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Exercise sheet 2

1. Scalar product of time-like vectors.

Show that the scalar product of two time-like vectors can be expressed as a · b = ab cosh η,
where η is the rapidity connecting the two frames where aµ ≡ (a, 0) and b̃µ ≡ (b, 0) are
valid.

Performing a Lorentz transformation from the frame A where a = (a, 0) to the frame B gives

ã = (a cosh η, a sinh η, 0, 0)

where we assumed that the boost is in x1 direction. Taking then the scalar product results in

a · b = ηµν ãµb̃ν = ab cosh η.

Remarks: i) The result is in line with the usual a · b = ab cos α and our interpretation of η as

imaginary rotation angle. ii) Since cosh η ≥ 1, two time-like vectors cannot be orthogonal – as

expected for two elements of an one-dimensional subspace.

2. Action of free relativistic particle.

Consider S = α
∫

dτ as action for a free relativistic particle.
a.) Determine the constant α requiring the correct non-relativistic limit.
b.) Does a classically allowed path maximise or minimise the action?

a.) We ask that the action has the correct non-relativistic limit/ Then

S0 = α

∫ b

a
ds = α

∫ b

a
dt

√

1 − v2 =

∫ b

a
dt

(

−m +
1

2
mv2 + O(v4)

)

, (1)

if we set α = −m. The mass m corresponds to a potential energy in the non-relativistic limit and

has therefore a negative sign in the Lagrangian. Moreover, a constant drops out of the equations

of motion, and thus the term −m can be omitted in the non-relativistic limit.

b.) Compare with Fig. 3.1 in the script and the corresponding discussion.

3. Uniformly accelerated observer.

Consider a particle moving on the x axis along a world-line parametrised by

t(σ) =
1

a
sinh σ, x(σ) =

1

a
cosh σ.

a.) Find the connection between σ and proper-time τ ; express the world-line as function
of τ .
b.) Calculate the four-velocity uα and the three-velocity v1 of the particle. Check their
normalisation.
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c.) Calculate the four-acceleration aα of the particle.
d.) Draw a spacetime diagram including xµ(σ).

a.) We form the differential,

dτ2 = ds2 = dt2−dx2 =

(

1

a
cosh σdσ

)2

−

(

1

a
sinh σdσ

)2

=
(

cosh2 σ − sinh2 σ
)

(

dσ

a

)2

=

(

dσ

a

)2

.

Setting τ = σ/a, i.e. choosing the constant to zero, it follows

t(τ) =
1

a
sinh(aτ), x(τ) =

1

a
cosh(aτ).

b.) We differentiate w.r.t. τ ,

u0 =
dt

dτ
= cosh(aτ), u1 =

dx

dτ
= sinh(aτ),

Checking the normalisation gives u · u = cosh2(aτ) − sinh2(aτ) = 1. The three-velocity is

v1 =
dx

dt
=

dx

dτ

dt

dτ
=

u1

u0
= tan(aτ),

and thus bounded by one, |v| ≤ 1: The particle has the velocity v = −c for → −∞, decelerates

to v(t = 0) = 0, followed by acceleration to v = c for → ∞.

c.) We differentiate another time w.r.t. τ ,

a0 =
du0

dτ
= a sinh(aτ), a1 =

du1

dτ
= a cosh(aτ),

The norm is |a · a|1/2 = −a, thus the acceleration is constant.

d.) The worldline of an uniformly accelerated observers O; in the limit a → ∞, the world-line

become a triangle. Note the presence of 2 horizonts: One half of Minkowski space cannot influence

the O, while O cannot influence half of Minkowski space.
t

x

a → ∞
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Extra: If you want some additional training, you can solve the inverse problem: Determine the
trajectory of a particle which is uniformly accelerated in its rest-frame.
In the rest-frame of an uniformly accelerated observer, the four-acceleration is given by aα =
ẍα = (0, a) with |a| = a = const. We can convert this condition into a covariant form, writing

ηαβ ẍαẍβ = −a2. (2)

In order to determine the trajectory xα(τ) of the accelerated observer, it is convenient to change
to light-cone coordinates,

u = t − x and v = t + x.

(We will suppress the transverse coordinates y and z.) Forming the differentials du and dt, we
see that the line element in the new coordinates is ds2 = dudv. The normalisation condition
ηαβ ẋαẋβ = 1 of the four-velocity becomes therefore u̇v̇ = 1, while the acceleration equation (2)
results in üv̈ = −a2. Differentiating then u̇ = 1/v̇, we obtain ü = −v̈/v̇2 or

v̈

v̇
= ±a.

Integrating results in

v(τ) =
A

a
exp(aτ) + C

and, using u̇ = 1/v̇, in

u(τ) = −
1

Aa
exp(−aτ) + D.

Going back to the original Cartesian coordinates, we obtain

t(τ) =
1

a
sinh(aτ) and x(τ) =

1

a
cosh(aτ),

where we set the integration constants A = 1 and C = D = 0, which selects the trajectory with

t(0) = 0 and x(0) = 1/a.

4. Infinitesimal Lorentz transformation.

Symmetry transformations form groups; continuous transformations in physics depend
analytically on their parameters (e.g. as cos ϑ and sin ϑ on the rotation angle ϑ). An
element g of such a group (called “Lie group”) can be therefore expanded as a power
series,

g(ϑ) = 1 +
n

∑

a=1

iϑaT a + O(ϑ2) ≡ 1 + iϑaT a + O(ϑ2). (3)

The linear transformation in the arbitrary direction ϑa is called an infinitesimal transfor-
mation, the T a the (infinitesimal) generators of the transformation. The generators T a

can be obtained by differentiation, T a = −i dg(ϑ)/dϑa|ϑ=0. Conversely, analyticity implies
that the group element g(ϑ) (more precisely, thus connected to the unity element) can be
obtained by exponentiation,

g(ϑ) = lim
n→∞

[1 + iϑaT a/n]n (4)
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a.) Calculate the generators of Lorentz transformations.
b.) Determine their “Lie algebra”, i.e. calculate the real numbers fabc called structure
constants in

[T a, T b] = ifabcT c. (5)

Applied to the finite boost Bx(η) along the x direction given in (??) we find as generator Kx

Bx(η) =









cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1









, Kx =
1

i

∂Bx(η)

∂η

∣

∣

∣

∣

η=0

= −i









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









(6)

and similarly for the other two boosts. The 4-dim. generators of rotations are obtained simply
by adding (1, 0, 0, 0) as zeroth colum and raw to the known 3-dim. rotations, e.g.

Rz(α) =









1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 0 0 1









, Jz(α) = −i
∂Rz(α)

∂α

∣

∣

∣

∣

α=0

= −i









0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0









.

(7)
Calculating then their commutation relations, one finds

[Ji, Jj ] = iεijkJk, (8a)

[Ji, Kj ] = iεijkKk, (8b)

[Ki, Kj ] = −iεijkJk. (8c)

You should recognise in the first relation the anticommutation relation of the angular momentum

operators; thus angular momentum are the generator of rotations. Moreover, their anticommu-

tation relation are closed (i.e. contain no Ki). Thus rotations from a closed subgroup of the

Lorentz group. This is not true for the boosts.

Remarks:

• The structure constant εijk are those of SU(2). Introducing the linear combinations J
± =

(J ± iK)/2, one finds that their mixed commutators are zero, while both J
± form a SU(2)

group. Thus SO(1,3)∼ SU(2)⊗SU(2).

• You may have encountered SU(2) when you discussed rotations of Pauli spinors. Thus in
addition of Lorentz transformations acting on tensors, we could construct Lorentz trans-
formations acting on spinors using SU(2)⊗SU(2).

• Writing U = exp(iT aϑa), we factored out an i. Then generators like J are Hermetian (i.e.
(Jz)† = (Jz)T,∗ = Jz) and U is an unitary transformation. An exception are boosts K:
They cannot be implemented by unitary (finite-dimensional) matrices; physically, this is
clear since the number density j0 of particles is not Lorentz invariant.
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