Exercise sheet 8

0 . Green function of the wave equation.

Recall from your electrodynamics lectures the derivation of the Green function of the wave equation.

1. Hyperbolic plane H^{2}.

Calculate the Riemann (or curvature) tensor $R^{a}{ }_{b c d}$ and the scalar curvature R for the hyperbolic plane H^{2}.
b. We calculate e.g.

$$
\begin{aligned}
R^{y}{ }_{x y x} & =\partial_{y} \Gamma^{y}{ }_{x x}-\partial_{x} \Gamma^{y}{ }_{x y}+\Gamma^{y}{ }_{e y} \Gamma^{e}{ }_{x x}-\Gamma^{y}{ }_{e x} \Gamma^{e}{ }_{x y} \\
& =-1 / y^{2}+0+\Gamma^{y}{ }_{y y} \Gamma^{y}{ }_{x x}-\Gamma^{y}{ }_{x x} \Gamma^{x}{ }_{x y} \\
& =-1 / y^{2}+0-1 / y^{2}+1 / y^{2}=-1 / y^{2} .
\end{aligned}
$$

Next we remember that the number of independent components of the Riemann tensor in $d=2$ is one, i.e. we are already done: All other components follow by the symmetry properties.
The scalar curvature is (diagonal metric with $g^{x x}=g^{y y}=y^{2}$)

$$
R=g^{a b} R_{a b}=g^{x x} R_{x x}+g^{y y} R_{y y}=y^{2}\left(R_{x x}+R_{y y}\right) .
$$

Thus we have to find only the two diagonal components of the Ricci tensor $R_{a b}=R_{\text {acb }}^{c}$. With

$$
\begin{aligned}
R_{x x} & =R^{c}{ }_{x c x}=R^{x}{ }_{x x x}+R^{y}{ }_{x y x}=0+R_{x y x}^{y}=-1 / y^{2} \\
R_{y y} & =R^{c}{ }_{y c y}=R^{x}{ }_{y x y}+R^{x}{ }_{y x y}=R_{y x y}^{x}+0=-R^{y}{ }_{x x y}=R_{y x y}^{x}=-1 / y^{2}
\end{aligned}
$$

the scalar curvature follows as $R=-2$. Hence the hyperbolic plane H^{2} is a space of constant curvature, as \mathbb{R}^{2} and S^{2}.
[If you wonder that $R=-2$, not -1 : in $d=2$, the Gaussian curvature K is connected to the "general" scalar curvature R via $K=R / 2$. Thus $K= \pm 1$ means $R= \pm 2$ for spaces of constant unit curvature radius, S^{2} and H^{2}. You may also check that the Riemann and Ricci tensor satisfy the relations for maximally symmetric spaces, $R_{a b}=K g_{a b}$ and $R_{a b c d}=K\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)$.]

2. Spin and helicity of tensor fields.

A plane wave ψ which is transformed into $\psi^{\prime}=\mathrm{e}^{-\mathrm{i} h \alpha} \psi$ by a rotation with angle α around its propagation axis is said to have helicity h. Specifically, consider a photon and a graviton propagating into the z direction, $\boldsymbol{k}=k \boldsymbol{e}_{z}$, and choose the rotation in the $x y$ plane. Start with linear polarised states,

$$
A^{\mu}=\varepsilon^{\mu} \mathrm{e}^{-\mathrm{i} k x}, \quad h^{\mu \nu}=\varepsilon^{\mu \nu} \mathrm{e}^{-\mathrm{i} k x}
$$

where the two polarisation vectors are $\varepsilon_{\mu}^{(1)}=\delta_{\mu}^{1}$ and $\varepsilon_{\mu}^{(2)}=\delta_{\mu}^{2}$ for the photon, and the polarisation tensors for the graviton are

$$
\varepsilon_{1}^{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \varepsilon_{2}^{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Rotate the states, introduce circular polarised states and find their helicity. [Remark: Helicity is the projection of spin on the momentum: Thus this exercises shows that the photon (or generally a vector field) is a spin-1, while the graviton is a spin-2 particle.]

For a rotation in the $x y$ plane, the general Lorentz transformation Λ_{μ}^{ν} becomes

$$
\Lambda_{\mu}^{\nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & \cos \alpha & \sin \alpha & 0 \\
0 & -\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Since $\boldsymbol{k}=k \boldsymbol{e}_{z}$ and thus $\Lambda_{\mu}^{\nu} k_{\nu}=k_{\mu}$, the rotation affects only the polarisation vector and tensor, respectively. Moroever, it is sufficient to perform the calculation for the $x y$ sub-matrices. In the case of the photon,

$$
\binom{\tilde{e}_{1}}{\tilde{e}_{2}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{e_{1}}{e_{2}}=\binom{\cos \alpha e_{1}-\sin \alpha e_{2}}{\sin \alpha e_{1}+\cos \alpha e_{2}}
$$

Next we change to circularly polarised states,

$$
\begin{aligned}
\tilde{e}_{+} & =\tilde{e}_{1}+\mathrm{i} \tilde{e}_{2}=\cos \alpha e_{1}-\sin \alpha e_{2}+\mathrm{i}\left(\sin \alpha e_{1}+\cos \alpha e_{2}\right)=(\cos \alpha+\mathrm{i} \sin \alpha) e_{1}+(\mathrm{i} \cos \alpha-\sin \alpha) e_{2} \\
& =(\cos \alpha+\mathrm{i} \sin \alpha) e_{1}+\mathrm{i}(\cos \alpha+\mathrm{i} \sin \alpha) e_{2}=\mathrm{e}^{\mathrm{i} \alpha}\left(e_{1}+\mathrm{i} e_{2}\right)=\mathrm{e}^{\mathrm{i} \alpha} e_{+}
\end{aligned}
$$

Thus the photon has helicity $h=1$. For gravitons, we rewrite $\varepsilon_{\mu \nu}^{\prime}=\Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma} \varepsilon_{\rho \sigma}$ in matrix notation, $\varepsilon^{\prime}=\Lambda \varepsilon \Lambda^{T}$. Performing the same calculation for the $x y$ sub-matrices gives

$$
\begin{aligned}
& \tilde{\varepsilon}_{1}=\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) e_{1}-2 \cos \alpha \sin \alpha e_{2} \\
& \tilde{\varepsilon}_{2}=\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) e_{2}+2 \cos \alpha \sin \alpha e_{1}
\end{aligned}
$$

Introducing again ciruclarly polarised states gives

$$
\tilde{\varepsilon}_{+}=\left(\cos ^{2} \alpha-\sin ^{2} \alpha+2 \mathrm{i} \cos \alpha \sin \alpha\right)\left(e_{1}+\mathrm{i} e_{2}\right)=\exp (2 \mathrm{i} \alpha) \varepsilon_{+} .
$$

Thus a GW (or in the particle picture the graviton) has helicity $h=2$. Geometrically, we can visulaize the symmetric tensor $\varepsilon_{i j}$ as ellipsoid which is mapped by a rotatation by 180° on itself.

