Exercise sheet 2

1. Scalar product of time-like vectors.

Show that the scalar product of two time-like vectors can be expressed as $\boldsymbol{a} \cdot \boldsymbol{b}=a b \cosh \eta$, where η is the rapidity connecting the two frames where $a^{\mu} \equiv(a, \mathbf{0})$ and $\tilde{b}^{\mu} \equiv(b, \mathbf{0})$ are valid.

Performing a Lorentz transformation from the frame A where $\boldsymbol{a}=(a, \mathbf{0})$ to the frame B gives

$$
\tilde{a}=(a \cosh \eta, a \sinh \eta, 0,0)
$$

where we assumed that the boost is in x^{1} direction. Taking then the scalar product results in

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\eta_{\mu \nu} \tilde{a}^{\mu \tilde{b}^{\nu}}=a b \cosh \eta .
$$

Remarks: i) The result is in line with the usual $\boldsymbol{a} \cdot \boldsymbol{b}=a b \cos \alpha$ and our interpretation of η as imaginary rotation angle. ii) Since $\cosh \eta \geq 1$, two time-like vectors cannot be orthogonal - as expected for two elements of an one-dimensional subspace.

2. Action of free relativistic particle.

Consider $S=\alpha \int \mathrm{d} \tau$ as action for a free relativistic particle.
a.) Determine the constant α requiring the correct non-relativistic limit.
b.) Does a classically allowed path maximise or minimise the action?
a.) We ask that the action has the correct non-relativistic limit/ Then

$$
\begin{equation*}
S_{0}=\alpha \int_{a}^{b} \mathrm{~d} s=\alpha \int_{a}^{b} \mathrm{~d} t \sqrt{1-v^{2}}=\int_{a}^{b} \mathrm{~d} t\left(-m+\frac{1}{2} m v^{2}+\mathcal{O}\left(v^{4}\right)\right), \tag{1}
\end{equation*}
$$

if we set $\alpha=-m$. The mass m corresponds to a potential energy in the non-relativistic limit and has therefore a negative sign in the Lagrangian. Moreover, a constant drops out of the equations of motion, and thus the term $-m$ can be omitted in the non-relativistic limit.
b.) Compare with Fig. 3.1 in the script and the corresponding discussion.

3. Uniformly accelerated observer.

Consider a particle moving on the x axis along a world-line parametrised by

$$
t(\sigma)=\frac{1}{a} \sinh \sigma, \quad x(\sigma)=\frac{1}{a} \cosh \sigma .
$$

a.) Find the connection between σ and proper-time τ; express the world-line as function of τ.
b.) Calculate the four-velocity u^{α} and the three-velocity v^{1} of the particle. Check their normalisation.

Solutions are discussed Thursday, 25.01.24
c.) Calculate the four-acceleration a^{α} of the particle.
d.) Draw a spacetime diagram including $x^{\mu}(\sigma)$.
a.) We form the differential,
$\mathrm{d} \tau^{2}=\mathrm{d} s^{2}=\mathrm{d} t^{2}-\mathrm{d} x^{2}=\left(\frac{1}{a} \cosh \sigma \mathrm{~d} \sigma\right)^{2}-\left(\frac{1}{a} \sinh \sigma \mathrm{~d} \sigma\right)^{2}=\left(\cosh ^{2} \sigma-\sinh ^{2} \sigma\right)\left(\frac{\mathrm{d} \sigma}{a}\right)^{2}=\left(\frac{\mathrm{d} \sigma}{a}\right)^{2}$.
Setting $\tau=\sigma / a$, i.e. choosing the constant to zero, it follows

$$
t(\tau)=\frac{1}{a} \sinh (a \tau), \quad x(\tau)=\frac{1}{a} \cosh (a \tau) .
$$

b.) We differentiate w.r.t. τ,

$$
u^{0}=\frac{\mathrm{d} t}{\mathrm{~d} \tau}=\cosh (a \tau), \quad u^{1}=\frac{\mathrm{d} x}{\mathrm{~d} \tau}=\sinh (a \tau)
$$

Checking the normalisation gives $\boldsymbol{u} \cdot \boldsymbol{u}=\cosh ^{2}(a \tau)-\sinh ^{2}(a \tau)=1$. The three-velocity is

$$
v^{1}=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} \tau} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}=\frac{u^{1}}{u^{0}}=\tan (a \tau)
$$

and thus bounded by one, $|v| \leq 1$: The particle has the velocity $v=-c$ for $\rightarrow-\infty$, decelerates to $v(t=0)=0$, followed by acceleration to $v=c$ for $\rightarrow \infty$.
c.) We differentiate another time w.r.t. τ,

$$
a^{0}=\frac{\mathrm{d} u^{0}}{\mathrm{~d} \tau}=a \sinh (a \tau), \quad a^{1}=\frac{\mathrm{d} u^{1}}{\mathrm{~d} \tau}=a \cosh (a \tau)
$$

The norm is $|\boldsymbol{a} \cdot \boldsymbol{a}|^{1 / 2}=-a$, thus the acceleration is constant.
d.) The worldline of an uniformly accelerated observers O; in the limit $a \rightarrow \infty$, the world-line become a triangle. Note the presence of 2 horizonts: One half of Minkowski space cannot influence the O, while O cannot influence half of Minkowski space.

Extra: If you want some additional training, you can solve the inverse problem: Determine the trajectory of a particle which is uniformly accelerated in its rest-frame.
In the rest-frame of an uniformly accelerated observer, the four-acceleration is given by $a^{\alpha}=$ $\ddot{x}^{\alpha}=(0, \boldsymbol{a})$ with $|\boldsymbol{a}|=a=$ const. We can convert this condition into a covariant form, writing

$$
\begin{equation*}
\eta_{\alpha \beta} \ddot{x}^{\alpha} \ddot{x}^{\beta}=-a^{2} . \tag{2}
\end{equation*}
$$

In order to determine the trajectory $x^{\alpha}(\tau)$ of the accelerated observer, it is convenient to change to light-cone coordinates,

$$
u=t-x \quad \text { and } \quad v=t+x .
$$

(We will suppress the transverse coordinates y and z.) Forming the differentials $\mathrm{d} u$ and $\mathrm{d} t$, we see that the line element in the new coordinates is $\mathrm{d} s^{2}=\mathrm{d} u \mathrm{~d} v$. The normalisation condition $\eta_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}=1$ of the four-velocity becomes therefore $\dot{u} \dot{v}=1$, while the acceleration equation (2) results in $\ddot{u} \ddot{v}=-a^{2}$. Differentiating then $\dot{u}=1 / \dot{v}$, we obtain $\ddot{u}=-\ddot{v} / \dot{v}^{2}$ or

$$
\frac{\ddot{v}}{\dot{v}}= \pm a .
$$

Integrating results in

$$
v(\tau)=\frac{A}{a} \exp (a \tau)+C
$$

and, using $\dot{u}=1 / \dot{v}$, in

$$
u(\tau)=-\frac{1}{A a} \exp (-a \tau)+D
$$

Going back to the original Cartesian coordinates, we obtain

$$
t(\tau)=\frac{1}{a} \sinh (a \tau) \quad \text { and } \quad x(\tau)=\frac{1}{a} \cosh (a \tau),
$$

where we set the integration constants $A=1$ and $C=D=0$, which selects the trajectory with $t(0)=0$ and $x(0)=1 / a$.

4. Infinitesimal Lorentz transformation.

Symmetry transformations form groups; continuous transformations in physics depend analytically on their parameters (e.g. as $\cos \vartheta$ and $\sin \vartheta$ on the rotation angle ϑ). An element g of such a group (called "Lie group") can be therefore expanded as a power series,

$$
\begin{equation*}
g(\vartheta)=1+\sum_{a=1}^{n} \mathrm{i} \vartheta^{a} T^{a}+\mathcal{O}\left(\vartheta^{2}\right) \equiv 1+\mathrm{i} \vartheta^{a} T^{a}+\mathcal{O}\left(\vartheta^{2}\right) \tag{3}
\end{equation*}
$$

The linear transformation in the arbitrary direction ϑ^{a} is called an infinitesimal transformation, the T^{a} the (infinitesimal) generators of the transformation. The generators T^{a} can be obtained by differentiation, $T^{a}=-\mathrm{i} \mathrm{d} g(\vartheta) /\left.\mathrm{d} \vartheta^{a}\right|_{\vartheta=0}$. Conversely, analyticity implies that the group element $g(\vartheta)$ (more precisely, thus connected to the unity element) can be obtained by exponentiation,

$$
\begin{equation*}
g(\vartheta)=\lim _{n \rightarrow \infty}\left[1+\mathrm{i} \vartheta^{a} T^{a} / n\right]^{n} \tag{4}
\end{equation*}
$$

Solutions are discussed Thursday, 25.01.24
a.) Calculate the generators of Lorentz transformations.
b.) Determine their "Lie algebra", i.e. calculate the real numbers $f^{a b c}$ called structure constants in

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=\mathrm{i} f^{a b c} T^{c} \tag{5}
\end{equation*}
$$

Applied to the finite boost $B_{x}(\eta)$ along the x direction given in (??) we find as generator K_{x}

$$
B_{x}(\eta)=\left(\begin{array}{cccc}
\cosh \eta & \sinh \eta & 0 & 0 \tag{6}\\
\sinh \eta & \cosh \eta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad K_{x}=\left.\frac{1}{\mathrm{i}} \frac{\partial B_{x}(\eta)}{\partial \eta}\right|_{\eta=0}=-\mathrm{i}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and similarly for the other two boosts. The 4-dim. generators of rotations are obtained simply by adding $(1,0,0,0)$ as zeroth colum and raw to the known 3 -dim. rotations, e.g.

$$
R_{z}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7}\\
0 & \cos \alpha & \sin \alpha & 0 \\
0 & -\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad J_{z}(\alpha)=-\left.\mathrm{i} \frac{\partial R_{z}(\alpha)}{\partial \alpha}\right|_{\alpha=0}=-\mathrm{i}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Calculating then their commutation relations, one finds

$$
\begin{align*}
{\left[J_{i}, J_{j}\right] } & =\mathrm{i} \varepsilon_{i j k} J_{k}, \tag{8a}\\
{\left[J_{i}, K_{j}\right] } & =\mathrm{i} \varepsilon_{i j k} K_{k}, \tag{8b}\\
{\left[K_{i}, K_{j}\right] } & =-\mathrm{i} \varepsilon_{i j k} J_{k} . \tag{8c}
\end{align*}
$$

You should recognise in the first relation the anticommutation relation of the angular momentum operators; thus angular momentum are the generator of rotations. Moreover, their anticommutation relation are closed (i.e. contain no K_{i}). Thus rotations from a closed subgroup of the Lorentz group. This is not true for the boosts.

Remarks:

- The structure constant $\varepsilon_{i j k}$ are those of $\mathrm{SU}(2)$. Introducing the linear combinations $\boldsymbol{J}^{ \pm}=$ $(\boldsymbol{J} \pm \mathrm{i} \boldsymbol{K}) / 2$, one finds that their mixed commutators are zero, while both $\boldsymbol{J}^{ \pm}$form a $\mathrm{SU}(2)$ group. Thus $\mathrm{SO}(1,3) \sim \mathrm{SU}(2) \otimes \mathrm{SU}(2)$.
- You may have encountered $\operatorname{SU}(2)$ when you discussed rotations of Pauli spinors. Thus in addition of Lorentz transformations acting on tensors, we could construct Lorentz transformations acting on spinors using $\mathrm{SU}(2) \otimes \mathrm{SU}(2)$.
- Writing $U=\exp \left(\mathrm{i} T^{a} \vartheta^{a}\right)$, we factored out an i. Then generators like J are Hermetian (i.e. $\left.\left(J_{z}\right)^{\dagger}=\left(J_{z}\right)^{\mathrm{T}, *}=J_{z}\right)$ and U is an unitary transformation. An exception are boosts K : They cannot be implemented by unitary (finite-dimensional) matrices; physically, this is clear since the number density j^{0} of particles is not Lorentz invariant.

