Charged Cosmic Rays and Neutrinos*

. Michael Kachelrieß

NTNU, Trondheim

Outline of the talk

- Introduction
- SNRs as Galactic CR sources

Extragalactic CRs

- transition
- anisotropies
- composition measurements
- Astrophysical source models
- Osmogenic neutrinos
- Summary

 \Rightarrow talk by F. Halzen

 \Rightarrow talks of S. Ando & F. Halzen

• = • •

Outline of the talk

- Introduction
- SNRs as Galactic CR sources

Extragalactic CRs

- transition
- anisotropies
- composition measurements
- Astrophysical source models
- Osmogenic neutrinos
- Summary

 \Rightarrow talk by F. Halzen

 \Rightarrow talks of S. Ando & F. Halzen

< ∃ > < ∃

Outline of the talk

- Introduction
- SNRs as Galactic CR sources

Extragalactic CRs

- transition
- anisotropies
- composition measurements
- Astrophysical source models
- Osmogenic neutrinos
- Summary

 \Rightarrow talk by F. Halzen

 \Rightarrow talks of S. Ando & F. Halzen

< ∃ > <

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes

< ∃ > <

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes
- astrophysical models, cosmogenic flux:
 - ▶ ratio I_{ν}/I_N determined by nuclear composition and source evolution

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes
- astrophysical models, cosmogenic flux:
 - ratio I_{ν}/I_N determined by nuclear composition and source evolution
- top-down models:
 - large fluxes with $I_{\nu} \gg I_p$
 - ratio I_{ν}/I_p fixed by fragmentation

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes
- astrophysical models, cosmogenic flux:
 - ratio I_{ν}/I_N determined by nuclear composition and source evolution
- top-down models:
 - large fluxes with $I_{\nu} \gg I_p$
 - ratio I_{ν}/I_p fixed by fragmentation
- prizes to win:
 - astronomy above 100 TeV
 - identification of CR sources
 - determine galactic–extragalactic transition of CRs
 - test/discover new particle physics

Diffusive shock acceleration in test particle picture:

- energy spectrum $dN/dE \propto 1/E^2$
- \bullet escape flux $dN/dr \propto \exp(-(r-R_{sh})/x_0)$ for $r>R_{sh}$

Image: Image:

SNRs as CR sources

SNR: Leptonic versus hadronic models

ermi

<ロ> (日) (日) (日) (日) (日)

SNRs as CR sources

SNR: Leptonic versus hadronic models

• combining Fermi and IACT contrains models tightly

Michael Kachelrieß (NTNU Trondheim)

Gamma-ray Space Telescope

▲ ■ ■ ② Q @
NOW 2012 5 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Maximal energy of SNR: Lagage-Cesarsky limit

acceleration rate

$$\beta_{\rm acc} = \left. \frac{dE}{dt} \right|_{\rm acc} = \frac{3Ev_{sh}^2}{\zeta D(E)} \quad , \qquad \zeta \sim 8 - 20$$

イロト イヨト イヨト イヨト

Maximal energy of SNR: Lagage-Cesarsky limit

acceleration rate

$$\beta_{\rm acc} = \left. \frac{dE}{dt} \right|_{\rm acc} = \frac{3Ev_{sh}^2}{\zeta D(E)} \quad , \qquad \zeta \sim 8 - 20$$

• assume Bohm diffusion $D(E) = cR_L/3 \propto E$ and $B \sim \mu \mathsf{G}$

・ロン ・四 ・ ・ ヨン

Maximal energy of SNR: Lagage-Cesarsky limit

acceleration rate

$$\beta_{\rm acc} = \left. \frac{dE}{dt} \right|_{\rm acc} = \frac{3Ev_{sh}^2}{\zeta D(E)} \quad , \qquad \zeta \sim 8 - 20$$

- assume Bohm diffusion $D(E) = cR_L/3 \propto E$ and $B \sim \mu {\rm G}$
- $\Rightarrow E_{\rm max} \sim 10^{13} 10^{14} \, {\rm eV}$

イロト 不得 とくまとう まし

Maximal energy of SNR:

[Bell, Luzcek '02, Bell '04]

• (resonant) coupling CR \leftrightarrow Alfven waves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Maximal energy of SNR:

[Bell, Luzcek '02, Bell '04]

- (resonant) coupling $CR \leftrightarrow Alfven$ waves
- non-linear non-resonant magnetic field amplification

∃ ▶ ∢

Maximal energy of SNR:

- (resonant) coupling $CR \leftrightarrow Alfven$ waves
- non-linear non-resonant magnetic field amplification

• observational evidence for $B \sim 0.1 - 1 \text{ mG}$ in young SNR rims

SNR RX J1713.7-3946

• changes on $\delta t \sim 1 \text{ yr imply } B \sim 1m\text{G}$ $\Rightarrow E_{\text{max}} \sim 10^{16} \text{ eV for protons}$

NOW 2012 8 / 25

(日) (同) (三) (三)

SNRs as CR sources

Tycho observations by VERITAS

 $\Gamma = 1.95 \pm 0.51_{\rm stat} \pm 0.30_{\rm sys}$

SNRs as CR sources

Tycho observations by VERITAS

^{9 / 25}

• CRs escape before Sedov phase

- CRs escape before Sedov phase
- $E_{\gamma,\max} > 10$ TeV requires:
 - protons with $E > 100 \,\mathrm{TeV}$

- CRs escape before Sedov phase
- $E_{\gamma,\max} > 10$ TeV requires:
 - protons with $E > 100 \,\mathrm{TeV}$
 - electrons, ICS on CMB

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\gamma} E_e^2}{m_e^2} \approx 3 \,\text{GeV} \,\left(\frac{E_e}{1 \text{TeV}}\right)^2$$

NOW 2012 10 / 25

< ∃ > <

- CRs escape before Sedov phase
- $E_{\gamma,\max} > 10$ TeV requires:
 - protons with $E > 100 \,\mathrm{TeV}$
 - electrons, ICS on CMB

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\gamma} E_e^2}{m_e^2} \approx 3 \,\text{GeV} \,\left(\frac{E_e}{1 \text{TeV}}\right)^2$$

electrons with $E>50\,{\rm TeV}$

NOW 2012 10 / 25

• = • •

Tycho: Leptonic versus hadronic models

→ 3 → 4 3

- age-limited
 - CRs are advected down-stream, released at end of Sedov phase
 - adiabatic losses, reduced E_{\max} , no B amplification

< ∃ > <

- age-limited
- CRs escape up-stream:
 - standard approach: homogeneous field & free escape boundary

< ∃ > <

- age-limited
- CRs escape up-stream:
 - standard approach: homogeneous field & free escape boundary
 - filamentation instability:

[Reville, Bell '11]

★ Ξ →

- age-limited
- CRs escape up-stream:
 - standard approach: homogeneous field & free escape boundary
 - filamentation instability:

[Reville, Bell '11

Transition – KASCADE Grande data

(日) (同) (三) (三)

Transition – KASCADE Grande data

• rising proton fraction $E \gtrsim 10^{17} \,\mathrm{eV?}$

→ Ξ →

Image: A matrix

Anisotropies

PAO result on dipole anisotropy:

PAO result on dipole anisotropy:

Transition from Galactic to extragalactic CRs Anis

Anisotropies

Anisotropy of protons at $E = 10^{18} \,\mathrm{eV}$

[Giacinti et al. '11]

- protons excluded for all reasonable parameters
- \Rightarrow measuring protons at $E=10^{18}\,{
 m eV}$ means fixing transition energy

Energy spectrum

• PAO confirmed the "GZK-suppression" seen first by HiRes

Energy spectrum

• PAO confirmed the "GZK-suppression" seen first by HiRes

• interpretation:

- ► *E*_{max} of sources?
- does not fix composition: proton GZK, Fe photo disintegration

.

Image: A matrix and a matrix

Determining nuclear composition: X_{max} and $RMS(X_{max})$

• Bethe-Heitler model: $N_{
m max} \propto E_0$ and $X_{
m max} \propto \ln(E_0)$

(日) (同) (三) (三)

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$
- $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

< ロ > < 同 > < 回 > < 回 > < 回 >

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$
- $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$

 $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$
- $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

• $\mathsf{RMS}(X_{\max})$ has smaller theoretical error than X_{\max}

イロト 人間ト イヨト イヨト

Nuclear composition via X_{\max} :

NOW 2012 18 / 25

Nuclear composition via $RMS(X_{max})$ from Auger:

NOW 2012 19 / 25

Mixed composition:

What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - \blacktriangleright RMS(X_{max}) favors heavy
 - energy spectrum, X_{max} and $\text{RMS}(X_{\text{max}})$ difficult to fit
- experimental discrepancy: HiRes/TA \Leftrightarrow Auger
 - ► Xmax
 - $\blacktriangleright \mathsf{RMS}(X_{\max})$
- discrepancy experiment \Leftrightarrow theory:
 - energy ground array/fluoresence ~ 1.2
 - muon number $\exp/MC \sim 1.2 2$

A B M A B M

What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - \blacktriangleright RMS(X_{max}) favors heavy
 - energy spectrum, X_{max} and $\text{RMS}(X_{\text{max}})$ difficult to fit
- experimental discrepancy: HiRes/TA \Leftrightarrow Auger
 - ► Xmax
 - $\blacktriangleright \mathsf{RMS}(X_{\max})$
- discrepancy experiment \Leftrightarrow theory:
 - energy ground array/fluoresence ~ 1.2
 - muon number $\exp/MC \sim 1.2 2$

A B F A B F

What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - \blacktriangleright RMS(X_{max}) favors heavy
 - energy spectrum, X_{max} and $\text{RMS}(X_{\text{max}})$ difficult to fit
- experimental discrepancy: HiRes/TA ⇔ Auger
 - ► Xmax
 - $\blacktriangleright \mathsf{RMS}(X_{\max})$
- discrepancy experiment \Leftrightarrow theory:
 - energy ground array/fluoresence ~ 1.2
 - muon number $exp/MC \sim 1.2 2$

A B F A B F

Nuclear composition

Comparison of MCs to LHC data: Energy flow

Michael Kachelrieß (NTNU Trondheim)

NOW 2012 22 / 25

-

< A

NOW 2012 23 / 25

[Berezinsky et al. '10,...]

< ∃ > <

[Berezinsky et al. '10,...]

Michael Kachelrieß (NTNU Trondheim)

NOW 2012 23 / 25

[Berezinsky et al. '10,...]

Summary

- Galactic CRs: Tycho: room left for leptonic models marginal
- UHECRs:
 - understanding differences PAO vs. TA and MC vs. experiment
 - extensions (HEAT, Amiga, infill array) allow cross checks
 - test of MC models against LHC data
 - proton dominance at $10^{18} \,\mathrm{eV}$ fixes transition energy
- cosmogenic neutrino flux is low, because of Fermi limit
- 2 Icecube events: start of neutrino astronomy?

4 1 1 4 1 1 1

New TA data for X_{max} :

▶ < ≣ ▶ ≣ ∽ < < NOW 2012 26 / 25

イロト イヨト イヨト イヨト

Zenith angle dependence, TA scintillator:

Data/MC Comp. (TA-SD, Zenith angle)

Zenith angle dependence, TA scintillator: Data/MC Comp. (TA-SD, Zenith angle)

• 2 cascade events close to $E_{\rm min} = 10^{15} \, {\rm eV}$, bg = 0.14

(日) (同) (三) (三)

- 2 cascade events close to $E_{\rm min}=10^{15}\,{\rm eV}$, bg = 0.14
- Glashow resonance
 - very narrow
 - if $W^- \to \bar{q}q$, detected energy too low

イロト イヨト イヨト

- 2 cascade events close to $E_{\rm min}=10^{15}\,{\rm eV}$, bg = 0.14
- Glashow resonance

Michael Kachelrieß (NTNU Trondheim)

- 2 cascade events close to $E_{\rm min}=10^{15}\,{\rm eV}$, bg = 0.14
- Glashow resonance
- ${\rm \circ}\,$ cosmogenic neutrinos: $\lesssim 1\,{\rm events/yr}$
- extragalactic sources: extension to higher energies? if yes, then diffuse flux

4 3 > 4 3

- 2 cascade events close to $E_{\rm min}=10^{15}\,{\rm eV}$, bg = 0.14
- Glashow resonance
- ${\, \bullet \,}$ cosmogenic neutrinos: $\lesssim 1\, {\rm events/yr}$
- extragalactic sources: extension to higher energies? if yes, then diffuse flux
- \bullet Galactic point sources: SNR with $d\sim 50\,{\rm pc}$