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Sketch of solutions for sheet 1

Hartle 5-6.

Consider a particle moving along the x-axis whose velocity as function of time is

dx

dt
=

gt√
1 + g2t2

where g is a constant.
a. Does the particle’s speed ever exceeds the speed of light?
b. Calculate the four-velocity u.
c. Express x and t as function of the proper time τ along the trajectory.
d. Find the components of the four-force and the three-force acting on the particle.

a. Since (gt)2 < (1 + g2t2) for all t, the velocity dx/dt is always smaller than the speed of light,
dx/dt < 1.
b. The components of u are with vx = dx/dt

ut =
dt

dτ
= γ =

√

1 + (gt)2

ux =
v√

1 + v2
= gt

ux = uz = 0 .

c. The proper time τ is the time measured by a clock travelling along the trajectory. Inverting

τ =

∫ t

0

dt
√

1 − v2 =

∫ t

0

dt
√

1 + (gt)2
=

1

g
arcsinhgt

we find t(τ) = 1

g
sinh gt. Next we integrate the velocity

x(t) − x0 =

∫ t

0

dt
gt

√

1 + (gt)2
=

1

g

√

1 + (gt)2 =

d. From the definitions and uα we find

fα = m
d2uα

dτ2
= mg(sinh(gt), cosh(gt), 0, 0)

F i = m
dui

dt
= (mg, 0, 0) .

Charged pion decay.

A charged pion decays mainly via the reaction π± → µ± + νµ. Calculate the energy of the
muon if the pion decays at rest. Calculate the maximal and minimal energy of the muon
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if the pion decays in flight with an energy of 1 TeV.
Use as masses mπ± = 139 MeV, mµ± = 106 MeV, and mν ≈ 0.

Combining energy conservation mπ = Eν + Eµ, smallness of neutrino masses Eν = pν and the
cms condition pν = −pµ gives

(Eµ − mπ)2 = |pµ|2

E2

µ − |pµ|2
︸ ︷︷ ︸

=m2
µ

−2Eµmπ + m2

π = 0

m2

µ + m2

π = 2Eµmπ

Eµ =
m2

π + m2
µ

2mπ
=

mπ

2

(

1 +
m2

µ

m2
π

)

The energy in the lab system follows from the general LT E′ = γ(E + βp cos ϑ) with ϑ as the
angle between the velocity β of the pion and the emitted muon. The maximal/minimal values of
E′ follow for cos ϑ = ±1, i.e. if the muon emitted parallel and anti-parallel to the direction of
flight of the pion.

Inserting E = (mπ/2)(1 + m2
µ/m2

π) and p =
√

E′2 − m2
µ = (mπ/2)(1 − m2

µ/m2

π
︸ ︷︷ ︸

r

) gives

Emax,min =
γmπ

2
(1 + r ± β(1 − r))

With γ = 1TeV/mπ ≈ 72, 000 becomes β =
√

1 − γ−2 ≈ 1−1/2γ2 ≈ 1−10−10. Hence the energy

spectrum of muons is [0 : Eπ], with high-energy muons moving in forward and low-energy muons

moving in backward direction.

Planck units.

The four fundamental constants h̄ (Planck’s constant), c (velocity of light), GN (gravita-
tional constant) and k (Boltzmann constant) can be combined to obtain the dimension of
a length, time, mass and temperature. Calculate their numerical values.

A formal way to derive e.g. the Planck time tPl is to solve

[c]α[h̄]β[G]γ = [cm/s]α[g cm2/s]β [cm3/(g s2]γ = s .

Simpler: i) note that k contains as only one the temperature T and enters therefore only TPl

ii) we need a combination of h̄G to cancel the gram.
iii) multiply with 1/c5 to eliminate the centimeter,

[h̄G/c5] = s2

and thus

tPl =

√

h̄G

c5
≈ 5.4 × 10−44s .
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