
FY3452 Gravitation and Cosmology 2024

Exercise sheet 4

1. Light deflection?

In another theory of gravity, the metric outside a star is

ds2 =

(

1 − 2M

r

)

[

dt2 − dr2 − r2(dϑ2 + sin2 ϑdφ2)
]

.

a.) Calculate the deflection of photons in this theory.
b.) Use a general argument why you should get this result.

a.) The condition u · u = 0 gives

(

1 − 2M

r

)

[

(

dt

dλ

)2

−
(

dr

dλ

)2

− r2

(

dϑ

dλ

)2
]

= 0

for ϑ = π/2. The conserved energy and angular momentum are

e = ξ · u =

(

1 − 2M

r

)

dt

dλ

and

l = −η · u =

(

1 − 2M

r

)

r2 dφ

dλ

Following the same steps as in the Schwarzschild case, one finds

dφ

dr
=

1

r2

(

1

b2
− 1

r2

)

−1/2

which is independent of M . Thus light propagates as in Minkowski space, i.e. is not deflected.

b.) The metric is conformally flat.

2. Circular orbits

A spaceship is moving without power in a circular orbit about a star with mass M . The
radius in Schwarzschild coordinates is r = 7M .
a.) Show that Ω = dφ/dt = (M/r3)1/2.
b.) What is the period measured by an observer at infinity?
c.) What is the period measured by a clock onboard the spaceship?

a.) The coordinate time t agrees for r → ∞ with proper-time τ ; thus Ω is the angular velocity as
measured by an observer at infinity. Using the chain rule and introducing the conserved quantities
e and l, we find

Ω =
dφ

dt
=

dφ/dτ

dt/dτ
=

1

r2

(

1 − 2M

r

)

l

e
.
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For a circular orbit, the ratio l/e cannot be arbitrary. We fix it by using u′′ = 0 in the orbital
and dr/dτ = 0 in the energy equation: Solving

u =
M

l2
+ 3Mu2

for l gives

l2 =
Mr

1 − 3M/r
.

(This shows also again that no circular orbits with r < 3M exist.) Next we evaluate the radial
equation for a circular orbit, E = Veff

e2 − 1

2
=

1

2

[(

1 − 2M

r

) (

1 +
l2

r2

)

− 1

]

or

e2 =

(

1 − 2M

r

) (

1 +
l2

r2

)

.

Thus the ratio is
l

e
= (Mr)1/2

(

1 − 2M

r

)

−1

.

Inserting gives Ω = (M/r3)1/2, what agrees with the Newtonian result.

b.) The period measured by an observer at infinity is P∞ = 2π/Ω. With r = 7M , it follows

P∞ =
2π

Ω
= 2π

(

r3

M

)1/2

= 14π
√

7M.

c.) In the spaceship, one measures P = 2π/ω with ω = dφ/dτ . Thus we use

dφ

dτ
=

dφ

dt

dt

dτ
= Ω

dt

dτ
.

For a circular orbit in the equatorial plane, the normalisation condition u · u = 1 becomes

1 =

(

1 − 2M

r

) (

dt

dτ

)2

− r2

(

dφ

dτ

)2

(1)

=

(

1 − 2M

r
− r2Ω2

) (

dt

dτ

)2

(2)

With r2Ω2 = M/r and r = 7M , it follows dt/dτ =
√

7/4. Hence the periode measured onboard

is P = 28πM , i.e. 32% smaller.

3. Falling into a BH

An observer falls radially into a Schwarzschild BH of mass M . The observer starts from
rest relative to a stationary observer at r = 10M . How much time elapses on the clock of
the falling observer before hitting the singularity at r = 0?
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The energy equation with l = 0 is

(1 − 2M/r) = e2 − (dr/dτ)2

For r = 10M and dr/dτ = 0 it follows e = 2/
√

5. For r 6= 10M , it is

dr/dτ = ±(2M/r − 1/5)1/2.

Integrating gives

τ =

∫

10M

0

dr[2M/r − 1/5]−1/2 = 5
√

5πM.

4. Force of a hovering rocket.

A stationary observer hovers on a radial orbit around a Schwarzschild black-hole.
a.) Argue that

fα = m
(

ẍα + Γα
βγẋβ ẋγ

)

is the correct generalisation of Newton’s second law to curved spacetime.
b.) Using Γr

tt = (1 − 2M/r)(M/r2), find the radial force required to stay on a stationary
orbit.
c.) The result from b.) is the radial force in the coordinate basis. Relate it to the force
measured by the observer in its Cartesian inertial frame.

a.) First, we note that we obtain for fα = 0 the geodesic equation. Second, choosing flat space
with Cartesian coordinates, Γα

βγ = 0, and we are back to the standard version of Newton’s
second law. Thus the force law has the correct limiting cases.
More formally, we should rewrite this equation as a tensor equation. In order to do so, we
introduce the concept of parallel transport: We say that a tensor T is parallel transported along
the curve x(σ), if its components T µ...

ν... stay constant. In flat space, this means simply

d

dσ
T µ...

ν... =
dxα

dσ
∂αT µ...

ν... = 0. (3)

In curved space, we have to replace the normal derivative by a covariant one. We define the
directional covariant derivative along x(σ) as

D

dσ
=

dxα

dσ
∇α. (4)

Then the requirement of parallel transport for uµ becomes

D

dτ

dxµ

dτ
=

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
= 0. (5)

Introducing ẋµ = dxµ/dτ , we obtain the geodesic equation in its standard form. Thus this

equation can also seen as the requirement that the four-velocity is paraller transported along

xµ(σ).
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b.) For a stationary observer (with uα = [(1 − 2M/r)−1/2, 0, 0, 0]), the d2xα/dτ2 term vanishes
by definition. Then

f r = mΓr
βγuβuγ = mΓr

ttu
tut = m(1 − 2M/r)(M/r2)(1 − 2M/r)−1 = mM/r2.

c.) A normalised basis in the observer system is e′

µ = eµ/
√

gµµ (no summation): this guarantees
for gµν = eµ · eν and gµν diagonal that e′

µ · e′

ν = ηµν .

With e′α
r = (0, (1 − 2M/r)1/2, 0, 0), it follows for the radial force measured by the observer

f r
obs = e′r · f = m(1 − 2M/r)−1/2M/r2.
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