NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I
Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables

1. Procca equation.

A massive spin-1 particle satisfies the Procca equation,

$$
\begin{equation*}
\left(\eta^{\mu \nu} \square-\partial^{\mu} \partial^{\nu}\right) A_{\nu}+m^{2} A^{\mu}=0 . \tag{1}
\end{equation*}
$$

a.) "Derive" the Procca equation combining Lorentz invariance with your knowledge how many spin states a massive spin-1 particle contains.
b.) Derive the propagator $D_{\mu \nu}(k)$ of a massive spin-1 particle. [You don't have to care how the pole is handeled.]
c.) Why is the limit $m \rightarrow 0$ in your result for b.) ill-defined? [max. 50 words]
d.) Write down the generating functional $Z[J]$ for this theory.
e.) How does one obtain connected Green functions $G\left(x_{1}, \ldots, x_{n}\right)$ from the generating functional $Z[J]$?
a.) Lorentz invariance requires that all four components of the free field A_{μ} satisfy the KleinGordon equation, $\left(\square+m^{2}\right) A^{\mu}(x)=0$. Additionally, we have to impose one constraint in order to eliminate one component. The only linear, Lorentz invariant possibility is $\partial_{\mu} A^{\mu}=0$. To show the equivalence, act with ∂_{μ} on it,

$$
\begin{equation*}
\left(\partial^{\nu} \square-\square \partial^{\nu}\right) A_{\nu}+m^{2} \partial_{\mu} A^{\mu}=m^{2} \partial_{\mu} A^{\mu}=0 . \tag{2}
\end{equation*}
$$

Hence, a solution of the Proca equation fulfils automatically the constraint $\partial_{\mu} A^{\mu}=0$ for $m^{2}>0$. On the other hand, we can neglect the second term in (1) for $\partial_{\nu} A^{\nu}=0$ and obtain the KleinGordon equation.
b.) The propagator $D_{\mu \nu}$ is the Green function of the corresponding differential operator. Hence for a massive spin- 1 field, it is determined by

$$
\begin{equation*}
\left[\eta^{\mu \nu}\left(\square+m^{2}\right)-\partial^{\mu} \partial^{\nu}\right] D_{\nu \lambda}(x)=\delta_{\lambda}^{\mu} \delta(x) . \tag{3}
\end{equation*}
$$

Performing a Fourier transformation gives

$$
\begin{equation*}
\left[\left(-k^{2}+m^{2}\right) \eta^{\mu \nu}+k^{\mu} k^{\nu}\right] D_{\nu \lambda}(k)=\delta_{\lambda}^{\mu} . \tag{4}
\end{equation*}
$$

Use now the tensor method to solve this equation: In this approach, we use first all tensors available in the problem to construct the required tensor of rank 2 . In the case at hand, we have at our disposal only the momentum k_{μ} of the particle - which we can combine to $k_{\mu} k_{\nu}$-and the metric tensor $\eta_{\mu \nu}$. Thus the tensor structure of $D_{\mu \nu}(k)$ has to be of the form

$$
\begin{equation*}
D_{\mu \nu}(k)=A \eta_{\mu \nu}+B k_{\mu} k_{\nu} \tag{5}
\end{equation*}
$$

with two unknown scalar functions $A\left(k^{2}\right)$ and $B\left(k^{2}\right)$. Inserting this ansatz into (4) and multiplying out, we obtain

$$
\begin{align*}
{\left[\left(-k^{2}+m^{2}\right) \eta^{\mu \nu}+k^{\mu} k^{\nu}\right]\left[A \eta_{\nu \lambda}+B k_{\nu} k_{\lambda}\right] } & =\delta_{\lambda}^{\mu} \\
-A k^{2} \delta_{\lambda}^{\mu}+A m^{2} \delta_{\lambda}^{\mu}+A k^{\mu} k_{\lambda}+B m^{2} k^{\mu} k_{\lambda} & =\delta_{\lambda}^{\mu} \\
-A\left(k^{2}-m^{2}\right) \delta_{\lambda}^{\mu}+\left(A+B m^{2}\right) k^{\mu} k_{\lambda} & =\delta_{\lambda}^{\mu} \tag{6}
\end{align*}
$$

In the last step, we regrouped the LHS into the two tensor structures δ_{λ}^{μ} and $k^{\mu} k_{\lambda}$. A comparison of their coefficients gives then $A=-1 /\left(k^{2}-m^{2}\right)$ and

$$
B=-\frac{A}{m^{2}}=\frac{1}{m^{2}\left(k^{2}-m^{2}\right)} .
$$

Thus the massive spin- 1 propagator follows as

$$
\begin{equation*}
D_{F}^{\mu \nu}(k)=\frac{-\eta^{\mu \nu}+k^{\mu} k^{\nu} / m^{2}}{k^{2}-m^{2}+\mathrm{i} \varepsilon} \tag{7}
\end{equation*}
$$

Alternative: Rewrite the Lagrange density for the Procca field as,

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}=-\frac{1}{2} A^{\mu} D_{\mu \nu} A^{\nu} \tag{8}
\end{equation*}
$$

see sec. 7.3.1 of the notes for details.
c.) A massless spin-1 particle couples to a conserved current, $\partial_{\mu} J^{\mu}(x)=0$ or $k_{\mu} J^{\mu}(k)=0$. Technically, this means that the B term becomes undefined and the procedure fails.
More physically, we know that a massless spin-1 particle is tranverse. Thus the corresponding operator in (3) for a massless particle is a projection operator which has one eigenvalue zero corresponding to the longitudinal direction. However, a matrix with zero eigenvalues cannot be inverted.
d.) With $D A_{\mu} \equiv D A_{0} \cdots D A_{3}$ it is

$$
\begin{equation*}
Z\left[J_{\mu}\right]=\int \mathcal{D} A_{\mu} \exp \left\{\mathrm{i} \int \mathrm{~d}^{4} x\left(\mathscr{L}(x)+J_{\mu} A^{\mu}\right\}=\mathrm{e}^{\mathrm{i} W[J]}\right. \tag{9}
\end{equation*}
$$

where \mathscr{L} is given by (8).
e.) The generating functional for connected n-point functions $G\left(x_{1}, \ldots, x_{n}\right)$ is $W[J]$,

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}\right)=\left.\frac{1}{\mathrm{i}^{n}} \frac{\delta^{n}}{\delta J\left(x_{1}\right) \cdots \delta J\left(x_{n}\right)} \mathrm{i} W[J]\right|_{J=0} \tag{10}
\end{equation*}
$$

2. Gauge invariance.

Consider a local gauge transformation

$$
\begin{equation*}
U(x)=\exp \left[\mathrm{i} g \sum_{a=1}^{m} \vartheta^{a}(x) T^{a}\right] \tag{11}
\end{equation*}
$$

which changes a vector of fermion fields $\boldsymbol{\psi}$ with components $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ as

$$
\begin{equation*}
\psi(x) \rightarrow \psi^{\prime}(x)=U(x) \psi(x) \tag{12}
\end{equation*}
$$

Assume that U are elements of a non-abelian gauge group.
a.) Derive the transformation law of $A_{\mu}=A_{\mu}^{a} T^{a}$ under a gauge transformation. One way is to require that i) the covariant derivatives transform in the same way as ψ,

$$
\begin{equation*}
D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi(x)\right]^{\prime}=U(x)\left[D_{\mu} \psi(x)\right] . \tag{13}
\end{equation*}
$$

and ii) that the gauge field should compensate the difference between the normal and the covariant derivative,

$$
\begin{equation*}
D_{\mu} \psi(x)=\left[\partial_{\mu}+\mathrm{i} g A_{\mu}(x)\right] \psi(x) . \tag{14}
\end{equation*}
$$

b.) Writing down the generating functional $Z[J]$ for this theory in the same way as in 1.d) results in an ill-defined expression. Why? Which solution do you suggest? [max. 50 words]
c.) Draw the Feynman rules (only the diagrams, no specific rules like $\left(p^{\mu}-p^{\prime \mu}\right) \gamma_{\mu} \ldots$, group or other factors) for this theory. (The number of diagrams depends on your suggested solution in b.))
a.) Combining both requirements gives

$$
\begin{equation*}
D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi\right]^{\prime}=U D_{\mu} \psi=U D_{\mu} U^{-1} U \psi=U D_{\mu} U^{-1} \psi^{\prime} \tag{15}
\end{equation*}
$$

and thus the covariant derivative transforms as $D_{\mu}^{\prime}=U D_{\mu} U^{-1}$. Using its definition (14), we find

$$
\begin{equation*}
\left[D_{\mu} \psi\right]^{\prime}=\left[\partial_{\mu}+\mathrm{i} g A_{\mu}^{\prime}\right] U \psi=U D_{\mu} \psi=U\left[\partial_{\mu}+\mathrm{i} g A_{\mu}\right] \psi \tag{16}
\end{equation*}
$$

We compare now the second and the fourth term, after having performed the differentiation $\partial_{\mu}(U \psi)$. The result

$$
\begin{equation*}
\left[\left(\partial_{\mu} U\right)+\mathrm{i} g A_{\mu}^{\prime} U\right] \psi=\mathrm{i} g U A_{\mu} \psi \tag{17}
\end{equation*}
$$

should be valid for arbitrary ψ and hence we arrive after multiplying from the right with U^{-1} at

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}^{\prime}=U A_{\mu} U^{-1}+\frac{\mathrm{i}}{g}\left(\partial_{\mu} U\right) U^{-1}=U A_{\mu} U^{-1}-\frac{\mathrm{i}}{g} U \partial_{\mu} U^{-1} \tag{18}
\end{equation*}
$$

Here we used also $\partial_{\mu}\left(U U^{-1}\right)=0$.
b.) We should integrate only over physically different field configuration; the gauge symmetry makes the path integral ill-defined, adding a factor $\Omega \times \mathrm{R}^{4}=\infty$ where Ω is the "volume" of the
gauge group.
Solution: i) Fix the gauge completely, as in the Coulomb gauge in QED; this selects a certain Lorentz frame. ii) Use a covariant gauge (e.g. R_{ξ}); compensate the remaining unphysical degrees of freedom by adding Faddeev-Popov ghosts.
c.) Using solution ii), the vertices shown in 7.A follow: triple gauge interactions, quartic gauge interactions, two ghost gauge interaction. Using solution i) the last vertex is absent.

3. Scale invariance.

~ 15 points
Consider a massless scalar field with ϕ^{4} self-interaction,

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{\lambda}{4!} \phi^{4} . \tag{19}
\end{equation*}
$$

in $d=4$ space-time dimensions.
a.) Find the equation of motion for $\phi(x)$.
b.) Assume that $\phi(x)$ solves the equation of motion and define a scaled field

$$
\begin{equation*}
\tilde{\phi}(x) \equiv \mathrm{e}^{D a} \phi\left(\mathrm{e}^{a} x\right), \tag{20}
\end{equation*}
$$

where D is a constant. Show that the scaled field $\tilde{\phi}(x)$ is also a solution of the equation of motion, provided that the constant D is choosen appropriately.
c.) Bonus question: Argue, if the classical symmetry (20) is (not) conserved on the quantum level. [max. 50 words]
a.) Using the Lagrange equation or varying directly the action gives

$$
\square \phi+\frac{\lambda}{3!} \phi^{3}=0 .
$$

b.) Set $y=\mathrm{e}^{a} x$. Then

$$
\frac{\partial}{\partial x^{\mu}}=\frac{\partial y^{\mu}}{\partial x^{\mu}} \frac{\partial}{\partial y^{\mu}}=\mathrm{e}^{a} \frac{\partial}{\partial y^{\mu}}
$$

and $\square_{x}=\mathrm{e}^{2 a} \square_{y}$. Then $\tilde{\phi}$ satisfies the equation of motion,

$$
\square_{x} \tilde{\phi}+\frac{\lambda}{3!} \tilde{\phi}^{3}=\mathrm{e}^{(2+D) a} \square_{x} \phi+\mathrm{e}^{3 D a} \frac{\lambda}{3!} \phi^{3} \stackrel{!}{=} \mathrm{e}^{3 a}\left[\square_{x} \phi+\frac{\lambda}{3!} \phi^{3}\right] \stackrel{!}{=} 0 .
$$

if we choose $D=1$. Thus the scalar field should scale as its "naive" dimension suggests.
c.) Bonus: We discussed in Exercise sheet 7 scale invariance and noted as requirement that the classical Lagrangian contains no dimension-full parameters (which would fix scales). But loop corrections introduce necessarily a scale ($\mu \mathrm{in} \mathrm{DR}, \Lambda$ as cutoff). As a consequence, scale invariance is broken by quantum corrections.

Remarks: 1. As alternative in b), one can check the transformation of the action; surprisingly, you find then the contraint $D=1$ and $d=4$.
2. If we do not assume $a=$ const., we leave Minkowski space and have to consider the scalar field in a general space-time. Then one finds that the action is invariant under this transformation with an arbitrary, postive function $a(x)$, if one adds (in $d=4$) a coupling $-R \phi^{2} / 6$ between ϕ and the curvature scalar R.

4. Dirac (quiz).

a.) Helicity of a free massive particle is invariant under Lorentz transformations:

Chirality of a free massive particle is invariant under Lorentz transformations yes \square, no
b.) Helicity of a free massive particle is a conserved quantity

Chirality of a free massive particle is a conserved quantity yes \square, no yes \square, no
c.) Decompose a Dirac spinor ψ_{D} into Majorana spinors ψ_{M}.
d.) The bilinear $\phi_{R}^{\dagger} \sigma^{\mu} \phi_{R}$ transforms as \ldots under proper Lorentz transformations, as ... under parity (where ϕ_{R} is a Weyl spinor).
a.) no, yes; b) yes, no
c.) A Majorana spinor satisfies $\psi_{M}^{c}=e^{i \eta} \psi_{M}$. Thus we can contruct the two linearly independent Majorana spinors

$$
\begin{align*}
& \psi_{M, 1}=\frac{1}{\sqrt{2}}\left(\psi_{D}+\psi_{D}^{c}\right), \tag{21}\\
& \psi_{M, 2}=\frac{1}{\sqrt{2}}\left(\psi_{D}-\psi_{D}^{c}\right) . \tag{22}
\end{align*}
$$

out of a Dirac spinor ψ_{D}, or solving for ψ_{D},

$$
\psi_{D}=\frac{1}{\sqrt{2}}\left(\psi_{M, 1}+\psi_{M, 2}\right)
$$

d.) ...vector... negative parity/axial vecor

