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Exercise sheet 9

1. Energy losses.

a.) Find the time evolution of the energy, F(t), of a particle suffering quadratic energy
losses, —dE/dt = bE?.

b.) Compare the energy density of a magnetic field with B = 3uG and of the CMB.
Determine b.

c.) Make a E(t) plot for a 0.1, 1, 10, 100 TeV electron. Assuming a diffusion coefficient
D(E) = Dy(E/Ey)'/3 with Dy = 5 x 10%cm?/s and Ey = 10 GeV, what do you conclude
if 10 TeV electrons are observed at Earth?

a.) Integrating —dE/dt = bE? gives

E E
E(t) 0 0

- 1+bE0t - 1—|—t/7'1/2

with 7y /9 = 1/(bEp). Looking forward in time, 7/, is the time after which the energy of the
particle is halved, E(7/5) = Eo/2.

b.) The energy density u of a uniform magnetic field B is

B? eV [ B\’

The energy density u = a1 of CMB photons with temperature T = 2.7K is u ~ 0.45eV /cm?.
Thus
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c.) The intersting point to note is that E(t) diverges for t — —7; s2- Thus we can interprete
T1/2 also as the earliest creation time of an electron observed with energy Ey today (¢ = 0). For
Ey =10TeV, it is 75 >~ 70 kyr.

If the particles diffuses (random walk in a turbulent magnetic field), then the distance travelled
isr= <:E2>1/2 = /2D7y 3. For simplicity, we ignore that E = E(t) and evaluate D(10TeV) =~
5 x 10%"cm? /s and thus r ~ 50 pc. Hence 10 TeV electrons should come from sources in our very
local neighbourhood. [The diffusion equation including energy losses can be solved analytically.
The result differs not much: the source should be within 100 pc.]

2. Charged pion decay.
A charged pion decays mainly via the reaction 7+ — p* +,. Discuss this decay analogous
to the decay of a neutral pions.

a.) Combining energy conservation m, = E, + E,, smallness of neutrino masses F, = p, and
the cms condition p, = —p,, gives
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with r = m?/m2 ~ 0.58. The momentum follows as
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or [p,| = (mx/2)(1 = 7).

b.) The energy in the lab system follows from the general Lorentz transformation E' = v(F +
Bpcos?) with ¥ as the angle between the velocity 5 of the pion and the emitted muon. The
maximal /minimal values of E’ follow for cos? = +1, i.e. if the muon is emitted parallel and
anti-parallel to the direction of flight of the pion.

Inserting E = (m/2)(1 4+ r) and p = (m/2)(1 — r) gives

max __ /Mx
min

(I+r+5(1—r)).
In the ultra-relativistic limit, 8 — 1, and thus Fyax >~ ymy; = Er and Eyiy, ~ 7By ~ 0.58FE;.

c.) In the rest-frame of the pion, the muon is emitted isotropically, dN/dQ2 = 1/(4x), since there is
no preferred direction. In a frame where the pion is moving, we differentiate E’ = v(E+ Bp cos 9),
obtaining

dE’ = vBpd(cos ).
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Thus B
dN = —d(cos¥) =
( ) 2vBp
or
dN 1
dE'  298p’

The energy distribution is again a flat box, with the boundaries found in b.)

3. Muon decay.
Consider the decay of the muon = — e~ + 7, + v, (at rest): find the condition that the
electron energy is maximal.

Denoting the four-momenta as p= (p1) — €~ + (p2)Ve(p3) + vu(pa), it is
(p1 = p2)* = (p3 +pa)?
Squaring and solving for F., it follows

my, +mg — (p3 + pa)”
2my,

e —

Thus FE, is maximal, if
(p3 + pa)® = 2E3E4(1 — cos V)

is minimal, or cos? = 1. Hence the neutrino 3-momenta are parallel, opposite to the electron
momentum.
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