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Abstract

The scattering process 𝑒+𝑒− → hadrons is considered at next-to-
leading order, 𝒪(𝛼𝑠) . It is demonstrated that the cross sections for both
the real gluon emission and virtual gluon exchange have infrared singu-
larities. Using dimensional regularization it is shown that the divergent
terms cancel exactly when adding the contributions, such that the total
cross section for 𝑒+𝑒− → hadrons is finite at this order. This result, and
the general implications of infrared divergences and their cancellation,
is discussed in light of the Kinoshita-Lee-Nauenberg theorem and the
concept of infrared safety.
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List of symbols and notation

𝑔𝑠, 𝛼𝑠 The coupling constant of quantum chromodynamics; 𝛼𝑠 ≡ 𝑔2
𝑠 /4𝜋 .

𝑒, 𝛼em The positive elementary electric charge and coupling constant of quan-
tum electrodynamics; 𝛼em ≡ 𝑒2/4𝜋 . The electron charge is −𝑒 .

𝑒𝑞 The electric quantum number of a quark 𝑞 ; the quark charge is 𝑒𝑒𝑞 .

𝑧∗ The complex conjugate of the number 𝑧 = 𝑥 + 𝑖𝑦 : 𝑧∗ = 𝑥 − 𝑖𝑦 . Applies
elementwise to vectors, matrices etc.

ℜ{𝑧} The real part of the complex number 𝑧 : ℜ{𝑧} = (𝑧 + 𝑧∗)/2 .

ℑ{𝑧} The imaginary part of the complex number 𝑧 : ℑ{𝑧} = (𝑧 − 𝑧∗)/2𝑖 .

𝑰 The identity matrix.

𝐴𝑇 The transpose of the matrix 𝐴 : (𝐴𝑇)𝑖𝑗 = (𝐴)𝑗𝑖 .

𝐴† The Hermitian adjoint of the matrix 𝐴 : 𝐴† = (𝐴∗)𝑇 .

𝜂𝜇𝜈 The metric tensor in Minkowski space, with signature (+, −, −, −) .

𝒂 The spatial part of a 4-vector 𝑎 = (𝑎0, 𝒂) = (𝑎0, 𝑎1, 𝑎2, 𝑎3) : 𝒂 = (𝑎1, 𝑎2, 𝑎3) .

𝒂 ⋅ 𝒃 The scalar product of two spatial vectors: 𝒂 ⋅ 𝒃 = 𝑎𝑖𝑏𝑖 .

𝒂2 The scalar product of a spatial vector with itself: 𝒂2 = 𝒂 ⋅ 𝒂 .

̃𝑎 The length of a spatial vector: ̃𝑎 = √𝒂2 . Also used for Euclidean lengths
of vectors in arbitrary dimensions.

𝑎 ⋅ 𝑏 The inner product of two 4-vectors: 𝑎 ⋅ 𝑏 = 𝑎𝜇𝑏𝜇 = 𝑎0𝑏0 − 𝒂 ⋅ 𝒃 .

𝑎2 The inner product of a 4-vector with itself: 𝑎2 = 𝑎⋅𝑎 = 𝑎𝜇𝑎𝜇 = (𝑎0)2 −𝒂2 .

𝑥𝑖 The energy fraction of particle 𝑖 in the COM frame: 𝑥𝑖 = 2𝑝𝑖 ⋅ 𝑄/𝑄2 with
𝑄 = ∑𝑖 𝑝𝑖 .
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List of symbols and notation

𝛾𝜇 The Dirac gamma matrices.

𝜓 The Dirac adjoint 𝜓 = 𝜓†𝛾0 of a Dirac spinor 𝜓 .

/𝑎 The Feynman slash, denoting the contraction of a 4-vector and the
gamma matrices: /𝑎 = 𝑎𝜇𝛾𝜇 .

𝑢𝑠 (𝑝) Dirac spinor for a fermion with spin state 𝑠 and momentum 𝑝 .

𝑣𝑠 (𝑝) Dirac spinor for an antifermion with spin state 𝑠 and momentum 𝑝 .

𝑎𝜇 A component of a 4-vector 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) , specified by a greek index
𝜇 ∈ {0, 1, 2, 3} , known as a Lorentz index. The index may be lowered
by contraction with the metric tensor: 𝑎𝜇 = 𝜂𝜇𝜈𝑎𝜈 .

𝑎𝑖 A spatial component of a 4-vector 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) , specified by a latin
index 𝑖 ∈ {1, 2, 3} .

𝑁𝑐 The number of color degrees of freedom for quarks. For real-world
quarks, 𝑁𝑐 = 3 .

𝜆𝑎 The Gell-Mann matrices, listed in equation (A.15).

𝑇𝑎 The generators of the fundamental representation of SU(𝑁𝑐). For 𝑁𝑐 =
3 defined as 𝑇𝑎 = 𝜆𝑎/2

𝑓 𝑎𝑏𝑐 The structure constants of the generator algebra: [𝑇𝑎, 𝑇𝑏] = 𝑖 𝑓 𝑎𝑏𝑐𝑇𝑐 .

𝑇𝐹 The Dynkin index of the generator algebra: Tr [𝑇𝑎𝑇𝑏†] = 𝑇𝐹𝛿𝑎𝑏 . For
𝑁𝑐 = 3 and 𝑇𝑎 = 𝜆𝑎/2 , 𝑇𝐹 = 1/2 .

𝐶𝐹 The color factor of the generator algebra: (𝑇𝑎𝑇𝑎†)𝑖𝑘 = 𝐶𝐹𝛿𝑖𝑘 . For 𝑁𝑐 = 3
and 𝑇𝑎 = 𝜆𝑎/2 , 𝐶𝐹 = 4/3 .

𝐷𝜇𝜈
𝐹 (𝑝) The Feynman propagator for a gauge boson with momentum 𝑝 .

𝑆𝐹(𝑝) The Feynman propagator for a fermion with momentum 𝑝 .

ℳ A general scattering amplitude.

∣ℳ∣2 The average over initial spin and color states and sum over final spin
and color states of ∣ℳ∣2 .

The Einstein summation convention applies to all kinds of indices unless
otherwise stated, e.g. 𝑎𝑖𝑏𝑖 = ∑𝑖 𝑎𝑖𝑏𝑖 . For Lorentz indices, there must always be
one upper and one lower summation index: 𝑎𝜇𝑎𝜇 = ∑𝜇 𝑎𝜇𝑎𝜇 = ∑𝜇𝜈 𝜂𝜇𝜈𝑎𝜇𝑎𝜈 .
Units are chosen such that ℏ = 𝑐 = 1 .
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Preface

This report is the outcome of my work in the physics specialization project,
TFY4510, carried out during the fall semester of 2014 under supervision of Prof.
Michael Kachelrieß at the Department of Physics at the Norwegian University
of Science and Technology (NTNU). The objective of the project has been to
learn about the phenomenon of infrared divergences and how they cancel
when defining observables satisfying particular requirements, mainly in the
context of quantum chromodynamics and with electron-positron annihilation
to quarks as the process of study.

Infrared divergences have not been treated in detail during the course
of my studies, and the topic was therefore largely unknown to me before
embarking on this project. The main motivation for studying this is to prepare
for a possible Master’s thesis studying annihilations in a wino-like Dark Matter
candidate model.

As the project work has consisted solely of gaining acquaintance with
the subject matter, there are no new results to present. The report therefore
amounts to a thorough presentation of established theoretical results, reflecting
my level of knowledge as of finishing this project. The aim has been to give a
comprehensive and largely self-contained presentation of the main ideas and
derivations, including a significant amount of background material that I had
to learn or review in order to get through the calculations. Much of this has
been relegated to appendices in an attempt to obtain a readable and reasonably
well-structured text, but I still consider it an integral part of my project work.
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1
Introduction

Quantum chromodynamics (QCD) is the theory describing the strong interac-
tions between the quarks and gluons, the fundamental particles which make up
baryons such as the proton and neutron, and mesons such as the pion. The
quarks and gluons carry a quantum number which is specific to QCD, known
as color charge. QCD is a quantum field theory described by the Lagrangian [1,
pp. 21-22]

ℒQCD = 𝜓𝑞,𝑖 (𝑖/𝜕 − 𝑚𝑞) 𝛿𝑖𝑗𝜓𝑞,𝑗 − 𝑔𝑠𝜓𝑞,𝑖𝑇
𝑎
𝑖𝑗 /𝐴𝑎𝜓𝑞,𝑗 −

1
4𝐹𝑎𝜇𝜈𝐹𝑎

𝜇𝜈 , (1.1)

Here, 𝜓𝑞 is the Dirac spinor field for a quark flavor labeled 𝑞 , with mass 𝑚𝑞 ,
while 𝐹𝑎

𝜇𝜈 is the field strength tensor for the gauge field 𝐴𝑎
𝜇 describing the

gluons. The indices 𝑖, 𝑗 ∈ {1, 2, 3} label the color charge basis states of the
quarks, while the index 𝑎 ∈ {1, … , 8} labels color charge basis states for the
gluons. The terms are further discussed in appendix A.

Quarks also carry electric charge and are subject to interactions in quantum
electrodynamics. These interactions are not present in equation (1.1) but
are discussed in appendix A.2. Finally, quarks interact weakly, but weak
interactions will not be discussed in this text.

1.1 Perturbative quantum chromodynamics
When applying the usual tools of perturbative quantum field theory to the
QCD Lagrangian, the Feynman rules in appendix A.3 appear. Compared to
for example quantum electrodynamics (QED), there is however a significant
complication when predicting experimental outcomes using this formalism:
perturbative quantum field theory describes scattering processes where the
initial and final states consist of free particles in the fundamental fields in
the Lagrangian, but free quarks or gluons are never observed in experiments.
On the contrary, color charged particles appear only in bound states such as
baryons and mesons, which are color singlets. This property is known as color
confinement.

One way to get an understanding of this is to look at the effective coupling
constant of QCD, obtained by renormalizing the theory. The procedure of

10



1.1. Perturbative quantum chromodynamics

renormalization is not discussed here, but is treated in any text on quantum
field theory, and discussed in detail for the case of QCD in [1, pp. 80-105].
One main result is that the parameters appearing in the bare Lagrangian in
equation (1.1), such as 𝑔𝑠 , do not equal to the values measured in experiments.
In fact, the measured parameters will depend on the energy scale at which the
process occurs.

For the QCD coupling constant, one usually considers 𝛼𝑠 = 𝑔2
𝑠 /4𝜋 rather

than 𝑔𝑠 itself, following the example of the fine structure constant used in QED,
𝛼em = 𝑒2/4𝜋 . To leading order in perturbation theory, one finds the following
expression for the running of the coupling [1, p. 31]:

𝛼𝑠 (𝑄2) =
1

𝛽0 ln (𝑄2/𝛬2
𝑄𝐶𝐷)

. (1.2)

Here, 𝑄 is the momentum transfer in the reaction of interest, 𝛽0 > 0 is a con-
stant, and 𝛬𝑄𝐶𝐷 ∼ 𝒪(200) MeV is an experimentally determined parameter
called the QCD scale.

Performing a computation in perturbative quantum field theory essentially
amounts to making a series expansion in the coupling constant 𝛼𝑠 , and only
computing the first few terms. This only makes sense if 𝛼𝑠 ≪ 1 (and since
equation (1.2) is only a leading order approximation derived from the same
perturbation theory, this expression is only valid in the same regime). But from
equation (1.2), it is clear that 𝛼𝑠 ≪ 1 requires 𝑄2 ≫ 𝛬2

𝑄𝐶𝐷 . This shows that
perturbative QCD may be applicable to high-energy, short-distance processes,
but cannot be used at lower energies and larger distances where the coupling is
strong. It is precisely these low-energy processes that account for the binding
of quarks and gluons into hadrons which can be detected, and it is therefore not
at all obvious how to connect calculations in perturbative QCD to experiment.

There are in general two possible solutions to this problem. One is to factor-
ize a QCD process into a perturbative part which describes the specific short-
distance interactions relevant for the process, and a universal non-perturbative
part describing the transition from perturbatively free quarks and gluons to
hadrons, starting from the perturbative final state. The non-perturbative part
cannot be calculated analytically from the Lagrangian, but may be measured
experimentally. The justification of this approach relies on the fact that the
perturbative and non-perturbative phenomena occur on very different energy,
time and distance scales, in many cases isolating them from affecting each
other to a significant degree. For a number of quantities there exist formal
proofs that the factorization is well-defined [2], but such issues are beyond the
scope of this text.

The other approach, which is intimately related to the main topic of this
text, is to define the measured observables such that they are insensitive to
the effects of long-distance interactions. Such observables are called infrared
safe. This concept will be defined and discussed in chapter 3.

11



1.1. Perturbative quantum chromodynamics

Table 1.1: Masses of quarks and leptons. The two uncertainties on the top
mass give statistical and systematical uncertainties, respectively. The data is
retrieved from [4].

Particle Mass 𝑚/MeV

𝑢 2.3+0.7
−0.5

𝑑 4.8+0.5
−0.3

𝑠 95 ± 5

𝑐 (1.275 ± 0.025) ⋅ 103

𝑏 (4.18 ± 0.03) ⋅ 103

𝑡 (173.21 ± 0.51 ± 0.71) ⋅ 103

𝑒 0.510998928 ± 0.000000011
𝜇 105.6583715 ± 0.0000035
𝜏 1776.82 ± 0.16

An example of an infrared safe quantity which will be discussed in great
detail is the total cross section for the production of hadrons from the annihila-
tion of a positron and an electron. To leading order in electroweak interactions,
the electron and positron annihilate to a virtual photon or 𝑍-boson, which
then forms a quark-antiquark pair: 𝑒+𝑒− → 𝛾∗/𝑍 → 𝑞𝑞 . So far this process
does not involve QCD, and is described perturbatively in electroweak theory.
The 𝑞𝑞-state then undergoes hadronization via non-perturbative processes.
To leading order in both electroweak theory and QCD, this is the only per-
turbative 𝑒+𝑒−-scattering process that undergoes hadronization, so the total
cross section for 𝑒+𝑒− → 𝛾∗/𝑍 → 𝑞𝑞 must be identical to the total cross sec-
tion for 𝑒+𝑒− → hadrons at this order. Although this cross section gives no
details about which particles or momenta to expect in the hadronic final state,
it is interesting by virtue of being a testable prediction derived using only
perturbative techniques.

An unrelated, but important feature of perturbative QCD is seen by con-
sidering the masses of fundamental particles, shown in table 1.1. With 𝛬𝑄𝐶𝐷
on the order of 200 MeV , it is clear that 𝑄2 ≫ 𝛬2

𝑄𝐶𝐷 also implies that 𝑄2 ≫
𝑚2

𝑢, 𝑚2
𝑑, 𝑚2

𝑠 , 𝑚2
𝑒 , 𝑚2

𝜇 . Assuming that no 𝑐, 𝑏, 𝑡 quarks and 𝜏 leptons are produced
(this is guaranteed if 𝑄2 < (2𝑚𝑐)2), it is therefore a very good approximation
in perturbative QCD to assume that all particles are massless. This greatly
simplifies many calculations.

This introduction to perturbative QCD has been mostly based on heuristic
reasoning and appeal to intuition. For a more rigorous discussion, see e.g. [3].

12



1.2. Infrared divergences

1.2 Infrared divergences
One may obtain higher-order approximations of the cross section for 𝑒+𝑒− →
hadrons by including QCD interactions between the particles in the pertur-
bative final state. The lowest order correction involves a free gluon emitted
from one of the quarks, such that the process considered now is 𝑒+𝑒− → 𝑞𝑞𝑔 .
Another possibility is to let the 𝑞𝑞-pair emit and absorb a virtual gluon before
leaving the perturbative domain, thus going to higher order in the ampli-
tude for 𝑒+𝑒− → 𝑞𝑞 . Although these processes have different final states
on the perturbative level, they both contribute to the total cross section for
𝑒+𝑒− → hadrons.

When computing these amplitudes, however, a serious complication arises:
the gluon is massless and can be emitted with arbitrarily small momentum,
and as will be shown, the amplitude for 𝑒+𝑒− → 𝑞𝑞𝑔 diverges as the gluon
energy tends to 0 . The divergence survives the phase space integral, leaving
the cross section for the process infinite. This phenomenon is an example
of an soft divergence, that is, a divergence due to contributions from a low-
momentum limit. In the approximation of massless quarks, the amplitude
also diverges when the gluon is emitted parallel to the quark; this is called a
collinear divergence. Together, they are known as infrared divergences. These
divergences are fundamentally different from the ultraviolet divergences often
encountered in loop integrals in quantum field theory, which stem from high-
energy contributions. The procedure of renormalization used to handle the
ultraviolet divergences does not eliminate infrared divergences.

However, an infrared divergence also appears in 𝑒+𝑒− → 𝑞𝑞 at next-to-
leading order, when the energy of the virtual gluon tends to 0 . This diver-
gence has the opposite sign of the divergences in 𝑒+𝑒− → 𝑞𝑞𝑔 , and when
computing the total cross section of 𝑒+𝑒− → hadrons, these divergences cancel
exactly, leaving cross section finite. The main objective of this project is to
show this cancellation by explicitly calculating the necessary amplitudes and
cross sections and regularizing the infinities. This calculation is carried out in
chapter 2.

The specific process of cancellation discussed here is just an example of a
more general phenomenon. Infrared divergences always show up in theories
with massless particles, they appear at all orders, and in many cases it is
possible to show rigorously that they also cancel at each order when computing
quantities involving sums over properly defined sets of initial and final states.
From a physical perspective, it is imperative that singularities can be avoided
in one way or the other when computing physically measurable quantities,
and this is where the concept of infrared safety becomes relevant. The general
theorems and implications of infrared divergences and infrared safety, as well
as their interpretation in the context of QCD, will be discussed in chapter 3.

13



2
Cancellation of infrared divergences in

𝑒+𝑒− → hadrons

This chapter contains the mathematical derivations demonstrating the cancel-
lation of QCD infrared divergences in 𝑒+𝑒− annihilation to hadrons. First, the
amplitude for the finite lowest order contribution, 𝑒+𝑒− → 𝑞𝑞 , is computed,
and then a formalism is developed for efficient computation of the necessary
cross sections. This is used along with dimensional regularization to show
how infrared divergences in 𝑒+𝑒− → hadrons cancel to first order in 𝛼𝑠 . The
presentation closely follows [1].

To get a preliminary intuition for the cancellation mechanism, consider first
the scattering amplitude for the process 𝑒+𝑒− → 𝑞𝑞 , which can be expanded
in the QCD coupling 𝛼𝑠 as

ℳ𝑞𝑞 = ℳ(0)
𝑞𝑞 + 𝛼𝑠ℳ(1)

𝑞𝑞 + ⋯ . (2.1)

As will be shown, ℳ(0)
𝑞𝑞 is finite, while ℳ(1)

𝑞𝑞 contains infrared singularities.
Similarly, the process 𝑒+𝑒− → 𝑞𝑞𝑔 can be expanded as

ℳ𝑞𝑞𝑔 = √𝛼𝑠ℳ(0)
𝑞𝑞𝑔 + ⋯ . (2.2)

Compared to equation (2.1), this amplitude contains an extra factor of 𝑔𝑠 , or
equivalently √𝛼𝑠 , due to the free gluon emission. As will be shown, ℳ(0)

𝑞𝑞𝑔 also
contains infrared singularities.

Note in passing that, as a general rule in this text, a subscript like 𝑞𝑞 or 𝑞𝑞𝑔
on a quantity denotes the final state of the process the quantity pertains to.
This unambiguously identifies the process in question, since the only initial
state considered is 𝑒+𝑒− . A superscript like (0) or (1) means the that the
quantity is computed at a specific order in the QCD perturbation expansion,
with leading order starting at (0) , and all powers of 𝛼𝑠 factored out to facilitate
straightforward comparison of the order of terms from different expansions.

These amplitudes correspond to processes with different final states and
cannot be added directly, but both contribute to the total cross section for

14



2.1. Leading order amplitude for 𝑒+𝑒− → 𝑞𝑞

𝑒+𝑒− → hadrons. Using equation (A.1), one can write

𝜎hadrons = 𝜎𝑞𝑞 + 𝜎𝑞𝑞𝑔 + ⋯ , (2.3)

𝜎𝑞𝑞 =
1
4𝐼 ∫ 𝑑𝛷2 ∣ℳ𝑞𝑞∣

2
, (2.4)

𝜎𝑞𝑞𝑔 =
1
4𝐼 ∫ 𝑑𝛷3 ∣ℳ𝑞𝑞𝑔∣

2
. (2.5)

Expanding the squared amplitudes to first order in 𝛼𝑠 , one finds

∣ℳ𝑞𝑞∣
2

= ∣ℳ(0)
𝑞𝑞 ∣

2
+ 2𝛼𝑠ℜ {ℳ(0)

𝑞𝑞 ℳ(1)∗
𝑞𝑞 } + ⋯ , (2.6)

∣ℳ𝑞𝑞𝑔∣
2

= 𝛼𝑠 ∣ℳ(0)
𝑞𝑞𝑔∣

2
+ ⋯ . (2.7)

Although absolute squares of amplitudes must be positive, individual interfer-
ence terms such as the one in equation (2.6) may be negative. For the infrared
divergences to cancel to order 𝛼𝑠 , one must find that

∫ 𝑑𝛷2 2ℜ {ℳ(0)
𝑞𝑞 ℳ(1)∗

𝑞𝑞 } + ∫ 𝑑𝛷3 ∣ℳ(0)
𝑞𝑞𝑔∣

2
= finite . (2.8)

Of course, this will only show cancellation to first order in 𝛼𝑠 . The next term
in equation (2.6) is 𝛼2

𝑠 |ℳ(1)
𝑞𝑞 |2 , and it will contain positive infrared singularities,

as will the leading order term for 𝑒+𝑒− → 𝑞𝑞𝑔𝑔 . These may then cancel
against interference terms of order 𝛼2

𝑠 in equation (2.7), and so on. Only the
cancellation to first order will be rigorously derived here, but the general issue
will be discussed in chapter 3.

2.1 Leading order amplitude for 𝑒+𝑒− → 𝑞𝑞
The leading order contribution to electron-positron annihilation to hadrons,
𝑒+𝑒− → 𝛾∗ → 𝑞𝑞 , is given by the Feynman diagram in figure 2.1. Strictly
speaking, the similar process with the virtual photon 𝛾∗ replaced by a 𝑍
boson also participates, but this contribution is strongly attenuated except
around the pole of the 𝑍 boson propagator at momentum transfer 𝑄2 = 𝑀2

𝑍 ≈
(91 GeV)2 [4, 5, p. 337]. Here, this contribution will be neglected, thus implicitly
assuming a momentum transfer far from this resonance.

The diagram in figure 2.1 consists of QED vertices only, and using the rules
in appendix A the amplitude is straightforward to write down:

𝑖ℳ(0)
𝑞𝑞 = 𝑣𝑠′ (ℓ+) (𝑖𝑒𝛾𝜇) 𝑢𝑠 (ℓ−) 𝑖𝐷𝜇𝜈

𝐹 (𝑄) 𝑢𝑟 (𝑞) (−𝑖𝑒𝑒𝑞𝛾𝜈) 𝛿𝑖𝑗𝑣𝑟′ (𝑞)

= [𝑖𝑒𝑣𝑠′ (ℓ+) 𝛾𝜇𝑢𝑠 (ℓ−)] 𝑖𝐷𝜇𝜈
𝐹 (𝑄) [−𝑖𝛿𝑖𝑗𝑒𝑒𝑞𝑢

𝑟 (𝑞) 𝛾𝜈𝑣𝑟′ (𝑞)] ,
(2.9)

where ℓ−, ℓ+, 𝑞, 𝑞 are the 4-momenta of the electron, positron, quark and anti-
quark, respectively, while 𝑄 = ℓ− + ℓ+ = 𝑞 + 𝑞 is the four-momentum transfer,
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2.1. Leading order amplitude for 𝑒+𝑒− → 𝑞𝑞

𝛾∗

𝑒+, 𝑠′

𝑒−, 𝑠

𝑞, 𝑟′, 𝑗

𝑞, 𝑟, 𝑖

Figure 2.1: Leading order diagram for 𝑒−𝑒+ → 𝑞𝑞 . The labels 𝑠, 𝑠′, 𝑟, 𝑟′ denote
spin polarizations, while 𝑖, 𝑗 are color indices.

and 𝐷𝜇𝜈
𝐹 (𝑄) is the (gauge-dependent) photon propagator from equation (A.7),

repeated here for convenience:

𝑖𝐷𝜇𝜈
𝐹 (𝑄) = 𝑖

−𝜂𝜇𝜈 + (1 − 𝜉) 𝑄𝜇𝑄𝜈/𝑄2

𝑄2 + 𝑖𝜀
. (2.10)

The 𝑢, 𝑣, 𝑢, 𝑣 are Dirac spinors, explained in appendix B.2. The 𝛿𝑖𝑗 enforces
color conservation on the photon-quark-antiquark vertex.

For later convenience, the lepton and hadron currents 𝐽𝐿 and 𝐽𝑋 can be
defined as the incoming and outgoing currents coupling to the photon propa-
gator, respectively. For this diagram, one finds

(𝐽𝐿)𝜇 = 𝑖𝑒𝑣𝑠′ (𝑝+) 𝛾𝜇𝑢𝑠 (𝑝−) , (2.11)

(𝐽(0)
𝑞𝑞 )

𝜈
= −𝑖𝛿𝑖𝑗𝑒𝑒𝑞𝑢

𝑟 (𝑞) 𝛾𝜈𝑣𝑟′ (𝑞) . (2.12)

As several different hadron currents will be considered throughout the report,
they are labeled with subscripts and superscripts identifying the process and
expansion order they pertain to. The lepton current will be the same in all
computations, so it is simply referred to 𝐽𝐿 .

Contracting the momentum transfer 𝑄𝜇 with the lepton and hadron cur-
rents gives

𝑄𝜇 (𝐽𝐿)𝜇 ∝ 𝑣𝑠′ (ℓ+) (/ℓ+ + /ℓ−) 𝑢𝑠 (ℓ−)

= 𝑣𝑠′ (ℓ+) (−𝑚𝑒 + 𝑚𝑒) 𝑢𝑠 (ℓ−) = 0 ,
(2.13)

𝑄𝜈 (𝐽(0)
𝑞𝑞 )

𝜈
∝ 𝑢𝑟 (𝑞) (/𝑞 + /𝑞) 𝑣𝑟′ (𝑞)

= 𝑢𝑟 (𝑞) (𝑚𝑞 − 𝑚𝑞) 𝑣𝑟′ (𝑞) = 0 .
(2.14)
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2.1. Leading order amplitude for 𝑒+𝑒− → 𝑞𝑞

Here the Dirac equations in momentum space,

(/𝑝 − 𝑚) 𝑢 (𝑝) = (/𝑝 + 𝑚) 𝑣 (𝑝) = 0 , (2.15)
𝑢 (𝑝) (/𝑝 − 𝑚) = 𝑣 (𝑝) (/𝑝 + 𝑚) = 0 , (2.16)

were used. They are discussed in detail in appendix B.2 as equations (B.35),
(B.36), (B.60) and (B.61).

Thus, the gauge dependent term in the photon propagator will not con-
tribute to the amplitude, as predicted by gauge invariance, and one can there-
fore elect to work in the Feynman gauge 𝜉 = 1 , where

𝑖𝐷𝜇𝜈
𝐹 (𝑄) = 𝑖

−𝜂𝜇𝜈

𝑄2 . (2.17)

The amplitude may then be written

𝑖ℳ(0)
𝑞𝑞 = −

𝑖
𝑄2 (𝐽𝐿)𝜇 (𝐽(0)

𝑞𝑞 )
𝜇

. (2.18)

In most experimental setups, the beam of particles in the initial state is un-
polarized and the spin and color states of the final particles are never measured.
The squared amplitude describing this process is thus obtained by averaging
over initial state spins, and summing over final state spins and colors, the
squared amplitudes for the spin- and color-dependent amplitude, as follows:

∣ℳ(0)
𝑞𝑞 ∣

2
=

1
4 ∑

𝑠,𝑠′,𝑟,𝑟′,𝑖,𝑗
∣ℳ(0)

𝑞𝑞 ∣
2

=
1

𝑄4 𝐿𝜇𝜈𝐻(0)𝜇𝜈
𝑞𝑞 ,

(2.19)

where the overbar denotes matrix elements that are spin- and color-averaged
as described. The lepton and hadron tensors 𝐿𝜇𝜈 and 𝐻𝜇𝜈

𝑞 ̅𝑞 are defined as

𝐿𝜇𝜈 =
1
4 ∑

𝑠,𝑠′
(𝐽𝐿)𝜇 (𝐽∗

𝐿)𝜈 , (2.20)

𝐻𝜇𝜈
𝑞 ̅𝑞 = ∑

𝑟,𝑟′,𝑖,𝑗
(𝐽𝑞 ̅𝑞)

𝜇
(𝐽∗

𝑞 ̅𝑞)
𝜈

. (2.21)

To compute these tensors, it is convenient to make use of the completeness
relations for Dirac basis spinors, given in equations (B.71) and (B.72) and
repeated here for convenience:

∑
𝑠

𝑢𝑠 (𝑝) 𝑢𝑠 (𝑝) = /𝑝 + 𝑚 , (2.22)

∑
𝑟

𝑣𝑟 (𝑝) 𝑣𝑟 (𝑝) = /𝑝 − 𝑚 . (2.23)
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2.1. Leading order amplitude for 𝑒+𝑒− → 𝑞𝑞

The lepton tensor evaluates to

4𝐿𝜇𝜈 = 𝑒2 ∑
𝑠,𝑠′

[𝑣𝑠′ (ℓ+) 𝛾𝜇𝑢𝑠 (ℓ−)] [𝑣𝑠′ (ℓ+) 𝛾𝜈𝑢𝑠 (ℓ−)]
†

= 𝑒2 ∑
𝑠,𝑠′

𝑣𝑠′ (ℓ+) 𝛾𝜇𝑢𝑠 (ℓ−) 𝑢𝑠 (ℓ−) 𝛾𝜈𝑣𝑠′ (ℓ+)

= 𝑒2 ∑
𝑠,𝑠′

Tr [𝑣𝑠′ (ℓ+) 𝛾𝜇𝑢𝑠 (ℓ−) 𝑢𝑠 (ℓ−) 𝛾𝜈𝑣𝑠′ (ℓ+)]

= 𝑒2 ∑
𝑠,𝑠′

Tr [𝑣𝑠′ (ℓ+) 𝑣𝑠′ (ℓ+) 𝛾𝜇𝑢𝑠 (ℓ−) 𝑢𝑠 (ℓ−) 𝛾𝜈]

= 𝑒2Tr [(/ℓ+ − 𝑚𝑒) 𝛾𝜇 (/ℓ− + 𝑚𝑒) 𝛾𝜈] .

(2.24)

Here, equation (B.59) is used in the first step. The resulting expression consists
of two sandwiches of spinors and spinor-space matrices, which both evaluate to
spinor-space scalars, and it is therefore trivially equivalent to the spinor-space
trace of the same expression, as shown in step two. The cyclicity of the trace
(equation (B.7)) is then exploited in the third step to reorganize the expression
such that the completeness relations can be used to give the final expression.

Using the same manipulations, the hadron tensor is found to be

𝐻(0)𝜇𝜈
𝑞𝑞 = 𝑁𝑐(𝑒𝑒𝑞)2Tr [(/𝑞 + 𝑚𝑞) 𝛾𝜇 (/𝑞 − 𝑚𝑞) 𝛾𝜈] . (2.25)

The extra factor of 𝑁𝑐 comes from the sum over color states in the final state.
Following appendix A, the number of colors will be kept general throughout
the computations, such that

∑
𝑖,𝑗

𝛿𝑖𝑗𝛿𝑖𝑗 = 𝑁𝑐 . (2.26)

Using results from appendix B.1, the traces may be computed:

𝐿𝜇𝜈 =
𝑒2

4 ℓ+𝜌ℓ−𝜎Tr [𝛾𝜌𝛾𝜇𝛾𝜎𝛾𝜈] − 𝑒2𝑚2
𝑒Tr [𝛾𝜇𝛾𝜈]

= 𝑒2 [ℓ+𝜌ℓ−𝜎 (𝜂𝜌𝜇𝜂𝜎𝜈 − 𝜂𝜌𝜎𝜂𝜇𝜈 + 𝜂𝜌𝜈𝜂𝜇𝜎) − 𝑚2
𝑒𝜂𝜇𝜈]

= 𝑒2 [ℓ+
𝜇 ℓ−

𝜈 + ℓ−
𝜇 ℓ+

𝜈 − (ℓ+ ⋅ ℓ− + 𝑚2
𝑒) 𝜂𝜇𝜈]

= 𝑒2 [ℓ+
𝜇 ℓ−

𝜈 + ℓ−
𝜇 ℓ+

𝜈 − (𝑄2/2) 𝜂𝜇𝜈] ,

(2.27)

𝐻(0)𝜇𝜈
𝑞𝑞 = 4𝑁𝑐 (𝑒𝑒𝑞)

2
[𝑞𝜇𝑞𝜈 + 𝑞𝜇𝑞𝜈 − (𝑄2/2) 𝜂𝜇𝜈] . (2.28)

Here, the following identites have been used, which follow from the relativistic
energy-momentum relation (equation (B.32)):

𝑄2 = (ℓ+ + ℓ−)2

= (ℓ+)2 + (ℓ−)2 + 2ℓ+ ⋅ ℓ−

= 2 (ℓ+ ⋅ ℓ− + 𝑚2
𝑒) ,

(2.29)

𝑄2 = 2 (𝑞 ⋅ 𝑞 + 𝑚2
𝑞) . (2.30)
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2.2. Cross sections for 𝑒+𝑒− → hadrons

Using the equations (2.29) and (2.30), the final expression for the matrix
element then becomes

∣ℳ(0)
𝑞𝑞 ∣

2
=

4𝑁𝑐 (𝑒2𝑒𝑞)
2

𝑄4 [2 (ℓ+ ⋅ 𝑞) (ℓ− ⋅ 𝑞) + 2 (ℓ− ⋅ 𝑞) (ℓ+ ⋅ 𝑞)

+ 𝑄2 (𝑚2
𝑒 + 𝑚2

𝑞) ] .

(2.31)

2.2 Cross sections for 𝑒+𝑒− → hadrons
It should be clear from the discussion above that the factorization of the matrix
element into lepton and hadron tensors 𝐿𝜇𝜈 and 𝐻𝜇𝜈 is not limited to |ℳ𝑞𝑞|2 .
On the contrary, such factorizations are possible in any process where the
interaction between two fermion currents is mediated by a single photon in all
included diagrams. In the case of 𝑒+𝑒− → hadrons, it is thus a general feature
of the matrix elements to any order in QCD, as long as only the leading order in
QED is considered. Moreover, the lepton tensor 𝐿𝜇𝜈 will be the same in all these
calculations. Given the magnitude of the QED coupling at 𝛼em ∼ 10−2 , this
should be a good approximation. Therefore, only leading-order contributions
in QED will be considered here.

Thus, the cross section for 𝑒+𝑒− → 𝑋 , where 𝑋 is a state of quarks and
gluons, can in general be written

𝜎𝑋 =
1

2𝑄2 ⋅
1

𝑄4 𝐿𝜇𝜈 ∫ 𝑑𝛷𝑋 𝐻𝜇𝜈
𝑋 , (2.32)

where only the hadron tensor and phase space measure depends on the fi-
nal state. The flux factor in equation (A.2) has been used together with the
approximation of massless particles, discussed in section 1.1.

From this point, all calculations will assume massless particles, 𝑚𝑒 = 𝑚𝑞 =
0 . Moreover, all calculations will take place in 𝑑 = 4−2𝜀 spacetime dimensions
to facilitate dimensional regularization, using the results in appendix C. Hence,
the metric tensor contracts to 𝜂𝜇

𝜇 = 𝑑, and the coupling constants will be
accompanied by a mass scale 𝜇𝜀 in accordance with equation (C.3).

Due to gauge invariance in QED, one must have 𝑄𝜇𝐻𝜇𝜈 = 𝑄𝜈𝐻𝜇𝜈 = 0 and
𝑄𝜇𝐿𝜇𝜈 = 𝑄𝜈𝐿𝜇𝜈 = 0 , such that the (1−𝜉)𝑄𝜇𝑄𝜈-term in the photon propagator
drops out. In section 2.1, this was explicitly shown on the level of currents in
equations (2.13) and (2.14). When going to higher order, the cancellation is
not guaranteed to happen for individual diagrams, but when summing all
diagrams of a given order the gauge-dependent term must disappear.1

1In this particular case the gauge-dependent term would drop out even if it was only
canceled by one of the tensors, and it was confirmed in section 2.1 that 𝐿𝜇𝜈 does the job.
However, gauge invariance must hold for all QED processes, including for example the process
where the matrix element factorizes as ∝ 𝐻𝜇𝜈𝐻𝜇𝜈 , so any current coupling to a photon must
cancel the gauge-dependent term when summing all contributions at a given order.
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2.2. Cross sections for 𝑒+𝑒− → hadrons

In equation (2.32) the momenta of the final state particles are integrated
out, so the only free variable is 𝑄2 , and the only quantities available to carry
the Lorentz indices of 𝐻𝜇𝜈 are 𝜂𝜇𝜈 and 𝑄𝜇 . Hence

∫ 𝑑𝛷 𝐻𝜇𝜈 = 𝐻1 (𝑄2) 𝜂𝜇𝜈 + 𝐻2 (𝑄2) 𝑄𝜇𝑄𝜈 . (2.33)

Contracting this with 𝑄𝜇 and imposing gauge invariance shows that 𝐻1(𝑄2) =
−𝑄2𝐻2(𝑄2) . Thus, defining 𝐻(𝑄2) = −𝐻1(𝑄2)/(𝑑 − 1) , one has

∫ 𝑑𝛷 𝐻𝜇𝜈 =
1

𝑑 − 1 (−𝜂𝜇𝜈 +
𝑄𝜇𝑄𝜈

𝑄2 ) 𝐻 (𝑄2) . (2.34)

This can be solved for 𝐻(𝑄2) by contracting with 𝜂𝜇𝜈 , since

− 𝜂𝜇𝜈 (−𝜂𝜇𝜈 +
𝑄𝜇𝑄𝜈

𝑄2 ) = 𝑑 − 1 , (2.35)

such that
𝐻 (𝑄2) = −𝜂𝜇𝜈 ∫ 𝑑𝛷 𝐻𝜇𝜈 . (2.36)

Substituting equation (2.34) into equation (2.32) and using the gauge invariance
condition for 𝐿𝜇𝜈 , one finds

𝜎𝑋 =
1

2(𝑑 − 1)𝑄6 (−𝜂𝜇𝜈𝐿𝜇𝜈) 𝐻𝑋 (𝑄2) . (2.37)

Using equation (2.27) and equation (2.29) gives

𝜂𝜇𝜈𝐿𝜇𝜈 = 𝜇2𝜀𝑒2𝑄2 (1 − 𝜀) . (2.38)

The cross section can thus be expressed

𝜎𝑋 =
𝜇2𝜀𝑒2

2𝑄4
1 − 𝜀
3 − 2𝜀𝐻𝑋 (𝑄2)

=
2𝜋𝛼em𝜇2𝜀

𝑄4
1 − 𝜀
3 − 2𝜀𝐻𝑋 (𝑄2) .

(2.39)

Here, 𝛼em = 𝑒2/4𝜋. This way, the computation of any cross section contributing
to the total cross section for 𝑒+𝑒− → hadrons at leading order in QED is reduced
to finding the corresponding hadron tensor, contracting it with the metric
tensor and integrating over the relevant phase space.

Using this formalism, the cross section for 𝑒+𝑒− → 𝑞𝑞 at leading order is
straightforward to compute. The first step is to find

𝜂𝜇𝜈𝐻(0)𝜇𝜈
𝑞𝑞 = 4𝑁𝑐𝜇2𝜀 (𝑒𝑒𝑞)

2
𝑄2 (1 − 𝜀) . (2.40)
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2.3. Real gluon emission: 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order

This does not depend explicitly on any of the outgoing momenta, so the phase
space integral is trivial by specializing to the center-of-momentum (COM)
frame and using equation (C.35):

𝐻(0)
𝑞𝑞 (𝑄2) = − ∫ 𝑑𝛷(𝑑)

2 𝜂𝜇𝜈𝐻(0)𝜇𝜈
𝑞𝑞

=
4𝑁𝑐𝜇2𝜀 (𝑒𝑒𝑞)

2
𝑄2

4𝜋 (
𝜋
̃𝑞2 )

𝜀 ̃𝑞

√𝑄2

(1 − 𝜀) 𝛤 (1 − 𝜀)
𝛤 (2 − 2𝜀) .

(2.41)

Here, ̃𝑞2 = 𝒒2 = (𝑞0)2 − 𝑚2
𝑞 = (𝑞0)2 . In the COM frame, ̃𝑞 = 𝑞0 = √𝑄2/2 .

Hence,

𝐻(0)
𝑞𝑞 (𝑄2) = 2𝛼em𝑁𝑐𝑒2

𝑞𝑄2 (
4𝜋𝜇2

𝑄2 )
𝜀 (1 − 𝜀) 𝛤 (1 − 𝜀)

𝛤 (2 − 2𝜀) . (2.42)

Putting it all together, the cross section for 𝑒+𝑒− → 𝑞𝑞 at leading order becomes

𝜎(0)
𝑞𝑞 =

4𝜋𝛼2
em𝜇2𝜀𝑁𝑐𝑒2

𝑞

𝑄2 (
4𝜋𝜇2

𝑄2 )
𝜀 (1 − 𝜀)2

3 − 2𝜀
𝛤 (1 − 𝜀)
𝛤 (2 − 2𝜀) . (2.43)

As a side remark, note that the cross section has mass dimension 𝑀2(𝜀−1) ,
or equivalently, 2 − 2𝜀 = 𝑑 − 2 length dimensions, and is thus an area in the
usual sense only for 𝜀 = 0 . This is a consequence of appending the mass
scale 𝜇𝜀 to all couplings in the computation, and if 𝑑 is literally interpreted as
the spacetime dimension, it is consistent with the definition of the scattering
cross section as the proportionality constant relating the number of scattering
events in a differential spacetime region to the number of targets present in
this region times the number of scatterers passing through the region per cross
sectional area of the incident beam, as explained in e.g. [6, p. 159].2 On the
other hand, in [1] the mass dimension 𝜇 is only appended to the couplings
in the hadron current and not those in the lepton current, and thus the cross
section is always 2-dimensional. This is unproblematic in this particular case,
but the principle seems difficult to generalize and this approach will not be
followed here. The final results are of course identical in the 𝜀 → 0 limit.

2.3 Real gluon emission: 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order
The leading order Feynman diagrams for the process 𝑒+𝑒− → 𝑞𝑞𝑔 is shown in
figure 2.2. Following the discussion in the last section, only the hadron tensor
needs to be computed in order to evaluate the cross section. Applying the
Feynman rules from appendix A, the sum of the hadron currents in these two

2In 𝑑 − 1 spatial dimensions, the cross section of a beam traveling along a single dimension
is a 𝑑 − 2-dimensional quantity, and so is the scattering cross section.
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2.3. Real gluon emission: 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order

𝛾∗

(𝑞 + 𝑔)

𝑒+, 𝑠′

𝑒−, 𝑠

𝑞, 𝑟′, 𝑗

𝑔, 𝑡, 𝑎

𝑞, 𝑟, 𝑖

𝛾∗

−(𝑞 + 𝑔)

𝑒+, 𝑠′

𝑒−, 𝑠

𝑞, 𝑟′, 𝑗

𝑔, 𝑡, 𝑎

𝑞, 𝑟, 𝑖

Figure 2.2: Leading order diagrams for 𝑒−𝑒+ → 𝑞𝑞𝑔 . The labels 𝑠, 𝑠′, 𝑟, 𝑟′, 𝑡
denote spin polarizations, while 𝑖, 𝑗, 𝑎 are color indices. The momentum of the
internal quark flows in the same direction as the fermion current, as indicated
by the arrowhead.

diagrams is found to be

√𝛼𝑠 (𝐽(0)
𝑞𝑞𝑔)

𝜇
= −𝑖𝜇2𝜀𝑒𝑒𝑞𝑔𝑠𝑇𝑎

𝑖𝑗𝜀∗𝜎
𝑡 (𝑔)

× 𝑢𝑟 (𝑞) ⎡⎢
⎣
𝛾𝜎

/𝑞 + /𝑔
(𝑞 + 𝑔)2 𝛾𝜇 + 𝛾𝜇

− (/𝑞 + /𝑔)
(𝑞 + 𝑔)2 𝛾𝜎

⎤⎥
⎦

𝑣𝑟′ (𝑞) .
(2.44)

Here, 𝑔 is the 4-momentum of the gluon. As explained on page 14, all powers
of 𝛼𝑠 are factored out of quantities defined at a specific order in the perturbation
expansion.

This time, the hadron tensor includes a sum over the polarization and color
states of the gluon in addition to everything else:

𝛼𝑠𝐻
(0)𝜇𝜈
𝑞𝑞𝑔 = 𝛼𝑠 ∑

𝑟,𝑟′,𝑖,𝑗,𝑡,𝑎
(𝐽(0)

𝑞𝑞𝑔)
𝜇

(𝐽(0)∗
𝑞𝑞𝑔 )

𝜈

= 𝛼𝑠 ∑
𝑡

𝜀∗
𝑡,𝜎 (𝑔) 𝜀𝑡,𝜌 (𝑔) ∑

𝑟,𝑟′,𝑖,𝑗,𝑎
(𝐽(0)

𝑞𝑞𝑔)
𝜇𝜎

(𝐽(0)∗
𝑞𝑞𝑔 )

𝜈𝜌
.

(2.45)

Here, the gluon polarization vector was factored out to isolate the polarization
sum, which is evaluated in equation (A.14). However, using equations (B.25),
(B.26), (B.36) and (B.60) and the vanishing mass of all particles, one finds

(𝐽(0)
𝑞𝑞𝑔)

𝜇𝜎
𝑔𝜎 ∝ 𝑢𝑟 (𝑞) ⎡⎢

⎣
/𝑔

/𝑞 + /𝑔
(𝑞 + 𝑔)2 𝛾𝜇 − 𝛾𝜇 /𝑞 + /𝑔

(𝑞 + 𝑔)2 /𝑔⎤⎥
⎦

𝑣𝑟′ (𝑞)

= 𝑢𝑟 (𝑞) [ /𝑔/𝑞
2𝑞 ⋅ 𝑔𝛾𝜇 − 𝛾𝜇 /𝑞/𝑔

2𝑞 ⋅ 𝑔] 𝑣𝑟′ (𝑞)

= 𝑢𝑟 (𝑞) [(𝑰 − /𝑞/𝑔
2𝑞 ⋅ 𝑔) 𝛾𝜇 − 𝛾𝜇 (𝑰 − /𝑔/𝑞

2𝑞 ⋅ 𝑔)] 𝑣𝑟′ (𝑞) = 0 ,

(2.46)
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2.3. Real gluon emission: 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order

so the second term in equation (A.14) falls out, and the polarization sum may
be replaced by

∑
𝑡

𝜀∗
𝑡,𝜎 (𝑔) 𝜀𝑡,𝜌 (𝑔) → −𝜂𝜎𝜌 . (2.47)

This could be anticipated from the discussion in appendix A.4: the final state
contains only a single gluon, so there is no external gluon pair coupling to a
triple-gluon vertex in any diagram. The result is that

𝛼𝑠𝐻
(0)𝜇𝜈
𝑞𝑞𝑔 = −𝛼𝑠 ∑

𝑟,𝑟′,𝑖,𝑗,𝑎
(𝐽(0)

𝑞𝑞𝑔)
𝜇𝜎

(𝐽(0)∗
𝑞𝑞𝑔 )

𝜈

𝜎
. (2.48)

This expression also includes a sum over products of the 𝑇𝑎
𝑖𝑗 , which equals the

trace from equation (A.20):

∑
𝑖,𝑗,𝑎

𝑇𝑎
𝑖𝑗 (𝑇𝑎

𝑖𝑗)
∗

= Tr [𝑇𝑎𝑇𝑎†] = 𝐶𝐹𝑁𝑐 . (2.49)

The only remaining sum is that over the spinor indices. As in section 2.1, this
can be rewritten as a trace over gamma matrices.

𝐻(0)𝜇𝜈
𝑞𝑞𝑔 ∝ ∑

𝑟,𝑟′
𝑢𝑟 (𝑞) [𝛾𝜎 /𝑞 + /𝑔

2𝑞 ⋅ 𝑔𝛾𝜇 − 𝛾𝜇 /𝑞 + /𝑔
2𝑞 ⋅ 𝑔𝛾𝜎] 𝑣𝑟′ (𝑞)

× 𝑣𝑟′ (𝑞) [𝛾𝜈 /𝑞 + /𝑔
2𝑞 ⋅ 𝑔𝛾𝜎 − 𝛾𝜎

/𝑞 + /𝑔
2𝑞 ⋅ 𝑔𝛾𝜈] 𝑢𝑟 (𝑞)

= Tr[/𝑞 (𝛾𝜎 /𝑞 + /𝑔
2𝑞 ⋅ 𝑔𝛾𝜇 − 𝛾𝜇 /𝑞 + /𝑔

2𝑞 ⋅ 𝑔𝛾𝜎)

× /𝑞 (𝛾𝜈 /𝑞 + /𝑔
2𝑞 ⋅ 𝑔𝛾𝜎 − 𝛾𝜎

/𝑞 + /𝑔
2𝑞 ⋅ 𝑔𝛾𝜈) ]

(2.50)

The hadron tensor will be contracted with 𝜂𝜇𝜈 when finding the cross section,
and doing it right away will simplify the traces. Defining

𝑡𝑞𝑞 = Tr [/𝑞𝛾𝜎 (/𝑞 + /𝑔) 𝛾𝜇/𝑞𝛾𝜇 (/𝑞 + /𝑔) 𝛾𝜎] , (2.51)

𝑡𝑞𝑞 = Tr [/𝑞𝛾𝜎 (/𝑞 + /𝑔) 𝛾𝜇/𝑞𝛾𝜎 (/𝑞 + /𝑔) 𝛾𝜇] , (2.52)

𝑡𝑞𝑞 = Tr [/𝑞𝛾𝜇 (/𝑞 + /𝑔) 𝛾𝜎/𝑞𝛾𝜇 (/𝑞 + /𝑔) 𝛾𝜎] , (2.53)

𝑡𝑞𝑞 = Tr [/𝑞𝛾𝜇 (/𝑞 + /𝑔) 𝛾𝜎/𝑞𝛾𝜎 (/𝑞 + /𝑔) 𝛾𝜇] , (2.54)

the contracted hadron tensor can be written

−𝛼𝑠𝜂𝜇𝜈𝐻(0)𝜇𝜈
𝑞𝑞𝑔 = 𝐶𝐹𝑁𝑐𝜇4𝜀 (𝑒𝑒𝑞𝑔𝑠)

2

× ⎡⎢
⎣

𝑡𝑞𝑞

(2𝑞 ⋅ 𝑔)2 +
𝑡𝑞𝑞

(2𝑞 ⋅ 𝑔)2 −
𝑡𝑞𝑞 + 𝑡𝑞𝑞

(2𝑞 ⋅ 𝑔) (2𝑞 ⋅ 𝑔)
⎤⎥
⎦

,
(2.55)

where 𝑄 = 𝑞 + 𝑞 + 𝑔 .
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2.3. Real gluon emission: 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order

Here, the infrared divergences appear for the first time. The contracted
hadron tensor, and hence the scattering cross section 𝜎(0)

𝑞𝑞𝑔 , diverge as 𝑞 ⋅ 𝑔 → 0
or 𝑞 ⋅ 𝑔 → 0 . By inspecting the calculations performed so far, one may also
realize that the denominators in equation (2.55) would consist of these factors
even without assuming massless quarks. Writing

𝑞 ⋅ 𝑔 = 𝐸𝑞𝐸𝑔 (1 − 𝛽𝑞 cos 𝜃𝑞𝑔) , 𝛽𝑞 =
√
√√
⎷

1 −
𝑚2

𝑞

𝐸2
𝑞

, (2.56)

it is clear that the divergences occur as 𝐸𝑔 → 0 . Additionally, if 𝑚𝑞 = 0 such
that 𝐸𝑞 = 0 is allowed and 𝛽𝑞 = 1 , the expression will diverge as 𝜃𝑞𝑔 → 0 or
𝐸𝑞 → 0 . The singularities at zero energy are examples of soft singularities,
while the singularity at zero angle is a collinear singularity.

The traces can be simplified and computed using equation (B.22):

𝑡𝑞𝑞 = 4 (1 − 𝜀)2 Tr [/𝑞 (/𝑞 + /𝑔) /𝑞 (/𝑞 + /𝑔)]

= 16 (1 − 𝜀)2 𝑞𝜇 (𝑞 + 𝑔)𝜈 𝑞𝜌 (𝑞 + 𝑔)𝜎 [𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜌𝜂𝜈𝜎 + 𝜂𝜇𝜎𝜂𝜈𝜌]

= 16 (1 − 𝜀)2 [2 (𝑞 ⋅ (𝑞 + 𝑔)) (𝑞 ⋅ (𝑞 + 𝑔)) − 𝑞 ⋅ 𝑞 (𝑞 + 𝑔)2]

= 32 (1 − 𝜀)2 [(𝑞 ⋅ 𝑔) (𝑞 ⋅ 𝑔)] .

(2.57)

The trace 𝑡𝑞𝑞 can be found by replacing 𝑞 with 𝑞 in 𝑡𝑞𝑞 , so 𝑡𝑞𝑞 = 𝑡𝑞𝑞 . The cross
terms are more complicated, but using equation (B.20), one finds

𝑡𝑞𝑞 + 𝑡𝑞𝑞 = 16 (𝑞 + 𝑔)𝜌 (𝑞 + 𝑔)𝛿 (𝑞𝜏𝑞𝜆 + 𝑞𝜏𝑞𝜆)

× [ (−2 + 𝜀 (1 + 𝜀)) 𝜂𝜌𝛿𝜂𝜏𝜆 + 𝜀 (1 − 𝜀) (𝜂𝜌𝜏𝜂𝛿𝜆 + 𝜂𝜌𝜆𝜂𝛿𝜏) ]

= 16[ (−2 + 𝜀 (1 + 𝜀)) 2 (𝑞 ⋅ 𝑞) ((𝑞 + 𝑔) ⋅ (𝑞 + 𝑔))
+ 𝜀 (1 − 𝜀) 2 (𝑞 ⋅ (𝑞 + 𝑔)) (𝑞 ⋅ (𝑞 + 𝑔))

+ 𝜀 (1 − 𝜀) 2 (𝑞 ⋅ (𝑞 + 𝑔)) (𝑞 ⋅ (𝑞 + 𝑔)) ]

= −32 (1 − 𝜀) [ (𝑞 ⋅ 𝑞) 𝑄2 − 2𝜀 (𝑞 ⋅ 𝑔) (𝑞 ⋅ 𝑔) ] .

(2.58)

Here, the relations 𝑞2 = 𝑞2 = 𝑔2 = 0 and 𝑄2 = 2𝑞 ⋅ 𝑞 + 2𝑞 ⋅ 𝑔 + 2𝑞 ⋅ 𝑔 were used
to simplify the expression. Inserting the traces in equation (2.55) gives

−𝛼𝑠𝜂𝜇𝜈𝐻(0)𝜇𝜈
𝑞𝑞𝑔 = 8𝐶𝐹𝑁𝑐𝜇4𝜀 (𝑒𝑒𝑞𝑔𝑠)

2
(1 − 𝜀)

× [(1 − 𝜀) (
𝑞 ⋅ 𝑔
𝑞 ⋅ 𝑔 +

𝑞 ⋅ 𝑔
𝑞 ⋅ 𝑔) +

(𝑞 ⋅ 𝑞) 𝑄2

(𝑞 ⋅ 𝑔) (𝑞 ⋅ 𝑔) − 2𝜀] .
(2.59)

To simplify the phase space integral, the COM frame energy fractions 𝑥𝑖 are
used. They are defined in equation (C.36), and repeated here for convenience:

𝑥𝑖 =
2𝑝𝑖 ⋅ 𝑄

𝑄2 . (2.60)
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2.3. Real gluon emission: 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order

For the massless quarks and gluons, this implies that

1 − 𝑥𝑞 =
2𝑞 ⋅ 𝑔
𝑄2 , (2.61)

1 − 𝑥𝑞 =
2𝑞 ⋅ 𝑔
𝑄2 , (2.62)

1 − 𝑥𝑔 =
2𝑞 ⋅ 𝑞
𝑄2 , (2.63)

𝑥𝑞 + 𝑥𝑞 + 𝑥𝑔 = 2 . (2.64)

Inserting this and using equation (C.37) to evaluate the phase space integral
in equation (2.36) gives

𝛼𝑠𝐻(0)
𝑞𝑞𝑔 (𝑄2) =

𝛼em𝛼𝑠𝐶𝐹𝑁𝑐𝑒2
𝑞𝑄2

𝜋 (
4𝜋𝜇2

𝑄2 )
2𝜀 (1 − 𝜀)

𝛤 (2 − 2𝜀)

× ∫
1

0
𝑑𝑥𝑞 ∫

1

1−𝑥𝑞
𝑑𝑥𝑞

1

[(1 − 𝑥𝑞) (1 − 𝑥𝑞) (𝑥𝑞 + 𝑥𝑞 − 1)]
𝜀

× ⎡⎢
⎣
(1 − 𝜀) ⎛⎜

⎝

1 − 𝑥𝑞

1 − 𝑥𝑞
+

1 − 𝑥𝑞

1 − 𝑥𝑞
⎞⎟
⎠

+
2 (1 − 𝑥𝑔)

(1 − 𝑥𝑞) (1 − 𝑥𝑞)
− 2𝜀⎤⎥

⎦
(2.65)

The collinear and soft quark divergences now appear in the limit where either
𝑥𝑞 → 1 or 𝑥𝑞 → 1 , while the soft gluon divergence manifest as the double pole
when both limits are taken simultaneously. To calculate the integral, substitute
𝑥𝑞 = 𝑥, 𝑥𝑞 = 1 − 𝑣𝑥 . The Jacobian is then 𝑥 , and the integral becomes

∫
1

0
𝑑𝑥 ∫

1

0
𝑑𝑣

𝑥
[𝑥2 (1 − 𝑥) 𝑣 (1 − 𝑣)]𝜀

× [(1 − 𝜀) (
𝑥𝑣

1 − 𝑥 +
1 − 𝑥

𝑥𝑣 ) +
2 (1 − 𝑣)
(1 − 𝑥) 𝑣 − 2𝜀]

= 2 (1 − 𝜀)
𝛤 (2 − 𝜀) 𝛤 (1 − 𝜀) 𝛤 (−𝜀)

𝛤 (3 − 3𝜀)

+ 2
𝛤 (2 − 𝜀) 𝛤 (−𝜀)2

𝛤 (2 − 3𝜀) − 2𝜀
𝛤 (1 − 𝜀)3

𝛤 (3 − 3𝜀)

=
𝛤 (1 − 𝜀)3

𝛤 (1 − 3𝜀)
2

1 − 3𝜀 (
1
𝜀2 −

1
𝜀 −

1
2 − 3𝜀 (

1
𝜀 − 2 − 2𝜀))

=
𝛤 (1 − 𝜀)3

𝛤 (1 − 3𝜀) (
2
𝜀2 +

3
𝜀 +

19
2 −

107
4 𝜀 + 𝒪 (𝜀2)) .

(2.66)

Each term in the integral factorizes into a product of two Euler 𝛽-function
integrals, equation (C.16). All of the integrals are convergent for 𝜀 < 0 , which
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2.4. Virtual gluon exchange: 𝑒+𝑒− → 𝑞𝑞 at next-to-leading order

is typical of infrared divergences: they are regularized when going to higher
spacetime dimensions 𝑑 > 4 . The expressions have been manipulated further
using equation (C.12).

This gives

𝛼𝑠𝐻(0)
𝑞𝑞𝑔 (𝑄2) =

𝛼em𝛼𝑠𝐶𝐹𝑁𝑐𝑒2
𝑞𝑄2

𝜋 (
4𝜋𝜇2

𝑄2 )
2𝜀 (1 − 𝜀) 𝛤 (1 − 𝜀)

𝛤 (2 − 2𝜀)

×
𝛤 (1 − 𝜀)2

𝛤 (1 − 3𝜀) (
2
𝜀2 +

3
𝜀 +

19
2 −

107
4 𝜀 + 𝒪 (𝜀2))

= 𝐻(0)
𝑞𝑞 (𝑄2)

𝛼𝑠𝐶𝐹
2𝜋 (

4𝜋𝜇2

𝑄2 )
𝜀

×
𝛤 (1 − 𝜀)2

𝛤 (1 − 3𝜀) (
2
𝜀2 +

3
𝜀 +

19
2 + 𝒪 (𝜀)) .

(2.67)

Thus, the scattering cross section for 𝑒+𝑒− → 𝑞𝑞𝑔 at leading order is

𝛼𝑠𝜎(0)
𝑞𝑞𝑔 =

2𝛼em𝛼𝑠𝜇2𝜀𝐶𝐹𝑁𝑐𝑒2
𝑞

𝑄2 (
4𝜋𝜇2

𝑄2 )
2𝜀 (1 − 𝜀)2

3 − 2𝜀
𝛤 (1 − 𝜀)
𝛤 (2 − 2𝜀)

×
𝛤 (1 − 𝜀)2

𝛤 (1 − 3𝜀) (
2
𝜀2 +

3
𝜀 +

19
2 + 𝒪 (𝜀))

= 𝜎(0)
𝑞𝑞

𝛼𝑠𝐶𝐹
2𝜋 (

4𝜋𝜇2

𝑄2 )
𝜀 𝛤 (1 − 𝜀)2

𝛤 (1 − 3𝜀) (
2
𝜀2 +

3
𝜀 +

19
2 + 𝒪 (𝜀))

(2.68)

These expressions show explicitly the how the infrared divergences manifest
as poles as 𝜀 → 0 . The total 𝑒+𝑒− → hadrons cross section can only be finite at
𝒪(𝛼𝑠) if these poles are canceled exactly by another contribution at the same
order.

2.4 Virtual gluon exchange: 𝑒+𝑒− → 𝑞𝑞 at
next-to-leading order

The next-to-leading order diagrams for 𝑒+𝑒− → 𝑞𝑞 are shown in figure 2.3,
with only the hadronic part included. As explained by equation (2.6), the
𝒪(𝛼𝑠)-contribution to the cross section is given by the interference term be-
tween these diagrams and the leading order diagram calculated in section 2.1.

In the formalism used here, the first step is to write the total hadron current
as an expansion in 𝛼𝑠 . To order 𝒪(𝛼𝑠) ,

(𝐽𝑞𝑞)𝜇
= (𝐽(0)

𝑞𝑞 + 𝛼𝑠𝐽(1)
𝑞𝑞 + ⋯)

𝜇
. (2.69)

Here, 𝐽(0)
𝑞𝑞 is the leading-order current from equation (2.12), and 𝛼𝑠𝐽(1)

𝑞𝑞 is the
sum of the currents from the diagrams in figure 2.3. The function 𝐻(𝑄2) from
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𝛾∗

𝑔 + 𝑞

𝑔

𝑞, 𝑟′, 𝑗

𝑞, 𝑟, 𝑖

𝛾∗

𝑔 − 𝑞

𝑔

𝑞, 𝑟′, 𝑗

𝑞, 𝑟, 𝑖

𝛾∗
𝑔

𝑞, 𝑟′, 𝑗

𝑞, 𝑟, 𝑖

Figure 2.3: Diagrams for the hadron current in 𝑒−𝑒+ → 𝑞𝑞 at one loop. The la-
bels 𝑟, 𝑟′ denote spin polarizations, while 𝑖, 𝑗 are color indices. The momentum
of the internal quarks flow in the same direction as the fermion current, as
indicated by the arrowhead.

equation (2.36) can also be expanded:

𝐻𝑞𝑞 (𝑄2) = 𝐻(0)
𝑞𝑞 (𝑄2) + 𝛼𝑠𝐻(1)

𝑞𝑞 (𝑄2) + ⋯ , (2.70)

where 𝐻(0)
𝑞𝑞 is the leading-order term given by equation (2.42). By combining

the definition of the hadron tensor 𝐻𝜇𝜈
𝑞𝑞 from equation (2.21), and of 𝐻(𝑄2)

from equation (2.36), one finds that the next term is an interference term
between the leading and next-to-leading order currents:

𝛼𝑠𝐻(1)
𝑞𝑞 (𝑄2) = −𝛼𝑠𝜂𝜇𝜈 ∫ 𝑑𝛷(𝑑)

2 ∑
𝑟,𝑟′,𝑖,𝑗

[ (𝐽(0)
𝑞𝑞 )

𝜇
(𝐽(1)∗

𝑞𝑞 )
𝜈

+ (𝐽(1)
𝑞𝑞 )

𝜇
(𝐽(0)∗

𝑞𝑞 )
𝜈

]

= −𝛼𝑠 ∫ 𝑑𝛷(𝑑)
2 ∑

𝑟,𝑟′,𝑖,𝑗
2ℜ {(𝐽(0)∗

𝑞𝑞 )
𝜇

(𝐽(1)
𝑞𝑞 )

𝜇
} .

(2.71)

In the first two diagrams in figure 2.3, the virtual gluon loops back onto
the quark it was emitted from. The corresponding factor in the amplitude is
known as the quark self-energy −𝑖𝛴(𝑞) , and for massless quarks it is given in
the Feynman gauge as

−𝑖𝛴 (𝑞) = −𝜇2𝜀𝑔2
𝑠 𝑇𝑎

𝑖𝑘𝑇
𝑎
𝑘𝑗 ∫

𝑑𝑑𝑔
(2𝜋)𝑑

𝜂𝜇𝜈

𝑔2

𝛾𝜇 (/𝑔 + /𝑞) 𝛾𝜈

(𝑔 + 𝑞)2

= 2𝐶𝐹𝛿𝑖𝑗𝜇2𝜀𝑔2
𝑠 (1 − 𝜀) ∫

𝑑𝑑𝑔
(2𝜋)𝑑

/𝑔 + /𝑞
𝑔2 (𝑔2 + 2𝑞 ⋅ 𝑔)

,
(2.72)

where equations (A.19) and (B.22) and the fact that 𝑞 is an external, on-shell
momentum were used. The integral in equation (2.72) can be rewritten using
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the results in appendix C:

∫
𝑑𝑑𝑔

(2𝜋)𝑑
/𝑔 + /𝑞

𝑔2 (𝑔2 + 2𝑞 ⋅ 𝑔)

= ∫
𝑑𝑑𝑔

(2𝜋)𝑑 ∫
1

0
𝑑𝛼 /𝑔 + /𝑞

(𝛼 (𝑔2 + 2𝑞 ⋅ 𝑔) + (1 − 𝛼) 𝑔2)2

= ∫
𝑑𝑑𝑔

(2𝜋)𝑑 ∫
1

0
𝑑𝛼 /𝑔 + /𝑞

(𝑔 + 𝛼𝑞)4

= ∫
1

0
𝑑𝛼 (1 − 𝛼) /𝑞 ∫

𝑑𝑑𝑘
(2𝜋)𝑑

1
𝑘4

=
𝑖/𝑞
2 ∫

𝑑𝑑𝑘𝐸

(2𝜋)𝑑
1
𝑘4

𝐸

=
𝑖/𝑞
2

𝛺𝑑

(2𝜋)𝑑 ∫
∞

0
𝑑 ̃𝑘𝐸 ̃𝑘𝑑−5

𝐸 .

(2.73)

Here, the denominator was first rewritten using the Feynman parameter inte-
gral from equation (C.18), and then by completing the square and using 𝑞2 = 0 .
The integration variable was changed to 𝑘 = 𝑔 + 𝛼𝑞 and the term proportional
to /𝑘 discarded, since it is antisymmetric under reflection through the origin
and thus must vanish upon integration. Finally, the 𝑘-integral was rotated
to Euclidean space as per equation (C.7) and rewritten as a single-variable
integral by exploiting the isotropy of the integrand and using equation (C.9).

The final expression in equation (2.73) reveals that this integral is unde-
fined for any value of the dimension 𝑑 : it has an infrared divergence due
to contributions as ̃𝑘𝐸 → 0 for 𝑑 ≤ 4 , and an ultraviolet divergence due to
contributions as ̃𝑘𝐸 → ∞ for 𝑑 ≥ 4 . This is related to the fact that a massless,
on-shell quark does not provide an intrinsic scale for the integral, since 𝑞2 = 0 .
Following the conventions in dimensional regularization, such an integral is
defined to be zero [7, p. 172]. Somewhat heuristically, this can be justified by
splitting the integral at an arbitrary scale 𝛬 and assuming different values of 𝑑
in the two regimes such that both integrals are convergent:

∫
∞

0
𝑑 ̃𝑘𝐸 ̃𝑘𝑑−5

𝐸 = ∫
𝛬

0
𝑑 ̃𝑘𝐸 ̃𝑘𝑑−5

𝐸 + ∫
∞

𝛬
𝑑 ̃𝑘𝐸 ̃𝑘𝑑′−5

𝐸 =
𝛬−2𝜀

−2𝜀 −
𝛬−2𝜀′

−2𝜀′
. (2.74)

Here, 𝜀 < 0 to regulate the infrared divergence, while 𝜀′ > 0 to regulate the
ultraviolet divergence. Of course, the right hand side > would only equal the
left hand side if 𝜀′ = 𝜀 , and by analytic continuation one might thus say that
the integral vanishes.

This means that the first two diagrams in figure 2.3 do not contribute, and
𝐽(1)
𝑞𝑞 is given by the third diagram only. This diagram is known as the vertex

correction.
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This result was derived in the Feynman gauge, but holds in any covariant
gauge. The gauge-dependent term in the gluon propagator gives a term
proportional to the integral

∫
𝑑𝑑𝑔

(2𝜋)𝑑
/𝑔 (/𝑔 + /𝑞) /𝑔

𝑔4 (𝑔2 + 2𝑞 ⋅ 𝑔)

= ∫
𝑑𝑑𝑔

(2𝜋)𝑑 ∫
1

0
𝑑𝛼

2 (1 − 𝛼) /𝑔 (/𝑔 + /𝑞) /𝑔
(𝑔 + 𝛼𝑞)6

= − ∫
1

0
𝑑𝛼 2 (2𝛼 (1 − 𝛼) +

1 − 𝜀
2 − 𝜀 (1 − 𝛼)2) /𝑞 ∫

𝑑𝑑𝑘
(2𝜋)𝑑

1
𝑘4 .

(2.75)

Here, the denominator was rewritten using equation (C.19), integration vari-
able changed to 𝑘 = 𝑔 + 𝛼𝑞 , and terms proportional to an odd power of 𝑘
discarded. The gauge-dependent term thus contains the same 𝑘-integral as
equation (2.73), and is therefore set to zero by the same argument. Strictly
speaking, this could have been inferred from the absence of a scale in the
denominator of equation (2.75), without further manipulations.

An important result used when simplifying the expression above is the
following: consider the integral

∫
𝑑𝑑𝑘

(2𝜋)𝑑 𝑓 (𝑘2) 𝑘𝜇𝑘𝜈 = 𝜂𝜇𝜈 ∫
𝑑𝑑𝑘

(2𝜋)𝑑 𝑓 (𝑘2) 𝑔 (𝑘2) . (2.76)

where the function 𝑓 is isotropic in 𝑘-space as indicated by the 𝑘2-dependence.
The Lorentz indices of the integrated quantity can only be carried by 𝜂𝜇𝜈 , and
it must therefore be possible to rewrite the integral as shown on the right,
with an unknown function 𝑔 . Contracting both sides with 𝜂𝜇𝜈 shows that one
can set 𝑔(𝑘2) = 𝑘2/𝑑 . Hence, in integrals over all of 𝑘-space, one may always
substitute

𝑘𝜇𝑘𝜈 →
1
𝑑𝑘2𝜂𝜇𝜈 , (2.77)

provided the other factors in the integrand are isotropic. In particular, one
may perform the following replacements:

/𝑘/𝑞/𝑘 → −
1 − 𝜀
2 − 𝜀𝑘2/𝑞 , (2.78)

(𝑘 ⋅ 𝑞) (𝑘 ⋅ 𝑞) →
1

2 (2 − 𝜀)𝑘2 (𝑞 ⋅ 𝑞) , (2.79)

where the former was used in the last step in equation (2.75), and the latter
will become important below.

The hadron current 𝛼𝑠𝐽(1)
𝑞𝑞 of the third diagram in figure 2.3 is given by

𝛼𝑠 (𝐽(1)
𝑞𝑞 )

𝜇
= −𝜇3𝜀𝑒𝑒𝑞𝑔2

𝑠 𝑇𝑎
𝑖𝑘𝑇

𝑎
𝑘𝑗 ∫

𝑑𝑑𝑔
(2𝜋)𝑑

𝑢𝑟 (𝑞) 𝛤𝜇𝑣𝑟′ (𝑞)

𝑔2 (𝑔 + 𝑞)2 (𝑔 − 𝑞)2 , (2.80)
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where3

𝛤𝜇 = 𝛾𝜌 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) 𝛾𝜎 (𝜂𝜌𝜎 − (1 − 𝜉)
𝑔𝜌𝑔𝜎

𝑔2 )

= 𝛾𝜎 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) 𝛾𝜎 −
1 − 𝜉

𝑔2 /𝑔 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) /𝑔 .
(2.81)

Hence, the interference in equation (2.71) can be written

∑
𝑟,𝑟′,𝑖,𝑗

−2 (𝐽(0)∗
𝑞𝑞 )

𝜇
(𝛼𝑠𝐽(1)

𝑞𝑞 )
𝜇

= 2𝑖𝐶𝐹𝑁𝑐𝜇4𝜀 (𝑒𝑒𝑞𝑔𝑠)
2

× ∫
𝑑𝑑𝑔

(2𝜋)𝑑

Tr [𝛾𝜇/𝑞𝛤𝜇/𝑞]

𝑔2 (𝑔 + 𝑞)2 (𝑔 − 𝑞)2 .
(2.82)

The trace can be split into two terms corresponding to the two terms in 𝛤𝜇 .
The first trace can be evaluated using equation (B.20):

Tr [𝛾𝜇/𝑞𝛾𝜎 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) 𝛾𝜎/𝑞]
= 16𝑞𝜌 (𝑔 + 𝑞)𝜏 (𝑔 − 𝑞)𝛿 𝑞𝜆

× [ (−2 + 𝜀 (1 + 𝜀)) 𝜂𝜌𝛿𝜂𝜏𝜆 + 𝜀 (1 − 𝜀) (𝜂𝜌𝜏𝜂𝛿𝜆 + 𝜂𝜌𝜆𝜂𝛿𝜏) ]

= 16[ (−2 + 𝜀 (1 − 𝜀)) (𝑞 ⋅ (𝑔 − 𝑞)) (𝑞 ⋅ (𝑔 + 𝑞))
+ 𝜀 (1 − 𝜀) (𝑞 ⋅ (𝑔 + 𝑞)) (𝑞 ⋅ (𝑔 − 𝑞))

+ 𝜀 (1 − 𝜀) (𝑞 ⋅ 𝑞) ((𝑔 + 𝑞) ⋅ (𝑔 − 𝑞)) ]

= 8 (1 − 𝜀) [𝑄4 − 2𝑔 ⋅ (𝑞 − 𝑞) 𝑄2 − 4 (𝑔 ⋅ 𝑞) (𝑔 ⋅ 𝑞) + 𝜀𝑔2𝑄2]

(2.83)

Here, the relations 𝑞2 = 𝑞2 = 0 and 𝑄2 = 2𝑞 ⋅ 𝑞 were used to simplify the
expression. The second trace, corresponding to the gauge-dependent term in
𝛤𝜇 , is found by applying equation (B.24):

Tr [𝛾𝜇/𝑞/𝑔 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) /𝑔/𝑞]
= −2Tr [(/𝑔 + /𝑞) /𝑔/𝑞 (/𝑔 − /𝑞) /𝑔/𝑞]

+ 2𝜀Tr [/𝑞/𝑔 (/𝑔 + /𝑞) (/𝑔 − /𝑞) /𝑔/𝑞]
(2.84)

To proceed, note that since 𝑞2 = 𝑞2 = 0 ,

(/𝑔 + /𝑞) /𝑔/𝑞 = (/𝑔 + /𝑞) (/𝑔 + /𝑞) /𝑞 = (𝑔 + 𝑞)2 /𝑞 . (2.85)
3Note that the gauge parameter 𝜉 here specifies the gauge used for QCD, which is not the

same as the gauge used for QED and discussed in sections 2.1 and 2.2. Although the final result
should be invariant with respect to the QCD gauge also, the gauge-dependent term is kept here
for generality and as an extra check on the computations.
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Similarly identities hold for /𝑞/𝑔(/𝑔 + /𝑞) and (/𝑔 − /𝑞)/𝑔/𝑞 . Hence,

Tr [𝛾𝜇/𝑞/𝑔 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) /𝑔/𝑞]

= −2 (1 − 𝜀) (𝑔 + 𝑞)2 (𝑔 − 𝑞)2 Tr [/𝑞/𝑞]

= −4 (1 − 𝜀) (𝑔 + 𝑞)2 (𝑔 − 𝑞)2 𝑄2 .

(2.86)

The factors (𝑔 + 𝑞)2 and (𝑔 − 𝑞)2 cancel against the same factors in the de-
nominator in the 𝑔-integral, so the gauge-dependent term is proportional
to

∫
𝑑𝑑𝑔

(2𝜋)𝑑
1
𝑔4 , (2.87)

which is set to zero for the same reason as the self-energy integrals. Thus, the
gauge-dependency drops out.

The denominator in equation (2.82) can be rewritten using equation (C.19):

1
𝑔2 (𝑔 + 𝑞)2 (𝑔 − 𝑞)2

= ∫
1

0
𝑑𝛼 ∫

1−𝛼

0
𝑑𝛽

2

[𝛼 (𝑔 + 𝑞)2 + 𝛽 (𝑔 − 𝑞)2 + (1 − 𝛼 − 𝛽) 𝑔2]
3

= ∫
1

0
𝑑𝛼 ∫

1−𝛼

0
𝑑𝛽

2

[(𝑔 + 𝛼𝑞 − 𝛽𝑞)2 + 𝛼𝛽𝑄2]
3 .

(2.88)

The 𝑔-integral is then solved by changing integration variable to 𝑘 = 𝑔+𝛼𝑞−𝛽𝑞 .
Substituting this variable change into equation (2.83) gives

Tr [𝛾𝜇/𝑞𝛾𝜎 (/𝑔 + /𝑞) 𝛾𝜇 (/𝑔 − /𝑞) 𝛾𝜎/𝑞]

= 8 (1 − 𝜀) [ (1 − 𝛼 − 𝛽 + (1 − 𝜀) 𝛼𝛽) 𝑄4

− 2𝑘 ⋅ [𝑞 − 𝑞 − (1 − 𝜀) (𝛼𝑞 − 𝛽𝑞)] 𝑄2

− 4 (𝑘 ⋅ 𝑞) (𝑘 ⋅ 𝑞) + 𝜀𝑘2𝑄2]

→ 8 (1 − 𝜀) 𝑄2 ⎡⎢
⎣
(1 − 𝛼 − 𝛽 + (1 − 𝜀) 𝛼𝛽) 𝑄2 −

(1 − 𝜀)2

2 − 𝜀 𝑘2⎤⎥
⎦

,

(2.89)

where the third line was obtained by using the replacement from equation (2.79)
and discarding the term proportional to 𝑘 , both justified by the fact that the
expression will be integrated over all of 𝑘-space. The relevant 𝑘-integrals
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evaluate to

∫
𝑑𝑑𝑘

(2𝜋)𝑑
1

[𝑘2 + 𝛼𝛽𝑄2]3 = (−𝑖)𝑑−1 𝛺𝑑

(2𝜋)𝑑 ∫
∞

0
𝑑 ̃𝑘𝐸

̃𝑘𝑑−1
𝐸

[ ̃𝑘2
𝐸 + 𝛼𝛽𝑄2]

3

=
(−𝑖)𝑑−1 (𝛼𝛽𝑄2)(𝑑/2)−3

(4𝜋)𝑑/2 𝛤 (𝑑/2)
∫

1

0
𝑑𝑥 𝑥2−(𝑑/2) (1 − 𝑥)(𝑑/2)−1

=
𝑖

2 (4𝜋)2 (−
4𝜋
𝑄2 )

𝜀
𝛤 (1 + 𝜀)

1
(𝛼𝛽)𝜀

1
𝛼𝛽𝑄2

(2.90)

∫
𝑑𝑑𝑘

(2𝜋)𝑑
𝑘2

[𝑘2 + 𝛼𝛽𝑄2]3 = (−𝑖)𝑑−1 𝛺𝑑

(2𝜋)𝑑 ∫
∞

0
𝑑 ̃𝑘𝐸

̃𝑘𝑑+1
𝐸

[ ̃𝑘2
𝐸 + 𝛼𝛽𝑄2]

3

=
(−𝑖)𝑑−1 (𝛼𝛽𝑄2)(𝑑/2)−2

(4𝜋)𝑑/2 𝛤 (𝑑/2)
∫

1

0
𝑑𝑥 𝑥1−(𝑑/2) (1 − 𝑥)(𝑑/2)

=
𝑖

2 (4𝜋)2 (−
4𝜋
𝑄2 )

𝜀
𝛤 (1 + 𝜀)

1
(𝛼𝛽)𝜀

2 − 𝜀
𝜀

(2.91)

Here, equations (C.8) and (C.9) were used to get single-variable integrals, and
the integration variable was changed to 𝑥 = (1 + ̃𝑘2

𝐸/𝛼𝛽𝑄2)−1 to put them on
Euler 𝛽-function form, equation (C.16).

Combining the results in equations (2.88) to (2.91), the interference term
becomes:

𝛼𝑠 ∑
𝑟,𝑟′,𝑖,𝑗

−2 (𝐽(0)∗
𝑞𝑞 )

𝜇
(𝛼𝑠𝐽(1)

𝑞𝑞 )
𝜇

= −16𝛼em𝛼𝑠𝜇2𝜀𝐶𝐹𝑁𝑐𝑒2
𝑞𝑄2 (−

4𝜋𝜇2

𝑄2 )
𝜀

(1 − 𝜀) 𝛤 (1 + 𝜀)

× ∫
1

0
𝑑𝛼 ∫

1−𝛼

0
𝑑𝛽

1
(𝛼𝛽)𝜀

⎡⎢
⎣

1 − 𝛼 − 𝛽 + (1 − 𝜀) 𝛼𝛽
𝛼𝛽 −

(1 − 𝜀)2

𝜀
⎤⎥
⎦

(2.92)

The 𝛼- and 𝛽-integrals decouple into Euler 𝛽-function integrals upon substi-
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tuting 𝛽 = (1 − 𝛼)𝑣 :

∫
1

0
𝑑𝛼 ∫

1−𝛼

0
𝑑𝛽

1
(𝛼𝛽)𝜀

⎡⎢
⎣

1 − 𝛼 − 𝛽 + (1 − 𝜀) 𝛼𝛽
𝛼𝛽 −

(1 − 𝜀)2

𝜀
⎤⎥
⎦

= ∫
1

0
𝑑𝛼 ∫

1

0
𝑑𝑣 𝛼−𝜀 (1 − 𝛼)1−𝜀 𝑣−𝜀 [

1 − 𝑣
𝛼𝑣 + (1 − 𝜀) (2 −

1
𝜀)]

= ⎛⎜
⎝

𝛤 (−𝜀)2

𝛤 (2 − 2𝜀) +
𝛤 (1 − 𝜀)2

𝛤 (3 − 2𝜀) (1 − 𝜀) (2 −
1
𝜀)⎞⎟

⎠

=
1
2

𝛤 (1 − 𝜀)2

𝛤 (1 − 2𝜀) (
2

𝜀2 (1 − 2𝜀)
−

1
𝜀)

=
1
2

𝛤 (1 − 𝜀)2

𝛤 (1 − 2𝜀) (
2
𝜀2 +

3
𝜀 + 8 + 16𝜀 + 𝒪 (𝜀2)) .

(2.93)

There is no explicit 𝑞- or 𝑞-dependency left, so the phase space integral is trivial
in the COM frame using equation (C.35), and one finds

𝛼𝑠𝐻(1)
𝑞𝑞 (𝑄2) = ℜ{

−𝛼em𝛼𝑠𝐶𝐹𝑁𝑐𝑒2
𝑞𝑄2

𝜋 (
4𝜋𝜇2

𝑄2 )
2𝜀

(−1)𝜀

×
(1 − 𝜀) 𝛤 (1 − 𝜀)

𝛤 (2 − 2𝜀)
𝛤 (1 + 𝜀) 𝛤 (1 − 𝜀)2

𝛤 (1 − 2𝜀)

× (
2
𝜀2 +

3
𝜀 + 8 + 16𝜀 + 𝒪 (𝜀2)) }

= 𝐻(0)
𝑞𝑞 (𝑄2)

−𝛼𝑠𝐶𝐹
𝜋 (

4𝜋𝜇2

𝑄2 )
𝜀

ℜ {(−1)𝜀}

×
𝛤 (1 + 𝜀) 𝛤 (1 − 𝜀)2

𝛤 (1 − 2𝜀) (
2
𝜀2 +

3
𝜀 + 8 + 𝒪 (𝜀)) .

(2.94)

The next-to-leading order contribution to the cross section for 𝑒+𝑒− → 𝑞𝑞 can
thus be written

𝛼𝑠𝜎(1)
𝑞𝑞 = 𝜎(0)

𝑞𝑞
−𝛼𝑠𝐶𝐹

2𝜋 (
4𝜋𝜇2

𝑄2 )
𝜀

ℜ {(−1)𝜀}

×
𝛤 (1 + 𝜀) 𝛤 (1 − 𝜀)2

𝛤 (1 − 2𝜀) (
2
𝜀2 +

3
𝜀 + 8 + 𝒪 (𝜀)) .

(2.95)

This clearly diverges as 𝜀 → 0 . Before proceeding to show that divergences
cancel in the total 𝑒+𝑒− → hadrons cross section, it is a good idea to pause
for a moment and consider what kinds of divergences the poles in this equa-
tion (2.95) actually represent. By comparing with equation (C.16), it is clear
that equation (2.90) is convergent in an interval including 𝜀 = 0 . The result
then enters the first term in the integrand in equation (2.93), and the integral
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of this term is convergent only for 𝜀 < 0. Thus, the first term on the fourth line
in equation (2.93) must represent infrared divergences.

On the other hand, equation (2.91) is obviously logarithmically divergent
for 𝑑 = 4 , and only converges for 𝜀 > 0 . The result is used in the second
term in the integrand in equation (2.93), and this integral places no further
restrictions on 𝜀 for convergence. Hence, the second term in the fourth line in
equation (2.93) (the −1/𝜀-term) represents an ultraviolet divergence.

However, the procedure of cancellation about to be demonstrated actually
removes all of these divergences, although it was never expected to work
for ultraviolet divergences, which are normally removed by renormalization.
However, having QCD vertex corrections renormalizing the QED coupling is
physically unacceptable, since these corrections would apply to quarks but not
leptons, and thus enable processes violating conservation of electric charge.
It may seem like the ultraviolet divergence is really an infrared divergence in
disguise, and it will certainly be treated as such when showing the cancellation.
Section 2.6 contains a short discussion of why this may be considered plausible.

2.5 Cancellation: 𝑒+𝑒− → hadrons at next-to-leading
order

The total cross section for 𝑒+𝑒− → hadrons at 𝒪(𝛼𝑠) is given by the sum up to
𝒪(𝛼𝑠) of the cross sections of all processes 𝑒+𝑒− → 𝑋 that can be defined at
this order. Here, 𝑋 is any state of quarks and gluons. There are no other such
processes than the two considered so far, and hence the cross section may be
written

𝜎hadrons = 𝜎(0)
𝑞𝑞 + 𝛼𝑠 (𝜎(0)

𝑞𝑞𝑔 + 𝜎(1)
𝑞𝑞 ) + 𝒪 (𝛼2

𝑠 )

= 𝜎(0)
𝑞𝑞 {1 +

𝛼𝑠𝐶𝐹
2𝜋 (

4𝜋𝜇2

𝑄2 )
𝜀 𝛤 (1 − 𝜀)2

𝛤 (1 − 3𝜀)[ (
2
𝜀2 +

3
𝜀 +

19
2 + 𝒪 (𝜀))

− ℜ {(−1)𝜀}
𝛤 (1 + 𝜀) 𝛤 (1 − 3𝜀)

𝛤 (1 − 2𝜀) (
2
𝜀2 +

3
𝜀 + 8 + 𝒪 (𝜀)) ]

+ 𝒪 (𝛼2
𝑠) } .

(2.96)

The factor (−1)𝜀 can be expanded as follows:

(−1)𝜀 = 𝑒𝑖𝜋𝜀

= 1 + 𝑖𝜋𝜀 −
𝜋2

2 𝜀2 −
𝑖𝜋3

6 𝜀3 + 𝒪 (𝜀4) ,
(2.97)

such that
ℜ {(−1)𝜀} = 1 −

𝜋2

2 𝜀2 + 𝒪 (𝜀4) . (2.98)
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2.6. The ultraviolet divergence

The three 𝛤-functions in the second term in equation (2.96) may be expanded
using equation (C.15). For the denominator, the geometric series expansion
(1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + ⋯ must also be used:

1
𝛤 (1 − 2𝜀) = [1 + 2𝛾𝐸𝜀 + (

𝜋2

3 + 2𝛾2
𝐸) 𝜀2 + 𝒪 (𝜀3)]

−1

= 1 − (2𝛾𝐸𝜀 + (
𝜋2

3 + 2𝛾2
𝐸) 𝜀2)

+ (2𝛾𝐸𝜀 + (
𝜋2

3 + 2𝛾2
𝐸) 𝜀2)

2

+ 𝒪 (𝜀3)

= 1 − 2𝛾𝐸𝜀 − (
𝜋2

3 − 2𝛾2
𝐸) 𝜀2 + 𝒪 (𝜀3) .

(2.99)

Multiplying this with the straightforward expansions of the factors in the
numerator gives

𝛤 (1 + 𝜀) 𝛤 (1 − 3𝜀)
𝛤 (1 − 2𝜀) = 1 +

𝜋2

2 𝜀2 + 𝒪 (𝜀3) , (2.100)

and thus,
ℜ {(−1)𝜀}

𝛤 (1 + 𝜀) 𝛤 (1 − 3𝜀)
𝛤 (1 − 2𝜀) = 1 + 𝒪 (𝜀3) . (2.101)

This is exactly the result needed for the divergent terms in 𝜎hadrons to vanish,
and hence the 𝜀 → 0 limit can be taken, giving the finite result

𝜎hadrons = 𝜎(0)
𝑞𝑞 (1 +

3𝛼𝑠𝐶𝐹
4𝜋 + 𝒪 (𝛼2

𝑠))

=
4𝜋𝛼2

em𝑁𝑐𝑒2
𝑞

3𝑄2 (1 +
3𝛼𝑠𝐶𝐹

4𝜋 + 𝒪 (𝛼2
𝑠 )) .

(2.102)

Thus, it has been shown that the total cross section for 𝑒+𝑒− → hadrons in
the massless quark approximation is without soft and collinear divergences
at 𝒪(𝛼𝑠) , despite the fact that the individual contributions from real gluon
emission and virtual gluon exchange both suffer from this.

2.6 The ultraviolet divergence

As mentioned in section 2.4, the virtual gluon exchange cross section 𝛼𝑠𝜎(1)
𝑞𝑞

contains what appears to be an ultraviolet divergence, which nevertheless
cancels by the same mechanism as the infrared divergences. Some insight
on this conundrum can be gained by once again considering the self-energy
diagrams, postponing for the moment the definition stating that the scaleless
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2.6. The ultraviolet divergence

integral vanishes. Using equation (2.74), the self-energy may be written in the
Feynman gauge as

−𝑖𝛴 (𝑞) = 𝑖/𝑞
𝛼𝑠𝐶𝐹𝛿𝑖𝑗

4𝜋
⎡⎢
⎣
(

4𝜋𝜇2

𝛬2 )
𝜀′ 1

𝜀′𝛤 (1 − 𝜀′)
− (

4𝜋𝜇2

𝛬2 )
𝜀 1

𝜀𝛤 (1 − 𝜀)
⎤⎥
⎦

= 𝑖/𝑞
𝛼𝑠𝐶𝐹𝛿𝑖𝑗

4𝜋 [
1
𝜀′

−
1
𝜀 + 𝒪 (𝜀′ − 𝜀)] .

(2.103)

By convention, half of the self-energy is canceled by wave function renormal-
ization [1, p. 111, 8, p. 36]. The contributing current from the two first diagrams
in figure 2.3 is thus

𝛼𝑠 (𝐽𝛴)𝜇 = 𝜇𝜀𝑒𝑒𝑞𝑢
𝑟 (𝑞) ⎡⎢

⎣

(−𝑖𝛴 (𝑞))
2

/𝑞
𝑞2 𝛾𝜇 + 𝛾𝜇

−/𝑞
𝑞2

(−𝑖𝛴 (−𝑞))
2

⎤⎥
⎦

𝑣𝑟′ (𝑞)

=
𝑖𝛼𝑠𝐶𝐹𝛿𝑖𝑗𝜇𝜀𝑒𝑒𝑞

4𝜋 [
1
𝜀′

−
1
𝜀 + 𝒪 (𝜀′ − 𝜀)] 𝑢𝑟 (𝑞) 𝛾𝜇𝑣𝑟′ (𝑞) .

(2.104)

As in equation (2.74), the unprimed 𝜀 is used in the term that was regular-
ized with 𝜀 < 0 and contains the infrared divergence, while 𝜀′ is used in the
ultraviolet divergent term. The interference term entering 𝛼𝑠𝜎(1)

𝑞𝑞 is then

𝛼𝑠 ∑
𝑟,𝑟′,𝑖,𝑗

−2 (𝐽(0)∗)𝜇 (𝐽𝛴)𝜇

= − 8𝛼em𝛼𝑠𝐶𝐹𝑁𝑐𝜇2𝜀𝑄2 [
1
𝜀′

−
1
𝜀 + 𝒪 (𝜀′ − 𝜀)] .

(2.105)

The term in the vertex correction interference term that was regularized in with
𝜀 > 0 , and hence contains the ultraviolet divergence, is found by including
only the second term under the integral in equation (2.92). Expanding such
that only the divergence is explicitly written, it reads

⎡⎢
⎣
𝛼𝑠 ∑

𝑟,𝑟′,𝑖,𝑗
−2 (𝐽(0)∗)𝜇 (𝐽(1)

𝑞𝑞 )
𝜇
⎤⎥
⎦𝑈𝑉

= 8𝛼em𝛼𝑠𝐶𝐹𝑁𝑐𝜇2𝜀𝑄2 [
1
𝜀′

+ 𝒪 (1)] . (2.106)

A primed 𝜀′ is used since the divergence is ultraviolet.
Summing these two terms leads to a remarkable result: the ultraviolet

divergence is canceled exactly, but replaced by an infrared divergence with
the exact same expression. It was this infrared divergence, then, that was
canceled by adding the real gluon emission and the virtual gluon exchange
cross sections together – the ultraviolet divergence had already been canceled
by summing the different diagrams for virtual gluon exchange.

The same result is derived in an arbitrary gauge in [8, pp. 39-41], using
Pauli-Villars regularization. Dimensional regularization makes the mechanism
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2.6. The ultraviolet divergence

at work here somewhat opaque in comparison, but an interpretation is that the
definition ∫ 𝑑𝑑𝑘 (𝑘2)−𝑛 = 0 in effect admits analytic continuation of integrals
regularized for 𝜀 > 0 to 𝜀 < 0 , such that a pole appearing to be ultraviolet may
in fact be infrared. This is also discussed in e.g. [9, p. 498].
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3
Discussion

The appearance and cancellation of infrared divergences are ubiquitous phe-
nomena in theories with massless particles. There is a lot to learn about
physically measurable quantities, both in quantum field theories in general
and in QCD in particular, from understanding the nature of these singularities
and under which conditions they cancel. These issues will be discussed in this
chapter.

3.1 Infrared divergences in general quantum field
theories

A scattering process emitting massless particles in the final state, such as
depicted in figure 2.2, will in general have a factors like the following in the
denominator of the amplitude:

(𝑘 + 𝑝)2 − 𝑚2 = 2𝑘 ⋅ 𝑝

= 2𝐸𝑘𝐸𝑝(1 − 𝛽𝑝 cos 𝜃𝑘𝑝), 𝛽𝑝 = √1 +
𝑚2

𝐸2
𝑝

.
(3.1)

Here, 𝑘 and 𝑝 denote the momenta of the massless particle and the particle it
was emitted from, respectively, and 𝑚 is the mass of the latter. Since these are
the momenta of particles in the final state, they are on-shell with 𝑘2 = 0 and
𝑝2 = 𝑚 , giving the simplified form. The on-shell condition for the massless
particle allows 𝑘 = 0, or equivalently, 𝐸𝑘 = 0, and unless some factors cancel
against factors in the numerator, the amplitude will clearly have a singularity
here. Moreover, integrating over phase space will not eliminate the divergence
when working in 𝑑 = 4 spacetime dimensions, hence the cross section inherits
the singularity. When 𝑚 → 0 such that 𝛽𝑝 → 1 , singularities also appear as
𝐸𝑝 → 0 or 𝜃𝑘𝑝 → 0 . These are the soft and collinear singularities, investigated
in detail for a specific example in the previous chapter. However, this simple
argument shows that the phenomenon is universal: in massless theories,
scattering cross sections blow up when a massless particle is emitted with low
momentum or parallel to the emitter.
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3.1. Infrared divergences in general quantum field theories

This is actually not too surprising. In the 𝑘 → 0-limit, the virtual particle
with momentum 𝑘 + 𝑝 that existed before the emission is put on-shell – it
becomes real. This may be interpreted as the particle being free to propagate
for an unlimited time and distance before the emission actually happens,
and this violates the fundamental assumptions used when setting up the
perturbative expansion in quantum field theories. Specifically, when deriving
the LSZ reduction formula, which relates scattering amplitudes to the Greens
functions that can be derived directly from the Hamiltonian, it is assumed that
the fields are free of interactions in the far past and future, 𝑡 → ±∞ , due to
the increasing distance between the particles [6, pp. 111-116]. In the limit of
low energy, however, the wavelength of a massless particle becomes infinite,
so this freedom can never be obtained. In this sense, final states with a fixed
number of massless particles are not well-defined in perturbative quantum
field theory.

This can also be seen by considering the similar process where the massless
particle is exchanged as a virtual particle rather than emitted, as in figure 2.3.
The 𝑘 → 0-limit puts all three particles in the loop on the mass-shell, and hence
the loop interaction may take an arbitrarily long time and cover arbitrarily
long distances. Thus, the distinction between exchange and emission of the
massless particle vanishes. This indicates that when computing a quantity
incorporating the 𝑘 = 0-limit of one of these processes, the other should also
be taken into account.

One can also consider this from an experimentalists perspective. A detector
has a finite energy resolution, so there is no way to actually detect a particle
with arbitrarily low momentum in an experiment. From this point of view,
the singularities in the cross section are not a problem at all, the mistake was
rather to integrate over the phase space regions where the singularities appear.
The contribution from momenta smaller than some cutoff should instead be
regarded as a part of the cross section for the similar process without emission
of the massless particle, since this is what it would look like to the detector.
Particles below the detection limit are called soft particles.

These arguments are readily extended to cover collinear singularities when
both particles are massless. In this case, the distinction between a particle with
momentum 𝑝 and two collinear particles with with momenta 𝜆𝑝 and (1 − 𝜆)𝑝
vanishes.

These arguments explain how, for massless theories, the concept of external
states with a definite number of particles must be abandoned in order to avoid
infrared singularities. Although each amplitude in the perturbation expansion
is constructed from such states, a physically measurable quantity can only
be computed by including the contribution from a particular external state
on equal footing with all states obtained by adding any number of soft and
collinear particles to it. The external states of processes without infrared
singularities therefore do not consist of isolated particles, but rather of jets
made up of any number of nearly parallel particles with total momentum
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3.1. Infrared divergences in general quantum field theories

equal to the particles they replace, along with a cloud of soft particles that
escape detection.

A formalism making the mathematical statement of these ideas straight-
forward was introduced by [10]. A general measurement from a scattering
experiment with massless particles may be expressed as

ℐ = ∑
𝑛

1
𝑛! ∫ 𝑑𝛷𝑛

𝑑𝜎𝑛
𝑑𝛷𝑛

𝒮𝑛 (𝑝1, … , 𝑝𝑛) . (3.2)

Here, 𝑛 labels the number of particles in a perturbative final state, and 𝑑𝜎𝑛/𝑑𝛷𝑛
is the differential cross section for scattering into this state. The measurement
is assumed to not distinguish different kinds of particles, hence there is only a
single differential cross section per 𝑛, and each term is divided by 𝑛! to avoid
overcounting. The measured quantity is defined by the weights 𝒮𝑛(𝑝1, … , 𝑝𝑛) .
For the total cross section, the weights are simply 𝒮𝑛(𝑝1, … , 𝑝𝑛) = 1 . The
requirement for infrared safe measurements is that the weights are equal in all
soft and collinear limits, that is,

𝒮𝑛+1 (𝑝1, … , (1 − 𝜆) 𝑝𝑛, 𝜆𝑝𝑛) = 𝒮𝑛 (𝑝1, … , 𝑝𝑛) , (3.3)

and similar for all other pairs of momenta. For 0 < 𝜆 < 1 , this ensures that
a single particle is considered equal to two collinear particles carrying the
same total momentum. The case 𝜆 = 0 takes care of the degeneracy due to soft
particles.

As an example of an infrared safe observable, consider the Sterman-Weinberg
jet [11].1 Here, the same process is considered as in chapter 2, 𝑒+𝑒− → hadrons .
An event is registered when all but a fraction 𝜀 ≪ 1 of the total energy √𝑄2 is
emitted within a pair of back-to-back cones of half-angle 𝛿 ≪ 1, lying within a
larger, fixed pair of back-to-back cones of solid angle 𝛺 ≪ 1 (with 𝜋𝛿2 ≪ 𝛺)
oriented at an angle 𝜃 to the incoming 𝑒+𝑒− beams. The observable is the
scattering rate for such events. It is infrared safe: a particle splitting into two
nearly parallel particles does not affect whether an event will be registered or
not as long as the angle between them is sufficiently small, and neither does
the emission of a particle with sufficiently low energy.

The Kinoshita-Lee-Nauenberg theorem

The discussion above is presented in a heuristic fashion, but the claims are sup-
ported by rigorous proofs. The Kinoshita-Lee-Nauenberg theorem (KLN) [12,
13] states that in any quantum field theory, the total transition rate between
states of equal energy is free of infrared divergences in the limit of mass-
less particles. Formally, the theorem can be stated as follows (similar to the
presentation in [7, pp. 364-370, 14, pp. 440-447]):

1This particular observable is not often used in current experiments, but is used as an
example here because it easy to understand.
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Let 𝐷(𝐸0, 𝜀) denote the set of states with energy 𝐸 in the interval 𝐸0 − 𝜀 <
𝐸 < 𝐸0 + 𝜀 , and 𝑆 be the 𝑆-matrix of the theory. Then, the total transition rate

𝑃 (𝐸0, 𝜀) = ∑
𝑎,𝑏∈𝐷(𝐸0,𝜀)

|⟨𝑎|𝑆|𝑏⟩|2 (3.4)

is free of infrared singularities in the limit of massless particles.
Proofs of the theorem may be found in all of the listed references.
The significance of the theorem is that it shows that for observable quanti-

ties satisfying some criterion, all quantum field theories are free of infrared
divergences in the limit of massless particles. Moreover, this holds at each
order in perturbation theory. However, in general one is not only required
to sum over final states, as done in the calculation in chapter 2, but also over
initial states. This was avoided in the 𝑒+𝑒− → hadrons cross section because
the initial state did not participate in QCD interactions.

The KLN theorem involves summation over all states with the same to-
tal energy, which is a somewhat unfamiliar configuration, and much more
inclusive than the observables described by equation (3.3). However, in [15,
pp. 548-553], the proof is modified to show that the same result holds for con-
figurations such as Sterman-Weinberg jets and other measurements satisfying
equation (3.3) as well. The requirement to sum over initial states then enters
via the differential cross sections, which must be defined by averaging over
the squared amplitudes and flux factors for all possible initial states related to
the nominal initial state by additional soft or collinear particles.

It is worth noting that in QED, if the electron mass is non-zero, infrared
safe quantities can be obtained by only summing over final states. This is
known as the Bloch-Nordsieck theorem [16]. In QCD, however, this does not
hold, as shown by e.g. [17], so summation over initial states will in general be
required.

3.2 The optical theorem and cutting rules
A convenient way of visualizing and interpreting the relation between infrared
divergent quantities whose sum is finite is obtained using the optical theo-
rem. For two-particle scattering, the optical theorem can be stated as follows
(adapted from [18, p. 455]):

ℑ {ℳ (𝑘1𝑘2 → 𝑘1𝑘2)} = 2𝐼 ∑
𝑋

𝜎 (𝑘1𝑘2 → 𝑋) , (3.5)

where 𝑘1, 𝑘2 are the momenta of the two incoming particles and 𝐼 is the flux
factor from equation (A.2). The theorem states that the imaginary part of the
forward scattering amplitude for a two-particle state is proportional to the sum
over the total cross section for this initial state. A forward scattering amplitude
is a scattering amplitude where the final state is identical to the initial state.
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𝑒+

𝑒−

𝑒+

𝑒−

Figure 3.1: Forward scattering 𝑒+𝑒− → 𝑒+𝑒− at 𝒪(𝛼2
em𝛼𝑠) . The dashed line

shows an example cut.

An intuitive understanding of this theorem may be obtained by consid-
ering forward scattering Feynman diagrams which include loops where the
kinematic conditions allow the particles to be put on-shell. Figure 3.1 shows
an example of a diagram for 𝑒+𝑒− → 𝑒+𝑒− at 𝒪(𝛼2

em𝛼𝑠) . When performing
the loop integrals in this amplitude, some of the virtual particles will be put
on-shell in certain regions of the space of loop momenta. However, when a
propagator goes on-shell, an imaginary delta function appears:

ℑ {
1

𝑥 + 𝑖𝜀} = −𝜋𝛿 (𝑥) . (3.6)

The result is that when solving the loop momentum integrals, the regions
where particles in the loop go on-shell contributes an imaginary part to the
scattering amplitude. Moreover, the delta function makes this contribution
integral appear very similar to a phase space integral, and in fact it will be pro-
portional to the cross section of the scattering process 𝑒+𝑒− → 𝑋 at 𝒪(𝛼2

em𝛼𝑠) ,
where 𝑋 is the final state consisting of the on-shell particles in the loop. The
state 𝑋 must contain all particles along some cut through the diagram, and it
must be possible to put all these particles on-shell simultaneoulsy. An example
of a cut is shown by the dashed line in figure 3.1.

Thus, to calculate the imaginary part of the amplitude for a single Feynman
diagram such as the one in figure 3.1, one may proceed as follows:

1. Identify all possible cuts through the intermediate states in the diagram
such that the particles along the cut may be put on-shell simultaneously.

2. For each cut, calculate the cross section of the interference between the
half-diagram to the left of the cut and the mirror image of the half-
diagram to the right of the cut.
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3.2. The optical theorem and cutting rules

Figure 3.2: Cut diagrams for 𝛾∗ → hadrons at 𝒪(𝛼𝑠) . The similar diagrams
with the quark and antiquark swapped are not drawn.

3. Add all these cross sections together, and multiply with half of the flux
factor for the initial state.

This is known as the cutting rules, and may be thought of as the optical theorem
in action, broken down to specific orders and diagrams. The claims will not
be proved here, but they are not difficult to demonstrate for simple processes
such as the one in figure 3.1, see e.g. [18, pp. 453-466].

By virtue of the optical theorem and cutting rules, the diagram in figure 3.1
is very closely related to the cross sections computed in chapter 2. To minimize
clutter, the external states 𝑒+𝑒− will be amputated in the following, such that
cuts of forward scattering diagrams for 𝛾∗ at 𝒪(𝛼em𝛼𝑠) are considered instead.
Figure 3.2 shows the two different ways to cut each of the two possible loop
configurations at this order. The top line contains the same loop as figure 3.1
cut in two different ways: the first cut corresponds to the interference terms
between the two diagrams in the real gluon emission diagrams in figure
figure 2.2, and the second cut corresponds to the interference between the
leading order diagram in figure 2.1 and the vertex correction in figure 2.3. The
bottom line contains a similar loop where the gluon is emitted and absorbed
by the same quark. Here, the first cut corresponds to the squared amplitude of
one of the real emission diagrams in figure 2.2, while the second corresponds
to the interference between the leading order diagram in figure 2.1 and a
self-energy insertion in figure 2.3.
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3.3. Infrared safety in QCD

Since QED and QCD are renormalizable theories, the amplitude for a loop
diagram such as the one in figure 3.1 is expected to be finite.2 The cutting
rules relate the imaginary part of this amplitude to the sum of cross sections
computed in chapter 2, containing infrared divergences, and this provides an
alternative argument for why the divergences should cancel when the cross
sections are summed. Moreover, it admits an alternative interpretation of
the origin infrared divergences: they appear in quantities corresponding to
incomplete loop momentum integrals. This picture is of course not more fun-
damental than other interpretations presented in this chapter, but it provides
a neat way to organize the diagrams and identify groups of terms whose sum
must be finite, since they are different cuts of the same loop. This picture also
strengthens the viewpoint that in the infrared limit, the distinction between
real emission and virtual exchange vanishes: these two kinds of cuts corre-
spond to adjacent regions in the space of loop momenta, and the infrared limit
corresponds to the boundary between these regions.

Cut diagrams are used in the original proof of the KLN theorem in [12].
The cut diagrams explained here are not sufficient for this purpose, however,
since they cannot handle infrared divergences in the initial state.

3.3 Infrared safety in QCD
The discussion in the previous sections applies to quantum field theories in
general. When considering quantum chromodynamics in particular, there is
an additional concern related to the increasing strength of the QCD coupling
at long distances, and in particular confinement. In particular, the arguments
relying on the properties of detectors do not translate directly to QCD, since
the final states in perturbative QCD are never observed in experiment, as
explained in section 1.1.

On the other hand, the concept of jets containing any number of nearly
parallel particles with definite total momentum is most welcome: this is de-
scription is quite appropriate to the hadronic final states observed in QCD
scattering experiments, although the internal dynamics of the QCD jets, lead-
ing to hadronization, seems to be more complex than in theories such as QED.

The essential observation described in section 3.1, explaining infrared
divergences and leading to the definition of infrared safe observables and jets,
is that sensible measurements must be insensitive to interactions over long time
and distance scales, since otherwise it is not possible to separate the interacting
fields from the free external states. In QCD the idea of free external states made
up of fundamental particles is invalid, but if an observable is truly insensitive
to long-distance interactions, the composition of the external states should not

2There is no need to worry about infrared divergences in figure 3.1 diagram, since the
process is not considered at an order where photon emission or exchange in the external states
cannot be accomodated.
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3.3. Infrared safety in QCD

matter. Thus, infrared safe quantities calculated in perturbative QCD may be
compared directly to experiment without considering any non-perturbative
dynamics.

This is not to say that infrared safe observables are the only interesting
observables in QCD. In particular, any observable distinguishing different
kinds of hadrons obviously depends on long-distance interactions, and does
not fit into the scheme described by equation (3.3). The solution in this case
is to factorize the process into a perturbative and a non-perturbative part as
described in section 1.1, where the perturbative part depends on the particular
high-energy, short-distance interactions involved, while the non-perturbative
part is universal and completely independent of short-distance physics. In
this approach the perturbative part must still be infrared safe in order to be
calculable in perturbation theory, and all the long-distance sensitivity is placed
in the non-perturbative part [3].
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4
Summary

In the total cross section for the scattering process 𝑒+𝑒− → hadrons , the
contributions at 𝒪(𝛼𝑠) have been shown to contain infrared singularities, both
from the real gluon emission and virtual gluon exchange diagrams. However,
by using dimensional regularization to safely manipulate the infinities, it has
been demonstrated that the divergent terms cancel, such that the total cross
section is finite.

By considering the causes of these singularities, one is led to the conclusion
that well-defined measurements computed in perturbative quantum field the-
ory cannot in general have a definite number of massless particles in the initial
and final states. In order to obtain finite observables one must instead take
care to define them such that they are insensitive to low-energy, long-distance
interactions. Observables satisfying this property are called infrared safe. This
naturally leads to the concept of jets, collections of an arbitrary number of
nearly parallel particles with definite total momentum, which can be related to
experimental measurements. The Kinoshita-Lee-Nauenberg theorem demon-
strates that for suitably defined observables, infrared divergences will always
cancel, to all orders.

In the particular case of quantum chromodynamics, infrared safety defines
the set of observables for which theoretical values may be calculated from
perturbation theory alone. However, due to the non-perturbative strength
of the QCD coupling at low energies and long distances, and in particular
the phenomenon of confinement, many relevant observables will necessarily
depend on long-distance interactions. By factorizing the process into a pertur-
bative and a non-perturbative part, however, the short-distance physics may
still be described by infrared safe calculations in perturbation theory.
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A
Feynman rules for QED and QCD

This appendix lists the Lagrangian and Feynman rules for quantum electrody-
namics (QED) and quantum chromodynamics (QCD), mainly following the
conventions in [1]. Using the parametrization from [19], the sign conventions
are 𝜂𝑠 = 𝜂𝑒 = 𝜂𝐺 = +1 .

A.1 General remarks
A Feynman diagram is a pictorial representation of a scattering process, which
can be translated directly to a term in the power series expansion of the associ-
ated scattering amplitude ℳ , where the expansion parameter is the coupling
constant of the theory, e.g. 𝛼em = 𝑒2/4𝜋 for QED and 𝛼𝑠 = 𝑔2

𝑠 /4𝜋 for QCD.
In the diagram, particles are represented by lines joined together at vertices,
and the number of vertices in the diagram is related to the order of the term it
represents. The initial and final states in the scattering process are represented
by open-ended lines at each end of the diagram, called external lines, while
lines terminating at a vertex in both ends are called internal lines and are said
to represent virtual particles. A typical example, describing a process similar
to the one discussed in section 2.1, is shown in figure A.1.

Figure A.1: An example of a Feynman diagram
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A.1. General remarks

The convention here is that time runs from left to right, so the initial states
come in from the left and the final states exit to the right. Four different kinds
of lines are used to represent the different particles in QED and QCD:

A fermion of any kind. The arrowhead shows the direction of the asso-
ciated fermion current, hence lines with arrows pointing back in time
represent the corresponding antifermion. Since the current is conserved,
any fermion line pointing towards a vertex must be balanced by a line
pointing away from it.

A photon, the gauge boson of QED.

A gluon, the gauge boson of QCD.

A ghost, an unphysical particle appearing in QCD when working in
certain gauges. The ghosts only appear as internal lines. Ghosts obey
fermionic statistics, and are therefore drawn with an arrowhead.

The translation from a diagram to a term in the scattering amplitude is
done according to the following general rules

• Each external line is replaced by a solution to the equation of motion for
the corresponding free field, e.g. a Dirac spinor for a fermion line.

• Each internal line is replaced by the propagator for the corresponding
free field.

• Each vertex is replaced by a vertex factor derived from the interaction
Lagrangian of the theory.

• 4-momentum is conserved at each vertex. Any momenta left undeter-
mined by this are integrated over using the measure 𝑑4𝑝/(2𝜋)4 , or in 𝑑
spacetime dimensions, 𝑑𝑑𝑝/(2𝜋)𝑑 .

• For each closed loop of fermion lines, a factor of −1 is appended.

• If identical fermions exist in the external states, a diagram obtained by
crossing two of the external fermion lines while leaving the initial and
final states unchanged acquires a factor of −1 compared to the uncrossed
diagram.

• For fermions, the order of the terms must be correct in order for the
spinors and matrices to contract correctly. For each connected string of
fermion lines, the external state spinors, vertex factors and propagators

48



A.2. QED

must be written down in the order they appear when following the
string from end to end against the direction of the arrowheads. For a
closed fermion loop, the starting and ending point is arbitrary, but a trace
must be taken over the final product. (Alternatively, all spinor-related
quantities may be written with explicit spinor indices that match at each
vertex.)

• In some cases, a symmetry factor must be appended if the number of
different ways to connect the vertices and obtain an identical diagram
is not as large as the prefactor from the Taylor expansion of the action
exponential and any numerical coefficients from the interaction term
in the Lagrangian. This is a rather technical point that is easiest to
understand through practice. See [15, pp. 265-267] for a comprehensive
review.

When the scattering amplitude ℳ has been computed to the desired order,
the differential cross section 𝑑𝜎 for the process is found taking the absolute
square of the amplitude, dividing by the flux factor 4𝐼 , and appending the
phase space measure 𝑑𝛷𝑛 for a final state with 𝑛 particles:

𝑑𝜎 =
1
4𝐼 ∣ℳ∣2 𝑑𝛷𝑛 . (A.1)

In this text only two-particle collisions are considered. The flux factor is then [1,
p. 427, 6, pp. 158-160]

4𝐼 = 4√(𝑝1 ⋅ 𝑝2)2 − (𝑚1𝑚2)2

≈ 2𝑠, when 𝑚2
1, 𝑚2

2 ≪ 𝑠 = (𝑝1 + 𝑝2)2 .
(A.2)

Phase space measures are discussed in appendix C.2.

A.2 QED
The Lagrangian for the quantum electrodynamics of a fermion with with mass
𝑚𝑓 and electric charge 𝑒𝑒𝑓 is

ℒQED = 𝜓𝑓 (𝑖 /𝐷 − 𝑚𝑓 ) 𝜓𝑓 −
1
4𝐹𝜇𝜈𝐹𝜇𝜈

= 𝜓𝑓 (𝑖/𝜕 − 𝑚𝑓 ) 𝜓𝑓 − 𝑒𝑒𝑓 𝜓𝑓 /𝐴𝜓𝑓 −
1
4𝐹𝜇𝜈𝐹𝜇𝜈 ,

(A.3)

where 𝜓𝑓 (𝑥) is the spinor field of the fermion, 𝐴𝜇 is the gauge field for the
photon, the photon field strength tensor 𝐹𝜇𝜈 is defined as

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 , (A.4)
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A.2. QED

Table A.1: Building blocks of QED Feynman diagrams

Incoming lines Outgoing lines Internal lines Vertex
𝑝 ⟶ 𝑝 ⟶ 𝑝 ⟶

= 𝑢 (𝑝) = 𝑢 (𝑝)
= 𝑖𝑆𝐹 (𝑝) 𝜇 = −𝑖𝑒𝑒𝑓 𝛾𝜇= 𝑣 (𝑝) = 𝑣 (𝑝)

𝜇 = 𝜀𝜇 (𝑝) 𝜇 = 𝜀∗𝜇 (𝑝) 𝜇 𝜈 = 𝑖𝐷𝜇𝜈
𝐹 (𝑝)

and the gauge covariant derivative 𝐷𝜇 is

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑒𝑒𝑓 𝐴𝜇 . (A.5)

The constant 𝑒 is the (positive) elementary electric charge, and 𝑒𝑓 is the quantum
number associated with electric charge for the fermion under consideration.
For electrons and other charged leptons, 𝑒𝑓 = −1 , while for quarks 𝑒𝑓 = 𝑒𝑞
with 𝑒𝑞 = 2/3 for the 𝑞 = 𝑢, 𝑐, 𝑡 quarks and 𝑒𝑞 = −1/3 for the 𝑞 = 𝑑, 𝑠, 𝑏 quarks

This leads to the Feynman diagram building blocks shown in table A.1.
The Dirac spinors 𝑢, 𝑣 for the external fermions are further explained in ap-
pendix B.2. The fermion propagator is

𝑖𝑆𝐹 (𝑝) = 𝑖 /𝑝 + 𝑚
𝑝2 − 𝑚2 + 𝑖𝜀

. (A.6)

The 4-vector 𝜀𝜇(𝑝) specifies the polarization for an external photon with
4-momentum 𝑝 , and is discussed further in appendix A.4.

The gauge field 𝐴𝜇 carries redundant degrees of freedom, and a gauge is a
set of constraints selected to eliminate this redundancy (see appendix A.5 for
a brief discussion of this concept). Expressions relating to 𝐴𝜇 are in general
different in different gauges. Covariant gauges are defined by the constraint
𝜕𝜇𝐴𝜇 = 0 , and the photon propagator can then be expressed as

𝑖𝐷𝜇𝜈
𝐹 (𝑝) = 𝑖

−𝜂𝜇𝜈 + (1 − 𝜉) 𝑝𝜇𝑝𝜈/𝑝2

𝑝2 + 𝑖𝜀
, (A.7)

where 𝜉 is an arbitrary parameter. Popular choices include the Feynman gauge,
𝜉 = 1 , and the Landau gauge, 𝜉 = 0 .

The 𝑖𝜀-term in the denominator of the propagators is included as a pre-
scription for how to treat the poles at 𝑝2 = 𝑚2 or 𝑝2 = 0 when integrating. The
limit 𝜀 → 0 should be taken at the end of a computation. The 𝑖𝜀-term is often
dropped to save writing when doing calculations, but is implicitly assumed
whenever relevant.
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A.3. QCD

Table A.2: Lines in QCD Feynman diagrams

Incoming lines Outgoing lines Internal lines
𝑝 ⟶ 𝑝 ⟶ 𝑝 ⟶

= 𝑢 (𝑝) = 𝑢 (𝑝) 𝑖 𝑗 = 𝑖𝑆𝐹 (𝑝) 𝛿𝑖𝑗

= 𝑣 (𝑝) = 𝑣 (𝑝) 𝑎 𝑏 = 𝑖𝛿𝑎𝑏/(𝑝2 + 𝑖𝜀)
𝜇 = 𝜀𝜇 (𝑝) 𝜇 = 𝜀∗𝜇 (𝑝) 𝜇, 𝑎 𝜈, 𝑏 = 𝑖𝐷𝜇𝜈

𝐹 (𝑝) 𝛿𝑎𝑏

A.3 QCD
The Lagrangian for the quantum chromodynamics of a single quark flavor
labeled 𝑞 , with mass 𝑚𝑞 and 𝑁𝑐 color degrees of freedom, is

ℒQCD = 𝜓𝑞,𝑖 (𝑖 /𝐷𝑖𝑗 − 𝑚𝑞𝛿𝑖𝑗) 𝜓𝑞,𝑗 −
1
4𝐹𝑎𝜇𝜈𝐹𝑎

𝜇𝜈

= 𝜓𝑞,𝑖 (𝑖/𝜕 − 𝑚𝑞) 𝛿𝑖𝑗𝜓𝑞,𝑗 − 𝑔𝑠𝜓𝑞,𝑖𝑇
𝑎
𝑖𝑗 /𝐴𝑎𝜓𝑞,𝑗 −

1
4𝐹𝑎𝜇𝜈𝐹𝑎

𝜇𝜈 ,
(A.8)

where 𝜓𝑞,𝑖(𝑥) is the spinor field of the quark 𝑞 , with the index 𝑖 ∈ {1, … , 𝑁𝑐}
representing the quark color charge basis states, 𝐴𝑎

𝜇 is the gauge field for the
gluon, with the index 𝑎 ∈ {1, … , 𝑁2

𝑐 − 1} representing the gluon color basis
states, the gluon field strength tensor 𝐹𝑎

𝜇𝜈 is

𝐹𝑎
𝜇𝜈 = 𝜕𝜇𝐴𝑎

𝜈 − 𝜕𝜈𝐴𝑎
𝜇 − 𝑔𝑠 𝑓 𝑎𝑏𝑐𝐴𝑏

𝜇𝐴𝑐
𝜈 , (A.9)

and the gauge covariant derivative 𝐷𝜇 is defined as

(𝐷𝜇)𝑖𝑗 = 𝛿𝑖𝑗𝜕𝜇 + 𝑖𝑔𝑠𝑇𝑎
𝑖𝑗𝐴𝑎

𝜇 , (A.10)

For the quarks constituting the hadrons seen in experiment, the number
of color degrees of freedom is found to be 𝑁𝑐 = 3 . However, 𝑁𝑐 is often kept
general throughout theoretical calculations.

The factors 𝑓 𝑎𝑏𝑐 and matrices 𝑇𝑎 are discussed in appendix A.5.The constant
𝑔𝑠 is the coupling constant of quantum chromodynamics.

This leads to the Feynman diagram building blocks shown in tables A.2
and A.3. In covariant gauges, defined by the condition 𝜕𝜇𝐴𝑎𝜇 = 0 , a set
of unphysical ghost particles appear to compensate for unphysical degrees
of freedom that are not eliminated in these gauges. The main text does not
consider any processes to the orders where ghosts become relevant, but they
are included here for completeness. The symbols 𝑢, 𝑣, 𝜀, 𝑆𝐹, 𝐷𝐹 have the same
meaning here as in the QED case, but as shown, the propagators acquire an
extra color-conserving 𝛿-factor in the QCD case. A color-conserving 𝛿𝑖𝑗 must
also be appended to the QED vertex factor when the fermions are quarks.

51



A.4. Polarization

Table A.3: Vertices in QCD Feynman diagrams

𝑗

𝑖

𝜇, 𝑎 = −𝑖𝑔𝑠𝑇𝑎
𝑖𝑗𝛾𝜇

𝑝 ↙

𝑐

𝑏

𝜇, 𝑎 = −𝑔𝑠 𝑓 𝑎𝑏𝑐𝑝𝜇

↘ 𝑝2

𝑝3 ↗ ← 𝑝1

𝜌, 𝑐

𝜈, 𝑏

𝜇, 𝑎
= −𝑔𝑠 𝑓 𝑎𝑏𝑐[ 𝜂𝜇𝜈 (𝑝1 − 𝑝2)𝜌

+ 𝜂𝜈𝜌 (𝑝2 − 𝑝3)𝜇

+ 𝜂𝜌𝜇 (𝑝3 − 𝑝1)𝜈 ]

𝜎, 𝑑

𝜌, 𝑐

𝜇, 𝑎

𝜈, 𝑏

= −𝑖𝑔2
𝑠 [ 𝑓 𝑒𝑎𝑏 𝑓 𝑒𝑐𝑑 (𝜂𝜇𝜌𝜂𝜈𝜎 − 𝜂𝜇𝜎𝜂𝜈𝜌)

+ 𝑓 𝑒𝑎𝑐 𝑓 𝑒𝑑𝑏 (𝜂𝜇𝜎𝜂𝜈𝜌 − 𝜂𝜇𝜌𝜂𝜈𝜎)

+ 𝑓 𝑒𝑎𝑑 𝑓 𝑒𝑏𝑐 (𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜌𝜂𝜈𝜎) ]

A.4 Polarization
As mentioned above, an external photon or gluon is described by a polarization
4-vector 𝜀(𝑝) . This is the coefficient in a plane wave solution to the classical
equation of motion for the gauge field 𝐴𝜇 [6, p. 96]:

𝐴𝜇 (𝑥) ∝ 𝜀𝜇 (𝑝) 𝑒−𝑖𝑝⋅𝑥 + 𝜀∗𝜇 (𝑝) 𝑒𝑖𝑝⋅𝑥 . (A.11)

The polarization therefore satisfies the momentum space equivalent of any
equation satisfied by the field 𝐴𝜇 . In covariant gauges one has 𝜕𝜇𝐴𝜇 = 0 ,
translating to the constraint 𝑝⋅𝜀(𝑝) = 0 . For a general 4-momentum 𝑝 (implying
non-zero mass), this gives three polarization degrees of freedom, which can
be represented by an orthonormal basis:

𝜀𝜇
𝑟 (𝑝) ⋅ 𝜀∗𝜇

𝑟′ (𝑝) = −𝛿𝑟𝑟′ , 𝑟 ∈ {1, 2, 3} . (A.12)
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A.5. Some results from SU(𝑁𝑐)

Let the decomposition be such that 𝜀3(𝑝) denotes the polarization along the
direction of travel: 𝜺3(𝑝) ∝ 𝒑 , and 𝜀0

3(𝑝) = 𝒑 ⋅ 𝜺3(𝑝)/𝑝0 . However, if the mass
is zero, such as for gluons and photons, 𝑝2 = 0 and 𝜀3(𝑝) ∝ 𝑝 , and it is clear
that equation (A.12) can no longer be satisfied when including 𝑟 = 3 . Thus,
for massless particles longitudinal polarization is unphysical, and only two
polarization degrees of freedom remain, 𝑟 ∈ {1, 2} . Following [1, pp. 76-79],
this can be enforced explicitly by adding a second constraint 𝜀(𝑝) ⋅ 𝑛 = 0 ,
where 𝑛 is any 4-vector satisfying 𝑛 ⋅ 𝑝 ≠ 0 . This clearly also implies 𝑛 ⋅ 𝐴 = 0 ,
so this constraint defines a new class of gauges called physical gauges.

When calculating matrix elements, one frequently needs to find the polar-
ization sum

∑
𝑟

𝜀𝜇
𝑟 (𝑝) 𝜀∗𝜈

𝑟 (𝑝) = 𝐴 (𝑝, 𝑛) 𝜂𝜇𝜈 + 𝐵 (𝑝, 𝑛) 𝑝𝜇𝑝𝜈 + 𝐶 (𝑝, 𝑛) 𝑛𝜇𝑛𝜈

+ 𝐷1 (𝑝, 𝑛) 𝑝𝜇𝑛𝜈 + 𝐷2 (𝑝, 𝑛) 𝑛𝜇𝑝𝜈 .
(A.13)

This form of the right hand side could be written down by considering the
only available independent variables and quantities carrying a Lorentz index.
Applying the conditions 𝑝 ⋅ 𝜀𝑟(𝑝) = 0 , 𝑛 ⋅ 𝜀𝑟(𝑝) = 0 and equation (A.12), the
sum is found to be

∑
𝑟

𝜀𝜇
𝑟 (𝑝) 𝜀∗𝜈

𝑟 (𝑝) = −𝜂𝜇𝜈 +
𝑝𝜇𝑛𝜈 + 𝑛𝜇𝑝𝜈

𝑛 ⋅ 𝑝 − 𝑛2
𝑝𝜇𝑝𝜈

(𝑛 ⋅ 𝑝)2 . (A.14)

In physical gauges, the numerator of the gluon and photon propagator would
look similar to this, and since these gauges eliminate all unphysical degrees
of freedom, this would eliminate the need for ghost particles in QCD (at the
expense of imposing a gauge condition that is not Lorentz covariant). On
the other hand, not explicitly eliminating the unphysical degrees of freedom
for external gluons (that is, neglecting 𝑛-dependent terms in equation (A.14)
when applied to initial and final states) would introduce the need to consider
additional diagrams with external ghost pairs in processes involving dia-
grams where external gluon pairs couple to triple gluon vertices. The middle
ground when working in covariant gauges is to use the covariant propagator
from equation (A.7) for internal gluons, and including diagrams with internal
ghosts as necessary, while for external gluons using the polarization sum in
equation (A.14) and thus avoiding the need for external ghosts.

A.5 Some results from SU(𝑁𝑐)
The fields appearing in the Lagrangians in equations (A.3) and (A.8) carry
some redundancy in their description. This is to say that the fields may be
transformed in certain ways without changing the value of the Lagrangian,
and thus without changing the physics. This is called gauge symmetry, and is
the origin of the name “gauge field” for the photon and gluon fiels 𝐴𝜇, and of
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the concept of gauges introduced while discussing the propagator 𝐷𝜇𝜈
𝐹 and

the polarization vectors.
Gauge symmetries are defined by symmetry groups. The gauge group

of QED is U(1), while the gauge group of QCD is SU(𝑁𝑐) for quarks with
𝑁𝑐 color degrees of freedom. No properties of U(1), SU(𝑁𝑐) or groups in
general will be derived here, but some important results will be stated. For
a physicist-friendly treatment of Lie groups in general, see e.g. [20]. For a
discussion in the context of QCD, see [1].

That the gauge symmetry of QCD is SU(𝑁𝑐) means that the QCD La-
grangian, equation (A.8), is invariant under a transformation of the quark field
𝜓𝑞 = (𝜓𝑞,1, … , 𝜓𝑞,𝑁𝑐

) in the fundamental representation of SU(𝑁𝑐), provided
that the gauge field 𝐴𝜇 = 𝑇𝑎𝐴𝑎

𝜇 transforms in the adjoint representation of the
same group (with an additional inhomogeneous term if the transformation is
local, that is, varies continuously between spacetime points). These transforma-
tion properties are not explicitly applied in the main text, but their significance
is that they explain how a gauge field with 𝑁2

𝑐 − 1 degrees of freedom must
appear when requiring that a Lagrangian is invariant under a local SU(𝑁𝑐)
transformation of a matter field with 𝑁𝑐 degrees of freedom. This explains
the ranges of the color indices 𝑖, 𝑗, 𝑎 . For real-world quarks, 𝑁𝑐 = 3 such that
𝑁2

𝑐 − 1 = 8 .
A general element of SU(𝑁𝑐) may be expressed as 𝑈(𝜃) = exp(𝑖𝜃𝑎𝑇𝑎) ,

where the 𝜃𝑎 are 𝑁2
𝑐 − 1 real parameters and the matrices 𝑇𝑎 are known as the

generators of SU(𝑁𝑐), and are the same as the 𝑇𝑎 appearing in equations (A.8)
and (A.10). In the fundamental representation, the elements of SU(𝑁𝑐) are
unitary 𝑁𝑐 × 𝑁𝑐-matrices 𝑈, 𝑈𝑈† = 𝑈†𝑈 = 𝑰, with determinant det(𝑈) = +1 .
Hence, the generators are Hermitian and tracecless 𝑁𝑐 × 𝑁𝑐 matrices 𝑇𝑎 =
𝑇𝑎†, Tr [𝑇𝑎] = 0 . The most common representation of the generators of SU(3)
is 𝑇𝑎 = 𝜆𝑎/2 , where 𝜆𝑎 are the Gell-Mann matrices listed in equation (A.15).

𝜆1 =
⎛⎜⎜⎜
⎝

0 1 0
1 0 0
0 0 0

⎞⎟⎟⎟
⎠

𝜆2 =
⎛⎜⎜⎜
⎝

0 −𝑖 0
𝑖 0 0
0 0 0

⎞⎟⎟⎟
⎠

𝜆3 =
⎛⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 0

⎞⎟⎟⎟
⎠

𝜆4 =
⎛⎜⎜⎜
⎝

0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟
⎠

𝜆5 =
⎛⎜⎜⎜
⎝

0 0 −𝑖
0 0 0
𝑖 0 0

⎞⎟⎟⎟
⎠

𝜆6 =
⎛⎜⎜⎜
⎝

0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟
⎠

𝜆7 =
⎛⎜⎜⎜
⎝

0 0 0
0 0 −𝑖
0 𝑖 0

⎞⎟⎟⎟
⎠

𝜆8 =
1

√3

⎛⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 −2

⎞⎟⎟⎟
⎠

,

(A.15)

The algebra of the generators is defined by the structure constants 𝑓 𝑎𝑏𝑐 :

[𝑇𝑎, 𝑇𝑏] = 𝑖 𝑓 𝑎𝑏𝑐𝑇𝑐 . (A.16)

For SU(3) with generators represented as above, the structure constants are
antisymmetric in all indices, and up to permutation of indices the non-zero
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values are:

𝑓 123 = 1 ,

𝑓 458 = 𝑓 678 =
√3
2 ,

𝑓 147 = 𝑓 165 = 𝑓 246 = 𝑓 345 = 𝑓 257 =
1
2 .

(A.17)

For the fundamental representation of SU(𝑁𝑐), the generators may be
chosen such that the structure factors are antisymmetric in all indices. The
normalization of the generators can then be written

𝑇𝑎
𝑖𝑗𝑇𝑏†

𝑗𝑖 = Tr [𝑇𝑎𝑇𝑏†] = 𝑇𝐹𝛿𝑎𝑏 , (A.18)

𝑇𝑎
𝑖𝑗𝑇𝑎†

𝑗𝑘 = (𝑇𝑎𝑇𝑎†)𝑖𝑘 = 𝐶𝐹𝛿𝑖𝑘 . (A.19)

Clearly,
𝑇𝑎

𝑖𝑗𝑇𝑎†
𝑗𝑖 = Tr [𝑇𝑎𝑇𝑎†] = 𝑇𝐹 (𝑁2

𝑐 − 1) = 𝐶𝐹𝑁𝑐 . (A.20)

Here, 𝑇𝐹 is called the Dynkin index and may be chosen freely, and 𝐶𝐹 is
called the color factor. Since the generators are Hermitian, the daggers in the
above identities may be removed without altering the results. For SU(3) with
generators represented as above,

𝑇𝐹 =
1
2 , (A.21)

𝐶𝐹 =
4
3 . (A.22)
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B
Properties of gamma matrices and

Dirac spinors

This appendix reviews properties of the Dirac gamma matrices and Dirac
spinors. All derivations are performed in a representation-independent man-
ner, inspired by [21], but the presentation focuses on the properties needed in
the main text.

B.1 Gamma matrices
The gamma matrices are any set of 4 × 4-matrices 𝛾𝜇 , where 𝜇 is a Lorentz
index, satisfying the anticommutation relations

{𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇𝜈𝑰 . (B.1)

The objects acted upon by these matrices are spinors, presented in appendix B.2,
and the entries are referred to as 𝛾𝜇

𝛼𝛽 where 𝛼, 𝛽 are called spinor indices.
More explicitly, Equation (B.1) can be written

(𝛾0)2 = 𝑰 ,

(𝛾𝑖)2 = −𝑰 , 𝑖 ∈ {1, 2, 3} ,
𝛾𝜇𝛾𝜈 = −𝛾𝜈𝛾𝜇 , 𝜇 ≠ 𝜈 .

(B.2)

From this, it is clear that 𝛾0 can only have eigenvalues ±1 , while the 𝛾𝑖 can
only have eigenvalues ±𝑖 .

A similarity transformation 𝛾𝜇 → 𝛾′𝜇 = 𝑆𝛾𝜇𝑆−1 leaves equation (B.1)
invariant and thus relates different representations of the gamma matrices.
The most common representations are those where 𝛾0 is Hermitian and the 𝛾𝑖

anti-Hermitian, (𝛾0)† = 𝛾0 and (𝛾𝑖)† = −𝛾𝑖 . A convenient way of expressing
this is

(𝛾𝜇)† = 𝛾0𝛾𝜇𝛾0 . (B.3)

Such representations are related by unitary similarity transformations 𝛾𝜇 →
𝛾′𝜇 = 𝑈𝛾𝜇𝑈† , 𝑈† = 𝑈−1 .
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B.1. Gamma matrices

The restriction in equation (B.3) is related to the origin of the gamma
matrices as coefficients in the Dirac Hamiltonian

𝐻 = 𝛾0 (𝜸 ⋅ 𝒑 + 𝑚) . (B.4)

Equation (B.1) can be derived by requiring this Hamiltonian to satisfy the
relativistic energy-momentum relation 𝐻2 = 𝒑2 + 𝑚2 . The Hermiticity condi-
tions, equation (B.3), are needed for 𝐻 to be Hermitian. Only representations
satisfying equation (B.3) are considered here.

It is convenient to define the matrix

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 . (B.5)

It satisfies the following properties:

(𝛾5)† = 𝛾5 ,

(𝛾5)2 = 𝑰 ,
{𝛾5, 𝛾𝜇} = 0 .

(B.6)

This is straightforward to show by applying equations (B.2) and (B.3). The 𝛾5

matrix is closely related to the concept of parity [5, pp. 235-238], but here it is
only used as a convenient tool to prove trace identities.

Traces

It is often necessary to compute traces of products of gamma matrices. The
trace of a matrix is the sum of its diagonal entries: Tr [𝐴] = ∑𝑖 𝐴𝑖𝑖 . The trace
operation is obviously linear, and it is also invariant under cyclic permutations
of the factors in its argument:

Tr [𝐴1𝐴2 ⋯ 𝐴𝑁−1𝐴𝑁] = Tr [𝐴𝑁𝐴1𝐴2 ⋯ 𝐴𝑁−1] . (B.7)

This is known as the cyclicity of the trace.
The gamma matrices are traceless, as seen by

Tr [𝛾𝜇] = Tr [(𝛾5)2 𝛾𝜇]

= −Tr [𝛾5𝛾𝜇𝛾5]

= −Tr [(𝛾5)2 𝛾𝜇]

= −Tr [𝛾𝜇] .

(B.8)

Here, the properties from equation (B.6) are used in the first two steps by
inserting an identity in the form of (𝛾5)2 and then anticommuting. A cyclic
permutation is performed in the third step.
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B.1. Gamma matrices

By a similar argument, the trace of a product of any odd number of gamma
matrices must vanish:

Tr [𝛾𝜇1 ⋯ 𝛾𝜇𝑁] = Tr [(𝛾5)2 𝛾𝜇1 ⋯ 𝛾𝜇𝑁]

= (−1)𝑁Tr [𝛾5𝛾𝜇1 ⋯ 𝛾𝜇𝑁𝛾5]

= (−1)𝑁Tr [(𝛾5)2 𝛾𝜇1 ⋯ 𝛾𝜇𝑁]

= (−1)𝑁Tr [𝛾𝜇1 ⋯ 𝛾𝜇𝑁] .

(B.9)

The case of two matrices is straightforward:

Tr [𝛾𝜇𝛾𝜈] = 𝜂𝜇𝜈Tr [𝑰]
= 4𝜂𝜇𝜈 ,

(B.10)

since by cyclicity, Tr [𝛾𝜇𝛾𝜈] = Tr [𝛾𝜈𝛾𝜇] = Tr [{𝛾𝜇, 𝛾𝜈}/2] .
In the general case, equation (B.1) can be applied repeatedly to reduce

a trace of 𝑁 gamma matrices to a sum of traces of 𝑁 − 2 gamma matrices
by anticommuting one matrix through the rest of the product. By recursive
application of this algorithm, the trace of any (even) number of gamma matrices
may be found. For 𝑁 = 4 , the algorithm works as follows:

Tr [𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎] = 2𝜂𝜇𝜈Tr [𝛾𝜌𝛾𝜎] − Tr [𝛾𝜈𝛾𝜇𝛾𝜌𝛾𝜎]
= 2 (𝜂𝜇𝜈Tr [𝛾𝜌𝛾𝜎] − 𝜂𝜇𝜌Tr [𝛾𝜈𝛾𝜎]) + Tr [𝛾𝜈𝛾𝜌𝛾𝜇𝛾𝜎]
= 2 (𝜂𝜇𝜈Tr [𝛾𝜌𝛾𝜎] − 𝜂𝜇𝜌Tr [𝛾𝜈𝛾𝜎] + 𝜂𝜇𝜎Tr [𝛾𝜈𝛾𝜌])

− Tr [𝛾𝜈𝛾𝜌𝛾𝜎𝛾𝜇] .

(B.11)

The last term on the right hand side is equal to the expression on the left hand
side by cyclicity. Substituting equation (B.10) gives the result:

Tr [𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎] = 4 (𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜌𝜂𝜈𝜎 + 𝜂𝜇𝜎𝜂𝜈𝜌) . (B.12)

Similarly,

Tr [𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎𝛾𝛿𝛾𝜆] = 4 ( 𝜂𝜇𝜈𝜂𝜌𝜎𝜂𝛿𝜆 − 𝜂𝜇𝜈𝜂𝜌𝛿𝜂𝜎𝜆 + 𝜂𝜇𝜈𝜂𝜌𝜆𝜂𝜎𝛿

− 𝜂𝜇𝜌𝜂𝜈𝜎𝜂𝛿𝜆 + 𝜂𝜇𝜌𝜂𝜈𝛿𝜂𝜎𝜆 − 𝜂𝜇𝜌𝜂𝜈𝜆𝜂𝜎𝛿

+ 𝜂𝜇𝜎𝜂𝜈𝜌𝜂𝛿𝜆 − 𝜂𝜇𝜎𝜂𝜈𝛿𝜂𝜌𝜆 + 𝜂𝜇𝜎𝜂𝜈𝜆𝜂𝜌𝛿

− 𝜂𝜇𝛿𝜂𝜈𝜌𝜂𝜎𝜆 + 𝜂𝜇𝛿𝜂𝜈𝜎𝜂𝜌𝜆 − 𝜂𝜇𝛿𝜂𝜈𝜆𝜂𝜌𝜎

+ 𝜂𝜇𝜆𝜂𝜈𝜌𝜂𝜎𝛿 − 𝜂𝜇𝜆𝜂𝜈𝜎𝜂𝜌𝛿 + 𝜂𝜇𝜆𝜂𝜈𝛿𝜂𝜌𝜎) .

(B.13)

Generalizing to 𝑑 spacetime dimensions, it is still possible define an algebra
satisfying equation (B.1). When doing dimensional regularization as discussed
in appendix C, the intent is always to take the limit 𝑑 → 4 in the end, and
one can therefore assume Tr [𝑰] = 4 [1, p. 433]. Thus, equations (B.10), (B.12)
and (B.13) may be used for dimensional regularization. The only important
difference is that the contraction of the metric tensor with itself is changed,
𝜂𝜇

𝜇 = 𝑑 = 4 − 2𝜀 , and this must be kept in mind when contracting the traces
with other quantities.
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Contractions

The Lorentz index on the gamma matrix may be raised and lowered by the
metric tensor in the same way as for vectors:

𝜂𝜇𝜈𝛾𝜈 = 𝛾𝜇 . (B.14)

Thus, contracted gamma matrix products are straightforward to simplify using
the anticommutation relations. Some examples are shown here, calculated in
𝑑 = 4 − 2𝜀 dimensions:

𝛾𝜇𝛾𝜇 =
1
2 {𝛾𝜇, 𝛾𝜇} = 𝜂𝜇

𝜇𝑰

= 𝑑𝑰 = (4 − 2𝜀) 𝑰 ,
(B.15)

𝛾𝜇𝛾𝜌𝛾𝜇 = (2𝜂𝜇𝜌 − 𝛾𝜌𝛾𝜇) 𝛾𝜇

= (2 − 𝑑) 𝛾𝜌 = −2 (1 − 𝜀) 𝛾𝜌 ,
(B.16)

𝛾𝜇𝛾𝜌𝛾𝜎𝛾𝜇 = (2𝜂𝜇𝜌 − 𝛾𝜌𝛾𝜇) 𝛾𝜎𝛾𝜇

= 2𝛾𝜎𝛾𝜌 + 2 (1 − 𝜀) 𝛾𝜌𝛾𝜎

= 4𝜂𝜎𝜌 − 2𝜀𝛾𝜌𝛾𝜎 .
(B.17)

𝛾𝜇𝛾𝜌𝛾𝜎𝛾𝜆𝛾𝜇 = (2𝜂𝜇𝜌 − 𝛾𝜌𝛾𝜇) 𝛾𝜎𝛾𝜆𝛾𝜇

= 2𝛾𝜎𝛾𝜆𝛾𝜌 − 𝛾𝜌 (4𝜂𝜆𝜎 − 2𝜀𝛾𝜎𝛾𝜆)
= 2 (𝛾𝜎𝛾𝜆 − 2𝜂𝜆𝜎) 𝛾𝜌 + 2𝜀𝛾𝜌𝛾𝜎𝛾𝜆

= −2𝛾𝜆𝛾𝜎𝛾𝜌 + 2𝜀𝛾𝜌𝛾𝜎𝛾𝜆 .

(B.18)

Combining these relations, one may even resolve “intertwined” contractions
like

𝛾𝜇𝛾𝜌𝛾𝜎𝛾𝜏𝛾𝜇𝛾𝛿𝛾𝜎𝛾𝜆 = − 8𝜂𝜌𝛿𝛾𝜏𝛾𝜆

+ 4𝜀 (2𝜂𝜌𝜏𝛾𝛿𝛾𝜆 + 𝛾𝜌𝛾𝛿𝛾𝜏𝛾𝜆)
− 4𝜀2𝛾𝜌𝛾𝜏𝛾𝛿𝛾𝜆 .

(B.19)

The trace of this expression is

Tr [𝛾𝜇𝛾𝜌𝛾𝜎𝛾𝜏𝛾𝜇𝛾𝛿𝛾𝜎𝛾𝜆] = 16[ (−2 + 𝜀 (1 + 𝜀)) 𝜂𝜌𝛿𝜂𝜏𝜆

+ 𝜀 (1 − 𝜀) (𝜂𝜌𝜏𝜂𝛿𝜆 + 𝜂𝜌𝜆𝜂𝛿𝜏) ] .
(B.20)

The contraction of a the gamma matrices with a 4-vector is expressed by
the so-called Feynman slash:

/𝑎 = 𝑎𝜇𝛾𝜇

= 𝑎0𝛾0 − 𝒂 ⋅ 𝜸 .
(B.21)

Note that slashed vectors are matrices, and do not in general commute with
other slashed vectors or gamma matrices.
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Slashed vectors may appear in contracted products of gamma matrices like
those shown above:

𝛾𝜇/𝑎𝛾𝜇 = 𝑎𝜌𝛾𝜇𝛾𝜌𝛾𝜇

= −2 (1 − 𝜀) /𝑎 ,
(B.22)

𝛾𝜇/𝑎/𝑏𝛾𝜇 = 4 (𝑎 ⋅ 𝑏) 𝑰 − 2𝜀/𝑎/𝑏 . (B.23)
𝛾𝜇/𝑎/𝑏/𝑐𝛾𝜇 = −2/𝑐/𝑏/𝑎 + 2𝜀/𝑎/𝑏/𝑐 . (B.24)

Products of slashed vectors may be rewritten using the anticommutation
relations:

/𝑎/𝑏 + /𝑏/𝑎 = 𝑎𝜇𝑏𝜈 {𝛾𝜇, 𝛾𝜈}
= 2 (𝑎 ⋅ 𝑏) 𝑰 ,

(B.25)

/𝑎/𝑎 = 𝑎2𝑰 . (B.26)

For real-valued vectors, equation (B.3) may be applied directly to the corre-
sponding slashed vector:

/𝑎† = 𝛾0/𝑎𝛾0

= 𝑎0𝛾0 + 𝒂 ⋅ 𝜸 .
(B.27)

Combined with equation (B.21), this yields

/𝑎† + /𝑎 = 2𝑎0𝛾0 . (B.28)

B.2 Dirac spinors
The modern form of the Dirac equation is found by substituting the Dirac
Hamiltonian (equation (B.4)) into the Schrödinger equation 𝑖𝜕𝑡𝜓 = 𝐻𝜓 , using
the position space momentum operator 𝒑 = −𝑖𝛁 , and multiplying with 𝛾0 to
set the temporal and spatial derivatives on equal footing. The result is

(𝑖/𝜕 − 𝑚) 𝜓 = 0 . (B.29)

where /𝜕 = 𝛾𝜇𝜕𝜇 , and 𝜓 is a spinor, which may be viewed as a complex vector
with components 𝜓𝛼 where 𝛼 is a spinor index.

A Dirac spinor 𝑢(𝑝) describes a free fermion with mass 𝑚 and 4-momentum
𝑝 = (𝑝0, 𝒑) , and is related to a plane-wave solution of the Dirac equation:

𝜓 (𝑥) = 𝑢 (𝑝) 𝑒−𝑖𝑝⋅𝑥 . (B.30)

Substituting this into equation (B.29) and dividing by exp{−𝑖𝑝 ⋅ 𝑥} gives the
Dirac equation in momentum space:

(/𝑝 − 𝑚) 𝑢 (𝑝) = 0 . (B.31)
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B.2. Dirac spinors

Multiplying with /𝑝 + 𝑚 shows that in order to find a non-trivial solution
for 𝑢(𝑝) , the 4-momentum must satisfy the relativistic energy-momentum
relation:

(/𝑝 + 𝑚) (/𝑝 − 𝑚) 𝑢 (𝑝) = (𝑝2 − 𝑚2) 𝑢 (𝑝) = 0 , (B.32)

which is satisfied if
(𝑝0)2 = 𝒑2 + 𝑚2 ≡ 𝐸2 . (B.33)

A 4-momentum satisfying this constraint is written 𝑝 = (𝐸, 𝒑) .
There is an ambiguity in the definition of 𝐸 = ±√𝒑2 + 𝑚2 . Hence, for a

given momentum 𝒑 there are two sets of solutions to equation (B.31) – one
with 𝐸 > 0 and one with 𝐸 < 0 . This is resolved by interpreting a particle with
4-momentum 𝑝 and energy 𝐸 < 0 as an antiparticle with 4-momentum −𝑝 .
To accomplish this transparently, another set of Dirac spinors is introduced:
𝑣(𝑝) ∝ 𝑢(−𝑝) , describing a free antifermion with 4-momentum 𝑝 . The full
set of Dirac spinors thus describes the plane waves

𝜓 (𝑥) =
⎧{
⎨{⎩

𝑢 (𝑝) 𝑒−𝑖𝑝⋅𝑥 ,
𝑣 (𝑝) 𝑒𝑖𝑝⋅𝑥 ,

(B.34)

now only allowing solutions with 𝐸 > 0 . Substituting into equation (B.29)
gives the two momentum-space Dirac equations for particle and antiparticle
spinors:

(/𝑝 − 𝑚) 𝑢 (𝑝) = 0 , (B.35)
(/𝑝 + 𝑚) 𝑣 (𝑝) = 0 . (B.36)

In order to discover the properties of these spinors, the first step is to find
expressions for them in the case that 𝒑 = 0 , such that 𝐸 = 𝑚 . Equations (B.35)
and (B.36) then reduce to

(𝛾0 − 1) 𝑢 (𝑚, 0) = 0 , (B.37)
(𝛾0 + 1) 𝑣 (𝑚, 0) = 0 . (B.38)

Hence, these spinors are eigenvectors of 𝛾0 , with eigenvalue +1 for 𝑢(𝑚, 0)
and −1 for 𝑣(𝑚, 0) . It has been shown in appendix B.1 that ±1 are the only
eigenvalues of 𝛾0 , and that it is traceless, hence there must be two linearly
independent eigenvectors for each eigenvalue. Let 𝜉 𝑠 and 𝜒𝑠 be two sets of
orthonormal eigenvectors, one for each eigenvalue, indexed by 𝑠 = ±1:

𝛾0𝜉 𝑠 = 𝜉 𝑠 , (𝜉 𝑠)† 𝜉 𝑠′ = 𝛿𝑠𝑠′ , (B.39)

𝛾0𝜒𝑠 = −𝜒𝑠 , (𝜒𝑠)† 𝜒𝑠′ = 𝛿𝑠𝑠′ . (B.40)

Since 𝛾0 is Hermitian, the eigenspaces are orthogonal:

(𝜉 𝑠)† 𝜒𝑠′ = 0 . (B.41)
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B.2. Dirac spinors

The orthogonal decomposition within each eigenspace can be made explicit,
but this is not necessary here.

The zero-momentum Dirac spinors must be proportional to these eigen-
vectors:

𝑢𝑠 (𝑚, 0) ∝ 𝜉 𝑠 , (B.42)
𝑣𝑠 (𝑚, 0) ∝ 𝜒−𝑠 . (B.43)

The minus sign in equation (B.43) is conventional. The index 𝑠 on 𝑢 and 𝑣 is
then interpreted as the spin state of the fermions.

For general momenta, it is straightforward to show that the spinors satisfy
equations (B.35), (B.36), (B.42) and (B.43) if they are defined as

𝑢𝑠 (𝑝) ∝ (/𝑝 + 𝑚) 𝜉 𝑠 , (B.44)
𝑣𝑠 (𝑝) ∝ (−/𝑝 + 𝑚) 𝜒−𝑠 , (B.45)

Normalization

To determine a normalization for the spinors, consider the expression (𝜉 𝑠)†/𝑝𝜉 𝑠′ .
Since 𝛾0𝜉 𝑠 = 𝜉 𝑠 , this is equal to (𝜉 𝑠)†𝛾0/𝑝𝛾0𝜉 𝑠′ = (𝜉 𝑠)†/𝑝†𝜉 𝑠′ . Thus, only the
Hermitian part of /𝑝 , the 𝐸𝛾0-term, can contribute. The same is true for 𝜒𝑠 .
Hence,

(𝜉 𝑠)† /𝑝𝜉 𝑠′ = 𝐸 (𝜉 𝑠)† 𝛾0𝜉 𝑠′

= 𝐸𝛿𝑠𝑠′ ,
(B.46)

(𝜒𝑠)† /𝑝𝜒𝑠′ = 𝐸 (𝜒𝑠)† 𝛾0𝜒𝑠′

= −𝐸𝛿𝑠𝑠′ .
(B.47)

Equation (B.28) gives /𝑝† + /𝑝 = 2𝐸𝛾0 , such that

(±/𝑝 + 𝑚)† (±/𝑝 + 𝑚) = (2𝐸𝛾0 − (/𝑝 ∓ 𝑚)) (/𝑝 ± 𝑚)
= 2𝐸𝛾0 (/𝑝 ± 𝑚) .

(B.48)

Combining these results gives

𝑢𝑠 (𝑝)† 𝑢𝑠′ (𝑝) ∝ 2𝐸 (𝜉 𝑠)† 𝛾0 (/𝑝 + 𝑚) 𝜉 𝑠′

= 2𝐸 (𝐸 + 𝑚) 𝛿𝑠𝑠′ ,
(B.49)

𝑣𝑠 (𝑝)† 𝑣𝑠′ (𝑝) ∝ 2𝐸 (𝜒−𝑠)† 𝛾0 (/𝑝 − 𝑚) 𝜒−𝑠′

= 2𝐸 (𝐸 + 𝑚) 𝛿𝑠𝑠′ .
(B.50)
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B.2. Dirac spinors

The spinors are then defined as

𝑢𝑠 (𝑝) =
(/𝑝 + 𝑚)
√𝐸 + 𝑚

𝜉 𝑠 , (B.51)

𝑣𝑠 (𝑝) =
(−/𝑝 + 𝑚)
√𝐸 + 𝑚

𝜒−𝑠 , (B.52)

such that the normalization reads

𝑢𝑠 (𝑝)† 𝑢𝑠′ (𝑝) = 2𝐸𝛿𝑠𝑠′ , (B.53)

𝑣𝑠 (𝑝)† 𝑣𝑠′ (𝑝) = 2𝐸𝛿𝑠𝑠′ . (B.54)

This also shows that different spin states are orthogonal for any momentum,
when the spinor is treated as a complex vector.

The Dirac adjoint

Frequently when working with Dirac spinors, the Dirac adjoint is used rather
than the Hermitian adjoint. The Dirac adjoint of a spinor 𝜓 is defined as

𝜓 = 𝜓†𝛾0 . (B.55)

The rationale for introducing the Dirac adjoint is that it can be used to construct
quantities that are well-behaved under Lorentz transformations. Examples
are the inner product 𝜑𝜓 , which is a Lorentz scalar, and the current 𝜑𝛾𝜇𝜓 ,
which is a Lorentz 4-vector. Corresponding quantities defined using 𝜑† do
not behave as nicely. This is obviously a consequence of the transformation
properties of spinors under Lorentz transformations, but these properties will
not be discussed here.

Many useful quantities can be defined by sandwiching a matrix expression
between a spinor and a Dirac adjoint, in general expressed as 𝜑 𝛤𝜓 for spinors
𝜓 and 𝜑 and a matrix 𝛤 . When squaring scattering amplitudes it is often
necessary to find the complex conjugate of such expressions. This can be
expressed as

[𝜑 𝛤𝜓]∗ = [𝜑†𝛾0𝛤𝜓]†

= 𝜓†𝛤†𝛾0𝜑
= 𝜓†𝛾0𝛾0𝛤†𝛾0𝜑
= 𝜓 𝛤𝜑 ,

(B.56)

where 𝛤 is defined for any matrix as

𝛤 = 𝛾0𝛤†𝛾0 . (B.57)
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B.2. Dirac spinors

If 𝛤 can be expressed as a product of gamma matrices, 𝛤 = 𝛾𝜇 ⋯ 𝛾𝜈 , one finds

𝛤 = 𝛾0 (𝛾𝜈)† ⋯ (𝛾𝜇)† 𝛾0

= 𝛾0 (𝛾𝜈)† 𝛾0𝛾0 ⋯ 𝛾0𝛾0 (𝛾𝜇)† 𝛾0

= 𝛾𝜈 ⋯ 𝛾𝜇 .
(B.58)

This leads to the following convenient identity:

[𝜑𝛾𝜇 ⋯ 𝛾𝜈𝜓]∗ = 𝜓𝛾𝜈 ⋯ 𝛾𝜇𝜑 . (B.59)

It is also useful to find the adjoint of the Dirac equations in momen-
tum space, equations (B.35) and (B.36), which is straightforward using equa-
tion (B.27):

𝑢 (𝑝) (/𝑝 − 𝑚) = 0 , (B.60)
𝑣 (𝑝) (/𝑝 + 𝑚) = 0 . (B.61)

Inner products

As mentioned in the previous section, one can define a Lorentz-invariant inner
product of two spinors 𝜓 and 𝜑 as 𝜑𝜓 = (𝜓𝜑)∗ . This is similar to the usual
inner product on a complex vector space, but uses the Dirac adjoint in place of
the Hermitian adjoint.

To find the various inner products of 𝑢𝑠(𝑝) and 𝑣𝑠(𝑝) , consider the expres-
sion

(±/𝑝 + 𝑚)† 𝛾0 (±/𝑝 + 𝑚) = 𝛾0 (/𝑝 ± 𝑚) (/𝑝 ± 𝑚)
= 𝛾0 (𝑝2 ± 2𝑚/𝑝 + 𝑚2)
= 2𝑚𝛾0 (±/𝑝 + 𝑚) ,

(B.62)

Comparing with equation (B.48), it is clear that replacing 𝑢𝑠(𝑝)† and 𝑣𝑠(𝑝)†

with 𝑢𝑠(𝑝) and 𝑣𝑠(𝑝) in equations (B.53) and (B.54) amounts to replacing a
factor of 𝐸 with a factor of 𝑚 and inserting a minus sign for the 𝑣 spinors:

𝑢𝑠 (𝑝) 𝑢𝑠′ (𝑝) = 2𝑚𝛿𝑠𝑠′ , (B.63)
𝑣𝑠 (𝑝) 𝑣𝑠′ (𝑝) = −2𝑚𝛿𝑠𝑠′ . (B.64)

Thus, different spin states are orthogonal also with respect to the spinor inner
product. Particle and antiparticle states are also orthogonal, since

(±/𝑝 + 𝑚)† 𝛾0 (∓/𝑝 + 𝑚) = 𝛾0 (/𝑝 ± 𝑚) (/𝑝 ∓ 𝑚) = 0 . (B.65)

such that
𝑣𝑠 (𝑝) 𝑢𝑠′ (𝑝) = 𝑢𝑠 (𝑝) 𝑣𝑠′ (𝑝) = 0 . (B.66)
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B.2. Dirac spinors

Completeness relations

Consider the matrices

𝑃𝑢 (𝑝) = ∑
𝑠

𝑢𝑠 (𝑝) 𝑢𝑠 (𝑝) , (B.67)

𝑃𝑣 (𝑝) = ∑
𝑠

𝑣𝑠 (𝑝) 𝑣𝑠 (𝑝) . (B.68)

The four 𝑢- and 𝑣-spinors for a given momentum 𝑝 form a complete basis for
the spinor space. A general spinor can therefore be written

𝜓 = ∑
𝑟

𝑎𝑟𝑢𝑟 (𝑝) + ∑
𝑡

𝑏𝑡𝑣𝑡 (𝑝) . (B.69)

Applying 𝑃𝑢(𝑝) to 𝜓 and using equations (B.63) and (B.64) gives

𝑃𝑢 (𝑝) (∑
𝑟

𝑎𝑟𝑢𝑟 (𝑝) + ∑
𝑡

𝑏𝑡𝑣𝑡 (𝑝))

= 2𝑚 ∑
𝑠

𝑢𝑠 (𝑝) (∑
𝑟

𝑎𝑟𝛿𝑠𝑟 + ∑
𝑡

𝑏𝑡 ⋅ 0)

= 2𝑚 (∑
𝑟

𝑎𝑟𝑢𝑟 (𝑝)) .

(B.70)

Hence, 𝑃𝑢(𝑝)/2𝑚 must be the projection operator into the subspace spanned
by 𝑢𝑠(𝑝) . Similarly, −𝑃𝑣(𝑝)/2𝑚 is the projection operator into the subspace
spanned by 𝑣𝑠(𝑝) . Comparing with equations (B.35) and (B.36), it is therefore
clear that

∑
𝑠

𝑢𝑠 (𝑝) 𝑢𝑠 (𝑝) = /𝑝 + 𝑚 , (B.71)

∑
𝑠

𝑣𝑠 (𝑝) 𝑣𝑠 (𝑝) = /𝑝 − 𝑚 . (B.72)

These are the completeness relations for Dirac spinors.
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C
Dimensional regularization

To regularize divergent integrals in quantum field theory, an approach that is
often used is to compute the integrals in an arbitrary 𝑑-dimensional spacetime
with 1 timelike dimension and 𝑑 − 1 spacelike dimensions. Then, setting
𝑑 = 4 − 2𝜀 , the divergences of the integrals in 4-dimensional spacetime
manifest as poles when 𝜀 → 0 .

Certain quantities need to be reinterpreted in order to make sense when
generalizing the number of dimensions. Most obviously, the contraction of
the metric tensor in Minkowski space with itself becomes

𝜂𝜇𝜈𝜂𝜇𝜈 = 𝜂𝜇
𝜇 = 𝑑 = 4 − 2𝜀 , (C.1)

instead of the usual 𝜂𝜇
𝜇 = 4 .

In addition, measures must be taken to ensure consistency in the dimension
of the Lagrangian and the action. The action is the integral of the Lagrangian
over all spacetime:

𝑆 = ∫ 𝑑𝑑𝑥ℒ , (C.2)

and it should have the same dimensions as Planck’s constant, which is set to
ℏ = 1 in this text. Since the dimension of 𝑑𝑑𝑥 is obviously [𝑑𝑑𝑥] = 𝐿𝑑 , where
𝐿 denotes a length dimension, the dimension of ℒ must be [ℒ] = 𝐿−𝑑 = 𝑀𝑑 .
Here, 𝑀 is a mass dimension, and the relation 𝑀 = 𝐿−1 is a consequence of
setting ℏ = 𝑐 = 1 .

From this one can deduce the dimensions of the fields and coupling con-
stants in equations (A.3) and (A.8). In partuclar, one finds that [𝑔𝑠] = [𝑒] =
𝑀2−(𝑑/2) = 𝑀𝜀 . However, being physical parameters, the coupling constants
should be defined independently of the spacetime dimension. An arbitrary
mass scale 𝜇 is therefore introduced, and when doing dimensional regulariza-
tion one performs the replacement

𝑒 → 𝜇𝜀𝑒 ,
𝑔𝑠 → 𝜇𝜀𝑔𝑠 ,

(C.3)

leaving the values of 𝑒 and 𝑔𝑠 unchanged.
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In 𝑑 dimensions, 𝑑-dimensional integration measures such as 𝑑𝑑𝑝/(2𝜋)𝑑

must be used in place of the usual 4-dimensional ones. For integrals of the
form

∫
𝑑𝑑𝑝

(2𝜋)𝑑
𝑓 (𝑝)

(𝑝2 − 𝐴 + 𝑖𝜀)𝑛 = ∫
+∞

−∞

𝑑𝐸
2𝜋 ∫

𝑑𝑑−1𝒑
(2𝜋)𝑑−1

𝑓 (𝐸, 𝒑)
(𝐸2 − 𝒑2 − 𝐴 + 𝑖𝜀)𝑛 , (C.4)

it is often beneficial to avoid the poles by rotating from Minkowski to Euclidean
space, defining the Euclidean vector 𝑝𝐸 = (𝑝0,𝐸, 𝒑) , where 𝑝0,𝐸 = −𝑖𝐸 and 𝐸 is
the time-component of the 4-vector 𝑝 = (𝐸, 𝒑) . Thus, 𝑝2

𝐸 ≡ 𝑝2
0,𝐸 + 𝒑2 = −𝑝2 .

The term 𝑖𝜀 in equation (C.4) entails an analytic continuation of the 𝐸-integral
into the complex plane to avoid the poles at 𝐸 = ±√𝒑2 + 𝐴 , and a closed
integration contour with no poles inside is obtained by going up the real
axis, down the imaginary axis, and closing the contour in the first and third
quadrants (assuming that 𝑓 (𝐸, 𝒑) has no poles in the interior of this curve).
Thus,

∫
+∞

−∞

𝑑𝐸
2𝜋

𝑓 (𝐸, 𝒑)
(𝐸2 − 𝒑2 − 𝐴 + 𝑖𝜀)𝑛 − ∫

+𝑖∞

−𝑖∞

𝑑𝐸
2𝜋

𝑓 (𝐸, 𝒑)
(𝐸2 − 𝒑2 − 𝐴 + 𝑖𝜀)𝑛 = 0 . (C.5)

Making the substitution 𝑝0,𝐸 = −𝑖𝐸 gives

∫
+∞

−∞

𝑑𝐸
2𝜋

𝑓 (𝐸, 𝒑)
(𝐸2 − 𝒑2 − 𝐴 + 𝑖𝜀)𝑛 = 𝑖 ∫

+∞

−∞

𝑑𝑝0,𝐸
2𝜋

𝑓 (𝑖𝑝0,𝐸, 𝒑)

(−𝑝2
0,𝐸 − 𝒑2 − 𝐴 + 𝑖𝜀)

𝑛 . (C.6)

Hence,

∫
𝑑𝑑𝑝

(2𝜋)𝑑
𝑓 (𝐸, 𝒑)

(𝑝2 − 𝐴 + 𝑖𝜀)𝑛 = 𝑖 ∫
𝑑𝑑𝑝𝐸

(2𝜋)𝑑
𝑓 (𝑖𝑝0,𝐸, 𝒑)

(−𝑝2
𝐸 − 𝐴 + 𝑖𝜀)𝑛 . (C.7)

Note that the 𝑖𝜀-term is no longer significant if 𝐴 > 0 . On the other hand, if
𝐴 < 0 the rotation is not very helpful, since poles remain in the integrand. The
solution in this case is to rotate the spatial axes 𝒑 in their respective complex
planes instead, defining the euclidean vector 𝑝𝐸 = (𝐸, 𝒑𝐸) with 𝒑𝐸 = −𝑖𝒑 ,
such that 𝑝2

𝐸 = 𝑝2 . The poles lie on opposite sides of the axes in the 𝑝𝑖-plane
compared to the 𝐸-plane, so the integration contour must now go up the
imaginary axis and close in the second and fourth quadrants. The equivalent
of equation (C.6) therefore acquires a negative sign, so the rotation introduces
a factor of −𝑖 per axis. The final result is

∫
𝑑𝑑𝑝

(2𝜋)𝑑
𝑓 (𝐸, 𝒑)

(𝑝2 − 𝐴 + 𝑖𝜀)𝑛 = (−𝑖)𝑑−1 ∫
𝑑𝑑𝑝𝐸

(2𝜋)𝑑
𝑓 (𝐸, 𝑖𝒑𝐸)

(𝑝2
𝐸 − 𝐴 + 𝑖𝜀)𝑛 . (C.8)

Here the 𝑖𝜀-term is insignificant as long as 𝐴 < 0 .
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C.1. Important identities

The main benefit from rotating to Euclidean space is that the integrands
are often isotropic there, enabling further simplification:

∫
𝑑𝑑𝑝𝐸

(2𝜋)𝑑 𝑓 (𝑝2
𝐸) =

𝛺𝑑

(2𝜋)𝑑 ∫
∞

0
𝑑 ̃𝑝𝐸 ̃𝑝𝑑−1

𝐸 𝑓 ( ̃𝑝2
𝐸) (C.9)

where ̃𝑝𝐸 = √𝑝2
𝐸 is the Euclidean length of 𝑝𝐸 , and 𝛺𝑑 is the volume of the

unit sphere 𝑆𝑑−1 in 𝑑 dimensions.1 The value of 𝛺𝑑 is stated here without
derivation:

𝛺𝑑 =
2𝜋𝑑/2

𝛤(𝑑/2) . (C.10)

A proof can be found in e.g. [22].

C.1 Important identities
A number of mathematical identities come in handy when working in 𝑑 di-
mensions. Some of the most important are given here without proof.

The Euler 𝛤- and 𝛽-functions

The Euler 𝛤-function is defined as

𝛤 (𝑧) = ∫
∞

0
𝑑𝑡 𝑡𝑧−1𝑒−𝑡 , ℜ{𝑧} > 0 , (C.11)

and extended to the whole complex plane by analytic continuation. It satisfies
the following identities:

𝛤 (𝑧 + 1) = 𝑧𝛤 (𝑧) , (C.12)

𝛤 (2𝑧) =
22𝑧−1

√𝜋
𝛤 (𝑧) 𝛤 (𝑧 +

1
2) . (C.13)

For integer 𝑛 ,
𝛤 (𝑛) = (𝑛 − 1) ! . (C.14)

The first few terms in series expansion of 𝛤(𝑧) around 𝑧 = 1 are

𝛤 (1 + 𝜀) = 1 − 𝛾𝐸𝜀 + (
𝜋2

12 +
1
2𝛾2

𝐸) 𝜀 + 𝒪 (𝜀2) , (C.15)

where 𝛾𝐸 = 0.577216 … is the Euler-Mascheroni constant.
The Euler 𝛽-function is defined as

𝛽 (𝑥, 𝑦) = ∫
1

0
𝑡𝑥−1 (1 − 𝑡)𝑦−1 𝑑𝑡

=
𝛤 (𝑥) 𝛤 (𝑦)
𝛤 (𝑥 + 𝑦) ,

ℜ{𝑥}, ℜ{𝑦} > 0 . (C.16)

1Note that the unit sphere is the (𝑑 − 1)-dimensional surface of the unit ball. Also, note
that volume is used in a general sense here. For example, 𝛺3 = 4𝜋 is what would normally be
called the surface area of the unit sphere 𝑆2 .
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C.2. Phase space in 𝑑 dimensions

Feynman parameter integrals

The general Feynman parameter integral can be written [1, p. 429]

1
𝐴𝑛1

1 ⋯ 𝐴𝑛𝑘
𝑘

=
𝛤 (𝑛1 + ⋯ + 𝑛𝑘)
𝛤 (𝑛1) ⋯ 𝛤 (𝑛𝑘)

∫
1

0
𝑑𝛼1 ⋯ 𝑑𝛼𝑘

𝛼𝑛1−1
1 ⋯ 𝛼𝑛𝑘−1

𝑘 𝛿 (1 − ∑𝑖 𝛼𝑖)
(𝛼1𝐴1 + ⋯ + 𝛼𝑘𝐴𝑘)

𝑛1+⋯+𝑛𝑘
.

(C.17)
The special cases used in the main text are those with two or three factors in
the denominator:

1
𝐴𝐵 = ∫

1

0

𝑑𝛼
(𝛼𝐴 + (1 − 𝛼) 𝐵)2 , (C.18)

1
𝐴𝐵𝐶 = ∫

1

0
𝑑𝛼 ∫

1−𝛼

0
𝑑𝛽

2
(𝛼𝐴 + 𝛽𝐵 + (1 − 𝛼 − 𝛽) 𝐶)3 . (C.19)

C.2 Phase space in 𝑑 dimensions
The differential phase space of 𝑛 outgoing particles in the usual 4 spacetime
dimensions, with 4-momenta 𝑝𝑖, 𝑖 = 1, ..., 𝑁 , is

𝑑𝛷𝑛 = (2𝜋)4𝛿(4) ⎛⎜
⎝

𝑄 −
𝑁

∑
𝑖=1

𝑝𝑖⎞⎟
⎠

𝑁
∏
𝑖=1

𝑑4𝑝𝑖
(2𝜋)4 2𝜋𝛿 (𝑝𝑖

2 − 𝑚2
𝑖 ) 𝛩 (𝑝0

𝑖 ) . (C.20)

Here, 𝑄 is the total 4-momentum and 𝛩 is the Heaviside step function.
This expression is readily generalized to 𝑑 spacetime dimensions:

𝑑𝛷(𝑑)
𝑛 = (2𝜋)𝑑𝛿(𝑑) ⎛⎜

⎝
𝑄 −

𝑁
∑
𝑖=1

𝑝𝑖⎞⎟
⎠

𝑁
∏
𝑖=1

𝑑𝑑𝑝𝑖
(2𝜋)𝑑 2𝜋𝛿 (𝑝𝑖

2 − 𝑚2
𝑖 ) 𝛩 (𝑝0

𝑖 ) . (C.21)

Using the relation

𝛿(𝑔(𝑥)) = ∑
𝑖

𝛿(𝑥 − 𝑥𝑖)
∣𝑔′(𝑥𝑖)∣

, (C.22)

where the 𝑥𝑖 are the roots of 𝑔(𝑥) , gives

𝛿 (𝑝𝑖
2 − 𝑚2

𝑖 ) 𝛩 (𝑝0
𝑖 ) =

𝛿 (𝑝0
𝑖 − 𝐸𝑖 (𝒑2

𝑖 ))
2𝐸𝑖 (𝒑2

𝑖 )
, (C.23)

with
𝐸𝑖 (𝒑2) = √𝒑2 + 𝑚2

𝑖 . (C.24)

Thus, upon substituting 𝑝0
𝑖 = 𝐸𝑖(𝒑2

𝑖 ) in the integrand, the following is an
equivalent phase space measure:

𝑑𝛷(𝑑)
𝑛 = (2𝜋)𝑑𝛿(𝑑) ⎛⎜

⎝
𝑄 −

𝑁
∑
𝑖=1

𝑝𝑖⎞⎟
⎠

𝑁
∏
𝑖=1

𝑑𝑑−1𝒑𝑖

(2𝜋)𝑑−12𝐸𝑖 (𝒑2
𝑖 )

. (C.25)
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2 particles

In the case of two outgoing particles, the phase space integral of a function
𝑓 (𝒑1, 𝒑2) can be written

𝐼 = ∫
𝑑𝑑−1𝒑1𝑑𝑑−1𝒑2

4(2𝜋)𝑑−2𝐸1 (𝒑2
1) 𝐸2 (𝒑2

2)
× 𝛿 (𝑄0 − 𝐸1 (𝒑2

1) − 𝐸2 (𝒑2
2)) 𝛿(𝑑−1) (𝑸 − 𝒑1 − 𝒑2) 𝑓 (𝒑1, 𝒑2)

= ∫
𝑑𝑑−1𝒑1

4(2𝜋)𝑑−2𝐸1 (𝒑2
1) 𝐸2 ((𝑸 − 𝒑1)2)

× 𝛿 (𝑄0 − 𝐸1 (𝒑2
1) − 𝐸2 ((𝑸 − 𝒑1)2)) 𝑓 (𝒑1, 𝑸 − 𝒑1) .

(C.26)

In the COM frame, 𝑸 = 0 and 𝑄0 = √𝑄2 = √𝑠 . To proceed, assumptions
must be made on the form of 𝑓 (𝒑1, −𝒑1) . In general, even a scalar integrand
such as a matrix element may have a directional dependence on 𝒑1 through its
dependence on other vectors, e.g. the momenta of incoming particles. If it is
isotropic, however, one may define ̃𝑝 = √𝒑2

1 and write, using equation (C.9),

𝐼 = ∫
∞

0

𝛺𝑑−1 ̃𝑝𝑑−2𝑑 ̃𝑝
4(2𝜋)𝑑−2𝐸1 ( ̃𝑝2) 𝐸2 ( ̃𝑝2)

𝛿 (√𝑠 − 𝐸1 ( ̃𝑝2) − 𝐸2 ( ̃𝑝2)) 𝑓 ( ̃𝑝) . (C.27)

Let 𝑔( ̃𝑝) be the argument of the 𝛿-function, such that

𝑔( ̃𝑝) = √𝑠 − 𝐸1 ( ̃𝑝2) − 𝐸2 ( ̃𝑝2) , (C.28)

𝑔′( ̃𝑝) = −
̃𝑝

𝐸1 ( ̃𝑝2)
−

̃𝑝
𝐸2 ( ̃𝑝2)

= − ̃𝑝 ⎛⎜
⎝

𝐸1 ( ̃𝑝2) + 𝐸2 ( ̃𝑝2)
𝐸1 ( ̃𝑝2) 𝐸2 ( ̃𝑝2)

⎞⎟
⎠

.
(C.29)

The solutions to 𝑔( ̃𝑝) = 0 are

̃𝑝± = ±
1

2√𝑠
√𝑠2 + 2𝑠(𝑚1 + 𝑚2)2 + (𝑚1 − 𝑚2)2 . (C.30)

Only the positive solution contributes in the integral, which becomes

𝐼 =
𝛺𝑑−1 ̃𝑝𝑑−3

+

4(2𝜋)𝑑−2√𝑠
𝑓 ( ̃𝑝+) . (C.31)

Substituting 𝑑 = 4 − 2𝜀 , the spherical volume can be written

𝛺3−2𝜀 =
2𝜋(3/2)−𝜀

𝛤 ((3/2) − 𝜀) . (C.32)
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Using equations (C.12) and (C.13), one can rewrite

𝛤 (
3
2 − 𝜀) = 22(𝜀−1)√𝜋

𝛤 (3 − 2𝜀)
𝛤 (2 − 𝜀)

= 22𝜀−1√𝜋
𝛤 (2 − 2𝜀)
𝛤 (1 − 𝜀) .

(C.33)

Thus,

𝐼 =
1

4𝜋 (
𝜋
̃𝑝2 )

𝜀 ̃𝑝
√𝑠

𝛤 (1 − 𝜀)
𝛤 (2 − 2𝜀) 𝑓 ( ̃𝑝) , (C.34)

where the subscript + is dropped and ̃𝑝 is understood to be subject to the
constraints from 4-momentum conservation.

From this expression the fully integrated two-particle phase space factor
in 𝑑 = 4 − 2𝜀 dimensions can be isolated. It is valid in the COM frame for
integrands that are isotropic in the momentum, and reads:

𝛷(𝑑)
2 =

1
4𝜋 (

𝜋
̃𝑝2 )

𝜀 ̃𝑝
√𝑠

𝛤 (1 − 𝜀)
𝛤 (2 − 2𝜀) . (C.35)

3 particles

In the case of three outgoing particles, it is most convenient to give the phase
space integral in terms of the energy fractions in the COM frame, defined as

𝑥𝑖 =
2𝑝𝑖 ⋅ 𝑄

𝑄2 . (C.36)

The phase space integral is not derived here, but cited from [1, p. 434]. The
result is

∫ 𝑑𝛷(𝑑)
3 𝑓 (𝒑1, 𝒑2, 𝒑3) =

𝑄2

2 (4𝜋)3 (
4𝜋
𝑄2 )

2𝜀 1
𝛤 (2 − 2𝜀)

× ∫
1

0
𝑑𝑥1 ∫

1

1−𝑥1
𝑑𝑥2

𝑓 (𝑥1, 𝑥2, 𝑥3)
[(1 − 𝑥1) (1 − 𝑥2) (1 − 𝑥3)]𝜀

(C.37)

71



Bibliography

[1] G. Dissertori, I. G. Knowles, and M. Schmelling. Quantum Chromodynam-
ics: High Energy Experiments and Theory. Oxford: Oxford University Press,
May 2003.

[2] J. C. Collins, D. E. Soper, and G. Sterman. “Factorization of Hard Pro-
cesses in QCD”. In: (Sept. 2004). arXiv: 0409313 [hep-ph].

[3] G. Sterman et al. “Handbook of perturbative QCD”. In: Reviews of Modern
Physics 67.1 (Jan. 1995), pp. 157–248.

[4] K. Olive. “Review of Particle Physics”. In: Chinese Physics C 38.9 (Aug.
2014), p. 090001.

[5] D. Griffiths. Introduction to Elementary Particles. Wiley, 2008.
[6] M. Maggiore. A Modern Introduction to Quantum Field Theory. Oxford

University Press, 2004.
[7] T. Muta. Foundations of Quantum Chromodynamics: An Introduction to

Perturbative Methods in Gauge Theories. World Scientific, 2010.
[8] R. D. Field. Applications of perturbative QCD. Addison-Wesley, 1989.
[9] R. K. Ellis, C. T. Hill, and J. D. Lykken. Perspectives in the Standard Model:

Proceedings of the Theoretical Advanced Study Institute in Elementary Particle
Physics, Boulder, Colorado, 2-28 June, 1991. World Scientific, 1992.

[10] Z. Kunszt. “Calculation of jet cross sections in hadron collisions at order
𝛼 s 3”. In: Physical Review D 46.1 (July 1992), pp. 192–221.

[11] G. Sterman and S. Weinberg. “Jets from Quantum Chromodynamics”.
In: Physical Review Letters 39.23 (Dec. 1977), pp. 1436–1439.

[12] T. Kinoshita. “Mass Singularities of Feynman Amplitudes”. In: Journal
of Mathematical Physics 3.4 (1962), p. 650.

[13] T. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”.
In: Physical Review 133.6B (Mar. 1964), B1549–B1562.

[14] G. Sterman. An Introduction to Quantum Field Theory. Cambridge Univer-
sity Press, 1993.

72

http://arxiv.org/abs/0409313


Bibliography

[15] S. Weinberg. The Quantum theory of fields. Vol. 1: Foundations. Cambridge
University Press, 1995.

[16] F. Bloch and A. Nordsieck. “Note on the Radiation Field of the Electron”.
In: Physical Review 52.2 (July 1937), pp. 54–59.

[17] R. Doria, J. Frenkel, and J. Taylor. “Counter-example to non-abelian
Bloch-Nordsieck conjecture”. In: Nuclear Physics B 168.1 (May 1980),
pp. 93–110.

[18] M. D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge
University Press, 2013.

[19] J. C. Romão and S. J. P. “A resource for signs and Feynman diagrams of
the Standard Model”. In: International Journal of Modern Physics A 27.26
(Oct. 2012). arXiv: 1209.6213.

[20] N. Jeevanjee. An Introduction to Tensors and Group Theory for Physicists.
Boston: Birkhäuser Boston, 2011.

[21] P. B. Pal. “Representation-independent manipulations with Dirac matri-
ces and spinors”. In: (Mar. 2007). arXiv: 0703214 [physics].

[22] R. K. Pathria and P. D. Beale. Statistical Mechanics. Elsevier Ltd, 2011.

73

http://arxiv.org/abs/1209.6213
http://arxiv.org/abs/0703214

	List of figures
	List of tables
	List of symbols and notation
	Preface
	Introduction
	Perturbative quantum chromodynamics
	Infrared divergences

	Cancellation of infrared divergences in ee to hadrons
	Leading order amplitude for ee -> qq
	Cross sections for ee to hadrons
	Real gluon emission: ee -> qqg at leading order
	Virtual gluon exchange: ee to qq at next-to-leading order
	Cancellation: ee to hadrons at next-to-leading order
	The ultraviolet divergence

	Discussion
	Infrared divergences in general quantum field theories
	The optical theorem and cutting rules
	Infrared safety in QCD

	Summary
	Feynman rules for QED and QCD
	General remarks
	QED
	QCD
	Polarization
	Some results from SU(N_c)

	Properties of gamma matrices and Dirac spinors
	Gamma matrices
	Dirac spinors

	Dimensional regularization
	Important identities
	Phase space in d dimensions

	Bibliography

