Ultrahigh energy neutrinos: Theoretical aspects

. Michael Kachelrieß

NTNU, Trondheim

Introduction

- Osmogenic neutrino flux
 - best estimate
 - Iower and upper limits
- Strophysical sources
 - point sources
 - Cen A motivated by Auger
 - diffuse flux
- Top-down models

Summary

- Introduction
- Osmogenic neutrino flux
 - best estimate
 - Iower and upper limits
- Strophysical sources
 - point sources
 - Cen A motivated by Auger
 - diffuse flux
- Top-down models
- Summary

- Introduction
- Osmogenic neutrino flux
 - best estimate
 - Iower and upper limits
- Astrophysical sources
 - point sources
 - Cen A motivated by Auger
 - diffuse flux
- Top-down models

Summary

- Introduction
- Osmogenic neutrino flux
 - best estimate
 - Iower and upper limits
- Strophysical sources
 - point sources
 - Cen A motivated by Auger
 - diffuse flux
- Top-down models
- Summary

- Introduction
- Osmogenic neutrino flux
 - best estimate
 - Iower and upper limits
- Strophysical sources
 - point sources
 - Cen A motivated by Auger
 - diffuse flux
- Top-down models

Summary

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

- top-down models:
 - large fluxes with $I_{\nu} \gg I_p$
 - ratio I_{ν}/I_p fixed by fragmentation

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

• top-down models:

- large fluxes with $I_{\nu} \gg I_p$
- ratio I_{ν}/I_p fixed by fragmentation
- astrophysical models, cosmogenic flux:
 - ▶ ratio I_{ν}/I_p determined by chemical composition and source evolution

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

• top-down models:

- large fluxes with $I_{\nu} \gg I_p$
- ratio I_{ν}/I_p fixed by fragmentation
- astrophysical models, cosmogenic flux:
 - \blacktriangleright ratio I_{ν}/I_{p} determined by chemical composition and source evolution
- astrophysical models, direct flux:
 - strongly model dependent fluxes

A B A A B A

UHE neutrinos and HE photons are unavoidable byproducts of UHECRs

• top-down models:

- large fluxes with $I_{\nu} \gg I_p$
- ratio I_{ν}/I_p fixed by fragmentation
- astrophysical models, cosmogenic flux:
 - \blacktriangleright ratio I_{ν}/I_{p} determined by chemical composition and source evolution
- astrophysical models, direct flux:
 - strongly model dependent fluxes
- prizes to win:
 - astronomy above 100 TeV
 - identification of CR sources
 - determine galactic–extragalactic transition of CRs
 - test/discover new particle physics

(日) (同) (三) (三)

• choose dip model as most economic description of data

Michael Kachelrieß (NTNU Trondheim)

• choose dip model as most economic description of data

• observed diffuse spectrum does not fix source spectra: e.g. degeneracy of source evolution and spectral index

Michael Kachelrieß (NTNU Trondheim)

Ultrahigh energy neutrinos

TAUP 2009 4 / 34

- choose dip model as most economic description of data
- observed diffuse spectrum does not fix source spectra: e.g. degeneracy of source evolution and spectral index
- fix source evolution by observations (AGN evolution/GRB rate)

- choose dip model as most economic description of data
- observed diffuse spectrum does not fix source spectra: e.g. degeneracy of source evolution and spectral index
- fix source evolution by observations (AGN evolution/GRB rate)
- fix maximal energy

- choose dip model as most economic description of data
- observed diffuse spectrum does not fix source spectra: e.g. degeneracy of source evolution and spectral index
- fix source evolution by observations (AGN evolution/GRB rate)
- fix maximal energy

- choose dip model as most economic description of data
- observed diffuse spectrum does not fix source spectra: e.g. degeneracy of source evolution and spectral index
- fix source evolution by observations (AGN evolution/GRB rate)
- fix maximal energy

rezinsky, Gazi:

Lower limit in the dip model

General upper limit

 exists a number of "neutrino bounds" à la WB, MPR: derived using special assumptions ⇒ status of best guesses

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

General upper limit

- exists a number of "neutrino bounds" à la WB, MPR: derived using special assumptions ⇒ status of best guesses
- cascade limit: [Berezinsky, Smirnov '75] all energy in γ and e^{\pm} cascades down to GeV–TeV range, bounded by observations:

$$\omega_{\text{cas}} > \frac{4\pi}{c} \int_{E_0}^{\infty} dE \ EI_{\nu}(E) \ge \frac{4\pi}{c} E_0 I_{\nu}(>E_0)$$
$$\lesssim 2 \cdot 10^{-6} \text{ eV/cm}^3$$

4 3 > 4 3

Elmag. cascades and EGRET limit:

Chemical composition via X_{max} :

∃ >

Chemical composition via $\sigma(X_{\text{max}})$ from Auger:

Mixed composition:

Cosmogenic neutrino flux: p versus Fe

• astronomy with VHE photons restricted to few Mpc:

Michael Kachelrieß (NTNU Trondheim)

• astronomy with VHE photons restricted to few Mpc:

UHE neutrino astronomy vs UHECRs?

UHE neutrino astronomy vs UHECRs?

Neutrino astronomy:

• large $\lambda_{
u}$ but also large uncertainty $\langle \delta \vartheta \rangle \gtrsim 0.1^{\circ} - 1^{\circ}$

(日) (同) (三) (三)

Neutrino astronomy:

- large λ_{ν} but also large uncertainty $\langle \delta \vartheta \rangle \gtrsim 0.1^{\circ} 1^{\circ}$
- \bullet small event numbers: $\lesssim 1/{\rm yr}$ for PAO or ICECUBE

 \Rightarrow identification of steady sources challenging

Neutrino astronomy:

- large λ_{ν} but also large uncertainty $\langle \delta \vartheta \rangle \gtrsim 0.1^{\circ} 1^{\circ}$
- \bullet small event numbers: $\lesssim 1/{\rm yr}$ for PAO or ICECUBE

- $\Rightarrow\,$ identification of steady sources challenging
 - correlation with AGN flares, GRBs
 - which AGNs? GeV/TeV photon sources?

HESS observations of M87:

Michael Kachelrieß (NTNU Trondheim)

-

HESS observations of M87:

HESS observations of Cen A

• no variability

< ロ > < 同 > < 回 > < 回 > < 回

Michael Kachelrieß (NTNU Trondheim)

Ultrahigh energy neutrinos

TAUP 2009 16 / 34

HESS observations of Cen A

- no variability
- consistent with point source

< ∃ > <

Michael Kachelrieß (NTNU Trondheim)

HESS observations of Cen A

- no variability
- consistent with point source
- HE emission from central region $(1' \simeq 1.1 \text{ kpc})$
Multi-messenger astronomy with Cen A?

- + 2 events correlated with Cen A within 3.1°
- + more events close-by
- + general correlation with AGN

[Gorbunov et al. '07, Fargione '08, Rachen '08]

→ 3 → 4 3

Centaurus A

Multi-messenger astronomy with Cen A?

- + 2 events correlated with Cen A within 3.1°
- + more events close-by
- + general correlation with AGN
- confusion with LSS?
- no confirmation by HiRes
- tension to PAO chemical composition
- E_{max} for most AGN (incl. Cen A) high enough?

[Gorbunov et al. '07, Fargione '08, Rachen '08]

Multi-messenger astronomy with Cen A?

- + 2 events correlated with Cen A within 3.1°
- + more events close-by
- + general correlation with AGN
- confusion with LSS?
- no confirmation by HiRes
- tension to PAO chemical composition
- E_{\max} for most AGN (incl. Cen A) high enough?

correlations with AGN:

- independent/additional evidence?
- Cen A closest AGN
- \Rightarrow good test case for multi-messenger astronomy: accompanying γ -ray and neutrino fluxes?

[Gorbunov et al. '07, Fargione '08, Rachen '08]

A B F A B F

Study two base models

[MK, Ostapchenko, Tomas '08]

- neglect details of acceleration
- fix 2 basic scenarios: "core" and "jet"

acceleration close to the core acceleration in accretion shock/regular fields $p\gamma$ interactions $\tau_{\gamma\gamma} \gg 1$, synchrotron losses for e^{\pm}

Results for acceleration close to the core: $\alpha=1.2$

Results for acceleration close to the core: $\alpha = 2$

Comparison to recent HESS and FERMI observations

Comparison to recent HESS and FERMI observations

• TeV γ -ray and neutrino source

Regenerating TeV photons: a) in the source

• injection spectrum $F_{\gamma}(E) \propto 1/E^2$

Regenerating TeV photons: a) in the source

• : thin above 10^{16} eV, ultra-rel. regime

Regenerating TeV photons: b) on CMB

• photons above 10^{16}eV cascade on CMB

Regenerating TeV photons: b) on CMB

• photons above 10^{16}eV cascade on CMB : fill up TeV range

Regenerating TeV photons: b) on CMB

• photons above 10^{16}eV cascade on CMB : fill up TeV range

Neutrino event rates per km³ per year

acceleration in the jet ($\alpha = 2$ or broken power-law)

spectral break E_b/eV	-	10^{18}	10^{17}
contained ν -events	0.02	0.4	2.0
muon events	0.01	0.2	0.7

acceleration near the core ($\alpha = 2$ or broken power-law)

spectral break E_b/eV	-	10^{18}	10^{17}
contained ν -events	0.01	0.3	0.9
muon events	7×10^{-3}	0.1	0.5

< ロ > < 同 > < 回 > < 回 > < 回

Neutrino event rates per km³ per year

acceleration in the jet ($\alpha = 2$ or broken power
--

spectral break E_b/eV	-	10^{18}	10^{17}
contained ν -events	0.02	0.4	2.0
muon events	0.01	0.2	0.7

acceleration near the core ($\alpha = 2$ or broken power-law)

spectral break E_b/eV	-	10^{18}	10^{17}
contained ν -events	0.01	0.3	0.9
muon events	7×10^{-3}	0.1	0.5

- "good" neutrino cases excluded by HESS/Fermi
- diffuse flux more promising

Michael Kachelrieß (NTNU Trondheim)

Ultrahigh energy neutrinos

< ロ > < 同 > < 回 > < 回 > < 回

Diffuse flux from AGN - normalized to Cen A

- assume Cen A is a "typical source" with injection spectrum j(E)
- diffuse flux from all Cen A-like sources

$$\varphi^{\text{diff}}(E) = \frac{cn_0}{4\pi} \int_0^\infty dz \left| \frac{dt}{dz} \right| \frac{dE_0(E,z)}{dE} \varepsilon(z) j^0(E_0) \,,$$

- enhancement between $\mathcal{O}(10)$ (no evolution) and $\mathcal{O}(100)$ (strong evolution) [Koers, Tinyakov ('08)]
- Halzen, O'Murchadha ('08): all FR-I radio galaxies: 5 events/yr

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diffuse flux from AGN - normalized to Cen A

- assume Cen A is a "typical source" with injection spectrum j(E)
- diffuse flux from all Cen A-like sources

$$\varphi^{\text{diff}}(E) = \frac{cn_0}{4\pi} \int_0^\infty dz \left| \frac{dt}{dz} \right| \frac{dE_0(E,z)}{dE} \varepsilon(z) j^0(E_0) \,,$$

- enhancement between $\mathcal{O}(10)$ (no evolution) and $\mathcal{O}(100)$ (strong evolution) [Koers, Tinyakov ('08)]
- Halzen, O'Murchadha ('08): all FR-I radio galaxies: 5 events/yr

- 4 同 6 4 日 6 4 日 6

Diffuse flux from AGN - normalized to Cen A

- assume Cen A is a "typical source" with injection spectrum j(E)
- diffuse flux from all Cen A-like sources

$$\varphi^{\text{diff}}(E) = \frac{cn_0}{4\pi} \int_0^\infty dz \left| \frac{dt}{dz} \right| \frac{dE_0(E,z)}{dE} \varepsilon(z) j^0(E_0) \,,$$

- enhancement between $\mathcal{O}(10)$ (no evolution) and $\mathcal{O}(100)$ (strong evolution) [Koers, Tinyakov ('08)]
- Halzen, O'Murchadha ('08): all FR-I radio galaxies: 5 events/yr

- 4 同 6 4 日 6 4 日 6

Top-Down Models

UHECR primaries are produced by decays of supermassive particle X with $M_X\gtrsim 10^{12}~{\rm GeV}.$

• topological defects: monopoles, strings, super-strings. ...

[Hill '83; Ostriker, Thompson, Witten '86]

superheavy metastable particles

[Berezinsky, MK, Vilenkin '97; Kuzmin, Rubakov '97]

- 4 目 ト - 4 日 ト - 4 日 ト

Main properties:

- theoretically well-motivated; testable predictions
- no acceleration problem
- no visible sources
- if $X \in \mathsf{CDM}$, no GZK-cutoff

- AGASA excess as original motivation for top-down models is gone
- Photon and anisotropy limit allow only subdominant contribution to UHECRs
- allows still search for inflationary/GUT/string scale physics
- can still give largest neutrino fluxes, especially at UHE

- AGASA excess as original motivation for top-down models is gone
- Photon and anisotropy limit allow only subdominant contribution to UHECRs
- allows still search for inflationary/GUT/string scale physics
- can still give largest neutrino fluxes, especially at UHE

- AGASA excess as original motivation for top-down models is gone
- Photon and anisotropy limit allow only subdominant contribution to UHECRs
- allows still search for inflationary/GUT/string scale physics
- can still give largest neutrino fluxes, especially at UHE

- AGASA excess as original motivation for top-down models is gone
- Photon and anisotropy limit allow only subdominant contribution to UHECRs
- allows still search for inflationary/GUT/string scale physics
- can still give largest neutrino fluxes, especially at UHE

• Small fluctuations of field Φ obey

 $\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$

(日) (同) (三) (三)

 ${\, \bullet \, }$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$$

• If $m_{\rm eff}$ is time dependent, vacuum fluctuations will be transformed into real particles.

.

 ${\, \bullet \, }$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$$

- If $m_{\rm eff}$ is time dependent, vacuum fluctuations will be transformed into real particles.
- \Rightarrow expansion of Universe,

$$m_{\rm eff}^2 = M^2 a^2 + (6\xi - 1)\frac{a''}{a}$$

leads to particle production

 $\bullet\,$ Small fluctuations of field $\Phi\,$ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$$

- If $m_{\rm eff}$ is time dependent, vacuum fluctuations will be transformed into real particles.
- \Rightarrow expansion of Universe,

$$m_{\text{eff}}^2 = M^2 a^2 + (6\xi - 1) \frac{a''}{a}$$

leads to particle production

• In inflationary cosmology

$$\Omega_X h^2 \sim \left(\frac{M_X}{10^{12} \text{GeV}}\right)^2 \frac{T_{RH}}{10^9 \text{GeV}}$$

dependent only on cosmology, for $M_X \lesssim H_I$

[Kuzmin, Tkachev '98; Chung, Kolb, Riotto

- + "generic" in SUSY-GUTs
- + produced during reheating
 - typical density: one per horizon/correlation length
 - main energy loss low-energy radiation?

• = • •

[Allen, Shellard '06]

- box 2ct
- matter epoch
- scaling regime

Michael Kachelrieß (NTNU Trondheim)

-

- + "generic" in SUSY-GUTs
- + produced during reheating
- typical density: one per horizon/correlation length
- main energy loss low-energy radiation?

favourable models for UHECRs:

- monopole-antimonopole pairs
- hybrid defects: cosmic necklaces

- + "generic" in SUSY-GUTs
- + produced during reheating
- typical density: one per horizon/correlation length
- main energy loss low-energy radiation?

favourable models for UHECRs:

- monopole-antimonopole pairs
- hybrid defects: cosmic necklaces
 - $G \to H \otimes U(1) \to H \otimes Z_2$
 - \blacktriangleright monopoles $M \sim \eta_m/e$ connected by strings $\mu_s \sim \eta_s^2$
 - parameter $r = M/(\mu d)$:
 - $r \ll 1$ normal string dynamics
 - $r \gg 1$ non-rel. string network

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Fragmentation of heavy particles

Michael Kachelrieß (NTNU Trondheim)

Neutrino fluxes from necklaces:

EGRET versus ν_{τ} limit:

Summary

astrophysical origin of main component of UHECRs is established

- \Rightarrow exists cosmogenic neutrino flux
- size and energy range uncertain, mainly because of unknown chemical composition
- ICECUBE is coming close to predicted levels of ("direct") diffuse neutrino flux
- detection of point sources requires correlations
- top-down models may still be dominant neutrino source at UHE

• • = • • = •

Summary

- astrophysical origin of main component of UHECRs is established
- \Rightarrow exists cosmogenic neutrino flux
- size and energy range uncertain, mainly because of unknown chemical composition
- ICECUBE is coming close to predicted levels of ("direct") diffuse neutrino flux
- detection of point sources requires correlations
- top-down models may still be dominant neutrino source at UHE

通 ト イヨ ト イヨト
- astrophysical origin of main component of UHECRs is established
- \Rightarrow exists cosmogenic neutrino flux
- size and energy range uncertain, mainly because of unknown chemical composition
- ICECUBE is coming close to predicted levels of ("direct") diffuse neutrino flux
- detection of point sources requires correlations
- top-down models may still be dominant neutrino source at UHE

通 ト イヨ ト イヨト

- astrophysical origin of main component of UHECRs is established
- \Rightarrow exists cosmogenic neutrino flux
- size and energy range uncertain, mainly because of unknown chemical composition
- ICECUBE is coming close to predicted levels of ("direct") diffuse neutrino flux
- detection of point sources requires correlations
- top-down models may still be dominant neutrino source at UHE

回 と く ヨ と く ヨ と

- astrophysical origin of main component of UHECRs is established
- \Rightarrow exists cosmogenic neutrino flux
- size and energy range uncertain, mainly because of unknown chemical composition
- ICECUBE is coming close to predicted levels of ("direct") diffuse neutrino flux
- detection of point sources requires correlations
- top-down models may still be dominant neutrino source at UHE

通 ト イヨ ト イヨト

- astrophysical origin of main component of UHECRs is established
- \Rightarrow exists cosmogenic neutrino flux
- size and energy range uncertain, mainly because of unknown chemical composition
- ICECUBE is coming close to predicted levels of ("direct") diffuse neutrino flux
- detection of point sources requires correlations
- top-down models may still be dominant neutrino source at UHE

• • = • • = •

Which sources?

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1 \,,$$

where

- DD: number of pairs in catalogue
- ▶ *RR*: number of pairs in random sets

for most popular sources of UHECRs:

Which sources?

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

for most popular sources of UHECRs: AGN

Michael Kachelrieß (NTNU Trondheim)

Which sources?

• Use the auto-correlation function,

$$w(\vartheta) = \frac{DD(\vartheta)}{RR(\vartheta)} - 1,$$

for most popular sources of UHECRs: AGN and GRB

Pion-nucleon ratio:

[Aloisio, Berezinsky, MK, '03]

(4) (3) (4) (4) (4)

Michael Kachelrieß (NTNU Trondheim)

Photon-nucleon ratio:

[Aloisio, Berezinsky, MK, '03]

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- AGASA excess as main motivation for top-down models is gone
- no positive evidence for superheavy dark matter from its two key signatures:
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate
- topological defects are generic prediction of (SUSY-) GUTs
- should be searched for as subdominant sources of UHECR