Top-Down Models and UHECRs

Michael Kachelrieß

NTNU, Trondheim

Bottom-up versus top-down models

Bottom-up models

- acceleration in electromagnetic fields
- ⇒ charged particles: protons, nuclei, electrons
 - photons and neutrinos as secondaries

< A > < B > <

Bottom-up versus top-down models

Bottom-up models

- acceleration in electromagnetic fields
- \Rightarrow charged particles: protons, nuclei, electrons
 - photons and neutrinos as secondaries

Top-down models

- relics from early universe
 - non-thermal or thermal
 - point particle or non-perturbative solutions
 - stable or decaying

• fragmentation products: mainly photons, neutrinos

 $\leftrightarrow \mathsf{DM}$

Dark matter candidates

Rencontres de Blois 2008

Michael Kachelrieß

The standard candidate: WIMP

- inflation suggested $\Omega=1,~\mathsf{CMB}$ shows that $\Omega\approx 1$
- BBN constrains baryon content, $\Omega_b h^2 = 0.019 \pm 0.001$
- LSS requires that DM is dissipation-less and "cold"
- thermal production of CDM,

suggests weakly interacting DM particle with mass $m \sim m_Z$

伺 ト イヨト イヨト

The standard candidate: WIMP

- inflation suggested $\Omega=1,~\mathsf{CMB}$ shows that $\Omega\approx 1$
- BBN constrains baryon content, $\Omega_b h^2 = 0.019 \pm 0.001$
- LSS requires that DM is dissipation-less and "cold"
- thermal production of CDM,

suggests weakly interacting DM particle with mass $m \sim m_Z$ unitarity limit: $m \leq 100 \text{ TeV}$

Status of neutralino DM after LEPII:

Status of neutralino DM after LEPII:

Indirect detection claims:

Signal from

 $\chi\chi$ annihilations in the diffuse extragalactic photon background:

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Indirect detection claims:

 Signal from χχ annihilations in the diffuse extragalactic photon background:

(ロ) (同) (E) (E)

Indirect detection claims:

 Signal from χχ annihilations in the diffuse extragalactic photon background:

problem:

• search for small excess on top of "astrophysical background"

<ロ> (四) (四) (三) (三) (三) (三)

• no obvious counter-parts for 10²⁰eV events

A (10) + (10)

- no obvious counter-parts for 10^{20} eV events
- \bullet acceleration beyond $10^{20} eV$ difficult

伺 ト イヨト イヨト

- no obvious counter-parts for 10²⁰eV events
- \bullet acceleration beyond $10^{20} eV$ difficult
- AGASA excess

伺 ト イヨト イヨト

= nan

- no obvious counter-parts for 10²⁰eV events
- \bullet acceleration beyond $10^{20} eV$ difficult
- AGASA excess
- misinterpretation of GZK suppression as GZK cutoff

Modification factor:

Rencontres de Blois 2008

Michael Kachelrieß

Modification factor: AGASA excess

Rencontres de Blois 2008

Michael Kachelrieß

Modification factor: Nuclei

Rencontres de Blois 2008

Michael Kachelrieß

GZK suppression – dependence on n_s

<回> < 回> < 回> < 回>

포크

GZK suppression – dependence on n_s

Top-Down Models

UHECR primaries are produced by decays of supermassive particle X with $M_X \gtrsim 10^{12}$ GeV.

• topological defects: monopoles, strings, ...

[Hill '83; Ostriker, Thompson, Witten '86]

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• superheavy metastable particles

[Berezinsky, MK, Vilenkin '97; Kuzmin, Rubakov '97]

Advantages:

- no acceleration problem
- no visible sources
- if $X \in CDM$, no GZK-cutoff
- theoretically motivated; testable predictions

• Small fluctuations of field Φ obey

 $\ddot{\varphi}_k + \left[k^2 + m_{\rm eff}^2(\tau)\right] \varphi_k = 0$

< □ > < □ > < Ξ > < Ξ > < Ξ ≤ · < Ξ ≤ · < □ >

 ${\, \bullet \, }$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\rm eff}^2(\tau)\right] \varphi_k = 0$$

• If *m*_{eff} is time dependent, vacuum fluctuations will be transformed into real particles.

A (10) + (10)

= ~ Q Q

 ${\, \bullet \, }$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\rm eff}^2(\tau)\right] \varphi_k = 0$$

- If *m*_{eff} is time dependent, vacuum fluctuations will be transformed into real particles.
- \Rightarrow expansion of Universe,

$$m_{\rm eff}^2 = M^2 a^2 + (6\xi - 1) \frac{a''}{a}$$

leads to particle production

伺 ト イヨト イヨト

 ${\, \bullet \, }$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\rm eff}^2(\tau)\right] \varphi_k = 0$$

- If *m*_{eff} is time dependent, vacuum fluctuations will be transformed into real particles.
- \Rightarrow expansion of Universe,

$$m_{\rm eff}^2 = M^2 a^2 + (6\xi - 1) \frac{a''}{a}$$

leads to particle production

In inflationary cosmology

$$\Omega_X h^2 \sim \left(\frac{M_X}{10^{12} \text{GeV}}\right)^2 \frac{T_{RH}}{10^9 \text{GeV}}$$

dependent only on cosmology, for $M_X \leq H_I$

[Kuzmin, Tkachev '98; Chung, Kolb, Riotto '98]

Properties of superheavy matter:

was never in thermal equiibrium:

 \Rightarrow unitarity limit $M \leq 30$ TeV does not apply

(日) (圖) (문) (문) 문

was never in thermal equlibrium:

 \Rightarrow unitarity limit $M \lesssim 30$ TeV does not apply

can be strongly interacting and dissipation-less:

small relative energy transfer dE/(Edt) per time requires:

- ullet either small σ or
- small energy transfer y
- \Rightarrow any DM particle with $m_X \gtrsim 10$ TeV is dissipation-less

(a)

was never in thermal equlibrium:

 \Rightarrow unitarity limit $M \lesssim 30$ TeV does not apply

can be strongly interacting and dissipation-less:

small relative energy transfer dE/(Edt) per time requires:

- ullet either small σ or
- small energy transfer y
- \Rightarrow any DM particle with $m_X \gtrsim 10$ TeV is dissipation-less

lifetime:

• metastable or stable due to some (gauged) R symmetry

Rencontres de Blois 2008

イロト イヨト イヨト イヨト

Detection of superheavy matter:

• direct detection: density $1/M_X$, recoil energy is constant \Rightarrow large σ_{XN} required

• 3 >

Detection of superheavy matter:

• indirect detection via neutrinos from the Sun: signal should compete with usual fluxes $\Rightarrow \langle \sigma v \rangle \sim 10^{-26} \text{ cm}^2 \text{ needed}$

Rencontres de Blois 2008

• UHECR above the GZK cutoff via nucleon, photon secondaries

- 4 ⊒ ▶

Lifetime:

- stable: annihilation gives too small flux
- decay: too fast? For $M_X \gtrsim 10^{10}$ GeV even gravitational interactions result in cosmological short lifetimes, $\tau_X \ll t_0$.
- global symmetry broken by wormhole effects, $\tau_X \propto \exp(S)$
- symmetry broken by instanton effects, $\tau_X \propto \exp(-4\pi^2/g^2)$
- discrete symmetries forbid operators with d < 9
- crypton or fractionally charged and confined particle of superstring theories

• consider Bremsstrahlung, $X \rightarrow \bar{f} f V$:

soft and collinear singularities generate terms $\ln^2(m_V^2/m_X^2)$ for $m_X^2 \gg m_V^2 \Rightarrow$ compensate the small couplings g^2 ,

 $g^2\ln^2(m_X^2/m_V^2)\approx 1$

• consider Bremsstrahlung, $X \rightarrow \bar{f} f V$:

soft and collinear singularities generate terms $\ln^2(m_V^2/m_X^2)$ for $m_X^2 \gg m_V^2 \Rightarrow$ compensate the small couplings g^2 ,

 $g^2\ln^2(m_X^2/m_V^2)\approx 1$

• $M_X \gtrsim 10^6$ GeV, \Rightarrow naive perturbation theory breaks down: electroweak and SUSY sector have a QCD-like behavior ("jets")

[Berezinsky, MK '98, Berezinsky, MK, Ostapchenko '02]

• consider Bremsstrahlung, $X \rightarrow \bar{f} f V$:

soft and collinear singularities generate terms $\ln^2(m_V^2/m_X^2)$ for $m_X^2 \gg m_V^2 \Rightarrow$ compensate the small couplings g^2 ,

 $g^2\ln^2(m_X^2/m_V^2)\approx 1$

• $M_X \gtrsim 10^6$ GeV, \Rightarrow naive perturbation theory breaks down: electroweak and SUSY sector have a QCD-like behavior ("jets")

[Berezinsky, MK '98, Berezinsky, MK, Ostapchenko '02]

< □ > < □ > < Ξ > < Ξ > < Ξ ≤ · < Ξ ≤ · < □ >

• (modified) DGLAP description possible

Signatures of SHDM decays

 \Rightarrow SHDM dominates UHECR flux only above $\sim 8 \times 10^{19} \mbox{ eV}$

伺 ト イヨト イヨト

Signatures of SHDM decays

- flat spectra $dE/E^{1.9}$ up to $m_X/2$
- composition:
 - $\gamma/p \gg 1$, large neutrino fluxes, no nuclei
 - LSPs, if R parity conserved

Michael Kachelrieß

Top-Down Models

UH

F

at a

fror

Z-b (*do*.

I not/v/N -ratio

Signatures of SHDM decays

• flat spectra $dE/E^{1.9}$ up to $m_X/2$

• composition:

・ 同 ト ・ ヨ ト

< ≥ > . Ξ

ъ

Signatures of SHDM decays

- flat spectra $dE/E^{1.9}$ up to $m_X/2$
- composition:

 θ

- 4 ⊒ ▶

- + "generic" in SUSY-GUTs
- + produced during reheating
 - typical density: one per horizon/correlation length
 - main energy loss low-energy radiation?

- (同) (同) (同) (回) (回)

- matter epoch
- scaling regime

- + "generic" in SUSY-GUTs
- + produced during reheating
 - typical density: one per horizon/correlation length
 - main energy loss low-energy radiation?

favourable models for UHECRs:

- monopole-antimonopole pairs
- hybrid defects: cosmic necklaces

- + "generic" in SUSY-GUTs
- + produced during reheating
 - typical density: one per horizon/correlation length
 - main energy loss low-energy radiation?

favourable models for UHECRs:

- monopole-antimonopole pairs
- hybrid defects: cosmic necklaces
 - $G \to H \otimes U(1) \to H \otimes Z_2$
 - monopoles $M \sim \eta_m/e$ connected by strings $\mu_s \sim \eta_s^2$
 - parameter $r = M/(\mu d)$:
 - $r \ll 1$ normal string dynamics
 - $r \gg 1$ non-rel. string network

- 4 回 2 - 4 回 2 - 三日

Status of topological defect models – necklaces:

[[]Aloisio, Berezinsky, MK, '03]

- ∢ ⊒ ▶

Status of topological defect models – necklaces:

 \Rightarrow shape of spectrum allows only sub-dominant contribution \bullet UHE photon fraction reduced

Idea of EGRET limit

all energy in γ and e^{\pm} cascades down to GeV–TeV range, bounded by observations:

$$\begin{split} \omega_{\rm cas} &= f_{\rm em} m_X \int_0^{t_0} dt \; (1+z)^{-4} \, \dot{n}_X(t) \\ &\lesssim \; 2 \cdot 10^{-6} \, {\rm eV/cm}^3 \end{split}$$

< □ > < □ > < Ξ > < Ξ > < Ξ ≤ · < Ξ ≤ · < □ >

Elmag. cascades and EGRET limit:

(4回) (注) (注) (注)

- AGASA excess as main motivation for top-down models is gone
- no positive evidence for superheavy dark matter from its two key signatures:
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate
- topological defects are generic prediction of (SUSY-) GUTs
- should be searched for as subdominant sources of UHECR

Sensitivity of neutrino detectors

A (10) × (10) × (10) ×

포크

Sensitivity of neutrino detectors

Rencontres de Blois 2008

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □臣