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Exercise sheet 3b: Additional exercises

1. Proper distance, area and volumes.
Consider the metric

ds* = —(1 — Ar?)%dt® + (1 — Ar®)’dr® + r*(d9” + sin® 9d¢?)

i) Calculate the proper distance from r =0 to r = R.

ii) Calculate the area of a sphere with coordinate radius R.

iii) Calculate the three-volume of a sphere with coordinate radius R.

iv) Calculate the four-volume of a sphere with coordinate radius R bounded by two t=const
planes separated by time difference 7.

The distance is given by

" 1
s:/ dr(l—Ar2)2R<1—§AR2>,
0

the area by
2w

A= [ RdYRsinddg = RQ/ dy d¢ sin® = 47 R?,
S2 0 0

the 3-volume by

R ™ 2T 2
V:/ dr(l—Arz)rdﬁrsinﬂd(b:/ dT(l—AT2)T2/ dv sinﬁ/ d¢ = 4—7TR3 1— SAR ,
B2 0 0 0 3 5
and the 4-volume by
Vi = / dt(1 — Ar?)dr(1 — Ar?) rdd rsindde = (1)
Tx B2
T R I 2m
= / dt / dr(l — Ar2)2r2/ dv sinﬁ/ do (2)
0 0 0 0
2 2)2
= 4%3377 (1 - 6A5R + 3(A7R ) ) . (3)

2. Newtonian gravity as a spacetime phenomenon

Since Newtonian gravity is a special case of Einstein gravity, it should be possible to replace
the Newtonian gravitational force by a deformation of Minkowski space. Confirm that the
metric describing gravitational effects in the Newtonian limit can be chosen as

ds® = (14 2@/c%) *dt* — (1 — 2@ /c%) dI? (4)

by showing that the resulting action of a point particle is equivalent to the the one using
the standard Lagrangian

1
L:§mv2—m<b:T+V (5)
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in the limit v/c — 0. Here, ® is the Newtonian gravitational potential and di? = dx? +
dy? + d2? is the Euclidean line-element.

With this metric, the action of a point particle becomes
2 2
S = / dr = / (14 28/2) df? — (1 — 20/c2) (da? + dy? + d=2)] 2 (6a)
1 1

9 1 1/2
= / dt [(1 +20/c%) — = (1-2®/c%) ’uz} : (6b)
1 C

Keeping only terms of order 1/c¢? and expanding the square root, the action becomes

S:/Izdt [1—%2(%@2—@)]. (7)

The first, constant term does not contribute to 65, so that this action is equivalent to the one
using the standard Lagrangian

1
inmzﬂ—m@:T—FV (8)

for a non-relativistic particle with mass m and the gravitational potential energy V' = m®. Thus
the geodesics of the metric (1) agree with the classical trajectories in the gravitational potential ®.
Note also that the coefficient of dI dropped out of Eq. (2): Thus an infinite number of spacetimes
leads at lowest order in v/c to the same trajectories. Such metrics may however imply different
trajectories of relativistic particles like photons.

3. Maximal velocity of a comet

A comet starts at r — oo, approaches a star of mass M and disappears again to r — oc.
What is the maximal velocity v of the comet measured by a stationary observer at the
radius R of nearest approach?

(2 ways of solution: 1. find v as function of R,l and b, connect then [ to b and R. 2. Use
the orthonormal basis associated with the observer.)

Solution way 1: By the same argument as in 2., the velocity v measured by a stationary observer

is
1/2
E:L:m<1—%> o,
T

if m is the mass and u! the time component of the four-velocity of the comet. At the radius R of

closest approach, it is
l

R%
Evaluating the normalisation condition wpg * Uehs = 1 gives

oM\ V2 /g 1/2
t
d=(-7) (m )

=0 and u®=
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and thus ;

Ry\/1+ (I/R)?
As last step, we have to replace [ by the impact parameter b. At large r, it is ¢ ~ b/r and thus

d d
l:r2—¢:—b T:+b\/€2—1

dr dr

oM 1\ /2
2
e? = <1—7> <1+—E2>

Combining everything, it follows
( 2M> 12
v=[(1-2) 2.

T R

At the turning point, it is

Solution way 2: Choose the basis such that the ¢ direction of the observer frame agrees with phi
coordinate. Then the normalised basis vectors are

The impact parameter is

o~
=
[\
<
RS

b=—-=—-——.
e 1—2M/ru

At R, the three-velocituy of the comet has only a ¢ component, hence v = 14 /t;. Now we have
only to connect the components in the different bases, using that (v) = v¥e, = 0*é,. Thus

ut = (1—2M/r)~ 24t

and
u? = (1/7’)@¢

Combining everything, we obtain the same result.



