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Exercise sheet 9

1. Energy losses.

a.) Find the time evolution of the energy, E(t), of a particle suffering quadratic energy
losses, −dE/dt = bE2.
b.) Compare the energy density of a magnetic field with B = 3µG and of the CMB.
Determine b.
c.) Make a E(t) plot for a 0.1, 1, 10, 100TeV electron. Assuming a diffusion coefficient
D(E) = D0(E/E0)

1/3 with D0 = 5 × 1026cm2/s and E0 = 10GeV, what do you conclude
if 10TeV electrons are observed at Earth?

a.) Integrating −dE/dt = bE2 gives

E(t) =
E0

1 + bE0t
=

E0

1 + t/τ1/2

with τ1/2 = 1/(bE0). Looking forward in time, τ1/2 is the time after which the energy of the

particle is halved, E(τ1/2) = E0/2.

b.) The energy density u of a uniform magnetic field B is

u =
B2

8π
≃ 0.45

eV

cm3

(
B

3µG

)2

(1)

The energy density u = aT 4 of CMB photons with temperature T = 2.7K is u ≃ 0.45 eV/cm3.
Thus

b =
3

4
σTh

cu

(mec2)2
≃ 5× 10−17

1

GeV · s
= 1.5× 10−3

1

TeV · kyr
.
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c.) The intersting point to note is that E(t) diverges for t → −τ1/2. Thus we can interprete

τ1/2 also as the earliest creation time of an electron observed with energy E0 today (t = 0). For

E0 = 10TeV, it is τ1/2 ≃ 70 kyr.

If the particles diffuses (random walk in a turbulent magnetic field), then the distance travelled

is r =
〈
x2
〉1/2

=
√

2Dτ1/2. For simplicity, we ignore that E = E(t) and evaluate D(10TeV) ≃

5× 1027cm2/s and thus r ≃ 50 pc. Hence 10TeV electrons should come from sources in our very

local neighbourhood. [The diffusion equation including energy losses can be solved analytically.

The result differs not much: the source should be within 100 pc.]

2. Charged pion decay.

A charged pion decays mainly via the reaction π± → µ±+νµ. Discuss this decay analogous
to the decay of a neutral pions.

a.) Combining energy conservation mπ = Eν + Eµ, smallness of neutrino masses Eν = pν and
the cms condition pν = −pµ gives

(Eµ −mπ)
2 = |pµ|

2

E2

µ − |pµ|
2

︸ ︷︷ ︸

=m2
µ

−2Eµmπ +m2

π = 0

m2

µ +m2

π = 2Eµmπ

Eµ =
m2

π +m2
µ

2mπ
=

mπ

2

(

1 +
m2

µ

m2
π

)

=
mπ

2
(1 + r)

with r ≡ m2
µ/m

2
π ≃ 0.58. The momentum follows as

|pµ|
2 = E2

µ −m2

µ =
m2

π

4
(1 + 2r + r2)−

4m2
πm

2
µ

4m2
π

=
m2

π

4
(1− 2r + r2)

or |pµ| = (mπ/2)(1 − r).

b.) The energy in the lab system follows from the general Lorentz transformation E′ = γ(E +
βp cos ϑ) with ϑ as the angle between the velocity β of the pion and the emitted muon. The
maximal/minimal values of E′ follow for cos ϑ = ±1, i.e. if the muon is emitted parallel and
anti-parallel to the direction of flight of the pion.
Inserting E = (mπ/2)(1 + r) and p = (mπ/2)(1 − r) gives

Emax

min =
γmπ

2
(1 + r ± β(1− r)).

In the ultra-relativistic limit, β → 1, and thus Emax ≃ γmπ = Eπ and Emin ≃ rEπ ≃ 0.58Eπ .

c.) In the rest-frame of the pion, the muon is emitted isotropically, dN/dΩ = 1/(4π), since there is
no preferred direction. In a frame where the pion is moving, we differentiate E′ = γ(E+βp cos ϑ),
obtaining

dE′ = γβpd(cosϑ).
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Thus

dN =
1

2
d(cos ϑ) =

dE′

2γβp

or
dN

dE′
=

1

2γβp
.

The energy distribution is again a flat box, with the boundaries found in b.)

3. Muon decay.

Consider the decay of the muon µ− → e− + ν̄e + νµ (at rest): find the condition that the
electron energy is maximal.

Denoting the four-momenta as µ−(p1) → e− + (p2)ν̄e(p3) + νµ(p4), it is

(p1 − p2)
2 = (p3 + p4)

2

Squaring and solving for Ee, it follows

Ee =
m2

µ +m2
e − (p3 + p4)

2

2mµ

Thus Ee is maximal, if
(p3 + p4)

2 = 2E3E4(1− cos ϑ)

is minimal, or cos ϑ = 1. Hence the neutrino 3-momenta are parallel, opposite to the electron

momentum.
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