NTNU Trondheim, Institutt for fysikk

Examination for FY3464 Quantum Field Theory I
Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables

1. The $\lambda \phi^{3}$ theory.

Consider the theory of a massive real scalar field ϕ and a $\lambda \phi^{3}$ self-interaction in $d=6$ dimensions.
a.) Write down the Lagrange density \mathscr{L} and explain your choice of signs and pre-factors.
b.) Write down the corresponding generating functional for disconnected and connected Green functions. How does one obtain connected Green functions?
c.) Determine the dimension of the field ϕ and of the coupling λ.
d.) Draw the Feynman diagram(s) and write down the analytical expression for the selfenergy i Σ (i.e. the loop correction for the free propgator) at order $\mathcal{O}\left(\lambda^{2}\right)$ in momentum space.
e.) Determine the symmetry factor of $\mathrm{i} \Sigma$.
f.) Calculate the self-energy i Σ using dimensional regularisation, split the result into a divergent pole term and a finite remainder.
a.) The free Lagrangian is

$$
\mathscr{L}_{0}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

the relative sign is fixed by the relativistic energy-momentum relation, the overall sign by the requirement that the Hamiltonian is bounded from below. As the self-interaction is odd, adding $+\frac{\lambda}{3!} \phi^{3}$ or $-\frac{\lambda}{3!} \phi^{3}$ is equivalent: both choices will lead to an unstable vacuum.
The prefactor $1 / 2$ of the kinetic term corresponds to "canonically normalised field", leading to the correct size of vacuum fluctuations.
The prefactor of the $\lambda \phi^{3}$ term can be chosen arbitrary, if the Feynman rule is adjusted accordingly: For -i λ, we should choose $\mathscr{L}_{I}=-\frac{\lambda}{3!} \phi^{3}$.
b.) The generating functional $Z[J]$ of disconnected Green functions is obtained from the path integral by i) adding a linear coupling to an external source J, ii) taking the limit $t,-t^{\prime} \rightarrow \infty$ with $m^{2}-\mathrm{i} \varepsilon$,

$$
Z[J]=\langle 0 \mid 0\rangle_{J}=\mathcal{N} \int \mathcal{D} \phi \operatorname{expi} \int_{\Omega} \mathrm{d}^{4} x\left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{3!} \phi^{3}+J \phi\right)=\exp \mathrm{i} W[J] .
$$

The functional $W[J]$ generates connected Green functions,

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}\right)=\left.\frac{1}{\mathrm{i}^{n}} \frac{\delta^{n}}{\delta J\left(x_{1}\right) \cdots \delta J\left(x_{n}\right)} \mathrm{i} W[J]\right|_{J=0} \tag{1}
\end{equation*}
$$

c.) The action $S=\int \mathrm{d}^{6} x \mathscr{L}$ has to be dimensionless. Thus $[\mathscr{L}]=m^{6},[\phi]=m^{2}$, and thus the coupling is dimensionless, $[\lambda]=m^{0}$. [That's the reason why we do this exercise in $d=6$.]

Using the Feynman rules gives for

$$
k \multimap-k
$$

in momentum space

$$
\mathrm{i} \Sigma\left(k^{2}\right)=S(-\mathrm{i} \lambda)^{2} \int \frac{\mathrm{~d}^{6} p}{(2 \pi)^{6}} \frac{\mathrm{i}}{(p+k)^{2}-m^{2}+\mathrm{i} \varepsilon} \frac{\mathrm{i}}{p^{2}-m^{2}+\mathrm{i} \varepsilon}
$$

where the symmetry factor S is determined in e.) and the vertex -i λ was used.
e.) The self-energy is a second order diagram, corresponding to the term

$$
\frac{1}{2!}\left(\frac{-\mathrm{i} \lambda}{3!}\right)^{2} \int \mathrm{~d}^{4} y_{1} \mathrm{~d}^{4} y_{2}\langle 0| T\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi^{3}\left(y_{1}\right) \phi^{3}\left(y_{2}\right)+\left(y_{1} \leftrightarrow y_{2}\right)\right.
$$

in the perturbative expansion in coordinate space. The exchange graph $y_{1} \leftrightarrow y_{2}$ is identical to the original one, canceling the factor $1 / 2$! from the Taylor expansion. We count the number of possible ways to combine the fields in the time-ordered product into four propagators. We have three possibilities to contract $\phi\left(x_{1}\right)$ with a $\phi\left(y_{1}\right)$. Similiarly, there are three possibilities for $\phi\left(x_{2}\right) \phi\left(y_{2}\right)$. The remaining pairs of $\phi\left(y_{1}\right)$ and $\phi\left(y_{2}\right)$ can be contracted in 2 ! ways. Thus the symmetry factor is

$$
S=\left(\frac{1}{2!} \times 2\right)\left(\frac{1}{3!}\right)^{2}(3 \times 3 \times 2!)=\frac{1}{2}
$$

[The symmetry factor is given for the vertex $-\mathrm{i} \lambda$.]
f.) We combine the two propagators (suppressing the i ε) using (9),

$$
\frac{1}{(p+k)^{2}-m^{2}} \frac{1}{p^{2}-m^{2}}=\int_{0}^{1} \mathrm{~d} x \frac{1}{D^{2}}
$$

with

$$
\begin{aligned}
D & =x\left[(p+k)^{2}-m^{2}\right]+(1-x)\left(p^{2}-m^{2}\right) \\
& =(p+x k)^{2}+x(1-x) k^{2}-m^{2}=q^{2}+f,
\end{aligned}
$$

where we introduced $q=p+x k$ as new integration variable and set $f=x(1-x) k^{2}-m^{2}$. We go now to $d=2 \omega=6-\varepsilon$ dimensions,

$$
\mathrm{i} \Sigma\left(k^{2}\right)=\frac{1}{2} \lambda^{2} \int_{0}^{1} \mathrm{~d} x \int \frac{\mathrm{~d}^{d} q}{(2 \pi)^{d}} \frac{1}{(q+f)^{2}} .
$$

Evaluating the integral with (10), using $\Gamma(2)=1$ and $\omega=3-\varepsilon / 2$ gives

$$
\Sigma\left(k^{2}\right)=-\frac{\lambda^{2}}{2} \frac{\Gamma(-1+\varepsilon / 2)}{(4 \pi)^{3}} \int_{0}^{1} \mathrm{~d} x f\left(\frac{4 \pi \mu^{2}}{f}\right)^{\varepsilon / 2}
$$

Here, we added a mass scale μ in order to make the ε dependent term dimensionless such that we can expand it using (11),

$$
\left(\frac{4 \pi \mu^{2}}{f}\right)^{\varepsilon / 2}=1+\frac{\varepsilon}{2} \ln \left(\frac{4 \pi \mu^{2}}{f}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

Expanding also

$$
\Gamma(-1+\varepsilon / 2)=-\left[\frac{2}{\varepsilon}+1-\gamma+\mathcal{O}(\varepsilon)\right]
$$

we arrive at

$$
\Sigma\left(k^{2}\right)=\frac{\alpha}{2}\left[\left(\frac{2}{\varepsilon}+1-\gamma\right)\left(\frac{k^{2}}{6}-m^{2}\right)+\int_{0}^{1} \mathrm{~d} x f \ln \left(\frac{4 \pi \mu^{2}}{f}\right)\right]
$$

where we used $\int_{0}^{1} \mathrm{~d} x f=k^{2} / 6-m^{2}$ and set $\alpha=\lambda^{2} /(4 \pi)^{3}$. The obtained expression for the self-energy has the UV divergence isolated into an $1 / \varepsilon$ pole which is ready for subtraction.

2. Fermions.

a.) Define left- and right-chiral fields ψ_{L} and ψ_{R} as eigenfunctions of γ^{5}. Express

$$
\begin{equation*}
\mathscr{L}=\bar{\psi} \mathrm{i} \not \partial \psi-m \bar{\psi} \psi \tag{7pts}
\end{equation*}
$$

in terms of ψ_{L} and ψ_{R}.
b.) Give an operator which commutes with the (free Dirac) Hamiltonian and can be used to classify the spin states of a fermion. Explain its meaning. (You don't have to calculate the commutator.)
a.) We can split any solution ψ of the Dirac equation into

$$
\begin{equation*}
\psi_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \psi \equiv P_{L} \psi \quad \text { and } \quad \psi_{R}=\frac{1}{2}\left(1+\gamma^{5}\right) \psi \equiv P_{R} \psi \tag{2}
\end{equation*}
$$

Since $\gamma^{5} \psi_{L}=-\psi_{L}$ and $\gamma^{5} \psi_{R}=\psi_{R}, \psi_{L, R}$ are eigenfunctions of γ^{5} with eigenvalue ± 1. Expressing the mass term through these fields as

$$
\begin{equation*}
\bar{\psi} \psi=\bar{\psi}\left(P_{L}^{2}+P_{R}^{2}\right) \psi=\psi^{\dagger}\left(P_{R} \gamma^{0} P_{L}+P_{L} \gamma^{0} P_{R}\right) \psi=\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R} \tag{3}
\end{equation*}
$$

and similarly for the kinetic term,

$$
\begin{equation*}
\bar{\psi} \not \partial \psi=\bar{\psi}\left(P_{L}^{2}+P_{R}^{2}\right) \not \partial \psi=\psi^{\dagger}\left(P_{R} \gamma^{0} \gamma^{\mu} P_{R}+P_{L} \gamma^{0} \gamma^{\mu} P_{L}\right) \partial_{\mu} \psi=\bar{\psi}_{L} \not \partial \psi_{L}+\bar{\psi}_{R} \not \partial \psi_{R}, \tag{4}
\end{equation*}
$$

the Dirac Lagrange density becomes

$$
\begin{equation*}
\mathscr{L}=\mathrm{i} \bar{\psi}_{L} \not \partial \psi_{L}+\mathrm{i} \bar{\psi}_{R} \not \partial \psi_{R}-m\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right) . \tag{5}
\end{equation*}
$$

b.) One possibility is the helicity operator $h=s \cdot \boldsymbol{p} /|\boldsymbol{p}|$, or more generally, $\gamma^{5} \phi$.

3. Scattering.

Derive the optical theorem

$$
\begin{equation*}
2 \Im T_{i i}=\sum_{n} T_{i n}^{*} T_{n i} . \tag{7pts}
\end{equation*}
$$

Give a physical interpretation of this relation (less than 100 words).
The unitarity of the scattering operator, $S^{\dagger} S=S S^{\dagger}=1$, expresses the fact that we (should) use a complete set of states for the initial and final states in a scattering process,

$$
\begin{equation*}
1=\sum_{n}|n,+\infty\rangle\langle n,+\infty|=\sum_{n} S|n,-\infty\rangle\langle n,-\infty| S^{\dagger}=S S^{\dagger} \tag{6}
\end{equation*}
$$

We split the scattering operator S into a diagonal part and the transition operator $T, S=1+\mathrm{i} T$, and thus

$$
\begin{equation*}
1=(1+\mathrm{i} T)\left(1-\mathrm{i} T^{\dagger}\right)=1+\mathrm{i}\left(T-T^{\dagger}\right)+T T^{\dagger} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{i} T T^{\dagger}=T-T^{\dagger} \tag{8}
\end{equation*}
$$

We now consider matrix elements between the initial and final state,

$$
\begin{equation*}
\langle f| T-T^{\dagger}|i\rangle=T_{f i}-T_{i f}^{*}=\mathrm{i}\langle f| T T^{\dagger}|i\rangle=\mathrm{i} \sum_{n} T_{f n} T_{i n}^{*} . \tag{9}
\end{equation*}
$$

If we set $|i\rangle=|f\rangle$, we obtain optical theorem as a connection between the forward scattering amplitude $T_{i i}$ and the scattering into all possible states n,

$$
\begin{equation*}
2 \Im T_{i i}=\sum_{n}\left|T_{i n}\right|^{2} \tag{10}
\end{equation*}
$$

It relates the attenuation of a beam of particles in the state $i, \mathrm{~d} N_{i} \propto-\left|\Im T_{i i}\right|^{2} N_{i}$, to the probability that they scatter into all possible states n : what is lost, should show up somewhere.

4. Gauge invariance.

Consider a local gauge transformation

$$
U(x)=\exp \left[\mathrm{i} g \sum_{a=1}^{m} \vartheta^{a}(x) T^{a}\right]
$$

which changes a vector of fermion fields $\boldsymbol{\psi}$ with components $\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ as

$$
\psi(x) \rightarrow \psi^{\prime}(x)=U(x) \psi(x)
$$

a.) Assume that U are elements of the non-abelian gauge group $\operatorname{SU}(n)$ and that $\left\{\psi_{1}, \ldots, \psi_{5}\right\}$ transform with the fundamental representation. What are then the values of n and m ? What is the physical interpretation of m ?
b.) Derive the transformation law of $A_{\mu}=A_{\mu}^{a} T^{a}$ under a gauge transformation. One way to do this is to require that i) the covariant derivatives transform in the same way as ψ,

$$
D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi(x)\right]^{\prime}=U(x)\left[D_{\mu} \psi(x)\right]
$$

and ii) that the gauge field should compensate the difference between the normal and the covariant derivative,

$$
\begin{equation*}
D_{\mu} \psi(x)=\left[\partial_{\mu}+\mathrm{i} g A_{\mu}(x)\right] \psi(x) . \tag{8pts}
\end{equation*}
$$

c.) The non-abelian field-strength $F_{\mu \nu}=F_{\mu \nu}^{a} T^{a}$ transforms under a local gauge transformation $U(x)$ as
$\square \quad F_{\mu \nu} \rightarrow F_{\mu \nu}^{\prime}=F_{\mu \nu}$
$\square \quad F_{\mu \nu} \rightarrow F_{\mu \nu}^{\prime}=U(x) F_{\mu \nu} U^{\dagger}(x)$
$\square \quad F_{\mu \nu} \rightarrow F_{\mu \nu}^{\prime}=U(x) F_{\mu \nu} U^{\dagger}(x)+\frac{i}{g}\left(\partial_{\mu} U(x)\right) \partial_{\nu} U^{\dagger}(x)$
$\square \quad F_{\mu \nu} \rightarrow F_{\mu \nu}^{\prime}=F_{\mu \nu}+\left[D_{\mu}, A_{\nu}\right]$
a.) The fundamental representation of $\mathrm{SU}(n)$ is n-dimensional. Since $\left\{\psi_{1}, \ldots, \psi_{5}\right\}$ transforms with the fundamental representation, it is $n=5$. Then $m=5^{2}-1=24$ is the number of generators of $\operatorname{SU}(5)$, or more physically speaking, the number of gauge bosons.
b.) Combining both requirements gives

$$
\begin{equation*}
D_{\mu} \psi(x) \rightarrow\left[D_{\mu} \psi\right]^{\prime}=U D_{\mu} \psi=U D_{\mu} U^{-1} U \psi=U D_{\mu} U^{-1} \psi^{\prime} \tag{11}
\end{equation*}
$$

and thus the covariant derivative transforms as $D_{\mu}^{\prime}=U D_{\mu} U^{-1}$. Using its definition, we find

$$
\begin{equation*}
\left[D_{\mu} \psi\right]^{\prime}=\left[\partial_{\mu}+\mathrm{i} g A_{\mu}^{\prime}\right] U \psi=U D_{\mu} \psi=U\left[\partial_{\mu}+\mathrm{i} g A_{\mu}\right] \psi \tag{12}
\end{equation*}
$$

We compare now the second and the fourth term, after having performed the differentiation $\partial_{\mu}(U \psi)$. The result

$$
\begin{equation*}
\left[\left(\partial_{\mu} U\right)+\mathrm{i} g A_{\mu}^{\prime} U\right] \psi=\mathrm{i} g U A_{\mu} \psi \tag{13}
\end{equation*}
$$

should be valid for arbitrary ψ and hence after multiplying from the right with U^{-1} we arrive at

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}^{\prime}=U A_{\mu} U^{-1}+\frac{\mathrm{i}}{g}\left(\partial_{\mu} U\right) U^{-1}=U A_{\mu} U^{-1}-\frac{\mathrm{i}}{g} U \partial_{\mu} U^{-1} \tag{14}
\end{equation*}
$$

Here we also used $\partial_{\mu}\left(U U^{-1}\right)=0$. For $\mathrm{SU}(n)$, the gauge transformation U is an unitary transformation and one sets $U^{-1}=U^{\dagger}$.
c.) Option two

Some formulas

$$
\begin{align*}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} . \tag{15}\\
& \gamma^{5} \equiv \gamma_{5} \equiv \mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \tag{16}\\
& \sigma^{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{17}\\
& \bar{\Gamma}=\gamma^{0} \Gamma^{\dagger} \gamma^{0} \tag{18}\\
& \frac{1}{a b}=\int_{0}^{1} \frac{\mathrm{~d} z}{[a z+b(1-z)]^{2}} . \tag{19}\\
& I(\omega, \alpha)=\int \frac{\mathrm{d}^{2 \omega} k}{(2 \pi)^{2 \omega}} \frac{1}{\left[k^{2}+2 p k+M^{2}+\mathrm{i} \varepsilon\right]^{\alpha}} \\
& =\mathrm{i} \frac{(-\pi)^{\omega}}{(2 \pi)^{2 \omega}} \frac{\Gamma(\alpha-\omega)}{\Gamma(\alpha)} \frac{1}{\left[M^{2}-p^{2}+\mathrm{i} \varepsilon\right]^{\alpha-\omega}} . \tag{20}\\
& f^{-\varepsilon / 2}=1-\frac{\varepsilon}{2} \ln f+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{21}\\
& \Gamma(n+1)=n! \tag{22}\\
& \Gamma(-n+\varepsilon)=\frac{(-1)^{n}}{n!}\left[\frac{1}{\varepsilon}+\psi(n+1)+\mathcal{O}(\varepsilon)\right], \tag{23}\\
& \psi(n+1)=1+\frac{1}{2}+\ldots+\frac{1}{n}-\gamma, \tag{24}\\
& \frac{p}{p^{2}-m^{2}+\mathrm{i} \varepsilon}
\end{align*}
$$

