Exercise sheet 3

1. Transformation between inertial frames.

Consider two inertial frames K and K^{\prime} with parallel axes at $t=t^{\prime}=0$ that are moving with the relative velocity v in the x direction.
a.) Show that the linear transformation between the coordinates in K and K^{\prime} is given by

$$
\left(\begin{array}{c}
t^{\prime} \tag{1}\\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{c}
A t+B x \\
D t+E x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
A t+B x \\
A(x-v t) \\
y \\
z
\end{array}\right)
$$

b.) Show that requiring the invariance of

$$
\begin{equation*}
\Delta s^{2} \equiv c^{2} t^{2}-x^{2}-y^{2}-z^{2}=c^{2} t^{\prime 2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2} \tag{2}
\end{equation*}
$$

leads to Lorentz transformations.
c.) What is the condition leading to Galilean transformations?
a.) The origin $x^{\prime}=0$ of K^{\prime} correspond in K to $x=v t$. Then

$$
0=D t+E v t \Rightarrow D=-E v
$$

The origin $x=0$ of K correspond in K^{\prime} to $x^{\prime}=-v t^{\prime}$. Then

$$
\begin{align*}
t^{\prime} & =A t \tag{3}\\
-v t^{\prime} & =D t \quad \Rightarrow \quad t^{\prime}=-\frac{D}{v} t=A t \tag{4}
\end{align*}
$$

and thus $A=-D / v$ and hence $A=E$.
Remark: The transformation has to be linear, if we assume that space and time are uniform.
b.) Square the terms on the RHS of

$$
t^{2}-x^{2}=(A t-B x)^{2}-A^{2}(x-v t)^{2},
$$

order them as $t^{2}(\cdots)-x^{2}(\cdots)+2 t x(\cdots)$ and compare coefficients to the LHS. This gives $A=\gamma$ and $B=-\beta \gamma$.
c.) Absolute time $t=t^{\prime}$ requires $A=1$ and $B=0$.

2. Index gymnastics.

Splitt the tensor $T^{\mu \nu}$ into its symmetric part $S^{\mu \nu}=S^{\nu \mu}$ and its anti-symmetric part $A^{\mu \nu}=-A^{\nu \mu}$.
a.) Show that this splitting is invariant under Lorentz transformations.
b.) Show that $S^{\mu \nu} A_{\mu \nu}=0$.

Solutions are discussed Thursday, 11.09.19
a.) The antisymmetric tensor components are given by

$$
A_{\mu \nu}=\frac{1}{2}\left(T_{\mu \nu}-T_{\nu \mu}\right) .
$$

The definition is invariant under a Lorentz transformation $\Lambda^{\mu}{ }_{\nu}$, since

$$
\begin{align*}
2 \tilde{A}_{\mu \nu} & =\tilde{T}_{\mu \nu}-\tilde{T}_{\nu \mu}=\Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu} T_{\rho \sigma}-\Lambda^{\rho}{ }_{\nu} \Lambda^{\sigma}{ }_{\mu} T_{\rho \sigma} \tag{5}\\
& =\Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu} T_{\rho \sigma}-\Lambda^{\sigma}{ }_{\nu} \Lambda^{\rho}{ }_{\mu} T_{\sigma \rho}=\Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu}\left(T_{\rho \sigma}-T_{\sigma \rho}\right)=\Lambda^{\rho}{ }_{\mu} \Lambda^{\sigma}{ }_{\nu} 2 A_{\rho \sigma} \tag{6}
\end{align*}
$$

Here we used first the transformation law for a tensor of rank 2, and exchanged then dummy indices in the second term.
Note that this holds also for a general coordinate transformation, $\Lambda^{\mu}{ }_{\nu} \rightarrow \frac{\partial \tilde{x}^{\nu}}{\partial x^{\mu}}$.
b.) To see that the contraction of a symmetric tensor $S_{\mu \nu}$ with an antisymmetric tensor $A_{\mu \nu}$ gives zero, consider

$$
\begin{equation*}
S_{\mu \nu} A^{\mu \nu}=-S_{\mu \nu} A^{\nu \mu}=-S_{\nu \mu} A^{\nu \mu}=-S_{\mu \nu} A^{\mu \nu} . \tag{7}
\end{equation*}
$$

Here we used first the antisymmetry of $A^{\mu \nu}$, then the symmetry of $S_{\mu \nu}$, and finally exchanged the dummy summation indices. Note that this remains true, if the tensor expression contains additional indices.

3. Two particle decay.

A particle at rest decays into two particles, $A \rightarrow B+C$.
a.) Find the energy and momenta of B and C.
b.) What happens for $m_{A}<m_{B}+m_{C}$?
a.) Squaring $p_{c}^{\mu}=p_{a}^{\mu}-p_{b}^{\mu}$ and using $\boldsymbol{p}_{a}=0$ gives

$$
\begin{equation*}
m_{c}^{2}=m_{a}^{2}-2 m_{a} E_{b}+m_{b}^{2} \tag{8}
\end{equation*}
$$

Solving for the energies of the decay products,

$$
\begin{equation*}
E_{b}=\frac{m_{a}^{2}+m_{b}^{2}-m_{c}^{2}}{2 m_{a}} \quad \text { and } \quad E_{c}=\frac{m_{a}^{2}+m_{c}^{2}-m_{b}^{2}}{2 m_{a}} . \tag{9}
\end{equation*}
$$

Then the momenta follow as

$$
\begin{equation*}
\boldsymbol{p}_{b}^{2}=E_{b}^{2}-m_{b}^{2}=\left(\frac{m_{a}^{2}+m_{b}^{2}-m_{c}^{2}}{2 m_{a}}\right)^{2}-\frac{4 m_{a}^{2} m_{b}^{2}}{4 m_{a}^{2}} \tag{10}
\end{equation*}
$$

or

$$
\begin{align*}
\left|\boldsymbol{p}_{b}\right|=\left|\boldsymbol{p}_{c}\right| & =\frac{1}{2 m_{a}}\left[m_{a}^{4}+m_{b}^{4}+m_{c}^{4}-2 m_{a} m_{b}-2 m_{a} m_{c}-2 m_{b} m_{c}\right]^{1 / 2} \tag{11}\\
& \equiv \frac{1}{2 m_{a}} \lambda^{1 / 2}\left(m_{a}^{2}, m_{b}^{2}, m_{c}^{2}\right) . \tag{12}
\end{align*}
$$

The Kibble or triangle function $\lambda(x, y, z)$ satisfies

$$
\begin{align*}
\lambda(x, y, z) & =x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 x z \tag{13a}\\
& =\left[x^{2}-(y+z)^{2}\right]\left[x^{2}-(y-z)^{2}\right] . \tag{13b}
\end{align*}
$$

b.) The decay is kinematically forbidden, since the momenta $\left|\boldsymbol{p}_{b}\right|$ and $\left|\boldsymbol{p}_{c}\right|$ become imaginary, cf. with Eq. (13b).

4. Threshold energy.

Particle A hits particle B at rest, producing the particles C_{1}, \ldots, C_{n}.
a.) Calculate the threshold (i.e. the minimal energy of A) for this reaction.
b.) What is the threshold energy for $p p \rightarrow X \pi^{0}$, where X is the minmal set of particles such that the reaction is allowed?
c.) What is the threshold energy for $p p \rightarrow X \bar{p}$?
a.) Denote the total momentum by P^{μ}. The initial state in the lab frame has $P^{\mu}=\left(E_{a}+m_{b}, \boldsymbol{p}_{a}\right)$ and thus

$$
P^{2}=2 E_{a} m_{b}+m_{a}^{2}+m_{b}^{2} .
$$

After the collision, in the CMS frame at threshold

$$
P^{2}=\left(\sum_{i} m_{i}, \mathbf{0}\right)^{2} \equiv(M, \mathbf{0})^{2}=M^{2}
$$

Thus

$$
E_{a}=\frac{M^{2}-m_{a}^{2}-m_{b}^{2}}{2 m_{b}} .
$$

b.) Since baryon number is conserved, $X=\{p p\}$, and thus $M=2 m_{p}+m_{\pi} \simeq 2011 \mathrm{MeV}$ or $E_{\text {th }} \simeq 1.2 \mathrm{GeV}$.
c.) Since baryon number is conserved, $X=\{p p p \bar{p}\}$, and thus $M^{2}=16 m_{p}^{2}$ or $E_{\mathrm{th}}=7 m_{p} \simeq$ 6.5 GeV.

