Exercise sheet 9

1. Energy losses.

a.) Find the time evolution of the energy, $E(t)$, of a particle suffering quadratic energy losses, $-\mathrm{d} E / \mathrm{d} t=b E^{2}$.
b.) Compare the energy density of a magnetic field with $B=3 \mu \mathrm{G}$ and of the CMB. Determine b.
c.) Make a $E(t)$ plot for a $0.1,1,10,100 \mathrm{TeV}$ electron. Assuming a diffusion coefficient $D(E)=D_{0}\left(E / E_{0}\right)^{1 / 3}$ with $D_{0}=5 \times 10^{26} \mathrm{~cm}^{2} / \mathrm{s}$ and $E_{0}=10 \mathrm{GeV}$, what do you conclude if 10 TeV electrons are observed at Earth?
a.) Integrating $-\mathrm{d} E / \mathrm{d} t=b E^{2}$ gives

$$
E(t)=\frac{E_{0}}{1+b E_{0} t}=\frac{E_{0}}{1+t / \tau_{1 / 2}}
$$

with $\tau_{1 / 2}=1 /\left(b E_{0}\right)$. Looking forward in time, $\tau_{1 / 2}$ is the time after which the energy of the particle is halved, $E\left(\tau_{1 / 2}\right)=E_{0} / 2$.
b.) The energy density u of a uniform magnetic field B is

$$
\begin{equation*}
u=\frac{B^{2}}{8 \pi} \simeq 0.45 \frac{\mathrm{eV}}{\mathrm{~cm}^{3}}\left(\frac{B}{3 \mu \mathrm{G}}\right)^{2} \tag{1}
\end{equation*}
$$

The energy density $u=a T^{4}$ of CMB photons with temperature $T=2.7 \mathrm{~K}$ is $u \simeq 0.45 \mathrm{eV} / \mathrm{cm}^{3}$. Thus

$$
b=\frac{3}{4} \sigma_{\mathrm{Th}} \frac{c u}{\left(m_{e} c^{2}\right)^{2}} \simeq 5 \times 10^{-17} \frac{1}{\mathrm{GeV} \cdot \mathrm{~s}}=1.5 \times 10^{-3} \frac{1}{\mathrm{TeV} \cdot \mathrm{kyr}} .
$$

Solutions are discussed Monday, 13.11.23
c.) The intersting point to note is that $E(t)$ diverges for $t \rightarrow-\tau_{1 / 2}$. Thus we can interprete $\tau_{1 / 2}$ also as the earliest creation time of an electron observed with energy E_{0} today $(t=0)$. For $E_{0}=10 \mathrm{TeV}$, it is $\tau_{1 / 2} \simeq 70 \mathrm{kyr}$.
If the particles diffuses (random walk in a turbulent magnetic field), then the distance travelled is $r=\left\langle x^{2}\right\rangle^{1 / 2}=\sqrt{2 D \tau_{1 / 2}}$. For simplicity, we ignore that $E=E(t)$ and evaluate $D(10 \mathrm{TeV}) \simeq$ $5 \times 10^{27} \mathrm{~cm}^{2} / \mathrm{s}$ and thus $r \simeq 50 \mathrm{pc}$. Hence 10 TeV electrons should come from sources in our very local neighbourhood. [The diffusion equation including energy losses can be solved analytically. The result differs not much: the source should be within 100 pc .]

2. Charged pion decay.

A charged pion decays mainly via the reaction $\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}$. Discuss this decay analogous to the decay of a neutral pions.
a.) Combining energy conservation $m_{\pi}=E_{\nu}+E_{\mu}$, smallness of neutrino masses $E_{\nu}=p_{\nu}$ and the cms condition $\boldsymbol{p}_{\nu}=-\boldsymbol{p}_{\mu}$ gives

$$
\begin{gathered}
\left(E_{\mu}-m_{\pi}\right)^{2}=\left|\boldsymbol{p}_{\mu}\right|^{2} \\
\underbrace{E_{\mu}^{2}-\left|\boldsymbol{p}_{\mu}\right|^{2}}_{=m_{\mu}^{2}}-2 E_{\mu} m_{\pi}+m_{\pi}^{2}=0 \\
m_{\mu}^{2}+m_{\pi}^{2}=2 E_{\mu} m_{\pi} \\
E_{\mu}=\frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}}=\frac{m_{\pi}}{2}\left(1+\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)=\frac{m_{\pi}}{2}(1+r)
\end{gathered}
$$

with $r \equiv m_{\mu}^{2} / m_{\pi}^{2} \simeq 0.58$. The momentum follows as

$$
\left|\boldsymbol{p}_{\mu}\right|^{2}=E_{\mu}^{2}-m_{\mu}^{2}=\frac{m_{\pi}^{2}}{4}\left(1+2 r+r^{2}\right)-\frac{4 m_{\pi}^{2} m_{\mu}^{2}}{4 m_{\pi}^{2}}=\frac{m_{\pi}^{2}}{4}\left(1-2 r+r^{2}\right)
$$

or $\left|\boldsymbol{p}_{\mu}\right|=\left(m_{\pi} / 2\right)(1-r)$.
b.) The energy in the lab system follows from the general Lorentz transformation $E^{\prime}=\gamma(E+$ $\beta p \cos \vartheta)$ with ϑ as the angle between the velocity β of the pion and the emitted muon. The maximal/minimal values of E^{\prime} follow for $\cos \vartheta= \pm 1$, i.e. if the muon is emitted parallel and anti-parallel to the direction of flight of the pion.
Inserting $E=\left(m_{\pi} / 2\right)(1+r)$ and $p=\left(m_{\pi} / 2\right)(1-r)$ gives

$$
E_{\min }^{\max }=\frac{\gamma m_{\pi}}{2}(1+r \pm \beta(1-r))
$$

In the ultra-relativistic limit, $\beta \rightarrow 1$, and thus $E_{\max } \simeq \gamma m_{\pi}=E_{\pi}$ and $E_{\min } \simeq r E_{\pi} \simeq 0.58 E_{\pi}$.
c.) In the rest-frame of the pion, the muon is emitted isotropically, $\mathrm{d} N / \mathrm{d} \Omega=1 /(4 \pi)$, since there is no preferred direction. In a frame where the pion is moving, we differentiate $E^{\prime}=\gamma(E+\beta p \cos \vartheta)$, obtaining

$$
\mathrm{d} E^{\prime}=\gamma \beta p \mathrm{~d}(\cos \vartheta) .
$$

Thus

$$
\mathrm{d} N=\frac{1}{2} \mathrm{~d}(\cos \vartheta)=\frac{\mathrm{d} E^{\prime}}{2 \gamma \beta p}
$$

or

$$
\frac{\mathrm{d} N}{\mathrm{~d} E^{\prime}}=\frac{1}{2 \gamma \beta p}
$$

The energy distribution is again a flat box, with the boundaries found in b.)

3. Muon decay.

Consider the decay of the muon $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$ (at rest): find the condition that the electron energy is maximal.

Denoting the four-momenta as $\mu^{-}\left(p_{1}\right) \rightarrow e^{-}+\left(p_{2}\right) \bar{\nu}_{e}\left(p_{3}\right)+\nu_{\mu}\left(p_{4}\right)$, it is

$$
\left(p_{1}-p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}
$$

Squaring and solving for E_{e}, it follows

$$
E_{e}=\frac{m_{\mu}^{2}+m_{e}^{2}-\left(p_{3}+p_{4}\right)^{2}}{2 m_{\mu}}
$$

Thus E_{e} is maximal, if

$$
\left(p_{3}+p_{4}\right)^{2}=2 E_{3} E_{4}(1-\cos \vartheta)
$$

is minimal, or $\cos \vartheta=1$. Hence the neutrino 3 -momenta are parallel, opposite to the electron momentum.

