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Exercise sheet 10

1. Christoffel symbols and the Ricci tensor

Find the Christoffel symbols and the Ricci tensor for the metric dl2 =
S(t) [B(r)dr2 + r2dΩ].

We solve the Lagrange equations for a test particle,

L = B(r)ṙ2 + r2(ϑ̇2 + sin2 ϑφ̇2) ,

where we neglected the overall factor S(t). Comparing the Lagrange equations
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with the geodesic equation ẍκ +Γκ
µν ẋµẋν = 0, we can read off the non-vanishing Christoffel

symbols as
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Since the metric is diagonal, the non-diagonal elements of the Ricci tensor are zero too.
We calculate with

Rab = Rc
acb = ∂cΓ

c
ab − ∂bΓ

c
ac + Γc

abΓ
d
cd − Γd

bcΓ
c
ad

for instance the rr component as
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Similarly, we find Rϑϑ = 1 + r
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and Rφφ = sin2 ϑRϑϑ.

2. Redshift

Derive the redshift of a photon in the FLRW metric analogous to the redshift of a photon
in the Schwarzschild metric, using the fact that homogenity leads to the existence of three
space-like Killing vector fields. [For simplicity, restrict yourself to the flat case k = 0.]

The metric of the flat FLRW spacetime depends only on time, and admits therefore three
space-like Killing vector fields, ξx = (0, 1, 0, 0), ξx = (0, 0, 1, 0), and ξz = (0, 0, 0, 1). With p
as four-momentum of the photon, it follows ξi · p = const. Consider e.g. the x component,

ξx · p = gµνξµ
xpµ = −a2px = const.
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and thus px
∝ 1/a2. Next we use that p is a null vector,

(pt)2
− a2(px)2 = 0

or pt
∝ apx

∝ 1/a. An observer at rest, u = (1, 0, 0, 0) measures thus as frequency

ω = p · u = pt
∝ 1/a

3. New galaxies.

As the universe expands, the horizon grows. Estimate the time it takes for one galaxy
entering the horizon assuming the universe to be matter-dominated.

We need to estimate the amount of mass crossing the horizon per time, Ṁh(t). The time
δt between new galaxies with mass Mh ∼ 1012M⊙ enter our horizon can then be estimated
as δt ≃ Mgal/Ṁh.
As first step, we estimate the mass inside the present horizon as
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Inserting and differentiating,
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For a matter-dominated universe, dh(t0) = 2/H0 (and dh(t0) ≃ 3.3/H0 for ΛCDM). With
ρm = Ωmρcr it follows

Ṁh ≃ 4π Ωm

3H2
0

8πG

10

H2
0

i.e. the result is independendt of the expansion rate H0. Finally,

∆t ≃

Mgal

Ṁh

≃ 0.05yr.

Thus ∼ 20 galaxies enter each year the visible volume of the universe.
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