Exercise sheet 8

1. Maximal energy in shock acceleration.

a.) The maximal energy achievable in shock acceleration may be limited by the time t the accelerator operates. Use a dimensional argument to derive a relation $t=t(D, v)$, where D is the diffusion coefficient responsible for the random walk of the CR and u the shock/fluid velocity.
b.) Assume $D=c R_{L} / 3$ with R : the Larmor radius (why?), and use $3 \mu \mathrm{G}, 1000 \mathrm{yr}$ and $10.000 \mathrm{~km} / \mathrm{s}$ for a numerical estimate for the maximal energy achievable in a SNR.
a.) From the general definition $D=v l / 3$, it is $[D]=\mathrm{cm}^{2} / \mathrm{s}$. Thus we obtain a time from

$$
t=\alpha \frac{D}{u^{2}},
$$

with the unknown dimensionless constant α which we set to one in the following.
b.) Setting $l=R_{L}$ as suggested, it is

$$
t_{\max }=\frac{c R_{L}\left(E_{\max }\right)}{3 u^{2}}=\frac{c E_{\max }}{3 e B u^{2}},
$$

leading to $E_{\max } \simeq 30 \mathrm{TeV}$. Although our estimate is optimistic, this is far below the energy of the CR knee at 3 PeV , the energy to which at least a (dominant) subset of CR sources should be able to accelerate. A solution to this puzzle requires probably that the magnetic field gets amplified by the action of CRs

Bonus: Why $l=R_{L}$?
In our case $v=c$, and a possible energy dependence arise from $D(E)=c l(E) / 3$. For diffusion in a turbulent magnetic field, the scattering length can depend only on two length scales: the Larmor radius $R_{L}(E)$ and the injection scale $L_{\max }$ of the turbulence. Thus we can set

$$
l=f\left(R_{L}, L_{\max }\right)=L_{\max } g\left(R_{L} / L_{\max }\right)
$$

where the dimensionless function g should depend only on the ratio $R_{L} / L_{\max }$. It is natural to assume a power law, $g\left(R_{L} / L_{\max }\right)=\left(R_{L} / L_{\max }\right)^{\alpha}$. For larger R_{L}, the particle should diffuse faster and hence $\alpha>0$. On the other hand $\alpha=1$ seems to be an upper limit, since we cannot expect to change the trajectory faster than within R_{L}. In this limit, $l=c R_{L} / 3$.

2. Spectrum of synchrotron photons.

Assume that ultrarelativistic electrons with energy spectrum $\mathrm{d} N / \mathrm{d} E \propto E^{-\alpha}$ emit synchrotron radation with the power $(c=\hbar=1)$

$$
P_{\mathrm{syn}}=\frac{2}{3} \alpha m^{2}\left(\frac{p_{\perp}}{m} \frac{e B}{m^{2}}\right)^{2}
$$

Solutions are discussed Thursday, 02.11.23
and that an electron with energy E emits photons with $\omega_{s}=\omega_{\text {cr }}=3 \gamma^{2} \omega_{0} / 2$ and $\omega_{0}=$ $e B / m$. What is the slope of the resulting synchrotron intensity I_{ν}, how does it scale with the magnetic field strength B ?

The emitted intensity is proportional to

$$
I_{\nu} \mathrm{d} \nu \propto P_{\mathrm{syn}} \frac{\mathrm{~d} N}{\mathrm{~d} E} \mathrm{~d} E .
$$

For ultrarelativistic electrons, we can use $P_{\text {syn }} \propto E^{2} B^{2}$, and thus

$$
I_{\nu} \mathrm{d} \nu \propto E^{2-\alpha} B^{2} \mathrm{~d} E
$$

With $\gamma=E / m$, we obtain a relation between E and $\omega=2 \pi \nu$, or differentiated

$$
\mathrm{d} \omega_{s} \propto 2 E \mathrm{~d} E B
$$

Inserting everything gives

$$
I_{\nu} \mathrm{d} \nu \propto E^{2-\alpha} B^{2} \frac{\mathrm{~d} \nu}{E B}=E^{1-\alpha} B \mathrm{~d} \nu=\nu^{\frac{1-\alpha}{2}} B^{\frac{1+\alpha}{2}} .
$$

Thus the slope of the synchrotron spectrum $I_{\nu} \propto \nu^{\beta}$ is $\beta=(1-\alpha) / 2$, and it scales with the magnetic field strength as $B^{\frac{1+\alpha}{2}}$.

3. Interaction length of electrons on CMB.

Estimate the interaction length of an electrons scattering on CMB photons with temperature 2.7 K . in the Thomson limit.

The mean-free path is $l_{\text {int }}=1 /\left(n_{\gamma} \sigma_{\mathrm{Th}}\right) \sim 1 \mathrm{kpc}$.

4. Greisen-Zatsepin-Kuzmin cutoff.

a.) Calculate the threshold energy (the "Greisen-Zatsepin-Kuzmin cutoff") of protons for the reaction $p+\gamma \rightarrow p+\pi^{0}$ on CMB photons with temperature 2.7 K . Estimate the meanfree path of a proton above the threshold using $\sigma=0.1$ mbarn.
b.) What reaction could be important at smaller energies as energy-loss mechanism for protons? Estimate the corresponding cross-section.
a.) The mean energy of BB photons with $T=2.7 \mathrm{~K}$ is $\varepsilon \simeq 2.7 k T \simeq 6.3 \times 10^{-4} \mathrm{eV}$. At threshold, the final state is produced at rest,

$$
s=\left(p_{1}+p_{2}\right)^{2} \geq\left(m_{N}+m_{\pi}\right)^{2} .
$$

Thus

$$
m_{N}^{2}+2 E_{p} \varepsilon(1-\cos \vartheta) \geq m_{N}^{2}+2 m_{N} m_{\pi}+m_{\pi}^{2}
$$

where we assumed that the proton is ultrarelativistic. For a head-on collision, $1-\cos \vartheta=2$, and thus

$$
E_{p} \geq \frac{2 m_{N} m_{\pi}+m_{\pi}^{2}}{4 E_{p} \varepsilon} \simeq 10^{20} \mathrm{eV}
$$

The mean-free path is $l_{\mathrm{int}}=1 /\left(n_{\gamma} \sigma\right)$ with $n_{\gamma} \simeq 411 / \mathrm{cm}^{3}$. Since protons are not destroyed, but only loss energy, the more interesting quantity is the energy-loss length

$$
\frac{1}{E} \frac{\mathrm{~d} E}{c \mathrm{~d} t} \simeq\langle y\rangle n_{\gamma} \sigma \simeq(17 \mathrm{Mpc})^{-1}
$$

with $\langle y\rangle=\left(E-E^{\prime}\right) / E \simeq m_{\pi} / m_{p} \simeq 0.1$ as the energy lost per interaction.
b.) For a smaller threshold energy, the mass of the final state should be reduced, as in $p+\gamma \rightarrow p+e^{+}+e^{-}$. This replaces also a strong interaction (which creates the pion) with a electromagnetic interaction (which creates the $e^{+} e^{-}$pair). Thus one expects that the cross section is reduced by a factor $\alpha_{s} / \alpha_{\mathrm{em}}$. With $\alpha_{s} \sim 1$ and $\alpha_{\mathrm{em}} \sim 1 / 137$, the cross section is factor of order 100 smaller.

