

trBB′∗ = −24g4 tu
s2

. (4.19)

The other cross term amounts to interchanging t ↔ u, or to taking the complex
conjugate of the above, so we see it has the same value.

To compute the squared amplitude with gluons, where we replace the sum over
polarizations by −ηµν, we have written the program r-xi-compute-square.frm.
While the program gives the full expression we write down only the m= 0 case,

∑

spin

∑

helicity

tr |A|2
Pµν→−ηµν
−−−−−−→

∑

spin

∑

helicity

tr |Ã|2 (4.20)

= g4
�

− 96+
128
3

� t
u
+

u
t

�

+ 240
tu
s2

�

.

Comparing this to the expression (4.17) from before we see that to regain the correct
result we have to add twice the ghost cross term (4.19), or equivalently both ghost
cross terms,

∑

spin

∑

helicity

tr |Ã|2 + 2
∑

spin

trBB′∗ =
128g4

3

�

t
u
+

u
t
−

9
4

t2 + u2

s2

�

. (4.21)

The unphysical extra terms introduced by replacing the polarization sum by−ηµν are
canceled exactly by the amplitudes with external Faddeev-Popov ghosts. Combining
this result with the results of Section 3.3 proves the optical theorem for qq̄→ qq̄ at
O(g4).

4.2 Example: g g → g g

Next we will consider gluon-gluon scattering at tree level. This will allow us
to investigate how the procedure of the previous section generalizes to more than
two external gluons. Feynman diagrams contributing to this process are shown in
figure 4.3. The color factors are of the form

f abe f cde = −4 tr
��

T a, T b
�

T e
�

tr
��

T c , T d
�

T e
�

,

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/quark-gluon-scattering/ghosts-corresponding-amp.frm
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/quark-gluon-scattering/r-xi-compute-square.frm
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(a) 4-gluon vertex (b) s-channel diagram

(c) u-channel diagram (d) t-channel diagram

Figure 4.3: Tree level Feynman diagrams for g g → g g.

where we used (2.49) to express the structure constants in terms of the generators.
Using the Fierz identity (2.47) it follows that for any two matrices A, B we have

tr(AT e) tr(BT e) =
1
2

tr(AB)−
1

2N
tr(A) tr(B).

Then since the trace of a commutator is zero,

f abe f cde = −2 tr
��

T a, T b
��

T c , T d
��

.

Squaring and summing over color all the resulting contractions of two traces are of
the form calculated in equations (2.52)–(2.54).

Choosing the Feynman-t’ Hooft gauge for the internal lines is simplest. Doing the
same for external lines however we need to consider also diagrams with external
ghosts, as in the previous section. That procedure is now more complicated; with
the Feynman-t’ Hooft gauge on all external lines there are now twelve diagrams
with two external ghosts and six with four external ghosts to consider. Using instead
the non-covariant light-cone gauge we can avoid considering these extra diagrams.
Its main drawback is the three terms in the polarization sum (2.23), which compared
to the single term of the Feynman-t’ Hooft gauge significantly increases the number
of terms in intermediate expressions for the squared amplitude.

Since there are no diagrams with only one external ghost we can use the
Feynman-t’ Hooft gauge for one polarization sum without including any ghost
diagrams. We choose the Feynman-t’ Hooft gauge for ε(4) and the light-cone gauge
with lightlike vectors n1, n2, n3 for the remaining polarization vectors. To calculate
the square summed over polarization and traced over color with these choices we
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have written the program 1-feynman-3-light-cone-gauge.frm. In the program
the explicit relations n1 = p2/ω, n2 = p1/ω and n3 = p4/ω valid in the CoM frame
are used to simplify the resulting expression, here ω=

p
s/2. The result is

1
82

1
22

∑

pol.

tr |A(g g → g g)|2 =
9g4

2

�

3−
tu
s2
−

su
t2
−

st
u2

�

, (4.22)

where we added 1/(82 · 22) to average over initial helicity and color.
Alternatively using the Feynman-t’ Hooft gauge both for ε(4) and ε(3) we

should include diagrams with ghosts in the p4 and p3 positions. There are three
such diagrams, similar to the three final diagrams of figure 4.3. For ε(1) and
ε(2) we again choose the light-cone gauge. To calculate the gluon and
ghost contributions with these gauge choices we have created the script
2-feynman-2-light-cone-gauge.frm. We adopt for convenience a notation where
gi stands for a gluon with momentum i which we sum over polarizations using the
light-cone gauge while g̃i is a gluon where we replace the sum over polarizations
by −ηµν. With ci we denote a external ghost with the charge flow going in the
same direction as the momentum, c̄i is a ghost with the charge flow in the opposite
direction as the momentum. Then we find

∑

pol.

trA(g1 g2c3 c̄4)A(g1 g2 c̄3c4)
∗ =− 72g4

�

1−
tu
s2

�

, (4.23)

∑

pol.

tr
�

�A(g1 g2 g̃3 g̃4)
�

�

2
=
∑

pol.

tr
�

�A(g1 g2 g3 g4)
�

�

2
+ 144g4

�

1−
tu
s2

�

. (4.24)

As before we see we get the correct answer by adding the ghost cross term (4.23)
and its complex conjugate.

As in sections 3.3.1 and 4.1.4 we could have alternatively used the square of
A(g1 g2c3 c̄4) instead of (4.23), but then with a extra minus sign. For qq̄ → g g it
was momentum conservation 3= 1+ 2− 4 together the vanishing of /1+ /2 between
the two spinors that enabled this. Presently it is caused by the fact that the mo-
mentum combination 1 + 2 will in the ghost diagrams be contracted either with
1−2, ε(1) or ε(2). With ε(1),ε(2) transverse all these contractions give zero so that
A(g1 g2 c̄3c4) = −A(g1 g2c3 c̄4). It is when we go to three or more external lines in
the Feynman-t’ Hooft gauge that using the cross terms over simple squares becomes
a necessity.

The explicit calculations with three and four external lines in the Feynman-t’
Hooft gauge are presented in our Mathematica script gluon-gluon-scattering-
ghost-cancellation.wl. The script uses the FeynCalc [17–19] and FeynArts [20]
packages in order to demonstrate the cancellations at hand in a concise way.

We obtain when replacing the sum over polarizations by −ηµν on three external
lines

∑

pol.

tr
�

�A(g1 g̃2 g̃3 g̃4)
�

�

2
=
∑

pol.

tr
�

�A(g1 g2 g3 g4)
�

�

2
(4.25)

+ 324g4 − 288g4 st
u2
− 288g4 su

t2
− 432g4 tu

s2
.

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/gluon-gluon-scattering/1-feynman-3-light-cone-gauge.frm
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/gluon-gluon-scattering/2-feynman-2-light-cone-gauge.frm
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/gluon-gluon-scattering/gluon-gluon-scattering-ghost-cancellation.wl
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/gluon-gluon-scattering/gluon-gluon-scattering-ghost-cancellation.wl
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There are now three possible positions for a line with incoming ghost charge flow,
and having fixed that there are two remaining positions for the outgoing ghost
charge flow. In other words there are 3 · 2 = 6 possible ghost amplitudes. Of the
six corresponding ghost cross terms only three are unique since the remaining three
are related by a complex conjugation. The three ghost cross terms we need to con-
sider are

∑

pol.

trA(g1 g̃2 c̄3c4)A(g1 g̃2c3 c̄4)
∗ = −90g4 + 216g4 tu

s2
, (4.26)

∑

pol.

trA(g1c2 g̃3c4)A(g1 c̄2 g̃3 c̄4)
∗ = −18g4 + 36g4 t

s
+ 144g4 su

t2
, (4.27)

∑

pol.

trA(g1c2c3 g̃4)A(g1 c̄2 c̄3 g̃4)
∗ = −54g4 − 36g4 t

s
+ 144g4 st

u2
. (4.28)

Summing over all the six ghost cross terms gives minus the second line of (4.25).
Comparing the square

∑

pol.

tr
�

�A(g1 g̃2 c̄3c4)
�

�

2
= 108g4 + 36g4 t

s
− 216g4 tu

s2
, (4.29)

to (4.26) we see that the cross terms and squares no longer have a simple relationship
and we should use the cross terms only.

At this point we can make a interesting observation regarding crossing symmetry.
Crossing symmetry states that the amplitude for a process involving a particle with
momentum p in the initial state is equal to the amplitude for the otherwise identical
process with an anti-particle with momentum −p in the final state. Formally we
would say that the amplitude involving the anti-particle is the analytic continuation
to negative energies of the amplitude involving the corresponding particle [14]. No-
tice that the two amplitudes in (4.26) are related to the two in (4.27) by crossing 2
to be outgoing and 3 to be incoming, and then relabeling 2↔ 3. If crossing sym-
metry holds then the first two operations are equivalent to replacing 2 → −2 and
3→−3. Then (4.26) is related to (4.27) by merely interchanging s↔ t. Looking at
the expressions this is clearly not the case, so crossing symmetry is violated.

The above does not contradict that crossing symmetry holds in general for S-
matrix elements. The external particles in (4.26)–(4.28) are not valid asymptotic
states, and so they do not contribute to the S-matrix. Still we would like to un-
derstand why crossing symmetry fails in this case. Crossing symmetry fails at the
amplitude level when we use ε+(k) or ε−(k) since in contrast to the transverse po-
larizations these do not satisfy ε(−k) = ε(k)∗, but rather ε(−k) = −ε(k). However
summing over polarizations ε+(k) and ε−(k) always appear in pairs, so the two neg-
ative signs cancel out. This is then not the cause of the violation observed between
(4.26) and (4.27). Instead the answer does not come from a consideration of the
unphysical external states as one might expect, but rather how we handle the re-
maining transverse gluon at p1. To sum over transverse polarizations in (4.26) we
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use the light-cone gauge and the CoM frame to set n1 = 2/ω. Now imagine we in-
terchange s↔ t in the resulting expression. This is equivalent to 2→−3, 3→−2,
which means that we effectively set n1 = −3/ω. However in (4.27) we still use
n1 = 2/ω, leading to the discrepancy between (4.27) and the s↔ t interchanged
(4.26).

Clearly the above discrepancy is self afflicted. It would not occur had we simply
kept the arbitrary vector n1 around until the very end, instead of replacing it by
2/ω. However n1 does not cancel out and would enter in (4.25)–(4.28), severely
complicating those expressions. We might wonder at the explicit appearance of a
vector whose whole premise is to not appear in the final answer. But this is exactly
what we also determined in the previous paragraph; the amplitudes (4.25)–(4.28)
depend on n1. This is just another way to state that these amplitudes are not gauge
invariant. Only when summing them all do we get a gauge invariant object. This
means that if we want to keep n1 around in one of the amplitudes, we must keep it
around in all of them. When summing them all the n1 will finally cancel out.

Remaining is the case of substituting −ηµν for the sum over polarizations for
all four external gluons. To cancel the contribution from unphysical polarizations
we must now include also all amplitudes with four external ghosts. There are six
such amplitudes and six corresponding cross terms. As before only three need to be
computed, the remaining three being complex conjugates of the first. Now there are
12 amplitudes with two external ghosts. The six amplitudes in (4.26)–(4.28) plus
an additional six where there is a ghost at position 1. The last six are however just
given by relabelings of momenta in the first. The full equality required by unitarity
is then

∑

pol.

tr
�

�A(g1 g2 g3 g4)
�

�

2
=
∑

pol.

tr
�

�A( g̃1 g̃2 g̃3 g̃4)
�

�

2
(4.30)

+4
∑

pol.

trA( g̃1 g̃2c3 c̄4)A( g̃1 g̃2 c̄3c4)
∗ + 4

∑

pol.

trA( g̃1c2 g̃3c4)A( g̃1 c̄2 g̃3 c̄4)
∗

+4
∑

pol.

trA( g̃1c2c3 g̃4)A( g̃1 c̄2 c̄3 g̃4)
∗ + 2

∑

pol.

trA(c1 c̄2 c̄3c4)A(c̄1c2c3 c̄4)
∗

+2
∑

pol.

trA(c1 c̄2c3 c̄4)A(c̄1c2 c̄3c4)
∗ + 2

∑

pol.

trA(c1c2c3c4)A(c̄1 c̄2 c̄3 c̄4)
∗.

The 19 original terms on the right hand side have been reduced to seven. However
we can do much better by considering that—since there are no light-cone gauge
vectors n now—crossing again holds. This means we can get all the ghost
terms above by crossing the expressions for A( g̃1 g̃2c3 c̄4)A( g̃1 g̃2 c̄3c4)∗ and
A(c1 c̄2 c̄3c4)A(c̄1c2c3 c̄4)∗ into the appropriate channels. We have written the FORM
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script 4-feynman-gauge.frm to calculate the three terms
∑

pol.

tr
�

�A( g̃1 g̃2 g̃3 g̃4)
�

�

2
= 72g4
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tu
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su
t2
− 25

st
u2

�

, (4.31)

∑

pol.

trA( g̃1 g̃2c3 c̄4)A( g̃1 g̃2 c̄3c4)
∗ = −36g4 + 180g4 tu

s2
, (4.32)

∑

pol.

trA(c1 c̄2 c̄3c4)A(c̄1c2c3 c̄4)
∗ = −18g4 tu

s2
− 18g4 st

u2
. (4.33)

Our Python script 4-feynman-gauge-crossings.py takes these values and crosses
them into the relevant channels to obtain again the correct result (4.22).

4.3 The Generalized Ward Identities; Unitarity to All Or-
ders

In QCD we found that the Ward identity of QED was violated. As calculated in
Section 4.1, the amplitude for qq̄→ g g did not vanish when replacing a polarization
vector by its corresponding four-momentum. However we also found that the term
violating the Ward identity was equal to a corresponding amplitude with external
ghosts. More precisely the amplitude with unphysical polarization vectors εµ+(p3)
and εµ−(p4) is equal to minus the amplitude with the external gluon lines replaced
by a ghost line with the charge flow outgoing at p3. This fact enabled the cancellation
of Section 4.1.4. That cancellation in turn, as we saw in Section 3.3, is required for
unitarity at O(g4).

We may hope that there exists analogous connections between amplitudes with
longitudinal external gluons and amplitudes with ghosts also for N external lines and
at O(gn). Such relations should facilitate the generalization of the cancellations of
the previous two sections, ensuring unitarity at any order in perturbation theory. Ex-
amples of these generalized Ward identities were first found by t’ Hooft in Ref. [21],
and they play a central role also in the renormalizability of Yang-Mills theory. The
derivation of t’ Hooft is based on a combinatorial argument applied directly to Feyn-
man diagrams. That approach was developed further by Taylor in Ref. [22], while
Slavnov gave a alternative derivation using path integral methods [23]. The gener-
alized Ward identities of Yang-Mills theory are therefore often called Slavnov-Taylor
identities.

4.3.1 Slavnov-Taylor identities

We will focus on the Slavnov-Taylor identities needed to prove perturbative unit-
arity. To derive them we will use the path integral method of Slavnov. Apply to the
generating functional (2.3) a infinitesimal gauge transformation,

Aa
µ(x)→ Aa

µ(x)− Dab
µ (x)ϑ

b(x) = Aa
µ(x)− ∂µϑ

a(x)− g f abcAc
µ(x)ϑ

b(x). (4.34)

https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/gluon-gluon-scattering/4-feynman-gauge.frm
https://gitlab.com/magnunm/yang-mills-scattering-amplitudes/-/blob/master/gluon-gluon-scattering/4-feynman-gauge-crossings.py
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The resulting variation of the generating functional is divided into the variation of
the integrand and the change in the path integral measure. To compute the change
in the path integral measure we should compute the Jacobian of the transformation
(4.34),

δ[Aa
µ(x)− Dad

µ (x)ϑ
d(x)]

δAb
ν(y)

= δνµδ(x − y)
�

δab + g f abdϑd(x)
�

.

Notice that the Jacobian determinant is of the form det(I+ εT ) with ε infinitesimal
and T a anti-symmetric matrix. This follows from the anti-symmetry of f abd . Since
the trace of a anti-symmetric operator is zero we have

det(I+ εT ) = det(exp(εT )) = exp(ε tr(T )) = 1,

and the Jacobian determinant of the transformation (4.34) is unity.
Next we turn to the change in the integrand. By construction the pure Yang-Mills

part SYM is unchanged. By applying a partial integration to the Faddeev-Popov action
(2.6) we can write it as

SFP =

∫

d4 x
�

−c̄a(x)M ab(x)cb(x)
�

, (4.35)

with
M ab(x) = ∂ νDab

ν . (4.36)

The change in the Faddeev-Popov action under (4.34) is then

δSFP = −
∫

d4 x c̄a(x)δM ab(x)cb(x)

= g f abc

∫

d4 x c̄a(x)M cd(x)ϑd(x)cb(x).

This and later expressions are greatly simplified by a re-expression of the arbitrary
function. We choose ϑd(x) such that

M cd(x)ϑd(x) = χ c(x), (4.37)

for some new arbitrary function χ c(x). Finding such a ϑd(x) can by done by the
method of Green functions. Let ∆ab(x , y) be the inverse of the differential operator
M ab(x). Assuming this inverse exists the expression

ϑc(x) =

∫

d4 y∆cb(x , y)χ b(y) (4.38)

satisfies (4.37). With this choice the change in the Faddeev-Popov action is

δSFP = g f abc

∫

d4 x c̄a(x)χ c(x)cb(x). (4.39)
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Recall that we can alternatively write the path integral over the ghost fields of
exp(iSFP) as ∼ det M . Then we should be able to derive the change (4.39) also from
the change of this determinant. Using the expression δdet X = det X tr X−1δX for
the variation of a determinant we have

det M → det M

�

1+ g f abc

∫

d4 x d4 y χ c(x)∆ab(x , y)δ(x − y)

�

.

Comparing this to (4.39) we see that inside the integrand of the path integral the
replacement

∆ab(x , y)→−ica(x)c̄b(y), (4.40)

should be valid.
Out next goal is to remove the δSFP contribution entirely by shifting also ca(x)

in the generating functional. Consider the transformation of the ghost field

ca(x)→ ca(x)−αg f dec

∫

d4 y∆ad(x , y)χ c(y)ce(y), (4.41)

where α is some real parameter. Under this transformation the change δSFP in the
Faddeev-Popov action is α times the change (4.39) due to the infinitesimal gauge
transformation. This follows directly from insertion into (4.35) and the definition of
∆ab. If we set before the shift the ghost sources to zero the only additional change
to the generating functional comes from the Jacobian. Again we utilize that the
arbitrary function χ is infinitesimal to write the Jacobian determinant as

det

�

δc′d(x)
δca(z)

�

= det
�

δdaδ(x − z)−αg f bac∆d b(x , z)χ c(z)
�

= exp

�

−αg f bac

∫

d4 x∆ab(x , x)χ c(x)

�

= 1+αg f abc

∫

d4 x∆ab(x , x)χ c(x).

By using the replacement (4.40) this reveals itself as again 1+ iαδSFP where δSFP is
the change in the Faddeev-Popov action due to the infinitesimal gauge transforma-
tion. Thus setting α= −1/2 the combined infinitesimal gauge transformation (4.34)
and ghost shift (4.41) leaves SFP unchanged.

It remains to compute the variation of the gauge fixing and source terms under
the infinitesimal gauge transformation (4.34). The change of the gauge fixing action
is

δSgf =
1
ξ

∫

d4 x ∂ µAa
µ(x)M

ac(x)ϑc(x) =
1
ξ

∫

d4 x ∂ µAa
µ(x)χ

a(x). (4.42)
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Using (4.38) we write also the variation of the source term as a function of χ,

δSs = −
∫

d4 x Jµa(x)Dac
µ (x)

∫

d4 y∆cb(x , y)χ b(y)

= −
∫

d4 x

∫

d4z Jµb(z)Dbc
µ (z)∆

ca(z, x)χa(x). (4.43)

The full change in the generating functional under the simultaneous transform-
ations (4.34) and (4.41) is then finally

Z → Z +δZ =

∫

DAµDcDc̄ exp(iS + iSs)
�

1+ iδSgf + iδSs

�

.

However since this is simply a change in integration variables, the value of the path
integral is unchanged. In other words δZ = 0. Since χa(x) is arbitrary this equation
still holds if we drop χ and the integration over x . Inserting also the replacement
(4.40) valid in the integrand of the path integral gives

∫

DAµDcDc̄ exp

�

iS + i

∫

d4 x J aµAa
µ

��

1
ξ
∂ µAa

µ(y) (4.44)

+ ic̄a(y)

∫

d4z J bµ(z)Dbc
µ (z)c

c(z)

�

= 0.

This equation will be our starting point for deriving a family of Slavnov-Taylor
identities. Taking one functional derivative with respect to J dν(x1) a factor iAd

ν(x1)
is brought down from the exponent. Applying the functional derivative to the term
in the square brackets the d4z is canceled, leaving c̄a(y)Ddc

ν (x1)cc(x1). In total the
equation (4.44) becomes

∫

DAa
µDcaDc̄a exp

�

iS + i

∫

d4 x J aµAa
µ

��

1
ξ

Ad
ν(x1)∂

µAa
µ(y) (4.45)

+ iAd
ν(x1)c̄

a(y)

∫

d4z J bµ(z)Dbc
µ (z)c

c(z) + c̄a(y)Ddc
ν (x1)c

c(x1)

�

= 0.

This equation is interesting in its own right. Setting J a
µ to zero we can use it to

show that there are no higher-order corrections to the longitudinal part of the gluon
propagator (see e.g. Ref. [23]). The identity we will use to prove perturbative unit-
arity however is a relation between N -point functions. Thus to arrive at it we need
to take more functional derivatives. Taking N functional derivatives with respect to
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Jµ1a1(x1) . . . JµN aN (xN ) of the relation (4.44) we get

∫

DAa
µDcaDc̄a exp

�

iS + i

∫

d4 x J aµAa
µ

��

1
ξ

N
∏

i=1

Aai
µi
(x i)∂

µAa
µ(y) (4.46)

+i
N
∏

i=1

Aai
µi
(x i)c̄

a(y)

∫

d4z J bµ(z)Dbc
µ (z)c

c(z)

+ c̄a(y)
N
∑

j=1

N
∏

i=1
i 6= j

Aai
µi
(x i)D

a j c
µ j
(x j)c

c(x j)

�

= 0.

For N = 1 this agrees with (4.45). Taking another functional derivative of (4.46) we
obtain the formula for N + 1, thus proving it by induction. We want to rebrand this
formula as a statement about N -point Green functions. Setting the external source
J to zero and inserting the covariant derivative we can write it as

0=
1
ξ
∂ µy 〈0|TAa

µ(y)
N
∏

i=1

Aai
µi
(x i)|0〉 (4.47)

+
N
∑

j=1

�

∂
x j
µ j
〈0|Tc̄a(y)ca j (x j)

N
∏

i=1
i 6= j

Aai
µi
(x i)|0〉

+ ig f a j cd 〈0|Tc̄a(y)cc(x j)A
d
µ j
(x j)

N
∏

i=1
i 6= j

Aai
µi
(x i)|0〉

�

,

where T stands for the time-ordered product.
By considering connected Green functions at a fixed order in perturbation theory

O(gn)we can simplify the equation (4.47). We argue that the identity then holds also
without the term on the last line. The two first terms are Green functions with N +1
external legs while the last term is a Green function with N+2 external legs. Then for
n< N−1 all the Green functions of (4.47) are zero, and the simplified identity holds
vacuously. For n = N − 1 the two Green functions with N + 1 external legs become
non-zero, while the one with N + 2 does not. Then by (4.47) the simplified identity
holds at order n = N − 1. We can go to any order n now by induction. Assume the
simplified identity holds at order n− 1. Then equation (4.47) shows that the O(gn)
part of the final term is zero. Look next at the Green functions at order n. The final
term must then be purely of order gn+1 and can be neglected. Thus the simplified
identity holds at order gn, which completes the inductive argument.

Next we transform to momentum space. The momentum corresponding to the
spacetime coordinate x i we denote pi , while k corresponds to y . Also we specialize
to the Feynman-t’ Hooft gauge ξ = 1. With this choice, contracting the kµ of the
first term in (4.47) with a external propagator gives −ikν in the numerator. The
two external ghost propagators in the second term give i2 = −1. The version of the
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identity (4.47) without the last term can then be expressed graphically as

kp1

µ1

p2
µ2

pN

µN = i
∑N

j=1

p1

µ1

µ j

µN

k

.

(4.48)

We used here a graphical notation where a rectangle at the end of a propagator
( or ) represents the corresponding four-momentum kµ. So on the left
hand side of (4.48) the Green function is contracted with kν, while on the right hand
side an extra p

µ j

j is added to the ghost propagator at p j . The latter fact makes the
indices balance between the left and right hand sides, as we by a line with a circle
mean a ordinary propagator with a free index. This graphical notation is inspired by
the one used by t’ Hooft [21].

We are here ultimately interested in relations between Feynman amplitudes,
thus we let all external momenta now go on-shell. Then contracting the free indices
µi with a transverse polarization all the terms on the right hand side vanish since
pi ·εR/L(pi) = 0. To express the resulting identity in a concise way we will introduce
a new graphical element. A circle without hatching we shall take to mean a Green
function with an arbitrary number of external gluon lines taken on-shell and con-
tracted with a transverse polarization vector. External lines not satisfying this will
be expressed explicitly. Graphically we have then

= 0
.

(4.49)

For any number of external lines in the previous argument we could have also
contracted with the momentum p

µ j

j . Since p2
j = 0 the right hand side still vanishes

with this choice and we have

= 0

.

(4.50)

We are now ready to derive the generalization of the relation we saw in Sec-
tion 4.1 between the amplitude with two unphysical polarizations and the amplitude
with two external ghosts. Contracting in (4.48) a transverse polarization on all the
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external µ j except where j = N we find

µN
= i

µN

.

(4.51)

The way this identity works on the level of Feynman amplitudes becomes clearer
if we contract with p̃µN

N , where p̃ is the parity transform of p. On the right hand
side we get then pN · p̃N = 2ω2

N . The Feynman-t’ Hooft gauge gives −ip̃νN
N on the

left hand side. This contraction with the parity transformed momentum we express
graphically by a open rectangle ( ), so that

= −2ω2
N

.

(4.52)

To hammer home the point that this is the identity of Section 4.1 consider that kµ =p
2ωkε

µ
+ and k̃µ =

p
2ωkε

µ
−. Using polarization vectors on all external lines then,

the two sides are identical except for a factor −ωN/ωk. The ratio was in Section 4.1
set to unity by our choice of the CoM frame.

4.3.2 Unitarity at O(gn)

From Chapter 3 we know that the optical theorem, and by extension unitarity,
relies upon the gauge invariance of the cut propagators in the Cutkosky cut giving the
imaginary part of the amplitude. Cutting propagators in the Feynman-t’ Hooft gauge,
including all cuts over internal ghost lines, should be equivalent to cutting purely
transverse propagators. Recall the relation (2.23) between the sum over transverse
polarizations and −ηµν. Graphically we can write that relation as

= + 1
2ω2

�

+
�

.
(4.53)

By the hatching on the left hand side we mean a Cutkosky cut involving only trans-
verse polarizations. The first term on the right hand side is a ordinary Cutkosky cut
of the propagator in the Feynman-t’ Hooft gauge, while the two last terms are the
k̃µkν and kµk̃ν parts.

We start by considering the case of two cut propagators. We let the labels 1 and
2 represent the lower and upper cut propagator respectively. By inserting (4.53) in
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propagator 1 and using the identity (4.49) we have

=

.

Inserting (4.53) also in propagator 2 we get three terms on the right hand side. In
the two last terms of the resulting expression we can again combine (4.53) with
(4.49) in propagator 1 to find

= −

1
4ω2

1ω
2
2

�

+

�

.

Looking at the expressions on each side of the cuts in the last two terms we see that
we can apply the Slavnov-Taylor identity (4.52) a total of four times to obtain

= −

−

.

In this notation the minus signs associated with the explicitly shown ghost loops
are denoted explicitly. The two last terms are not topologically distinct and could
be combined to give the relative symmetry factor two between the gluon and ghost
loop diagrams, which is also explicit in the notation. Then the right hand side of the
above equation is the sum over all relevant Cutkosky cuts with two cut propagators
in the Feynman-t’ Hooft gauge. The above equation is then exactly what we need to
prove the optical theorem for the case of two final state particles.

To go to the general case we could in principle have employed a similar argu-
ment to the one above, using then Slavnov-Taylor identities involving more than two
external ghosts. The complexity of such identities however grows with the number
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of external ghosts considered. Instead we will reuse a variant of the identity (4.52)
in a inductive argument.

Since the imaginary parts of each side of (4.52) are equal, so are the discon-
tinuities over the s-channel branch cuts. The discontinuities of the amplitudes are
in turn the sum of the discontinuities of their individual diagrams. In fact the sums
over only the discontinuities corresponding to some fixed number of cut propagators
are equal as well. Graphically we write this as

m
= −2ω2

N

m
(4.54)

where the label m represents a sum over all Cutkosky cuts involving m cut propagat-
ors. A lucid proof of this equation can be found in Chapter 11 of Sterman’s book [24].
Since we consider on-shell external lines a special case is

m

= −2ω2
N

m

.

(4.55)

Next we proceed with the inductive argument. Assume the optical theorem holds
for the case of m− 1 final state particles, then we have

m
=

m− 1

=

m− 1

.

In the first equality there is no term with a ghost line at the bottom propagator be-
cause there are no amplitudes with just a single external ghost. The second equality
uses the inductive hypothesis. As before we insert (4.53) in the bottom propagator,

m
=

m− 1

+ 1
2ω2

1

�

m− 1

+

m− 1
�

=

m− 1

−

m− 1

−

m− 1

.
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In the second equality we used the identity (4.55) on the last two terms. In compact
notation we have then

m
=

m

which proves the optical theorem by induction.
We have in this argument not considered fermions, either in external or internal

lines. Since the representation of the fermions does not suffer from redundant de-
grees of freedom however, adding them to the argument adds no difficulty. Implicit
in our argument is the assumption that the theory has been renormalized in such a
way that the Slavnov-Taylor identities hold.



Chapter 5

The Spinor-Helicity Method

The previous chapter shows how the gauge redundancy of the Lagrangian be-
comes a complex redundancy at the level of the amplitude. Already with four ex-
ternal gluons in the Feynman-t’ Hooft gauge do the ghost diagrams outnumber the
diagrams with only gluons. We realize that the number of extra diagrams required
grows out of hand if we attempt to use the Feynman-t’ Hooft gauge with many ex-
ternal gluons, or at higher order in perturbation theory. Simultaneously the expres-
sions corresponding to each diagram become longer. This means that also summing
over polarizations using the light-cone gauge becomes unviable due to the length
of the resulting expressions. The best option then is to insert explicit polarizations,
which does not require us to square the amplitude first. Then we must pick a frame,
and are faced with the problem of translating our result into a frame-independent
one. In this chapter we consider a way of representing the explicit polarizations
which makes the last step simple. The idea is to represent them using spinors, so
we start by reviewing these. Next we consider some identities used to compute
amplitudes with this method, before we apply them to quark-annihilation into two
gluons.

5.1 Spinors

Considering the product of two Lorentz vectors,

xµ yµ = x0 y0 − x1 y1 − x2 y2 − x3 y3,

as a bilinear map R1,3 ×R1,3→ R we define a Lorentz transformation to be a linear
transformation which keeps this map invariant. The Lorentz group is the set of all
such transformations. Of these the familiar Lorentz boosts and three-dimensional
rotations make up the part continuously connected to the identity. We write O(1,3)
for the Lorentz group, which is a Lie group [25]. To construct a quantum field theory
with observables that are Lorentz covariant we use fields that transform according to

51
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the Lorentz group. At the same time the number of internal degrees of freedom of a
field is connected to the spin of the corresponding particle. This leads to a connection
between the different matrix representations of the Lorentz group and the theories
describing relativistic particles of different spin [11]. In particular the concept of a
spinor, our main object of interest in this chapter, emerges naturally from such a
analysis.

A matrix representation of the Lie algebra automatically gives a matrix repres-
entation of the corresponding Lie group. Therefore a strategy for finding different
matrix representations of a Lie group is to use its Lie algebra. In Appendix B we find
the Lie algebra of the Lorentz group. It can be expressed as a direct sum of two SU(2)
Lie algebras, and we denote the three basis elements of the two SU(2) Lie algebras
J i
+ and J i

−.
The representation theory of SU(2) is equivalent to the treatment of addition of

angular momenta in non-relativistic quantum mechanics, which is covered in many
introductory books, e.g. [26]. The fundamental representation of SU(2) is given by
the generators σi/2 with σi the Pauli matrices. With this knowledge we can find the
fundamental representation of the Lorentz group. Let the J+ subspace be represented
by the fundamental representation while the J− subspace is represented by the trivial
representation. The trivial representation satisfies the defining commutation relation
(B.14) by setting all generators to zero. Thus we have in this representation

J i
− = 0 J i

+ =
σi

2
.

Solving these two equations for the generators of rotations J i and Lorentz boosts K i

we find that J i = σi/2 and K i = −iσi/2.
This representation of the Lorentz group acts on two-component objects instead

of the four-component four-vectors. By definition of the Lie algebra (see Appendix B)
the new two-component objects, called spinors, transform under a Lorentz trans-
formation according to

φR→ exp[iX ]φR = exp
�

i
2
θ iσi +

1
2
ηiσi

�

φR. (5.1)

We could have equally well let the J− subspace be represented by the fundamental
representation, while representing the J+ subspace by the trivial representation. Re-
peating the argument above then leads to another class of two-component objects
which now transform as

φL → exp[iX ]φL = exp
�

i
2
θ iσi −

1
2
ηiσi

�

φL . (5.2)

The reason for the labeling R/L of the two classes of spinors will be explained shortly.
In order to construct a Lorentz invariant Lagrangian involving the spinorsφR and

φL we need to know how to construct Lorentz scalars out of them. Since the spinor
is a complex two-component object a natural place to start is to look at the usual
scalar product for complex vectors. For simplicity we will preform our calculations
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with infinitesimal parameters such that exp(itX ) = 1+ itX . We find that the scalar
product of two right-handed spinors,

φ†
RφR→φ

†
R

�

1−
i
2
θ iσi +

1
2
ηiσi

��

1+
i
2
θ iσi +

1
2
ηiσi

�

φR

=φ†
RφR +η

iφ†
Rσ

iφR,

transforms as the time-component of a 4-vector with spacial part φ†
Rσ

iφR. Thus
φ†

Rσ
µφR with σµ = (1,σi) might transform as a 4-vector if the spatial part φ†

Rσ
iφR

transforms correctly. We verify this by a direct computation,

φ†
Rσ

kφR→φ
†
R

�

1−
i
2
θ iσi +

1
2
ηiσi

�

σk
�

1+
i
2
θ iσi +

1
2
ηiσi

�

φR

=φ†
R

�

σk +ηiσiσk − εki jθ iσ j + iεki jηiσ j
�

φR

=φ†
Rσ

kφR +η
kφ†

RφR + ε
k jiθ iφ†

Rσ
jφR,

where we used
�

σi ,σ j
�

= 2iεi jkσk to get to the second line andσiσ j = δi j+iεi jkσk

to get to the final line. By a similar calculation we find that for the other class of
spinors, φ†

Lσ̄
µφL transforms as a 4-vector, now with σ̄µ = (1,−σi).

With the knowledge that φ†
Rσ

µφR transforms as a 4-vector we can construct a
Lorentz-invariant Lagrangian for the spinor φR as L∝ φ†

R∂µσ
µφR, and similarly for

φL using σ̄µ. The corresponding Euler-Lagrange equations are

∂µσ
µφR(x) = 0, (5.3)

∂µσ̄
µφL(x) = 0, (5.4)

which are known as the Weyl equations. Spinors satisfying the Weyl equation we
will call Weyl spinors. In momentum space the equation reads

pµσ
µφR(p) = 0, (5.5)

pµσ̄
µφL(p) = 0. (5.6)

Operating on the first equation with pνσ̄
ν we find that the momentum pµ is lightlike,

pνσ̄
νpµσ

µφR(p) = [(p
0)2 − pi pkσiσk]φR(p) = pµpµφR(p) = 0. (5.7)

We are now ready to explain the label R/L on the Weyl spinor. Remember from
Section 2.2 that we defined the helicity of a plane wave as the number h in the phase
exp(ihα) acquired by the plane wave after a rotation of angle α around its axis of
propagation. A positive helicity we called right-handed and a negative helicity left-
handed, see figure 2.1. Using the transformation law (5.1) we can apply such a
rotation around the axis of propagation p/|p|,

φR(p)→ exp

�

i
αpi

2p0
σi

�

φR(p),
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where |p|= p0 since the momentum pµ is lightlike. From the Weyl equation (5.5) it
follows that

piσiφR(p) = p0φR(p)

αpi

2p0
σiφR(p) =

α

2
φR(p)

�

αpi

2p0
σi

�n

φR(p) =
�α

2

�n
φR(p),

which we can use to compute the matrix exponential. The result is that the rotation
amounts to multiplying φR by the phase α/2, in other words the helicity of φR is
+1/2. Repeating the argument for the case of φL the Weyl equation (5.4) contains
an additional relative factor −1, and the helicity is −1/2. A interesting sidenote is
that this argument implies that to get back the same spinor we need to rotate a spinor
4π instead of the usual 2π for vectors. Looking at the above derivation it is clear that
the helicity of both fields is also their eigenvalue with respect to the operator

h=
piσi

2|p|
. (5.8)

Two more identities involving the Weyl spinors will be of importance to us later.
First we consider if there is some relationship between the two different kinds of
Weyl spinors. Using the identity of the Pauli matrices

σ2(σi)∗ = −σiσ2,

we compute that the transformation law of −iσ2φ∗R is

−iσ2φ∗R→− iσ2
�

1+
i
2
θ iσi +

1
2
ηiσi

�∗
φ∗R

=
�

1+
i
2
θ iσi −

1
2
ηiσi

�

�

−iσ2φ∗R
�

.

In other words φc
R ≡ −iσ2φ∗R transforms as a left-handed spinor. By direct insertion

and using the same property of the Pauli matrices we also find that φc
R solves the

Weyl equation for φL given that φR solves the Weyl equation for φR. Thus for Weyl
spinors

φL = −iσ2φ∗R. (5.9)

Doing the same calculation for φc
L ≡ iσ2φ∗L we see that it transforms as a right-

handed spinor, and solves the Weyl equation for a right-handed spinor. That means
we have also

φR = iσ2φ∗L , (5.10)

where we see the phase was chosen so that this equation is consistent with (5.9).
Next we multiply the Weyl equation for a right-handed spinor (5.5) by φ†

R from
the right. This turns the Weyl equation into a statement that the product of the
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two 2 × 2 matrices pµσ
µ and φR(p)φ

†
R(p) is the zero-matrix. Clearly the matrix

φR(p)φ
†
R(p) is Hermitian. All Hermitian 2 × 2 matrices can be written as a linear

combination of the Pauli matrices and the identity matrix, see e.g. Section 2.4. It
follows that we can write

φR(p)φ
†
R(p) = aµσ̄

µ,

for some set of four parameters aµ. Now looking at (5.7) it is clear that choosing
aµ∝ pµ we will satisfy the Weyl equation in the form pµσ

µφR(p)φ
†
R(p) = 0, since

the momentum is lightlike. The proportionality constant depends on a normalization
convention for the Weyl spinors. We set this constant to one such that

φR(p)φ
†
R(p) = pµσ̄

µ. (5.11)

A completely equivalent argument for the case of φL(p) leads to the conclusion that

φL(p)φ
†
L(p) = pµσ

µ. (5.12)

What normalization of the Weyl spinors gave (5.11) and (5.12)? By computing
(φ†

RφR)2 = tr
�

φRφ
†
RφRφ

†
R

	

, we find that the required normalization is φ†
RφR =

φ†
LφL = 2E.

5.1.1 From Weyl to Dirac Spinors

The Weyl spinors describe spin-1/2 particles. We found the products φ†
RφR and

φ†
LφL did not transform as scalars but as the time-like component of a 4-vector. Then

we could construct the kinetic term of a Lagrangian describing the spinors but not a
mass-term. Consequently the Euler-Lagrange equations described the propagation of
massless particles. In nature however no massless spin-1/2 particles are known [27],
and we would therefore like to add a mass-term to our Lagrangian.

A simple solution presents itself if we compute in the same way as in the pre-
vious section the transformation law of φ†

RφL . We find that it, along with φ†
LφR

transforms as a Lorentz scalar. Considering the kinetic term φ†
R∂µσ

µφR we see the
mass dimension of φL/R is 3/2. Then we can add the terms mφ†

RφL and mφ†
LφR to

the Lagrangian with m a constant with mass dimension 1. We have

L∝ iφ†
R∂µσ

µφR + iφ†
L ∂̄µσ

µφL −mφ†
RφL −mφ†

LφR, (5.13)

with corresponding Euler-Lagrange equations

i∂µσ
µφR −mφL = 0 (5.14)

i∂µσ̄
µφL −mφR = 0. (5.15)

Going to momentum-space and multiplying the first equation by pνσ̄
ν as in (5.7)

we find pνσ̄
νφL = (p2/m)φR. Inserting this into the second equation in momentum

space we find p2 = m2, the relativistic dispersion relation. This is how we determined
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the correct relative numerical factor between the mass-term and the kinetic term in
(5.13).

We see that with the introduction of the mass-term above the dynamics of φR
and φL are now coupled. A propagating free particle will oscillate between the two
states φR, φL . If we want the propagating particle to be described by a single field
we need therefore to combine the two fields into one. We combine them into the
4-component spinor

ψ=

�

φL
φR

�

. (5.16)

The two coupled equations (5.14) and (5.15) can then be rewritten as a single com-
pact expression involving the new spinor,

(i∂µγ
µ −m)ψ(x) = 0, (5.17)

by defining the gamma matrices

γµ =

�

0 σµ

σ̄µ 0

�

. (5.18)

This is the Dirac equation and correspondingly the spinor ψ is a Dirac spinor. The
general plane-wave solutions to the Dirac equation can be found in Appendix C.

A Dirac spinor having only the φL component we call left-chiral, while one hav-
ing only the φR component we call right-chiral. These components are mixed by the
mass-term so chirality is not conserved. The left and right chiral fields are the eigen-
vectors of diag(−1,1) with eigenvalue −1 and +1 respectively. We find by a direct
calculation that

iγ0γ1γ2γ3 =

�

−1 0
0 1

�

.

Thus the eigenvectors of γ5 ≡ iγ0γ1γ2γ3 may alternatively be used to define the
chiral fields. The definition in terms of φR and φL combined with our experience
from the previous section might mislead us to think the concept of chirality is com-
pletely equivalent to that of helicity. This is however not the case. From the previous
section we have the transformation laws of the two spinorsφL ,φR in (5.2) and (5.1)
respectively. The transformation law of the Dirac spinor ψ is then simply given by
a block diagonal matrix with the matrix in (5.2) in the upper left corner and the
matrix in (5.1) in the lower right corner. Then a rotation of angle α around the axis
of propagation of the Dirac spinor is given by applying the matrix

exp

�

i
αpi

2|p|
σi

�

to the φL and φR component of the Dirac spinor simultaneously. Now for the Dirac
spinor to have definite helicity this operation must be equivalent to multiplying the
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entire Dirac spinor by a phase exp(ihα). Using that the matrix exponential preserves
block diagonal matrices this implies

exp

 

i αpi

2|p|σ
i 0

0 i αpi

2|p|σ
i

!

ψ= exp(ihα)ψ,

which only holds if ψ is an eigenvector of the operator

h=
pi

2|p|

�

σi 0
0 σi

�

, (5.19)

with eigenvalue h. This helicity operator is the generalization of the helicity oper-
ator for Weyl spinors (5.8). In contrast to chirality, helicity is a conserved quantity.
However when considering massive particles it is not Lorentz invariant, as a boost
can change the direction of p.

5.2 Fermions in the Ultra-Relativistic Limit

We will in the remainder of this chapter consider processes at momentum scales
large compared to the masses of the fermions involved. In this ultra-relativistic limit
we may to a good approximation neglect the fermion masses. Taking the m → 0
limit of the plane-wave solutions to the Dirac equation, equations (C.9) and (C.10)
of Appendix C, we find

u(p) =
1
p

2E

�

pµσ
µφ1

pµσ̄
µφ1

�

v(p) =
1
p

2E

�

pµσ
µφ2

−pµσ̄
µφ2

�

.

At the same time we know that in the m→ 0 limit the Dirac equation decouples to the
Weyl equations (5.3) and (5.4). Accounting for the normalization φ†

RφR = 2E of the
Weyl spinors we may set φ1 = φR/

p
2E. Inserting this choice of φ1 into the above

solution the upper component of u(p) vanishes since φR is a solution to the Weyl
equation. The lower component, by using (5.11), becomesφ†

RφRφR/
p

2E =
p

2EφR.
Following the same argument for the choice φ1 = φL we find that these choices give
the states of definite chirality

uR(p) =

�

0
φR(p)

�

uL(p) =

�

φL(p)
0

�

. (5.20)

From our discussion of the Weyl spinors it follows that these states are also eigen-
states of helicity. The spinor uR has right-handed helicity and uL has left-handed
helicity. We see then that in the massless limit the expansion in states of definite
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chirality and helicity is the same. From now on we will when talking about handed-
ness refer only to helicity unless otherwise stated.

Without the mass-term the two equations distinguishing the particle and anti-
particle, (C.1) and (C.2), are identical. Therefore we can use the states (5.20) to
describe also the anti-particle v(p). In order to keep the property that crossing a
incoming right-handed particle should give a outgoing left-handed anti-particle we
set vL(p) = uR(p) and vice versa vR(p) = uL(p). The 4 possible spinors have then
been reduced to two. We will in this chapter treat all particles as incoming. This
means we will only encounter the spinors uL/R representing a incoming particle and
v̄L/R = ūR/L representing a incoming anti-particle. Except that we here define the
particles as incoming instead of outgoing we follow the notation of Peskin [28] and
write

uL(p)≡p] Incoming left-handed fermion, (5.21)

uR(p)≡p〉 Incoming right-handed fermion, (5.22)

ūL(p)≡〈p Incoming right-handed anti-fermion, (5.23)

ūR(p)≡[p Incoming left-handed anti-fermion. (5.24)

We see immediately the reasoning behind the notation by computing that the two
nonzero scalar products of spinors are expressed with a matching pair of brackets

〈pq] = 0,

[pq〉= 0,

〈pq〉= φ†
L(p)φR(q),

[pq] = φ†
R(p)φL(q).

From the above expression it also follows that

〈pq〉= [qp]∗. (5.25)

This is the first in a series of identities containing the spinors (5.21)–(5.24) that
we will derive in this section. These identities will enable us to rewrite complicated
amplitudes involving spinors of massless fermions as simpler expressions in terms
of the spinor products 〈pq〉 and [pq]. The second identity of this kind we get by
considering

〈pq〉[qp] = φ†
L(p)φR(q)φ

†
R(q)φL(p) = φ

†
L(p)qνσ̄

νφL(p),

where we inserted (5.11). If we look at the suppressed indices we can rewrite the
above spinor product as a trace. Inserting also (5.12) we get

〈pq〉[qp] = tr
�

qνσ̄
νφL(p)φ

†
L(p)

	

= tr
�

qνσ̄
νpµσ

µ
	

= qνpµ tr{σ̄νσµ}= qνpµ(2η
νµ)

= 2p · q. (5.26)
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Or by combination with (5.25)

|〈pq〉|2 = |[pq]|2 = 2p · q. (5.27)

Next we use the identity (5.10) to show that the spinor products are
anti-symmetric,

〈pq〉= φ†
L(p)φR(q) = φ

†
L(p)iσ

2φ∗L(q)

= i2(φ∗R(p))
†(σ2)†σ2φ∗L(q) = −φ

†
L(q)φR(p)

= −〈qp〉,

where we used (σi)† = σi and (σi)2 = 1. It follows that also [pq] = −[qp]. Repeat-
ing the above calculation for the case of [qγµp〉 we use instead σ2σµσ2 = (σ̄µ)∗ to
find that

[qγµp〉= 〈pγµq]. (5.28)

Spinor products with a gamma matrix wedged between transform as
four-vectors. Contracting two such products gives a scalar, which in turn should be
expressible in terms of the available spinor products, the only scalars around. To
find such a relation we recall that T i = σi/2 are the generators of SU(2). This
means that they satisfy the Fierz-identity (2.47), which in terms of the Pauli
matrices becomes

σi
abσ

i
cd = 2δadδbc −δabδcd ,

where a, b, . . . now are matrix indices. In terms of σµ this relation takes the simple
form

(σ̄µ)ab(σµ)cd = 2δadδbc ,

from which it follows that

〈pγµq]〈kγµl] = 〈pγµq][lγµk〉

= φ†
L(p)σ̄

µφL(q)φ
†
R(l)σµφR(k)

= 2φ†
L(p)φR(k)φ

†
R(l)φL(q)

= 2〈pk〉[lq]. (5.29)

The final identity of the spinor products we will prove in this section is the
Schouten identity. Consider the spinors j〉, k〉, l〉 as two-component vectors. With
two components there cannot be more than two linearly independent vectors. Then
assuming j〉 and k〉 are linearly independent we must have

l〉= c1 j〉+ c2k〉,

for some scalars c1, c2. Operating on this with 〈k and using that 〈kk〉= 0, we find that
〈kl〉= c1〈k j〉. Since k〉 and j〉 are linearly independent, 〈k j〉 6= 0. Then we can solve
for the scalar c1 = 〈kl〉/〈k j〉. Similarly by operating with 〈 j we find c2 = 〈 jl〉/〈 jk〉.
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By inserting these relations into the expansion of l〉 and multiplying by 〈k j〉= −〈 jk〉
we find

l〉〈k j〉= j〉〈kl〉 − k〉〈 jl〉.

Operating on this relation with 〈i—where i is some fourth four-momentum—and
rearranging the terms we obtain the Schouten identity,

〈i j〉〈kl〉 − 〈ik〉〈 jl〉 − 〈il〉〈k j〉= 0. (5.30)

5.3 External Gauge Bosons

We would like to extend the formalism of the previous section to handle also
external gauge bosons. Continuing to treat all particles as incoming we set for the
polarization vectors [28, 29]

ε
µ
R (k) =

1
p

2

[rγµk〉
[rk]

ε
µ
L (k) = −

1
p

2

〈rγµk]
〈rk〉

, (5.31)

where r is a arbitrary lightlike vector such that r · k 6= 0. These polarization vectors
satisfy the Lorenz gauge condition kµε

µ

λ
= 0 since /kk〉 = 0 = /kk] by the Dirac

equation. Using the relation (5.29) we also see that these expressions satisfy the
orthogonality (εµR )

∗εLµ = 0 and normalization conditions (εµR )
∗εRµ = −1 expected

of polarization vectors.
In the frame where kµ = (ω, 0, 0,ω) the Weyl equations (5.5) and (5.6) can be

solved to give

φR(k) =
p

2ω

�

1
0

�

φL(k) =
p

2ω

�

0
1

�

.

The lightlike r satisfying r · k 6= 0 must be of the form rµ = (r, 0, 0,−r). Then we
have φR(r) =

p

r/ωφL(k) and φL(r) =
p

r/ωφR(k). Using this we find by a direct
computation that εµR of (5.31) becomes

ε
µ
R (k) =

1
p

2
(0,1, i, 0).

Repeating the calculation for εµL (k) we see that in this frame the polarization vectors
(5.31) reduce to the familiar εR and εL of equations (2.15) and (2.16).

What is the role of the arbitrary vector rµ? Its properties, being lightlike with
r · k 6= 0, suggest that it might be the same arbitrary vector we have already en-
countered as nµ in the light-cone gauge. To check this we compute the polarization
sum Pµν for the expressions (5.31). Using (5.25) we find

(εµR )
∗ενR =

1
2
〈rγµk][rγνk〉
|〈kr〉|2

. (5.32)
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The denominator we have directly from (5.27) as 2k · r. To compute the numerator
we will find an expression for the outer product i〉[i of two spinors. That relation
will be useful also in practical calculations later.

Writing the square and angle brackets in terms of Weyl spinors and using (5.11)
we find,

i〉[i =
�

0 0
φRφ

†
R 0

�

=

�

0 0
kνσ̄

ν 0

�

= kνγ
ν

�

1 0
0 0

�

. (5.33)

The matrix multiplying /k in this relation is simply (1−γ5)/2; the projection operator
on left-handed states. Since we work with helicity (and chirality) eigenstates the
effect of this projection operator when wedged inside a spinor product will always
be either PL i] = i] or PL i〉= 0.

Then for the numerator of (5.32) we get

〈rγµk][rγνk〉= [kγµr〉[rγνk〉= [kγµ/r
1
2
(1− γ5)γνk〉.

Moving (1 − γ5)/2 to the right of γν it is turned into (1 + γ5)/2, the projection
operator on right-handed states. Since k〉 is right-handed the effect of the right-
handed projection operator is that of the identity. Using this, and rewriting the spinor
product as a trace, the numerator can be written as

tr{γµ/rγνk〉[k}=
1
2

tr
�

γµ/rγν/k(1− γ5)
	

.

Looking instead at (εµL )
∗ενL we get the same denominator as in (5.32), but the

numerator is in this case

〈kγµr]〈rγνk] = tr{γµ/rγνk]〈k}=
1
2

tr
�

γµ/rγν/k(1+ γ5)
	

.

Combining the two expressions, and using the linearity of the trace,

(εµR )
∗ενR + (ε

µ
L )
∗ενL =

tr{γµ/rγν/k}
4k · r

= −ηµν +
kµrν + kνrµ

k · r
, (5.34)

where we also used trace identities of the gamma matrices. Comparing this to (2.23)
our suspicion that the representation (5.31) corresponds to the light-cone gauge is
confirmed. Our experience from Chapter 4 then tells us that we can choose a different
vector rµ for each external line.

5.4 Application to qq̄→ g g

To illustrate how the technology of the previous two sections can be used to
compute amplitudes we will apply it to quark-annihilation into two gluons, a process
familiar from Chapter 4. With the Feynman-t’ Hooft gauge for internal lines and
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massless fermions the color ordered (CO) amplitude for q̄q → g g, equation (4.2),
becomes

A(1234) =− g2 v̄(2)
¦

/ε(3)
/1+ /4

u
/ε(4)+ (5.35)

2
s
[ε(3) · ε(4)/3+ (4 · ε(3))/ε(4)− (3 · ε(4))/ε(3)]

©

u(1),

where we used the Dirac equation to rewrite v̄(2)(/3 − /4)u(1) = 2v̄(2)/3u(1). Also,
since we intend to use the representation (5.31), transverse polarization vectors
were used. To express (5.35) with spinor products we need to choose some helicity
for the two quarks and two gluons. This gives 16 different helicity combinations to
consider. Thankfully, as we shall see, we only need to compute a few of these in
practice.

The first simplification comes when we consider that the two quarks must have
opposite helicities. This is a general fact of the vector current vertex, which we can
now easily verify. Consider an odd number of gamma matrices between to spinors
of the same helicity, for example 〈iγµ1 . . .γµ2n−1 j〉. The 〈i is right-handed so inserting
PR, the projection operator on right-handed states, on the left does not change the
spinor product. Since PRγ

µ = γµPL we can move this PR all the way to the right,
where it with an odd number of gamma-matrices becomes PL . A right-handed state
like j〉 is annihilated by PL and thus 〈iγµ1 . . .γµ2n−1 j〉= 0. The same kind of argument
shows that [iγµ1 . . .γµ2n−1 j] = 0. A tree level diagram with two external quarks and
any number of external gluons has a single fermion line going through it. Since we
are at tree level that fermion line has N +1 vertices given that it has N propagators.
Thus it consists of 2N +1 gamma matrices, an odd number. Then only when the two
quark helicities are opposite is the amplitude non-zero.

Next we will show that also the two gluons must have opposite helicities. Con-
sider A(1R2L3R4R), then the final term in (5.35) is proportional to

[2/ε(3)1〉
1
p

2

[2γµ1〉[r3γ
µ3〉

[r33]
.

We denote the arbitrary lightlike vector of (5.31) belonging to the gluon with mo-
mentum i by ri . Using (5.29) the numerator above becomes 2〈13〉[r32], which van-
ishes by setting r3 = 2. In a completely analogous way the second to last term van-
ishes by setting r4 = 2. The identities of Section 5.2 and 5.3 will from now on be
used without explicit mention if the identity used is clear from context. We have

εR(3) · εR(4) =
〈34〉[r4r3]
[r33][r44]

,

which with our choice r3 = r4 = 2 is proportional to [22] = 0. Only the first term
of (5.35) then remains for the case of A(1R2L3R4R). It is for our choice of reference
vectors ri given by

−
g2

2u
[2γµ(/1+ /4)γν1〉

[2γµ3〉[2γν4〉
[23][24]

.
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A convenient “trick” for dealing with expressions like this is to consider that
(/1+ /4)γν1〉 is just another spinor p〉. Then we can transform

[2γµp〉[2γµ3〉= 2〈p3〉[22] = 0,

which shows that the entire A(1R2L3R4R) CO amplitude is zero. A similar line of
argumentation, now with the choices r3 = 1, r4 = 1 shows that A(1R2L3L4L) is zero
as well.

The next fact that reduces the number of helicity combinations we need to com-
pute considerably is that parity is a symmetry of a Yang-Mills theory coupled to
fermions via the vector current vertex [14]. Since a parity transformation reverses
the helicity of all particles involved, this halves the number of helicity combinations
we need to compute. For example we have A(1L2R3L4L) = A(1R2L3R4R) = 0 and
A(1L2R3R4R) = A(1R2L3L4L) = 0, which completes the check that in the non-zero
CO amplitudes the two gluon helicities are opposite. Only four CO helicity amp-
litudes are non-zero and considering parity transformations we only need to calcu-
late A(1R2L3R4L) and A(1R2L3L4R).

We calculate A(1R2L3R4L) next. By the same argument as before the final term of
(5.35) is zero if we choose r3 = 2. In the same way the second to last term vanishes
when we choose r4 = 1. For the first term we again have∝ [2γµp〉[2γµ3〉= 0. The
only remaining part is

A(1R2L3R4L) =
−2g2

s
[2/31〉εR(3) · εL(4) =

g2

s
[2/31〉

[2γµ3〉〈1γµ4]

[23]〈14〉

=
2g2

s
[2/31〉

〈31〉[42]
[23]〈14〉

=
2g2

s
[23]〈31〉

〈31〉[42]
[23]〈14〉

, (5.36)

where we in the final equality used the analogue of (5.33) for i]〈i.
To simplify the expression for A(1R2L3R4L) further we can first of all insert s =

2(1 · 2) = 〈12〉[21], giving

A(1R2L3R4L) = 2g2 〈31〉2[42]
〈12〉〈14〉[21]

.

We will rewrite this expression only in terms of angle brackets since that leads to a
particularly elegant expression. For four momenta i, j, k, l that satisfy i+ j+k+ l = 0
we have

[i j]
[ik]

=
[i j]〈 jl〉〈kl〉
[ik]〈kl〉〈 jl〉

=
[i/j l〉〈kl〉
[i/kl〉〈 jl〉

= −
[i/kl〉〈kl〉
[i/kl〉〈 jl〉

= −
〈kl〉
〈 jl〉

. (5.37)

Using this to remove all square brackets from A(1R2L3R4L) we get

A(1R2L3R4L) = 2g2 〈13〉3

〈12〉〈34〉〈41〉
= 2g2 〈13〉3〈23〉

〈12〉〈23〉〈34〉〈41〉
. (5.38)

For A(1R2L3L4R)we can set r3 = 1 to remove the final term of (5.35), and r4 = 2
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to remove the second to last. Apart from −g2/u the first term is

−
1
2
[2γµ(/1+ /4)γν1〉

[2γν4〉〈1γµ3]
[24]〈13〉

= −2
〈14〉[2(/1+ /4)1〉[32]

[24]〈13〉

= 2
〈14〉[2/31〉[32]
[24]〈13〉

= 2
[23]2〈14〉
[24]

. (5.39)

Next we compute

2[2/31〉εL(3) · εR(4) = 2
[23]2〈14〉
[24]

,

from which it follows that

A(1R2L3L4R) = −2g2 [23]2〈14〉
[24]

�

1
u
+

1
s

�

= −2g2 [23]2〈14〉
[24]

�

1
[23]〈32〉

+
1

[12]〈21〉

�

.

The numerator of the expression in parenthesis is s + u = −t = −[24]〈42〉 when
expressed with a common denominator. Using also the relation (5.37) to write the
answer only in terms of angle brackets we have

A(1R2L3L4R) = 2g2 〈14〉2〈42〉
〈21〉〈32〉〈34〉

= 2g2 〈14〉3〈24〉
〈12〉〈23〉〈34〉〈41〉

. (5.40)

Notice that we were able to write the answer in a form intriguingly similar to (5.38).
We know from Section 4.1.2 how to compute the squared amplitude traced over

color from the CO amplitudes. We repeat the result (4.14) from there,

tr |A(1R2L3R4L)|2 = tr T c T c T d T d
�

|A(1R2L3R4L)|2 + |A(1R2L4L3R)|2
�

+ 2 tr T c T d T c T dA(1R2L3R4L)A(1R2L4L3R)
∗.

We have A(1R2L3R4L) directly from (5.38). To get A(1R2L4L3R) we can simply ex-
change 3↔ 4 in (5.40). In the squares we insert immediately si j ≡ 2(i · j) = |〈i j〉|2,
while for the cross-term we have

A(1R2L3R4L)A(1R2L4L3R)
∗ = 4g4 〈13〉3〈23〉

〈12〉〈23〉〈34〉〈41〉
[31]3[32]

[21][42][34][13]

= −4g4 s2
13s23

s12s34〈23〉[42]〈41〉[13]
.

The spinor products in the denominator can be rewritten as vector products by trans-
forming 〈23〉[42]〈41〉[13] = 〈3/24]〈4/13] = −s13s14. Inserting the cross-term and
squares together with the evaluated traces (calculated in Section 2.4) gives

tr |A(1R2L3R4L)|2 =
16
3

�

4g4 t3

s2u
+ 4g4 tu

s2

�

+ 2
�

−
2
3

�

4g4 t2

s2
.
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Applying the Mandelstam relation t3/(s2u) = −tu/s2+ t/u−2t2/s2 we get our final
result for the squared helicity amplitude,

tr |A(1R2L3R4L)|2 =
64
3

g4

�

t
u
−

9
4

t2

s2

�

. (5.41)

The three other nonzero squared helicity amplitudes we obtain easily from
(5.41). The 1L2R3L4R combination we get by a parity transform, which does not
change the value of the amplitude. To get the 1R2L3L4R combination we can
interchange 3↔ 4, or equivalently t ↔ u. The final 1L2R3R4L combination is a
parity transform of 1R2L3L4R. Summing all the squared helicity amplitudes gives
then

∑

helicity

tr |A(q̄q→ g g)|2 =
128g4

3

�

t
u
+

u
t
−

9
4

t2 + u2

s2

�

, (5.42)

which we recognize as the correct answer (4.16).





Chapter 6

Efficient Techniques for Scattering
Amplitudes

A tree level n-gluon amplitude A can be split into (n − 1)! color-ordered (CO)
amplitudes A appended by color factors as follows

A(1h1
. . . nhn

) =
∑

σ∈Sn−1

A(1h1
σ(2h2

. . . nhn
)) tr T a1 Tσ(a2) . . . Tσ(an), (6.1)

where σ is some permutation of n − 1 elements. We will in this chapter consider
a modern approach to calculating the CO amplitudes A. First we will discuss some
identities satisfied by the CO amplitudes, and use these to give a concise calculation
of the squared amplitude for gluon-gluon scattering. Next we will discuss on-shell
recursion, and apply that to find the general n-gluon CO amplitudes for special heli-
city configurations. As we saw in Chapter 4 and used also in the previous chapter, a
similar color decomposition exists with two external quarks.

6.1 Relations between CO amplitudes

Firstly we will consider in more detail the defining decomposition (6.1). Using
(2.49) it is clear that the amplitude A can be written as a linear combination of
the traces in (6.1) with purely kinematic prefactors. However it is not obvious that
these prefactors should be related by permutations of the external legs in the way
it is written in (6.1). To see why this is the case, consider that the full amplitude A
does not care about the ordering of the external legs. Any permutation of external
lines is a symmetry of A. For this to hold the kinematic prefactors must transform
into each other under permutations of the labels {1h1

, . . . nhn
} in the same way as the

traces do under permutations of {a1, . . . an}. The result is that they must be related
as written in (6.1). Key to the preceding argument is the fact that the (n− 1)! color
traces are linearly independent. Combining that fact also with the gauge invariance
of A we find that the CO amplitudes are gauge invariant as well.

67
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It is natural to wonder next if (6.1) is the shortest representation of the amplitude
in terms of CO amplitudes or not. In other words, are the (n − 1)! CO amplitudes
linearly independent? The answer is no, and we will investigate some of the res-
ulting identities between the CO amplitudes. The simplest identities follow directly
from the defining decomposition. Since the full amplitude A is invariant under cyclic
permutations of all the external legs, and so is the trace, it follows that also the CO
amplitudes must have cyclic symmetry,

A(σ(1, . . . n)) = A(1, . . . n), σ ∈ C(n).

We denote the set of cyclic permutations of n elements by C(n), a set which includes
the identity but otherwise does not allow permutations with fixed points.

Next consider extending the gauge group from SU(N) to U(N). This effectively
means adding a non-interacting photon to the theory. The only difference between
the newly added photon and the gluons is the color structure. Since the new gener-
ator T0∝ I commutes with all the other T a any vertex with a photon is proportional
to f 0ab = 0. The amplitude for n−1 gluons and one photon is therefore zero. On the
other hand the kinematics are the same also with one gluon replaced by a photon,
and therefore the CO amplitudes are the same. Inserting T a1∝ I in (6.1) then gives

0=
∑

σ∈Sn−1

A(1h1
σ(2h2

. . . nhn
)) tr Tσ(a2) . . . Tσ(an).

Now use the cyclic property of the trace to collect all terms with a cyclic permutation
of 2, . . . n together with the common color factor tr T a2 . . . T an . That color factor then
appears nowhere else in the sum above and it follows that its prefactor must vanish.
This is known as the sub-cyclic property,

∑

σ∈C(n−1)

A(1,σ(2, . . . n)) = 0. (6.2)

We can derive a related identity by replacing T a2 with the U(1) generator. In this case
any position of T a2 gives the same trace, and again the prefactor of each unique trace
must be zero,

A(1,2, 3, . . . n) + A(1,3, 2, . . . n) + . . .+ A(1,3, . . . n, 2) = 0. (6.3)

We will refer to this as the U(1) decoupling equation. In the literature both names
are used interchangeably for the two different identities [30, 31].

Already it is apparent that the description in terms of (n− 1)! CO amplitudes is
far from minimal. In fact it is possible to express everything using only (n− 2)! CO
amplitudes as follows

A(1h1
. . . nhn

) =
1
2

∑

σ∈Sn−2

A(1h1
σ(2h2

. . . (n−1)hn−1
)nhn
)(Fσ(a2) . . . Fσ(an−1))a1an

. (6.4)

Here we introduced (F a)bc = i f bac , and the above is a matrix product in the sup-
pressed indices. This was first postulated, and checked up to n = 8 by Kleiss and
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Kuijf in Ref. [7], while the general proof can be found in Ref. [32]. The powerful
identity enabling this reduction is known as the Kleiss-Kuijf relation,

A(1, {α}, n, {β}) = (−1)nβ
∑

σ∈OP({α},{β})

A(1, {σ}, n). (6.5)

Here OP({α}, {β}) stands for all ordered permutations of {α}∪{β}. That is, all per-
mutations where the ordering of the sub-lists {α} and {β} is preserved. For example
{1,3, 2} and {3,1, 2} are in OP({1,2}, {3}) while {2,3, 1} is not.

A corollary of the Kleiss-Kuijf relation we will use later is
∑

σ∈Sn−1

A(1,σ(2, . . . n)) = 0, (6.6)

where the sum now runs over all permutations of n− 1 elements. To prove this we
first sum both sides of the Kleiss-Kuijf relation (6.5) over all α,β for a fixed nβ .
Summing A(1, {σ}, n) on the right hand side over all such α,β is clearly equivalent
to summing it over all permutations σ of n− 2 elements. Then every summand in
the sum over the ordered permutations is the same, so summing just multiplies this
value by the number of ordered permutations. The number of ordered permutations
of {α}, {β} is

(nα + nβ)!

nα!nβ !
=

(n− 2)!
(n− nβ − 2)!nβ !

=

�

n− 2
nβ

�

,

from which we get

∑

α,β
nβfixed

A(1, {α}, n, {β}) = (−1)nβ
�

n− 2
nβ

�

∑

σ∈Sn−2

A(1, {σ}, n).

Summing this also over all possible nβ , the left hand side becomes just the sum over
all possible permutations of the n−1 last elements, the left hand side of (6.6). On the
right hand side the sum over σ ∈ Sn−2 does not depend on nβ , while the prefactor
becomes by the binomial theorem

n−2
∑

nβ=0

(−1)nβ
�

n− 2
nβ

�

= (1+ (−1))n−2 = 0.

6.2 Application to g g → g g

We will now use the results of the previous chapter and section to efficiently
calculate the squared amplitude for g g → g g. First we argue that only amplitudes
with two right-handed and two left-handed helicities are non-zero. The amplitude
has mass dimension zero and is composed of diagrams with at most one propagator.
This means that at most there are two powers of momenta in the numerator of
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each Feynman diagram. Since the numerator also must contain all four polarization
vectors it has at least one contraction of two polarization vectors. With all helicities
right-handed this contraction is εR(i) ·εR( j)∝ [ri r j] where ri is the reference vector
of Section 5.3. Choosing then the same reference vector for all external lines the
entire amplitude vanishes. With the polarization vector corresponding to momentum
1 left-handed we choose the reference vector r = 1 for all the other polarization
vectors. Then εR(i) · εR( j) = 0 for all i, j 6= 1 by the same argument as before. Since
also εL(1) ·εR(i)∝ [11] = 0 the entire amplitude again vanishes. Parity implies that
the 1L2L3L4L and 1R2L3L4L configurations also give zero. Thus only the amplitudes
with two left-handed and two right-handed helicities are non-zero.

It is worth it to deviate briefly from the four gluon case to note that the argument
above works equally well for the n-gluon case. In that case the mass dimension is
4− n and at tree-level each Feynman diagram has at most n− 3 propagators. This
means there are at most n−2 powers of momenta in the numerator of each Feynman
diagram, but n polarization vectors, so we again get at least one factor ε(i)·ε( j). Now
we can reuse the argument above to show that the amplitudes with all helicities the
same or one helicity different are zero. The first non-zero amplitudes are therefore
the ones where two helicities are different from the other. These amplitudes are
called maximally helicity violating (MHV). The name comes from the fact that these
are the non-zero amplitudes for which

�

�

∑n
i hi

�

� deviates maximally from zero.
In the four gluon case the only non-zero amplitudes are the six MHV amplitudes:

A(1R2R3L4L) A(1L2L3R4R)

A(1R2L3R4L) A(1L2R3L4R)

A(1R2L3L4R) A(1L2R3R4L).

The amplitudes in the second column can be obtained from the first column via a
parity transformation. The two last amplitudes of the first column are related to the
first via 2↔ 3 and 2↔ 4 respectively. Thus we only need to calculate A(1R2R3L4L).

The amplitude A(1R2R3L4L) in turn depends on six CO amplitudes, one for each
permutation of {2R3L4L} in accordance with (6.1). The relations of the previous
section imply however that we only need to calculate two of these. We choose to
calculate A(1R2R3L4L) and A(1R3L2R4L). As in Section 5.4 we insert for the polariz-
ation vectors the representation (5.31). Then we use the identities of Section 5.2 to
write the answer only in terms of simple square brackets. The details of the calcu-
lation are mostly the same as in Section 5.4, so we do not repeat them here. In the
end we get

A(1R2R3L4L) = 4g2 [34]4

[12][23][34][41]
, (6.7)

A(1R3L2R4L) = 4g2 [34]4

[13][32][24][41]
. (6.8)

The third CO amplitude A(1R2R4L3L) we can obtain from (6.7) by simply inter-
changing 3 ↔ 4. Similarly we can get A(1R4L2R3L) by interchanging 3 and 4 in
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(6.8). Looking at the expression we see it is invariant under this interchange, so
A(1R4L2R3L) = A(1R3L2R4L). Next we can use cyclic symmetry to write

A(1R3L4L2R) = A(2R1R3L4L), (6.9)

where the right hand side is the 1↔ 2 interchange of the known expression (6.7).
This leaves only A(1R4L3L2R) which we again get by interchanging 3↔ 4 in the
above.

If we were to compute cross sections numerically we would stop here. We can
insert numerical values for the spinor products and evaluate the color-traces in (6.1)
so to be left with just a complex number to square in the end. Appendix D gives a pro-
cedure for numerically evaluating spinor products. Presently however we would like
to compute the square analytically in order to compare to our result from Section 4.2.
Thankfully by using the trick of extending the gauge group to U(N) combined with
our corollary to the Kleiss-Kuijf relation (6.6) we can simplify also that procedure
considerably.

Since the corresponding additional photon decouples from the gluons, changing
the gauge group to U(N) does not change our current amplitude. By choosing the
additional U(1) generator as T0 = I/

p
2N it follows directly from (2.47) that the

Fierz identity for the U(N) generators is

T a
i j T

a
kl =

1
2
δilδ jk.

This makes the contraction of color traces simpler. When squaring A(1R2R3L4L) and
summing over color all squares of CO amplitudes get a color factor N4/24, while
cross terms get N2/24. Squaring and summing over color gives then

tr |A(1R2R3L4L)|
2 =

N4

16

∑

σ∈Sn−1

|A(1R,σ(2R, 3L , 4L))|
2

+
N2

16

∑

σ∈Sn−1

∑

σ′ 6=σ

A(1R,σ(2R, 3L , 4L))A(1R,σ′(2R, 3L , 4L))
∗

=
N4 − N2

16

∑

σ∈Sn−1

|A(1R,σ(2R, 3L , 4L))|
2

+
N2

16

�

�

�

�

∑

σ∈Sn−1

A(1R,σ(2R, 3L , 4L))

�

�

�

�

2

.

The second line of the final expression is zero by equation (6.6), reducing the number
of terms we need to compute from 62 to 6.

All the equations (6.7)–(6.9) can be squared directly using (5.27). Specializing
now to N = 3, the result when expressed in terms of Mandelstam variables is

tr |A(1R2R3L4L)|
2 = 72g4

�

2
s2

u2
+ 2

s2

t2
+ 2

s4

t2u2

�

. (6.10)
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As argued earlier we can sum this over all helicities by multiplying by a factor two for
the parity transformed amplitude and adding the two expressions with 2↔ 3 and
2↔ 4 exchanged. Simplifying the resulting expression we get the familiar result
from Section 4.2,

∑

helicity

tr |A|2 = 1152g4
�

3−
tu
s2
−

su
t2
−

st
u2

�

.

6.3 On-Shell Recursion

Compared to the standard computational approach, presented in Chapter 4, the
spinor-helicity formalism as presented so far is clearly efficient. But in essence it is
just the method of inserting explicit polarizations, as in Section 4.1.2, only with the
polarization vectors expressed in terms of Weyl spinors. This enables the calculation
to be done at the amplitude level, while also expressing the result directly in terms of
Lorentz scalars. However we first have to write down all the contributing diagrams
as in the standard approach, meaning that amplitudes with a lot of external lines are
still out of reach. Our next topic tackles this problem. On-shell recursion is a method
for computing tree-level scattering amplitudes that does not rely on writing down
the relevant diagrams. The first on-shell recursion relation was found and proved by
Britto, Cachazo, Feng and Witten [33, 34]. That relation is the one we will discuss
here.

We consider a n-parton tree level CO amplitude A with all momenta incoming.
That amplitude can be written as a rational function of spinor products. We define
therefore a function A(z) of the complex variable z, which is analytic except at isol-
ated points, by shifting two of the spinors in A as follows

1̂〉= 1〉 1̂] = 1] + z2]

2̂〉= 2〉 − z1〉 2̂] = 2].

Since they are complex-valued we are free to shift the spinors by the complex vari-
able z. However there are no real momenta 1̂, 2̂ for which the above holds. The above
spinor shifts define the Feynman slashes of the momenta via /̂1 = 1̂〉[1̂+ 1̂]〈1̂. This
uniquely determines the momenta 1̂, 2̂, though they in general need to be complex.
These unphysical momenta will appear only inside spinor products, where they are
well-defined in terms of the above shifts. We can compute Lorentz products contain-
ing the unphysical momenta, by applying the spinor identity (5.26),

p · 1̂=
1
2
〈p1̂〉[1̂p].

From the this definition we see that the new momenta are on-shell 1̂2 = 0. On the
other hand we must take care not to use the identity (5.25) which no longer holds
for the asymmetrically shifted spinors.
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2̂3

i

Q̂ i

1̂
n

i + 1

Figure 6.1: A factorization of the amplitude giving rise to a pole in A(z).

Next consider the contour integral around the circle of radius R in the complex
z-plane,

∮

R

dz
2πi

A(z)
z

.

The residue theorem gives this integral as the sum over the residues of the poles of
A(z)/z inside the circle. We see immediately that there is a simple pole at z = 0.
The residue at that pole is exactly A(0), the CO amplitude we wish to compute. If
A(z)→ 0 as |z| →∞ the integral above vanishes as R→∞. Then we get

A(0) = −
∑

zi

Res
�

A(z)
z

, zi

�

,

where the sum runs over all poles zi of A(z)/z except z = 0. We will return to the
question of whether A(z) vanishes as |z| →∞ later.

Any pole in A(z) must come from a propagator denominator Q̂2 becoming zero.
Since we are at tree level any such propagator factorizes the amplitude into two sub-
amplitudes connected via the single propagator in question. We choose the direction
of the momentum Q̂ such that it is equal to the sum over all the momenta in the
sub-amplitude which contains the 1̂ external line. By momentum conservation that
is equal to minus the sum over the momenta in the other sub-amplitude. If the 2̂
external line is in the same sub-amplitude as 1̂ then Q̂ does not depend on z since the
other sub-amplitude contains no z. Poles in z can thus only come from propagators
with 1̂ and 2̂ on opposite sides of the corresponding factorization.

We now consider a internal propagator which factorizes the amplitude as shown
in Figure 6.1. Per the discussion above these are the propagators which lead to a
pole in A(z). There is one such propagator for every i from 3 to n− 1 and we label
the corresponding momentum Q̂ i . We have

Q̂2
i = (1̂+

n
∑

j=i+1

p j)
2

= (
n
∑

j=i+1

p j)
2 +

n
∑

j=i+1

〈p j 1̂〉[1̂p j]

=Q2
i + z

n
∑

j=i+1

〈1p j〉[p j2],
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where we mean by no hat on Q i that it uses the non-shifted (z = 0) momenta. We
see that as a result A(z) has a simple pole at

zi = −
Q2

i
∑n

j=i+1〈1p j〉[p j2]
. (6.11)

The residue of A(z)/z at the pole z = zi can be found by expressing the amplitude
in terms of the sub-amplitudes of the factorization. The propagator numerator con-
tains two external line factors for the corresponding particle, summed over helicity.
The propagator numerator we therefore include as part of the two sub-amplitudes,
in a similar way as we did for the optical theorem in Chapter 3. We have then

Res
�

A(z)
z

, zi

�

= NQ i

∑

h

A(2̂, . . . , i, Q̂h
i )

1

Q2
i

A(−Q̂−h
i , i + 1, . . . , n, 1̂), (6.12)

where the sum over the helicity of Q̂ comes from the propagator numerator. The
helicity label of the other external particles is implicit. The shifted spinors are eval-
uated at the particular value z = zi , given by (6.11), in each of the two sub amp-
litudes. Note that this is by definition the value of z such that Q̂2 = 0 so that Q̂ is
allowed as a external momentum in the on-shell sub-amplitudes. This is the essen-
tial trick that using the unphysical shifted momenta allows. Expressing the amplitude
in terms of smaller off-shell sub-amplitudes is essentially the standard technique of
Feynman rules. The trick of using the shifted spinors allows us to instead use on-shell
sub-amplitudes. This is a significant simplification since the on-shell amplitudes are
much simpler than their off-shell counterparts.

The second sub-amplitude in (6.12) is expressed as a all-in amplitude by util-
izing crossing symmetry. The incoming −Q̂ i is equivalent to a outgoing Q̂ i with the
opposite helicity. Spinor products of this negative momentum can be evaluated using
the relation 〈(−p)q〉 = −i〈pq〉 which we derive in Appendix D. One subtlety arises
when the propagator is fermionic. Then the propagator numerator contains Q̂ i〉[Q̂ i
which by our definitions (5.21)–(5.24) gives a incoming fermion or anti-fermion in
both the left and right sub-amplitude. Using −Q̂ i in the right sub-amplitude we must
then compensate for the fact that one of the factors of −i is erroneous.

In addition to the above fermion correction, the overall factor NQ i
in (6.12) ac-

counts for the normalization of the CO amplitudes. This is easiest to understand by
considering how a arbitrary normalization of the generators T a affects the defini-
tion of the CO amplitudes. We parameterize the normalization by the constant CR
appearing in the Fierz identity,

T a
i j T

a
kl = CR

�

δilδ jk −
1
N
δi jδkl

�

.

When squaring the expression (6.1) defining the CO amplitude and summing over
color we apply the Fierz identity k times to reduce the contracted traces to simple
numbers, where k is the number of external gluons. Since tr |A|2 is independent on
CR it follows that the CO amplitude with k external gluons carries a factor C−k/2

R .
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12
n

= −
∑n−1

i=3 NQ i

∑

h
1

Q2
i

2̂3

i

Q̂h
i −Q̂−h

i

1̂
n

i + 1

Figure 6.2: Graphical representation of the BCFW on-shell recursion relation (6.14).

The two CO amplitudes on the right hand side of (6.12) then together carry a factor
C−(k+2)/2

R = C−k/2
R C−1

R if the Q i propagator is a gluon line. To get the correct scaling

C−k/2
R of the left hand side we must correct for the additional C−1

R by multiplying the
right hand side by CR. If the Q i propagator is a fermion line no such factor is needed.
Thus

NQ i
=

�

CR if Q i is a gluon line,
i if Q i is a fermion line,

(6.13)

where in our case CR = 1/2 in accordance with (2.47).
Assuming A(z) → 0 as |z| → ∞ and using the above result for the residues of

A(z)/z we can write the n-parton CO amplitude as

A(1, . . . , n) = −
n−1
∑

i=3

NQ i

∑

h

A(2̂, . . . , i, Q̂h
i )

1

Q2
i

A(−Q̂−h
i , i + 1, . . . , n, 1̂). (6.14)

This expresses the amplitude solely in terms of on-shell amplitudes with fewer ex-
ternal legs. The relation is represented graphically in Figure 6.2. All tree level QCD
amplitudes can be computed from the above formula, given the initial physical input
of the three-point CO amplitudes.

We will now consider when (6.14) holds. That is, when does A(z) vanish as
|z| → ∞. Factors of z in the denominator originate solely with the propagators
we considered earlier. In any given diagram these form a unbroken line of propag-
ators from 1̂ to 2̂. Consider the case where that line is purely composed of gluon
propagators. The line has one more vertex than propagator, so since the propagators
are O(z−1) and each vertex is at most linear in the connected momenta, the entire
line is at most O(z). The remaining z-dependence is now in the external factors ε(1̂)
and ε(2̂). Considering the helicity choice

ε
µ
R (1̂) =

1
p

2

[1γµ1̂〉
[11̂]

=
1
z
[1γµ1〉
p

2[12]

ε
µ
L (2̂) = −

1
p

2

〈2γµ2̂]

〈22̂〉
=

1
z
〈2γµ2]
p

2〈21〉
,

we see that this leads to A(z) being O(z−1). In the all gluon case any nonzero amp-
litude has at least two helicities different from the rest. Combining this with the
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cyclic symmetry of the CO amplitude, we can always cycle the momenta such that
(h1, h2) = (R, L) and the relation (6.14) holds.

Other helicity combinations also lead to vanishing as |z| →∞. For a discussion
of these and the case with external quarks see Ref. [28]. A physical interpretation
of the large z limit and why it sometimes vanishes, as well as extensions to other
theories can be found in Ref. [35].

6.4 The Parke-Taylor Formula

The simple form of the four gluon MHV amplitudes (6.7) and (6.8) was found
to continue up to six external gluons by Parke and Taylor [6]. This lead them to
postulate that it holds in general, so that for all but two gluons right-handed we
have

A(1R, . . . , iL , . . . , jL , . . . nR) = 2n/2(g)n−2 [i j]4

[12][23] . . . [(n− 1)n][n1]
, (6.15)

and with most gluons left-handed

A(1L , . . . , iR, . . . , jR, . . . nL) = 2n/2(−g)n−2 〈i j〉4

〈12〉〈23〉 . . . 〈(n− 1)n〉〈n1〉
. (6.16)

These remarkable formulas where first proved in Ref. [36]. Armed with the recur-
sion relation (6.14) of the previous section we can give a concise alternative proof,
adapted from that used in Refs. [28] and [37].

First we need the n = 3 gluon scattering amplitudes. Since with lightlike mo-
menta satisfying i+ j+k = 0 we have 2(i · j) = (i+ j)2 = k2 = 0, there are no Lorentz
scalars for this amplitude to depend on. As a consequence the three-point scattering
amplitudes of massless particles are zero. However with the shifted spinors of the
previous section we can have 2(i · ĵ) = 〈i ĵ〉[ ĵ i] = 0 by setting 〈i ĵ〉 = 0 but keeping
[ ĵ i] 6= 0. This is possible only for the shifted spinors, where (5.25) no longer holds.
In this way the analytic form of the three-point scattering amplitudes constitute the
initial seed for on-shell recursion, even though the amplitudes are zero for any real
momenta.

The CO amplitude for three incoming gluons is

A(1,2, 3) = 2g
�

ε(1) · ε(2)(1− 2) · ε(3)

+ ε(2) · ε(3)(2− 3) · ε(1) + ε(3) · ε(1)(3− 1) · ε(2)
�

.

We will only need the amplitudes with one helicity different from the two others.
Setting both 1 and 2 to be right-handed the first term of A vanishes with r2 = r1.
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With r3 = 1 we get ε(3)L · ε(1)R = 0 so only the second term contributes. We find

A(1R, 2R, 3L) = 2gεR(2) · εL(3)(2− 3) · εR(1)

= −2g
〈12〉[r13]
〈13〉[r12]

[r1(/2− /3)1〉p
2[r11]

= −2
p

2g
〈12〉[r13][r1/21〉
〈13〉[r12][r11]

= −2
p

2g
〈12〉[r13]〈21〉
〈13〉[r11]

.

To remove the r1-dependent factors we multiply the numerator and denominator by
〈13〉. Then we can use [r13]〈13〉 = [r12]〈21〉 and [r11]〈13〉 = −[r12]〈23〉 to arrive
at

A(1R, 2R, 3L) = −23/2 g
〈12〉4

〈12〉〈23〉〈31〉
. (6.17)

Proceeding in the same way with 1 and 2 left-handed gives

A(1L , 2L , 3R) = 23/2 g
[12]4

[12][23][31]
, (6.18)

so the n= 3 amplitudes agree with the Parke-Taylor formulas (6.15) and (6.16).
Next we proceed via induction, assuming the formula (6.15) holds for n − 1

external gluons. Due to the cyclic symmetry we can without loss of generality set 1
to be right-handed and 2 to be left-handed. Then (h1, h2) = (R, L) so the recursion
relation (6.14) holds,

A(1R, 2L . . . , jL , . . . , nR) =

−
1
2

n−1
∑

i=3

∑

h

A(2̂L , . . . , ihi , Q̂h
i )

1

Q2
i

A(−Q̂−h
i , (i + 1)hi+1 , . . . , nhn , 1̂R).

It turns out most terms of this sum are zero due to the MHV result of Section 6.2.
The two terms with i = 3 and i = n−1 are special since one of the sub-amplitudes is
then a three-point amplitude, where the MHV result does not hold. The other terms
in the sum we split into two cases:

• i < j: The two sub-amplitudes contain one of the left-handed helicities of 2
and j each. If the helicity h of Q̂ is L in one sub-amplitude it is R in the other
sub-amplitude. The other sub-amplitude is then a amplitude with four or more
external gluons but only one left-handed, so it is zero.
• i ≥ j: Both left-handed helicities of 2, j are in the left sub-amplitude. The right

sub-amplitude does not contain the two left-handed helicities required to be
non-zero, regardless of the helicity of Q̂.
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Only the two terms in the recursion containing three-point sub-amplitudes remain,

A(1R, 2L . . . jL . . . , nR) =−
1
2

A(2̂L , 3R, Q̂R
3)

1

Q2
3

A(−Q̂L
3, 4R, . . . jL . . . , nR, 1̂R)

−
1
2

A(2̂L , . . . jL . . . , (n− 1)R, Q̂R
n−1)

1

Q2
n−1

A(−Q̂L
n−1, nR, 1̂R).

(6.19)

The sub-amplitudes that are not three-point ones are now MHV amplitudes with
n− 1 external legs, which by the inductive hypothesis are given by (6.15).

Using the inductive hypothesis and the three-point amplitude (6.17) the z3-
dependent part of the first term on the right hand side of (6.19) is

〈3Q̂3〉4[(−Q̂3) j]4

〈2̂3〉〈3Q̂3〉〈Q̂32〉[(−Q̂3)4][1(−Q̂3)]
= (−i)2

〈3Q̂3〉4[Q̂3 j]4

〈2̂3〉〈3Q̂3〉〈Q̂32〉[Q̂34][1Q̂3]

= −
(−〈3/̂2 j])4

〈2̂3〉〈3/̂24][1/32̂〉
=

[2 j]4〈32̂〉4

[24][13]〈32̂〉3
=

[2 j]4

[24][13]
〈32̂〉,

where we used repeatedly that inside spinors products Q̂3〉[Q̂3 = /̂Q3 = −/̂2− /3 and
/33〉= /̂22̂〉= 0. Then by computing

〈32̂〉= 〈32〉 − z3〈31〉= 〈32〉 −
Q2

3

〈1/32]
〈31〉= 〈32〉 −

〈32〉[23]
〈13〉[32]

〈31〉= 0,

we find that the first term on the right hand side of (6.19) is zero. Only the i = n−1
term contributes and we have

A(1R, 2L . . . , jL , . . . , nR) =−
1
2

A(2̂L , . . . , jL , . . . , (n− 1)R, Q̂R
n−1)

1

Q2
n−1

A(−Q̂L
n−1, nR, 1̂R)

=−
1
2

2(n−1)/2 gn−3 [2̂ j]4

[2̂3][34] . . . [(n− 1)Q̂n−1][Q̂n−12̂]

×
1

〈n1〉[1n]
×−23/2 g

〈n1̂〉4

〈(−Q̂n−1)n〉〈n1̂〉〈1̂(−Q̂n−1)〉

=− 2n/2 gn−2 [2 j]4〈n1〉2

[23][34] . . . [(n− 2)(n− 1)][1n]

×
1

[(n− 1)Q̂n−1][Q̂n−12]〈Q̂n−1n〉〈1Q̂n−1〉
.

We can remove the Q̂n−1 dependence of the last factor by using

[Q̂n−12]〈Q̂n−1n〉= −[2 /̂Qn−1n〉= −[12]〈n1〉

[(n− 1)Q̂n−1]〈1Q̂n−1〉= −[(n− 1) /̂Qn−11〉= −[(n− 1)n]〈n1〉.

The factors of 〈n1〉 cancel and we are left with

A(1R, 2L . . . , jL , . . . , nR) = 2n/2 gn−2 [2 j]4

[12][23] . . . [(n− 2)(n− 1)][(n− 1)n][n1]
,

which is the Parke-Taylor formula (6.15). One can prove (6.16) in the same way.



Chapter 7

Conclusion

Guided by experience with unitarity and the Cutkosky procedure we have shown
how to correctly apply the method of replacing a gluon polarization sum by −ηµν in
QCD. We have seen how unitarity follows from the gauge invariance of the propag-
ator. Using Cutkosky’s rule this means we can use the propagator in any gauge to
sum over external polarizations, provided that we sum over the cuts of all relevant
diagrams in that gauge. For the Feynman-t’ Hooft gauge this means including also
cuts over Faddeev-Popov ghosts. The latter cuts do not give squared amplitudes, but
rather cross terms between ghost diagrams with two different charge flow direc-
tions. With just two external lines in the Feynman-t’ Hooft gauge these cross terms
are related to squares by a simple sign. This has mislead some to believe that squared
ghost amplitudes can be used in general, see e.g. Ref. [3]. We demonstrated that this
is not possible, and that the cross terms have to be used, without a additional sign.

A natural next step is to generalize the above discussion to massive vector bosons,
like the W± and Z bosons of the electroweak theory. The extension of our proof of the
optical theorem to this case is sketched in Ref. [38]. A alternative, somewhat more
sophisticated, method for proving perturbative unitarity in the massive case can be
found in the work of Becchi, Rouet and Stora [39]. The latter method is however
not based on amplitude-level arguments and therefore is not suited to derive the
cancellation needed for the −ηµν replacement. Instead the same shift as used by
BRS can be used in a argument similar to the one in Section 4.3. This is done in
Ref. [24] and gives a alternative way to derive the central Slavnov-Taylor identity
(4.47) as well as its generalization to any number of external ghosts.

The main disadvantage of the method of replacing the polarization sum in prac-
tical calculations is that it requires squaring the amplitude first. To avoid squar-
ing we need to insert a explicit representation of the polarization vectors. That
requires choosing a particular frame, and we should transform the result into a
frame-independent one. In the second part of this work we considered the spinor-
helicity formalism, which makes this process particularly convenient. We reviewed
the basics of writing a amplitude in terms of spinor products and applied this to
quark-annihilation into two gluons. In addition to being a efficient computational
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tool the new approach made it easier to uncover general structures and relation-
ships between the amplitudes. This is particularly true when we also decompose the
amplitude into color-ordered components. We considered that decomposition and
used the resulting identities and relationships to give a concise calculation of the
gluon-gluon scattering amplitude.

Next we considered on-shell recursion. We applied this technique to find general
formulas for the n-gluon MHV amplitudes. On-shell recursion represents a method
for computing tree-level scattering amplitudes that does not rely on writing down
all topologically distinct diagrams. If we combine it with the fact that the lowest
multiplicity scattering amplitudes can be deduced directly from basic physical as-
sumptions, it represents a method independent of Feynman rules as a whole [29].
In principle it therefore does not even require a Lagrangian. This can be extended to
loop level by the method of generalized unitarity, which constructs loop amplitudes
out of tree-level amplitudes using the analytic properties of the former. At its core
is the Cutkosky prescription presented in Chapter 3, which in generalized unitarity
must be applied also to the branch cuts in other channels than the s-channel. A review
of generalized unitarity can be found in Ref. [40]. These techniques have found suc-
cess also outside the pure non-abelian gauge theories discussed here. The greatest
progress have been made in supersymmetric theories, but recent years have seen
advances also in gravity, effective field theories and even fluid mechanics [41–44].
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Appendix A

Notation and Conventions

The metric ηµν = diag(1,−1,−1,−1) is used throughout, as well as units where
c = ħh = 1. Repeated indices are summed, unless context implies otherwise. We
use Feynman rules as in Romão and Silva’s resource [45], with sign conventions
ηs = +1,ηG = +1, following their notation. In particular this means our covariant
derivative is

Dµ = ∂µ + igAµ, (A.1)

when acting on spin-1/2 fields, and

Dab
µ = δ

ab∂µ + g f abcAc
µ, (A.2)

when acting on gauge or ghost fields. The Weyl representation is used for Dirac
spinors and gamma matrices, and we write for the common contraction /A≡ Aµγ

µ.
We normalize Dirac spinors such that ū(p)u(p) = 2m and Weyl spinors such that
φ†

R(p)φR(p) = φ
†
L(p)φL(p) = 2E. A number is sometimes used to represent its cor-

responding four-momentum, so that 2(1 · 2) = 2p1 · p2 = 2ηµνpµ1 pν2 and /1 = /p1 =
γµpµ1 .

We denote the full amplitude by A and color-ordered (CO) amplitudes by A. Our
normalization for the SU(N) generators is CR = 1/2 where

tr
�

T aT b
�

= CRδ
ab.

The CO amplitudes A′ for a arbitrary normalization CR are related to the ones we
compute by

A′ = (2CR)
−n/2A,

where n is the number of external gluons.
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Appendix B

The Lie Algebra of the Lorentz
Group

The aim of this appendix is to find a basis for the Lie algebra corresponding to
the Lorentz group. Directly from the definition as a matrix that does not change the
Lorentz product we for Λµν in the Lorentz group compute

ηνρ xν yρ = xµ yµ
= ΛµνΛµρ xν yρ

= ΛµνηµσΛ
σ
ρ xν yρ

= (ΛT ) µν ηµσΛ
σ
ρ xν yρ,

which as a matrix equation reads ΛTηΛ = η. Operating on this from the right with
Λ−1 and from the left with η−1 we find Λ−1 = η−1ΛTη, or in terms of components

(Λ−1)µν = Λ
µ
ν . (B.1)

Assume now Xµν is an element of the Lie algebra of the Lorentz group. By defin-
ition this means exp

�

iϑXµν
�

is an element of the Lorentz group for any real number
ϑ [25]. In particular the identity (B.1) should hold for any ϑ. Using that a similarity
transform can be taken inside a exponential map it follows that

exp
�

iϑη−1X Tη
�

= exp(−iϑX ).

For this to hold for all ϑwe must have η−1X Tη= −X . Looking at this relation for two
covariant components we see that it is the statement of antisymmetry Xµν = −Xνµ.
The antisymmetric 4 by 4 matrices can all be constructed out of a basis of 6 elements.
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We can choose as our basis the matrices

(J 01)αβ =







0 i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0






(J 02)αβ =







0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0







(J 03)αβ =







0 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 0






(J 12)αβ =







0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0






(B.2)

(J 13)αβ =







0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0






(J 23)αβ =







0 0 0 0
0 0 0 0
0 0 0 i
0 0 −i 0






.

Since Λµν is real the elements of the Lie algebra must be purely imaginary, giving
the factor i in the above definition. The curious labeling of the basis was introduced
because it enables us to write all the basis elements in a compact expression,

(J µν)αβ = i(δµαδ
ν
β −δ

µ

β
δνα). (B.3)

Here the µ,ν now label the different basis elements, while αβ are the matrix indices.
Being antisymmetric in µν this expression still corresponds to only 6 different basis
elements. To get a basis for the Lie algebra of the Lorentz group we should contract
with the metric tensor to get one covariant and one contravariant index. This we
can see means (J 0i)α

β
becomes symmetric while (J i j)α

β
is multiplied by an overall

−1 and remains antisymmetric. Any element X of the Lie algebra can be written as
a linear combination of the basis elements,

Xαβ =ωµν(J
µν)αβ , (B.4)

where ωµν are arbitrary real parameters.
Before continuing our investigation of the Lie algebra of the Lorentz group it

is useful to see how the parameterization given by (B.4) is connected to the usual
parameterization in terms of boosts and rotations. As an example let us set ω12 =
−ω21 = α/2 as the only non-zero elements ofωµν. Inserting this we get the Lorentz
transformation

Λαβ = exp
�

iXαβ
�

= exp







0 0 0 0
0 0 α 0
0 −α 0 0
0 0 0 0






.

To compute the matrix exponential we can diagonalize the matrix argument using
its eigenvectors. This gives iX = PDP−1 where D = diag(0,−iα, iα, 0) contains the
eigenvalues of iX and P has the corresponding eigenvectors as its columns. Then



Chapter B: The Lie Algebra of the Lorentz Group 89

using the property exp
�

PDP−1
�

= P exp(D)P−1 of the matrix exponential we have

Λαβ = P







0 0 0 0
0 e−iα 0 0
0 0 eiα 0
0 0 0 0






P−1 =







0 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 0






, (B.5)

which we recognize as a rotation of angle α around the 3-axis. We may say that the
Lie algebra element (J 12 − J 21)/2 = J 12 generates a rotation around the 3-axis.
The natural generalization is that

J i =
1
2
εi jkJ jk (B.6)

generates a rotation around the i-axis. Here εi jk is the Levi-Civita symbol. By a sim-
ilar calculation we can convince ourselves that the three elements

K i = J 0i (B.7)

generate a boost in the i-direction. The J i and K i together make up all the 6 basis
elements so we can alternatively write any Lie algebra element as

X = θ iJ i +ηiK i , (B.8)

where we suppressed the indices α,β . Then θ i is the rotation angle for a rotation
around the i-axis and ηi is the rapidity of a boost in the i-direction.

So far we have considered the Lorentz group in the standard way as consisting
of 4 by 4 matrices which leave the Lorentz product unchanged. However our main
motivation for computing the Lie algebra is to uncover new matrix representations
of the Lorentz group. That means we should find a description of the Lie algebra
that is representation independent. The commutation relations of a Lie algebra are
exactly that kind of defining property, independent of representations [25]. In order
to find new matrix representations our next goal is therefore to find the commutation
relations for the basis J i , K i .

Using the explicit expression (B.3) we have a explicit expressions also for J i and
K i . By a direct calculation we have then the commutation relations

�

J i , J j
�

= iεi jkJ k (B.9)
�

J i , K j
�

= iεi jkKk (B.10)
�

K i , K j
�

= −iεi jkJ k. (B.11)

We see that while both sets of bases {J i}, {K i} generate vector subspaces of the Lie
algebra only the rotations are closed under multiplication. Instead we can introduce
the basis elements

J i
± =

1
2
(J i ± iK i), (B.12)
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which generate two subspaces that are also closed under multiplication. The com-
mutation relations of the new operators are

�

J i
+, J j

+

�

= iεi jkJ k
+ (B.13)

�

J i
−, J j
−

�

= iεi jkJ k
− (B.14)

�

J i
+, J j
−

�

= 0, (B.15)

which we recognize as the commutation relations of angular momentum. The com-
mutation relations of angular momentum define the Lie algebra of SU(2). Thus the
Lie algebra of the Lorentz group is the direct sum of two SU(2) Lie algebras.



Appendix C

Plane-Wave Solutions to the Dirac
Equation

We look for plane wave solutions to the Dirac equation (5.17). Inserting the
positive and negative frequency plane waves

ψ(x) = u(p)exp(−ip · x) ψ(x) = v(p)exp(ip · x),

into the Dirac equation (5.17) leads to the equations

(/p−m)u(p) = 0 (C.1)

(−/p−m)v(p) = 0. (C.2)

The aim of this appendix is to find the general solutions to these equations. In the
rest frame where pµ = (m, 0, 0, 0) the equations reduce to

(γ0 − 1)u(0) =

�

−1 1
1 −1

�

u(0) = 0

(γ0 + 1)v(0) =

�

1 1
1 1

�

v(0) = 0.

The general solutions of the above is seen to be

u(0) =
N
p

2

�

φ1
φ1

�

v(0) =
N
p

2

�

φ2
−φ2

�

,

with some arbitrary two-component spinors φ1,φ2 which we normalize to φ†
1φ1 =

1 = φ†
2φ2 and a arbitrary constant N which we set equal for the two cases. The

general plane wave solutions u(p), v(p) can now be found by boosting to a arbitrary
frame. Alternatively the relation

(/p−m)(/p+m) =
1
2
{γµ,γν}pµpν −m2 = p2 −m2 = 0,

91
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implies that

u(p) = C1(/p+m)u(0) v(p) = C2(/p−m)v(0), (C.3)

solves the equations (C.1) and (C.2) in a arbitrary frame. Here C1, C2 are (possibly
momentum-dependent) scalars.

We can determine the factors C1, C2 by finding another frame-specific solution.
Consider the frame where pµ = (E, 0, 0, p), that is with the momentum pointing
along the 3-axis. In this frame we the matrix equation (/p−m)u(p) = 0 can be solved
to give the general solution

u(p) =









u1
u2

E+p
m u1

E−p
m u2









.

As before two degrees of freedom u1 and u2 remain. The quantity ū(p)u(p) is the
same in all Lorentz frames. Thus ū(p)u(p) = ū(0)u(0) =N 2, or equivalently

2
E + p

m
|u1|

2 + 2
E − p

m
|u2|

2 =N 2. (C.4)

We use the two remaining degrees of freedom to expand now in helicity eigenstates.
In the present frame the helicity operator (5.19) takes the form

h=
1
2

�

σ3 0
0 σ3

�

.

Clearly then the state with helicity +1/2 corresponds to u2 = 0. Finding also the
value of u1 by using (C.4) we get

u+1/2(p) =









N
q

m
2(E+p)
0

N
q

E+p
2m

0









=









m/
p

E + p
0

p

E + p
0









, (C.5)

where we chose N =
p

2m in order to have a well defined limit m → 0. The state
with helicity −1/2 has instead u1 = 0. Repeating the above calculation we then get

u−1/2(p) =









0
m/
p

E − p
0

p

E − p









. (C.6)

For the negative frequency solutions the matrix equation is (/p+m)v(p) = 0. Solving
this in the frame where pµ = (E, 0, 0, p) and picking out the two helicity eigenstates
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as before gives

v+1/2(p) =









m/
p

E + p
0

−
p

E + p
0









(C.7)

v−1/2(p) =









0
m/
p

E − p
0

−
p

E − p









. (C.8)

To obtain the factors C1 and C2 in the general solution (C.3) we compare it to the
specific solutions (C.5)–(C.8). Write φ1 = (u′1, u′2) for the rest-frame solution u(0).
Computing then the general solution (C.3) in the frame where pµ = (E, 0, 0, p) and
requiring it to be equal to the specific solution of the previous paragraph amounts
to the conditions

u1 = C1
p

m(m+ E − p)u′1
u2 = C1

p
m(m+ E + p)u′2.

The u2 = 0 condition of the positive helicity state clearly requires also u′2 = 0. The
normalization φ†

1φ1 = 1 for the rest frame solutions then implies u′1 = 1. We get

C1 =
u1p

m(m+ E − p)
=
√

√ m
E + p

1
m+ E − p

=
1

p

2m(E +m)
,

where we inserted u1 from the solution (C.5) and used (m+E−p)2 = 2(E+m)(E−p).
Comparing in the same way the general solution for v(p) in (C.3) with the specific
solution (C.7) gives

C2 = −
1

p

2m(E +m)
.

Finally we have the general plane wave solutions of the Dirac equation by inserting
the expressions for C1, C2 into (C.3),

u(p) =
/p+m

p

2(E +m)

�

φ1
φ1

�

(C.9)

v(p) =
−/p+m

p

2(E +m)

�

φ2
−φ2

�

. (C.10)

The two-component spinors φ1,φ2 express the two remaining degrees of freedom.
To expand u(p) in a basis of two elements we may choose e.g. φ+ = (1,0) and

φ− = (0,1). We found above that φ+,φ− correspond in the frame where pµ =
(E, 0, 0, p) to the solutions with helicity +1/2 and −1/2 respectively. Letting s la-
bel the states according to this quantum number, we aim to find a expression for
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the projection operator
∑

s usūs. The result will be a analogue of the equation (5.11)
relating a spinor to its corresponding 4-momentum, now for the Dirac spinor. Firstly
we have by a direct calculation with φ1 = φs

usūs =
/p+m

2(E +m)

�

φsφ
†
s φsφ

†
s

φsφ
†
s φsφ

†
s

�

(/p+m).

The outer product φsφ
†
s is for φ+ equal to diag(1,0) and for φ− equal to diag(0,1).

It follows that
∑

s

usūs =
/p+m

2(E +m)

�

1 1
1 1

�

(/p+m).

The matrix product in the above relation we compute directly, using pi p jσiσ j = p2

and E2 = m2 + p2,

(/p+m)

�

1 1
1 1

�

(/p+m) =

�

m E − piσi

E + piσi m

��

E +m+ piσi E +m− piσi

E +m+ piσi E +m− piσi

�

=

�

2(E +m)m 2(E +m)(E − piσi)
2(E +m)(E + piσi) 2(E +m)m

�

= 2(E +m)(/p+m).

Repeating also the calculation for v(p) we obtain the two completeness relations in
the convenient form

∑

s

us(p)ūs(p) = /p+m
∑

s

vs(p)v̄s(p) = /p−m. (C.11)

Even though we used φ+,φ− to derive this relation there was nothing special about
this choice. In fact the relation

∑

sφsφ
†
s = 1 holds for any complete, orthonormal

set of basis vectors {φs}. Thus the result (C.11) also holds for any such set. Choosing
the basis as the eigenstates of some Hermitian operator we by the spectral theorem
automatically get a complete and orthogonal set. Also we may choose the operator
such that the eigenvalue is a quantum number we care about in the problem at hand.
Some common choices are helicity, chirality and spin.



Appendix D

Numerically Evaluating Spinor
Products

We will here consider how one can numerically compute tr |A|2 from the scatter-
ing amplitudes of Chapter 6. The efficient techniques of that chapter rely on writing
the amplitude in terms CO amplitudes, which in turn are written in terms of spinor
products. In computing observables the cross section as a function of the external
momenta is relevant, and we need a efficient procedure to connect the two. Using
(5.27) one can evaluate squared CO amplitudes directly in terms of momenta. How-
ever cross terms of CO amplitudes enter in |A|2, which require non-trivial spinor
simplifications to evaluate in terms of momenta using (5.27). It is much better to
evaluate the spinor products directly in terms of momenta, as well as directly eval-
uating the color factors. Since this leaves only a complex number to square for |A|2

it is more performant.
To express a spinor product in terms of the momenta we can solve the

momentum-space Weyl equation (5.5). The general solution for p3 6= −E that also
satisfies our normalization φ†

RφR = 2E is

φR =
1

p

E + p3

�

−p1 + ip2

E + p3

�

.

To obtain φL we use (5.9),

φL = −iσ2φ∗R =
−1

p

E + p3

�

E + p3

p1 + ip2

�

.

Combining these we have

〈pq〉= φ†
L(p)φR(q) = −x(p1 − ip2) + x−1(q1 − iq2) x =

√

√ q0 + q3

p0 + p3
, (D.1)

and [pq] = 〈qp〉∗. The expression above has singularities at p3 = −p0 and q3 = −q0

due to the special role given to the 3-axis. These can always be avoided by a change
of reference frame.
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Since amplitudes often are expressed with all momenta either incoming or out-
going we need to utilize crossing symmetry to go to the physically interesting case of
2→ n scattering. Then we should have a convenient way to handle spinor products
of analytically continued negative momenta. Using (D.1) we see that the effect is a
overall phase,

〈(−p)q〉= −i〈pq〉. (D.2)

Using this avoids having to consider complex roots in the numerical procedure.
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