Exercise sheet 8

1. Maximal energy in shock acceleration.

- a.) The maximal energy achievable in shock acceleration may be limited by the time t the accelerator operates. Use a dimensional argument to derive a relation t = t(D, v), where D is the diffusion coefficient responsible for the random walk of the CR and u the shock/fluid velocity.
- b.) Assume $D = cR_L/3$ with R_1 the Larmor radius (why?), and use 3μ G, 1000 yr and 10.000km/s for a numerical estimate for the maximal energy achievable in a SNR.
- a.) From the general definition D = vl/3, it is $[D] = \text{cm}^2/\text{s}$. Thus we obtain a time from

$$t = \alpha \frac{D}{u^2},$$

with the unknown dimensionless constant α which we set to one in the following.

b.) Setting $l = R_L$ as suggested, it is

$$t_{\text{max}} = \frac{cR_L(E_{\text{max}})}{3u^2} = \frac{cE_{\text{max}}}{3eBu^2},$$

leading to $E_{\rm max} \simeq 30$ TeV. Although our estimate is optimistic, this is far below the energy of the CR knee at 3 PeV, the energy to which at least a (dominant) subset of CR sources should be able to accelerate. A solution to this puzzle requires probably that the magnetic field gets amplified by the action of CRs

Bonus: Why $l = R_L$?

In our case v = c, and a possible energy dependence arise from D(E) = cl(E)/3. For diffusion in a turbulent magnetic field, the scattering length can depend only on two length scales: the Larmor radius $R_L(E)$ and the injection scale L_{max} of the turbulence. Thus we can set

$$l = f(R_L, L_{\text{max}}) = L_{\text{max}}g(R_L/L_{\text{max}}),$$

where the dimensionless function g should depend only on the ratio $R_L/L_{\rm max}$. It is natural to assume a power law, $g(R_L/L_{\rm max}) = (R_L/L_{\rm max})^{\alpha}$. For larger R_L , the particle should diffuse faster and hence $\alpha > 0$. On the other hand $\alpha = 1$ seems to be an upper limit, since we cannot expect to change the trajectory faster than within R_L . In this limit, $l = cR_L/3$.

2. Spectrum of synchrotron photons.

Assume that ultrarelativistic electrons with energy spectrum $dN/dE \propto E^{-\alpha}$ emit synchrotron radation with the power $(c = \hbar = 1)$

$$P_{\rm syn} = \frac{2}{3} \alpha m^2 \left(\frac{p_{\perp}}{m} \frac{eB}{m^2} \right)^2$$

Solutions are discussed Thursday, 02.11.23

and that an electron with energy E emits photons with $\omega_s = \omega_{\rm cr} = 3\gamma^2\omega_0/2$ and $\omega_0 = eB/m$. What is the slope of the resulting synchrotron intensity I_{ν} , how does it scale with the magnetic field strength B?

The emitted intensity is proportional to

$$I_{\nu} \mathrm{d}\nu \propto P_{\mathrm{syn}} \frac{\mathrm{d}N}{\mathrm{d}E} \mathrm{d}E.$$

For ultrarelativistic electrons, we can use $P_{\rm syn} \propto E^2 B^2$, and thus

$$I_{\nu} d\nu \propto E^{2-\alpha} B^2 dE$$

With $\gamma = E/m$, we obtain a relation between E and $\omega = 2\pi\nu$, or differentiated

$$d\omega_s \propto 2EdEB$$

Inserting everything gives

$$I_{\nu} d\nu \propto E^{2-\alpha} B^2 \frac{d\nu}{EB} = E^{1-\alpha} B d\nu = \nu^{\frac{1-\alpha}{2}} B^{\frac{1+\alpha}{2}}.$$

Thus the slope of the synchrotron spectrum $I_{\nu} \propto \nu^{\beta}$ is $\beta = (1 - \alpha)/2$, and it scales with the magnetic field strength as $B^{\frac{1+\alpha}{2}}$.

3. Interaction length of electrons on CMB.

Estimate the interaction length of an electrons scattering on CMB photons with temperature 2.7 K. in the Thomson limit.

The mean-free path is $l_{\rm int} = 1/(n_{\gamma}\sigma_{\rm Th}) \sim 1\,{\rm kpc}$.

4. Greisen-Zatsepin-Kuzmin cutoff.

- a.) Calculate the threshold energy (the "Greisen-Zatsepin-Kuzmin cutoff") of protons for the reaction $p + \gamma \to p + \pi^0$ on CMB photons with temperature 2.7 K. Estimate the mean-free path of a proton above the threshold using $\sigma = 0.1$ mbarn.
- b.) What reaction could be important at smaller energies as energy-loss mechanism for protons? Estimate the corresponding cross-section.
- a.) The mean energy of BB photons with $T=2.7\,\mathrm{K}$ is $\varepsilon\simeq2.7kT\simeq6.3\times10^{-4}\,\mathrm{eV}$. At threshold, the final state is produced at rest,

$$s = (p_1 + p_2)^2 \ge (m_N + m_\pi)^2$$
.

Thus

$$m_N^2 + 2E_p\varepsilon(1-\cos\theta) \ge m_N^2 + 2m_N m_\pi + m_\pi^2$$

Solutions are discussed Thursday, 02.11.23

where we assumed that the proton is ultrarelativistic. For a head-on collision, $1 - \cos \vartheta = 2$, and thus

$$E_p \ge \frac{2m_N m_\pi + m_\pi^2}{4E_p \varepsilon} \simeq 10^{20} \,\text{eV}.$$

The mean-free path is $l_{\rm int}=1/(n_{\gamma}\sigma)$ with $n_{\gamma}\simeq 411/{\rm cm}^3$. Since protons are not destroyed, but only loss energy, the more interesting quantity is the energy-loss length

$$\frac{1}{E} \frac{\mathrm{d}E}{c \mathrm{d}t} \simeq \langle y \rangle n_{\gamma} \sigma \simeq (17 \,\mathrm{Mpc})^{-1}$$

with $\langle y \rangle = (E-E')/E \simeq m_\pi/m_p \simeq 0.1$ as the energy lost per interaction.

b.) For a smaller threshold energy, the mass of the final state should be reduced, as in $p + \gamma \to p + e^+ + e^-$. This replaces also a strong interaction (which creates the pion) with a electromagnetic interaction (which creates the e^+e^- pair). Thus one expects that the cross section is reduced by a factor $\alpha_s/\alpha_{\rm em}$. With $\alpha_s \sim 1$ and $\alpha_{\rm em} \sim 1/137$, the cross section is factor of order 100 smaller.