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Exercise sheet 2

1. Scalar product of time-like vectors.

Show that the scalar product of two time-like vectors can be expressed as a ·b = ab cosh η,
where η is the rapidity connecting the two frames where aµ ≡ (a, 0) and b̃µ ≡ (b, 0) are
valid.

Performing a Lorentz transformation from the frame A where a = (a,0) to the frame B gives

ã = (a cosh η, a sinh η, 0, 0)

where we assumed that the boost is in x1 direction. Taking then the scalar product results in

a · b = ηµν ã
µb̃ν = ab cosh η.

Remarks: i) The result is in line with the usual a · b = ab cosα and our interpretation of η as

imaginary rotation angle. ii) Since cosh η ≥ 1, two time-like vectors cannot be orthogonal – as

expected for two elements of an one-dimensional subspace.

2. Action of free relativistic particle.

Consider S = α
∫

dτ as action for a free relativistic particle.
a.) Determine the constant α requiring the correct non-relativistic limit.
b.) Does a classically allowed path maximise or minimise the proper-time?

a.) We ask that the action has the correct non-relativistic limit/ Then

S0 = α

∫ b

a
ds = α

∫ b

a
dt

√

1− v2 =

∫ b

a
dt

(

−m+
1

2
mv2 +O(v4)

)

, (1)

if we set α = −m. The mass m corresponds to a potential energy in the non-relativistic limit and

has therefore a negative sign in the Lagrangian. Moreover, a constant drops out of the equations

of motion, and thus the term −m can be omitted in the non-relativistic limit.

b.) Compare with Fig. 3.1 in the script and the corresponding discussion. Or, for Minkowski

space, recall the twin paradox: Thus space-like geodesics maximise the proper-time

3. Uniformly accelerated observer.

Consider a particle moving on the x axis along a world-line parametrised by

t(σ) =
1

a
sinh σ, x(σ) =

1

a
cosh σ.

a.) Find the connection between σ and proper-time τ ; express the world-line as function
of τ .
b.) Calculate the four-velocity uα and the three-velocity v1 of the particle. Check their
normalisation.
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c.) Calculate the four-acceleration aα of the particle.
d.) Draw a spacetime diagram including xµ(σ).

a.) We form the differential,

dτ2 = ds2 = dt2−dx2 =

(

1

a
coshσdσ

)2

−

(

1

a
sinhσdσ

)2

=
(

cosh2 σ − sinh2 σ
)

(

dσ

a

)2

=

(

dσ

a

)2

.

Setting τ = σ/a, i.e. choosing the integration constant to zero, it follows

t(τ) =
1

a
sinh(aτ), x(τ) =

1

a
cosh(aτ).

b.) We differentiate w.r.t. τ ,

u0 =
dt

dτ
= cosh(aτ), u1 =

dx

dτ
= sinh(aτ),

Checking the normalisation gives u · u = cosh2(aτ)− sinh2(aτ) = 1. The three-velocity is

v1 =
dx

dt
=

dx

dτ

dt

dτ
=

u1

u0
= tan(aτ),

and thus bounded by one, |v| ≤ 1: The particle has the velocity v = −c for → −∞, decelerates

to v(t = 0) = 0, followed by acceleration to v = c for → ∞.

c.) We differentiate another time w.r.t. τ ,

a0 =
du0

dτ
= a sinh(aτ), a1 =

du1

dτ
= a cosh(aτ),

The norm is |a · a|1/2 = −a, thus the acceleration is constant.

d.) The worldline of an uniformly accelerated observers O; in the limit a → ∞, the world-line

become a triangle. Note the presence of 2 horizonts: One half of Minkowski space cannot influence

the O, while O cannot influence half of Minkowski space.
t

x

a → ∞
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Extra: If you want some additional training, you can solve the inverse problem: Determine the
trajectory of a particle which is uniformly accelerated in its rest-frame.
In the rest-frame of an uniformly accelerated observer, the four-acceleration is given by aα =
ẍα = (0,a) with |a| = a = const. We can convert this condition into a covariant form, writing

ηαβ ẍ
αẍβ = −a2. (2)

In order to determine the trajectory xα(τ) of the accelerated observer, it is convenient to change
to light-cone coordinates,

u = t− x and v = t+ x.

(We will suppress again the transverse coordinates y and z.) Forming the differentials du and dt,
we see that the line element in the new coordinates is ds2 = dudv. The normalisation condition
ηαβ ẋ

αẋβ = 1 of the four-velocity becomes therefore u̇v̇ = 1, while the acceleration equation (2)
results in üv̈ = −a2. Differentiating then u̇ = 1/v̇, we obtain ü = −v̈/v̇2 or

v̈

v̇
= ±a.

Integrating results in

v(τ) =
A

a
exp(aτ) +C

and, using u̇ = 1/v̇, in

u(τ) = −
1

Aa
exp(−aτ) +D.

Going back to the original Cartesian coordinates, we obtain

t(τ) =
1

a
sinh(aτ) and x(τ) =

1

a
cosh(aτ),

where we set the integration constants A = 1 and C = D = 0, which selects the trajectory with

t(0) = 0 and x(0) = 1/a.

4. Lorentz group.

Lorentz transformations Λ ∈ O(1, 3) are all those coordinate transformations xµ → x̃µ =
Λµ

νx
ν that keep the norm ηµνx

µxν of space-time points xµ invariant. Apart from rotations
and boosts which are continuously connected to the unit element, there are other, uncon-
nected pieces of the Lorentz group. Determine these unconnected pieces by considering the
relation η = ΛTηΛ. What is their meaning? [Hint: A relation like [f(Λ)]2 = 1 shows that
the Lorentz group consists of at least two disconnected pieces, one with f = 1, another
one with f = −1.]

We rewrite first the fact that the metric tensor ηµν is invariant under Lorentz transformations,
η̃µνΛ

µ
ρΛν

σ = ηρσ, in matrix form, η = ΛT ηΛ. Taking then the determinant, we obtain

(detΛ)2 = 1 or detΛ = ±1. (3)

Thus O(1,3) consists of at least two disconnected pieces. The part with detΛ = 1 contains the
proper Lorentz transformations and is called SO(1,3). The second part contains the improper
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Lorentz transformations that can be written as the product of a proper transformation and a
discrete transformation changing the sign of an odd number of coordinates.
Next we consider the 00 component of the equation η = ΛT ηΛ. With η00 = ηµνΛ

µ
0
Λν

0, it is

1 = (Λ0
0)

2 −
3

∑

i=1

(Λi
0)

2. (4)

Thus (Λ0
0)

2 ≥ 1 and both the proper and the improper Lorentz transformations consist of two
disconnected pieces. The transformations with Λ0

0 ≥ 1 are called orthochronous since they
do not change the direction of time. In contrast, transformations with Λ0

0 ≤ −1 transform a
future-directed time-like vector into a past-directed one and vice versa, and are therefore called
antichronous. These properties are Lorentz invariant, and thus we can split Lorentz transforma-
tions into four categories:

• proper, orthochronous (= restricted) transformations L ∈ L
↑
+ with detΛ = 1 and Λ0

0 ≥ 1,

• proper, antichronous transformations TPL ∈ L
↓
+ with detΛ = 1 and Λ0

0 ≤ −1,

• improper, orthochronous transformation PL ∈ L
↑
− with detΛ = −1 and Λ0

0 ≥ 1,

• improper, antichronous transformations TL ∈ L
↓
− with detΛ = −1 and Λ0

0 ≤ −1.

Only those Lorentz transformations that are elements of the restricted Lorentz group, L ∈ L
↑
+, are

connected smoothly to the identity and can thus be built up from infinitesimal transformations.

The other three disconnected pieces of the Lorentz group can be obtained as the product of an

element L ∈ L
↑
+ and additional discrete P and T transformations with P (x0,x) = (x0,−x) and

T (x0,x) = (−x0,x).

Remark: No need to memorize the names. The important point to note is that an arbitrary

Lorentz transformation can be obtained by combining those connected to the unity, plus a discrete

parity and/or time-inversion transformation.
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