Exercise sheet 6

1. Scalar electrodynamics.

a.) Write down the Lagrangian of scalar QED, i.e. a complex scalar field coupled to the photon via $D_{\mu}=\partial_{\mu}+\mathrm{i} q A_{\mu}$. Derive the Noether current(s) and the current to which the photon couples (defined by $\partial_{\mu} F^{\mu \nu}=j^{\nu}$).
b.) Show that $\mathscr{L}=-F^{2} / 4$ corresponds to a canonically normalised field, i.e. that

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}=\frac{1}{2} A^{\mu} D_{\mu \nu} A^{\nu}
$$

where $D_{\mu \nu}$ is a differential operator.
Excluding a scalar self-interaction, the Lagrangian is

$$
\mathscr{L}=\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi-m^{2} \phi^{\dagger} \phi-\frac{1}{4} F^{2} .
$$

or expanded with $D_{\mu}=\partial_{\mu}+\mathrm{i} q A_{\mu}$,

$$
\mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-m^{2} \phi^{\dagger} \phi \underbrace{-\mathrm{i} q A_{\mu} \phi^{\dagger} \partial^{\mu} \phi+\mathrm{i} q A^{\mu}\left(\partial_{\mu} \phi^{\dagger}\right) \phi+q^{2} A_{\mu} A^{\mu} \phi^{\dagger} \phi}_{\mathscr{L}_{I}}-\frac{1}{4} F^{2} .
$$

We obtain the current on the RHS of the wave-equation for the photon from

$$
\begin{equation*}
j^{\mu}=-\frac{\partial \mathscr{L}_{I}}{\partial A_{\mu}}=\mathrm{i}\left[\phi^{\dagger} D^{\mu} \phi-\left(D^{\mu} \phi\right)^{\dagger} \phi\right]=\mathrm{i}\left[\phi^{\dagger} \partial^{\mu} \phi-\left(\partial^{\mu} \phi^{\dagger}\right) \phi\right]-2 q^{2} A^{\mu} \phi^{\dagger} \phi . \tag{1}
\end{equation*}
$$

Note that j^{μ} contains A^{μ}, because \mathscr{L}_{I} is quadratic in A^{μ}. As a result, the splitting (we are used from fermions) into external currents and the resulting electromagnetic field becomes dubious. The Noether current follows with $\delta \phi=\mathrm{i} q \phi, \delta \phi^{\dagger}=-\mathrm{i} q \phi^{\dagger}$, and $\delta A_{\mu}=0$,

$$
\begin{equation*}
j^{\mu}=\frac{\delta \mathscr{L}}{\delta \partial_{\mu} \phi} \delta \phi+\frac{\delta \mathscr{L}}{\delta \partial_{\mu} \phi^{\dagger}} \delta \phi^{\dagger}=\mathrm{i} q\left[\phi^{\dagger} D^{\mu} \phi-\left(D^{\mu} \phi^{\dagger}\right) \phi\right] . \tag{2}
\end{equation*}
$$

where we used that A^{μ} is invariant under global gauge transformations. Thus the two currents agree as expected. They are conserved and gauge invariant.
Note that the ususal $j_{\mu} A^{\mu}$ coupling rule applies only for the linear terms. For quadratic terms in $A, \partial \mathscr{L}_{I} / \partial A_{\mu}$ implies an additional factor 2 .
b.) We write

$$
\begin{align*}
\mathscr{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}=-\frac{1}{2}\left(\partial_{\mu} A_{\nu} \partial^{\mu} A^{\nu}-\partial_{\mu} A_{\nu} \partial^{\nu} A^{\mu}\right) \\
& =\frac{1}{2}\left(A_{\nu} \partial_{\mu} \partial^{\mu} A^{\nu}-A_{\nu} \partial_{\mu} \partial^{\nu} A^{\mu}\right)=\frac{1}{2} A_{\mu}\left[\eta^{\mu \nu} \square-\partial^{\mu} \partial^{\nu}\right] A_{\nu}=\frac{1}{2} A^{\mu} D_{\mu \nu}^{-1} A^{\nu}, \tag{3}
\end{align*}
$$

where we made a partial integration, dropping as usual the surface term. Note that $D_{\mu \nu} A^{\nu}=0$ corresponds to the free Maxwell equation (without imposing a gauge constraint).

2. Dimension of a scalar field ϕ.

We set $\hbar=c=1$ and choose as the unique dimension the mass unit m.
a.) Find the dimension (i.e. the power m^{α}) of a scalar field ϕ in d spacetime dimensions.
b.) For which d has $\mathscr{L}_{I}=\lambda \phi^{3}$ a dimensionless coupling constant?
c.) For which d has $\mathscr{L}_{I}=\lambda \phi^{4}$ a dimensionless coupling constant?
a.) The Lagrange density \mathscr{L} has the dimension m^{d} in d dimensions, because the action $S=$ $\int d^{d} x \mathscr{L}$ has to be dimensionless. We denote this briefly as $[\mathscr{L}]=d$. From $\mathscr{L}_{0} \propto\left(\partial_{\mu} \phi\right)^{2}$ we conclude that $\left[\partial_{\mu} \phi\right]=d / 2$ and thus $[\phi]=(d-2) / 2$. For instance, ϕ has the dimension 1 in $d=4$ and 2 in $d=6$ dimensions.
(The field dimension obtained from dimensional analysis as above is often called the "canonical dimension" of the field. If you take a QFT course, you will see that renormalised fields and thus Green functions acquire an "anomalous dimension".)
b.) Plotting $d=n(d-2) / 2$ for $n=3(n=4)$ gives $d=6(d=4)$.

3. Stress tensor for the electromagnetic field.

a.) Determine the stress tensor $T^{\mu \nu}$ of the electromagnetic field using either i) $f^{\mu}=-\frac{\partial T^{\mu \nu}}{\partial x^{\nu}}$, where $T^{\mu \nu}$ is the stress tensor of the field acting with the force density f_{μ} on external currents, or ii) converting $T^{00}=\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right) / 2$ into an valid tensor expression.
b.) Confirm that T^{00} corresponds to the energy-density ρ. Find the trace of $T^{\mu \nu}$ and the Equation of State (EoS) defined by $w=P / \rho$.
a.) We use the force law connecting f^{μ} and $T^{\mu \nu}$,

$$
f^{\mu}=-\frac{\partial T^{\mu \nu}}{\partial x^{\nu}}
$$

where $T^{\mu \nu}$ is the stress tensor of the field acting with the force density f_{μ} on external currents. Inserting the Lorentz force $f_{\mu}=F_{\mu \nu} j^{\nu}$ and Maxwell's equation $j^{\nu}=-\partial_{\lambda} F^{\nu \lambda}$ gives

$$
\begin{equation*}
f_{\mu}=F_{\mu \nu} j^{\nu}=-F_{\mu \nu} \frac{\partial F^{\nu \lambda}}{\partial x^{\lambda}} . \tag{4}
\end{equation*}
$$

We use now the product rule to rewrite this as

$$
\begin{equation*}
-f_{\mu}=\frac{\partial}{\partial x^{\lambda}}\left(F_{\mu \nu} F^{\nu \lambda}\right)-F^{\nu \lambda} \frac{\partial F_{\mu \nu}}{\partial x^{\lambda}} . \tag{5}
\end{equation*}
$$

We should rewrite the second term as a symmetric divergence. Starting from

$$
\begin{equation*}
F^{\nu \lambda} \frac{\partial F_{\mu \nu}}{\partial x^{\lambda}}=\frac{1}{2}\left(F_{\nu \lambda} \frac{\partial F_{\mu \nu}}{\partial x^{\lambda}}+F_{\lambda \nu} \frac{\partial F_{\mu \lambda}}{\partial x^{\nu}}\right) \tag{6}
\end{equation*}
$$

we have exchanged the indices λ and ν in the second term. Then we use first in both factors of the second term the antisymmetry of F,

$$
\begin{equation*}
=\frac{1}{2} F_{\nu \lambda}\left(\frac{\partial F_{\mu \nu}}{\partial x^{\lambda}}+\frac{\partial F_{\lambda \mu}}{\partial x^{\nu}}\right) \tag{7}
\end{equation*}
$$

then $\partial_{\mu} \tilde{F}^{\mu \nu}=0$ and finally the product rule,

$$
\begin{align*}
& =-\frac{1}{2} F_{\nu \lambda} \frac{\partial F_{\nu \lambda}}{\partial x^{\mu}} \tag{8}\\
& =-\frac{1}{4} \frac{\partial}{\partial x^{\mu}}\left(F_{\nu \lambda} F^{\nu \lambda}\right)=-\frac{1}{4} \delta_{\mu}^{\lambda} \frac{\partial}{\partial x^{\lambda}}\left(F_{\sigma \tau} F^{\sigma \tau}\right) \tag{9}
\end{align*}
$$

Combining, we get

$$
\begin{equation*}
-f_{\mu}=\frac{\partial}{\partial x^{\lambda}}\left(F_{\mu \nu} F^{\nu \lambda}+\frac{1}{4} \delta_{\mu}^{\lambda} F_{\sigma \tau} F^{\sigma \tau}\right)=\frac{\partial T_{\mu}^{\lambda}}{\partial x^{\lambda}} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{\mu \nu}=-F_{\mu \lambda} F_{\nu}{ }^{\lambda}+\frac{1}{4} \eta_{\mu \nu} F_{\sigma \tau} F^{\sigma \tau} \tag{11}
\end{equation*}
$$

We convert $\rho=T_{00}=\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right) / 2$ into a tensor equation noting that this agrees with

$$
\rho=T_{\alpha \beta} u^{\alpha} u^{\beta}
$$

for an observer at rest, $u^{\alpha}=(1,0)$. Our task is to massage the $\boldsymbol{E}^{2}+\boldsymbol{B}^{2}$ term into the same form: First we use

$$
\mathscr{L}=-\frac{1}{4} F^{2}=\frac{1}{2}\left(\boldsymbol{E}^{2}-\boldsymbol{B}^{2}\right),
$$

obtaining with $u_{\alpha} u^{\alpha}=1$

$$
\boldsymbol{B}^{2}=\boldsymbol{E}^{2}+\frac{1}{2} F^{2}=\boldsymbol{E}^{2}+\frac{1}{2} F^{2} \eta_{\alpha \beta} u^{\alpha} u^{\beta} .
$$

The energy density becomes

$$
\rho=\boldsymbol{E}^{2}+\frac{1}{4} F^{2} \eta_{\alpha \beta} u^{\alpha} u^{\beta} .
$$

Next we work on the \boldsymbol{E}^{2} : We use $F_{0 k}=E_{k}$ or $u^{\alpha} F_{\gamma \alpha}=E_{\gamma}$, obtaining

$$
\boldsymbol{E}^{2}=-E_{\gamma} E^{\gamma}=-u^{\alpha} F_{\gamma \alpha} F_{\beta}^{\gamma} u^{\beta} .
$$

Combining the terms gives

$$
\rho=\left(-F_{\gamma \alpha} F_{\beta}^{\gamma}+\frac{1}{4} \eta_{\alpha \beta} F^{2}\right) u^{\alpha} u^{\beta}
$$

or

$$
T_{\alpha \beta}=-F_{\alpha \gamma} F_{\beta}^{\gamma}+\frac{1}{4} \eta_{\alpha \beta} F^{2} .
$$

b.) Its trace is zero, $T_{\mu}^{\mu}=0-$ a general result for theories without dimensionfull parameter. The 00 component is

$$
\begin{equation*}
T^{00}=-F^{0 \sigma} F_{\sigma}^{0}+\frac{1}{4} \eta^{00} F_{\sigma \tau} F^{\sigma \tau} . \tag{12}
\end{equation*}
$$

with $F^{0 k} F_{k}^{0}=-\boldsymbol{E}^{2}$ and $F_{\sigma \tau} F^{\sigma \tau}=2\left(\boldsymbol{B}^{2}-\boldsymbol{E}^{2}\right)$,

$$
\begin{equation*}
T^{00}=-F^{0 k} F_{k}^{0}+\frac{1}{2}\left(\boldsymbol{B}^{2}-\boldsymbol{E}^{2}\right)=\frac{1}{2}\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right) \geq 0 . \tag{13}
\end{equation*}
$$

We identify $\rho=T^{00}$ and $P \delta^{i j}=T^{i j}$ comparing to the ideal fluid or a scalar field. Using then $T_{\mu}^{\mu}=\rho-3 P=0$, the EoS $w=1 / 3$ follows.

