NTNU Trondheim, Institutt for fysikk

Examination for FY3464/8914 Quantum Field Theory I
Contact: Michael Kachelrieß, tel. 99890701
Allowed tools: mathematical tables

1. Miscellaneous and quiz

a.) Write down A^{*} for

$$
A=\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right)
$$

b.) Calculate

$$
\operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{\mu} \gamma_{\nu}\right]
$$

c.) The covariant derivative of a Yang-Mills theory transforms under a local gauge transformation $U(x)$ as:
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=D_{\mu}$
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=U(x) D_{\mu}$
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x)$
$\square \quad D_{\mu} \rightarrow D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x)+\frac{\mathrm{i}}{g}\left(\partial_{\mu} U(x)\right) U^{\dagger}(x)$
a.) Starting from

$$
A^{*}=A^{\dagger}=\left(u^{\dagger}\left(p_{2}\right) \gamma^{0} \gamma^{\mu} u\left(p_{1}\right)\right)^{\dagger}=u^{\dagger}\left(p_{1}\right) \gamma^{\mu \dagger} \gamma^{0 \dagger} u\left(p_{2}\right),
$$

and using $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and $\left(\gamma^{0}\right)^{2}=1$, we arrive at

$$
A^{*}=\bar{u}\left(p_{1}\right) \gamma^{\mu} u\left(p_{2}\right) .
$$

b.) Contracting (1) with $\eta_{\mu \nu}$ gives

$$
2 \gamma^{\mu} \gamma_{\mu}=2 \eta_{\mu}^{\mu}=8
$$

or $\gamma^{\mu} \gamma_{\mu}=4$. Together with $\operatorname{tr}(\mathbf{1})=4$ we find

$$
\operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{\mu} \gamma_{\nu}\right]=2 \eta^{\mu \nu} \gamma_{\mu} \gamma_{\nu}-\gamma^{\nu} \gamma^{\mu} \gamma_{\mu} \gamma_{\nu}=-2 \cdot 4 \cdot 4=-32 .
$$

c.) The covariant derivative of a Yang-Mills theory transforms homogenously under a local gauge, $D \rightarrow D^{\prime}(x)=U(x) D U^{\dagger}(x)$.
d.) The field-strength of a Yang-Mills theory transforms homogenously under a local gauge, $\mathbf{F}(x) \rightarrow \mathbf{F}^{\prime}(x)=U(x) \mathbf{F}(x) U^{\dagger}(x)$.

2. Scalar field.

Consider a real, scalar field ϕ with mass m and self-interaction $g \phi^{3}$.
a.) Write down the Lagrange density \mathscr{L}, explain your choice of signs and pre-factors (when physically relevant).
b.) Write down the generating functional for connected Green functions.
c.) Determine the mass dimension in $d=4$ space-time dimensions of all quantities in the Lagrange density \mathscr{L}.
d.) Draw the divergent one-loop diagrams and determine their superficial degree of divergence D (in $d=4$ space-time dimensions).
e.) Determine the number d of space-time dimensions for which the theory is renormalisable.
a.) The free Lagrangian is

$$
\mathscr{L}_{0}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} .
$$

The relative sign is fixed by the relativistic energy-momentum relation, the overall sign by the requirement that the Hamiltonian is bounded from below. The factor $1 / 2$ in the kinetic energy leads to "canonically normalised" field, the factor $1 / 2$ for the mass follows then from the relativistic energy-momentum relation. As the self-interaction is odd, adding $+\frac{\lambda}{3!} \phi^{3}$ or $-\frac{\lambda}{3!} \phi^{3}$ is equivalent: both choices will lead to an unstable vacuum. In order to reproduce the Feynman rule, we used as normalisation the factor $1 / 3$!,

$$
\mathscr{L}=\mathscr{L}_{0}-\frac{g}{3!} \phi^{3} .
$$

b.) We set $m^{2} \rightarrow m^{2}-\mathrm{i} \varepsilon$ as damping term and add a source J coupled linearly to the field,

$$
\begin{equation*}
\mathscr{L}_{\mathrm{eff}}=\mathscr{L}+\phi J . \tag{1}
\end{equation*}
$$

The generating functional Z for disconnected Green functions is the path integral over fields of $\left.\exp \left(\mathrm{i} \int d^{4} x \mathscr{L}_{\text {eff }}\right\}\right)$,

$$
\begin{equation*}
Z[J]=\int \mathcal{D} \phi \exp \left\{\mathrm{i} \int d^{4} x \mathscr{L}_{\mathrm{eff}}\right\}=\mathrm{e}^{\mathrm{i} W\left[J^{\mu}\right]} \tag{2}
\end{equation*}
$$

while $W\left[J^{\mu}\right]$ generates connected Green functions.
c.) The action $S=\int d^{d} x \mathscr{L}$ is (for $\hbar=1$) dimensionless. The kinetic term $\left[(\partial \phi)^{2}\right]=m^{4}$ fixes the dimension of the field ϕ as m^{1}, consistent with the interpretation of m in the mass term as mass, $[m]=m^{1}$. This implies that the coupling g has the dimension $[g]=m^{1}$.
d.) The primitive divergent diagrams are the divergent 1-loop diagrams. We can order them by the number E of external (bosonic) legs and determine the superficial degree of divergence D by
naive power-counting, see the last page for the Feynman diagrams.
$E=0$ and $D=4$ corresponding a contribution to the cosmological constant, $E=1$ and $D=2$ corresponding to a tadpole diagram,
$E=2$ and $D=0$ corresponding to the self-energy. Note that the vertex correction, $E=3$, is already finite.
(The vacuum graphs ($E=0$) are optional - you may prefer to "hide" them by asking for a properly normalized generating functional.)
e.) We have to find d such that $[g]=m^{0}$: For general d, it is $[\phi]=m^{(d-2) / 2}$. Only solution for $\left[\phi^{3}\right]=d$ is thus $d=6$ with $[\phi]=m^{2}$.

3. Fermion with Yukawa interaction.

Consider a Dirac fermion ψ with mass m interacting with real scalar field ϕ with mass M through a Yukawa interaction,

$$
\mathscr{L}=\bar{\psi}(\mathrm{i} \not \partial-m) \psi-\mathrm{i} g \bar{\psi} \gamma^{5} \psi \phi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} M^{2} \phi^{2} .
$$

a.) Determine the global (internal) symmetries of the free, massless fermionic Lagrangian, $\mathscr{L}=\bar{\psi} i \not \partial \psi$, and the resulting Noether currents.
(6 pts)
b.) Calculate the self-energy $\Sigma(\not p)$ at one-loop of a fermion with momentum $p^{2} \neq m^{2}$ using dimensional regularisation. Express $\Sigma(p)$ as

$$
\begin{equation*}
\left.\Sigma(\not p)=\frac{A}{\varepsilon}+B \ln \left(D / \mu^{2}\right)\right] . \tag{12pts}
\end{equation*}
$$

c.) What is your interpretation of the functional form of A ?
d.) What is your interpretation of the dependence of the self-energy on the parameter μ ? [c.) and d.): max. 50 words explanation.]
a.) Consider global phase transformations: First $U_{V}(1)$, change $p h i$ to ϑ

$$
\psi(x) \rightarrow \psi^{\prime}(x)=\mathrm{e}^{\mathrm{i} \phi} \psi(x) \quad \text { and } \quad \bar{\psi}(x) \rightarrow \bar{\psi}^{\prime}(x)=\mathrm{e}^{-\mathrm{i} \phi} \bar{\psi}(x),
$$

keep the Lagrangian invariant, $\delta \mathscr{L}=0$. Noether's theorem (12) leads then with $\delta \psi=\mathrm{i} \psi$ to

$$
\begin{equation*}
j^{\mu}=\frac{\delta \mathscr{L}}{\delta\left(\partial_{\mu} \psi\right)} \delta \psi+\frac{\delta \mathscr{L}}{\delta\left(\partial_{\mu} \bar{\psi}\right)} \delta \bar{\psi}=\bar{\psi} \mathrm{i} \gamma^{\mu} \mathrm{i} \psi+0 . \tag{3}
\end{equation*}
$$

Thus the vector current is conserved. Next look at axial transformations $U_{A}(1)$,

$$
\begin{equation*}
\psi^{\prime}(x) \rightarrow \mathrm{e}^{\mathrm{i} \phi \gamma^{5}} \psi(x) \quad \text { and } \quad \bar{\psi}(x) \rightarrow \bar{\psi}^{\prime}(x)=\left(\mathrm{e}^{\mathrm{i} \phi \gamma^{5}} \psi(x)\right)^{\dagger} \gamma^{0}=\bar{\psi}(x) \mathrm{e}^{\mathrm{i} \phi \gamma^{5}} . \tag{4}
\end{equation*}
$$

The resulting (infinitesimal) change is

$$
\begin{equation*}
\mathscr{L}^{\prime}=\bar{\psi}^{\prime} \mathrm{i} \not \partial \psi^{\prime}=\bar{\psi}\left(1+\mathrm{i} \phi \gamma^{5}\right) \mathrm{i} \not \partial\left(1+\mathrm{i} \phi \gamma^{5}\right) \psi=\bar{\psi}(1-\mathrm{i} \phi) \mathrm{i} \not \partial(1+\mathrm{i} \phi) \psi= \tag{5}
\end{equation*}
$$

and thus again $\delta \mathscr{L}=0($ for $m=0)$. With $\delta \psi=\mathrm{i} \gamma^{5} \psi$ to

$$
\begin{equation*}
j^{\mu}=\frac{\delta \mathscr{L}}{\delta\left(\partial_{\mu} \psi\right)} \delta \psi=\bar{\psi} \mathrm{i} \gamma^{\mu} \mathrm{i} \gamma^{5} \psi \tag{6}
\end{equation*}
$$

Thus the axial-vector current is conserved too (for $m=0$).
b.) Following the fermion line and using the Feynman rules, we have

$$
\mathrm{i} \Sigma(\not p)=(-\mathrm{i} g)^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \gamma^{5} \frac{\mathrm{i}}{p+\not / k-m} \gamma^{5} \frac{\mathrm{i}}{k^{2}-M^{2}} .
$$

We combine first the denominators and complete then the square,

$$
\begin{align*}
D & =\left[(p+k)^{2}-m^{2}\right] z+\left(k^{2}-M^{2}\right)(1-z)=k^{2}+2 p \cdot k z+\left(p^{2}-m^{2}\right) z-M^{2}(1-z)= \tag{7}\\
& =(k+z p)^{2}+p^{2} z(1-z)-m^{2} z-M^{2}(1-z) \equiv q^{2}+a \tag{8}
\end{align*}
$$

Next we evaluate the nominator using $p \gamma^{5}=-\gamma^{5} \not \boldsymbol{p}$ and $\left(\gamma^{5}\right)^{2}=1$, and substitute then $\mathrm{k} \rightarrow q$,

$$
N=\gamma^{5}(p p+\not / \nmid-m) \gamma^{5}=-(\not p+\not p+m)=-(\not p(1-z)+\not p+m) .
$$

The linear term will vanish after integration and we drop it. Adding the mass scale μ^{4-n} to g and using ,,,, we find

$$
\mathrm{i} \Sigma(\not p)=g^{2}\left(\mu^{2}\right)^{4-d_{\mathrm{i}}} \frac{1}{(4 \pi)^{\omega}} \frac{\Gamma(2-\omega)}{\Gamma(2)} \int_{0}^{1} \mathrm{~d} z \frac{-(\not p(1-z)+m)}{a^{2-\omega}}
$$

From the dimensionless quantity $\left(a / 4 \pi \mu^{2}\right)^{-\varepsilon}$, and expand $\Gamma(\varepsilon)$ and $\left(a / 4 \pi \mu^{2}\right)^{-\varepsilon}$ for small ε,

$$
\Sigma(\not p)=-\frac{g^{2}}{16 \pi^{2}}\left[(\not p-m / 2) \frac{1}{\varepsilon}-\int_{0}^{1} \mathrm{~d} z(p p(1-z)+m) \ln \left(a /\left(4 \pi \mu^{2}\right)\right]\right.
$$

c.) The coefficient of the divergent $1 / \varepsilon$ term is a polynomial in the external momentum. More precisely, they correspond to terms $\bar{\psi} \mathrm{i} \partial \psi$ and $m \bar{\psi} \psi$ in the classical Lagrangian, and can thus be subtracted by mass and wave-function renormalisation.
d.) running parameters

4. Spin-1 fields.

a.) A massive spin-1 field A_{μ} satisfies the Proca equation,

$$
\left(\eta^{\mu \nu} \square-\partial^{\mu} \partial^{\nu}\right) A_{\nu}+m^{2} A^{\mu}=0 .
$$

Use the tensor method to determine the propagator $D_{\mu \nu}(k)$ of such a field [don't care about the poles].
b) Give one argument why this method does not work setting $m=0$.
a.) We write frist $m^{2} A^{\mu}=m^{2} \eta^{\mu \nu} A_{\nu}$. The propagator $D_{\mu \nu}$ for a massive spin- 1 field is determined by

$$
\begin{equation*}
\left[\eta^{\mu \nu}\left(\square+m^{2}\right)-\partial^{\mu} \partial^{\nu}\right] D_{\nu \lambda}(x)=\delta_{\lambda}^{\mu} \delta(x) \tag{9}
\end{equation*}
$$

Inserting the Fourier transformation of the propagator and the delta function gives

$$
\begin{equation*}
\left[\left(-k^{2}+m^{2}\right) \eta^{\mu \nu}+k^{\mu} k^{\nu}\right] D_{\nu \lambda}(k)=\delta_{\lambda}^{\mu} . \tag{10}
\end{equation*}
$$

We will apply the tensor method to solve this equation: In this approach, we use first all tensors available in the problem to construct the required tensor of rank 2 . In the case at hand, we have at our disposal only the momentum k_{μ} of the particle - which we can combine to $k_{\mu} k_{\nu}$-and the metric tensor $\eta_{\mu \nu}$. Thus the tensor structure of $D_{\mu \nu}(k)$ has to be of the form

$$
\begin{equation*}
D_{\mu \nu}(k)=A \eta_{\mu \nu}+B k_{\mu} k_{\nu} \tag{11}
\end{equation*}
$$

with two unknown scalar functions $A\left(k^{2}\right)$ and $B\left(k^{2}\right)$. Inserting this ansatz and multiplying out, we obtain

$$
\begin{align*}
{\left[\left(-k^{2}+m^{2}\right) \eta^{\mu \nu}+k^{\mu} k^{\nu}\right]\left[A \eta_{\nu \lambda}+B k_{\nu} k_{\lambda}\right] } & =\delta_{\lambda}^{\mu}, \\
-A k^{2} \delta_{\lambda}^{\mu}+A m^{2} \delta_{\lambda}^{\mu}+A k^{\mu} k_{\lambda}+B m^{2} k^{\mu} k_{\lambda} & =\delta_{\lambda}^{\mu}, \\
-A\left(k^{2}-m^{2}\right) \delta_{\lambda}^{\mu}+\left(A+B m^{2}\right) k^{\mu} k_{\lambda} & =\delta_{\lambda}^{\mu} . \tag{12}
\end{align*}
$$

In the last step, we regrouped the LHS into the two tensor structures δ_{λ}^{μ} and $k^{\mu} k_{\lambda}$. A comparison of their coefficients gives then $A=-1 /\left(k^{2}-m^{2}\right)$ and

$$
B=-\frac{A}{m^{2}}=\frac{1}{m^{2}\left(k^{2}-m^{2}\right)} .
$$

Thus the massive spin- 1 propagator follows as

$$
\begin{equation*}
D_{F}^{\mu \nu}(k)=\frac{-\eta^{\mu \nu}+k^{\mu} k^{\nu} / m^{2}}{k^{2}-m^{2}+\mathrm{i} \varepsilon} . \tag{13}
\end{equation*}
$$

b.) There's a mismatch of degrees of freedom, $3 \leftrightarrow 2$, between the massive and massless case/The longitudinal part $k^{\mu} k^{\nu} / m^{2}$ which blows up for $m \rightarrow 0$ does not contribute to the massless propagator/The projection operator following from the Maxwell Lagrangian has an eigenvalue 0 and is thus not invertible.

Feynman rules and useful formulas

$$
\begin{gather*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \tag{14}\\
\left\{\gamma^{\mu}, \gamma^{5}\right\}=0 \quad \text { and } \quad\left(\gamma^{5}\right)^{2}=1 \tag{15}
\end{gather*}
$$

$$
\begin{align*}
& \sigma^{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{16}\\
& \bar{\Gamma}=\gamma^{0} \Gamma^{\dagger} \gamma^{0} \tag{17}\\
& \frac{1}{a b}=\int_{0}^{1} \frac{\mathrm{~d} z}{[a z+b(1-z)]^{2}} . \tag{18}\\
& \int \frac{\mathrm{d}^{2 \omega} k}{(2 \pi)^{2 \omega}} \frac{1}{\left[k^{2}-m^{2}+\mathrm{i} \varepsilon\right]^{\alpha}}=\mathrm{i} \frac{(-1)^{\alpha}}{(4 \pi)^{\omega}} \frac{\Gamma(\alpha-\omega)}{\Gamma(\alpha)}\left[m^{2}-\mathrm{i} \varepsilon\right]^{\omega-\alpha} \text {. } \tag{19}\\
& f^{-\varepsilon / 2}=1-\frac{\varepsilon}{2} \ln f+\mathcal{O}\left(\varepsilon^{2}\right) . \tag{20}\\
& \Gamma(z)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} t^{z-1} \tag{21}\\
& \Gamma(n+1)=n! \tag{22}\\
& \Gamma(-n+\varepsilon)=\frac{(-1)^{n}}{n!}\left[\frac{1}{\varepsilon}+\psi_{1}(n+1)+\mathcal{O}(\varepsilon)\right], \tag{23}\\
& \psi_{1}(n+1)=1+\frac{1}{2}+\ldots+\frac{1}{n}-\gamma, \tag{24}\\
& j^{\mu}=\frac{\delta \mathscr{L}}{\delta \partial_{\mu} \phi_{a}} \delta \phi_{a}-K^{\mu} . \tag{25}\\
& -\mathrm{i} g \gamma^{5} \\
& p \\
& \frac{\mathrm{i}(\not p+m)}{p^{2}-m^{2}+\mathrm{i} \varepsilon} \\
& \frac{\mathrm{i}}{k^{2}-M^{2}+\mathrm{i} \varepsilon}
\end{align*}
$$

