
FY3464/8914 Quantum Field Theory 1 Final exam 22.05.2018

NTNU Trondheim, Institutt for fysikk

Examination for FY3464/8914 Quantum Field Theory I

Contat: Mihael Kahelrie�, tel. 99890701

Allowed tools: mathematial tables

1. Misellaneous and quiz

a.) Write down A

�

for (3 pts)

A = �u(p

2

)

�

u(p

1

)

b.) Calulate (3 pts)

tr[

�



�



�



�

℄:

.) The ovariant derivative of a Yang-Mills theory transforms under a loal gauge trans-

formation U(x) as: (2 pt)

2 D

�

! D

0

�

= D

�

2 D

�

! D

0

�

= U(x)D

�

2 D

�

! D

0

�

= U(x)D

�

U

y

(x)

2 D

�

! D

0

�

= U(x)D

�

U

y

(x) +

i

g

(�

�

U(x))U

y

(x)

a.) Starting from

A

�

= A

y

= (u

y

(p

2

)

0



�

u(p

1

))

y

= u

y

(p

1

)

�y



0y

u(p

2

);

and using 

�y

= 

0



�



0

and (

0

)

2

= 1, we arrive at

A

�

= �u(p

1

)

�

u(p

2

):

b.) Contrating (1) with �

��

gives

2

�



�

= 2�

�

�

= 8

or 

�



�

= 4. Together with tr(1) = 4 we �nd

tr[

�



�



�



�

℄ = 2�

��



�



�

� 

�



�



�



�

= �2 � 4 � 4 = �32 :

.) The ovariant derivative of a Yang-Mills theory transforms homogenously under a loal gauge,

D ! D

0

(x) = U(x)DU

y

(x).
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d.) The �eld-strength of a Yang-Mills theory transforms homogenously under a loal gauge,

F(x)! F

0

(x) = U(x)F(x)U

y

(x).

2. Salar �eld.

Consider a real, salar �eld � with mass m and self-interation g�

3

.

a.) Write down the Lagrange density L , explain your hoie of signs and pre-fators (when

physially relevant). (6 pts)

b.) Write down the generating funtional for onneted Green funtions. (4 pts)

.) Determine the mass dimension in d = 4 spae-time dimensions of all quantities in the

Lagrange density L . (4 pts)

d.) Draw the divergent one-loop diagrams and determine their super�ial degree of diver-

gene D (in d = 4 spae-time dimensions). (6 pts)

e.) Determine the number d of spae-time dimensions for whih the theory is

renormalisable. (4 pts)

a.) The free Lagrangian is

L

0

=

1

2

�

�

��

�

��

1

2

m

2

�

2

:

The relative sign is �xed by the relativisti energy-momentum relation, the overall sign by the

requirement that the Hamiltonian is bounded from below. The fator 1/2 in the kineti energy

leads to \anonially normalised" �eld, the fator 1/2 for the mass follows then from the rel-

ativisti energy-momentum relation. As the self-interation is odd, adding +

�

3!

�

3

or �

�

3!

�

3

is

equivalent: both hoies will lead to an unstable vauum. In order to reprodue the Feynman

rule, we used as normalisation the fator 1=3!,

L = L

0

�

g

3!

�

3

:

b.) We set m

2

! m

2

� i" as damping term and add a soure J oupled linearly to the �eld,

L

e�

= L + �J : (1)

The generating funtional Z for disonneted Green funtions is the path integral over �elds of

exp(i

R

d

4

xL

e�

g),

Z[J ℄ =

Z

D� expfi

Z

d

4

xL

e�

g = e

iW [J

�

℄

; (2)

while W [J

�

℄ generates onneted Green funtions.

.) The ation S =

R

d

d

xL is (for ~ = 1) dimensionless. The kineti term [(��)

2

℄ = m

4

�xes the

dimension of the �eld � as m

1

, onsistent with the interpretation of m in the mass term as mass,

[m℄ = m

1

. This implies that the oupling g has the dimension [g℄ = m

1

.

d.) The primitive divergent diagrams are the divergent 1-loop diagrams. We an order them by

the number E of external (bosoni) legs and determine the super�ial degree of divergene D by
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naive power-ounting, see the last page for the Feynman diagrams.

E = 0 and D = 4 orresponding a ontribution to the osmologial onstant,

E = 1 and D = 2 orresponding to a tadpole diagram,

E = 2 and D = 0 orresponding to the self-energy. Note that the vertex orretion, E = 3, is

already �nite.

(The vauum graphs (E = 0) are optional { you may prefer to \hide" them by asking for a

properly normalized generating funtional.)

e.) We have to �nd d suh that [g℄ = m

0

: For general d, it is [�℄ = m

(d�2)=2

. Only solution for

[�

3

℄ = d is thus d = 6 with [�℄ = m

2

.

3. Fermion with Yukawa interation.

Consider a Dira fermion  with mass m interating with real salar �eld � with mass M

through a Yukawa interation,

L =

�

 (i�= �m) � ig

�

 

5

 �+

1

2

�

�

��

�

��

1

2

M

2

�

2

:

a.) Determine the global (internal) symmetries of the free, massless fermioni Lagrangian,

L =

�

 i�= , and the resulting Noether urrents. (6 pts)

b.) Calulate the self-energy �(p=) at one-loop of a fermion with momentum p

2

6= m

2

using

dimensional regularisation. Express �(p=) as (12 pts)

�(p=) =

A

"

+B ln(D=�

2

)℄ :

.) What is your interpretation of the funtional form of A? (3 pts)

d.) What is your interpretation of the dependene of the self-energy on the parameter �?

[.) and d.): max. 50 words explanation.℄ (3 pts)

a.) Consider global phase transformations: First U

V

(1), hange phi to #

 (x)!  

0

(x) = e

i�

 (x) and

�

 (x)!

�

 

0

(x) = e

�i�

�

 (x);

keep the Lagrangian invariant, ÆL = 0. Noether's theorem (12) leads then with Æ = i to

j

�

=

ÆL

Æ(�

�

 )

Æ +

ÆL

Æ(�

�

�

 )

Æ

�

 =

�

 i

�

i + 0: (3)

Thus the vetor urrent is onserved. Next look at axial transformations U

A

(1),

 

0

(x)! e

i�

5

 (x) and

�

 (x)!

�

 

0

(x) = (e

i�

5

 (x))

y



0

=

�

 (x)e

i�

5

: (4)

The resulting (in�nitesimal) hange is

L

0

=

�

 

0

i�= 

0

=

�

 (1 + i�

5

)i�=(1 + i�

5

) =

�

 (1� i�)i�=(1 + i�) = (5)
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and thus again ÆL = 0 (for m = 0). With Æ = i

5

 to

j

�

=

ÆL

Æ(�

�

 )

Æ =

�

 i

�

i

5

 (6)

Thus the axial-vetor urrent is onserved too (for m = 0).

b.) Following the fermion line and using the Feynman rules, we have

i�(p=) = (�ig)

2

Z

d

4

k

(2�)

4



5

i

p=+ k= �m



5

i

k

2

�M

2

:

We ombine �rst the denominators and omplete then the square,

D = [(p+ k)

2

�m

2

℄z + (k

2

�M

2

)(1 � z) = k

2

+ 2p � kz + (p

2

�m

2

)z �M

2

(1� z) = (7)

= (k + zp)

2

+ p

2

z(1� z)�m

2

z �M

2

(1� z) � q

2

+ a (8)

Next we evaluate the nominator using p=

5

= �

5

p= and (

5

)

2

= 1, and substitute then k! q,

N = 

5

(p=+ k= �m)

5

= �(p=+ k= +m) = �(p=(1� z) + q=+m) :

The linear term will vanish after integration and we drop it. Adding the mass sale �

4�n

to g

and using ,,,, we �nd

i�(p=) = g

2

(�

2

)

4�d

i

1

(4�)

!

�(2� !)

�(2)

Z

1

0

dz

�(p=(1� z) +m)

a

2�!

From the dimensionless quantity (a=4��

2

)

�"

, and expand �(") and (a=4��

2

)

�"

for small ",

�(p=) = �

g

2

16�

2

�

(p=�m=2)

1

"

�

Z

1

0

dz(p=(1� z) +m) ln(a=(4��

2

)

�

.) The oeÆient of the divergent 1=" term is a polynomial in the external momentum. More

preisely, they orrespond to terms

�

 i� and m

�

  in the lassial Lagrangian, and an thus be

subtrated by mass and wave-funtion renormalisation.

d.) running parameters

4. Spin-1 �elds.

a.) A massive spin-1 �eld A

�

satis�es the Proa equation,

(�

��

2� �

�

�

�

)A

�

+m

2

A

�

= 0 :

Use the tensor method to determine the propagator D

��

(k) of suh a �eld [don't are about

the poles℄. (8 pts)

b) Give one argument why this method does not work setting m = 0. (3 pts)
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a.) We write fristm

2

A

�

= m

2

�

��

A

�

. The propagator D

��

for a massive spin-1 �eld is determined

by

�

�

��

(2+m

2

)� �

�

�

�

�

D

��

(x) = Æ

�

�

Æ(x) : (9)

Inserting the Fourier transformation of the propagator and the delta funtion gives

��

�k

2

+m

2

�

�

��

+ k

�

k

�

�

D

��

(k) = Æ

�

�

: (10)

We will apply the tensor method to solve this equation: In this approah, we use �rst all tensors

available in the problem to onstrut the required tensor of rank 2. In the ase at hand, we have

at our disposal only the momentum k

�

of the partile|whih we an ombine to k

�

k

�

|and the

metri tensor �

��

. Thus the tensor struture of D

��

(k) has to be of the form

D

��

(k) = A�

��

+Bk

�

k

�

(11)

with two unknown salar funtions A(k

2

) and B(k

2

). Inserting this ansatz and multiplying out,

we obtain

�

(�k

2

+m

2

)�

��

+ k

�

k

�

�

[A�

��

+Bk

�

k

�

℄ = Æ

�

�

;

�Ak

2

Æ

�

�

+Am

2

Æ

�

�

+Ak

�

k

�

+Bm

2

k

�

k

�

= Æ

�

�

;

�A(k

2

�m

2

)Æ

�

�

+ (A+Bm

2

)k

�

k

�

= Æ

�

�

: (12)

In the last step, we regrouped the LHS into the two tensor strutures Æ

�

�

and k

�

k

�

. A omparison

of their oeÆients gives then A = �1=(k

2

�m

2

) and

B = �

A

m

2

=

1

m

2

(k

2

�m

2

)

:

Thus the massive spin-1 propagator follows as

D

��

F

(k) =

��

��

+ k

�

k

�

=m

2

k

2

�m

2

+ i"

: (13)

b.) There's a mismath of degrees of freedom, 3$ 2, between the massive and massless ase/The

longitudinal part k

�

k

�

=m

2

whih blows up for m! 0 does not ontribute to the massless prop-

agator/The projetion operator following from the Maxwell Lagrangian has an eigenvalue 0 and

is thus not invertible.

Feynman rules and useful formulas

f

�

; 

�

g = 2�

��

: (14)

f

�

; 

5

g = 0 and (

5

)

2

= 1 : (15)
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�

��

=

i

2

[

�

; 

�

℄ (16)

� = 

0

�

y



0

(17)

1

ab

=

Z

1

0

dz

[az + b(1� z)℄

2

: (18)

Z

d

2!

k

(2�)

2!

1

[k

2

�m

2

+ i"℄

�

= i

(�1)

�

(4�)

!

�(�� !)

�(�)

[m

2

� i"℄

!��

: (19)

f

�"=2

= 1�

"

2

ln f +O("

2

) : (20)

�(z) =

Z

1

0

dt e

�t

t

z�1

(21)

�(n+ 1) = n! (22)

�(�n + ") =

(�1)

n

n!

�

1

"

+  

1

(n + 1) +O(")

�

; (23)

 

1

(n+ 1) = 1 +

1

2

+ : : :+

1

n

�  ; (24)

j

�

=

ÆL

Æ�

�

�

a

Æ�

a

�K

�

: (25)

f

d h

f

e

� � ig

5

f

p

f

i(p=+m)

p

2

�m

2

+ i"

h

k

h h

i

k

2

�M

2

+ i"
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