2 SNe, SNRs, accretion, BHs

2.1 Core collapse supernovae

Iron burning In the last possible fusion reaction, ab « particle is added to 2*Cr. Inserting into
Eq. (1.65) for the reduced mass u = 4 x 52/(4+52)my and Z2Z3 = (2x24)?, we find that iron
burning requires temperatures in the MeV range. Thus electrons are relativistic, and photons
can produce electron-positron pairs that in turn can produce neutrinos, vy < eTe™ — .
The latter can escape from the core, leading to efficient cooling to T ~ m, ~ 0.5 MeV.

SNe Il Type II or core collapse supernovae occur at the end of the fusion process in very
massive stars, M > (5—8)Mg. Theses stars develop an onion-like structure with a degenerate
Fe core. After the core is completely fused to iron, no further processes releasing energy are
possible. Instead, photo-disintegration destroys the heavy nuclei, e.g. via y+°6Fe — “He+4n,
and removes the thermal energy necessary to provide pressure support. In the following
collapse of the star, the density increases and the free electrons are forced together with
protons to form neutrons via inverse beta decay, e~ + p — n + v.: A proto-neutron star
forms. When the core density reaches nuclear density, the equation of state of nuclear matter
stiffens and infalling material is “reflected,” a shock wave propagates outwards heated by
neutrino emission from the proto-neutron star. If the SN is successful, a neutron star is left
over; otherwise a black hole remains.
The released gravitational binding energy,

—GM? —GM? 10km Mns
AFE = [— ] — [— } ~ 5 x 10%erg ( > < > (2.1)
R |u R |xs R 1.4M,

is emitted mainly via neutrinos (99%). Only 1% is transferred into kinetic energy of the
exploding star and only 0.01% goes into photons.

Ex.: Neutrinos from type II supernova.

The proto-neutron formed during the core collapse of a massive star emits copiously neutrinos. Its mass
is & 1.4My), and its radius ~ 15 km. Estimate the total (gravitational potential) energy Ej released.
Apply the virial theorem to a nucleon N at the surface of the proto-neutron star and estimate its
kinetic energy En. Estimate the number N, of neutrinos emitted and the duration of the neutrino
signal (random walk) using B, = Ex, Ey, = N,E, and 0, = 10~*3c¢m?(E,/MeV)2. For the case of
SN1987A in the Large Magellanic Cloud at a distance of 50 kpc, how many neutrinos were observed
(using the same o,) in a detector with 1032 protons?

The gravitational energy released by the collapse is By ~ 3GM?/(5R) ~ 2.1 x 10°® erg. The mean
kinetic energy En of a nucleon is Exy = Fpot/2 &~ GmyM/(2R) ~ 1 x 107* erg or 64 MeV. The
number of emitted neutrinos follows as N, = Ex/E, ~ 2 x 10°7.

2

The number of steps in a random walk with step size fin; needed to reach the distance Ris N = R?/¢2 .

Hence the duration 7 of the neutrino signal is 7 ~ Nt /c = R?/(clint). The step size £y is found as
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2 SNe, SNRs, accretion, BHs

lint = 1/(no) =~ 1 m for E, =30 MeV and n ~ 10738 /cm?. Thus 7 ~ 1 s.

The neutrino flux at Earth is ¢, = N, /(4w D?) with D = 50 kpc. The event number N,, in a detector
with N, targets each with cross section o is Neyw = Np0¢, =~ 54. However, from all 2 x 3 neutrino
types, only 7, have the quoted large cross section with protons. Thus Ney(7e) &= Ney /6. Our simplified
picture agrees roughly with reality: From SN1987A were 11-12 and 8 neutrino events with energies
20 — 40 MeV during ~ 10 s observed in the two water Cherenkov detectors operating at that time.

Cold ideal npe gas (Inverse) beta-decay leads an equilibrium distribution of neutrons, pro-
tons, and electrons in a (proto-) neutron star. The chemical potential are connected by
fe + tp = fin + py, With p,u = 0, since neutrinos can escape freely and thus their number
density is negligible.

For a cold degenerate gas, we can neglect the temperature and the Fermi-Dirac distribution
function becomes a step function. Thus all levels up-to the Fermi momentum pr are filled,
and the number density of species with two spin degrees of freedom is

=3 ), W= gEre = e

with z = pr/(mc) and A = h/(mc). Since the Fermi energy equals the chemical potential, we
have

n (2.2)

me(l—i—azg)lﬂ—i-mp(l—i-a:%)l/2 :mn(1+:1:31)1/2. (2.3)
Charge neutrality implies that n., = n, or mex, = m,x,. Thus we can eliminate z. and find
the ratio n,/n,. Squaring twice (2.3) and using @, m. < my, we obtain
3/2

4Q Q%—m?
Ny

My Ty 8 1+1/22

Ex.: a.) Derive the limiting value n,/n, = 1/8 directly. b) What happens in the opposite limit,
x, — 07

a) For large z,,, all three species are relativistic and Eq. (2.3) becomes mexe +mpxp = mpxy,. Charge
neutrality implies then immediately that

Np /Ny = (

MpTp

nxn

3
) =(1/2)° =1/8.

b) The limit x,, — 0 corresponds to a dilute, classical gas. Thus Eq. 2.2 should be replaced by the
corresponding expression for a Boltzmann gas and one obtains a Saha-like expression.

2.2 Supernova remnants

A supernova explosions acts as a point-like injection of energy F in in the interstellar medium
(ISM) . We assume that the ISM has a constant density p. The interstellar medium has low
temperature, so we can neglect the gas pressure. Thus the problem is fully described by two
parameters, E and p. Using only these two quantities, one cannot form a combination E®p8
with dimension of a length or time. This means that the problem does not contain a typical
time- or length-scale! and the solution has to be thus self-similar.

!Contrast this to stellar physics, where M, R and G can be combined e.g. to 4.
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2.3 Accretion

If Ry, denotes the position of the shock, then dimensional analysis shows that

Rult) = (E%)/ | (25)

where « is dimensionless constant. The shock velocity follows differentiating Ry, as

. 20 ((E\'® 2Ry
Ush(t)IRsh(t):?<p?> =5 ts :

2.3 Accretion

Bondi accretion We consider the spherically symmetric accretion of gas in the gravitational
field of a mass M. The continuity equation becomes then in the stationary case
1d, 5
Velpv) = 54 (Fp) =0 (2.7)
with v = ve,. Thus r2pu = const. or the mass flow M through a shell at radius r is
independent of 7,

M = 47r?pv. (2.8)

The Euler equation expresses the momentum change of a fluid element due to the pressure
gradient and the gravitational force,

dv 1dP GM
- _ = 2.9
vdr p dr 72 (2.9)

We want to combine these two equations using the definition of the sound speed v = dP/dp.
We rewrite the first term on the RHS as

1dP 1dPdp ,dlnp

e 2.10
pdr pdpdr Ys Tar (2.10)
Rewriting also v' = dv/dr as a logarithmic derivatives, Eq. (2.9) becomes
dlnv dlnp GM
2 2
S — . 2.11
Y Tar Ys Tqr r2 (2.11)
Next we perform the differentiation in (r?pu)’ = 0
2 / /
LY (2.12)
roop W
o dl 2 dl
np no
=——— . 2.13
dr r dr ( )
Now we can eliminate dIn p/dr and obtain
dlnv 2 dlnwv GM
2 2
— Z_ — 2.14
U Tar Vs <7“ dr ) 72 (2.14)
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2 SNe, SNRs, accretion, BHs

or
dlnv 207 GM
2 2 S

— = 1- . 2.15
(v” = vs) dr r < 21}27“) (2.15)

It is clear that the radius (“the sonic point”)

GM

= 2.16
TS 22}3 ( )

has a special meaning: Since at r = r; the RHS vanishes, the velocity v becomes at r = ;g
either equal to the sound speed or it has there a maximum. Physically, we have to require
that v is monotonically increasing? for decreasing r and thus the former is true. Choosing by
this requirement the right boundary conditions for our equations selects the allowed value of
M, similar as only certain energies E are allowed in QM.

For a given temperature of the infalling gas, we know the sound speed vs; and thus rs. Then
the mass inflow M is determined via Eq. (2.8). However, in general we want to connect M
to the measured density at large distances, po,. We obtain the relation between p., and ps
integrating (2.11),

2
M
—|=—v2Inp| - e (2.17)
r
o 2GM
v? = 202 [m bs _ §] + . (2.18)
p 2 r

For r — 0, the velocity is given by v? — 2GM/r, i.e. the gas is in free fall. From the opposite
limit, 7 — oo, we find with v — 0 In p,/pes = 3/2 or ps = pace®? ~ 4.48p.

Ex.: Find the mass collected by a star with M = Mg in a hydrogen cloud with temperature
T = 200K and density ng = 1cm™3.
With 7, = GMg /2v% ~ 4 x 10! cm we obtain

M = 4nrlp, ~ 3 x 102g/yr.

Thus such a star accretes 1% of its mass during the age of the universe.

Accretion disks Accretion disks are naturally formed when angular momentum conservation
forces infalling gas into a two-dimensional pancake-like structure. If such a disk is dense
enough, viscous processes can consume angular momentum and heat the disk up.

Consider a mass element dM falling from a Keplerian orbit at r» 4+ dr to r due to viscous
interactions. Half of the gain in potential energy is used to increase the kinetic energy of the
mass element, while the other half is radiated away and heats up the environment,

1 /GMdM GMdM
dFheat = = — . 2.19
s = 5 (S - ) (2.19)
The luminosity of the accretion disk emitted by the shell at radius r is thus
dF 1GMM 1GMMd
L= (f;“ = 2(2mr)droT* = 3 1—(—dr/r+...)] = 572’“ . (2:20)
r

2Choosing v monotonically increasing for increasing r leads to an outflow of mass appropriate for modeling
a stellar wind
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2.4 Basics of general relativity and black holes

where we used the Stefan-Boltzmann law and the factor two accounts for the “top” and
“bottom” side of the disk. The temperature profile follows as

aunr )
T = ( ) oc 3/ (2.21)

S8mors

The total luminosity can be obtained integrating Eq. (2.20) from the inner to the outer edge
of the disc,

d 1 1>N1GMM

1 . Tout 1 .
Lot = §GMM/ == §GMM (— — for rin K rout. (2.22)
Tin r

[\

Tin Tout Tin

For the efficiency, we compare Ly with the total rest mass of the accreted material, Mc2.
Expressing 7, by the Schwarzschild radius, rj, = 2Rs = 2eGM/ c?, we see that the efficiency
is of order 1 = Lo /(Mc?) = 1/(4z). Hence the efficiency to release energy by accretion can
be very large, if the disk extends close to the event horizon of the black hole.

We can obtain the spectral distribution of the emitted photon energies by integrating over
the radial distribution,

Tout Tout d,r r
L,=2 d B, 3 ) 2.23
o[ ) et [ (2.23)

in in

Substituting = = hur3/*/k, it follows

Zout 5/3
L, x V1/3/ &~ (2.24)
T

et —1°

Hence the spectral luminosity is L, o v'/3 in the frequency range where the integral is
dominated by intermediate r values, riy < r < rout. At low frequency, the spectral luminosity
is dominated by the Rayleigh-Jeans tail of the outer edge of the disk, L, o v?, while for

frequencies above kT (ri,)/h the spectrum is exponentially suppressed.

2.4 Basics of general relativity and black holes

Basic properties of gravitation

1. In classical mechanics, the equality of gravitating mass m, = F/g and inertial mass
m; = F/a is a puzzle noticed already by Newton. This equality is called the “equivalence
principle”. Knowing more forces, this puzzle becomes even stronger. Contrast the
acceleration of a particle in a gravitational field to the one in a Coulomb field: In
the latter, two independent properties, namely its charge ¢ giving the strength of the
electric force acting on it and its mass m;,i.e. the inertia of the particle, are needed.
The equivalence of gravitating and inertial mass has been tested starting from Bessel,
comparing e.g. the period of a pendulum of different materials,

mil

P =2 .
mgg

(2.25)

While m; = my can be achieved for one material by a convenient choice of units, there
should be deviations for test bodies with differing compositions. Current limits for
departures from the equivalence principle are Aa;/a < 10712
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2 SNe, SNRs, accretion, BHs

2. Newton’s law postulates as the Coulomb law an instantaneous interaction. This is in
contradiction to special relativity. Thus, as interactions with electromagnetic fields
replace the Coulomb law, a corresponding description should be found for gravity.
Moreover, the equivalence of mass and energy found in special relativity requires that,
in a loose sense, energy not only mass should couple to gravity: Imagine a particle-
antiparticle pair falling down a gravitational potential wall, gaining energy and finally
annihilating into two photons moving the gravitational potential wall outwards. If the
two photons would not loose energy climbing up the gravitational potential wall, a per-
petum mobile could be constructed. If all forms of energy act as sources of gravity,
then the gravitational field itself is gravitating. Thus the theory is non-linear and its
mathematical structure is much more complicated than Maxwell’s equations.

3. Gravity can be switched-off locally, just by cutting the rope of an elevator. Inside a
freely falling elevator, one does not feel the effect of gravity.

Motivated by 2., Einstein used 1., the principle of equivalence, and 3. to derive general
relativity, a theory that describes the effect of gravity as deformation of the space-time known
from special relativity.

2.5 Schwarzschild metric

Because Einstein’s theory has a rather more complicated mathematical structure than New-
ton’s, no analytical solution to the two-body problem is known. Instead, we are looking first
for the effect of a finite point-mass on the surrounding space-time and solve then for the
motion of a test particle in this space-time.

2.5.1 Heuristic derivation

Consider a freely falling elevator in the gravitational field of a radial-symmetric mass distri-
bution with total mass M. Since the elevator is freely falling, no effects of gravity are felt
inside and the space-time coordinates from r = oo should be valid inside. Let us call these
coordinates Ko, with 2, (parallel to movement), Yoo, 200 (transverse) and t.,. The elevator
has the velocity v at the distance r from the mass M , measured in the coordinate system
K = (r,¢,9,t) in which the mass M is at r = 0 at rest.

We assume that special relativity can be used for the transformation between K at rest
and K., moving with v = (B¢, as long as the gravitational field is weak. We shall see shortly
what “weak” means in this context. For the moment, we presume that the effects of gravity
are small, if the velocity of the elevator that was at rest at » = oo is still small, v < ¢. Then

dtes = dty/1— 32 (2.26)

dr
ey = — 2.27
— (2.27)
dYoo = rdv (2.28)
dzee = rsindde. (2.29)

Thus the line-element of special relativity, i.e. the infinitesimal distance between two space-

time events,
ds? = da?, + dyZ, + dz2 — Adt?, (2.30)
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2.5 Schwarzschild metric

becomes

B dr?
=1
Next, we want to relate the factor 1 — 32 to the quantities M and r. Consider the energy of
the elevator with rest mass m,

ds?

+ r2(d9? + sin? 9d¢?) — (1 — *)dt?. (2.31)

9  GymM _

(v = )me” — 0, (2.32)

r

where the first term is the kinetic energy and the second the Newtonian expression for the
potential energy. According to 2), we made here the crucial assumption that gravity couples
not only to the mass of the elevator but to its total energy. Dividing by ymc? gives

<1 - 1) _eM (2.33)

~y rc2

Remembering the definition v = 1/4/1 — 32 and introducing a = GM/c?, we have

VI-p2=1- % (2.34)

or

2 2 2
1—52:1—70‘+%z1—7a. (2.35)

In the last step, we neglected the term (a/r)?2, since we attempt only an approximation for
large distances, where gravity is still weak. Inserting this expression into Eq. (2.31), we obtain
the metric describing the gravitational field produced by a radial symmetric mass distribution,

d 2 2GM
A" = gy + (A0 +sin® 9d6%) - Pdr® (1 i > : (2.36)
T e

Surprisingly, this agrees with the exact result found by Karl Schwarzschild 1916. The geom-
etry of this space-time is contained in the coefficients in front the infinitesimal displacements
da’,
4
ij=1
In case of euclidean space, we can find a coordinates such that the matrix g;; becomes
diagonal with ¢;; = (1,...,1), in case of Minkowski space such that the matrix becomes

gl] = (]-7 17 ]-7 _]-)

2.5.2 Interpretation and consequences

Gravitational redshift The time measured by an observer is the proper-time dr = —cds. If
we choose two static observers at the position r and r’ in the Schwarschild metric, then with
dr = d¢ = d¥ = 0, we find
dr(r) _ —Ggaa(r)
dr(rh) —gua(r)
The time-intervals d7o, and d7(r) are different and thus the time measured by clocks at differ-
ent distances r from the mass M will differ too. Since frequencies are inversely proportional

(2.38)
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2 SNe, SNRs, accretion, BHs

to time, the frequency or energy of a photon traveling from r to r’ will be affected by the
gravitational field as

GO e (2.39)
viry  \1- 2796]‘24 ’ )

An observer at r’ — oo will receive photons with frequency

v = J1- 250y ~ (1 - ‘VN|> v(r), (2.40)

rc2 c?

where the last approximation is only valid for weak gravitational field, 2GM/(rc?) = Viy /c? <
1. Thus the frequency of a photon is redshifted in a gravitational field, The size of this
effect is of order Vi /c?, where Vy is the Newtonian gravitational potential. The condition
Vn/c? < 1 indicates that gravitational fields are weak and that Newtonian gravity is a
sufficient approximation.

Schwarzschild radius What is the meaning of r = Rg = 2a? At

_ My M (2.41)

R
S 02 M@

the coordinate system (2.36) becomes ill-defined. However, this does not mean necessarily
that at » = Rg physical quantities like tidal forces become infinite. Instead r = Rg is an
event horizon: We cannot obtain any information about what is going on inside Rg, if the
gravitating mass is concentrated® inside a radius smaller than Rs. An object smaller than its
Schwarzschild radius is called a black hole. The black hole is fully characterized by its mass
M (and possibly its angular momentum L and electric charge ¢). To understand this better,
we consider next what happens to a photon crossing the event horizon at r = Rg as seen
from an observer at r = co.

Approaching a black hole Light rays are characterized by ds? = 0. Choosing a light ray in
radial direction with d¢ = d¥ = 0, the metric (2.36) becomes

dr 2¢
—=[1-—ec. 2.42
dt ( T ) ¢ ( )

Thus light traveling towards the star, as seen from the outside?, will travel slower and slower
as it comes closer to the Schwarzschild radius r = 2a.
In fact, for an observer at infinity the signal will reach r = 2a only asymptotically for
t — 0.
The last result can be derived immediately for light-rays. Choosing a light-ray in radial
direction with d¢ = d¥ = 0, the metric (2.36) simplifies with ds? = 0 to
dr 1 2M
Fri
3Recall that in Newtonian gravity only the enclosed mass M (r) contributes to the gravitational potential
outside r for a spherically symmetric system. Thus, e.g. the Sun is not a black hole, since for all r the
enclosed mass is M(r) < rc?/2G.

4 Any observer measures in the moment when the photon passes his position that the photon travels with the
speed of light

(2.43)
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2.5 Schwarzschild metric

Thus light traveling towards the star, as seen from the outside, will travel slower and slower
as it comes closer to the Schwarzschild radius » = 2. Integrating gives

2M\ !
t:/dr <1——> =t —2M1In(1 —2M/r) — oo for r—2M, (2.44)
r

where ¢’ is the start time at » — oo. Since the coordinate time t agrees with the proper
time for an observer at infinity, a photon reaches the Schwarzschild radius r = 2M only
asymptotically for ¢ — oo for such an observer. Similarly, the communication with a freely
falling space ship becomes impossible as it reaches r = Rs. A more detailed analysis shows
that indeed no signal can cross the surface at r = Rj.

Perihelion precession Ellipses are solutions only for a potential V' (r) oc 1/r. General rela-
tivity generate corrections to the Newtonian 1/r potential, and as a result the perihelion of
ellipses describing the motion of e.g. planets process. This effect is largest for Mercury, where
A¢/At =~ 43" /yr. This was the main known discrepancy of the planetary motions in the solar
system with Newtonian gravity at the time, when Einstein and others worked on relativistic
theories of gravity.

Light deflection The factors (1 — 2a/r) in the line-element ds will lead to the bending of
light in gravitational fields. The measurement of the deflection of light by the Sun during the
solar eclipse 1919 was the first crucial test for general relativity.

We shall discuss this effect in the limit of small deflections. We can view the spatial part
of the Schwarschild metric as an refractive index n,

dx 200 1 C
=12 = = . 2.4
dt ( >c n (245)

r

The space-dependence of the refractive index leads according to Hyggen’s principle to the
deflection of the light-rays, see Fig. 2.1: Two light-rays separated by db have the velocity
difference Av. If the light-rays move initially along the z axis with the impact parameter b
to the Sun, then the resulting infinitesimal deflection is

49 = AA”;% _ a(g:) ot = a(g;l) dz. (2.46)
Integrating with
nl—1— QSCJ?W 1 % (2.47)
and thus 9QM
dv = m bdz (2.48)
e obtain 2GM [*  d 4GM
9= /dﬁ: = /OO EENDEE =32 (2.49)

Thus the deflection angle is determined by the ratio of the Schwarschild radius and the impact
parameter of the light-ray, ¥ = 2Rg/b. Numerically, one obtains for a light-ray grazing the
Sun ¥ = 1.75".
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2 SNe, SNRs, accretion, BHs

Figure 2.1: The difference velocity v(r) = ¢/n(r) of light-rays leads according to Hyggen’s
principle to the deflection of light.
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3 Evolution of stellar clusters

A look at the night-sky with binoculars or a small telescope shows that stars are not uniformly
distributed on the sky. They are concentrated in groups of stars like the Plejades and a thin
band. The thin band with a milky appearance is the disc of our own galaxy, the Milky Way,
that we will discuss in the next chapter. In this chapter, we discuss cluster of stars and in
particular their evolution.

The crucial points in our derivation of the virial theorem 2(Uyin) = —(Upot) for a star was
the assumption of a gravitationally bound system in equilibrium. Thus it holds also for any
other system like a cluster of stars or galaxies, if this system fulfills the two conditions to be
i) gravitationally bound, and ii) in equilibrium. The first condition can be checked directly
by the virial theorem, while the second needs a more detailed discussion. In particular, we
will see that a gravitationally bound system evolves and thus can be only approximately
“in equilibrium.” In this context, we define a system as “in equilibrium” or “dynamically
relaxed”, if the interchange of energy between the members of a cluster is fast compared to
the evolution of the cluster.

3.1 Time-scales of cluster evolution

Rms and escape velocity from the virial theorem: The total kinetic energy of cluster with
mass M = Nm is

1
(Bian) = M) (3.1)
where vpms = (©2)1/2 is the root mean square (rms) velocity. Applying the virial theorem and
using (Epet) = 3GM? /5D, it follows

_3GM

(v?) = =5 (3.2)

Ex.: Find the typical rms velocity of stars in a spherical cluster with size D = 5 pc that consists of
108 stars with average mass m = 0.5M,.

3GM
2\ __
=5

Or Urms &~ 16km/s. This value can be compared with observations; if the observed velocities are

= 2.5 x 10%cm? /s? (3.3)

significantly higher, the cluster cannot be gravitationally bound or its total mass has to be higher.

Crossing time: The crossing time t., is the typical time required for a star in the cluster
to travel the characteristic size D of the cluster (typically taken to be the half-mass radius).
Thus, tep ~ D/v or te ~ 3 X 10° yr for the values of our example.
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3 Evolution of stellar clusters

Relaxation time: The relaxation time ¢, is the typical time in which the star’s velocity
changed an amount comparable to its original velocity by gravitational encounters. Thus one
might think of it as the time-scale after which the velocity distribution of stars bound in a
cluster has reached an equilibrium distribution by the exchange energy and momentum with
each other. But since part of the stars will have velocities v > vesc and escape, the velocity
distribution of a cluster is not stationary: High-velocity stars escape, the cluster contracts
and its core is heated-up.
The depth 7 for collisions of stars with each-other is
T = L1 (3.4)

ﬁ ~ onut

when n denotes the density of stars and | = vt the path traveled by a singe star. Let us call
the relaxation time t, the time for which 7 = 1. Thus t,¢ = 1/(onv).

What should we use for R (as function of v!) in o = mR?? Stars are certainly gravitationally
interacting with each other, if they are bound to each other. Therefore we can estimate the
effective interaction range R from T =V, mv?/2 = Gm?/R or R = 2Gm/v?. Then

P S (3.5)
T TR 4nn(Gm)? '
Inserting 1/n = (m/M)(47/3)D? (with M = Nm as total mass of the cluster) gives
v3 D3
tro] = ———— . .
4T 3GmM (36)

If the cluster is dynamically relaxed and the virial theorem applies, then v? = 3GM/(D5)
and thus
DM v'D* ND
wom 3G@M2 T w
Note that te > terogs, in striking contrast to an ordinary gas

We should take into account how much momentum per collision is exchanged: In a collision
at small impact parameter b the momentum transfer is larger than in one at large b. Moreover,
one cannot treat relaxation just as a two-body process, because of the infinite range of the
gravitational force. Formalizing this, the relaxation time given by Eq. (3.7) becomes reduced
by a logarithmic term, ~ 121n(N/2), or

trel - - Ntcross . (37)

N
In(N) *

trel ~ 0-1tcross (3.8)

Thus, tre ~ 2 % 10 yr for the values of our example.

Evaporation time: The evaporation time for a cluster is the time required for the cluster to
dissolve through the gradual loss of stars that gain sufficient velocity through encounters to
escape its gravitational potential.

Assuming an isolated cluster with negligible stellar evolution, the evaporation time ¢, can
be estimated by assuming that a constant fraction a of the stars in the cluster is evaporated
every relaxation time. Thus, the rate of loss is dN/dt = —aN/t,q = —N/tey. The value
of a can be determined by noting that the escape speed vesc at a point x is related to the
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3.2 Isothermal sphere

gravitational potential E,ot(z) at that point by vi, = —2E,t(z). (The total energy of a
particle able to escape gas to be equal or larger than zero, i.e. T+ V > 0 or vZ, > 2GM/R.)
If the system is virialized (as we would expect after a relaxation time), then also (v?) =
3GM/(5R).

Thus, stars with speeds above twice the RMS speed will evaporate. Assuming a Maxwellian
distribution of speeds, the fraction of stars with v > 20, is & = 7.4 x 1073, Therefore, the
evaporation time is

tre
tov = ~2L & 136t 01 - (3.9)
(6%

Stellar evolution and tidal interactions with the galaxy tend to shorten the evaporation time.
Using a typical t,q for a globular cluster, we see that to, ~ 10'° yr, which is comparable to
the observed age of globular clusters.

3.2 Isothermal sphere

In an isothermal sphere, the temperature does not depends on the radius. Thus the density
distribution p(r) depends only on the gravitational potential ¢(r). With p(r) < exp(—E/kT),
the density is

p(r) = poexp{=pBl¢(r) — dol} - (3.10)

The connection between the mass density and the gravitational potential is given by the
Poisson equation,

A¢ = AnGpgexp {—B[o(r) — ¢o]} (3.11)
We introduce a dimensionless radius 2 = r/Lg with the help of the Jeans length,
Lo = (4G poB)~1/? (3.12)
Setting also
y = B¢ — o) (3.13)

and assuming spherical symmetry, we can transform the Poisson equation (3.11) into an
ordinary differential equation for y(x),

1d/,d 1 d [ ,dy\
— 4 (2Ly) =4 (2 — e, 14
r2dr <7” dr¢> mGp(r) = 2 dr <x da:) ¢ (3.14)

Thus we see that i) the Lane-Emden equation is a special case of the Poisson equation and
ii) an isothermal sphere corresponds to a polytropic EoS with n — oo. From the solution
y = 2ln z, we obtain immediately

p(r) = poe™? = po (%)2 : (3.15)

This solution is rather pathological: The density diverges for small r, while the integrated
mass M (r) diverges for r — oo. Although the solution is thus unphysical, it is as an limiting
case very useful. First, we note that p(r) oc 7~2 gives rotation curves v(r) o const. as observed
in galaxies. Second, a real physical system has a finite size, connected e.g. to the distance
between neighbors, while physical processes like annihilations or degeneracy pressure become
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important for large p. Thus the isothermal sphere is a useful description for intermediate
distances.

Last but not least, the solution is important since it is an attractor. To see the exact
meaning of this statement we rewrite the differential equation in a from similar to the equation
of motion for a dynamical system. Changing variables to ¢ = In(x), we obtain

1d 5dy _3q d q dy —y
—_— J—— e —_— _— p— -].
- (:1: ) e a7 e a4 e (3.16)
and setting z = 2¢q — y
d?z  dz ov
= _(ef =)= - 1
a2 + 4 (e ) 5, (3.17)

We can now give all three terms of this equation a simple interpretation, if we interpret z as
the coordinate of a one-dimensional dynamical system and ¢ as time: acceleration Z, friction
Z and potential energy V' = e* —2z. Hence the system (alas the density distribution p(r)) will
move towards the minimum of the potential V', slowed by the friction term. But the minimum
of Vat z=In2 or y = 2¢ — z = 2In z 4 const. corresponds to the isothermal sphere.

Thus we found the important result that a self-gravitating system will evolve towards
the density distribution (3.15) of an isothermal system, if degeneracy pressure or energy
production play no important role. Such systems are for instance objects dominated by dark
matter (galaxies, dark matter clumps inside galaxies) and stellar clusters.
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