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Abstract

This report presents an analysis of deflection angles of very high energy charged particles parti-
cles propagating through randomly generated turbulent magnetic fields that are homogeneous
and isotropic. The magnetic fields are modeled as a superposition of discrete Fourier modes
with isotropically distributed wavevectors k logarithmically distributed in spatial frequency. We
clarify a dispute in the literature and show under which conditions the algorithm used generates
isotropic magnetic. The generated fields follow power spectra E(k) ∼ k−γ, and fields following
Kolmogorov turbulence (γ = 5/3) are found to be approximately isotropic with 500 modes per
decade of k-values. This number is found to increase with the spectral index γ. The analysis
of the deflection angles utilizes a numerical simulation that integrates the trajectories of an en-
semble of test particles from which the deflection angles based on the particle velocities are
obtained. The deflection angles of particle motion with propagation length much shorter than
the correlation length of the magnetic fields are found to be consistent with values deduced
from constant magnetic fields. For propagation lengths much greater than the magnetic field
correlation length the deflection angles are found to be smaller than the values predicted by
diffusion in angle, i.e. random walk of small deflections.
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Chapter 1

Introduction

1.1 Background

"Magnetic fields are ubiquitous in the Universe. Wherever we have the means of
observing them, they are present." (Durrer and Neronov (2013, p. 1))

Magnetic fields are everywhere, in stars, in our solar system, in the Milky Way, in other galax-
ies, in galaxy clusters and other structures in the Universe (Durrer and Neronov, 2013, p. 1-2).
Depending on the source, the magnetic fields can be small or huge in extension and/or strength.
The largest magnetic fields on the distance scale are the weak magnetic fields found in galaxies
and galaxy clusters, with extensions of 10−2 to 1 Mpc; the largest of these being the Extragalac-
tic Magnetic Fields (EGMF). While magnetic fields of smaller scales dissipate their energy into
plasma motion over time, the largest fields might not have time to do so and therefore they con-
serve their strength on time scales comparable to the age of the Universe (Durrer and Neronov,
2013, p. 2). The generation of the EGMFs will not be discussed in this report, but is covered
extensively in Durrer and Neronov (2013, chapter 3). Usually they are created due to motion in
the cosmic plasma (Giacalone and Jokipii, 1999; Durrer and Neronov, 2013).

Knowing the strength and structure of the EGMFs is of high importance in order to under-
stand our observations of the Universe. The Universe is full of ionized particles with whom
the the magnetic fields interact through the Lorentz force. This in turn leads to deflections of
the particles as well as to the emission of synchrotron radiation. In addition, the Universe is
full of photons with whom the ionized particles also may interact, either through pair produc-
tion or annihilation, or normal or inverse Compton scattering. In the case of very high energy
(VHE) photons, pair production of electrons and positrons through interaction with extragalac-
tic background light (EBL), followed by inverse compton (IC) scattering of e−/e+ with EBL, cre-
ate electromagnetic cascades (EMC) (Neronov et al., 2010, p. 1)(Bergström and Goobar, 2004, p.
129-132). The photons created by these EMCs are observable, but their brightness profile will
depend on the structure and strength of the EGMF in which the EMC took place.

Finding the structure and calculating or measuring the strength of a EGMF is a difficult chal-
lenge. One is not able to measure the direction and strength directly with today’s technology, of
obvious reasons such as having to leave the galaxy and sample the field at many different loca-
tion spanning several kpc, preferably at the same time. Instead one need to look at observations
presumably caused by the EGMF. The problem is that all effects (e.g. synchrotron radiation or
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Faraday rotation) studied to calculate the magnetic fields use proto-electron density (e.g. see
Durrer and Neronov, 2013). If the density is small, e.g. as it is in voids and extragalactic space,
the effects are so weak that the fields can not be measured. Also, in the observations the EGMF
strength is normally coupled with the structure of the EGMF model. In other words one only
find constraints on the EGMF strength based on the model used. A possible observation that
can be used to find constraints on the EGMF strength and structure is presented in Neronov
et al. (2010), where Monte-Carlo simulations are used to compute the brightness profile in the
GeV spectrum of "jets" from TeV blazars, i.e. active galaxies (active galactic nuclei, AGN). The
article considers a turbulent model for the EGMF and computes brightness profiles of blazar
"jets" for different values of the EGMF strength.

It is common to model the EGMF as a turbulent field (e.g. see Giacalone and Jokipii, 1999;
Harari et al., 2002; Taylor et al., 2010). The largest magnetic fields, i.e. the EGMFs, also conserve
their strength over large time scales (Durrer and Neronov, 2013, p. 2), although the magnetic
field changes. The effects of the EGMF on cosmic rays (CR), i.e. VHE charged particles and
photons, are themselves of a certain time scale. If the time scale of the change in the magnetic
field is much larger than that of the interaction with the CR, the EGMF can be presumed to be
static w.r.t. the CR (Giacalone and Jokipii, 1999, p. 205). In addition, the cosmic plasmas are
generally irregular and turbulent (Giacalone and Jokipii, 1999, p. 205) which in turn makes the
magnetic field irregular and turbulent. For this the EGMF will be modelled as a static turbulent
magnetic field in this report. This leads to simplifications which will be shown later in the report.

A computational algorithm for the generation of a turbulent magnetic field is presented in
the article by Giacalone and Jokipii (1994) and has been used in other papers since (e.g. see
Neronov et al., 2010). It computes a isotropic and homogeneous magnetic field with zero mean,
which is presumed to be the properties of the EGMF by the articles it is used. In contradiction to
Giacalone and Jokipii (1994) in the article by Tautz (2012) the computation algorithm is criticized
not to give an isotropic field. If this is the case then it may have implications on work done using
this algorithm. A clarification of this disagreement is therefore of high interest.

Problem Formulation

In this report I will look at the following:

1. Giacalone and Jokipii (1994) and Tautz (2012) consider the same algorithm for numerically
creating a turbulent magnetic field, but come to different conclusions considering the
isotropy of the created field. I will analyse the arguments of both articles and clarify the
definitions and parameters of the algorithm to find an answer to whether the resulting
field is isotropic or not. Further, if the resulting field proves to be isotropic, what would
the correlation length of such a field be? How does the correlation length compare to a
continuous field with equal power spectrum (see Harari et al., 2002)?

2. Given the above; in a weak field limit, what would the deflection angle of a charged par-
ticle with very high energy (i.e. highly relativistic) over the distance of several correlation
lengths be, so that details of the realization are washed out?

The first point is of interest for physicists who want to implement a turbulent magnetic field
model in mostly any numerical computation. When considering the disagreement between Gi-
acalone and Jokipii (1994) and Tautz (2012), it is of high interest to know whether the algorithm
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works as it is supposed to, as it has been implemented in other numerical computations since
the publication of the article by Giacalone and Jokipii (1994) (e.g. see Giacalone and Jokipii,
1999; Neronov et al., 2010). If the algorithm proves to be wrong, many results in these articles
might have a systematic error that they’re unaware of.

As for the second point, the interest lies mostly with astrophysicists who wants to look at
charged particle motion and its application for highly relativistic particles, e.g. EMCs in the
EGMF if one applies a turbulent model. The last can be used to simulate possible brightness
profiles for VHE sources in the Universe (e.g. see Neronov et al., 2010).

1.2 Objectives

The main objectives of this assignment project are

1. Analyze the algorithm in Giacalone and Jokipii (1994) and Tautz (2012) for computing tur-
bulent magnetic fields and examine if the resulting field has the following properties: (i) is
isotropic, (ii) follows a given power law, (iii) has zero divergence and mean value, (iv) has
a given mean strength, i.e. constant mean energy density on scales larger than the largest
turbulence structures?

2. Calculate the correlation length of the computed turbulent fields from the algorithm in
Giacalone and Jokipii (1994) and compare the results to analytical values of a turbulent
field with continuous k-values described in Harari et al. (2002, ch. 2).

3. Use numerical computation to calculate the deflection angle of VHE electron motion
through the computed turbulent magnetic fields, then compare the deflection angles to
values from analytical formulae (Caprini and Gabici, 2015).

1.3 Approach

All objectives in this report will be solved using numerical computation. For the first objec-
tive the established algorithm for creating turbulent magnetic fields (see Giacalone and Jokipii,
1994; Tautz, 2012) will be analyzed. Then using Monte-Carlo (MC) computation, the fields will
be computed and checked for isotropy and magnetic field strength. For the second objective,
MC computation and Simpson’s rule integration is used to calculate the correlation length of
the magnetic fields. To solve the third objective, an adaptive Runge-Kutta solver will be used
to compute particle trajectories on distance scales of order of the calculated correlation lengths
from the second objective.

1.4 Structure of the Report

The rest of the report is structured as follows. Chapter 2 gives an introduction to general tur-
bulent magnetic field theory, before the numerical algorithm from Giacalone and Jokipii (1994)
and Tautz (2012) is presented and analyzed. The disagreement of the isotropy will be handled in
subsection 2.2.2. Chapter 3 introduces the theory of charged particle motion and the numerical



CHAPTER 1. INTRODUCTION 5

methods used to calculate the deflection of the propagation. In Chapter 4 the results from the
computations are presented and discussed, following the order of the objectives presented ear-
lier in this chapter. At last chapter 5 gives a short summary of the most important results found
in this report.



Chapter 2

Turbulent Magnetic Fields

2.1 General Theory

An electromagnetic system in vacuum always needs to satisfy the Maxwell equations

∇·E = ρ

ε0
, (2.1)

∇·B = 0, (2.2)

∇×E =−∂B

∂t
, (2.3)

∇×B =µ0

(
J+ε0

∂E

∂t

)
, (2.4)

where E and B is the electric and magnetic field, ρ is the total electric charge density, J is the total
current density, and ε0 and µ0 is respectively the electic permittivity and the magnetic perme-
ability in vacuum. In the case of a static magnetic field, equation (2.3) becomes zero, i.e. there
are no induced voltages due to the magnetic field. Further, a constant magnetic field implies
that the r.h.s. of equation (2.4) must be constant, where the stable solution is a constant elec-
tric field and a constant current density. When considering a magnetic field, equation (2.2) is
the most important, as it shows that the divergence of the magnetic field is independent of the
electric field and is always zero.

2.1.1 Magnetic Turbulence

Hydrodynamic turbulence is normally modelled as eddy currents of different scale sizes. The
energy density contained in each scale size of the eddies, i.e. the turbulence, is assumed to
follow a power spectrum given by

E(L) ∝ Lγ, (2.5)

where L is the scale size of the eddies, E(L) is the energy of that scale size, and γ is called the
spectral index. In magnetic turbulence one look at magnetic eddies each with its own strength
B(L). As the energy density of a magnetic field is proportional to the magnetic field strength
squared, and using the spatial frequency, i.e. the wavenumber, of the eddies k = 2π/λ where

6
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Figure 2.1: The figure shows a logarithmic energy spectrum, analogous to equation (2.6), of a
turbulent magnetic field consisting of magnetic eddies of different scale sizes. E is the energy
of each eddy with wavenumber k = 2π/L, where L is the scale size. The power spectrum
follows a spectral index γ = 5/3, equivalent to Kolmogorov turbulence, between k-values
of 0.1 and 100. The angle to the right shows the inclination of the graph if the spectral index
were to be doubled. Note: The figure only shows the relation between E and k, i.e. E =C ·k−γ

where C is a constant here set to 1. Any units of E or k is therefore not given as they would
normally depend on C .

λ= L one gets
E(k) ∝ B 2(k) ∝ k−γ. (2.6)

Figure 2.1 shows a possible power spectrum of a turbulent magnetic field following this relation.
One can model a turbulent magnetic field as a Gaussian random field with zero mean and a

root mean square value Brms using superposition of Fourier modes (i.e. plane waves) as

Bi (x ) =
∫

d3k

(2π)3
Bi (k )e i (k·x+φi (k)), (2.7)

where Bi (x ) is the magnetic field component in direction of êi , and φ(k) are random phases
(Harari et al., 2002, p. 3). Note that |k | = k and all k’s have random directions independent of
each other. In order for this field to have zero divergence, see equation (2.2), the components
Bi (k) must be so that

B(k ) ·k = 0, (2.8)
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where
B(k) = Bx(k )êx +By (k )êy +Bz(k )êz . (2.9)

If the field is isotropic and homogeneous the random Fourier modes satisfy the relation

〈B(ki ) ·B∗(k j )〉 = B 2(k)δi j . (2.10)

Further, this makes it so that the root mean square value is

B 2
rms ≡ 〈B(x ) ·B∗(x )〉 =

∫
B 2(k)dk. (2.11)

Using equation (2.6) and assuming the wavenumbers of the turbulence is constrained by the
limits kmin < k < kmax (i.e. scale sizes Lmin < L < Lmax), equation (2.11) gives the magnetic field
strength of the model for each value of k to be

B 2(k) = B 2
rmsk−γ (γ−1)kγ−1

min

1− (kmin/kmax)γ−1
. (2.12)

2.1.2 Correlation Length

Harari et al. (2002, p. 3) defines the magnetic field correlation length through

Lc B 2
rms ≡

∫ ∞

−∞
dL 〈B(0) ·B(x(L))〉 , (2.13)

where B(0) is the magnetic field at a random position and B(x(L)) is the magnetic field at a po-
sition displaced by a distance L along a fixed direction. Note that this would only be a scalar
quantity for an isotropic field, as the resulting correlation length otherwise would depend on
the direction chosen. Assuming an isotropic and homogeneous field, inserting the magnetic
field defined in equation (2.7) into equation (2.13) gives

Lc B 2
rms =π

∫ ∞

0

dk

k
B 2(k), (2.14)

which after insertion of equation (2.12) results in

Lc = 1

2
Lmax

γ−1

γ

1− (Lmin/Lmax)γ

1− (Lmin/Lmax)γ−1
. (2.15)

Here Lmin and Lmax are the constraints on the scale size of the magnetic eddies, as defined for
equation (2.12), with the relation k = 2π/L. Note that kmin ∝ L−1

max, as with kmax ∝ L−1
min, so that

Lmin/Lmax = kmin/kmax. One see that for a large value ofγ (γÀ 1) or a narrow-band (Lmin ∼ Lmax)
the correlation length Lc ' Lmax/2. For a broad-band (Lmin ¿ Lmax), the correlation length goes
towards Lc ' (γ−1)Lmax/2γ.

Defining the spatial correlation function

ξi j (|y |) = 〈Bi (x )B j (x+y )〉 , (2.16)

where x and y are random and isotropic position vectors, and Bi (x ) is the magnetic field strength
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in êi direction at position x. Further, using Einsein summation convention

ξi i (|y |) = 〈B(x ) ·B(x+y )〉 . (2.17)

From equation (2.11) one get in the limit |y | = 0 that ξi i (0) = B 2
rms as one should expect. In the

case of isotropic and homogeneous magnetic turbulence, equation (2.13) can be rewritten as

Lc B 2
rms = 2

∫ ∞

0
ξi i (L) dL, (2.18)

where the relations x(−L) =−x(L) and ξi i (|x |) = ξi i (|−x |) = ξi i (L) are used.

2.2 Computational Algorithm

In order to compute a random turbulent magnetic field of the same form as the magnetic field
in equation (2.7) this report follows the algorithm presented in Giacalone and Jokipii (1994). The
algorithm in Giacalone and Jokipii (1994) computes a complex magnetic field through a super-
position of Fourier modes, each with a random polarization and a random direction defined by
two angles θ and φ. A three-dimensional realization of B(r ) which satisfies equation (2.2) may
be written

B(r ) =
nk∑
j=1

B(k j )ζ j e i (k j z ′+β j ), (2.19)

where nk is the number of modes, k j is the the mode’s wavenumber, and B(k j ) is the amplitude
of the respective mode and may be chosen to follow the desired power spectrum. ζ j is the
polarization vector and is given by

ζ j = cos(α j )êx ′ ± i sin(α j )êy ′ . (2.20)

Each wave propagates in its own z ′-direction with polarization in the x ′y ′-plane, where the
primed system is related to the unprimed system through the rotation

r’3D = R(θ,φ)r3D, (2.21)

with rotation matrix

R(θ,φ) =
 cos(θ)cos(φ) cos(θ)sin(φ) −sin(θ)

−sin(φ) cos(φ) 0
sin(θ)cos(φ) sin(θ)sin(φ) cos(θ)

 , (2.22)

where θ and φ are functions of k. It can easily be shown that the primed system is defined by
orthonormal basis vectors. The phases α j and β j , and the sign ± in equation (2.20), chosen
randomly, are responsible for the random polarization. Meanwhile the angles θ and φ gives the
random propagation direction. This means that for any realization of the magnetic field, and
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for each k, there are five random numbers:

0 ≤ θ(k) ≤π,

0 ≤φ(k) < 2π,

0 ≤α(k) < 2π,

0 ≤β(k) < 2π,

and the plus or minus sign (s = ±). The probability distribution of these will be given in the
subsection 2.2.2.

The wavenumbers k j is set to be logarithmically distributed between kmin and kmax in order
to give each decade in scale sizes equal weighting of k numbers. This is similar to an assumption
for normal hydrodynamic turbulence, where eddies are modelled to transfer its energy into ed-
dies of a smaller scale size with a constant scale ratio, resulting in logarithmically spaced scale
sizes.

2.2.1 Normalization

The turbulent magnetic field strength should be normalized to the value Brms. In this subsection
the magnetic field is assumed to be isotropic as this simplifies the normalization. Equations
(2.22) and (2.20) show that |ζ j | = 1. Now, if for any pair {k j ,kl } the scale size of the magnetic
field LMF À 2π/|k j −kl |, it may be shown for the Fourier modes that

〈(ζ j e i (k j z ′j+β j )) · (ζl e i (kl z ′l+βl ))∗〉 = δ(k j −kl ). (2.23)

Using this result and inserting equation (2.19) into (2.11) one gets

B 2
rms =

nk∑
j=1

B 2(k j ). (2.24)

The desired power law for the turbulence is given by equation (2.6). Using the scale sizes of the
Fourier modes one can rewrite the amplitude as

B(k) = B(kmin)

(
k

kmin

)−γ/2

, (2.25)

where B(kmin) is the amplitude of the mode corresponding to the minimum wavenumber kmin,
i.e. the largest turbulent structure. Inserting equation (2.25) into (2.24) one gets

B 2(kmin) = B 2
rms∑

k j

(
k j

kmin

)−γ , (2.26)

and the square root of the r.h.s. gives the normalized value for B(kmin). In the case where the
field is not isotropic, equation (2.11) does not simply result in equation (2.24), and each mean
value of 〈B(ki ) ·B∗(k j )〉 would have to be calculated.

The magnetic field should be real. On the contrary, the field created by equation (2.19), and
presumably (2.7), is complex. In order to acquire a real field, one only has to take the real part of
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the resulting field, but this will change the RMS value. Using x ·x∗ = Re2(x )+ Im2(x ), equation
(2.11) gives

B 2
rms = 〈B(r ) ·B∗(r )〉 = 〈Re2(B )〉+〈Im2(B )〉 . (2.27)

In addition, 〈Re2(B )〉 = 〈Im2(B )〉 which may be acquired by taking the mean square of the real
and imaginary part of ζ times the exponent. Now one simply gets

〈Re2(B )〉 = 1

2
B 2

rms. (2.28)

In order to make only the real part of the computed B-field to have a RMS value equal to Brms

one only needs to multiply B(kmin) with
p

2. The new equations for the turbulent magnetic field
would then be

B(r ) = Re

{∑
k j

B(k j )ζ j e i (k j z ′+β j )

}
, (2.29)

B(kmin) = Brms

 2∑
k j

(
k j

kmin

)−γ


1/2

, (2.30)

with equation (2.25) staying the same.

2.2.2 Isotropy

It should be noted that the choice of the placement of the primed parameters in equations
(2.19) and (2.20) is not the same as the placement in Giacalone and Jokipii (1994), but equals
the placement in Tautz (2012) and other articles using the algorithm (e.g. see Giacalone and
Jokipii, 1999). The reason to this lies in the isotropy as will now be shown. Note also that the
algorithm only computes a discrete set of modes with different amplitudes. This means that in
order for the set of k to be isotropic, one needs a large number of modes per decade of k val-
ues. In addition, if γ is large the difference in strength between the modes becomes even greater
and the smallest k values dominate, i.e. the largest scale sizes, which in turn will require even
more modes. Since the number of modes proportionally affects computation time, one would
in principle want just enough modes to make the computed field approximately isotropic. We
assume for now that the number of modes nk is sufficiently large.

If the magnetic field is to be isotropic with zero mean, it must satisfy the following:

〈B(r )〉 =−→
0 , (2.31)

and

〈|Bx(r )êx |2〉 = 〈|By (r )êy |2〉 = 〈|Bz(r )êz |2〉 = 1

3
B 2

rms. (2.32)

Equation (2.31) is satisfied if for each k:

〈ζ j e i (k j z ′+β j )〉 = 0. (2.33)
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Assuming the extent of the magnetic field is much larger than the largest magnetic eddies so
that e i (k j z ′+β j ) completes many cycles, i.e. k j |z ′|max À 2π, then equation (2.33) is satisfied.

It can be shown that if the k’s are isotropic, then so is B. This will simultaneously give the
distributions of the five random numbersα, β, θ, φ, and the plus or minus sign. Since k̂ = ẑ’ and
k = kk̂, equations (2.21) and (2.22) give

k = k
(
sin(θ)cos(φ)êx + sin(θ)sin(φ)êy +cos(θ)êz

)
. (2.34)

If k is isotropic then, similar to equations (2.31) and (2.32), one need

〈k〉 = 〈sin(θ)cos(φ)〉êx +〈sin(θ)sin(φ)〉êy +〈cos(θ)〉êz =−→
0 , (2.35)

and

〈sin2(θ)cos2(φ)〉 = 〈sin2(θ)sin2(φ)〉 = 〈cos2(θ)〉 = 1

3
, (2.36)

where it is used that |k|2 = k2. From the equation (2.36) it is clear that 〈cos2(θ)〉 = 1/3 =⇒
〈sin2(θ)〉 = 2/3. The only probability distribution p(θ) satisfying this as well as zero mean over
the interval 0 ≤ θ(k) ≤ π is p(θ) = sin(θ)/2. This require that 〈cos2(φ)〉 = 〈sin2(φ)〉 = 1/2 over
the interval 0 ≤ φ(k) < 2π to satisfy equation (2.36), and requiring zero mean in (2.35) the only
possible distribution is a flat distribution p(φ) = 1/2π.

With this new-found isotropy for k and assuming that the magnetic field is much greater
than the largest turbulence structures, i.e. one has a homogeneous field, equation (2.10) holds
for the Fourier modes. Further using (2.11) and (2.19) one get for the components in equation
(2.32)

〈|Bl (r )êl |2〉 =
nk∑
j=1

B 2(k j )〈
∣∣∣[ζ j e i (k j z ′+β j )

]
l

∣∣∣2〉 , (2.37)

where
[
ζ j e i (k j z ′+β j )

]
l

is the component of B̂ in êl direction. Now if the mean square of this di-

rectional component is equal to 1/3 for all directions, i.e. each component of the magnetic field
is isotropic, then the r.h.s. in equations (2.32) and (2.37) is equal. In other words, the magnetic
field will be isotropic because it is a superposition of independent, isotropic, and uncorrelated
magnetic fields, i.e. the Bk j (r ).

Since the primed basis vectors are orthonormal, ζ j and e i (k j z ′+β j ) are independent of each
other, so

〈
∣∣∣[ζ j e i (k j z ′+β j )

]
l

∣∣∣2〉 = 〈
∣∣∣[ζ j

]
l

∣∣∣2 ∣∣∣e i (k j z ′+β j )
∣∣∣2〉 = 〈

∣∣∣[ζ j
]

l

∣∣∣2〉 , (2.38)

where it is used that 〈|e i (k j z ′+β j )|2〉 = 1, as 0 ≤β j < 2π has no effect on the mean if k j |z ′|max À 2π.
Requiring (2.38) to be equal to 1/3 and using equations (2.20) and (2.22), and with notation
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ζ2
l = | [ζ]l |2 one gets for each k:

〈ζ2
x〉 = 〈sin2(α)cos2(θ)cos2(φ)+ sin2(α)sin2(φ)〉 = 1

3
, (2.39)

〈ζ2
y〉 = 〈sin2(α)cos2(θ)sin2(φ)+ sin2(α)cos2(φ)〉 = 1

3
, (2.40)

〈ζ2
z〉 = 〈sin2(α)sin2(θ)〉 = 1

3
. (2.41)

Using the results from equations (2.35) and (2.36), and the constraint 0 ≤ α< 2π one finds that
〈sin2(α)〉 = 〈cos2(α)〉 = 1/2, which corresponds to a flat probability distribution p(α) = 1/2π.
This means that the computational algorithm may give an isotropic field. At the same time one
can see that the isotropy does not depend on β(k) or the sign in ζ. The sign (s) correspond to
left- and right-circular polarisation vector , i.e. the rotation of Re(ζ ) around the z ′-axis. If the
probability distribution for the sign is not 50:50 the field will have left- or right-chirality. β is
a spatial phase shift of the Fourier mode w.r.t. the origin, so in order to make the field com-
pletely random the probability distribution for β must be flat. The constraints and probability
distributions of the five random parameters for isotropic fields are summarized in table 2.1.

Table 2.1: Properties of the random parameters for an isotropic field.

Parameter Parameter range Probability distribution
α 0 <α< 2π p(α) = 1/2π
β 0 < β< 2π p(β) = 1/2π
θ 0 < β<π p(θ) = sin(θ)/2
φ 0 < β< 2π p(φ) = 1/2π
s {+,−} p(+) = 0.5, p(−) = 0.5

In Tautz (2012) the author argues that this algorithm does not generate an isotropic field.
The algorithm used is the same as described in equation (2.29), using the same rotation matrix
as in equation (2.22). As the article only considers the real part of equation (2.19) as the magnetic
field, the resulting Brms will be halved due to the fact that the mean square value of the real part
from ζe i (kz ′+β) is equal to that of the imaginary part. The same can be argued for the mean
square value of the real part of ζ so the requirements in equations (2.39)-(2.41) still hold for the
isotropy of the field. The disagreement between Tautz (2012) and Giacalone and Jokipii (1994)
arise when Tautz calculates the mean square value of ζ, where he gets the following result:

〈ζ2
x〉 = 〈sin2(α)cos2(θ)cos2(φ)+ sin2(α)sin2(φ)〉 = 3

8
, (2.42)

〈ζ2
y〉 = 〈sin2(α)cos2(θ)sin2(φ)+ sin2(α)cos2(φ)〉 = 3

8
, (2.43)

〈ζ2
z〉 = 〈sin2(α)sin2(θ)〉 = 1

4
. (2.44)

Clearly 〈|ζ|〉 = 1, but the z-component is smaller than the other two. This may be explained by
assuming that Tauzt viewed the phases (α, β), and the angles (θ,φ) to all have a flat distribution.
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If this is the case all mean square values of the sine and cosine values are 1/2, giving the result
seen in equations (2.42)-(2.44). If this is the fact, then the requirement that the propagation
direction of the Fourier modes has to be isotropic is violated, as it is argued in equations (2.35)
and (2.36).

A visualization of this would be to use θ and φ as spherical coordinates on the unit sphere
(which is the fact in the case of k̂ ) and distribute points on the surface of the sphere taking
random values for θ and φ. One recognizes θ as the latitude and φ as the longitude. Now, if
both θ and φ have flat probability distributions, then the points will cluster at the poles (θ = 0
or π) as the longitude lines are closer together here. The distance between longitude lines is
proportional to sin(θ) and therefore the probability distribution of θ must be proportional to
sin(θ) in order to acquire equal point distribution on the unit sphere.

As mentioned in the beginning of this subsection, the article by Giacalone and Jokipii (1994)
does not position the primed parameters in equation (2.19) in the same way as in this report. It
is actually one cyclic permutation of the primed parameters different, with the Fourier modes
propagating in x ′-direction. With the same assumptions for the probability distributions of θ
and φ as earlier in this subsection, see table 2.1, the resulting k̂ would not be isotropic. The case
is that the article does not give probability distributions for the angles, only constraints, which
leads the distributions open for interpretation. Still, the only way k̂ can be isotropic, given that
φ still has a flat probability distribution, is if θ has a distribution proportional to cos(θ) and the
constraint on θ is changed to −π/2 ≤ θ ≤ π/2. Since the constraints are given in Giacalone and
Jokipii (1994), one may argue that the authors did an error, but have later realized this as in a later
paper by the same authors (see Giacalone and Jokipii, 1999): There, the primed parameters are
changed to match equation (2.19). The formulation of the constraints has also been improved,
giving −1 < cos(θ) < 1 (Giacalone and Jokipii, 1999, p. 206) which implies a sin(θ) distribution.



Chapter 3

Deflection

3.1 General Theory

The net force on a charged particle moving through an electromagnetic field is given by the
Lorentz force law (Griffiths, 2014, p. 212):

FL = dp

dt
= q (E+v×B ) , (3.1)

where E and B are respectively the electric and magnetic fields, v is the particle velocity, q is the
particle charge, and p is the particle momentum. The momentum is given by the equation

p = γLmv, (3.2)

where m is the particle mass and γL is the (relativistic) Lorentz factor. In the case of a zero elec-

tric field (E = −→
0 ) the acceleration of the particle due to the Lorentz force will be perpendicular

to the magnetic field lines and the particle velocity. With no acceleration in the direction of the
velocity, the kinetic energy of the particle is conserved. In circular motion the acceleration a
is a = v2

⊥/r , where v⊥ is the particle velocity and r is the radius. Using this and equation (3.1)
in the case of a constant magnetic field with straight field lines the charged particles move in
helical motion around the field lines with gyroradius Rg , a.k.a. the Larmor radius, given by

Rg = γLmv⊥
|q|B . (3.3)

The relativistic energy of a particle is E = γLmc2, with c being the speed of light in vacuum.
Further one may use that the charge of the particle is a sum of elementary charges e, |q | = Z e
where Z is an integer, so that the gyroradius may be written

Rg = 1.081 ·10−3pc
β⊥
Z

E

1018eV

G

B
, (3.4)

where β⊥ = v⊥/c.
For a particle propagating through a turbulent magnetic field, one may define the gyroradius

of the particle through equation (3.4) using the root mean square value of the magnetic field

15
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strength, i.e. B = Brms. If the gyroradius of the particle Rg ¿ Lc , i.e. the correlation length of
the field, the particle would experience the magnetic field to be approximately constant with
parallel field lines on a scale size of the same order as the gyroradius. One would then expect
the propagation motion of the particle to be similar to a helical motion following the magnetic
field lines. In the opposite case where Rg À Lc the magnetic field change so rapidly so that
the particle would not "see" the details of the magnetic field. The particle motion would then
primarily depend on the mean value of the field 〈B 〉. If the mean value is zero, one would expect
the turbulence to induce small (tiny) deviations from a straight particle trajectory over scale
lengths ∼ Lc .

Caprini and Gabici (2015) give two equations for the deflection angle of electrons/positrons
propagating through a turbulent magnetic field that is statistically homogeneous and isotropic.
The deflection angle δ is set to depend on three parameters, namely the distance propagated D ,
the magnetic field’s correlation length Lc and the Larmor radius, i.e. the gyroradius Rg . In the
case where D ¿ Lc the magnetic field is approximately constant, meaning the electron/positron
follow a helical motion with radius equal to the gyroradius. The deflection angle will then be

δ' D

Rg
if D ¿ Lc . (3.5)

In the case where D À Lc the electrons/positrons will undergo several deflections in different
directions due to changes in the magnetic field. The total deflection angle in this case should be
described by diffusion in angle, i.e. a random walk of small deflections, and has been calculated
to be (Caprini and Gabici, 2015, p. 1; Neronov and Semikoz, 2009, p. 9)

δ'
p

DLc

Rg
if D À Lc . (3.6)

3.1.1 Isotropic Deflection

As mentioned earlier in section 3.1 in the case of particle motion with Rg ¿ Lc one expects
the particle motion to follow the magnetic field lines with accompanying helical motion. If the
magnetic field has random isotropic turbulence, as presented in chapter 2, then the particle
motion would be similar to a random walk on scale sizes much larger than Lc . The RMS value of
the distance r from the origin of a random walk in 3 dimensions follow (Hemmer, 2002, p. 153)√

〈r 2〉 = a
p

t , (3.7)

where t is the time of the propagation and a = v ·dt is the length of a one step in the random walk,
v is the velocity and dt is the time used in each step. Defining rp as the total length propagated,
one gets for the RMS distance to the origin relative to rp√

〈r 2〉
r 2

p
= dt

√
v

rp
. (3.8)

If the charged particle propagation is similar to a random walk, then at large propagation lengths
the RMS of the distance to the initial position relative to the propagation length should be pro-



CHAPTER 3. DEFLECTION 17

portional to r−1/2
p . Note that in the opposite case Rg À Lc , i.e. small deflection angles, the

RMS of the relative propagation should be close to 1, because the trajectories are approximately
straight lines.

Still assuming Rg ¿ Lc , then already at propagation lengths ∼ Lc the deflection angle θde f l

of the trajectory w.r.t. the initial propagation direction would approach that of isotropy. At these
lengths the trajectories would already have preformed several helical rotations, and the field
lines would have started to bend. In addition, due to the isotropy of the field and assuming
the initial direction to be isotropic, the direction defined by right hand rotation of the helical
motion (which is perpendicular to the initial direction) would have a flat distribution, i.e. cylin-
drical symmetry. The result of this is having a completely isotropic propagation direction after a
propagation length ∼ Lc , giving a probability distribution p(θde f l ) = sin(θde f l )/2, analogous to
that of θ in table 2.1. θde f has then an expectation value of

〈θde f l 〉 =
∫ π

0

θ sin(θ)

2
dθ = π

2
,

and standard deviation

σde f l =
(∫ π

0
dθ

sin(θ)

2

(
θ− π

2

)2
) 1

2 ≈ 0.6837 rad.

In the case where Rg ≥ Lc the propagation will not have preformed a complete helical rota-
tion after a propagation length ∼ Lc , but if assuming isotropic initial propagation direction, the
deflection direction should still have cylindrical symmetry. For this the direction of the deflec-
tion, analogous to φ, is of lesser interest.

3.2 Computation Method for the Deflection Angle

After creating turbulent magnetic fields, the next goal is to compute the deflection angle of
charged particle motion as a function of the propagation length in the respective fields. For
this I computed particle trajectories using a Runge-Kutta (RK) solver for the equation of motion,
see equations (3.1) and (3.2), which is an ordinary differential equation (ODE). The code for the
Runge-Kutta solver is given in Press et al. (1997, ch. 16.2). The code has an adaptive stepsize
control with error estimation in order to preform the propagation with smallest possible run-
ning time.

As argued in section 2.2.2 the computed fields would need many Fourier modes in order
to be approximately isotropic, but as the computation time is proportional to the number of
modes, the number of modes had to be limited. To optimize the isotropy of the fields, each
field (i.e. each spectral index γ in the power law, not to be mistaken with γL) was computed
with multiple realizations, i.e. different random parameters (see section 2.2). Then a number
of particle trajectories were computed for each realization, and the results from all realizations
were used to calculate the mean and RMS values.

The initial point of each particle propagation was chosen at random within a sphere with
radius À Lmax in order to have a random magnetic field strength, and since the Fourier modes
propagate in given directions in each realization, the initial propagation direction was chosen
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isotropically to ensure that the direction of a helical motion (in the case of small gyroradii, see
section 3.1.1) with respect to the initial direction has isotropic distribution as well.

The particles of interest are, as mentioned in the introduction, electrons and positrons in
VHE cases, i.e. Ee ≥ 1 TeV. In these cases the speed of the particles v ≈ c with a relative difference
less than 10−5. As the Lorentz factor γL is highly sensitive to changes in v at these energies, it
is not wise to let γL depend on v in the computation, as the speed may be slightly changed by
the RK solver because it treats the particles classically. Therefore γL is rather defined by the
energy Ee = γLme c2 which theoretically is conserved during propagation in a magnetic field
(see section 3.1). By checking the relative difference of the particle speed at the initial and final
positions one may get an estimate on how exact the RK solver preform for the given stepsize
(dr = v dt ).



Chapter 4

Results and discussion

4.1 Normalization and Isotropy

Monte-Carlo computation was used to create all turbulent magnetic fields using the computa-
tion algorithm presented in section 2.2, where the 5 random parameters θ, φ, α, β and the sign
± followed the properties described in table 2.1. First one wants to examine if the fields created
are normalized with a RMS value equal to the chosen Brms value and with zero mean, and at
what scale sizes this normalization occurs. Using MC computation to sample the field strength
and direction at random positions inside a box of varying scale size centered around the origin,
the mean field value 〈B〉 and the RMS value 〈B 2〉 could be calculated. The results from 3 random
fields with spectral index γ = 5/3 (Kolmogorov turbulence) and a ratio between Lmin and Lmax

of 0.01 can be seen in figure 4.1. As one can see from the figure the magnetic fields approach
the correct normalization for the RMS value at a scale size ∼ 10 Lmax. The mean field values
approach zero also at a similar scale size.

From equations (2.5) and (2.26) of the normalization of the field it is clear that the ratio in
the magnetic field strength between the largest and smallest scale structures are constant as
long as the relative ratio between Lmin and Lmax is constant. This means that the magnetic field
strength on scale sizes proportional to the field’s scale size, e.g. Lmax, is constant for different
values of Lmax as long as Lmin/Lmax is constant. In other words, one may scale the magnetic
field without changing its other properties. For simplicity Lmax is therefore chosen to be 1.0. To
see if the normalization change with increasing or decreasing ratio of the scale sizes or value of
the spectral index, another MC computation was executed for each, both similar to that of figure
4.1. The result of both computations may be seen in figure 4.2.

From the plots in figure 4.2 it is clear that the fields approach normalization at approximately
the same scale sizes, independent of the different parameters. For this reason one may be com-
fortable to look at the isotropy of the fields at scale sizes À 10 Lmax as the fields will be normal-
ized. In both figure 4.1 and figure 4.2 it is clear that the local field-strength varies, as one would
expect for a random field. If the local field at the origin were to have another field strength, e.g.
less than Brms, the graphs in figures 4.1 and 4.2 would be starting at this local value.

19
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Figure 4.1: The plots show: (top) mean square values 〈B 2〉nk , and (bottom) length of the
mean | 〈B〉nk | of computed magnetic fields with spectral index γ= 5/3 and different number
of Fourier modes nk . Each point is a calculated mean of 50 000 samples of the magnetic
field at random positions within a box of scale size Ls , with calculated standard error in the
plots to the right. In all plots Lmax = 1.0, and the black lines (1.0 top, 0.0 bottom) are the
expectation values for an isotropic field with zero mean and RMS value Brms.
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Figure 4.2: The plots show: (top) mean square values 〈B 2〉, and (bottom) length of the mean
| 〈B〉 | of computed magnetic fields with either different spectral index γ or different ratio of
Lmin/Lmax. Lmin and Lmax is the minimum and maximum size of the turbulent structures,
and all fields are composed of 100 different Fourier modes, i.e. nk = 100. Each point on
the graphs is a calculated mean of 50 000 samples of the magnetic field at random positions
within a box of scale size Ls , with maximum calculated standard error ∼ 10−2 Brms of respec-
tive power. In all plots Lmax = 1.0, and the black lines (1.0 top, 0.0 bottom) are the expectation
values for an isotropic field with zero mean and RMS value Brms.
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Figure 4.3: The plot shows computed mean square values of the magnetic field components
for different realizations of a magnetic field with equal field parameters. Each point is a
calculated mean of 50 000 samples of the magnetic field at random positions within a box of
scale size Ls = 2000 Lmax, and each mean has a calculated standard error. The colored lines
are the mean values of the MS values from the different realizations, and the black line is the
expected isotropic value. 〈B 2

i 〉 is the mean square value in i -direction, and the number of
Fourier modes for each realization is nk = 100. Lmax is set to 1.0, Lmin/Lmax = 0.01, and the
spectral index of the power law is γ= 5/3.

One may argue that instead of taking random positions inside a box of side length Ls one
could take positions inside a sphere of the same diameter. This could arguably have been more
precise to do, also in the case for isotropy as will be shown, but as one move out to the larger
scale sizes Ls À 10 Lmax the field should have (approximately) zero correlation, so that a mean
value inside a volume of L3

s will be independent of the shape. This will also be shown in the
results of the spectral correlations and correlation lengths in section 4.2.

Changing the focus from normalization to isotropy, equation (2.31) requires any isotropic
field to have zero mean. This is already shown to be satisfied for the magnetic fields at scale size
& 10 Lmax, see figures 4.1 and 4.2. Having a normalized magnetic field equation (2.32) requires
that the mean square value in orthonormal directions, i.e. the x-, y-, and z- components, of an
isotropic field to be equal to a third of B 2

rms. In the first paragraph of section 2.2.2 it is argued
that for a small number of Fourier modes per decade of k-values, the field will be dominated bye
the few modes with small k, i.e. large scale size. Therefore to check the degree of isotropy for
any field, several realizations of magnetic fields with the same parameters were computed. Each
field was then sampled at 50 000 random positions inside a box of side length Ls = 2000Lmax to
ensure normalization, and the mean square values of the x-, y-, and z-components were calcu-
lated. The result of this is shown in figure 4.3 and figure 4.4.
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Figure 4.4: The plot shows computed mean square values of the magnetic field components
for different realizations of magnetic fields with equal field parameters. Each point is a cal-
culated mean of 50 000 samples of the magnetic field at random positions within a box of
scale size Ls = 2000 Lmax, and each mean has a calculated standard error. The colored lines
are the mean values of the MS values from the different realizations, and the black line is
the expected isotropic value. 〈B 2

i 〉 is the mean square value in i -direction, and the number
of Fourier modes for each realization is nk = 100. Lmin/max is the smallest/largest turbulent
scale structure of the field, and γ is the spectral index.
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Table 4.1: Calculated total mean with standard error of the mean square values of the field
components in figure 4.3 and figure 4.4.

Number of Spectral Relative scale Total mean of the field components
modes index ratio in units of B 2

rms
nk γ Lmin/Lmax 〈B 2

x〉tot 〈B 2
y〉tot

〈B 2
z 〉tot

100 5/3 0.01 0.339 ±0.010 0.338 ±0.010 0.323 ±0.010
1000 5/3 0.01 0.3370±0.0040 0.3328±0.0044 0.3301±0.0037
1000 5/3 0.91 0.3345±0.0014 0.3321±0.0023 0.3339±0.0021
1000 5 0.01 0.3385±0.0070 0.3357±0.0082 0.3256±0.0073

Table 4.2: Calculated standard deviation of the mean square values of the field components
in figure 4.3 and figure 4.4.

Number of Spectral Relative scale Standard deviation of the field components
modes index ratio in units of B 2

rms

nk γ Lmin/Lmax

√
Var[〈B 2

x〉]
√

Var[〈B 2
y〉]

√
Var[〈B 2

z 〉]
100 5/3 0.01 0.0465 0.0437 0.0456

1000 5/3 0.01 0.0178 0.0195 0.0164
1000 5/3 0.91 0.0062 0.0104 0.0092
1000 5 0.01 0.0312 0.0367 0.0326

In figure 4.3 one can see that for nk = 100, i.e. 50 per decade of k-values, the mean square
components has a substantial spread. From the plots in figure 4.4 where nk = 1000 for each field,
giving at least 500 modes per decade, the mean square values of the realizations have a smaller
spread. This is as expected from theory as no single mode dominates a given field. Although
in figure 4.4 for γ = 5.0 one gets a larger spread again as the energy spectrum becomes steeper
resulting in larger ratio in power between the Fourier modes. The standard deviation and error
together with the mean square values of the different realizations in the plots of figures 4.3 and
4.4 can be seen in table 4.1 and table 4.2. From the table 4.2 is is clear that the values of the
standard deviations are larger than the computed mean values own error estimates in the plots
in figures 4.3 and 4.4, which were ∼ 0.002 B 2

rms in all cases.
In order to make the difference in isotropy clearer, 4 fields were realized with the same ran-

dom parameters θ, φ, α, β and the sign ± for 100 Fourier modes. The relative scale ratio and
spectral indices were changed between the realizations. Then the MS values of the field com-
ponents were sampled 50 000 times at random positions, but this time inside boxes of different
side lengths ranging from 500-2000 Lmax. In addition a realization with nk = 1000, keeping the
same parameters as for the others for the smallest k-values, i.e. the modes with most contri-
bution to the MS. The result is seen in the plots of figure 4.5. From the figure one can see that
when the spectral index γ is lowered with all other parameters constant, the field tend to be-
come more isotropic as the MS values get closer to the expected value of 1/3. The opposite is
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Figure 4.5: The plots show computed mean square values of the magnetic field components
for computed magnetic fields with equal random numbers (see section 2.2), but different
field parameters. Each point is a calculated mean of 50 000 samples of the magnetic field
at random positions within a box of scale size Ls , and each mean has a calculated standard
error. The colored lines are the mean values of the MS values from the different sampling
scales, and the black line is the expected isotropic value. 〈B 2

i 〉 is the mean square value in i -
direction, nk is the number of Fourier modes, kmin and kmax is the minimum and maximum
wavenumbers of the Fourier modes, and γ is the spectral index of the power law. In all plots
Lmax = 2π/kmin = 1.0 and Lmin is defined by the ratio kmin/kmax = Lmin/Lmax.
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Figure 4.6: The plot shows computed mean square values of the magnetic field compo-
nents for different realizations of a magnetic field with equal field parameters. The fields
are computed using flat θ distribution in accordance to Tautz (2012). Each point is a calcu-
lated mean of 50 000 samples of the magnetic field at random positions within a box of scale
size Ls = 2000 Lmax, and each mean has a calculated standard error. 〈B 2

i 〉 is the mean square
value in i -direction, and the number of Fourier modes for each realization is nk = 100. Lmax

is set to 1.0, Lmin/Lmax = 0.01, and the spectral index of the power law is γ= 5/3. The colored
lines are the mean values of the MS values from the different realizations, and the black lines
(0.25 and 0.375) are the expected values for 〈B 2

z 〉, and 〈B 2
x〉 and 〈B 2

y 〉 respectively.

also clear when γ is raised. Here it is set to a value of 30 so that the field is dominated by just a
few modes to really show the effect. For the given values in the plot, each mode has a relative
power ratio of ≈ 4 to the next mode so more than 50% lies with the smallest k-value. This in turn
makes the field not isotropic. In addition, one can again see that shortening the relative ratio
in scale size or increasing the total number of modes results in a more isotropic field. This is
as expected from what is seen in figures 4.3 and 4.4, and because both increase the number of
modes per decade of k-values.

Looking at the argument from Tautz (2012), see section 2.2.2 on page 13, the computation
algorithm should not result in an isotropic field. In the mentioned section of this report, it was
argued that Tautz (2012) had not successfully given θ the probability distribution required in
order to make the wavevectors k isotropic. Consequently the MS value of the magnetic field
components change expectation value, see equations (2.42)-(2.44). To show this θ was given a
flat distribution and the MS values of the MF components was calculated in the same way as
earlier, with nk = 1000, γ = 5/3 and a relative turbulent scale size ratio of 0.01. The result from
the computation is in accordance to the theory and is shown in figure 4.6.

To summarise the results, any computed field approach the correct normalization for the
RMS of the field strength at scale sizes & 10Lmax, independent of γ, the Lmin/Lmax ratio, and the
number of Fourier modes per decade. For γ = 5/3, one needs 500 modes per decade to get a
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high degree of isotropy for a computed field. The MS value of the field components are then
statistically spread (≈ normal distribution) around a mean value of 1/3 B 2

rms, as expected for
isotropy, with a standard deviation of ≈ 5% of the mean. At 50 modes per decade the standard
deviation increase to ≈ 13% of the mean, meaning the fields are less likely to be isotropic. For
γ= 5 the number of modes must be larger than 500 modes per decade to get the same degree of
isotropy. The STD is ≈ 10% of the mean for 500 modes per decade, and further computations is
needed in order to find a number of modes per decade giving STD of ≈ 5%. If the STD for γ= 5
is comparable in behaviour to that of γ = 5/3, one could approximate a STD of 3-4% for 5000
modes per decade with γ = 5. With 500 modes per decade for γ = 1.1 the STD is ≈ 2.5% of the
mean, giving very isotropic fields. Finally, the disagreement of Tautz (2012) on the question of
the isotropy of the computed fields was shown to be the result of wrong probability distribution
of the random angle θ.

4.2 Correlation length

This part of the report aims to calculate the correlation length of the computed magnetic fields
and compare them to the analytical equation (2.15) for an isotropic turbulent magnetic field
with continuous k-values, following the same power law. In order to calculate the correlation
lengths the following steps was done for chosen values of the spectral index γ.

1. Random fields were computed with nk = 100 and 1000 for different relative turbulent scale
sizes.

2. For each realization of the magnetic fields the spatial correlation function, see equation
(2.17), was calculated using MC computation and length increments of

dL = min
{
1/20π Lmax, 1/5 Lc,min

}
,

where Lc,min is given by the limit of equation (2.15) where the ratio of Lmin/Lmax goes to
zero. At each L, the spatial correlation function was calculated by sampling the magnetic
field at 20 000 randomly distributed positions inside a box of side length Ls = 1000 Lmax

and then sampling the field at one position isotropically distributed around each initial
position at distance L.

3. While calculating the spatial correlation function, the correlation length was calculated in
accordance with equation (2.18) by the use of Simpson’s rule integration. The calculation
was set to terminate if all the following was true: L > 5Lmax, the correlation length was os-
cillating around a seemingly constant value, and the standard deviation of the calculated
Lc over the last ∆L = 4Lmax was smaller than the error of the Simpson’s rule integration.

The results from these calculations can be seen in figures 4.7-4.9. Note that the y-axis has
logarithmic spacing in all plots. There are some interesting properties of the calculated correla-
tion lengths that one may observe in these figures.

i At larger ratios of the limiting scale sizes, Lmin/Lmax > 0.3, the calculated values of the cor-
relation length follow those of the continuous field. In addition, at small values of γ (γ& 1)
this seems to be more accurate than for larger values.
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Figure 4.7: The plots show calculated correlation lengths of computed magnetic fields with
spectral index γ= 1.1 and different ratios of the turbulent scale size limits. nk is the number
of Fourier modes for each field, and Lmax is the maximum turbulent scale size. The colored
line is the analytical correlation length from theory, see equation (2.15). The error of each
calculated point is equal to the estimated error from the Simpson’s rule integration.

ii At smaller ratios of the limiting scale sizes, Lmin/Lmax < 0.1, the correlation length approach
a constant value different from that of the continuous field. This value also tend to be smaller
for smaller values of γ.

iii A larger number of modes nk tend to give smaller values of the correlation length.

The first observation may be explained through the combination of number of Fourier modes
per decade, and the ratio in power between the modes. As the relative ratio in scale size, Lmin/Lmax,
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Figure 4.8: The plots show calculated correlation lengths of computed magnetic fields with
spectral index γ= 5/3 and different ratios of the turbulent scale size limits. nk is the number
of Fourier modes for each field, and Lmax is the maximum turbulent scale size. The colored
line is the analytical correlation length from theory, see equation (2.15). The error of each
calculated point is equal to the estimated error from the Simpson’s rule integration.
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Figure 4.9: The plots show calculated correlation lengths of computed magnetic fields with
spectral index γ= 3.0 and different ratios of the turbulent scale size limits. nk is the number
of Fourier modes for each field, and Lmax is the maximum turbulent scale size. The colored
line is the analytical correlation length from theory, see equation (2.15). The error of each
calculated point is equal to the estimated error from the Simpson’s rule integration.
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is close to 1, the number of modes per decade is much larger than that of smaller ratios. At the
limit Lmin/Lmax = 1 the field becomes constant w.r.t. k, just like the continuous field. When γ

is concerned, smaller values gives power ratios of the Fourier modes close to 1, meaning more
modes have a significant contribution to the magnetic field strength, which in turn makes the
field more isotropic, e.g. see figures 4.4 and 4.5. As the equation for the correlation length im-
plicitly assumes isotropy, see (2.18), the degree of isotropy of the field may influence the cor-
relation length. In figure 4.9 one can see that at small scale size ratios Lc is not as constant for
nk = 100 as for nk = 1000. As shown in the previous section, the computed fields are less likely
to be isotropic for larger values of γ, meaning in this case that the computed fields for nk = 100
and γ = 3 may not have been very isotropic, which may have led to the different Lc values at
small scale size ratios. This could be an interesting objective to examine in a later project.

For the second observation, the flattening of the correlation length may be explained partly
by the scale ratio. In the limit case case of observation 1 (ratio ≈ 1) all the modes change at
approximately the same rate, and they also have similar strength. When the scale ratio becomes
larger in the continuous case, one add more modes that change faster on spatial scales w.r.t.
the largest modes. This in turn makes it so that the magnetic field change faster giving it a
shorter correlation length. In the computational case one dilutes the number of modes per
decade, creating fewer modes on the larger scale and more on the smaller scales. When the
scale ratio becomes large the change in the number of modes per decade change less for each
added decade, giving a close to constant ratio between the k-values of the modes and therefore
also a constant power ratio. Increasing the scale ratio affects the magnetic field less and less
resulting in a more constant correlation length.

when one is considering the spectral index and its affection on the correlation length, it is
reasonable to consider the continuous case first. Since γ defines the power ration of the modes,
having a larger gamma means that the added modes on lower scale sizes affect the field less than
for a smaller alue of γ. In the limit where γ goes to 1, Lc goes to zero. This is explained by the
fact that in this limit all turbulence scales are approximately equal in power, which in turn make
the magnetic field change more on smaller scales making the spatial correlation function fall of
and approach zero faster.

Looking at the difference between the analytical and computed values in the second obser-
vation one may start looking at the number of modes per decade as noted in the third observa-
tion. One can see from both figures 4.7 and 4.8 that in the case where nk is larger the correlation
length is closer to the analytical value. Two reasons may explain this. Firstly, higher density of
modes (i.e. # per decade) may cause the magnetic filed to change faster as more modes have sig-
nificant contributions to the field. Secondly, as for the first observation, the correlation length
might be affected by the isotropy of the field. From figures 4.3 and 4.4 it is clear that a random
field is more likely to be isotropic the more modes it contains. As the fields were computed with
individual values it is a possibility that some of the fields had a higher degree of isotropy. For
the nk = 1000 fields to have the same number of modes per decade as the fields with nk = 100,
they would have to have a 10 times smaller scale ratio, i.e. 10 times more decades. A possible
case where the consistency (or degree) of isotropy may have been the case is seen in figure 4.9
where the correlation length of the nk = 100 fields are varying much more than for nk = 1000 in
the small scale ratio cases. Another case of this is seen in figure 4.8 where in the extreme case
of nk = 2, i.e. only modes for Lmin and Lmax, when the scale ratio decreases the field is more
and more defined by the Lmax mode (kmin). This mode is obviously not isotropic and should
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Figure 4.10: The plots show calculated spatial correlations ξi i (L) as a function of distance L
between two random positions in the computed magnetic fields, using the mean of 20 000
samples per L. The green graphs are the calculated correlation lengths, calculated as the
cumulative result of a Simpson’s rule integration of ξi i (L). The field parameters are specified
over each plot, with nK = number of modes, γ = spectral index, and limiting turbulent scale
sizes Lmin and Lmax.

approach a correlation length equal to that of a single mode. This should actually be the case of
all computed fields given that the number of decades surpass nk or the spectral index become
substantially large, e.g. for γ = 3 the power ratio between two modes separated by a decade is
1:1000.

What is still unclear in the case of a small scale size ratio (Lmin ¿ Lmax) is why the calculated
correlation lengths of the fields for small values of γ are larger than the analytical values, while
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they for larger values of γ (see figure 4.9) suddenly become smaller?. And while this is the case
observed, why is the calculated correlation lengths smaller for larger nk in all cases of γ? The
latter has been discussed in the two previous paragraphs, but any distinct answer to this ques-
tion has not yet been given, nor will be in this report. The first question is not easily answered as
well. At this moment one could turn to the computation method for the correlation length. The
method given earlier in this section do contain statistical and possibly also systematic errors.
The statistical error in the MC sampling of the correlation length and the length increment dL
may have had a significant effect of the result of the Simpson’s rule integration.

Two examples of the calculated spatial correlation function with accumulated Simpson’s rule
integration for Lc may be seen in figure 4.10. It is worth noting that a decrease in dL, i.e. more
sample points per length, without increasing the number of positions sampled in each MC sam-
pling could contribute to a higher estimated error of the integration. From the plots one can also
see that the spatial correlation function is not smooth due to the statistical error (i.e. standard
error of the mean) of the MC sampling. One would be motivated to try and decrease this error,
but in order to decrease the error by a factor of 2 one would increase the number of samples and
therefor also the computation time by a factor of 4. With the computational power disposable,
this was the limiting factor. For later studies either having more time or more computer power
would open for an increase of MC samples.

Let’s summarise the results in this section: For relative scale ratios Lmin/Lmax > 0.5 and spec-
tral indices close to 1 the correlation length of the computed fields follow the analytical corre-
lation length of a continuous field with continuous modes and equal power spectrum. In the
limit Lmin/Lmax = 1 the correlation length of the computed fields goes towards 0.5Lmax. At small
scales size ratios Lmin/Lmax ¿ 1 the correlation length approaches a constant value in the range
0.0-0.5Lmax. This value is in general different from that which is expected from the continuous
field. The constant value is larger for larger values of γ, but seams to decrease with an increasing
number of modes per decade. Whether the degree of isotropy of the computed fields affect the
correlation length is not explicitly shown, but there are indications that higher degree of isotropy
give more stable correlation lengths. For all values of γ, the differences in calculated correlation
lengths are small between fields with a total number of modes of 100 and 1000.

4.3 Deflection Angle

This part of the report aims to calculate the deflection angle of VHE electrons/positrons propa-
gating through turbulent magnetic fields and then compare the results to the analytical expec-
tations presented in section 3.1. To calculate the deflection angles, the method presented in sec-
tion 3.2 was used with the following parameters for the fields: RMS value of the field strength,
Brms = 10−6 G, the number of Fourier modes per field, nk = 100, and the maximum scale size
Lmax = 1 pc. The reason for choosing nk = 100, although it gives fields with not so high degree of
isotropy, is the computational time it demands. With more time or computational power, this
number could have been increased. To compensate for the isotropy each field was created with
a certain number of field realizations, Nr = 25. The number of particle trajectories per field real-
ization was set to Np = 50. The chosen scale size ratios and spectral indices for the fields can be
seen in table 4.3, with accompanying correlation lengths from the results in section 4.2. From
equation (3.4) one would with electron energy Ee = 1 TeV get a gyroradius Rg = 1.081 ·10−3 pc,
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Table 4.3: Field parameters with calculated correlation length for computed turbulent mag-
netic fields with 100 Fourier modes.

Relative scale Spectral Correlation length
ratio index

Lmin/Lmax γ Lc [Lmax]
0.01 5/3 0.23
0.01 3.0 0.31
0.01 1.1 0.25
0.91 5/3 0.40
0.91 3.0 0.40
0.91 1.1 0.46

which would be of order 10−2 smaller than the correlation length of any of the computed fields.
The electron energies was chosen so that the gyroradius the electrons ranged from 10−2 −

105 Lc , calculated using equation (3.4) with insertion of B = Brms. Then the particle trajectories
were computed and all the distances propagated, positions and velocities were tracked. At cer-
tain propagation lengths the deflection angle was calculated and the results can be seen in figure
4.11 to figure 4.18. Note: For the computations of the particle trajectories the time increment of
the Runge-Kutta solver was set so that the propagation between 2 tracking-positions was equal
to or less than Lc /300 for trajectories less than 10 Lc in length. This is so that the particles with
smaller gyroradius should not be able to complete a greater part of a circle motion between the
tracking. It should simultaneously be noted that the RK-solver compute several steps between
the two tracking-positions. In the computed trajectories with propagation distance > 10Lc only
electrons with gyroradius of order 103 Lc and higher was considered. Due to very small de-
flections the time increment of the RK-solver was then set so that the distance increments was
approximately Lc /2. This was in order to decrease the computation time, else it would run for
many days. As mentioned in section 3.2 it is important that the change in particle speed due
to the RK-solver are negligible. In the case for the lowest energies (where D = (0.01−10)Lc ) the
largest relative change of the particle speed in any propagation was of order 10−6, while for the
higher energies (D > 10Lc ) the largest relative change was of order 10−7. This indicates that the
time increment for the RK-sovler was sufficient in order to secure valid results as the speed and
energy is considered to be constant.

The choice of units is made to simplify equations (3.5) and (3.6), and to make the plots in the
figures (see 4.13-4.18) more comparable to each other. At small propagation lengths D < 0.1Lc

in all of the mentioned figures the mean deflection angle follow the analytical expectation value
from equation (3.5) independent of γ or particle energy (i.e. gyroradius). In the case of the
smallest energies, see figures 4.13 and 4.15, the gyroradii are of the same order or less than the
propagation length. This would in general result in deflection angles larger than π as helical
motion would occur. As the deflection angle in the computation is calculated using the initial
and current velocity, any angle larger than π will be lost. In the cases where the propagation
length D À Rg the distribution of velocity directions should approach an isotropic distribution,
giving a mean value of π/2 with a standard deviation of 0.6837, see section 3.1.1. This is best
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shown in figure 4.11 where the mean deflection angle for electrons with gyroradii Rg = 0.01 and
0.1 Rg = Lc is plotted together with the calculated standard deviation. One can see that for both
energies the deflection angle approaches isotropy at a propagation distance of 2Lc .

In figure 4.12 the case with small gyroradii is further examined. The figure shows a plot of the
RMS value of the distance from the initial point relative to the propagation length. The black line
in the plot represent a function following a random walk distribution following AD−1/2, A being
a constant (see equation (3.8)), but with a different value of A than what would be expected from
the computation parameters. The line is there to observe the asymptotic behavior of the RMS
value. One see that for D < 2Lc the RMS value seems approach the same asymptotic behaviour,
but two sample points are too few to be able to draw any conclusions. A new computation
would have to be preformed, but not be done in this report. Not because it is unimportant, but
the computation time this would require is too great.

Looking at the bottom plots in figures 4.13 and 4.15, where the gyroradius of the electrons
are of order 1−10 Lc , one can see that in the case of short propagation lengths equation (3.5) is
fulfilled. While equation (3.6) would expect the deflection angles at longer propagation lengths
D À Lc to be proportional to

p
D/Rg , the mean deflection angles (especially for Rg = 1Lc ) ap-

proach π/2 before this large scale limit. As argued before, the computational algorithm loose all
values of the deflection angle larger than π, and the expectation value for the deflection angle is
π/2 even if the true deflection is À π. Using what is seen for Rg = 0.1Lc one would expect that
the mean deflection angle for both Rg = 1Lc and Rg = 10Lc would reach and stabilize around
π/2 for propagation lengths D À Lc and not follow the analytical value of equation (3.6). Un-
fortunately the plots terminate at D = 10Lc where 〈δ〉 ≈ π/2 for Rg = 1Lc . In order to check
the expectations one would have to increase the propagation length of the computed particle
trajectories, which as mentioned before would also increase computation time.

Now starting too look at the weak field case, i.e. Rg À Lc . As mentioned earlier, equation
(3.5) holds at short propagation distances (e.g. see figure 4.14). When one moves out to larger
propagation distances one sees that the calculated deflection angles start to deviate from the
analytical values, see figures 4.14, 4.16 and 4.18. Taking now a closer look at the boundary points
between the two computations in each plot. By this we mean the calculated deflection angles
for the same electron energies, but for the different computations where the time increment of
the RK-solver was different. One can see that generally for all energies the calculated deflection
angles coming from the smaller propagation distances seem to make a smooth curve in the
transition between D < 0.1Lc to D > 10Lc . Also, these deflection angles seem to approach the
analytical equation, see (3.6), at their right limit.

When looking at the deflection angles calculated in the second computation, one can see
that many of the values deviate from the first computation where they overlap, e.g. see figure
4.16. In addition there are big outliers that make little sense, again see figure 4.16. These devi-
ations may indicate some errors in the computational code, but as it didn’t give strange results
for the other γ values this would be strange. As the deflection angles don’t overlap, one should
be cautious to draw any conclusions from the results. A possible answer to the deviations may
lie in the value of γ. As γ define the power ratio of the scale sizes, with a smaller γ giving more
power to the smaller scales, it might happen that the chosen time increment for the RK-solver is
too large. One should note that decreasing the time increment lead to longer computation time.
Additional computations with new fields may also show if these outliers in the plots are coin-
cidences or not, but as the other plots indicate they would probably follow the same deviation
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from the analytical values.
In figure 4.18 the computation is run with a relative scale size difference of 0.91 as opposed

to 0.01 in the other figures. Here one continues to see deviations from the analytical values,
but here the calculated values for γ = 1.1 follow the same behaviour as for γ = 5/3 without the
outliers one can see in figure 4.16. This strengthens the already established suspicion that there
could be something wrong with the results in figure 4.16.

The time increment was mentioned as a possible explanation to the deviations seen in figure
4.16, but what if this is the cause of the deviations in all of figures 4.14, 4.16 and 4.18? This
could be a possibility, but checking this with additional computations with much smaller time
increments would take days of computation time and is not manageable with the limited time
left of this project. Computation time will always be a limiting factor in this form of research, so
compromises must sometimes be made and precision be sacrificed for efficiency.

After analyzing the figures and observing that all deflection angles at longer propagation
lengths deviate from the analytical formula in the same way, there is one property of the field
that must be considered, namely the correlation length. As equation (3.6) depend on the field’s
correlation length while equation (3.5) do not, only the analytical deflection angles at long prop-
agation lengths is affected by a change in Lc . It’s important to remember that equation (3.6)
requires D À Lc , while equation (3.5) requires D ¿ Lc . The correlation lengths used for the
deflection angle calculation were those calculated in section 4.2. These correlation lengths did
have calculated errors, but it is worth noticing that each one was calculated using only 1 real-
ization of each field, which may therefore not be representative of a set of several realizations.
Let’s look at the correlation length required for the calculated means of the deflection angles for
the electrons with the largest gyroradius (Rg = 105Lc ) to match the analytical values. The reason
for this choice is that these gyroradii seem to be behaving equally w.r.t. the analytical expecta-
tion for γ = 5/3 and γ = 3. Figure 4.14 gives 〈δ〉 = (9.54±0.77) ·10−5 at D = 1000 ·0.23Lmax for
γ = 5/3 and Rg = 0.31 ·105Lmax. This corresponds to Lc = (0.021±0.003)Lmax in equation (3.6).
Note that table 4.3 had to be used in order to transform D and Rg into scalars of Lmax. Figure
4.17 gives 〈δ〉 = (1.09±0.10) ·10−4 at D = 1000 ·0.31Lmax for γ= 5/3 and Rg = 0.31 ·105Lmax. This
corresponds to Lc = (0.036±0.007)Lmax. One see clearly that both correlation lengths needed to
equate the analytical equation to the results are of order 10−1 w.r.t. those calculated in section
4.2 and are way outside the error estimates. For this the correlation lengths do not seem to be
the source to the deflection angle deviations.

In addition to the proposed sources for error there is one more that should be mentioned.
As shown in section 4.1, if using only nk = 100 Fourier modes when the relative turbulent scale
size ratio was 0.01, i.e. 50 modes per decade, the computed fields are in a few cases not very
isotropic. This potential deviation from isotropy may have contributed to the deviations seen
in the deflection angles at longer propagation lengths, but without further testing this can not
be confirmed. An attempt to try to counteract the possible deviations from isotropy has been
made by using multiple realizations of the fields when computing the particle trajectories, which
should give a more isotropic filed on average and therefore possibly improve the result (see fig-
ure 4.3. In section 4.1 it was also argued that decreasing the number of decades, i.e. setting Lmin

closer to the value of Lmax, will improve a computed field’s isotropy. Although turbulent field
where Lmin . Lmax may not be very physical, we are looking at theoretical fields in this report.
Looking again to figure 4.18 where the relative scale ratio is 0.91 and comparing the results to
those for the same values of γ for a relative scale ratio of 0.01 (see figures 4.14 and 4.16) one
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Figure 4.11: The plot shows calculated deflection angles for electrons/positrons propagating
through computed magnetic fields with spectral index γ= 5/3, relative turbulence scale size
ratio Lmin/Lmax = 0.01, number of Fourier modes nk = 100, and correlation length Lc = 0.23.
〈δ〉x is the mean deflection angle for the electrons/positrons with gyroradius Rg = x · Lc .
The bars represent the standard deviation of the set of deflection angles used to calculate
each mean. The black line represent a deflection angle of π/2 and the red lines have values
equal to π/2±0.6837, representing the analytical standard deviation of the deflection angle
at isotropic distribution.
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Figure 4.12: The plot shows the calculated RMS values of the distance from the origin relative
to the distance propagated D for electrons/positrons propagating through computed mag-
netic fields with spectral index γ= 5/3, relative turbulence scale size ratio Lmin/Lmax = 0.01,
number of Fourier modes nk = 100, and correlation length Lc = 0.23. The black line repre-
sent a function proportional to D−1/2.
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sees little to no difference between the results. This is especially the case for γ = 5/3, which is
the value most studied in this report. To examine if isotropy, or the lack of it, actually do con-
tribute to the deviation seen, additional computations must be made. Possible changes could
be increasing (or decreasing) the total number of Fourier modes nk or increasing the number
of realizations of each field. In the end there is always the probability that the analytical equa-
tion does not correctly describe the deflection angles of particles moving through the computed
fields, but without any further tests this is impossible to prove.

A final possibility is that the deviation from the analytical formula is real. A confirmation of
this claim would require an extreme amount of testing, double checking all parts of the com-
putational code, and a thorough analysis of any possible source of error. Considering the time
limit for this projects, an answer to this statement is far beyond the reach of this report.

To summarise this section we have seen that the mean deflection angles of electrons prop-
agating through the computed magnetic fields follow the analytical formula for propagation
lengths D ¿ Lc , see equation (3.5). On the contrary one sees that at longer propagation lengths
D À Lc the mean deflection angles deviate from the analytical expectations, see equation (3.6).
In order for the deflection angles to match the expected values, the correlation lengths would
have to be 10 times smaller than what was calculated in section 4.2. In addition at propagation
lengths D > Rg the mean deflection angle approaches π/2 as the velocity directions approach
isotropic distribution, due to the fact that the computational algorithm loses track of angles
δ > π. The most probable sources of error when trying to explain the deviations in deflection
angles relative the analytical expectations are the time increment of the Runge-Kutta solver in
the computational algorithm, and the computed fields isotropy. Both potential sources require
additional testing with smaller time increments and more Fourier modes, which requires more
time than what is possible within the time window of this project.
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Figure 4.13: The plots show calculated deflection angles for electrons/positrons propagating
through computed magnetic fields with spectral index γ= 5/3, relative turbulence scale size
ratio Lmin/Lmax = 0.01, number of Fourier modes nk = 100, and correlation length Lc = 0.23.
〈δ〉x is the mean deflection angle for the electrons/positrons with gyroradius Rg = x ·Lc . The
bars represent the standard error of the mean and the solid lines are the analytical expecta-
tion values in the limits of the propagation length D ¿ Lc (see equations (3.5)). Where the
analytical values reach π/2 they are set to be constant.
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Figure 4.14: The plots show calculated deflection angles for electrons/positrons propagating
through computed magnetic fields with spectral index γ= 5/3, relative turbulence scale size
ratio Lmin/Lmax = 0.01, number of Fourier modes nk = 100, and correlation length Lc = 0.23.
〈δ〉x is the mean deflection angle for the electrons/positrons with gyroradius Rg = x ·Lc . The
bars represent the standard error of the mean and the solid lines are the analytical expecta-
tion values in the limits of the propagation length D ¿ Lc and D À Lc (see equations (3.5)
and (3.6)).
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Figure 4.15: The plots show calculated deflection angles for electrons/positrons propagating
through computed magnetic fields with spectral index γ= 1.1, relative turbulence scale size
ratio Lmin/Lmax = 0.01, number of Fourier modes nk = 100, and correlation length Lc = 0.25.
〈δ〉x is the mean deflection angle for the electrons/positrons with gyroradius Rg = x ·Lc . The
bars represent the standard error of the mean and the solid lines are the analytical expecta-
tion values in the limits of the propagation length D ¿ Lc (see equations (3.5)). Where the
analytical values reach π/2 they are set to be constant.
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Figure 4.16: The plots show calculated deflection angles for electrons/positrons propagating
through computed magnetic fields with spectral index γ= 1.1, relative turbulence scale size
ratio Lmin/Lmax = 0.01, number of Fourier modes nk = 100, and correlation length Lc = 0.25.
〈δ〉x is the mean deflection angle for the electrons/positrons with gyroradius Rg = x ·Lc . The
bars represent the standard error of the mean and the solid lines are the analytical expecta-
tion values in the limits of the propagation length D ¿ Lc and D À Lc (see equations (3.5)
and (3.6)).
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Figure 4.17: The plots show calculated deflection angles for electrons/positrons propagating
through computed magnetic fields with spectral index γ= 3.0, relative turbulence scale size
ratio Lmin/Lmax = 0.01, number of Fourier modes nk = 100, and correlation length Lc = 0.31.
〈δ〉x is the mean deflection angle for the electrons/positrons with gyroradius Rg = x ·Lc . The
bars represent the standard error of the mean and the solid lines are the analytical expecta-
tion values in the limits of the propagation length D ¿ Lc and D À Lc (see equations (3.5)
and (3.6)).
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Figure 4.18: The plots show calculated deflection angles for electrons/positrons propagat-
ing through computed magnetic fields with different spectral indices γ at relative turbu-
lence scale size ratio Lmin/Lmax = 0.91, with nk = 100 Fourier modes, and correlation lengths
Lc = 0.40 for γ = 5/3 and Lc = 0.46 for γ = 1.1. 〈δ〉x is the mean deflection angle for the
electrons/positrons with gyroradius Rg = x ·Lc . The bars represent the standard error of the
mean and the solid lines are the analytical expectation values in the limit of the propagation
length D À Lc (see equation (3.6)).



Chapter 5

Conclusion

In this report a number of numerical computations of turbulent magnetic fields has been pre-
formed, with goal of calculating the mean deflection angle of very high energy particles through
random turbulent magnetic fields that are homogeneous, normalized with zero mean, and iso-
tropic. The magnetic fields were computed with an algorithm presented in Giacalone and Jokipii
(1994) which creates turbulent magnetic fields by modelling the fields as a superposition of
Fourier modes. The wavenumbers k of the Fourier modes were spaced logarithmically between
kmin and kmax and their propagation directions were randomly chosen with an isotropic proba-
bility distribution. The fields were set to follow a power spectrum E ∝ k−γ and with a normal-
ized strength of the magnetic field equal to Brms.

The first part, the report shows through several numerical computations that any field com-
puted by the algorithm approaches the correct normalization for the RMS value of the field
strength, and a zero mean, at scale sizes & 10Lmax = 20π/kmin. This is independent of γ, the
kmin/kmax ratio, and the number of Fourier modes per decade of k-values. Further the report
finds that for a large number of modes per decade of k-values the computed field approached
isotropy. With γ = 5/3, i.e. Kolmogorov turbulence, one needs 500 modes per decade to get
a high degree of isotropy for a computed field. The MS value of the field components are then
statistically spread (≈ normal distribution) around a mean value of 1/3 B 2

rms, with a standard de-
viation of ≈ 5% of the mean. Furthermore the report finds that a change in the number of modes
per decade or the value of γ does not change the field components’ MS value, but will change
the standard deviation. A decreasing number of modes per decade or an increasing value of γ
increase the STD, while an increasing number of modes per decade or a decreasing value of γ
will decrease the STD. At 50 modes per decade the standard deviation increase to ≈ 13% of the
mean for γ = 5/3, while for 500 modes per decade and γ = 5 the STD is ≈ 10%, and for γ = 1.1
the STD is ≈ 2.5%. In addition, the report shows that the disagreement of Tautz (2012) on the
question of the isotropy of the computed fields was the result of wrong probability distribution
of the random angle θ for each wavevector k.

In the second part, the report shows the calculated correlation lengths Lc of randomly gen-
erated magnetic fields and compares the results against the correlation lengths of equivalent
analytical fields, i.e. homogeneous and isotropic with the same power law and normalization,
but with continuous wavenumbers for the Fourier modes. For relative turbulence scale ratios
Lmin/Lmax = kmin/kmax > 0.5 and spectral indices γ close to 1, the correlation lengths of the
computed fields are shown to follow the analytical correlation length of the continuous fields.
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One find that in the limit Lmin/Lmax = 1 the correlation length of a computed field goes towards
0.5Lmax, while at small ratios Lmin/Lmax ¿ 1 the correlation length approaches a constant value
in the range 0.0-0.5Lmax. In general this value differ from what is expected from a continuous
field. In addition the report finds that this constant correlation length for small scale ratios in-
crease with increasing values of γ, but seams to decrease with an increasing number of modes
per decade. Whether the degree of isotropy of the computed fields affect the correlation length
is not explicitly proved in the report, but indications that higher degree of isotropy give more
stable correlation lengths are shown.

In the third part of the report, the results from several numerical simulations of VHE elec-
trons propagating through randomly generated magnetic fields are presented. The report finds
that the mean deflection angles of electrons propagating through the computed magnetic fields
follow the analytical formula for propagation lengths D ¿ Lc , see equation (3.5). On the con-
trary the report finds that at longer propagation lengths D À Lc the mean deflection angles
deviate from the analytical expectations, see equation (3.6). In order for the deflection angles
to match the expected values, one finds that the correlation lengths would have to be 10 times
smaller than what was calculated in the second part of the report. In addition at propagation
lengths D > Rg the mean deflection angle approaches π/2 as the velocity directions approach
isotropic distribution. This is due to the fact that the computational algorithm loses track of
angles δ > π as it calculates the angle based on the initial and the current velocity at any given
propagation length. The most probable sources of error for the deviations in deflection angles
relative the analytical expectations are found to be the time increment of the Runge-Kutta solver
in the propagation algorithm, and the computed fields isotropy. Both potential sources require
additional testing with smaller time increments or more Fourier modes to be proved or dis-
proved, but this requires more computation time than what is possible within the time window
of the project presented in this report.



Appendix A

Acronyms

CR Cosmic rays

EBL Extragalactic background light

EGMF Extragalactic magnetic field

EMC Electromagnetic cascade

MC Monte-Carlo

MF Magnetic field

MS Mean square

RK Runge-Kutta

RMS Root mean square

SE Standard error

STD Standard deviation

VHE Very high energy
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